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Abstract 

The research presented in this thesis discusses the potential enhancement of 5G multi-tier handover. 

This proposal will utilise two of 5G’s enabling technologies, multi-access edge computing (MEC) 

and machine learning (ML). MEC and ML techniques are believed to be the primary enablers for 

enhanced mobile broadband (eMBB) and ultra-reliable and low latency communication (URLLC). 

The subset of ML that was chosen for this research is deep learning (DL), as it is great at learning 

long-term dependencies. A variant of artificial neural networks called a long short-term memory 

(LSTM) network is used in conjunction with a lookup table (LUT), as part of the proposed solution. 

Subsequently, edge computing virtualisation methods are utilised to reduce handover latency and 

increase overall throughput of the network. In addition to the proposed, this thesis analyses the 

validity of various other potential solutions such as multi-connectivity, cloud centralised radio 

access networks (Cloud C-RAN) and artificial intelligence (AI). 

To implement the proposed algorithm, a software simulation of a multi-tier 5G 

heterogeneous network is developed, based on the 3rd generation partnership project (3GPP) 

standards for: channel models, schedulers, and handovers. This simulator provided the tools 

for the author to analyse and evaluate the feasibility of the proposed solution. 

The results gained from the research was promising. It showed a 40−60% improvement in overall 

throughput under high user densities. Although the proposed scheme may increase the number of 

handovers, it is effective in reducing the handover failure (HOF) and Ping-Ping rates in higher user 

density scenarios by 30%, and 86% respectively, compared to current state-of-the-art. In conclusion, 

a detailed analysis was undertaken, and the aims of the research were satisfied. 
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1 Introduction 

The next decade is a major technological transition phase for the world, as the shift from 4G (4th 

Generation) to 5G progresses. A lot of importance has been set into developing a 5G network 

that can be used to connect all types of devices. Prior to this, the main motivation for developing 

a new generation of telecom infrastructure networks (such as 4G) was to support the rapid 

growth of the smart phone industry [1]. To make the most of this major milestone, the last few 

years have been a vital period for many telecom OEMs (Original Equipment Manufacturers) 

and operators around the globe, as they strengthen their 4G infrastructure in various locations to 

prepare for 5G’s exponential data growth [1]. 

Over the last three years the world has seen many OEM giants develop and deploy the initial 

phases of 5G (led by Huawei and Samsung, followed closely by Nokia, Ericsson and ZTE [2]). 

The expectation from industry professionals is that many large-scale deployments will occur for 

at least the next decade, where in the next five years, 5G networks will grow and account for 

approximately 45% of the world’s total data traffic, this is illustrated in Figure 1.1-1 (further 

details are discussed in [3]). 

 

Figure 1.1-1:  Global data traffic in the next 5 years (Exabytes), image by Ericsson [3] 

There are two major bodies for defining the requirements and standards for 5G. The first is ITU 

(International Telecommunication Union), this union sets the main visions and goals for the 

next generation of telecommunication networks. The second is 3GPP (3rd Generation 

Partnership Project), this encompasses seven standards development organisations (SDOs) 

around the globe that work together to develop the telecommunications standards. 3GPP and 

ITU collaborate with technical individuals and many industry representatives to standardise 

what all telecom manufacturers and operators must adhere to everyday [4]. With the new 5G 

NR standards, it has been made obvious, that the deployment of 5G needed to be a generational 
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change that is various degrees (10x to 1000x) better than the current 4G LTE and LTE-A 

ecosystems. Figure 1.1-2 describes a few of the key benefits of 5G. 

 

Figure 1.1-2: Comparison between 4G (IMT-advanced) and 5G (IMT-2020), image by ITU [5] 

To achieve or get close to the requirements of a more complete 5G network, an important 

enabling technology that many telecom OEMs are adopting is the introduction of Multi-Access 

Edge Computing (MEC). MEC provides improvements to various radio access network (RAN) 

elements, such as: 

- Reduction in infrastructure cost through virtualisations, 

- Increase in network performance, 

- Scalability, 

- Network agility [6]. 

Additionally, the Figure 1.1-3 illustrates the role of MEC in 5G and how a characteristic called 

network slicing can be used to accommodate the numerous network platforms [7]. 

 

Figure 1.1-3: Network Slicing and the Role of MEC © [2017] [7] 
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Furthermore, with the introduction of 5G and MEC, a plethora of socio-economic growth 

opportunities arise as there are endless applications. The points below exhibit a few of the many 

industries that will begin to see the unveilings of major disruptive technologies: 

- Critical high reliability and IoT applications: offsite medical surgeries [8], agricultural 

farming [9] and smart factories [10]. 

- Augmented/ Virtual Reality, big data analytics and gaming. 

o Microsoft’s HoloLens, Amazon web services and Sony’s PlayStation 5, to 

name a few. 

- Vehicular Adhoc networks (VANETs) enhancement for autonomous vehicle 

communication across various radio access technologies (RATs) such as: 

o Radio Frequency (RF) 

o Light direction and ranging (Lidar), these use light in a form of a pulse. 

o and visible light communication (VLC). 

Thus far, MEC have been stated as a key enabler for 5G, although, there is one more key piece 

required to ensure that all of this performs seamlessly. That piece is Artificial Intelligence (AI), 

especially the branch of Machine Learning (ML). The diagram in Figure 1.1-4 shows the three 

major pillars of 5G and the main applications it caters to.  

 

Figure 1.1-4: Three pillars of 5G and applications, image by ITU [5] 

The first two Enhanced Mobile Broadband (eMBB) and Massive Machine Type 

Communications (mMTC) can manage sufficiently with 5G and MEC together, although, to 

achieve ultra-reliable low latency communications (URLLC) and a more optimised performance 

for the other two pillars, ML is required. 
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ML is a subset of AI that is involved with developing computer algorithms for systems to allow 

it to automatically improve through experience [11]. Traditional optimization techniques are not 

adaptable enough to handle the complex, real-time analysis required by 5G networks [12]. Over 

the last decade, ML has proved to be one of, if not the best solution for pattern recognition when 

computation of big data is required. One of the key contributors to how well a ML algorithm 

performs is based off the training that is provided. Training helps the algorithm to discover 

potential relationships between inputs and the desired outputs. There are four different ways a 

ML algorithm can learn: 

1. Supervised learning: Where the algorithm is trained using labelled data. Both input data 

and output data are known. Commonly used where enough historical data is available. 

2. Semi-supervised learning: This can be for the same application as supervised data, but it 

has labelled and unlabelled data for training. Applications include methods for data 

classification, regression, and prediction. 

3. Reinforcement Learning: Is where data is gained from implementation, the goal is to 

learn an environment and find the best strategies for a given agent in different 

environments. Usually used for robotics, gaming, and navigation. 

4. Unsupervised Learning: Where tasks are performed without labelled data. The goal is to 

explore the data and infer a structure from this data to find clusters or anomalies [13]. 

In addition to the training techniques, there are many types of algorithms used in ML, but for 

the use in 5G and MEC, the subset of Deep Learning (DL) is the preferred solution by many 

industry leaders. This is because it can take advantage of its ability to be contextually aware and 

its dependency on big data. Deep learning has already been applied to various functions within 

5G networks, such as traffic classification, routing decisions, and network security [12]. The 

diagram in Figure 1.1-5 indicates the major performance differences between DL, Neural 

Networks (NNs) and traditional ML algorithms as the data size increases. 

 

Figure 1.1-5:  DL compared to NN and traditional ML 

A DL algorithm usually begins with a form of NN design, then several fully connected layers 

(greater than 3) are added for deeper analytics and superior classifications. A traditional NN has 

1 to 3 layers, if layers are more than 3, it is described as a Deep Neural Network (DNN) [14]. 

P
er

fo
rm

an
ce

 

Size of data 

Traditional Machine Learning 

Neural Networks 

Deep Learning 



5 | P a g e  

1.1 Problem Statement and Motivations 

With the introduction of 5G, the industry is posed with many diverse challenges. One of the 

challenges of all the three pillars is, seamless and low latency multi-tier handover. Based off the 

latest 3GPP standards for 5G, it can be noticed that the event-based triggering for handover 

ignores various key elements of the user’s session that require to be taken into consideration, 

such as their mobilities and data rate requirements. User requirements are ever-changing; 

therefore, cellular networks require to be dynamic to react and cater to this demand effectively. 

There are various channel inefficiencies that occur when a diverse range of requirements are not 

taken into consideration.  

The issues relating to multi-tier handovers have not been effectively resolved to this day. There 

are quite a few literatures to address the issues of handover, although only a small portion of 

these adopt a form of AI or cloud computing techniques in their solutions. The use of DL and 

MEC for optimising handover is still a gap in the industry that has not been explored yet. 

With the addition of MEC and DL in 5G, network operators can gather user data and analyse 

variations in signal strength, mobility patterns and data rate requirements of each user, to 

achieve optimum user experience. Additionally, with implementing a system that understands 

the user’s requirements, network elements benefit as well, because this helps efficiently manage 

the base station’s resources. Keeping in mind that the network operators should extract/ use all 

this data without compromising on the compliance of user privacy laws of the specific country. 
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1.2 Thesis Objectives, Scope and Contributions 

The objective of this thesis is to develop a DL handover decision algorithm while utilising 

MEC. This will enable a faster and a more reliable handover system, that would ideally allow 

the user to switch seamlessly between any cellular network configurations based on key 

requirements.  

This research will be validated by conducting software simulations to compare the proposed 

method to the handover technique specified by 3GPP in the technical standard (TS) 38.300 [15], 

Chapter 9.2.3.2. The scope of this research is focused on a 5G heterogeneous environment with 

various base station tiers (Macro, Micro, and Femtocells), to carry out a comprehensive multi-

tier handover evaluation.  

There are two key components of the simulator, one is the channel model, and the second is the 

scheduler. Both the scheduler and the channel models are compliant with 3GPP standards 

38.104 [16] and 36.873 [17], respectively. The scheduler supports 5G functionalities [18], and 

the channel models used are for Macro and Micro base stations for frequencies below 6GHz. 

Additionally, for frequencies greater than 6GHz, a free space model is employed (further details 

are in Chapter 4).  To conclude this section, the points below highlight the key contributions of 

this thesis: 

1. Propose a new DL Long Short-Term Memory (LSTM) handover decision algorithm 

that uses a lookup tables (LUT) and is catered to various user requirements (i.e., key 

Quality of Experience {QoE} and Quality of Service {QoS} requirements). 

2. Remove the time to trigger (TTT) and replace it with a dynamic LUT based triggering 

mechanism. 

3. Propose to modify the handover admission control process (when using the DL LSTM 

logic) to occur at the same timestamp that the base station sends the handover request to 

the UE. This is assuming that the user plane function (UPF) and access mobility 

management function (AMF) are located at the MEC aggregated edge. 

4. Introduce varying measurement report (MR) instances to accommodate a variety of user 

mobilities. 

5. Propose to reduce the size of measurement reports sent from UEs that subsequently 

reduce signalling overheads and improve power efficiencies. 
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1.3 Thesis Structure 

The remaining parts of this thesis are organised as follows: 

Chapter 2: Background 

Presents a detailed view of the specific concepts of cellular technologies, handover, MEC and 

DL that this thesis will encompass.  

Chapter 3: Literature Review 

Delivers a comprehensive review of the various texts encompassing single and multi-tier 

handover optimisation. 

Chapter 4: Research Methodology 

Discusses the various simulation tools, assumptions, and performance metrics required to 

develop the environment for the researcher to evaluate the findings. 

Chapter 5: Proposed Algorithm 

Presents the proposed algorithm and the various other contributors of this thesis. Moreover, a 

variation of the 3GPP handover algorithm is proposed to be appropriate for comparisons. 

Chapter 6: Results and Discussions 

Critically analyses the variations, benefits, and drawbacks of the proposed algorithm and the 

competitor. Also, the changes in key learning parameters of the DL LSTM are examined. 

Chapter 7: Conclusions, Implications and Further Research 

Lastly, this Chapter concludes the thesis and highlights its implications. It will also discuss 

various prospects for conducting further research.  
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2 Background 

A brief overview of, the evolution of the cellular technologies, network configurations, 

handover, edge computing and deep learning will be discussed in this Chapter. Subsection 2.4 

will provide a basic overview of how LSTM networks work and its key features. 

2.1 Cellular Technologies and Configurations 

Cellular technologies and the standardisation of telecommunication networks was first 

introduced in the 1970s, beginning with 1G, standards such as Nordic Mobile Telephone (NMT) 

began in 1975 [19] (for Eastern Europe and Russia), followed closely by Advanced Mobile 

Phone Systems (AMPS) (for North America and Australia), and Total Access Communications 

System (TACS) (for Western Europe). 1G was the only cellular network that operated primarily 

on analogue communication systems. Since then, all successive telecommunication standards 

(2G to 5G and future generations) have been and will be focused on optimising and utilizing 

digital communication methods. Digital communication provides various benefits compared to 

its former such as, better signal quality, superior network security and reduced signalling errors.  

As cellular networks evolved, each generation had specific goals to be achieved. Table 2.1-1 

summarises the few key differentiators between major generations of cellular networks. 

Table 2.1-1: Overview of the Evolution of Cellular Generations [20] [21] [22] [23] 

Technology 

/ Features 
1G 2G 3G 4G 5G 

Deployment 1970 - 1980 1980 - 2000 2000 - 2010 2010 - 2020 2020 - 2030 

Latency  > 1s 1 - 0.3s 500 - 100ms 100 - 30ms 5 to < 1ms 

Data Rate 2kbps 50kbps 2 - 8Mbps 0.01 - 3Gbps 1 - 10Gbps 

Major/ Key 

Application(s) 

Voice Secure SMS 

and Voice 

Video 

calling and 

GPS 

navigation 

High speed 

streaming 

Low latency 

for critical 

work, 1G for 

machines 

Telecom 

Standard(s)/ 

RAT(s) 

AMPS, 

NMT, TACS 

GSM,  

D-AMPS,  

IS-95 A 

UMTS, 

CDMA2000, 

HSPA+ 

LTE, LTE-

A, LTE-Pro 

NR 

Radio Access 

Network(s) 

D-RAN D-RAN D-RAN Cloud  

D-RAN 

Cloud  

C-RAN and 

V-RAN 

Core Network PSTN PSTN PSCN Internet Internet 

Handover 

Type(s) 

Horizontal Horizontal Horizontal Horizontal 

and Vertical 

Horizontal 

and Vertical 
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The explanations below provide a brief background on the functions of cellular network 

elements and their 5G optimisations. However, before these functions can be described, there 

are four key terms that require to be defined: 

1. User Equipment (UE): Is a device/ body that employs the services provided by the 

network. The term user and UE will be used interchangeably throughout this thesis. 

2. Core Network (CN): Is the main entity in cellular networks, it has many functions, most 

importantly it provides controls for: user authentications, telephone calls, operators to 

charge for calls, connections to the internet and the network’s handovers (inclusive of 

both Inter and Intra-RAT handovers) [23]. This function is interlinked with the cloud 

since 4G, in this thesis it will be termed either the 5GC or Cloud CN. 

3. Base station/ Base Transceiver Station (BS/ BTS): Is a transceiver that connects a user 

to a wider net of users, depending on the desired application [24] (i.e., it connects a user 

to the telephone network for calling or can connect the user to the internet for 

streaming/ browsing). Within this thesis a BS can be referred to as an eNodeB (eNB) if 

it is referring to 4G or prior, otherwise, the term gNodeB (gNB) will be used as the BS 

provides the UE a connection to the 5GC via next generation (NG) interfaces [15]. 

4. Transport Network (TN): Is the network that provides transparent transmission of user 

data between connected entities. This is done by establishing and maintaining a point-

to-point or a point-to-multipoint connection between devices [25]. In a simple RAN 

configuration, TNs can be split into Fronthaul and Backhaul definitions [26]. 

a. Fronthaul: Is the connection between base station components. 

b. Backhaul: Is the connection between the base station and CN. 

An illustration of a basic cellular network is displayed in Figure 2.1-1, combining all these 

definitions.  

 

 

Figure 2.1-1: Basic illustration of a cellular network 

UE 

Core Network 

BTS (gNB) 

Backhaul Fronthaul 
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2.1.1 Radio Access Networks 

A RAN provides the user with a connection to the CN to fulfil service requirements [27] [28]. A 

RAT is the physical underlying communication form that is used for a type of RAN, such as 4G 

and D-RAN, 4G is the RAT and D-RAN is the RAN used.  

Furthermore, there are two types of RAN progressions that will be detailed in this subsection: 

1. Distributed RAN (D-RAN) the current RAN used in majority of today’s networks. 

2. Centralised RAN (C-RAN) a RAN that is being applied to 5G and future networks. 

Starting with D-RANs, these networks consist of a set of base stations and organise the BS 

components into three major segments [28] [23] [29]: 

1. Antenna, this is the physical element that emits the electrical signals from the base 

station into radio waves to be transmitted for the desired UE. 

2. Remote Radio Head (RRH/ RRU): Converts digital information into signals with the 

appropriate encryption that allows it to be securely transmitted through the antenna. The 

RRH helps to ensure that the transmitted signals are in the right frequency bands and 

power levels for the UE to correctly receive the data. 

3. Baseband Unit (BBU): Provides signal processing functions that makes wireless 

communication possible between the UE and the CN. This portion of the BS is 

responsible for helping provide secure connections, mobility management (such as 

handovers) and radio resource management. 

Figure 2.1-2 is an illustration of the Distributed RAN (D-RAN) configuration. 

 

Figure 2.1-2: Basic illustration of a D-RAN configuration 

UE 

Core Network 

D-RAN 

UE 

UE 

UE 

Antenna 

BBU 

RRH 

Antenna 

BBU 

RRH 

Backhaul Fronthaul 
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In this design, the BBU is located at each base station to be able to meet high demands when 

required. Consequently, when there is no/ low demand, BBUs are left underutilized and proves 

to be a waste of the BBU’s capabilities. This BBU also has a limited view of the surrounding 

environment, therefore, it can only service users that the one base station can reach (shown in 

Figure 2.1-2). As data requirements grow exponentially, D-RAN systems would have to 

constantly be upgraded with new hardware to keep up with demand. This proves to be a very 

expensive effort when all the inefficiencies are taken into consideration [29]. Therefore, with 

the introduction of 5G a new RAN was introduced into the system, this was C-RAN. 

C-RAN is somewhat similar to D-RAN, the major difference is that the BBU is no longer 

located at the base station this allows the BS to have a smaller footprint. There are three 

evolutions to C-RAN in relation to the BBUs, these are detailed below [30]: 

1. BBU Hotel: This is very much similar to the current D-RAN architecture, although 

various BBUs are placed in a central location, but these BBUs still only service one BS. 

Therefore, the same problem of inefficiencies is being run into with this architecture. 

2. BBU Pool: This is a more efficient use of resources, as a pool of BBUs can serve many 

BSs at a time and it has a many-to-many relationship. This allows BBUs to focus on 

services where it is needed most, this solution is being used for current 5G solutions. 

