AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Health and Environmental Sciences
  • School of Science
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Health and Environmental Sciences
  • School of Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of High Hydrostatic Pressure Processing on the Chemical Characteristics of Different Lamb Cuts

Kantono, K; Hamid, N; Oey, I; Wu, YC; Ma, Q; Farouk, M; Chadha, D
Thumbnail
View/Open
Journal article (1.200Mb)
Permanent link
http://hdl.handle.net/10292/14336
Metadata
Show full metadata
Abstract
The non-thermal high-pressure processing (HPP) technique has been used to increase the shelf life of food without compromising their nutritional and sensory qualities. This study aims to explore the potential application of HPP on New Zealand lamb meat. In this study, the effect of HPP, at different pressure treatments (200–600 MPa) on eight different lamb meat cuts in terms of lipid oxidation, fatty acid and free amino acid content were investigated. In general treatments between 400 and 600 MPa resulted in higher oxidation values in eye of loin, flat, heel, and tenderloin cuts. Saturated and monounsaturated fatty acid content were significantly lower with HPP treatment of almost all cuts (except rump and heel cuts) at all pressures. Polyunsaturated fatty acid content was significantly lower in HPP-treated inside, knuckle, and tenderloin cuts at 600 MPa compared to control. Nine essential free amino acids (valine, leucine, isoleucine, methionine, phenylalanine, lysine, histidine, tyrosine and tryptophan), and eight non-essential free amino acids (alanine, glycine, threonine, serine, proline, aspartic acid, glutamic acids and ornithine) were identified in the lamb cuts. HPP increased the total free amino acid composition significantly compared to control at all pressures for almost all cuts except the inside and eye of loin cuts. This study suggests that higher pressure treatments (i.e., 400 and 600 MPa) resulted in higher TBARS oxidation levels. Additionally, significant decreases in saturated and monounsaturated fatty acids and increase free amino acid content were observed in the majority of HPP-treated samples compared to control.
Keywords
High-pressure processing; Lamb cuts; Fatty acids; Amino acids; Lipid oxidation
Date
2020
Source
Foods, 9(10), 1444.
Item Type
Journal Article
Publisher
MDPI AG
DOI
10.3390/foods9101444
Publisher's Version
https://www.mdpi.com/2304-8158/9/10/1444
Rights Statement
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of ScienceTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library