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Abstract

This paper proposes a new approach to analyze multiple vector autoregressive (VAR)

models that render us a newly constructed matrix autoregressive (MtAR) model based

on a matrix-variate normal distribution with two covariance matrices. The MtAR is a

generalization of VAR models where the two covariance matrices allow the extension

of MtAR to a structural MtAR analysis. The proposed MtAR can also incorporate

different lag orders across VAR systems that provide more flexibility to the model. The

estimation results from a simulation study and an empirical study on macroeconomic

application show favorable performance of our proposed models and method.
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1 Introduction

Vector autoregressive (VAR) models have been well studied and widely used in many

macroeconomic applications. Various forms have been analyzed and result in a long list

of the VAR literature. Among others, Lütkepohl (2007), Koop and Korobilis (2009),

Del Negro and Schorfheide (2011), and Karlsson (2013) provide comprehensive overview

on various VAR models and their formulation and implementation. Extension of the

VAR models cover a wide range of applications, e.g., dynamic factor, time varying

parameters, and dynamic stochastic general equilibrium models.

A more meaningful extension of the VAR is its structural model or SVAR. Origi-

nated by Sim (1980), SVAR models have been proven useful in macroeconomic analysis,

especially in investigating the policy effects and forecasting economic time series; see,

among others, Watson (1994), Christiano et al. (1999), Stock and Watson (2001), and

Christiano et al. (2005), for various implementations and applications on the SVAR.

One major issue that has been proposed and attempted on the SVAR is its identifica-

tion; see Rubio-Ramírez et al. (2010), among others.

The estimation of VAR and SVAR has been well performed within the Bayesian

framework through Markov chain Monte Carlo (MCMC) methods; see Sims and Zha

(1998), Del Negro and Schorfheide (2011), among others for the implementation of the

VAR and SVAR models using Bayesian MCMC methods.

One recent extension that has received much attention, especially for the transmis-

sion of shocks, is the multicountry VAR models. This group of models attempts to

analyze the transmission effects across the units (countries) and the lagged intertem-

poral effects across (time) series through a covariance matrix; see, among others, Elliot

and Fatás (1996), Canova and Marrinan (1998), Canova and De Nicolo (2000), Del

Negro and Obiols (2001), Canova and Ciccarelli (2009), Bańbura et al. (2010), and

Favero (2013), for works on multicountry VAR models. Note that the units of interest

do not need to be countries but can also be other objects such as states and agents.
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In general, the analysis of a multicountry VAR model is made through a single,

large VAR system, even each country has the same structure (type of variables) and

dimension (number of dependent variables). The dependence structure is then assessed

using a covariance matrix that combines the across-country and across-variable effects.

However, the analysis of a multicountry VAR model with the same structure and dimen-

sion can actually be made through a matrix system by stacking together each country

VAR model. Hence, the across-country (across-unit) and across-variable (across-series)

effects can be simultaneously and separately analyzed.

In this paper, we extend the analysis of VAR models by proposing a new approach to

analyze multiple vector autoregressive (VAR) models that result in a newly constructed

matrix autoregressive (MtAR) model. This extension enables us to conveniently ana-

lyze the multiple VAR systems in one setting. It also allows us to efficiently estimate

and generalize the dependence (covariance) structure of the model. The construction of

the MtAR is based on a matrix-variate normal distribution with two covariance matri-

ces. The proposed MtAR is a generalization of the multivariate VAR models where the

two covariance matrices allow the extension of MtAR to a structural MtAR (SMtAR)

analysis. The proposed model is useful to a structural analysis, especially for macroe-

conomic application where we can analyze the dependence structure across units (e.g.

countries) and across series (e.g. economic time series) through two covariance matrices

in one go.

One major advantage of the SMtAR is that it can incorporate large VAR sys-

tems where their dependence structure is summarized through two covariance matri-

ces. Hence, stacking the series of interest into matrix and analyzing it through the

SMtAR render us the across-unit and across-series covariance matrices. In addition,

working through the Kronecker product of two covariance matrices can return the large

covariance matrix, that shows the interdependencies across units and series, as in the

usual multicountry VAR models. However, the opposite is not true: with the unknown

two covariance matrices, we cannot recover the two covariance matrices from the large
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covariance matrix. Also, our model is flexible enough to incorporate different lags for

different VAR systems.