3. BBU Virtualisation (shown in Figure 2.1-3), this is a new technology that is still being 

deployed, it involves virtualising the whole BBU. Therefore, creating a Virtualised 

RAN (V-RAN). V-RANs provide benefits in terms of expansion, accessibility, and 

frequent upgrades. This is currently being implemented by major industry OEMs. These 

virtualisations are made better by moving parts of the Cloud closer to the user, in a 

configuration known as Cloud C-RAN (this will be discussed further in Chapter 2.3, 

when discussing MEC). 
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Figure 2.1-3: Basic illustration of a C-RAN with a Virtualised BBU Configuration 

Through C-RAN and its virtualisations, 5G has improved in three ways [28] [31].  

1. The antenna and radio segments of the RAN are packed closely together with very high 

computational power to support multiple-input and multiple-output (MIMO) activities. 

The radio unit used in these 5G base stations allows for complex computations at higher 

frequencies with improved performance and efficiency.  

2. The BBU is coded and virtualised into various different segments. This provides a more 

cost-effective approach as many physical segments can now be virtualised as a part of 

the process for implementing a software defined network (SDN) via network function 

virtualisations (NFVs). As virtualisations occur, latencies of specific functions are 

reduced due to all major functions of the baseband residing in the same place. 

3. Lastly, NFVs can enable easier updates and troubleshooting as majority of the functions 

are software coded. This becomes more useful as the network grows rapidly. There are 

various aspects of SDNs that utilise AI or ML, due to their complexity. Ericsson is one 

of the OEMs that uses ML with their central network management and orchestration in 

individual base stations, to optimize traffic and load balancing in 5G. 

With the introduction of 5G, the definitions of the BBU, RRH and antenna are reimagined to 

provide a more disaggregated network. The RRH and antenna are integrated into one device 

called an active antenna unit (AAU). The BBU is split into two components, the distributed unit 

(DU) and the centralised unit (CU). With this disaggregation, the functionalities will be split. 

The DU will be responsible for PHY, MAC, and RLC sublayers, whereas the CU will comprise 

of the remaining sublayers [32].  

 

UE 
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(5GC) Cloud 
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This redefines the earlier TN definitions.  

1. Fronthaul is now the connection between the AAU and the DU 

2. Midhaul is the connection between the DU and the CU 

3. Backhaul is now the connection between the CU and the 5GC 

Figure 2.1-4 provides a visualisation of these three definitions. 

 

Figure 2.1-4: Basic illustration of Fronthaul, Midhaul and Backhaul 

With the introduction of Midhaul, telecommunication operators are pushing for the 

development of Open RAN (O-RAN) as it assists with standardising mobile networks [33] [23]. 

O-RAN will not be discussed further as it does not relate to the objectives of this thesis.  

The chosen RAN architecture is Cloud C-RANs that have NFVs (with the new BS and RAN 

architecture including AAU, DU and CU). Further details will be addressed in Section 2.3. 
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2.1.2 Base station types 

This subsection expands on the definitions of base stations and highlights their various types 

and features. There are three types of base stations defined by 3GPP, these are: 

1. Wide area BS (Macro cell) 

2. Medium range BS (Micro and Pico cell) 

3. Local area BS (Femtocell) 

Table 2.1-2 summarises their various features [16] [34] [35]. 

Table 2.1-2: Base Station types and key features 

Base Station Type Wide Area 

(Macro cell) 

Medium Range 

(Micro/ Pico Cell) 

Local Area 

(Femtocell) 

Location(s): 

- Rural 

- Urban 

Rural: Large 

standalone cell tower 

Urban: On top of 

Buildings 

Rural: small 

standalone cell tower 

Urban: Streetlights, 

stadiums, etc. 

Rural: inside homes 

Urban: inside 

shopping malls, 

Universities, etc. 

Typical antenna 

height (m) 
25 to 75 8 to 15 2 to 8 

Minimum distance 

along the ground to 

UE (m) 

32 5 2 

Minimum coupling 

loss (dB) 
70 53 45 

Carrier Frequency 

Ranges (GHz)  

FR1: 0.45 to 6 

FR2: 24.25 to 52.6 

Usually in FR1. 

FR1: 0.45 to 6 

FR2: 24.25 to 52.6 

Can be FR1 or FR2. 

FR1: 0.45 to 6 

FR2: 24.25 to 52.6 

Usually in FR2. 

Cell Radius, based 

off 4G (m) 
> 1,000 

Micro: 250 to 1,000 

Pico: 100 to 300 
10 to 50 

Maximum Carrier 

Output power 

(Typical power in 

4G) (W) 

> 6.31 

20 to 160 

(40) 

≤ 6.31,  

Micro: 2 to 20 (5),  

Pico: 0.25 to 2 

≤ 0.25 

0.01 to 0.25 

For this thesis, Macro cells and Micro cells will operate in the FR1 frequency band, whereas 

Femtocells will operate in the FR2 frequency band. Further details are in Chapter 4. 
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2.1.3 Antennas and Pathlosses 

There are various types of antennas used for transmission and reception of signals. Generally, 

all antennas can fall under the classifications of directional, or Omnidirectional. Directional 

antennas radiate a signal in a specific direction to provide an improved signal and reduction in 

interferences. Omnidirectional antennas are antennas that radiate in an isotropic doughnut 

shaped pattern [36] to provide equal coverage in all directions. This thesis will only consider the 

use of Omnidirectional antennas, as it is a sufficient method to implement for analysing the 

proposed handover algorithm. 

As the antenna radiates an RF signal out of the BS, there are attenuation/ pathloss factors that 

require to be taken into consideration. Pathloss is a growing issue in 5G as the frequencies used 

proceed to get higher into the FR1 and FR2 bands. The relationship between the pathloss and 

frequency in free space (where there are no obstructions) is defined by the equation below [37]. 

PLfreeSpace = 20log10(4πR/𝝀) 

where: 

PLfreeSpace is the pathloss in free space in decibels (dB). 

R is distance from the transmitter to the receiver in metres (m). 

𝝀 is the wavelength of the signal in metres (m). 

- 𝝀 = c/f, where c is the speed of light in metres per second (ms-1), and f is the 

frequency in Hertz (Hz). 

The equation specified above considers only the pathloss of free space. There are various other 

factors that require to be understood to develop a comprehensive pathloss model, such as: 

- Wall losses, these are the losses due to obstacles that may be in the way. 

- Shadow Fading, these are the fluctuations in received signal due to obstructions, such as 

multipath effects (two or more signals received by the antenna due to reflections from 

objects in the environment) and weather. 

- Small scale fading, these are the rapid changes of the amplitude and phase of a radio 

signal over a short period of time (on the order of seconds) or a short distance (a few 

wavelengths) [38]. 

- User noise powers, interfering and unwanted signals from other users. 

For the simulator in this thesis, all four pathloss contributors are considered. Macro cells use the 

3D-UMa (Urban Macro cell 3D) model, Micro cells use 3D-UMi (Urban Micro cell 3D) model 

and Femtocells use a free space model (with the addition of all other pathloss factors). The first 

two models are defined in 3GPP’s TS 36.873, in section 7.2.1 [17] for LOS (line of sight) and 

NLOS (not line of sight) scenarios. 
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2.1.4 Frame structure 

For synchronisation between devices, RATs require to have a defined frame structure for the 

transfer of information between the UE and the network. There are two frame structure modes 

in cellular networks, time division duplexing (TDD) and frequency division duplexing (FDD). 

For this research, the chosen frame structure is FDD as it provides various benefits over TDD in 

terms of channel interferences and better coverage [39]. In 4G and 5G, the FDD technique for 

transmitting downlink data utilises Orthogonal Frequency-Division Multiple Access (OFDMA), 

this allows the base station to transmit data in parallel to multiple users. Subsequently, UEs that 

transmit uplink data back to the BS use a technique called single carrier FDMA (SC-FDMA), as 

it saves power, is safer for the user, and is cost effective [40]. 

A brief description of the frame structure is described below. A frame in 5G is similar to LTE in 

the way that each frame is 10ms long and both downlink (from BS to UE) and uplink (from UE 

to BS) communications are organised into frames of 10 sub-frames of 1ms duration each [41]. 

A sub-frame consists of slots, the number of slots vary based on the number of subcarriers there 

are. One subcarrier is known as a resource element (RE). 12 REs complete 1 physical resource 

block (PRB/ RB), this the minimum resource that can be allocated to a user. 

In 5G a subcarrier can vary in sizes from 15kHz (1 slot per sub-frame) to 240kHz (16 slots per 

sub-frame), in multiples of 15kHz subcarriers. Additionally, there are a number of symbols per 

slot based off cyclic prefixes, this is used to avoid intersymbol interference (ISI) from its 

previous symbol. There are 2 cyclic prefixes configurations, normal and extended that occupy 

14 or 12 symbols per slot, respectively. The illustration below depicts a simple 5G frame. 

Frame: 

10ms 10ms 

 

 Sub-frame (10 sub-frames per frame): 

1ms 1ms 1ms 1ms 1ms 1ms 1ms 1ms 1ms 1ms 

 

 Slots (30kHz subcarrier, 2 slots per sub-frame): 

0.5ms 0.5ms 

 

 Symbols (14 symbols per slot): 

              

 

  

Figure 2.1-5: 5G basic frame structure 



17 | P a g e  

2.2 Handover 

Over the years, as RANs have evolved, there have been various significant enhancements. An 

enhancement that will be discussed in detail within this thesis is that of handover. There are two 

types of handovers:  

1. Hard handover, consisting of breaking the link between a UE and the current BS before 

making the new link with the target BS (break-before-make). 

2. Soft handover which is when the UE makes the link with the target BS before it breaks 

the link with the current BS (make-before-break).  

In cellular networks (for generations after 3G), hard handover has been the preferred option due 

to it being less expensive and complex when dealing with OFDMA techniques. There are three 

main classifications of handover that will be discussed in this subsection, they are horizontal, 

vertical, and multi-tier handovers. 

1. Horizontal handover (HHO): This is a mature concept and has been a part of cellular 

networks from the start. HHO occurs when a UE hands its context over from a source 

BS to a target BS as it moves between the two BSs, in all cases, the RAT of these BSs 

is the same. This type of handover is referred to as Intra-RAT handover [42]. 

2. Vertical handover (VHO): Is still somewhat in its early stages, it was introduced with 

the launch of 4G [21]. VHO and HHO have similar definitions, although, the main 

difference is that VHO occurs when the BSs operate on a different RATs (e.g., 

handover from 4G to 5G), referred to as Inter-RAT handover [42]. 

3. Multi-tier handover: like VHO, this is still somewhat in its early stages. This focuses on 

the handover between various tiers/ types of BSs (Macro, Micro/ Pico, and femtocells). 

Multi-tier handover can occur for both inter or intra-RAT scenarios. For example, a 4G 

Macro cell can handover to a 5G Micro cell (this is a multi-tier and an inter-RAT HO).  

This thesis will focus on the improvement of 5G multi-tier intra-RAT handover (HHO), 

although, the same principles could be applied for Inter-RAT (VHO) solutions as well. Intra-

RAT handovers occur in the AMF and UPF elements of the 5G architecture.  

The AMF (located in the 5GC) manages handovers between different gNBs, this is also referred 

to as Xn handover, Xn is the communication interface between gNBs [43]. The protocols 

between these BSs are defined in the 3GPP standard TS 38.423 [44]. Moreover, N2 is the 

interface between the AMF and the respective gNBs. The UPF (also situated in the 5GC) 

supports service features for the UE (such as packet routing), it communicates to the BS through 

the N3 interface.  

All these communication interfaces are illustrated in Figure 2.2-1.  
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Figure 2.2-1: Interfaces between gNBs, AMFs and UPFs 

The full 5G architecture described in the 3GPP standard TS 23.501 [45], this thesis refers to the 

non-roaming architecture in section 4.2.3 and will only model the handover functions that are 

performed by the UE, gNB, AMF and UPF. 

2.2.1 3GPP Defined Logic and Procedure 

The handover logic and process below will refer to the following two 3GPP TSs: 38.331 section 

5.5.4 [46] for the handover logic, and 38.300 section 9.2.3.2.1 [15] for the handover procedure. 

Before detailing these steps, an understanding of how a UE switches between two of its states, 

connected and Idle, are described below (other states are not relevant to this thesis).  

- Idle: A UE is in the idle state when the UEs context is known to the 5GC, but it does 

not have an established connection to a gNB. In this state, the user ‘listens’ and 

responds to broadcasted messages from gNBs. It performs measurements and cell 

reselection methods when it is ready to connect to a gNB. This state is preferred by UEs 

that do not require to transmit any messages, as it has great power efficiency benefits. 

- Connected: A UE is in the connected state when the UEs context is known to the core 

and the gNB. In this state the user provides periodic measurement reports with channel 

quality information (CQI). Data is regularly transferred in this phase. 

At set timestamps during the connected state, the UE sends measurement reports for the AMF to 

assess whether a handover necessary. Usually, it is based on the user’s received signal strength 

(RSS) for a particular BS, although, sometimes other factors such as loading are considered.  

The way the AMF decides whether a handover is to occur, is decided based off an event 

triggered system. Events are triggered by the logic described in [46]. There are various event 

triggers, and their parameters are specified in Tables 2.2-1 and 2.2-2. Events A1 through A6 are 

only considered as they relate to intra-RAT handover; other events such as B1 are not relevant 

to this thesis as they relate to inter-RAT handover. 

UE 

gNB 

UE 

gNB 

Xn 
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N3 
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Table 2.2-1: Handover trigger events for intra-RAT handover [46] 

Event  

Type 
Description 

Event A1 Serving cell becomes better than a threshold 

Event A2 Serving becomes worse than a threshold 

Event A3 Neighbour becomes offset better than serving 

Event A4 Neighbour becomes better than a threshold 

Event A5 
Serving cell becomes worse than threshold 1 and neighbouring cell becomes 

better than threshold 2 

Event A6 Neighbour become offset better than secondary cell 

 

Table 2.2-2: Event parameter ranges [47] 

Event Parameter Minimum Maximum 

A1, A2, A4, A5 RSRP threshold -156 dBm -31 dBm 

All Hysteresis   0 dB  15 dB 

A3, A6 Offset -15 dB +15 dB 

Each event has an entry and a leaving condition, if the entry condition is satisfied for longer 

than a certain period, called the time to trigger (TTT), the BS will initiate the handover 

procedure to the desired cell. However, if the UE’s RSRP drops below the leaving condition, or 

does not meet the entry condition after the TTT, the UE remains connected to the current BS, as 

the desired BS no longer meets the criteria. The diagram below in Figure 2.2-2 illustrates these 

conditions. It assumes that all UEs meet the entry condition at the same time for simplicity, 

although only UE1 has a signal strength above the leaving condition for an A3 handover. 

 

Figure 2.2-2: Illustration of Entry and leaving conditions with TTT. 
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This thesis focuses on implementing two of the key handover events, A1 and A3 handover. 

Other scenarios are not considered in this thesis, as there will be unnecessary complexities 

introduced which will diverge from the thesis objectives. For example, A6 handover would 

require a form of dual connectivity for the user to correctly perform/ asses this event. 

After the UE has met the entry condition for the duration of the TTT interval, a handover is 

initiated. The flow diagrams below represent the 5G Intra-RAT handover procedure that is 

described in [15]. There are three phases: 

1. Preparation 

2. Execution 

3. Completion 

These steps are described in detail below.  

Firstly, the preparation phase (steps 1 to 5, shown in Figure 2.2-3), the discussion above already 

described steps 0, 1 and 2. Steps 3 to 5 is where the source gNB requests a handover to the 

target gNB, the target gNB then processes the request and completes admission control, and 

lastly, a handover acknowledgement is sent back to the source gNB. 

 

Figure 2.2-3: 5G Intra RAT handover procedure preparation phase [15] 

Second, the handover execution process begins (displayed in Figure 2.2-4), where the source 

gNB initialises the handover by notifying the UE. This prompts the UE to begin to detach from 

the source gNB and synchronise to the target gNB.  

Simultaneously the source gNB executes a sequence number (SN) status transfer for the target 

gNB to know from which packet that it should send or receive. Then buffer data and new data is 

delivered from the UPF to the source gNB which is then forwarded to the target gNB. After that 

the RAN handover is completed. 
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Figure 2.2-4: 5G Intra RAT handover procedure execution phase [15] 

Lastly, the completion phase in Figure 2.2-5 begins with a path switch is requested from the 

target gNB. This triggers the 5GC to switch the path of the UE’s data to the target gNB, via the 

UPF. Then the UPF sends the end marker for the source gNB via the AMF. The AMF then 

sends the path switch acknowledgement. The target gNB then sends a message to source gNB to 

release the context of the UE as the handover was successfully complete. 

 

Figure 2.2-5: 5G Intra RAT handover procedure completion phase [15] 

The handover process described above is what this thesis will integrate and adjust in Chapter 5. 
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2.3 Multi-Access Edge Computing 

As cellular networks are progressing, big data analytics is becoming progressively more vital. 

With the introduction of 5G, there has been a push to develop more datacentres/ cloud 

computing services to cope with network growth. Multi-access edge computing (MEC) has 

become a very key technology in this field. Before discussing the reasons why MEC has 

become such a compelling solution, it is important to understand exactly what MEC is and how 

it differentiates from traditional cloud computing platforms. 

MEC enables cloud-like services closer to the edge of a network (traditional cloud computing 

services reside in the core) [48]. The visualisation in [49] by Nokia highlights the key 

differences between MEC and cloud computing (central datacentres). 

This architecture enables a more decentralised cloud service based on user service requirements, 

allowing for lower latencies and higher throughputs for users. For example, an airport can have 

deployments of far edge servers to rapidly update location and augmented reality applications 

[49], although, this optimisation does come with a certain associated cost as the deployment of 

these edge servers will require to be quite densely packed. A way that OEMs are tackling this is 

by installing edge servers to highly populated urban areas where large throughputs and low 

latencies are required, and not deploying them in rural areas, where densification is not required. 

This thesis will focus on the two edge data centre architectures highlighted above.  

- The far edge services will be more user centric to reduce latency and boost throughput.  

- The aggregated edge will be used for lower latency handovers, to approach the user 

plane eMBB and URLLC latency targets of less than 4ms and 1ms, respectively [50]. 

  



23 | P a g e  

2.4 Deep Learning 

Building on the ideas described in Chapter 1, deep learning (DL) consists of many ML 

algorithms. The topmost used algorithms are, convolutional neural networks (CNN), long short-

term memory (LSTM), and recurrent neural networks (RNN) [51]. This thesis will focus only 

on LSTM as it is known to be able to learn and memorise long term dependencies [51]. The 

remainder of this Chapter will give a brief overview of how LSTM networks work, although, a 

more detailed explanation can be found in [52]. LSTMs consist of one cell state and various 

gates.  

