Hydrological Cycle Algorithm for Continuous Optimization Problems

Date
2017-12-17
Authors
Wedyan, A
Whalley, J
Narayanan, A
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi
Abstract

A new nature-inspired optimization algorithm called the Hydrological Cycle Algorithm (HCA) is proposed based on the continuous movement of water in nature. In the HCA, a collection of water drops passes through various hydrological water cycle stages, such as flow, evaporation, condensation, and precipitation. Each stage plays an important role in generating solutions and avoiding premature convergence. The HCA shares information by direct and indirect communication among the water drops, which improves solution quality. Similarities and differences between HCA and other water-based algorithms are identified, and the implications of these differences on overall performance are discussed. A new topological representation for problems with a continuous domain is proposed. In proof-of-concept experiments, the HCA is applied on a variety of benchmarked continuous numerical functions. The results were found to be competitive in comparison to a number of other algorithms and validate the effectiveness of HCA. Also demonstrated is the ability of HCA to escape from local optima solutions and converge to global solutions. Thus, HCA provides an alternative approach to tackling various types of multimodal continuous optimization problems as well as an overall framework for water-based particle algorithms in general.

Description
Keywords
Source
Journal of Optimization, vol. 2017, Article ID 3828420, 25 pages, 2017. doi:10.1155/2017/3828420
Rights statement
Copyright © 2017 AhmadWedyan et al. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.