Since the construction of the proposed SMtAR is based on a (matrix-variate normal)

distribution, the Bayesian parametric approach is a good candidate for the estimation.

Under some assumptions, we show that the model implementation is straightforward

and can be easily made using the MCMC. In addition, we find from a simulation

study that the MCMC estimation returns favorable results and perform better than

the maximum likelihood (ML) estimation and the feasible generalized least squares

(FGLS).

The organization of this paper is as follows: Section 2 briefly introduces the matrix-

variate normal distribution and also illustrates the formulation of the MtAR and SM-

tAR models. Section 3 presents the MCMC estimation. Section 4 performs a simulation

study. Section 5 shows the applicability of the proposed models through an empirical

analysis. Section 6 provides the concluding remarks.

2 Model

2.1 Matrix-variate normal distribution

According to Dawid (1981) and Gupta and Nagar (1999, pp.55-56), a d × k matrix

Y is said to be matrix-variate normal random variable or Y ∼ MNd,k(M,Σ,Ψ) if its

probability density function is given by

f(Y|M,Σ,Ψ) = (2π)−
dk
2 |Σ|−

k
2 |Ψ|−

d
2 exp

{
−1

2
tr
[
Ψ−1(Y −M)′Σ−1(Y −M)

]}
, (1)

where M is the d × k mean matrix, Σ is the d × d across-row covariance matrix, Ψ

is the k × k across-column covariance matrix, and tr denotes the matrix trace. If we

vectorize the random matrix Y, we get vec(Y) ∼ Ndk(vec(M),Ψ ⊗ Σ), which is a

dk-dimensional multivariate normal random variable with dk × 1 mean vector vec(M)
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and dk× dk covariance matrix Ψ⊗Σ; see proof in Gupta and Nagar (1999, pp.55-56).

Hence, the pdf of vec(Y) is given by

f(vec(Y)|vec(M),Ψ⊗Σ) = (2π)−
dk
2 |Ψ⊗Σ|−

dk
2 exp

{
−1

2

[
vec(Y −M)′(Ψ⊗Σ)−1vec(Y −M)

]}
,

(2)

which is equivalent to (1). Note that vec(Y−M) = vec(Y)−vec(M); see e.g. Exercise

10.16 in Abadir and Magnus (2005, p.281). Let Ω ≡ Ψ ⊗ Σ. Following the pdf in

(2), we can then generate the random vector vec(Y) from Ndk(vec(M),Ω). It is worth

noting here that we can obtain Ω from Ψ⊗Σ but we cannot decompose the unknown

Ψ and Σ from Ω; see, e.g., Liu (2012).

2.2 Matrix autoregressive (MtAR) model

Let us consider a reduced-form vector autoregressive model with order p or VAR(p)

given by

yt = c+ A1yt−1 + A2yt−2 + · · ·+ Apyt−p + ut, (3)

for t = 1, ..., T where yt = (y1t, ..., ydt)
′ is a d× 1 vector of present observations, Ai are

d×dmatrices of autoregressive coefficients for i = 1, ..., p, c is a d×1 vector of constants,

and ut is a d × 1 iid normal random vector with mean vector 0 and positive-definite

covariance matrix Σ or ut
iid∼ N(0,Σ). The reduced-form VAR (p) model in (3) can be

written in the seemingly unrelated regression (SUR) form as

yt = Bxt + ut, (4)

where B = [c A1 · · ·Ap] is the d × (pd + 1) matrix of regression coefficients and xt =

(1, y1,t−1, ..., yd,t−1, ..., y1,t−p, ..., yd,t−p)
′ is the (pd+ 1)× 1 vector of covariates.
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The basic idea behind the construction of an MtAR model is stacking together all

data into matrices and representing the model in terms of SUR where the k columns

of model errors [u1t · · ·ukt ] are stacked as a matrix and assumed to follow the matrix-

variate normal distribution described in Section 2.1. That is, for m = 1, ..., k the

contemporaneous or across-row covariance matrix is Σ and for j = 1, ..., d the across-

object or across-column covariance matrix is Ψ. Intuitively, Σ summarizes the across-

row covariance structure while Ψ provides similar information across columns.