The cell state can be considered as the “memory” part of the LSTM, as it carries all the relevant 

information throughout the process of the sequence. It progresses straight through the entire 

network and runs through two linear equations every time stamp. LSTM networks can alter the 

cell state through various regulated and structured gates. Gates allow optional entry of specific 

information, comprising of a sigmoid NN layer and a point wise multiplication operation [53].  

The diagram in [53] shows an illustration of three repeating modules of a LSTM network. The 

summary below briefly outlines the key phases, a detailed explanation can be found in [53]. 

Before proceeding to describe the process for the image above, two key activation functions that 

will be used in conjunction with the gates, require to be defined. 

1. Sigmoid (𝜎) activation function: This is a mathematical operation that squeezes the 

input value between 0 and 1 (defined and displayed in Figure 2.4-1).  

𝑓(𝑥) =  
1

1 +  𝑒−𝑥
=  

𝑒𝑥

𝑒𝑥 + 1
 

 

Figure 2.4-1: Sigmoid activation function 

2. Tanh activation function: This is a mathematical operation that squeezes the input value 

between -1 and 1 (defined and displayed in Figure 2.4-2). 

𝑓(𝑥) =  tanh (𝑥) =  
𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
 

 

Figure 2.4-2: tanh activation function 

These activation functions will be used throughout the LSTM to provide results that will 

converge to a specific value.  
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The first step is the ‘forget gate’. This gate helps decide what information is going to be kept 

from the previous time step’s output ht-1. The decision for what is kept from both ht-1 and xt are 

decided via a sigmoid activation function, a 0 means that the information is completely 

discarded, a 1 indicates to completely keep this information. Where Wf and bf are the weight and 

the bias values of the forget gate, respectively. 

The next process step is split into two parts: 

1. The ‘input gate’ it, this decides the values that the cell gets updated to. 

2. The ‘cell candidate gate’ ˜Ct [54], decides what new information can be added to the 

cell state. 

Then progressing on to the next step, the cell state is updated to the most current timestamp and 

the two values are combined to output the cell’s state. By multiplying the forget gate function 

with the previous time stamp’s cell state, the cell forgets all the information that is no longer 

relevant to the cell state.  

Then the new candidate values are multiplied with the input gate values to favour how much of 

each value is going to be added to the cell state. 

Lastly, the ‘output gate’ is updated to decide what values are going to be sent out of the LSTM. 

This step is split into two aspects again: 

1. The sigmoid layer decides what is going to be output. 

2. Then the cell’s state is squeezed with a tanh function and multiplied out with the output 

function, allowing the LSTM to decide relevant outputs. 

There are many different variations and additions of LSTMs, three variations are: 

1. Peephole connections, where each gate layer is able to look at the cell state, this is 

defined in [55]. 

2. Gated recurrent unit (GRU), which combines the forget and input gates into one, this is 

defined in [56]. 

For this thesis, a traditional LSTM will be used, as these algorithms are ideal for classifications 

of sequence of data. 
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3 Literature review 

There has been extensive research conducted on handover and their optimisations, although 

multi-tier handover still has several gaps that can be addressed. After an exhaustive search, very 

few works in the area of multi-tier handover with ML/AI and/ or MEC were found. This 

Chapter classifies and analyses the relevant literature under two main categories: single-tier, and 

multi-tier handovers, and highlights key areas for improvement. 

3.1 Single tier handovers 

In single tier handovers, there are a few key metrics that require to be controlled to maintain a 

consistent QoS and QoE for the user. These are: 

- The total number of handovers (successful and failures), and a handover latency (the 

time it takes to prepare, execute, and complete the handover process).  

o These factors directly influence the user’s throughput. As the number of 

handovers or duration of handovers increase, less time is spent receiving 

meaningful data, and more time is spent on configuration of the UE.  

- The handover failure (HOF) ratio, this is a metric that is expressed as a percentage of 

the total number of handovers. 

- Ping-Pong handovers: This happens when the user is constantly switched between 

serving and the desired BS in a short amount of time. The defined time can vary from 

network to network, although, this is typically a value less than 10 seconds. 

- Air interface signalling overhead: This is the additional information that is sent in a 

message for enhancing the performance of the network, although, these overheads can 

reduce the overall data throughput for the user. In handover, high signalling overheads 

can occur from factors such as constant measurement reports from the UE. 

o This impacts the UE’s overall power consumption, as well as the cost of radio 

equipment, to service the demand. 

There have been many single tier solutions proposed over the years, this section will review and 

analyse a select few categories that are relevant to the proposed solution. 

3.1.1 Multi-connectivity 

Multi-connectivity is when a user is connected to more than one base station to ensure that the 

connection to the network is not lost. Soft handovers are considered to be a part of multi-

connectivity (in this thesis) as when the user is handing over to a new BS, for a small amount of 

time the user is connected to multiple BSs at once (due to the make-before-break methodology). 

Beginning with a pure multi-connectivity solution, the authors in [57] aims to reduce the 

handover cost due to network densification. The proposed algorithm provides an optimised 

solution by using an anchor-based multi-connectivity architecture, and it derives compact 
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expressions of handover probabilities through stochastic geometry analysis. The environment 

includes three access points (APs) and one UE.  The authors simulate the handover probability 

as the density of the APs increase and speed of the UE increases. The proposed algorithm was 

compared with a single connectivity algorithm. The results show that the proposed algorithm 

outperforms the single connectivity algorithm and reduces the handover probability by around 

40%. Consequently, due to the multi-connectivity nature of this algorithm, signalling overheads 

increase as a user has to maintain connection to two base stations. Thus, the improvements in 

handover performances in [57] could be negated by these increases in signalling overheads. 

The proposal, in [58] suffers from the same issues. It attempts to address the matter of seamless 

low latency handover for mobile UEs in 5G. A random-access channel (RACH)-less handover 

scheme is proposed to achieve this. The authors combine this scheme with a make-before-break 

(soft handover) methodology to achieve a lower latency for the UE. The authors compare their 

algorithm with three different schemes, one soft and two hard handover algorithms. It can be 

observed that the handover execution time is considerably less for the proposed algorithm by 

nearly around 33% (from 30ms to 20ms). Additionally, the handover interruption time is on par 

with the make-before-break algorithms, which are much better than the hard handover schemes.  

Moreover, the authors in [57] and [58] do not consider the extra processing time and equipment 

cost for UEs and OEM vendors, to enable such technologies. The costs could be very high, as 

each system would have to be able to support a multi-connectivity environment. 

3.1.2 Artificial Intelligence 

AI based handover is where the system learns user patterns and dependencies and tries to find 

the most optimal solution through its learning. AI handover can include forms of ML as well as 

other forms of evolutionary learning. In comparison to the multi-connectivity solutions, AI is 

less expensive as it is mainly software driven, therefore, it would need little to no extra 

equipment. Although if implemented incorrectly, it can provide a few drawbacks. These 

drawbacks will be highlighted throughout this section. 

To begin with, the authors in [59] addresses the issue of poor QoE for a UE when the Reference 

Signal Received Power (RSRP) and Reference Signal Received quality (RSRQ) factors are 

reduced by the presence of obstacles. The authors propose a ML based algorithm using a feed-

forward neural network (FFNN) and compares it to the A3 event-based logic. Two metrics are 

used, these are, the probability of a successful file download (logical output, 0 or 1), and the 

duration of the download for it to be successfully completed (single output, in seconds).  

The simulated scenario used 3 eNodeBs, 3 UEs and an obstacle partially obstructing coverage 

between macro cells. With the Machine Learning based handover scheme, the authors achieve a 

45% increment in the number of completed downloads (this can correlate into a reduction in 
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HOFs, and the number of handovers required). Additionally, a decrease of 25% in file download 

time was achieved, this may insinuate the algorithm as a lower latency solution. 

Even Though the authors in [59] highlighted sizeable improvements, there is no consideration 

for the presence of small cells, as they considerably reduce the impact of obstacles on the UE’s 

QoE. The use of small cells may make this handover algorithm redundant if, the cells are placed 

strategically where obstruction interferences are minimal.  

If obstacle interferences are not considered, the authors in [60] aim to optimize handover in 

large scale wireless systems that support mobile internet of things (IoT) devices. A two-layer 

framework is proposed to optimize the handover system; the first layer partitions UEs with 

different mobility patterns into clusters, where mobility patterns that are similar are in the same 

cluster. Then, within each cluster, an asynchronous multiuser deep reinforcement learning (RL) 

scheme is developed, to control the handover processes across the UEs in each cluster. 

Supervised learning was used during the initialization phase of the DNN before the execution of 

RL, to mitigate the random negative effects of exploration while the system is learning.   

The simulation environment contained 3 zones of 6 small cell base stations, there are up to 1200 

UEs in the given area. The authors compared it to the 3GPP algorithm (from chapter 2.2). The 

proposed minimizes the number of handover occurrences while ensuring a certain throughput, 

outperforming the 3GPP protocol by up to 80%, but this is only true when the number of UEs is 

minimal. 

The critical issue highlighted in [60] is that the algorithm suffers from a delayed gradient, which 

decreases the test accuracy as the number of UEs increase. This poses as an issue in 5G, as the 

number of densely populated UEs will increase. Additionally, this could insinuate that the DL 

algorithm in [60] has a higher computational complexity/ strain when compared with [59]. This 

limits/ decreases the handover performance as the number of users increase. 

3.1.3 Self-Organised Networks 

Self-organised networks (SONs) are an automation technology that consists of events for 

configuration, optimization, diagnostics analysis, protection, and healing of cellular networks, 

this in turn, makes them a simpler and faster solution to incorporate [61].  

In [62], the authors propose the use of an energy efficient self-configured handover algorithm. 

The aim is to reduce the number of unnecessary handovers that occur in vehicles when traveling 

at certain speeds based on the time of day. The proposed scheme builds on the 3GPP logic 

already used in today’s cellular networks, and it utilises these parameters to calculate a weighted 

sum. Two variations are proposed, the A3 offset + hysteresis value, this is changed to be based 

off hourly traffic. Subsequently this value varies a normally distributed TTT interval. The 

scheme is compared with an A3 handover logic. 
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The simulation consisted of 4 eNodeBs and a varying set of UEs (from 21 to 210) travelling at 

different speeds throughout the day (from 50-100kmph). The two performance indicators used 

to evaluate this are, the HOF ratio and the Ping-Pong rate. The overall improvement to the 

HOFs and Ping-Pong effects, was around 15% and 17%, respectively. Additionally, the authors 

developed a performance metric to combine the Ping-Pong ratio, HOF ratio, and the power 

consumption of the cell. This metric showed an overall improvement of approximately 11%, 

compared to A3 handover logic. 

Although the algorithm in [62] provides good improvements with its minimalistic parameters, 

the authors do not discuss the weightings of the handover performance equation. It can be 

assumed that as the speed of the UE increases, the A3 + Hysteresis offset would decrease, 

causing a TTT interval reduction to support UE connectivity. Consequently, this would cause 

more frequent measurement reporting, resulting in increases in power consumption and 

signalling overheads. Furthermore, a lower throughput would be realized. 
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3.1.4 Summary 

The table below summarises the literatures reviewed for single tier handovers. 

Table 3.1-1: Summary and review of single tier handover literatures. 

Type of  

solution 

Ref. 

Article 

Summary of potential 

solutions 

Solution benefits and 

drawbacks 

Multi-

connectivity 

[57] Provides an optimised solution by 

using an anchor-based multi-

connectivity architecture. Derives 

compact expressions of handover 

probabilities through stochastic 

geometry analysis. 

Benefits: 

- Reduced handovers. 

- Low latency. 

- Good throughput. 

Drawbacks: 

- High signalling overhead. 

- Low channel efficiency. 

- Expensive. 

[58] A random-access channel 

(RACH)-less scheme is proposed. 

Combines with a make-before-

break (soft handover) method. 

Artificial 

Intelligence 

[59] The authors propose a machine 

learning (ML) based algorithm 

using a feed-forward neural 

network (FFNN) to improve the 

QoE of the UE in the presence of 

obstacles. 

Benefits: 

- Reduced handovers. 

- Reduced HOFs. 

- Low latency. 

- Good throughput. 

Drawbacks: 

- Does not consider adding 

small cells, makes algorithm 

redundant. 

[60] A two-layer framework is 

proposed; first layer partitions the 

UEs with different mobility 

patterns into clusters. Then, an 

asynchronous deep RL scheme is 

developed to control the 

processes across UEs in each 

cluster. 

Benefits: 

- Reduced handovers. 

- Good throughput. 

Drawbacks: 

-  Suffers from delayed 

gradient (accuracy decreases 

when UEs increase) 

- High computational strains. 

Self-Organised 

Network (SON) 

[62] Proposes the use of an energy 

efficient self-configured 

algorithm. Two variations are 

proposed, the A3 offset + 

hysteresis value, which 

subsequently varies a normally 

distributed TTT interval. 

Benefits: 

- Reduced handovers. 

- Reduced HOFs. 

- Lesser Ping-Pongs. 

Drawbacks: 

- Less power efficient and 

low throughput for fast 

moving UEs. 
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3.2 Multi-tier handovers 

In addition to the single tier metric requirements multi-tier handovers are required to put more 

emphasis on the user mobility and user throughput requirements. The reasons why are explained 

in the points below: 

- User’s mobility: If the system can handover between tiers to accommodate varying user 

mobility scenarios this would help reduce the computational strain and signalling 

overheads for the system, due to executions of frequent handovers. 

- User’s throughput requirements: These require to be met to improve the overall QoE 

that 5G will require in critical applications. The use of the multiple tiers allows the 

network to adjust to the UE’s needs by switching between various throughput mediums.  

- Number of multi-tier handovers: These should be limited, as this can cause larger 

signalling overheads compared to single tier handovers, due to increased coordinating 

messages between tiers, including vertical handover (between different RANs/ RATs). 

o This could also be linked to Ping-Pongs due to the power variations between 

different types of tiers. 

Multi-tier handovers are usually more complex to perform and require a more comprehensive 

approach to achieve significant improvements in handover logic and/ or process. The articles 

below discuss the complexities of multi-tier environments and attempt to improve handover 

performances. The next sub-sections are divided into various classifications, to collectively 

assess the benefits and drawbacks that they pose. 

3.2.1 Radio frequency mapping 

The proposal in [63] aims to reduce abrupt behaviours such as Ping-Pong effects in multi-tier 

networks. It is based on predicted incomplete channel states from a Radio Environment Map 

(REM). In particular, the work is trying to improve mobility performance by reducing the 

overall number of handovers, without sacrificing network capacity. A REM is a heat map for 

the RSSs in a specific band. The environment consisted of 19 macro cells with 8 small cells and 

5 users per macro cell site. The user uses 2 metrics to highlight improved performance, the 

Ping-Pong ratio, and the radio link failures (RLF) per user. 

The performance was compared to the traditional LTE handover logic. The algorithm postpones 

handovers for as long as possible until a strong cell which will stay strong for at least a certain 

number of seconds shows up (in this case it was 2.5s). The number of Ping-Pong handovers was 

reduced by around 90% at higher user mobilities (30-120kmph), but the improvements reduce 

dramatically down between 5 to 10% when the user mobility is low (3kmph). It was observed 

that the number of RLFs was not improved, it actually degraded by a 5-10%, this can be a 

consequence of the long delays before a handover is executed. 
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From the research above, RLF can become a problem when such long delays of 2.5s is used, as 

this corresponds to a 40m travelling distance for fast moving users. Additionally, one of the 

parameters highlights an additional 120ms for recovery of the RLFs. Plus, the handover 

preparation and execution time of 90ms. This adds up to around a 2.7s delay from when the user 

detects that the target cell is a candidate. This is far too long to evaluate a handover, as it leads 

to RLFs (especially for fast moving users) and reduced throughputs (by at least 5 to 10%). 

Subsequently, the authors in [64] uses a very similar method when they propose to address the 

issue of multi-RAT integration and handover management that 5G will cause. The goal was to 

dynamically adjust the handover triggering instance so that a better throughput can be achieved. 

The novel approach exploits the RF coverage maps to determine the optimum instance for 

handover triggering. The authors use geometric means to map out the exit regions of the base 

stations and UE round-trip time (RTT) estimations, to predict what the handover latency is 

compared to the packet latency. 

The environment consists of a UE that has WiFi and WiMAX network access options. The 

authors have set a fixed velocity of the UE over the duration of a 550 second telephone call 

(which is low in data size). The algorithm builds on current 3GPP VHO schemes and uses an 

optimised algorithm using predicted RTT values. Based off the set RTT values, the author 

achieves a 20% optimisation of the overall throughput, and a 15% increase in the time spent in 

the preferred network. 

Though the authors achieved these improvements, the key metric of handover Ping-Pongs is not 

addressed, as mentioned earlier, if vertical handovers are occurring frequently to maintain 

connection to the preferred network, it would result in undesired signalling overheads. 

Additionally, the environment is very limited and only considers one UE, thus, it is not able to 

capture user interferences correctly. 

3.2.2 Multi-connectivity 

As reviewed in section 3.1.1, the same theories of multi-connectivity are employed in this 

section, however, these algorithms are adapted for more complex scenarios. 

In [65], the issue of high handover latency and signalling overhead due to unnecessary frequent 

handovers are addressed. The handover scheme proposes that the UE is always connected to 

two 5G milli-meter access points (mmAPs) and one LTE BS. The prediction scheme compares 

the RSS of the active set of 5G-mmAPs and the one LTE-BS to another candidate LTE-BS or 

5G-mmAP. If the candidate device has a better RSS, the network will initiate a handover 

request to the core network.  

The proposed algorithm is compared to two systems, A3 event-based logic, and the second is 

the current scheme, but without prediction. The simulation environment consists of one LTE-BS 

(that covers the whole simulation area of 1 square kilometre), 100 5G-mmAPs, and 50 UEs. The 
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proposed algorithms average throughput is shown to be better than the other methods in higher 

mobility scenarios (30-50kmph) by 12%. Additionally, the number of handovers is also reduced 

by 5%.  

An observation that was made with this proposal, is that it lacked a comprehensive study on 

multi-tier handover, the focus was only on the 5G-mmAPs. There was no analysis done for the 

handover between LTE-BSs. Furthermore, in addition to the signalling overhead issues 

discussed in the section prior, the channel efficiency is also reduced, since the UE uses three 

forms of connectivity to achieve minor improvements. This issue can pose as a major constraint 

when this is deployed in a populated environment. 

The same channel efficiency and signalling overhead issues are accentuated in [66], where the 

authors aim to address the issue of mmWaves being highly susceptible to blockages and 

degradation in channel quality. The proposed solution consists of a heterogeneous dual-

connectivity solution that is connected to the 4G AP as well as to the 5G AP. This provides 

rapid switching from 5G to 4G for failures on any one link. Additionally, the authors add the 

complexity of including static and dynamic TTT delays. The simulation environment consisted 

of 4 eNBs, 1 LTE eNB, 3 mmWave eNBs and 1 UE.  

