Show simple item record

dc.contributor.advisorBrughelli, Matt
dc.contributor.advisorMorin, Jean-Benoit
dc.contributor.authorCross, Matthew Rex
dc.date.accessioned2016-10-03T02:56:39Z
dc.date.available2016-10-03T02:56:39Z
dc.date.copyright2016
dc.date.created2016
dc.identifier.urihttp://hdl.handle.net/10292/10060
dc.description.abstractThe measurement of power-velocity and force-velocity relationships offers valuable insight into athletic capabilities. The qualities underlying maximum power (i.e. optimal loading conditions) are of particular interest in individualized training prescription and the enhanced development of explosive performance. While research has examined these themes using cycle ergometers and specialized treadmills, the conditions for optimal loading during over-ground sprint running have not been quantified. This thesis aimed to assess whether force-velocitypower relationships and optimal loading conditions could be profiled using a sled-resisted multiple-trial method overground, if these characteristics differentiate between recreational athletes and highly-trained sprinters, and whether conditions for optimal loading could be determined from a single sprint. Consequently, this required understanding of the friction characteristics underlying sled-resisted sprint kinetics. Chapter 3 presents a method of assessing these characteristics by dragging an instrumented sled at varying velocities and masses to find the conversion of normal force to friction force (coefficient of friction). Methods were reliable (intraclass correlation [ICC]>0.99; coefficient of variation [CV]<4.3%) and showed the coefficient of friction was dependent on sled towing velocity, rather than normal load. The ‘coefficient of friction-velocity’ relationship was plotted by a 2nd order polynomial regression (R²=0.999; P<0.001), with the subsequent equation presented for application in sled-resisted sprinting. Chapter 4 implements these findings, using multiple trials (6-7) of sled-resisted sprints to generate individual force-velocity and power-velocity relationships for recreational athletes (N=12) and sprinters (N=15). Data were very well fitted with linear and quadratic equations, respectively (R²=0.977-0.997; P<0.001), with all associated variables reliable (effect size [ES]=0.05-0.50; ICC=0.73-0.97; CV=1.0- 5.4%). The normal loads that maximized power (mean±SD) were 78±6 and 82±8% of bodymass, representing an optimal force of 279±46 and 283±32 N at 4.19±0.19 and 4.90±0.18 m.s-1, for recreational and sprint athletes respectively. Sprinters demonstrated greater absolute and relative maximal power (17.2-26.5%; ES=0.97-2.13; P<0.02; likely), with much greater velocity production (maximum theoretical velocity, 16.8%; ES=3.66; P<0.001; most likely). Optimal force and normal loading did not clearly differentiate between groups (unclear and likely small differences; P>0.05), and sprinters developed maximal power at much higher velocities (16.9%; ES=3.73; P<0.001; most likely). The optimal loading conditions for maximizing power appear individualized (range=69-96% of body-mass), and represent much greater resistance than current guidelines. Chapter 5 investigated the ability of a single sprint to predict optimal sled loading, using identical methods to Chapter 4 and a recently validated profiling technique using a single unloaded sprint. Power and maximal force were strongly correlated (r=0.71-0.86), albeit with moderate to large error scores (standardized typical error estimate [TEE]=0.53-0.71). Similar trends were observed in relative and absolute optimal force (r=0.50-0.72; TEE=0.71-0.88), with estimated optimal normal loading practically incomparable (bias=0.78-5.42 kg; r=0.70; TEE=0.73). However optimal velocity, and associated maximal velocity, were well matched between the methods (r=0.99; bias=0.4-1.4% or 0.00-0.04 m.s-1; TEE=0.12); highlighting a single sprint could conceivably be used to calculate the velocity for maximizing horizontal power in sled sprinting. Given the prevalence of resisted sprinting, practitioners and researchers should consider adopting these methods for individualized prescription of training loads for improved horizontal power and subsequent sprinting performance.en_NZ
dc.language.isoenen_NZ
dc.publisherAuckland University of Technology
dc.subjectSprintingen_NZ
dc.subjectSled trainingen_NZ
dc.subjectOptimal loadingen_NZ
dc.subjectHorizontal forceen_NZ
dc.subjectSled towingen_NZ
dc.subjectSled frictionen_NZ
dc.subjectSprint performanceen_NZ
dc.subjectResisted sprintingen_NZ
dc.titleForce-velocity Profiling in Sled-resisted Sprint Running: Determining the Optimal Conditions for Maximizing Poweren_NZ
dc.typeThesis
thesis.degree.grantorAuckland University of Technology
thesis.degree.levelMasters Theses
thesis.degree.nameMaster of Sport and Exerciseen_NZ
dc.rights.accessrightsOpenAccess
dc.date.updated2016-10-02T22:50:46Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record