AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Impact of the Parabolic Dish Concentrator on the Wind Induced Heat Loss From Its Receiver

Uzair, M; Anderson, TN; Nates, RJ
Thumbnail
View/Open
The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver-Preprint.pdf (1.440Mb)
Permanent link
http://hdl.handle.net/10292/10492
Metadata
Show full metadata
Abstract
Abstract To achieve higher operating temperatures, power output and system efficiencies in parabolic dish cavity receivers, larger dish sizes and structures are used to increase the concentration ratio. This increases capital investment and installation costs, which in turn places a much stronger emphasis on accurately predicting the performance of the system and the heat loss from it. Numerous studies have investigated the natural convection heat losses from cavity receivers, and some have examined a cavity exposed to wind. However, the effect of the dish on the wind flow and subsequently the heat loss from the receiver has not been widely considered. In this work, computational fluid dynamics was used to model the flow of air around a parabolic dish concentrator operating at varying angles of operation. The flow fields were validated using wind tunnel testing and published data regarding the aerodynamic characteristics of parabolic dishes. The results showed that the orientation of the dish has a significant effect on the flow structure near the receiver. Subsequently, using the validated method, the convective heat loss from the receiver of a large parabolic dish system was determined for a range of operating conditions. The results support the assertion that the flow characteristics near the cavity receiver aperture depend strongly on the orientation of the dish structure. This resulted in the calculated heat loss being up to 40% lower than previous studies where the presence of the dish was included. As such, the wind flow around the dish needs to be accounted for when analyzing the performance of parabolic dish systems to avoid an overly conservative and hence more expensive design.
Keywords
Parabolic dish; Heat loss; Wind; CSP
Date
July 15, 2017
Source
Solar Energy, 151, 95-101.
Item Type
Journal Article
Publisher
Elsevier
DOI
10.1016/j.solener.2017.05.022
Publisher's Version
http://www.sciencedirect.com/science/article/pii/S0038092X17303997
Rights Statement
Copyright © 2017 Elsevier Ltd. All rights reserved. This is the author’s version of a work that was accepted for publication in (see Citation). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version was published in (see Citation). The original publication is available at (see Publisher's Version).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library