AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Skewed Distributions in Semi-stream Joins: How Much Can Caching Help?

Naeem, MA; Dobbie, G; Lutteroth, C; Weber, G
Thumbnail
View/Open
Journal article (663.0Kb)
Permanent link
http://hdl.handle.net/10292/10378
Metadata
Show full metadata
Abstract
Semi-stream join algorithms join a fast data stream with a disk-based relation. This is important, for example, in real-time data warehousing where a stream of transactions is joined with master data before loading it into a data warehouse. In many important scenarios, the stream input has a skewed distribution, which makes certain performance optimizations possible.

We propose two such optimization techniques: (1) a caching technique for frequently used master data and (2) a technique for selective load shedding of stream tuples. The caching technique is fine-grained, operating on a tuple-level. Furthermore, it is generic in the sense that it can be applied to different semi-stream join algorithms to deal with data skew. We analyze it by combining it with various well-known semi-stream joins, and show that it improves the service rate by more than 40% for typical data with skewed distributions. The load shedding technique sheds the fraction of the stream that is most expensive to join. In contrast to existing approaches, the service rate improves under load shedding. We present experimental data showing significant improvements as compared to related approaches and perform a sensitivity analysis for various internal parameters.
Keywords
Semi-stream processing; Join; Front-stage cache; Performance optimization
Date
2016
Source
Information Systems. Volume 64, March 2017, Pages 63–74
Item Type
Journal Article
Publisher
Elsevier
DOI
10.​1016/​j.​is.​2016.​09.​007
Publisher's Version
http://www.sciencedirect.com/science/article/pii/S0306437916304161
Rights Statement
Copyright © 2017 Elsevier Ltd. All rights reserved. This is the author’s version of a work that was accepted for publication in (see Citation). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version was published in (see Citation). The original publication is available at (see Publisher's Version).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library