Consider an MAR(1) model where two VAR(1) models are stacked together and

written in a generic SUR form as

Yt = BXt + Ut, (5)

where Yt = [y1t y
2
t ] is the d × 2 matrix of present observations, B = [B1 B2] is the

d× 2(d+ 1) matrix of regression coefficients, Xt is the 2(d+ 1)× 2 matrix of covariates

that x1t and x2t are stacked as

Xt =



1 0

y11,t−1 0

...
...

y1d,t−1 0

0 1

0 y21,t−1
...

...

0 y2d,t−1



,

and Ut = [u1t u
2
t ] is the d × 2 matrix of model errors. If we stack the k VAR models

with the same lag order p, we can obtain the MtAR(p) model with Yt = [y1t · · · ykt ],

B = [B1 · · ·Bk], Ut = [u1t · · ·ukt ], and x1t · · · xkt are stacked into Xt in the same way as

above.
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Our proposed MtAR model also allows the flexible modeling where different VAR

systems can have different lag orders. Let p = [p1 · · · pk] denote a vector of lag orders. It

follows that the MtAR(p) is the model with the matrix of regression coefficients B is a

d×(d(p1+· · ·+pk)+k) matrix and the matrix of covariates Xt is a (d(p1+· · ·+pk)+k)×k

matrix while Yt and Ut are still a d× k matrix.

2.3 Structural MtAR model

The SUR representation of the MtAR in (5) can also be regarded as the reduced-

form MtAR. Since the error matrix Ut is assumed to follow a matrix-variate normal

distribution with two covariance matrices Σ and Ψ or Ut ∼ MNd,k(0,Σ,Ψ) together

with the restrictions on the two covariance matrices, the MtAR in (5) can be used for

a structural analysis as in the case of SVAR and called SMtAR. For conciseness, we

consider only the case where the SMtAR is exactly identified as in Theorem 4 of Rubio-

Ramirez et al. (2010), which states that if for every reduced-form parameter point there

exists a unique structural parameter point on the real line such that the reduced-form

parameter point is a function of structural parameter point, then the restrictions on

the structural parameter matrix are triangular; see Rubio-Ramirez et al. (2010) and

Karlsson (2013), among others, for more details on the identification of an SVAR and

the restrictions on its covariance matrix.

The construction of SMtAR follows from the SVAR where in this case it is based

on across-row and across-column SVAR systems. From (4), it follows that, for each

column m, the reduced form of across-row SVAR system is given by

ymt = Bmxmt + umt , (6)

where umt ∼ Nd(0,Σ). Let Σ = (A0A
′
0)
−1 where A0 is a full-rank triangular matrix,

which is called the contemporaneous coefficient matrix, Bm = A−10 Am, and umt =

A−10 emt , where emt ∼ Nd(0, Id). The structural form of across-row SVAR system in (6)
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can then be written as

A0y
m
t = Amxmt + emt .

Similarly, for each row j the reduced form of across-column SVAR system is given by

y′j,t = Bjx
′
j,t + u′j,t, (7)

where yj,t = [y1j,t · · · ykj,t] is the 1×k vector of present observations, Bj = [c′j A
′
j,1 · · ·A′j,p]

is the k × (pk + 1) matrix of regression coefficients, xjt = [1 y1j,t−1 · · · ykj,t−p] is the

1× (pk+ 1) vector of covariates, and u′jt ∼ Nk(0,Ψ) is the k× 1 vector of across-object

errors. Let Ψ = (Λ0Λ
′
0)
−1 where Λ0 is a full-rank triangular matrix, which is called the

across-object coefficient matrix, Bj = Λ−10 Λj, and u′j,t = Λ−10 e′j,t where e′j,t ∼ Nk(0, Ik).