The authors compare the proposed algorithm with the conventional 3GPP algorithm being used 

for vertical handover. When comparing the number of handovers executed, the 3GPP algorithm 

proved to be more efficient by 5-10%, as the dual-connectivity approach requires handovers to 

occur more frequently as user requirements change. The overall packet loss ratio was reduced, 

due to the dual connectivity attribute of the algorithm, providing a more reliable connection. 

Additionally, the latency of the handover reduced by 70% and the overall throughput improved 

by 2-5%. 

A combination of soft and hard handover solution has also been proposed for VANETs). In [67] 

the authors provide a decision algorithm for horizontal and vertical handover. The algorithm 

that is proposed uses circular geometric calculations to model the cell’s coverage, relying on the 

vehicle’s GPS coordinates to accurately trace the path. The algorithm uses soft handovers 

between roadside units (RSUs) and hard handovers between an RSU and BSs. The algorithm 

considers a log normal pathloss and shadow fading effects. A method that was used to 

counteract these effects was by implementing a sliding window technique. Additionally, the 

handover latency is considered when the algorithm executes its decision, resulting in a 

combination of the cell with the lowest latency and the best QoS. Software simulations of 

various scenarios were performed to understand how the algorithm adapts to the changes in 

vehicular velocities. The proposed solution was compared with the 3GPP threshold and signal 

hysteresis methods, to see if the number of handovers and HOFs are reduced. The algorithm 

provided a reduction of 30% in unnecessary handovers, and a 25% reduction in HOFs at speeds 

of 100kmph. 
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It was noticed that this improvement is reduced dramatically as user mobility reduced. In 

addition to this, two other major drawbacks related to the radio equipment are listed below: 

- Assuming that the GPS signals are transmitted within 100ms every time. The signal 

overhead for the RSU and the BS will increase dramatically as the density of vehicles 

grow. Therefore, the cost of the equipment (on the network side) to support this will 

increase. 

- The system present in the vehicle would require at least three separate systems to be 

able to execute handovers, which further would add to the cost of the system. 

3.2.3 Multiple Criteria Handover 

In this section, authors aim to solve multi-tier handover issues with different multi-criteria 

algorithms. As this section is quite dense, it will be broken up into two sections. The first will 

consist of an article that discusses a novel multi-criteria decision making (MCDM) model, and 

three predefined models. Then, the next sub-section will discuss the other remaining non-

conventional methods of MCDM improvements. 

3.2.3.1 Predefined models 

Highlighted in [68], the authors aim to improve the vertical handover decision making. The 

MCDM algorithm selects the network that best meets the UE’s connectivity requirements. The 

authors state that this algorithm can be used for other highly dynamic mobile networks. An 

algorithm called NAIRHA (Neighbourhood-aware vertical handover algorithm) is developed, it 

has 3 different modules; a GPS module that calculates the navigational route and geolocation, 

secondly, a neighbourhood database that stores information in the on board unit regarding the 

current and soon-to-be reached neighbourhoods. The last module, called the useful coverage 

time, calculates the time that the UE spends in the cell to achieve the peak data rate from that 

cell. When selecting the most suitable network, there are 4 metrics that the algorithm considers: 

throughput, latency per packet, packet loss ratio and price per MB. The authors use vehicles 

moving at a constant speed of 32km/h over a 5.5km distance between two universities. The 

environment includes one UMTS, eight WiFi and three WiMAX APs with distinct data rates.  

This algorithm is compared with 3 other algorithms called, MACHU, Geo-MACHU, and 

technology aware (the former two are prior proposals done by the group). The results show that 

the amount of vertical handover events with the proposed algorithm has dramatically reduced by 

around 50%. When comparing the other parameters such as, throughput, and packet loss, the 

proposed performed better than the rest by, 35% and 90% respectively. 

The algorithm above provides a robust solution for vehicular VHO systems. However, the 

authors do not show any comparisons to the current algorithms used today. Furthermore, there 

are some other concerns described in the points below: 
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- Only static velocities were analysed, since vehicular networks will have UEs with 

dynamic velocities, it would be interesting to see what these results look like when the 

speed is varied. 

- Memory of the neighbourhood database, as there was no mention on how the database 

was being updated when the memory was full. Additionally, based on how often the 

data refresh occurs, there were no calculations done on how fast the database would 

reach maximum capacity. 

Shifting to more established MCDM methods, [69] attempts to solve the issue of seamless 

connectivity in heterogeneous wireless networks. To address the issue the authors propose a 

novel algorithm. Consists of a VHO management scheme, that is triggered based off the data 

rates required by the UE. The authors use the Grey Relation Analysis (GRA) decision scheme 

based on delay, jitter, bandwidth communication cost, and network load. A feature of this 

algorithm that would leads to an improved performance is the multi-threshold mechanism for 

controlling the scanning window time. The authors simulate the proposed scheme on multiple 

mobility scenarios (ranging from 1 to 9 m/s) with three different networks, WiFi, WiMAX, and 

LTE.   

The algorithm was compared to the IEEE 802.21 scheme (Media Independent Handover 

standard). It shows that as the number of mobile nodes increases to 40, the handover delay is 

reduced by approximately 66% (from 400ms to 100ms), subsequently, the throughput over a 40-

minute period of the simulated time, increases by around 5%. Lastly, the frequency of 

handovers is reduced by around 55%.  

It is noticed that the battery usage on the mobile node for this algorithm is higher than the other 

compared schemes. Over a 11-hour simulated time it is 5% more power hungry. This could 

suggest that the measurement reporting frequency is higher than the compared algorithms. The 

enhancements become minimal when the user’s battery is drained as the duration of a session 

increases. 

Secondly, the authors in [70] talks about the issues related to the high number of handovers, 

signal interference, and signalling overhead, due to the densification of small cells during 5G 

deployment. The authors propose a novel multiple attribute decision making method, TOPSIS 

(Technique for Order Preference by Similarity to Ideal Solution). For this proposal, the authors 

propose 2 modified TOPSIS methods for handover management; the first method incorporates 

entropy weighting for handover metrics weighting, and the second proposed method uses a 

standard deviation weighting technique to score the importance of each handover metric. The 

simulation environment is a two-tier heterogeneous network consisting of 1 macro-cell and 50 

small cells within the range of the macro-cell. There are multiple UEs placed within the 

simulation software and set to move uniformly in a randomly selected direction.  
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The authors compare the algorithm to three conventional methods, the 3GPP method, the 

network controlled HO method called NCH, and another TOPSIS method which uses a 

predefined weighting vectors with fixed values. The algorithm has a reduction in the number of 

handovers from small cell to small cell by 40%, for low mobility scenarios. Moreover, the 

number of handovers from small cell to macro cell for higher mobility scenarios is lower too, by 

50% at 100kmph. For the second set of results, the RLF rate was measured, in this, the proposed 

method had a significantly lower RLF rate by 85% when in high mobility scenarios (80-

100kmph). Lastly, the user mean throughput was 5% better when travelling at 100kmph. 

It can be noticed that, although the RLF reduced dramatically as mobility scenarios increased, 

the throughput only showed a 2-5% boost. This can indicate that the frequency of measurement 

reporting is increased to maintain the connection, consequently, signalling overheads are 

increased. 

Lastly, the authors in [71] attempt to address the issues of user mobility and its handover 

management in future 5G networks. A novel approach is taken by using a Markov Decision 

Process (MDP) to optimise the QoS that the UE experiences in mmWave heterogenous 

networks. The authors propose to add an elimination method to the MDP by exploiting unique 

handover properties to improve the computational efficiency. The elimination method removes 

the suboptimal actions from each state to reduce the computational complexity. Additionally, 

three states are proposed for this MDP, these are: the UE’s network connection, location, and 

velocity. The simulation environment consisted of 2 macro base stations each having a radius of 

500m, and a varying density of small cells, from sparse to dense (20 small cells as per the 3GPP 

technical standards) scenarios.  

This is compared with four other algorithms, these are: conventional signal-to-interference-plus-

noise ratio (SINR)-based, a simple additive weighting based on analytic hierarchy process 

(AHP), Q-learning based and lastly, a state-action-reward-state-action (SARSA) scheme. The 

authors compare performances of the algorithms as the density of the small cells increases. The 

proposed algorithm’s mobility reward is better than the competitors by 5%, although, in high 

mobility scenarios margin improves to around 10%. Furthermore, the algorithm had a 

considerably better overall reward for the UE by at least 50% (this considered a weighted sum 

of the downlink throughput and handover cost {control signal overhead and service delay}). 

This can translate to approximately 50% less computational strains due to lower complexities. 

The algorithm in [71] provided some key improvements in the scope of throughput and user 

latencies. However, impacts on key performance indicators such as, the number of handovers 

and Ping-Pong effects were neglected. 
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3.2.3.2 Other models 

The work in [72] addresses the issue of the long delays that occur during multi-tier handovers 

for delay sensitive UEs. The authors focus on macro-cell to small-cell (M2S) handover, as it is 

proposed that handover from S2M can be analysed in similar ways. The solution optimises the 

handover delay performance by combining three different approaches: stochastic geometry, 

resource reservation schemes and convex optimization theory. The authors propose three 

improvements, optimising the probability factor for initiating handover to the targeted small 

cell. Then an effective capacity model that captures the maximum arrival rate that can be 

supported. Lastly, the resource reservation is improved by applying a scheme that adopts a fixed 

reserved channel, this effectively reduces the blocking probability of handovers. 

The BS deployments are in terms of density, for macro cells and small cells, there is one every 

1km2 and 0.1km2, respectively. A traditional 3GPP algorithm is used for comparisons, this 

algorithm selects the best BS based on the average RSRP. The handover probability factor 

reduces from approximately 95% to 55% as the ratio of delay sensitive UEs increase by a factor 

of 10. The second portion of the results depict the effective resource allocation, for executing 

handovers. When compared to the reference algorithm, it can be noticed that the blocking 

probability is reduced by around 17% when the ratio of delay sensitive UEs increases by a 

factor of 10. 

It can be noticed that in [72], a large portion of the bandwidth is used up as the ratio of delay-

sensitive users increases, which reduces the blocking probability of a handover occurring. This 

causes a trade-off of the effective capacity, which is consequently reduced. Additionally, the 

proposed scheme that quantitively shows that their algorithm can be used to serve delay-

sensitive users, but this is at a cost of capacity, which will become a lot more critical in future 

networks when the densification of users and data rate requirements increase. 

Lastly, in [73] the authors attempt to reduce the number of frequent handovers caused by fast 

moving UEs between small cell coverages. The authors propose an algorithm that will handover 

users to the macro cell from a small cell based off their mobility behaviour. An additional aim is 

to reduce the number of Ping-Pongs that occur during handover. The authors classify the users 

into three categories: fast-moving, Ping-Pong and the remaining users. Fast-moving users are 

handed over to the macro cell layer, where the authors develop an estimation algorithm for the 

time that the UE spends in each small cell. Ping-Pong users are identified by an algorithm that 

finds patterns in the serving cell history where dwell times are low, these are considered Ping-

Pongs. For all the other users, a remaining service time is introduced to determine how long the 

UE is going to remain the current cell. 

They simulated 3 macro cells, and 20 small cells. The macro cells were deployed in a three-

sectored hexagon grid, and the small cells were deployed in a Manhattan style layout inside the 

macro coverage. Two performance metrics were used: the number of handovers, and the 
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prediction accuracy of the algorithm. The authors compare this algorithm with three other 

algorithms, a Ping-Pong reduction algorithm, a mobility behaviour-based user classification 

algorithm and a sojourn time estimation-based small cell-selection algorithm. Each of these 

algorithms is compared for Ping-Pongs, fast moving users, and the other types of users. The 

scenario showed that the algorithm was around 70% lower in the number of handovers, when 

both Ping-Pong and fast-moving users were present. Moreover, there is an improvement in 

throughput by approximately 10%.  

Nevertheless, it can be noticed that the bandwidth is the same for both types of cells in this 

simulation, thus, it could simply be that the throughput is a measurement of the UE having a 

better channel quality indicator (CQI) instead of an algorithm that runs faster. Other missing 

considerations include the presence of obstacles on the macro cells which could degrade the 

UEs QoS and/or QoE, and how frequent measurement reporting occurs. 

3.2.4 Artificial intelligence 

In addition to the articles analysed in section 3.1.2, this section divulges into details relating to 

the multi-tier improvements that AI based schemes provide. The three reviews below consist of 

a fuzzy logic algorithm, a ML algorithm and a DL algorithm, respectively. 

An AI based contribution that is highlighted in [74], proposes to use fuzzy logic to solve issues 

relating to redundant handovers and HOF ratios in dense small cell networks in LTE. The novel 

self-optimising system proposed, analyses the UEs velocity and radio channel quality, to adapt 

hysteresis values for handover decisions. The inputs for the system were, the UEs velocity, the 

RSRP and the RSRQ.  The proposed algorithm was compared to four different algorithms, these 

were: Best Connection (BC), Conventional LTE handover, Fuzzy Multiple-Criteria Cell 

Selection (FMCCS) integrated with TOPSIS, and Self-Tuning Handover Algorithm (STHA). 

The proposed algorithm reduced the average number of handovers by 20%, the overall HOF 

ratio by 25% and the Ping-Pongs events to less than 2.5% (which results in a 50% decrease in 

Ping-Pong events compared to the other algorithms, assuming a minimum stay time of 10s).  

However, the impact on latency and throughput were not analysed, which could insinuate a 

possible increase in computational strains, resulting in a reduction of UE QoE. 

In [75] the authors address the inefficiencies of handover for in-building systems. The proposal 

is to optimize these inefficiencies by using machine learning and data mining techniques by 

developing a clustering algorithm based off shapelets and wavelet decompositions at the cell’s 

edge. The environment consisted of two in-building systems, one where the university food 

court is located (Building A), and the other in the health and sport building (Building B), and a 

3 sector macro-cell. This experiment captured measurement reports (MRs) at a rate of 

approximately 300ms. The feature of this algorithm that led to an improved performance was 

the clustering algorithm, in just a few seconds of MRs to achieve accurate predictions. 
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The authors also talk about the three scenarios that have been simulated, all scenarios relate to 

the loading of the macro-cell and in-building systems, assuming the UE is exiting the building. 

The user develops objective functions for all three scenarios to achieve the optimal operating 

point (OP), which is a combination of the A2 and A3 handover thresholds, and a TTT period. 

The optimal OPs were based off, HOF rate, Ping-Pong rate and the average achievable data rate. 

The algorithm also compares data rate gain as the A3 threshold is altered. The data rate gain that 

this algorithm provided varies between 25 to 65% compared to the static A3 algorithm. 

The authors discuss about Ping-Pong, HOF rates etc., but does not provide evidence of 

improvements in these areas. Only throughput gains are provided. There are a pair of other 

drawbacks/ gaps that can be noticed:  

1. There are no discussions on mass UE movements, such as leaving the building when a 

class finishes (which is very likely). This could cause vast disruptions to the proposal. 

2. Secondly, the simulation is only focused on users exiting the building, which may 

suggest the algorithm does not perform as well when the scenario is reversed. 

Lastly, a DL approach is analysed, where in [76] the authors propose to significantly reduce 

service traffic that is transmitted through communication channels in 5G and optimise 

handovers. By using a GRU RNN, the algorithm will provide a rapid response to changes in the 

environment. The GRU was used to predict how many users would be in a particular cell for a 

given time of day. The prediction scheme varies the size of the cell coverages by a factor K, 

based off the time of day. For example, in overloaded scenarios, the cell that is overloaded will 

have its coverage reduced by a factor of K, and the surrounding less loaded cells would have 

their coverage areas increased by a factor of K. Subsequently, this allows underloaded cells to 

be easily handed over to, and overloaded cells to become harder to connect into. 

The authors use supervised learning for these predictions and compares these predictions to a 

DL LSTM over 300 epochs. Both systems provided very accurate and similar results for 

prediction. It shows that the GRU is able to achieve a better result than the LSTM in a short 

time frame, although, as the number of epochs increase, the LSTM becomes more accurate than 

the GRU system. It is shown that the GRU is able to accurately model daily user traffic at an 

accuracy of 90%, this can be improved if an increased sample size is taken. 

A major gap that is realised when analysing this literature is that the authors do not state when 

all cells are overloaded, this would cause the coverages to become so small that dead zones in 

various areas within the network appear, causing mass RLF failures for mobile users. 

Furthermore, the authors mention that the LSTM is a better option if the sample sizes or the 

number of epochs increase, which questions whether a DL LSTM could have been used instead, 

to provide more accurate results for big data analytics. 
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3.2.5 Cloud C-RAN 

A more modern way of implementing handover that is beginning to become more popular, is by 

utilising the cloud C-RAN, due to the low latency and seamless handover requirements of 5G. 

This contributing factor is why many industrial companies are making a push for cloud-based 

solutions. Cloud based handover can provide a few significant benefits in terms of lower latency 

and larger throughput solutions, when compared to systems that do not utilise the cloud. 

This can be observed in [77], where the authors address the issues due to with cooperative 

interference mitigation and handover management in, heterogeneous cloud small cell networks 

(HCSNet). Firstly, the author employs a network architecture that combines the cloud RAN 

with small cells. The authors specifically target UEs moving between macro cells and small 

cells. Then a low complexity handover management scheme is proposed, and its signalling 

procedure is analysed in a HCSNet. The authors develop this algorithm based off UE speed 

estimations (using an autocorrelation function) and UE latency requirements. Additionally, to 

avoid user interference at the cell’s edge, the authors propose a cooperative multipoint (CoMP) 

joint transmission clustering scheme, specifically the affinity propagation methods. The results 

show that the signalling overhead reduces significantly by at least 40% and 90% related to the 

call holding time and the proportion of high mobility users, respectively (this would result into 

an overall throughput increase). 

Although, the solution provides a very good reduction in signalling overheads, there is a lack of 

a few key performance indicators (highlighted at the beginning of Chapter 3.1 and 3.2), such as 

the number of handovers, Ping-Pongs, handover latency.  

In comparison to the previous effort, the authors in [78] focuses on the latency benefits of using 

a Cloud C-RAN architecture. As this is an important enabler for URLLC and ultra-high 

reliability services for high mobility IoT applications. The authors analyse and compare the 

performances of different Cloud RAN architectures, then develop a new concept for reducing 

the handover preparation time, called early admission control (EAC). This algorithm is done 

with respect to synchronous handovers without random access. This is then compared to today’s 

D-RAN configurations. A diverse range of interface and processing latency assumptions were 

used. The results show a clear reduction in handover preparation time of up to 30% when 

compared to cloud C-RAN architectures that did not use their EAC algorithm, although, this 

improvement proves to be larger when compared to D-RAN architectures, offering 

improvements greater than 60% (resulting in better throughput and lower signalling overheads).  

The research performed in [78], can be considered for a multi-tier environment for current 5G 

and future looking cloud C-RAN enabled technologies. Furthermore, the authors could consider 

moving the EAC preparation closer to the edge of the RAN to achieve an even lower latency. 

This will be discussed further in Chapter 5 where the handover algorithm is proposed.  
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3.2.6 Summary 

The table below summarises all the literatures that have been reviewed. Some literature benefits 

and drawbacks are grouped as they have the very similar benefits and drawbacks. 

