AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smart City Taxi Trajectory Coverage and Capacity Evaluation Model for Vehicular Sensor Networks

Naseer, S; Liu, W; Sarkar, NI; Shafiq, M; Choi, J-G
Thumbnail
View/Open
Journal article (1.687Mb)
Permanent link
http://hdl.handle.net/10292/14551
Metadata
Show full metadata
Abstract
In a smart city, a large number of smart sensors are operating and creating a large amount of data for a large number of applications. Collecting data from these sensors poses some challenges, such as the connectivity of the sensors to the data center through the communication network, which in turn requires expensive infrastructure. The delay-tolerant networks are of interest to connect smart sensors at a large scale with their data centers through the smart vehicles (e.g., transport fleets or taxi cabs) due to a number of virtues such as data offloading, operations, and communication on asymmetric links. In this article, we analyze the coverage and capacity of vehicular sensor networks for data dissemination between smart sensors and their data centers using delay-tolerant networks. Therein, we observed the temporal and spatial movement of vehicles in a very large coverage area (25 × 25 km2) in Beijing. Our algorithm sorts the entire city into different rectangular grids of various sizes and calculates the possible chances of contact between smart sensors and taxis. We further calculate the vehicle density, coverage, and capacity of each grid through a real-time taxi trajectory. In our proposed study, numerical and spatial mining show that even with a relatively small subset of vehicles (100 to 400) in a smart city, the potential for data dissemination is as high as several petabytes. Our proposed network can use different cell sizes and various wireless technologies to achieve significant network area coverage. When the cell size is greater than 500 m2, we observe a coverage rate of 90% every day. Our findings prove that the proposed network model is suitable for those systems that can tolerate delays and have large data dissemination networks since the performance is insensitive to the delay with high data offloading capacity.
Keywords
Smart cities; Spatial data mining; Grid clustering; Big data; Delay tolerant network; Sensor networks; GPS traces; Internet of Things; Intelligent transportation system
Date
September 30, 2021
Source
Sustainability 2021, 13, 10907
Item Type
Journal Article
Publisher
MDPI
DOI
10.3390/su131910907
Rights Statement
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library