The structural form of across-column SVAR system in (7) can then be written as

Λ0y
′
j,t = Λjx

′
j,t + e′j,t.

Again, after stacking all data together, we can analyze the SMtAR through the reduced-

form SUR in (5) where we estimate the matrix of regression coefficients B and the two

covariance matrices Σ and Ψ, hence the contemporaneous and across-object coefficient

matrices A0 and Λ0.

If we vectorize Yt and Ut in (5) and stack B and Xt accordingly, we can obtain the

following vectorized SMtAR model

vec(Yt) = (X′t ⊗ Id)vec(B) + vec(Ut), (8)

where vec(Ut) ∼ Ndk(0,Ω) and Ω = Ψ ⊗ Σ. Let Ω = (V0V
′
0)−1 where V0 is a dk ×

dk full-rank triangular matrix. It follows that V0 is the matrix that indicates the

contemporaneous and across-object effects.
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The extension of our proposed SMtAR can cover a wide range of specifications.

Among others, we can allow the regression coefficients to be time varying, and if we

vectorize the SMtAR as that in (8), the vectorized SMtAR can be analogous to the

multi-country VAR model in Canova and Ciccarelli (2009). However, the analysis of

SMtAR with time-varying coefficients is beyond the scope of this paper and will not be

pursued here.

3 Estimation

This section shows the implementation of the SMtAR model where the model parame-

ters are estimated using the Bayesian MCMC method. With the reduced-form SMtAR

in (5), the model likelihood is then given by

L(Y1:T |X1:T ,B,Σ,Ψ) =
T∏
t=1

(2π)−
dk
2 |Σ|−

k
2 |Ψ|−

d
2 exp

{
−1

2
tr
[
Ψ−1(Yt −BXt)

′Σ−1(Yt −BXt)
]}

.

(9)

Applying the independent conjugate priors to the tractable likelihood in (9), we can

draw the model parameters using Gibbs sampler.

3.1 Drawing matrix of regression coefficients (B)

We apply the conjugate matrix-variate normal prior for the matrix of regression co-

efficients B ∼ MNd,dq+k(B0,C0,S0) where q = (p1 + · · · + pk), B0, C0, and S0 are

hyperparameter matrices. Hence, the posterior density for B is given by

f(B|B0,C0,S0,Y1:T ,X1:T ,Σ,Ψ) ∝ exp

{
−1

2
tr
[
S−10 (B−B0)

′C−10 (B−B0)
]}

× exp

{
−1

2

T∑
t=1

tr
[
Ψ−1(Yt −BXt)

′Σ−1(Yt −BXt)
]}

.

(10)
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To facilitate the draw of B from its posterior density, we vectorize all matrices in (10).

The vectorized version of the posterior density is given by

f(vec(B)|·) ∝ exp

{
−1

2
vec(B−B0)

′(S0 ⊗C0)
−1vec(B−B0)

}
× exp

{
−1

2

T∑
t=1

vec(Yt −BXt)
′(Ψ⊗Σ)−1vec(Yt −BXt)

}
.

Let Z0 = S0 ⊗C0, Ω = Ψ⊗Σ, and Wt = X′t ⊗ Id. It follows that

f(vec(B)|·) ∝ exp

{
−1

2

[
vec(B)′(Z−10 +

T∑
t=1

W′
tΩ
−1Wt)vec(B)

−2vec(B)′(Z−10 vec(B0) +
T∑
t=1

W′
tΩ
−1vec(Yt))

]}

∝ exp

{
−1

2
(vec(B)− vec(B))′B−11 (vec(B)− vec(B))

}
∝ Nd(dq+k)(vec(B),B1)

where vec(B) = B1(Z
−1
0 vec(B0)+

T∑
t=1

W′
tΩ
−1vec(Yt)) and B1 = (Z−10 +

T∑
t=1

W′
tΩ
−1Wt)

−1.

If the matrix B is large, we can divide it into sub-blocks and sample them accordingly.