Table 3.2-1: Summary and review of multi-tier handover literatures. 

Type of  

solution 

Ref. 

Article 

Summary of potential 

solutions 

Solution benefits and 

drawbacks 

Radio 

frequency 

mapping 

[63] Proposes a Radio Environment 

Map (REM) to improve mobility 

performance by reducing the 

overall number of handovers, 

without sacrificing network 

capacity. 

Benefits: 

- Reduced handovers. 

- Reduced RLFs. 

- Less Ping-Pongs. 

Drawbacks: 

- Lower throughput. 

- Slow response rate to fast 

moving UEs. 

[64] The goal was to dynamically 

adjust the handover triggering 

instance so that a better 

throughput can be achieved. The 

novel approach exploits the radio 

frequency coverage maps to 

determine the optimum instance 

for handover triggering. 

Benefits: 

- Reduced handovers. 

- Increased time spent in 

desired cell. 

- better throughput. 

Drawbacks: 

- Ping-Pongs not mentioned. 

- Limited situation, one UE 

only moving between cells. 

Multi-

connectivity 

[65] The scheme proposes that the UE 

is always connected to two 5G 

milli-meter (mm) access points 

(APs) and one LTE BS, to 

improve high handover latency 

and signalling overhead due to 

unnecessary frequent handovers. 

Benefits: 

- Reduced handovers. 

- Low latency. 

- Good throughput. 

Drawbacks: 

- High signalling overhead. 

- Low channel efficiency. 

- Expensive. 

- No comprehensive study of 

multi-tier handovers. Mainly 

focuses on a particular tier 

and uses the other tier as a 

fall-back system. 

[66] The solution consists of a 

connection to a 4G AP as well as 

a 5G AP, this is due to mmWaves 

being highly susceptible to 

blockages and degradation in 

channel quality 

[67] The algorithm uses circular 

geometric calculations (to model 

the cell’s coverage), relying on 

the vehicle’s GPS coordinates to 
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accurately trace the path. The 

algorithm uses soft handovers 

between RSUs and hard 

handovers between an RSU and 

BSs 

Multi-criteria 

[68] The MCDM algorithm that 

selects the network that best 

meets the UE’s connectivity. 

Proposed a novel algorithm 

called NAIRHA. It consists of 

three different modules: a GPS 

module, a neighbourhood 

database, and a useful coverage 

time module. This is at the UEs 

end in an OBU. 

Benefits: 

- Reduced multi-tier 

handovers. 

- Low packet loss. 

- Low latency. 

- Good throughput. 

Drawbacks: 

- Majority of the HO 

calculations at UE. 

- Expensive. 

- No study on varying user 

movements. 

[69] The authors use the Grey 

Relation Analysis (GRA) scheme 

based on delay, jitter, bandwidth 

communication cost, and network 

load. To improve seamless 

connectivity and meet the data 

rates required by the UE. 

Benefits: 

- Reduced handovers. 

- Low latency. 

- Good throughput. 

Drawbacks: 

- Power hungry, drains UE 

batteries due to increased 

measurement reporting. 

- HOFs not mentioned. 

[70] Proposes a novel multiple 

attribute decision making 

method, TOPSIS. For this 

proposal, the authors propose 2 

modified TOPSIS methods, the 

first method incorporates entropy 

weighting for handover metrics, 

and the second uses a standard 

deviation weighting to score the 

importance of each metric. To 

improve, the number of 

handovers, signal interference, 

and signalling overhead, in 5G 

small cells deployment. 

Benefits: 

- Reduced multi-tier and 

single tier handovers. 

- Reduced RLFs. 

- Low latency. 

- Good throughput. 

Drawbacks: 

- Power hungry, drains UE 

batteries due to increased 

measurement reporting. 

- Higher signalling overheads. 



42 | P a g e  

[71] A novel approach is taken by 

using a MDP to optimise the QoS 

that the UE experiences in 

mmWave heterogenous networks. 

The authors propose to add an 

elimination method to the MDP 

by exploiting unique handover 

properties to improve the 

computational efficiency. Three 

states are proposed, the UEs link, 

location, and velocity. 

Benefits: 

- Low latency. 

- Good throughput. 

- Low computational 

complexity 

Drawbacks: 

- Impact on number of 

handovers, signalling 

overheads and Ping-Pong 

effects not mentioned. 

[72] Addresses the issue of long 

delays that occur during cross cell 

tier handover for delay sensitive 

UEs. The solution optimises the 

handover delay performance by 

combining three different 

approaches: stochastic geometry, 

resource reservation schemes and 

convex optimization theory. 

Benefits: 

- Handover probability 

reduced. 

- Blocking probability 

reduced. 

Drawbacks: 

- The authors focus on M2S 

handover, assumes it acts 

the same for S2M. 

- Reduction in overall 

throughput. 

[73] The authors are trying to reduce 

the number of Ping-Pongs and 

frequent handovers caused by fast 

moving UEs between small cells. 

Proposes an algorithm that will 

handover users to the macro cell 

from a small cell based off their 

mobility behaviour. The authors 

classify the users into three 

categories: fast-moving, Ping-

Pong and the remaining users.  

Benefits: 

- Reduced handovers 

- Reduced Ping-Pongs. 

- Good throughput. 

Drawbacks: 

- No analysis with the 

presence of obstacles. 

- How often measurement 

reporting occurs, may result 

in high signalling overheads. 

Artificial 

Intelligence 

[74] Proposes to use fuzzy logic to 

solve issues relating to redundant 

handovers and handover failure 

(HOF) ratios in dense small cell 

networks (in LTE). The novel 

self-optimising system proposed, 

analyses the UEs velocity and 

radio channel quality, to adapt 

Benefits: 

- Reduced handovers 

- Reduced Ping-Pongs. 

- Reduced HOF. 

Drawbacks: 

- No data on latency or 

throughput. 
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hysteresis margins for handover 

decisions. 

- Possible high computational 

strains. 

[75] the authors address the 

inefficiencies of handover for in-

building systems. The proposal is 

to optimize these by using ML 

and data mining techniques 

(clustering algorithm based off 

shapelets and wavelet 

decomposition) at the cell’s edge. 

Benefits: 

- Good throughput 

- Low latency 

Drawbacks: 

- No data on HOF, number of 

handovers or Ping-Pong 

impacts. 

- Only focused on a one-way 

scenario (exiting UEs). 

[76] The authors propose to 

significantly reduce service 

traffic that is transmitted through 

communication channels in 5G. 

By using a GRU RNN, the 

algorithm will provide a rapid 

response to changes in the 

environment. The prediction 

scheme varies the size of the cell 

coverages by a K factor based off 

the time of day. 

Benefits: 

- Accurately models daily 

user traffic, up to 90%. 

- Can vary cell coverages for 

balanced loading. 

Drawbacks: 

- When all cells are 

overloaded RLFs increase. 

- Requires lot of data to learn. 

- Lower accuracy compared 

to LSTMs. 

Cloud RAN 

[77] where the authors address the 

issues due to with cooperative 

interference mitigation and 

handover management in, 

HCSNets. To avoid user 

interference at the cell’s edge, the 

authors propose a CoMP joint 

transmission clustering scheme, 

specifically the affinity 

propagation methods. 

Benefits: 

- Reductions in signalling 

overhead. 

- Improved throughput. 

Drawbacks: 

- Only targets M2S 

environments. 

- No data for, number of 

handovers, Ping-Pongs, or 

latency. 

[78] Focuses on the latency benefits of 

using a Cloud RAN architecture. 

As this is an important enabler 

for URLLC and ultra-high 

reliability services for high 

mobility IoT applications. This 

algorithm is done with respect to 

synchronous handovers without 

random access. 

Benefits: 

- Reductions in signalling 

overhead. 

- Improved throughput. 

- Improved latency 

Drawbacks: 

- Only uses cloud, could 

improve latency by utilising 

MEC. 
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4 Research Methodology 

To analyse and implement a simulation for the proposed theory in Chapter 5, a diverse range of 

software tools are required. This chapter will highlight these tools, implementations and 

performance metrics following the structure below: 

Section 4.1 highlights the various simulation tools and parameters required to simulate: 

o User mobilities (for cars, pedestrians, and cyclists) 

o Buildings, roads, and footpaths. 

o Carrier frequencies (FR1 and FR2 ranges), multiple bandwidths. 

o Pathlosses, shadow fading, wall losses, LOS and NLOS losses,  

o Base stations (Macro cells, Micro cells, and Femto cells) 

o 5G gNB and UE schedulers, including full uplink and downlink transmissions. 

o Deep learning and LSTM networks 

Section 4.2 lists the assumptions made for the simulation of the systems. 

Section 4.3 discusses the simulation environment parameters in detail. 

Section 4.4 details the key optimisations performed on the simulator. 

Section 4.5 emphasizes the key performance metrics that will be used to evaluate the results. 

4.1 Simulation Tool 

The chosen simulation tool was MATLAB. This software is readily available to students at the 

university, and it provides an extensive range of simulation libraries and applications to cater to 

the diverse requirements of this research. Additionally, MATLAB is a common tool used for 

academic simulations and it is very familiar to the author. The sub-sections below describe the 

various libraries and simulators that were required to develop the final simulator, to evaluate the 

5G with MEC handover performance. The simulator segments described in the following sub-

sections help model the process flow shown in Figure 4.1-1.

 

Figure 4.1-1: Simulator process flow 

Initialise

•Initialises the constants, time variables, the environment (region of interest and 
buildings), pathlosses, users, base stations and schedulers.

Run

•Runs the simulator for every timestamp. It computes, pathlosses, handovers, 
scheduler runs (user data rates, resource share etc.) and storage of metrics.

Display

•After the simulation has run for the set amount of timestamps, this will then displays 
and store the final results. 
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4.1.1 System level simulator 

The system level simulator used is the Vienna 5G system level simulator [79] [80]. This 

simulator allows the user to simulate a complete 5G environment and it evaluates the average 

performance of large-scale networks by means of Monte Carlo simulations [81]. For this 

simulator there are two MATLAB toolboxes required: 

- Statistics and Machine Learning toolbox [82] 

- Parallel Computing toolbox [83] 

The simulator provided a multitude of features that can accurately simulate real world scenarios 

with references to the 3GPP standards. For the simulations carried out in this thesis, the base 

station and user schedulers provided by this simulator is removed and replaced with the 

scheduler in Section 4.1.2. All other parameters will be highlighted in this section. The section 

will begin with all base station and user parameters. Then the various channel models, and 

lastly, the other miscellaneous items (such as building creations etc.). All the relevant pathloss 

models used in this simulator are compliant to LTE 3GPP standards (applicable for frequency 

ranges between 2 and 6 GHz). 

4.1.1.1 Base stations and users 

Base stations: 

For each base station, the simulator provided the following antenna types: 

- Omnidirectional 

- 3-sector 

- 6-sector 

With configurable number of antennas, azimuth angles (in degrees), gain values (in dBi), and 

transmit powers (in W). In addition to this, the remaining parameters in Table 4.1-1 discuss the 

applicability ranges. 

Table 4.1-1: Key base station parameters in the simulator, compliant to 3GPP [16] [79] 

 Macro cell Micro/ Pico cell  Femto cell 

Coupling loss 70dB 53dB 45dB 

Minimum distance 

along the ground 

(2D distance) 

35m 5m 2m 

Carrier 

Frequencies 

3D-UMa, 

2 to 6 GHz 

3D-UMi, 

2 to 6 GHz 

Free space, 

Any frequency. 

The simulator also supported the placement of macro cells on top of buildings. Lastly, it 

included indoor to outdoor, and outdoor to indoor support for all types of base stations. 
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Users: 

The types of users were configurable, the author could simulate, pedestrians, low-speed vehicles 

(such as cars in urban or suburban areas) and high-speed vehicles (for highway scenarios or 

high-speed trains). Additionally, the simulator supported down to 1ms granularity for updates 

on user positions. Other relevant configurable parameters include: 

- Number of transmitting and receiving antennas for heterogeneous environments. 

- Channel model types (stated in Section 4.1.1.2). 

- User heights (default is 1.5m) 

- User velocities, these can be following a distribution or can be predefined. 

- Transmit power and frequency (in W and Hz, respectively). 

The user mobilities are mapped with a simulator defined in Section 4.1.3 and input into this 

simulator as predefined positions, further details are stated in Section 4.3. 

4.1.1.2 Channel models 

Small-scale fading models: 

The small-scale fading models used for the simulator in this thesis were: 

- Typical Urban (TU) model in 3GPP technical report (TR) 25.943 [84], for Pedestrians.  

- Vehicle A (VehA) model in TR 25.890 [85], for vehicles and cyclists. 

All other pathloss parameters: 

The equations in Table 4.1-2 are from Table 7.2-1 in [17], these depict the pathloss models for 

3D urban macro and micro cell environments in 4G (LTE and LTE-A). The frequency 

applicability ranges for both LOS and NLOS range from 2 to 6 GHz. The terminologies below 

describe characters used in the table that is subsequent. 

Terminology: 

d3D is the distance in 3D from the BS and UE antennas in metres. 

fc is the carrier frequency in GHz (2 to 6GHz). 

d'BP is the breakpoint distance (defined below). 

hBS is the height of the base station antenna in metres (10 to 150m). 

hUT is the height of the UE antenna in metres (1.5 to 22.5m). 

W is the street width in metres (5 to 50m). 

h is the average building height in metres (between 5 to 50m). 

PL is the pathloss (any subscripted text will be relevant to the parameters discussed in 

the specific row. 
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Table 4.1-2: Relevant pathloss parameters for the simulator [17] [86] 

 3D-UMa 3D-UMi 

LOS pathloss 

(dB) 

Below breakpoint distance: 

PLLOS = 22.0log10(d3D) + 28.0 + 20log10(fc) 

Above breakpoint distance: 

PLLOS = 40log10(d3D) +28.0+20log10(fc) –9log10((d'BP)2+(hBS - hUT)
2) 

Breakpoint distance: 

d'BP
 = 4 h'BS h'UT fc/c 

NLOS pathloss 

(dB) 

PL3D-UMa-NLOS = 161.04 – 7.1 log10 

(W) + 7.5 log10 (h) – (24.37 – 

3.7(h/hBS)
2) log10 (hBS) + (43.42 – 

3.1 log10 (hBS)) (log10 (d3D) - 3) + 20 

log10(fc) – (3.2 (log10 (17.625)) 2 - 

4.97) – 0.6(hUT - 1.5) 

 

PL3D-UMi-NLOS = 36.7log10(d3D) + 

22.7 + 26log10(fc) – 0.3(hUT - 1.5) 

 

Total pathloss 

(dB) 

PL = max  

(PL3D-UMa-NLOS, PL3D-UMa-LOS) 

 

PL = max  

(PL3D-UMi-NLOS, PL3D-UMi-LOS) 

 

Shadow fading 

Standard 

deviation (dB) 

LOS: 4 

NLOS: 6 

LOS: 3 

NLOS: 4 

Wall loss (dB) PLconcrete = 5 + 4(fc) 

(concrete pathloss) 

PLconcrete = 5 + 4(fc) 

(concrete pathloss) 

Additionally, the simulator included, thermal noise powers (in dB) per sub carrier frequency for 

each network element, and the UE receiver noise figure (default value of 9 dB). 

The simulator sampled all these pathlosses at 10ms intervals, although, it allowed for faster 

updates of channel models if speeds increased faster than the channel model was applicable for. 

The refresh rates can be updated if required. 

4.1.1.3 Miscellaneous 

The simulator helped prove a default time interval of 1ms for the scheduler. Additionally, every 

10ms the simulator had a cell association phase that was configured to either RSS or SINR. This 

method of handing over was removed, as this is not the correct way of implementing handovers. 

However, this cell association strategy was used to initialise base stations and users for the first 

timestamp. Section 4.1.4 will discuss the author’s own developed handover process that was 

incorporated in this simulator. 
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For the simulation environment, the simulator provided support to create a region of interest 

where it applies relevant pathlosses and other parameters. 

- This also included a region of interference (with a default factor of 1). 

Within that region of interest, buildings and other obstructions were able to be defined. 

Buildings could be created with random locations (such as a Manhattan layout) or they can be 

predefined. Streets were subsequently created after the buildings.  

Furthermore, this simulator allowed visual displays of the user movements and base station 

associations. 

4.1.2 Scheduler 

The base station and UE scheduler used for this simulator is a 5G NR scheduler that is 

developed by MATLAB, it can be found in [18]. This scheduler is compliant with the 3GPP 

standards, these standards will be listed throughout this section, where applicable. For this 

simulator, one MATLAB toolbox is required, the 5G Toolbox [87]. 

Table 4.1-3 lists a few of the important operations that this simulator performs. 

Table 4.1-3: MATLAB NR FDD scheduler operations for gNB and UE [18] 

Equipment Operation 

gNB - Assigns uplink and downlink resources. 

- Sends uplink and downlink assignments to UEs. 

- Receives the Physical Uplink Shared Channel (PUSCH) transmissions 

from the UEs. 

- Adheres to downlink assignments for the Physical Downlink Shared 

Channel (PDSCH) transmission. 

- Receives feedback of PDSCHs from the UEs. 

UE - Sends pending buffer status reports to the gNB. 

- Receives the uplink and downlink assignments from the gNB. 

- Adheres to the received uplink assignments from the gNB for the PUSCH 

transmission. 

- Receives PDSCH transmissions from the gNB. 

- Sends feedback for the received PDSCHs. 

In addition to these operations, the scheduler allowed many customisations, a few key 

customisations are listed below. 

Frame structures and Bandwidths: 

This scheduler has support for both TDD and FDD. It allowed for slot based or symbol-based 

scheduling depending on the mode selected.  
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- TDD uses symbol based (full preconfigured scheduler example can be found in [88]). 

- FDD uses slot based. 

Additionally, it supported full configurations of bandwidths and sub carrier spacings in 

accordance with the 3GPP standards [16]. 

- Inclusive of 15kHz, 30kHz and 60kHz subcarriers. 

- Able to support up to 100MHz bandwidths (for 30kHz and 60kHz, 50MHz for 15kHz). 

- Can support up to 256 QAM (from 3GPP TS 38.214 Table 5.2.2.1-3 [89]). 

This is configurable for both uplink and downlink bandwidths, plus the ability to change the 

limit of the maximum number of resource blocks that can be assigned to a UE. 

Additionally, CQIs can be improved or deteriorated at a certain periodicity. Lastly, hybrid 

automatic repeat request (HARQ) can be toggled, and the number of processes are able to be 

varied. All wireless communications between UE and gNB have a set success probability, this 

will be detailed in Section 4.2 (where the assumptions are discussed). 

Scheduler strategy: 

Table 4.1-4 describes the simulator’s three scheduler strategies: 

Table 4.1-4: 5G NR FDD Scheduler options [90] 

Scheduler Type Description 

Proportionally fair (PF) Tries to maximise total throughput of the network while 

maintaining a minimum level of service. 

