Show simple item record

dc.contributor.authorBeer, Gen_NZ
dc.contributor.authorCao, Jen_NZ
dc.date.accessioned2016-09-18T23:46:35Z
dc.date.available2016-09-18T23:46:35Z
dc.date.copyright2016-08-10en_NZ
dc.identifier.citationarXiv:1608.03043 [math.GN]
dc.identifier.urihttp://hdl.handle.net/10292/10029
dc.description.abstractIn previous work by Beer and Levi [8, 9], the authors studied the oscillation Ω(f, A) of a function f between metric spaces hX, di and hY, ρi at a nonempty subset A of X, defined so that when A = {x}, we get Ω(f, {x}) = ω(f, x), where ω(f, x) denotes the classical notion of oscillation of f at the point x ∈ X. The main purpose of this article is to formulate a general joint continuity result for (f, A) 7→ Ω(f, A) valid for continuous functions.en_NZ
dc.publisherarXiven_NZ
dc.relation.urihttp://arxiv.org/abs/1608.03043en_NZ
dc.rightsGranting rights for arXiv to distribute an article does not preclude later copyright assignment. Authors are thus free to publish submissions that already appear on arXiv. Authors may wish to inform the journal publisher that a prior non-exclusive license exists before transferring copyright or granting a publication license. Please check the policies of any potential publication venue before uploading to arXiv. (For the policy information of many publishers, see the SHERPA/RoMEO site.)
dc.subjectOscillationen_NZ
dc.subjectStrong uniform continuityen_NZ
dc.subjectUC-subset Hausdorff distanceen_NZ
dc.subjectLocally finite topologyen_NZ
dc.subjectFinite topologyen_NZ
dc.subjectStrong uniform convergenceen_NZ
dc.subjectVery strong uniform convergenceen_NZ
dc.subjectBornologyen_NZ
dc.titleOscillation Revisiteden_NZ
dc.typeCommissioned Report
dc.rights.accessrightsOpenAccessen_NZ
aut.publication.placeCornell University Libraryen_NZ
aut.relation.reportnumberarXiv:1608.03043en_NZ
pubs.elements-id210993


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record