One prominent prior that has been popularly applied to analyze the VAR models

is the Minnesota prior; see Litterman (1980) and Doan et al. (1984), among others, for

more details on the Minnesota prior. However in this paper, we find from the simulation

study in Section 4 that the conjugate multivariate normal prior is sufficient to produce

good estimation results for the SMtAR models.

3.2 Drawing across-row covariance matrix (Σ)

With the conjugate inverse-wishart prior for Σ ∼ IWd(w0,Q0) where w0 and Q0 are,

respectively, hyperparameter and hyperparameter matrix, we can obtain the following
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posterior density

f(Σ|Q0, w0,Y1:T ,X1:T ,B,Ψ) ∝ |Q0|
w0
2 |Σ|

−(w0+d+1)
2 exp

{
−1

2
tr(Q0Σ

−1)

}
×|Σ|

−(Tk)
2 exp

{
−1

2

T∑
t=1

tr
[
Ψ−1(Yt −BXt)

′Σ−1(Yt −BXt)
]}

∝ |Σ|
−(Tk+w0+d+1)

2

× exp

{
−1

2
tr

[(
Q0 +

T∑
t=1

(Yt −BXt)Ψ
−1(Yt −BXt)

′

)
Σ−1

]}

∝ IWd(Tk + w0, [Q0 +
T∑
t=1

(Yt −BXt)Ψ
−1(Yt −BXt)

′]).

(11)

3.3 Drawing across-column covariance matrix (Ψ)

Similar to the across-row covariance matrix, we can apply the conjugate inverse-wishart

prior for Ψ ∼ IWk(g0,G0) where g0 and G0 are, respectively, hyperparameter and

hyperparameter matrix and obtain the following posterior density

f(Ψ|G0, g0,Y1:T ,X1:T ,B,Σ) ∝ |G0|
g0
2 |Ψ|

−(g0+k+1)
2 exp

{
−1

2
tr(G0Ψ

−1)

}
×|Ψ|

−(Td)
2 exp

{
−1

2

T∑
t=1

tr
[
Ψ−1(Yt −BXt)

′Σ−1(Yt −BXt)
]}

∝ |Ψ|
−(Td+g0+k+1)

2

× exp

{
−1

2
tr

[(
G0 +

T∑
t=1

(Yt −BXt)
′Σ−1(Yt −BXt)

)
Ψ−1

]}

∝ IWk(Td+ g0, [G0 +
T∑
t=1

(Yt −BXt)
′Σ−1(Yt −BXt)]).

(12)

After obtaining Σ and Ψ, it becomes straightforward to compute the matrices

A0,Λ0,Ω, and V0.
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4 Simulation Study

In this section, we illustrate the implementation of SMtAR models using simulated

data through several examples. Let d× k SMtAR(p) denote the SMtAR model with d

rows and k columns of dependent variables Yt where each having the same lag order

p and let d× k SMtAR(p) denote the d-row and k-column SMtAR model with each k

VAR system having different lag orders p = [p1 · · · pk]. The examples below are 2 × 2

SMtAR(1), 2× 2 SMtAR(2), 3× 4 SMtAR(1), 3× 4 SMtAR(3), and 3× 4 SMtAR(p)

where p = [1 2 3 1]. Note that in each example, given the true parameter values on

the covariance matrices, the random errors are first generated from the matrix-variate

normal distribution. Then, given the regression coefficients the data with 700 time

observations are generated where the first 200 observations are discarded to ensure

the stability and reliability of the series. As a result, we obtain the T = 500 time

observations for the analysis. See more details on the true parameter values of some

selected models in Appendix A.

In the estimation, we use the ordinary least squares estimates as the starting value

for the MCMC algorithm. (We also tried the different starting value, e.g., zero-valued

parameters but found no effects on the results and performance.) We monitor the

convergence draws by examining the trace plots. Based on the construction of the

matrix-variate normal distribution, the parameter draws of two covariance matrices

(Σ and Ψ) can be highly correlated and result in the computational inefficiency. We

carefully determine the inefficiency of the parameter draws through the simulation

inefficiency factor (SIF); see Chib (2008) for more details on the SIF.