- This scheduler provides the user with a moving average 

data rate weight parameter that can be configured. 

Round Robin (RR) Ensures that each user gets an equal share of the resources. 

Offers the best fairness for all users. 

Best CQI Assigns the most resource blocks for the user with the best CQI, 

although this is not the best at being fair. 

More in-depth explanations can be found in [90]. Lastly, the PUSCH can be configured, the 

default value of 200µs is used to ensure that the assignments are received before the 

transmission time. The scheduler then relies on the correct information to schedule provided 

from two tables: 

- the radio network temporary identifier (RNTI) logical channel configuration (LCC) 

shortened to RLCC table. 

- the application configuration tables.  

The parameters of both these tables are described in Table 4.1-5. 
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Table 4.1-5: RLCC and Application configuration parameters for the scheduler [18] 

RLCC configuration parameters Application configuration parameters 

- RNTI of the UE. 

- The UEs Logical channel identifier 

(LCID) and LCID group. 

- Sequence field length, either 6 or 12. 

- Maximum buffer for service data units 

(SDUs) (in number of packets). 

- Reassembly timer (in ms). 

- Entity type, for the RLC unacknowledge 

mode (UM) entity: 

o unidirectional downlink 

o unidirectional uplink, or 

o bidirectional UM. 

- Priority of the logical channel 

- Prioritized bit rate (in kbps). 

- Bucket size duration (in ms). 

- RNTI of the UE 

- LCID 

- Packet Interval between two consecutive 

packet generations (in ms). 

- Size of the packet (in bytes), which can 

also be translated from required data rate. 

- Host Device, this is the device (UE or 

gNB) on which the application is 

installed with the specified configuration. 

The values indicate the application is 

configured on either: 

o gNB side,  

o UE side, or  

o both UE and gNB. 

Visualisations: 

Lastly, this scheduler also allowed visualisations of: 

- CQIs for each RB. 

- RB assignments to a particular UE, for each RB in the base station. 

- Every attached UEs data rates by their LCIDs. 

Furthermore, as discussed earlier in Section 4.1.1, this scheduler from MATLAB was combined 

with the Vienna 5G system level simulator to develop a fully functioning uplink and downlink 

5G system level simulator. 

4.1.3 User mobility simulator 

The predefined user mobilities are modelled using an application called the Driving Scenario 

Designer in MATLAB. This requires the use of the automated driving toolbox [91].  

The key features that attracted the author to using this for developing user positions include: 

- Modelling roads, vehicles, pedestrians, and cyclists. 

o Speeds can be varied to simulate turning vehicles and cyclists. 

o Delays can be added to simulate signals, parked cars etc. 

o Sensors allow the author to measure localisations of all actors in a set 

environment. 
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- It allowed the author to simulate timestamps as low as 1ms (this is a requirement for the 

Vienna simulator for accurate user mobility calculations). 

This toolbox provides an easy-to-use user interface that allowed the user to model all these 

parameters without the need for coding. 

4.1.4 Handover 

The handover logic and process that was added to this simulator follows key 3GPP standards, as 

well as some documents from industrial leaders for latencies and various other timing values. 

- This is described in Chapter 5, as this is the benchmark algorithm used for comparisons. 

In this simulator the A3 and A1 handover logic is implemented. Additionally, the handover 

process and the appropriate delays are implemented to simulate UE, BS, AMF and UPF 

communications during a handover. 

Furthermore, the MEC far edge and aggregated layers are implemented to provide a lower 

latency implementation that can occur in the 5G environments today.  

4.1.5 Deep learning simulator 

For the deep learning section of this thesis, it was simulated in MATLAB using the Deep 

Network Designer Application. The appropriate library required was the Deep Learning 

Toolbox [92]. 

Key features that attracted the author to this were: 

- All the coding for LSTMs NNs and other forms of ML are embedded into the toolbox, 

the user only requires designing the layers of the architecture. 

- Allowed modifications of various layers. 

- The sequence training and testing data is simple to input into the system. 

- Visualisations of training shows the learning rates and losses. 

- A final trained LSTM is outputted and is ready for classifying live data. 

- Easy to use with completely configurable training options, such as:  

o The Number of epochs 

o Initial learning rates 

o Gradient thresholds 

o Shuffling of the training data  

o Various solvers 

The various solvers are defined in Table 4.1-6. 
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Table 4.1-6: Types of DL solvers in MATLAB [93] 

root mean square 

propagation (rmsprop) 

stochastic gradient descent 

model (sgdm) 
adam 

Learns per-parameter and is 

adapted based on the average 

of latest magnitudes of the 

gradients for the weight. This 

allows the system to perform 

well in fluctuating problems. 

 

This maintains a single 

weight for all updates, which 

consequently does not 

change the learning rate 

during training. 

 

This is a combination of the 

rmsprop algorithm as well 

another one called adaptive 

gradient algorithm 

(AdaGrad), which maintains 

the same per-parameter 

learning rate, but it is more 

for sparse gradients. 

Lastly, for the deep learning simulator to learn, Microsoft Excel power query editor was used to 

easily model the simulated data in discrete dimensions. This data is then used by the simulator 

to easily comprehend and output a DL LSTM that can be used for classifications. 
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4.2 Assumptions 

This section will list the assumptions that were made to simulate the environment. 

1. The pathloss model used for 3D-UMa and 3D-UMi scenarios can be used to model this 

5G scenario, as the frequency ranges are applicable for the types of base stations used. 

a. Additionally, subcarrier frequencies of 15kHz are also being used, so this 

should generally be a good model for the simulation of these pathlosses. 

2. Shadow fading standard deviation remains constant at a value of 4 for ease of 

calculations. 

3. Wall losses are constant, and they use the carrier frequency of 2GHz (based off the 

macro cell’s carrier frequency). 

4. CQIs of the signal remains constant throughout a frame, there are no degradations or 

improvements within one frame. 

5. There are no users travelling above 80kmph, therefore, correlation distance is sufficient 

to not require channel updates more than once every 10ms. 

6. There are no trees or streetlights in the simulation environment for simplicity. 

7. MEC far and aggregated edge deployments improve throughput and latencies by 

bringing virtualisations of the AMF and UPF to the aggregated edge. Other 

optimisations are not considered for this research. 

8. All types of users have compatible hardware to connect to any of the stated carrier 

frequencies in the simulation. 

9. All users transmit powers are the same. 

10. The packet success probability of the UE or gNB receiving the packet of data through 

the air interface, was described by the equation below: 

 Packet Success Probability = 0.7 + (UE CQI) / 20 

Additionally, this probability is also applied for messages between UE and gNB for 

handover execution. 

  



54 | P a g e  

4.3 Simulation Environment 

For the handover simulation, there were two sets of simulations:  

- 10 UEs simulated for 510s.  

- 40 UEs simulated for 210s to help provide an insight into what happens in higher 

density environments.  

o Section 4.4 highlights the reasons why 210s was used instead of using 510s. 

The simulation environment and all its relevant parameters are stated below: 

Simulator timings and scheduler: 

The chosen scheduler mode was round robin, as it provided an overall fair throughput for all 

users regardless of their priorities and CQIs. Additionally, this scheduler mode can help provide 

fair results for handover evaluations.  

It can be noticed that the simulations were performed for an additional 10s. This is because the 

first 10s was used as a buffer, ensuring that all parameters are in a steady state scenario when 

the actual simulation begins. The remaining time is when the useful results are recorded.  

The frame mode and subcarrier spacing for all three types of base stations is FDD and 15kHz, 

respectively. Therefore, there is 1 slot per sub-frame and each frame is 10ms long. In addition: 

- User positions, schedulers and handover parameters are updated every 1ms. 

- Pathloss parameters are updated every 10ms. 

- User MRs occur every 160ms in accordance with one of the values in [46]. This 

value was chosen as it provides a balance between being faster than normal LTE 

measurement reports, but not being so frequent that it has high power inefficiencies. 

- TTT value of 160ms was used, this matched the occurrences of MRs, additionally, 

it is a value compliant with [46]. 

- Retransmission timings after a failed handover communication is 10ms, this is to 

match the timings of each frame and it provided sufficient time for message 

acknowledgements. 

The handover procedure timings will be discussed in Chapter 5, as modifications are made to 

the 3GPP solution to incorporate MEC and NFVs. 

Region of interest: 

The region of interest is rectangular, this spans 600m-by-700m (0.42km2), with varying building 

heights between 10 and 45m. Building widths and lengths are mapped in blocks of 25m-by-

25m. If a building has a larger width or length, then a 25m-by-25m block is placed adjacent to it 

to develop a wider or longer building. Street widths were designed to be 25m wide, this is 

because it can accommodate all types of users and be split easily into the following segments: 
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- Pedestrian walkways: 2.5m on either side of the road. 

- Cycle ways: 2.5m on either side of the road. 

- Road lanes: 7.5m for each lane. 

o Moving vehicles lane: 4.0m lane width. 

o Carpark lane: 3.5m lane width. 

The simulation environment is based off New York University (NYU), with Manhattan style 

building configurations. The images in Table 4.3-1 show two perspectives of the environment. 

Both satellite images were obtained using Google Maps. 

Table 4.3-1: Simulation environment Images [94] [95] 

 Aerial view Elevated and angled view 

NYU 

  

Simulation 

  

The coloured dots in the simulation image depict base stations. There is a total of 69 BSs: 

- 2 Macro cells (dark blue dots). 

- 43 Micro cells (red dots). 

- 24 Femto cells (teal dots). 

Base stations and MEC deployments: 

The points below give a brief explanation for why certain carrier frequencies and locations were 

used for the base stations. 

- Macro base stations are placed on top of buildings (5m above the building’s height). 

They have been strategically placed to provide coverage and to minimise dead zones 

within the simulation. 

Carrier Frequency: 2 GHz was chosen as this is at the lowest end of the spectrum in 3D-

UMa model and will help provide the widest coverage for UEs within the area. 

- Micro cells have been placed on streetlights approximately 10m above the ground. 
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Carrier Frequency: 3.5 GHz was used as this one of the key FR1 frequency bands for 

New Zealand’s 5G networks [96]. 

- Femto cells are placed 6.5m above the ground on top of lampposts.  

Carrier Frequency: 26 GHz was selected as this one of the key FR2 frequency bands for 

New Zealand’s 5G networks [96]. 

All the other relevant base station parameters are summarised in Table 4.3-2. 

Table 4.3-2: Base station simulation parameters 

Parameters Macro Cell 

(Wide area BS) 

Micro/ Pico Cell 

(Medium area BS) 

Femtocell 

(Local area BS) 

Number of BSs 2 43 24 

BS coverage range 500-1000m 50-100m 10-20m 

BS height 50m 10m 6.5m 

Min 2D distance to UE 35m 5m 2m 

Frequency Band FR1 FR2 

Carrier Frequency 2.0 GHz 3.5 GHz 26 GHz 

Bandwidth 20MHz 40MHz 

Duplex Mode FDD 

Transmit Power 40 W 6.31 W 0.25 W 

Antenna Gain 0 dBi 

Antenna type Omnidirectional 

Number of Antennas 1 Transmit antenna, 1 receiving antenna 

Pathloss model (for 

both LOS and NLOS) 
3D-UMa 3D-UMi 

Free space with all 

added pathlosses*. 

Coupling loss 70dB 53dB 45dB 

Shadow fading 4dB 

Wall losses  13dB 

* Wall losses, shadow fading and user interferences. 

In addition to the base stations, there will 44 MEC deployments, 1 aggregated edge server (at 

the CU) and 43 far edge servers (one for each Micro/ Pico cell).  

- The far edge servers provide multiple benefits (highlighted in Chapter 2.3), although, in 

this thesis the far edge MEC will only help boost throughputs. Furthermore, the Micro/ 

Pico and femto cells have an increased bandwidth of 40MHz compared to 20MHz for 

Macro cells. 

- The aggregated edge will be used for providing lower latency handovers by bringing 

AMF and UPF handover functions to the edge of the network. 
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Users: 

The author has simulated 40 UE movements: 

- 26 higher mobility users, consisting of 22 cars 4 cyclists. 

- 14 low mobility pedestrians. 

These are simulated for at least 510s. The pedestrians were simulated for 100s longer for 

validation purposes, to ensure base station were located where coverages were sufficient and 

dead zones minimised. 

For the handover simulation, a subset of 10 users is simulated for 510s. Additionally, the whole 

set of 40 UEs were simulated for 210s to help provide an insight into what happens in higher 

density environments. All user movements were varied in a random pattern over the simulated 

time frames. User speed variations are detailed below: 

- Cars slowed down around turns, came to stops at certain intersections. 

- Cyclists slowed down around turns and slowed down around pedestrian areas. 

- Pedestrians had varying speeds between for walking, running, and resting. UEs only 

stopped for a few seconds (a maximum of 10s). 

All users remained in the region of interest. The remaining UE parameters are listed in Table 

4.3-3.  

Table 4.3-3: User mobility simulation parameters for 10 UEs 

Parameters Vehicles Cyclists Pedestrians 

Number of UEs (510s) 4 2 4 

Number of UEs (210s) 22 4 14 

Speeds 0 to 80kmph 0 to 20kmph 0 to 5kmph 

Channel model Vehicle A Typical Urban 

Number of Antennas 2 transmit and receive antennas. 

One supports FR1 range, the other for FR2. 

Transmit power 1W 

User RNTIs were uniquely numbered 1 to 40 and each user had independent LCID and LCID 

groups. Each user had a randomised data rate ranging from 0.1MBps to 20MBps. This 

accommodated for, calls, browsing and high-quality video streaming. 

User priorities are ignored, as this simulation will be using the round robin scheduler. All other 

user parameters relating to the RLCC and application configurations were identical.  

- Sequence field length was 12. 

- Maximum buffer for SDUs was 25kB. 

- Reassembly timer was 5ms. 



58 | P a g e  

- Entity type was bidirectional UM. 

- Packet interval was one every 1ms. 

- Host devices were both UE and gNB. 

Majority of these values were chosen for lower complexity of calculations. The packet interval 

was chosen to be every 1ms because of the entity type being in bidirectional UM mode. 

Therefore, providing an overall consistent data rate where retransmissions are not required. 

Deep Learning: 

Lastly, this portion will highlight all the justifications for the parameters used for training the 

DL system. Beginning with the solver, the adam solver was used, because of the various 

benefits that were highlighted in Section 4.1.5.  Other key configurable parameters are described 

below: 

- Initial learning rate was set to 0.001, A value of 0.1 or 0.01 creates a less accurate 

model. A value of 0.0001 or less takes very long for the system to learn with little to no 

improvements over 0.001. 

- The gradient threshold was set to 2, to prevent the gradients from diverging from the 

desired learnings. 

The LSTM was taught to learn a sequence of 4 dimensions and 24 classifications, all these 

classifications and their logical reasonings are described in Chapter 5. 

- The number of epochs (1000) and hidden units (20) were varied and analysed to find 

the optimal values, this analysis is detailed in Chapter 6. 

For the DL LSTM, a training and testing data set of approximately 25,000 data points were 

taken based off actual UE movements. 

- 10 users were simulated for 100s (4 cars, 4 pedestrians, 2 cyclists). 

o 8 were used for training (20,000 points). 

o 2 were used for testing and evaluating the prediction accuracy (5,000 points). 

- These 10 users were independent to the 10 users in the first 510s simulation, although 

they were part of the 40 UEs that were simulated for 210s. 

- Base stations were only considered if their CQI ≥ 1, the remainder were not included. 

User data point sizes varied from 2,200 to 2,700 based off the number of BS coverages that 

could be quantified as a potential base station. 
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4.4 Simulator Optimisations 

Several memory saving optimisations were achieved to improve the overall performance of the 

simulation. The impact of the five stated below provided the largest impact. The impact is 

measured against the simulation of 10 UEs over 510s.  

All memory saving optimisations were implemented to reduce the size of the virtual random-

access memory (RAM), on the device that the author was using to perform the simulations. 

4.4.1 Scheduler 

Memory allocation: 

A large memory saving optimisation in the scheduler was achieved. The 5G NR scheduler 

initialised a simulation logger consisting of a cell array of 7,140,000 by 13 cells when a BS 

scheduler was initialised (one for every symbol in a 1ms simulation, this is not required for 

FDD and is unnecessary). This was a massive strain on the simulator and was very unnecessary. 

- This would take around 57 GB of memory per base station to initialise. Therefore, for 

even 5 of the 69 base stations it would account for 285 GB at least. For this obvious 

reason, the computer constantly ran into many out of memory errors. 

This issue was solved by removing this pre-allocation of memory and replacing it with a less 

memory intensive solution. This solution added an instance (one row) of the cell array when 

required, therefore, removing the need to initialise such a large array. 

- This reduced the initial size of each array to less than 100 bytes.  

- Additionally, at the end of the simulation, the array size for all used base stations 

increased to around 45GB of the memory. 

This optimisation was put in place because it was noticed that all 69 base stations were not 

required to initialise so many instances, when majority of the BSs would only be used for small 

periods of the simulation time.  

Moreover, this optimisation reduced the initialisation time for each base station. From 

approximately 120-300s down to 5-10s, depending on the number of users attached to that 

respective base station. 

4.4.2 System level simulator 

Simulation progress reporting: 

It was noticed that the authors device was crashing due to the large array of messages that gets 

printed to the command window, at set intervals after simulating a 10ms frame. The author 

found that the constant writing of progress to the command window resulted in critical failures. 

This feature was removed, resulting in no more computer or simulation crashes. 
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Memory allocation: 

After the scheduler optimisation was enabled, another memory intensive flaw was noticed from 

the system level simulator. It was noticed that to simulate 10 users for 510s, the simulator would 

initialise 51,000 individual structures (1 for every 10ms) to capture changes in user mobilities at 

the beginning of every 10ms frame. The volume of samples posed to be a very big strain on the 

computer (in terms of memory as well as computational capabilities), which in turn reduced the 

speed of the simulation. It was observed that the: 

- Simulation took approximately 8 hours to initialise all 51,000 instances. 

o Memory allocated for the 51,000 instances was approximately 40GB. 

- Time for one 510s simulation took 5 days (approximately 120 hours) to complete. 

- Memory allocated for the whole simulation was 75GB (excluding initialisation). 

- Time taken for one 10ms timestamp was approximately 8.5s. 

This was very undesirable for the author. It had caused a major issue (out of memory) when 

attempting to save the results, resulting in an unsuccessful save and all the data was lost.  

An examination was done to understand what could be done to improve the efficiency and time 

of the simulation. The author found that the simulator could initialise one instance of the 

simulation, as everything is identical for subsequent instances. The only parameter that required 

to be varied was the user positions. Additionally, it was noticed that the volume of samples and 

the duplication of results could be made redundant for memory efficiency. These changes were 

implemented to radically reduced the: 

- Simulation initialisation time down to 10 seconds. 

o Memory allocation for initialisation down to 4GB. 

- Duration for one 510s simulation to 2.5 days (approximately 60 hours). 

- Memory allocated for the whole simulation 50GB (excluding initialisation). 

