AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Arcing Behaviour of a Potential High-temperature Superconductor (HTS) Circuit Breaker Arc Model

Ullah, A; Lie, T; Gunawardane, K; Nair, NKC
Thumbnail
View/Open
Conference contribution (591.4Kb)
Permanent link
http://hdl.handle.net/10292/12352
Metadata
Show full metadata
Abstract
Circuit breaker is a vital and sophisticated part of protection accessories in power system. An arc model of a circuit breaker can determine the dynamic and static feature for arcing directed by a power circuit. The idea of HTS Circuit Breaker (HTSCB) evolves with the concept of HTS contacts in liquid nitrogen arc medium. Browne's HTS arc model for HTSCB and its characteristics were developed and investigated earlier in order to address the arcing limitations of existing circuit breakers for HTS power applications. The model was mainly developed from the classical arcing equations. In this paper, the same arc model is investigated for the functionality of arc characteristics simulation response. It is found the arc model has closed relationship with time constant, reference voltage and other parameters. The parameter sweep technique for minimizing the arcing time of HTS arc model parameters shows the trend of arcing voltage and current from the change of arc model's parameters. A test bed environment is developed in MATLAB ® Simulink by using the final parameter values to perform the interruption scenario of HTSCB. The results deal with different arcing terms like arc current peak, arcing time, fault duration, transient results of HTS arc model and the wave form transition tendency. Finally, the results are compared with the experimental analysis and found in good agreement.
Keywords
Circuit Breaker; DC-AC inverter; Arc model; Power conditioning system; Arc Model
Date
February 2, 2018
Source
2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, 2018, pp. 256-260.
Item Type
Conference Contribution
Publisher
IEEE
DOI
10.1109/IESES.2018.8349884
Publisher's Version
https://ieeexplore.ieee.org/document/8349884
Rights Statement
Copyright © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library