To obtain the low SIFs, we have to vary the thin size and the number of iterations

in different SMtAR model specifications. For example in 2 × 2 SMtAR (the lowest

dimension for SMtAR model) where the posterior draws of two covariance matrices are

highly correlated, to get the low SIFs (i.e., around 2) we have to keep every 100th draw

or the thin size is 100. While for 3× 4 SMtAR, the thin size of 10 is sufficient to return
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the low SIF values for the covariance parameters.

In order to assess the performance of our proposed models and method, we com-

pare the MCMC results to those from least squares and ML estimation. The least

squares method we use is the FGLS where the implementation is made on the vec-

torized model in (8); see Wooldridge (2001, Section 7.5), among others, for more de-

tails on the FGLS. However, by using the FGLS we cannot recover the unknown Σ

and Ψ matrices from the Ω as the relation from Ω to Σ and Ψ is one to many.

Hence for the sake of comparison, we also draw Ω using the MCMC where we apply

the conjugate inverse wishart prior Ω ∼ IWdk(r0,R0), where r0 and R0 are hyper-

parameter and hyperparameter matrix, that results in the inverse wishart posterior

Ω|· ∼ IWdk(T + r0, [R0 + vec(Yt −BXt)vec(Yt −BXt)
′]).

For the ML method, since our SMtAR is also a generalized regression model repre-

sented in the SUR form, as indicated in Greene (2003, pp.347-349) the ML estimator

of regression coefficients matrix B is equivalent to the FGLS estimator. Hence for con-

venience, we use the B̂ obtained from FGLS as the ML estimates. Then, we apply the

ML algorithm by Dutilleul (1999) to obtain the estimates of Σ and Ψ. The estimation

results obtained from the three methods are judged through the deviation from the

true parameter value using the mean absolute deviation (MAD) and the mean absolute

percentage error (MAPE).

<Tables 1-2 about here>

Tables 1-2 summarizes the estimation results from the five SMtAR models in favor of

the MCMC method. (See Appendix Tables A1-A3 for more detailed results from some

models.) Note that the average standard errors (S.E.) and MAD are not available in

some cases because the Σ̂, Ψ̂, and the S.E. of Ω̂ are not estimated under the FGLS

while the Ω̂ is not estimated under the MLE.

Among the three methods, the MCMC returns the lowest MADs and MAPEs in all

models and parameters. The average S.E. from MCMC are lower in most models and
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parameters except for B̂ in 3 × 4 SMtAR(1) and 3 × 4 SMtAR(p) where the FGLS

produces the lower average S.E. It is also worth noting that the MCMC provides the

reasonably low SIF values. With these favourable simulation results from the MCMC,

we then proceed to apply our proposed models and method to a real data example in

the next section.

5 Empirical Study

This section illustrates the application of our model and method to macroeconomic

and financial data. The data contain five quarterly series including change in interest

rate, inflation rate, change in unemployment rate, real GDP growth rate, and change

in share prices from the group of seven leading economies (G-7) including US, UK,

Canada, France, Germany, Italy, and Japan that result in a 5× 7 SMtAR model. (We

select the G-7 in the study as the assumptions on same across-series covariance and

same across-countries covariance can be attainable.) The structural analysis of this

model helps illustrate and summarize how the economic and financial series affect each

other and how the shocks transmit through the seven countries. The data from the

third quarter of 1991 to the second quarter of 2013 leave us with 88 time observations

for the analysis.

To determine the number of lags, we employ the likelihood ratio test (provided in

MATLAB) for each of the seven VAR systems. The appropriate numbers of lags for

the 5× 7 SMtAR model are p = [3 4 2 4 1 4 2] for the G-7, respectively. From a single

run of 6,000 MCMC iterations including 1,000 burn-ins and keeping every fifth draw,

we obtain 1,000 posterior samples for inference. For conciseness, we report only the

estimation results from two covariance matrices.