- Time taken for 1 timestamp reduced to 4.0s. 

This resulted in enough of a reduction to save the results. Although, a further optimisation put in 

place to provide nearly an 8x, discussed below. 

4.4.3 Miscellaneous 

Reduction in the volume of samples: 

It was noticed that the simulator was recording samples of user data every 1ms. This causes the 

simulator’s speed to decrease dramatically over time. This optimisation reduced this volume by 

a factor of 10 and record values over the 10ms frame. This did slightly impact the accuracy of 

the simulator, although, the impact that was noticed was minimal (a variation of 2-5% for the 

data rates) and the timing benefits outweighed the accuracy drawbacks. The optimisations 

reduced the: 
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- Duration for one 510s simulation to 12 hours. 

- Memory allocated for the whole simulation 25GB (including initialisation). 

- Time taken for 1 timestamp reduced to 0.85s. 

Clear memory and Just in Time (JIT) complier utilisations: 

Additionally, in combination with the optimisation stated above, the author was able to notice 

an even further reduction by implementing the following steps: 

- Clearing larger functions. Even though MATLAB does clear variables when the 

simulator exits the function, it was noticed that clearing larger functions before exiting 

optimised the speed of the simulator.  

o Duration for one 510s simulation to 10 hours. 

o Memory allocated for the whole simulation 20GB (including initialisation). 

o Time taken for 1 timestamp reduced to 0.72s. 

- Lastly, the feature of MATLAB’s JIT compiler was exploited. It was noticed that if a 

small sample of the simulator was run, the speed was increased. This is because of the 

JIT complier’s property to save the initialisation of the users functions and classes. 

Therefore, further reducing the time, resulting in the final timings of: 

o Duration for one 510s simulation to 8 hours. 

o Memory allocated for the whole simulation 20GB (including initialisation). 

o Time taken for 1 timestamp reduced to 0.55s.   

All these optimisations allowed for a more manageable and fast simulation of the scenarios. 

Subsequently, it was noticed that for the 40 UEs simulation, these optimisations did not provide 

enough of a reduction to practically simulate these mobilities over 510s, as it would take over 7 

to 10 days for completion. Therefore, a simulation time of 210s was used as this required 

approximately 36hrs to complete. 
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4.5 Performance Metrics 

This thesis consists of various performance metrics to evaluate the handover and the DL LSTM. 

All performance metrics that are used in Chapter 6 for evaluations are described below. 

4.5.1 Deep learning metrics 

For the DL LSTM, one metric is considered vital for the handover optimisation in this thesis. 

This is the Accuracy (%) of the LSTM. This metric evaluates how accurate the DL LSTM 

algorithm is. An individual can test this by varying two key parameters: 

1. The number of hidden units: This value can correlate directly to the computational 

latency of the network. The key reason behind this parameter being varied, is to find a 

balance between the number of hidden units and computational speed.  

2. The number of epochs: This parameter is varied to ensure the most optimal time 

required for training the system is found.  

For both these metrics, a chance of over or under fitting of the solution is possible. Therefore, a 

range of values is considered, to ensure over and under fitting are effectively captured. These 

concepts will be discussed in detail in Chapter 6 where the analysis is performed. 

4.5.2 Handover metrics 

For the evaluation of handovers, there are 8 metrics that are thought to be key metrics for multi-

tier handover evaluations.  

These are split into 2 categories, one category evaluates handover performance, the other 

evaluates overall throughput and user throughput requirements. All throughput metrics are 

measured for uplink and downlink communications. 

Handover performance metrics (QoS metrics): 

1. Total handovers: 

o This is the total number of handovers in the whole network, inclusive of HOFs. 

2. Total number of multi-tier handovers: 

o This is the total number of multi-tier handovers; it will also be presented as a 

percentage of the overall handovers. 

3. Total number of Ping-Pong handovers: 

o This is the total number of ping-ping handovers; it will also be presented as a 

percentage of the overall handovers. 

4. Total number of handover failures: 

o This is the total number of HOFs; it will also be presented as a percentage of 

the overall handovers. 
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o These can be related to either desired base station CQI dropping to a value 

lower than desired, or due to a gross handover failure (described in Chapter 5).  

5. Average handover latency: 

o This includes the time it takes for a handover failure to become successful after 

retransmissions. 

o This will not include gross failures (described in 5.1.2), as is a rare occurrence 

and it can skew the latency to something that does not accurately reflect the 

handover latency. 

Overall throughput metrics (QoE metrics): 

6. Total throughput: 

o This is the total overall throughput of the whole network that is being 

simulated. 

7. Average UE throughputs: 

o This is the average throughput of each user, then averaged again to provide an 

overall average throughput. 

8. Percentage of the time UE data rate needs are met: 

o This will consider the percentage of the time that the user’s data rate 

requirements have been met.  
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5 Algorithms 

This Chapter details the benchmarking and the novel DL LSTM algorithms.  

5.1 Benchmarking Algorithm 

The benchmark scheme will be a 3GPP defined handover logic and procedure, these were 

described in Chapter 2.2. The procedure will be adapted with aggregated edge components for 

enabling lower latencies. 

5.1.1 Handover Logic 

For the UE to trigger a handover, its RSS has to be greater than the A3 entry condition (stated in 

Section 2.2 Figure 2.2-2), which is: 

Target gNB RSS > source gNB RSS + A3 offset (3dB) 

Table 5.1-1 describes the equations and offset values used. This table is used for the decision 

that is made after the TTT period, whether it is an A1 or an A3 handover.  

Table 5.1-1: A1 and A3 handover conditions in the simulator 

 A3 Event A1 Event 

Exit point 

decision 

Target gNB RSS >  

source gNB RSS + A3 offset (3dB) 

source gNB RSS > A1 threshold 

(minimum RSS for a CQI of 1) 

If it is an A1 handover, it will revert back and remain connected to the source gNB. If it is an 

A3 handover, the UE will move onto handover initiation phase. Otherwise, if the UE’s CQI for 

the serving BS drops below a value of 1 during this process, the UE becomes idle and begins to 

reconnect to the base station that meets the A1 handover conditions. For all cases, the handover 

trigger instance will be recorded. 

5.1.2 Handover Procedure 

Key handover procedure communication delay metrics are stated below, all latency values are 

obtained from [97] and [78]: 

- Handover request from source gNB to target gNB: 2ms between both DUs [97]. 

- Admission control: 1ms for admission control at the target gNB [78]. 

- UE handover initiation message: 1ms for data transmission over air interface [78]. 

- UE Handover configurations [78]: 

o HO request processing: 5ms 

o HO reconfiguration: 10ms 

- Status transfer from source gNB to target gNB: 1ms [97]. 

- Target gNB and UE synchronisation messages: 2ms [78]. 
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All wireless communications have a success probability and a retransmission delay, these values 

were discussed in section 4.2. Additionally, two HOF types are identified: 

1. If at any point during the handover procedure, the desired BS’s CQI is less than 1, the 

handover is stopped, and the UE is moved to the connected state. 

2. If more than 16 communication failures occur in a set handover period, these are 

considered as gross handover failures [98], then the UE will be disconnected from the 

BS and become idle. This is considered as another type of HOF. 
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5.2 Proposed Algorithm 

To develop a DL LSTM, an understanding what the inputs and outputs must be realised. First, 

the desired outputs are decided. These are based off what is desirable and what challenges that 

this proposal is trying to address. The metrics are: 

1. User’s CQI: This is chosen to be an output to ensure that data connections are never lost 

and a good QoS is maintained. 

2. User’s data rate requirements: This is required to ensure that the user’s data rate 

requirements are met for as long as possible. 

3. User’s velocity: This ensures that the algorithm is dependent on user mobility when 

connection requirements become more important. 

The parameters above were chosen because it provides the algorithm the best opportunity to 

meet the UEs QoS and QoE requirements. Therefore, from these desired output metrics, the key 

input dimensions were chosen. This LSTM consisted of 4 dimensions. The user’s velocity is 

split into direction and speed for a smoother and faster learning process for the DL LSTM. 

1st Dimension: User’s CQI 

This is the user’s CQI rating for the potential BS, only BSs that have a CQI ≥ 1 are considered. 

This eliminates any base stations which are not within the range. 

- This method if implemented correctly, can reduce signalling overheads and UE costs. 

This is because there is no longer a need for the capability to monitor and report on a 

minimum of 8 (4 Inter-RAT and 4 Intra-RAT) BSs, as stated in section 9.3.3.1 and 

9.3.3.2 in [99]. 

2nd Dimension: User’s data rate ratio 

The user’s data rate ratio is derived from the equation below. For the compactness of the 

equations data rate has been abbreviated to DR. 

DR Ratio = max user DR requirements / min potential DR the BS support. 

The max data rate is the maximum of the uplink and downlink requirements. A simplified 

version of the minimum potential data rate that the BS can support is given by:  

If attached users > 0: 

Min Potential DR = min BS DR for a CQI of 3 / number of UEs attached 

If attached users = 0: 

Min Potential DR = min DR the BS can support for a CQI of 3 
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A CQI of 3 was chosen as this is the average CQI that a user will have when connecting to a 

base station, at a distance equivalent to approximately 70% (±10 to 20%) of the BS’s coverage. 

- This distance was chosen, as in most cases CQIs of potential BSs that are can be handed 

over to in most cases will not be higher than 50 to 70% of the BS coverage. Therefore, a 

value of 20% of the maximum CQI value (of 15) was taken. 

- The variation takes into consideration of small scale fading and shadow fading effects, 

which can at the least cause a ±10 to 20% variation in the channel quality. The 

variations in the presence of cars and NLOS obstructions can be seen in [100], where 

the authors simulate shadow fading models for VANETs. 

3rd and 4th Dimensions: User’s direction and speed: 

The values for both these dimensions are using an RSS values that are measured in dBm. The 

variations can also be measured in watts, although, classification parameters may need to be 

adjusted appropriately to accommodate for this change. This was a measure that was chosen by 

the author for ease of comprehension. 

Firstly, the user’s direction is measured from the variation in the RSS between two successive 

MRs of the potential BS. A negative value denotes a user is moving away, a positive value 

denotes the user is moving closer, both expressions are with respect to the potential BS being 

assessed.  

Additionally, the variation in speed is then calculated as an absolute value of RSS variation. All 

values below are with respect to RSS variations (for completeness a velocity equation has been 

included).  

UE velocity = –RSSt-1 + RSSt 

UE direction = {
−𝑈𝐸 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑈𝐸 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 < 0

⋯
𝑈𝐸 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑈𝐸 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ≥ 0

 

UE speed = |UE velocity| 

A variation of 5dBm or more was chosen to be the value of a fast-moving user, as a 1m 

variation in 100ms (equivalent to a vehicle traveling at approximately 36kmph), accounts for an 

RSS change of 10-15% in free space. When assuming a dBm value of 20dBm, a value of 2-

3dBm would be the free space RSS variation.  

Additionally, due to the additional pathloss factors discussed in Chapter 2 and 4, a 3dBm offset 

is added to avoid majority of the misrepresentations. From these definitions, each of the input 

dimensions were classified and concatenated into one output. These are specified in Table 5.2-1. 
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Table 5.2-1: DL LSTM classification categories 

Dimension Classifications Value ranges 

user CQIs 

Good CQI > 5 

Ok 3 < CQI ≤ 5 

Poor CQI ≤ 2 

User Data rate ratio 
Meets DR ≥ 1 

Not Met DR < 1 

UE Direction 
Closer UE Direction ≥ 0 dBm 

Away UE Direction < 0 dBm 

UE Speed 
Fast UE speed ≥ 5 dBm 

Low UE speed < 5 dBm 

With these chosen output types and classifications, there are 24 possible combinations.  

These combinations are shown in Table 5.2-2. 

Table 5.2-2: All 24 classification of the proposed DL LSTM 

Index Code 
Classification 

CQI Data rate Direction Speed 

1 GMCF 

Good 

Meets 

Closer 
Fast 

2 GMCL Low 

3 GMAF 
Away 

Fast 

4 GMAL Low 

5 GNCF 

Not met 

Closer 
Fast 

6 GNCL Low 

7 GNAF 
Away 

Fast 

8 GNAL Low 

9 OMCF 

Ok 

Meets 

Closer 
Fast 

10 OMCL Low 

11 OMAF 
Away 

Fast 

12 OMAL Low 

13 ONCF 

Not met 

Closer 
Fast 

14 ONCL Low 

15 ONAF 
Away 

Fast 

16 ONAL Low 

17 PMCF 

Poor 

Meets 

Closer 
Fast 

18 PMCL Low 

19 PMAF 
Away 

Fast 

20 PMAL Low 

21 PNCF 

Not met 

Closer 
Fast 

22 PNCL Low 

23 PNAF 
Away 

Fast 

24 PNAL Low 

Now that the classifications and their reasonings are clarified, the adjustment to the handover 

logic and procedures are discussed below. 
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5.2.1 Handover Logic 

This algorithm relies on previous MRs to predict the best base station to handover to. This 

decision happens in the current MR time stamp. Each user’s last 7 MRs for potential BSs are 

stored in the aggregated edge of the MEC. 

- In addition to this, the connected BS CQIs are also stored for the past 7 timestamps. 

These 7 CQIs are averaged to ensure shadow fading and small-scale fading effects are 

minimised. Furthermore, the same is done for the actual data rate, to ensure fluctuations 

are filtered out. 

If the base station has a CQI that is higher than 1 for longer than 7 consecutive time stamps, MR 

variations are considered, to efficiently save power for low mobility users. The pseudocode 

below describes these logical steps. 

Algorithm 1: Classification logic 

1. procedure: Classify BSs based off MRs 

2.     for each potential detected BS 

3.         if CQI ≥ 1 then 

4.             Calculate all remaining parameters to input into the LSTM 

5.             Predict potential BS classification based off the inputs 

6.             Store the classification for the user at the aggregated edge 

7.         end if 

8.     end for 

9. end procedure 

Algorithm 2: Handover logic 

1. procedure: vary measurement reporting 

2.     if consecutive MRs for potential BS = 7 then 

3.         UE state = potential BS handover 

4.  

5.         if UE speed is fast for ≥ 5 MR instances, then 

6.             Decrease MR interval by 40ms 

7.             if MR interval is ≤ 80ms then 

8.                 MR interval = 80ms 

9.             end if 

10.         end if 

11.  

12.         if UE speed is low for ≥ 5 MR instances, then 

13.             Increase MR interval by 40ms 

14.             if MR interval is ≥ 400ms then 

15.                 MR interval = 400ms 

16.             end if 

17.         end if 

18.     end if 

19. end procedure 
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The reasons why these MR occurrence limits were chosen are highlighted below: 

- For high mobility users, the MRs will not go below 80ms, as it will drain the UE’s 

battery at a high rate.  

- For low mobility users, the MRs will not go above 400ms, as this will impact the 

response of a handover decision if it is required for sudden changes in movements. 

For this algorithm there is no longer a TTT value, this is replaced with the third and final logical 

process called, ‘potential BS handover’. This process is described via the LUT below for ease of 

comprehension. LUTs provide a very fast and simple approach to solving repetitive problems. 

Additionally, outcomes can be easily modified to achieve the desired outcomes.  

All handover decisions require 5 (~70%) or more instances of each predicted classification. For 

example, if a UE is a fast-moving UE, the classification ‘fast’ within the last 7 predictions must 

occur at a minimum of 5 times, otherwise, it will be considered as a ‘low’ moving UE. 

Table 5.2-3: Handover Logic based off DL LSTM Classifications 

 

Current BS Parameters  
Key 

Meets DR Not Met DR  

CQI  

< 3 

CQI  

≥ 3 

CQI  

< 3 

CQI  

≥ 3 

 Letter/  

Number 
Classification 

P
o

te
n

ti
a
l 

B
S

 C
la

ss
if

ic
a
ti

o
n

s 

GMCF 1 0 1 1  G Good CQI 

GMCL 1 0 1 1  O Ok CQI 

GMAF 1 0 1 1  P Poor CQI 

GMAL 1 0 1 1  M Meets DR 

GNCF 1 0 1 0  N Not met DR 

GNCL 1 0 1 0  C Moving Closer 

GNAF 1 0 1 0  A Moving Away 

GNAL 1 0 1 0  F Fast speed 

OMCF 1 0 1 1  L Low speed 

OMCL 1 0 1 1  1 Handover 

OMAF 1 0 1 0  
1* 

Exception 

Handover OMAL 1 0 1 1  

ONCF 1 0 1 0  0 No Handover 

ONCL 1 0 1 0    

ONAF 1 0 1 0    

ONAL 1 0 1 0    

PMCF 1* 0 1* 0    

PMCL 1* 0 1* 0    

PMAF 0 0 0 0    

PMAL 0 0 0 0    

PNCF 1* 0 1* 0    

PNCL 1* 0 1* 0    

PNAF 0 0 0 0    

PNAL 0 0 0 0    
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In Table 5.2-3: 

- 1 denotes a handover is to be performed. 

- 0 implies no handover required and revert to the connected state. 

- 1* is an exception handover, that should only occur if the CQI is better than the current 

BS CQI, to avoid the risk of RLF. After a handover decision is made, all past UE 

predictions for all BSs are cleared. 

If a handover is requested, the user moves to the handover procedure phase, where the current 

BS initiates the handover to the desired BS. 

5.2.2 Handover procedure 

The handover procedure being proposed in this section implements a faster variation to the 

current being used today.  

The proposal is to send the admission control for handover request at the same time instant that 

the UE begins to process the handover request. This can be made possible because of the 

aggregated edge architecture, due its centralised nature, the MEC can orchestrate both events to 

execute simultaneously. Hence, a further reduction of 3ms in latency could be made in addition 

to the latency optimisations discussed previously in Section 5.1.2.  

All other remaining parts of the handover process remain the same as described in Section 2.2.  
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6 Results and Discussion 

This Chapter will discuss the various results of each simulation. Beginning with the DL 

evaluation, then progressing to analysing and comparing the handover performance metrics.  

6.1 Deep Learning Evaluation 

The training for this evaluation was using a technique called supervised learning, the LSTM was 

made aware to all 24 of the classification variations. The parameters that were varied to evaluate 

accuracy impacts were, the number of epochs and hidden layers. Three simulation runs were 

carried out for each variation, to estimate average values of the results. For both results, 

percentages are rounded to the nearest 0.01%, simulation time is rounded to the nearest second. 

To start, the table below highlights the impact on LSTM performance as the number of hidden 

units increase. Each of the simulations were 1000 epochs long. This was experimented upon and 

chosen to be the right value based on the results of Table 6.1-2. 

Table 6.1-1: LSTM Supervised Learning Performance, 1000 epochs per simulation 

Number of  

Hidden 

Units 

Duration of simulation (s) Prediction Accuracy (%) 

Run 1 Run 2 Run 3 Mean Run 1 Run 2 Run 3 Mean 

5 241 239 254 245 81.35 76.94 73.35 77.21 

10 273 284 294 284 88.44 71.08 86.32 81.95 

20 352 353 360 355 99.45 99.86 99.47 99.59 

40 540 550 533 541 94.12 98.82 99.27 97.40 

The test data above, it is a perfect example of all three types of capacity fittings [101]: 

1. Underfitting: Where the solution is not complex enough to understand the data, it causes 

a bias underfitting issue. This can be seen where the hidden units values were 5 and 10. 

