AUT LibraryAUT
View Item 
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Special Character Recognition Using Deep Learning

Li, Changjian
Thumbnail
View/Open
Thesis (4.790Mb)
Permanent link
http://hdl.handle.net/10292/15042
Metadata
Show full metadata
Abstract
In recent years, deep learning methods have been applied to our daily lives and various industries. Visual object detection methods are broadly employed to a consortium of tasks, including human face detection in public areas, traffic signs detection, car plate number recognition, etc. Natural Language Processing (NLP) methods are implemented for language translation, Automatic Speech Recognition (ASR), client embedding, item embedding, etc.

In this thesis, we contribute to special character recognition by using deep learning. The Adaptive Bezier Curve Network (ABCNet) is a text detection and recognition method utilized to recognize English Braille, which implements parameterized Bezier curves for detecting arbitrary-shape text in natural scenes. YOLOv5 is the second deep learning method that was implemented for Māori symbol recognition. The methods show outstanding performance in our experiments. Both methods detect and recognize visual objects with high accuracies. The results of our experiments prove deep learning methods are feasible to be implemented for detecting and classifying special characters, shortening the time cost of translation, and reducing labor costs.
Keywords
Deep learning; Object detection; Scene text recognition and detection; ABCNet; YOLOv5
Date
2022
Item Type
Thesis
Supervisor(s)
Yan, Wei Qi
Degree Name
Master of Computer and Information Sciences
Publisher
Auckland University of Technology

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open Theses & DissertationsTitlesAuthorsDateThesis SupervisorMasters ThesesTitlesAuthorsDateThesis Supervisor

Alternative metrics

 

Statistics

For this itemFor all Open Theses & Dissertations

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library