AUT LibraryAUT
View Item 
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
  •   Open Theses & Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methods for Deep Transfer Learning and Knowledge Transfer in the NeuCube Brain-Inspired Spiking Neural Network

Tan, Yongyao
Thumbnail
View/Open
Thesis (3.822Mb)
Permanent link
http://hdl.handle.net/10292/13953
Metadata
Show full metadata
Abstract
With the increasing number of computational systems based on continuous streams of information, progressively learning and accommodating new knowledge in a more efficient manner becomes a long-standing challenge. This thesis proposes methods employing a Brain-Inspired Spiking Neural Network (BI-SNN) architecture for transfer learning scenarios. The proposed transfer learning approaches were experimentally validated using a benchmark brain data related to upper limb movement. The results showed that the proposed methods have the capability to effectively learn new knowledge by retaining and reusing previously learned knowledge, resulting in a better accuracy of classification (up to 88.89%) when compared with non-transfer learning methods. Further, a new deep knowledge representation approach is proposed and developed, which allows extracting spatial temporal rules from deep knowledge, enabling a better interpretation of learning patterns in the SNN models and evolution trace of knowledge during transfer learning.
Keywords
Incremental learning; Transfer learning; Spatio-temporal EEG data; Deep knowledge representation; Spiking neural networks; Explainable AI; Human movements
Date
2021
Item Type
Thesis
Supervisor(s)
Kasabov, Nikola; Doborjeh, Maryam
Degree Name
Master of Computer and Information Sciences
Publisher
Auckland University of Technology

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open Theses & DissertationsTitlesAuthorsDateThesis SupervisorMasters ThesesTitlesAuthorsDateThesis Supervisor

Alternative metrics

 

Statistics

For this itemFor all Open Theses & Dissertations

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library