2. Overfitting: Where the solution learns the training data but fails to aptly generalise the 

training set for new unseen testing data. Can be slightly observed with 40 hidden units. 

3. Appropriate fit: where the solution can appropriately generalise as well as learn the 

trend to accurately predict new data. This is the optimal solution of 20 hidden units. 

The same methods can be applied to the number of epochs. The number of epochs should be 

stopped when the error of the learning is at its minimum. Further efforts to optimising the 

learning leads to overfitting and compromises the performance of the LSTM. 

This is noticed in Table 6.1-2, again all three types of fit are visible. For finding the correct 

number of epochs, the optimal value of 20 hidden units was used, as this was the best 

performing LSTM from Table 6.1-1. 
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Table 6.1-2: LSTM supervised Learning Performance, 20 hidden units per simulation 

Number of  

Epochs 

Duration of simulation (s) Prediction Accuracy (%) 

Run 1 Run 2 Run 3 Mean Run 1 Run 2 Run 3 Mean 

10 4 4 4 4 22.12 8.17 19.86 16.72 

100 37 34 34 35 57.03 67.89 54.17 59.70 

1000 352 353 360 355 99.45 99.86 99.47 99.59 

2000 710 819 739 756 90.05 90.68 99.35 93.36 

For the final simulation, the most accurate hidden units and epochs combination was used. The 

accuracy of predicting the test data was at 99.86%. 
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6.2 Handover Evaluation 

From the DL LSTM evaluations, simulations comparing the benchmark and the proposed 

algorithm was run. The results analysed the impact on handover performance when the densities 

of the users are varied. 

- It has to be noted, that the density of users increasing is also including a higher number 

of varying user movements. A major impact will be due to the larger the volume of fast 

moving users increasing (from 4UEs to 22UEs), as user interferences will impact these 

handovers the most. 

6.2.1 Total handovers 

The Figures 6.2-1 and 6.2-2 highlight the total handovers for both scenarios. 

 

Figure 6.2-1: Total handovers (10UEs, 500s) 

 

Figure 6.2-2: Total handovers (40UEs, 200s) 

From this, it can be noticed that the total number of handovers for the proposed solution is 

higher, although, the 3GPP scheme had a large number of entry condition triggering events. 

This is due the scheme only taking the current time instance to compare the RSSs against, 

introducing a higher chance of the decision being impacted greatly by random channel effects. 

The results showed that the 3GPP scheme had 556 and 286 triggering events for the 10UEs and 

40UEs, respectively. From this data it can be noticed that as the density of the users increase, 

the number of times that the network has to monitor the triggering conditions per user also 

increases (by 15% in this case).  

Furthermore, the proposed scheme has a lower triggering instance when compared to the 3GPP 

benchmark. It would only trigger once (when it required to continue onto the procedure phase). 

Therefore, if we compare the triggering instances, the proposed scheme provides a lower 

number of triggering instances, shown in Figure 6.2-3 and 6.2-4. 
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Figure 6.2-3: Total TTT instances (10UEs, 500s) 

 

Figure 6.2-4: Total TTT instances (40UEs, 200s) 

The reasons why the gap decreases when user densities increase can be explained by the 

following two reasons: 

1. The emphasis on the LUT parameters. Mainly the proposed scheme focuses on 

improving data rates or providing the best CQI possible. This is observed especially for 

the higher density scenarios, as a lot more handovers occur to accommodate user 

requirements.  

2. In the 3GPP scheme the RSS of the desired base station was lower than the current BS, 

due to the number of user interference factors that come into play.  
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6.2.2 Multi-tier handovers 

Beginning with the volume of multi-tier handovers, the figures below highlight the total number 

of multi-tier handovers (Figures 6.2-5 and 6.2-6), as well as their respective percentages of the 

total handovers (Figures 6.2-7 and 6.2-8).  

- There was no macro cell to macro cell handovers, as the distance and the obstacles 

between the two did not provide many avenues for overlapping coverages.  

- There was also very rarely a micro to micro cell handover in the scenarios, due to the 

fact that the RSS of the macro cell was quite high compared to the other small cells. 

 

Figure 6.2-5: Total multi-tiers (10UEs, 500s) 

 

Figure 6.2-6: Total multi-tiers (40UEs, 200s) 

 

Figure 6.2-7: Multi-tier percentage (10UEs, 500s) 

 

Figure 6.2-8: Multi-tier percentage (40UEs, 200s) 

Both schemes mainly did multi-tier handovers, as it primarily required to handover due to the 

high variations in RSRP. For the 3GPP scenarios it can be noticed that as the user densities 
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increase, there is a higher micro to macro handover rate, from around 45% to 55%. This is due 

to the UEs connectivity being the only important parameter in this scheme.  

To elaborate further, when the algorithm was in a lower density scenario, the connectivity was 

not a large obstacle, as user interferences were not significant. Consequently, as the densities 

increased, connectivity issues became more apparent. 

For the proposed scheme these high number of multi-tier handovers was made a bit more 

apparent, as the connectivity requirement outweighed the data rate requirement, or vice versa. It 

can be seen it is approximately 60% to 40% in favour of the data rate importance in the lower 

density, as the CQI was quite good. Subsequently, this reduced to around 50% each way when 

channel qualities were reduced. This provided the UE with the opportunity to connect to the cell 

that best met its data rate requirements.  

For example, it was noticed that the macro cell would provide the best CQI in an area where a 

single tier handover could have occurred. Therefore, the macro cell provided the best 

connection and the least chance of HOF, whereas for the single tier handovers the CQIs were 

undesirable. That is the reasons why the proposed scheme did not attempt to do any single tier 

handovers, as the CQI of the macro cell was always higher than the CQI of the desired micro 

cell in question (at the beginning of the handover decision).  

Then after the handover had been completed, the UE was handed over to the desired small cell 

when the CQI was no longer an obstacle, and a data rate boost was required. Section 6.3.3 

shows the benefits of this.   
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6.2.3 Ping-Pong handovers 

The improvements on the Ping-Pong handovers are displayed in Figures 6.2-9 through to 6.2-

12. It provides an insight into how both schemes perform in these two scenarios. 

 

Figure 6.2-9: Total Ping-Pongs (10UEs, 500s) 

 

Figure 6.2-10: Total Ping-Pongs (40UEs, 200s) 

 

Figure 6.2-11: Ping-Pong percentage (10UEs, 500s) 

 

Figure 6.2-12: Ping-Pong percentage (40UEs, 200s) 

For the proposed scheme in both low and high densities, the feature that helped the most was 

the averaging of the past 7 time stamp CQIs. Therefore, mitigating Ping-Pongs due to random 

small-scale and shadow fading. This rate remained at a very low Ping-Pong rate for the higher 

density of users as well. Providing a more stable transition to the desired base station.  

When analysing the 3GPP scheme, it was noticed that the handover failure ratio reduced as the 

density of the UEs increased. This can be due to the 3dB threshold offset in addition to the 

current BS’s RSRP. Therefore, mitigating as many false readings as possible.  
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Subsequently, it can be noticed, for the lower densities, Ping-Pongs for the proposed scheme 

were reduced by 97.5%, this can also show that the algorithm performs well in lower densities 

where user interference are small. Successively, it also performs very well in high density 

environments, where it provided a reduction of approximately 86%. 
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6.2.4 Handover failures 

Figures 6.2-13 through to 6.2-16 display the handover failures, these handover failure types 

have been explained in Chapter 5.1.2, although, the summary is provided below: 

1. If at any point during the handover procedure, the desired BS’s CQI is less than 1, the 

handover is stopped, and the UE is moved to the connected state. 

2. If more than 16 communication failures occur in a set handover period, these are 

considered as gross handover failures [98], then the UE will be disconnected from the 

BS and become idle. This is considered as another type of HOF. 

 

Figure 6.2-13: Total HOFs (10UEs, 500s) 

 

Figure 6.2-14: Total HOFs (40UEs, 200s) 

 

Figure 6.2-15: HOF percentage (10UEs, 500s) 

 

Figure 6.2-16: HOF percentage (40UEs, 200s) 

The handover failures of the proposed algorithm are 25% higher in lower density scenarios. 

This is attributed to the emphasis of the desired CQI in the LUT being quite strict. Resulting in 

handovers occurring in the CQI exception phase, where CQI values for both serving and desired 
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BSs are at a minimum, giving it less of a chance for a handover to occur successfully for lower 

user mobilities. This was reduced when in the higher density scenario, as user interferences 

helped the proposed scheme make a stronger decision, that failed 30% less compared to the 

3GPP (when focusing on the percentage of total handovers).  

Furthermore, the 3GPP scheme performed poorly when considering the percentage of total 

HOFs. This can be attributed to the higher user interferences. It had to check if the A3 handover 

condition was met for only two instances, which could vary a lot due to the interfering factors. 

Therefore, as the handover was progressing, the chances of failure were elevated. Whereas the 

proposed scheme was more confident as it checked the LUT conditions for the average value of 

the past 7 instances to compare.  

Additionally, the variation in the frequency of the MRs can be attributed to this, as the higher 

the user mobilities are, the more rapid the response is of the proposed scheme is. The proposed 

is faster by one TTT instance, when compared to the 3GPP scheme (simply because of the 

instant triggering functionality). 
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6.2.5 Average handover latency 

Lastly, the average handover latency is measured and compared. Handover latency is only 

calculated if a handover successfully completes. These values are compared in Figures 6.2-17 

through to 6.2-20. 

The first graphs show the number of successful handovers after a set number of retransmissions 

(abbreviated to reTx in the graph). These contribute directly to the average handover latency 

calculation. 

 

Figure 6.2-17: Successful HO attempts (10UEs, 500s) 

 

Figure 6.2-18: Successful HO attempts (40UEs, 200s) 

 

Figure 6.2-19: Successful HO ratios (10UEs, 500s) 

 

Figure 6.2-20: Successful HO ratios (40UEs, 200s) 

From the results above, it can be noticed, that the 3GPP provides quite a good performance in 

successfully executing handovers in all cases. Although, this gap narrows as the density of users 

increase and the proposed scheme’s characteristics work towards enhancing the handover 

performance. 
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From these values an average handover latency calculation is performed. The handover latency 

metrics used for the calculations are described in the table below.  

Table 6.2-1: Handover latencies for varying retransmissions. 

Algorithm 0 reTx 1 reTx 2 reTx 

DL LSTM with MEC and LUT 17ms 27ms 37ms 

3GPP with MEC 20ms 30ms 40ms 

From the assumption in Chapter 4.2, the retransmission delay is 10ms. With these values, a 

simple weighted sum is calculated and averaged, to provide the average handover latency of the 

UEs. The results can be viewed in Figures 6.2-21 and 6.2-22. 

 

Figure 6.2-21: Average latency (10UEs, 500s) 

 

Figure 6.2-22: Average latency (40UEs, 200s) 

The average handover latency for the proposed solution for both user densities is lower than the 

3GPP solution, even though there were more retransmissions in the proposed. This is due to the 

optimisation of simultaneous activations of admission control, and UE handover process steps 

(described in Section 5.2.2). Therefore, reducing the impact of these handover retransmissions. 
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6.3 Throughput Evaluation 

Continuing on from the handover evaluations, this section investigates the impact that these 

handovers had on the throughput. 

6.3.1 Total throughput 

Figures 6.3-1 and 6.3-2 reveal the total throughput for both scenarios and schemes. This is 

measured in megabytes per second (MBps). 

 

Figure 6.3-1: Total Throughput (10UEs, 500s) 

 

Figure 6.3-2: Total Throughput (40UEs, 200s) 

The results above show that the 3GPP scheme does perform better in lower density scenarios by 

15 and 30% respectively for downlink and uplink. This is due to the CQI of the connected users 

to the macro cell not being dramatically impacted from interference factors. Therefore, from the 

LUT requirements, a handover does not require to be done as the macro cell’s CQI is a lot better 

than the desired micro cell.  

When noticing the performance in the high user density scenario, the proposed solution 

performs a lot better, as user interference factors become very apparent and impact the users. 

Then the CQI of the macro cell is very similar to that of the micro cell and handovers can occur 

to optimise the user’s data rate. This proves to boost the throughputs in the proposed solution to 

beat the 3GPP solution by approximately 45% for both downlink and uplink. 
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6.3.2 Average user data rate 

Figures 6.3-3 and 6.3-4 highlight all user data rates, for both uplink and downlink. Starting with 

the lower density of users. 

 

Figure 6.3-3: Average user throughputs DL LSTM (10UEs, 500s) 

 

Figure 6.3-4: Average user throughputs 3GPP (10UEs, 500s) 

From the data above, it can be noticed that the 3GPP provided a better overall throughput for 

the users, although, for the users connected to the macro cell, they suffered from a lower data 

rate than the DL LSTM solution (all users below 4MBps are macro cell users).  

This is due to one of two reasons: 

1. The proposed solution has an importance on the CQI if it is very good, therefore, if 

the UE is connected to the macro cell, the CQI is quite good. Furthermore, if the UE 

is connected to the macro cell, it enhances the data throughput where possible, but 

in some cases this may not be enough. 
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2. The UE’s data rate is being met by the macro cell, therefore, not requiring the 

higher data rate from the small cell. 

These throughput metrics are also compared in higher mobility scenarios. Those values are 

considerably better due to the impacts discussed in Section 6.3.1. These results are displayed in 

Figures 6.3-5 and 6.3-6. 

 

Figure 6.3-5: Average user throughputs DL LSTM (40UEs, 200s) 

 

Figure 6.3-6: Average user throughputs 3GPP (40UEs, 200s) 

The data shows some users have a data rate < 1MBps, this is because there are many users 

connected to the macro cell. Unlike the 3GPP scheme, it can be noticed that the proposed 

scheme was able to connect as many users to the micro cell as possible. Therefore, this 

subsequently enhanced the average macro cell throughputs higher than the 3GPP solution. 

Resulting in, 15 users having a data rate < 1MBps for the 3GPP scheme, compared to only 7 for 

the proposed scheme (a 53% reduction in these types of events).  
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6.3.3 User data rate requirements 

Lastly, the percentage of the time the UEs data rate needs were met was measured. The results 

for the lower density of users are shown first (in Figures 6.3-7 and 6.3-8). One definition 

requires to be stated is that of good accommodating service. In this research it is defined to be, 

where the user’s data rates are met for at least 50% of the time. 

 

Figure 6.3-7: User throughput requirements met with DL LSTM scheme (10UEs, 500s) 

 

Figure 6.3-8: User throughput requirements met with 3GPP scheme (10UEs, 500s) 

In majority of the cases, the proposed scheme provided a better accommodation to user data rate 

requirements. From the results the proposed scheme provided a good accommodating service 

55% of the time, compared to 45% of the time for the 3GPP solution.  

The only time the proposed scheme was not effective was when the CQI values of the connected 

users to the macro cell was very high. From the LUT, the only time the user would have handed 

over was if the CQI for the potential base station was above a value of 3, which was not the case 
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for UE 2 and 3. Therefore, they remained connected to the macro base station the whole 

simulation, and UE data rate requirements remained unmet.  

Then when analysing the higher density scenarios, the gap between the two schemes is 

increased dramatically. This can be noticed in Figures 6.3-9 and 6.3-10. 

 

Figure 6.3-9: User throughput requirements met with DL LSTM scheme (40UEs, 200s) 

 

Figure 6.3-10: User throughput requirements met with 3GPP scheme (40UEs, 200s) 

It can be observed that the user’s requirements are met 60% of the time, compared to the 3GPP 

which could only meet the requirements 41.25% of the time. 

The reduction for the 3GPP solution as the density increased can be attributed to the points 

discussed in 6.2.2. When it was made apparent that the UE was performing small cell to macro 

cell handovers, therefore, compromising data rates to maintain connectivity.  

The proposed scheme was able to maintain both, a good connectivity, and data rate.  
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7 Conclusion and Future Research 

The project undertaken was interesting and it provided the author with a great deal of insight 

into various strains of 5G, edge computing and deep learning. Additionally, the learnings 

developed and sharpened various other skillsets while progressing throughout this research. 

These include acknowledging diverse perspectives, ethical reasoning, and applied learnings. 

The objective and contribution targets of this thesis have been achieved.  

A DL LSTM handover decision algorithm while utilising LUTs, 5G and MEC was proposed, to 

investigate the impact that it would have on UEs and BSs when compared to the benchmark 

3GPP algorithm. It was noticed that from the results that QoE targets were achieved and 

provided an increasing gap of up to 45% higher, as the user densities increased. Subsequently, 

this helped improve the time that the UE requirements are met by 20%.  

When removing the TTT and replacing it with a novel and dynamic triggering function, the 

proposed scheme provided a very fast response to UE mobilities, when the LUT requirements 

were met. This allowed majority of the QoS targets to be achieved, providing a lower HOF and 

Ping-Ping rate in higher user density scenarios by 30% and 86% respectively. The main 

drawback that was observed was a higher occurrence of handovers in high density scenarios. 

This is due to the algorithm attempting to accommodate user data rate requirements and/ or user 

CQI expectations.  

The proposed modification to the handover admission control process reduced the handover 

latency down to approximately 4.2ms. This allowed the algorithm to nearly meet the user plane 

eMBB latency targets of less than 4ms (stated in Section 2.3). Lastly, the proposal to reduce the 

size of MRs sent from UEs, subsequently reduced the size of signalling overheads, and 

improved power efficiencies. In this simulation, this factor has been reduced by 2, as only Intra-

RAT environments are considered (where a minimum of 4 BS readings per MR are needed). 

However, these improvements can be negated when the increase in the number of handovers are 

taken into consideration. 

In conclusion, a detailed analysis was undertaken, and the aims of the research were satisfied. 

Given the constraints of time and the degree of knowledge, the research delivered useful results 

and learnings, that are deemed to be sufficient. These learnings provide a good foundation for 

broader research prospects. 

7.1 Further Research Directions 

The author has attempted to touch on one of the most important aspects of 5G multi-tier 

handover. There are various gaps in this research that have yet to be explored to provide a more 

comprehensive solution for all generations of telecommunications networks.  
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The avenues for further research are described below, although, these should not be interpreted 

as the only or the most important opportunities. 

- Tuning of the LUT table parameters. Due to time constraints, the author was not able to 

tune and test out various LUT parameters. This will help investigate the optimal 

solution. 

- An analysis on the practical aspects of implementing this research. 

- Inter-RAT handovers for the older generation (4G) and the impact of not being able to 

utilise MEC to reduce latencies and computational time. 

- How retraining of LSTMs based on specific environmental conditions impacts handover 

decisions. Whether it provides a better result in comparison to a pretrained model. This 

may help understand if an adaptive solution is required to ensure the best service is 

implemented for each localised area. 
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