KEDRI - the Knowledge Engineering and Discovery Research Institute
Permanent link for this collection
KEDRI - the Knowledge Engineering and Discovery Research Institute of Auckland University of Technology was established in June 2002 and since then has been developing novel information processing methods, technologies and their applications to enhance discoveries across different areas of science and engineering. The methods are mainly based on principles from Nature, such as brain information processing, evolution, genetics, quantum physics.
Browse
Browsing KEDRI - the Knowledge Engineering and Discovery Research Institute by Subject "46 Information and Computing Sciences"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEffective Air Pollution Prediction by Combining Time Series Decomposition with Stacking and Bagging Ensembles of Evolving Spiking Neural Networks(Elsevier, 2023-10-28) Maciąg, Piotr S; Bembenik, Robert; Piekarzewicz, Aleksandra; Del Ser, Javier; Lobo, Jesus L; Kasabov, Nikola KIn this article, we introduce a new approach to air pollution prediction using the CEEMDAN time series decomposition method combined with the two-layered ensemble of predictors created based on the stacking and bagging techniques. The proposed ensemble approach is outperforming other selected state-of-the-art models when the bagging ensemble consisting of evolving Spiking Neural Networks (eSNNs) is used in the second layer of the stacking ensemble. In our experiments, we used the PM10 air pollution and weather dataset for Warsaw. As the results of the experiments show, the proposed ensemble can achieve the following error and agreement values over the tested dataset: error RMSE 6.91, MAE 5.14 and MAPE 21%; agreement IA 0.94. In addition, this article provides the computational and space complexity analysis of eSNNs predictors and offers a new encoding method for spiking neural networks that can be effectively applied for values of skewed distributions.
- ItemIntegrating Spatial and Temporal Information for Violent Activity Detection from Video Using Deep Spiking Neural Networks(MDPI AG, 2023-05-06) Wang, Xiang; Yang, Jie; Kasabov, Nikola KIncreasing violence in workplaces such as hospitals seriously challenges public safety. However, it is time- and labor-consuming to visually monitor masses of video data in real time. Therefore, automatic and timely violent activity detection from videos is vital, especially for small monitoring systems. This paper proposes a two-stream deep learning architecture for video violent activity detection named SpikeConvFlowNet. First, RGB frames and their optical flow data are used as inputs for each stream to extract the spatiotemporal features of videos. After that, the spatiotemporal features from the two streams are concatenated and fed to the classifier for the final decision. Each stream utilizes a supervised neural network consisting of multiple convolutional spiking and pooling layers. Convolutional layers are used to extract high-quality spatial features within frames, and spiking neurons can efficiently extract temporal features across frames by remembering historical information. The spiking neuron-based optical flow can strengthen the capability of extracting critical motion information. This method combines their advantages to enhance the performance and efficiency for recognizing violent actions. The experimental results on public datasets demonstrate that, compared with the latest methods, this approach greatly reduces parameters and achieves higher inference efficiency with limited accuracy loss. It is a potential solution for applications in embedded devices that provide low computing power but require fast processing speeds.
- ItemSpiking Neural Networks for Predictive and Explainable Modelling of Multimodal Streaming Data with a Case Study on Financial Time Series and Online News(Springer Science and Business Media LLC, 2023-10-26) AbouHassan, I; Kasabov, NK; Jagtap, V; Kulkarni, PIn a first study, this paper argues and demonstrates that spiking neural networks (SNN) can be successfully used for predictive and explainable modelling of multimodal streaming data. The paper proposes a new method, where both time series and on-line news are integrated as numerical streaming data in the same time domain and then used to train incrementally a SNN model. The connectivity and the spiking activity of the SNN are then analyzed through clustering and dynamic graph extraction to reveal on-line interaction between all input variables in regard to the predicted one. The paper answers the main research question of how to understand the dynamic interaction of time series and on-line news through their integrative modelling. It offers a new method to evaluate the efficiency of using on-line news on the predictive modelling of time series. Results on financial stock time series and online news are presented. In contrast to traditional machine learning techniques, the method reveals the dynamic interaction between stock variables and news and their dynamic impact on model accuracy when compared to models that do not use news information. Along with the used financial data, the method is applicable to a wide range of other multimodal time series and news data, such as economic, medical, environmental and social. The proposed method, being based on SNN, promotes the use of massively parallel and low energy neuromorphic hardware for multivariate on-line data modelling.