<Tables 3 and 4 about here>

Tables 3 and 4 show the estimation results for the two covariance matrices and

their structural-effect matrix that summarize the dependence structures among G-7.
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The posterior means and standard errors from the contemporaneous or across-series

coefficient matrix Â0 in Table 3 reveal that only effect of inflation rate on change in

share prices is negative and significantly different from zero. This is not surprising as it

has always been observed and commonly known that higher inflation drives down the

purchasing power and hence lowers the share prices.

It is worth noting here that, though statistically insignificant, most of parameters

from Â0 have the expected sign. There are only two parameters that their sign are not

as expected; these are (1) the relationship between chage in real GDP and change in

unemployment rate and (2) the relationship between change in real GDP and change

in share prices. The estimated coefficient for change in real GDP and change in un-

employment rate seems contradict to the Okun’s law, which states that the increase in

unemployment rate can lower the real GDP growth. The negative relationship between

the change in share prices and the real GDP growth might be caused by the time hori-

zon, as the relationship between the change in share prices and the real GDP growth

might be averaged out in the longer run (three months in our case). However, the

firm conclusions cannot be reached as these variables are statistically insignificant. It

might also be interesting to see the relationships among these variables using data from

shorter time horizons, e.g., monthly or weekly series where we leave them for future

study.

The across-country structural coefficients from Λ̂0 in Table 4 indicate the strong

influence of shock transmission among G-7 (except the shocks from US, UK, and Canada

to Italy, and from UK, Canada, and France to Japan). This result reaffirms the strong

economic ties among them as the leading economies.

6 Concluding Remarks

In this paper, we propose a new approach to analyze multiple VAR models that result

in a newly constructed MtAR. The MtAR construction is based on a matrix-variate
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normal distribution with two covariance matrices. The MtAR is a generalization of VAR

models where the two covariance matrices allow the extension of MtAR to a structural

MtAR analysis. The proposed MtAR can also incorporate different lag orders across

VAR systems that provide more flexibility to the model. The estimation results from a

simulation study and an empirical study on multicountry macroeconomic system show

favorable performance of our proposed models and method. The extension of MtAR

can cover a wide range of specifications, e.g., time-varying parameters.
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TABLE 1
Estimation Results from 2× 2 SMtAR Models

MCMC FGLS MLE
Parameter MAD MAPE∗ Avg. S.E. Avg. SIF MAD∗∗ MAPE∗ Avg. S.E.∗∗ MAD∗∗ MAPE∗

2× 2 SMtAR(1)
B̂ 0.0437 10.88 0.0391 2.23 0.0460 11.41 0.0393 0.0460 11.41
Σ̂ 0.0441 8.98 0.2127 2.33 n.a. n.a. n.a. 0.0944 18.04
Ψ̂ 0.1187 14.83 0.3765 2.30 n.a. n.a. n.a. 0.1456 18.22
Ω̂ 0.0160 4.03 0.0351 2.41 0.0226 4.99 n.a. n.a. n.a.

2× 2 SMtAR(3)
B̂ 0.0480 n.a. 0.0460 2.41 0.0495 n.a. 0.0463 0.0495 n.a.
Σ̂ 0.0198 3.62 0.2153 2.40 n.a. n.a. n.a. 0.0605 10.87
Ψ̂ 0.0528 6.83 0.3273 2.44 n.a. n.a. n.a. 0.1454 18.42
Ω̂ 0.0336 8.66 0.0383 2.10 0.0587 14.36 n.a. n.a. n.a.

Notes: MCMC iterations = 31,000 with 1,000 burn-ins and thin = 100
n.a. = not available
∗Unavailable MAPEs for B̂ due to some zero-valued true parameters
∗∗ Σ̂, Ψ̂, and the S.E. of Ω̂ are not estimated under the FGLS.
∗∗ Ω̂ is not estimated under the MLE.

TABLE 2
Estimation Results from 3× 4 SMtAR Models

MCMC FGLS MLE
Parameter MAD MAPE∗ Avg. S.E. Avg. SIF MAD MAPE∗ Avg. S.E. MAD MAPE∗

3× 4 SMtAR(1)
B̂ 0.0615 n.a. 0.0743 2.31 0.0669 n.a. 0.0742 0.0669 n.a.
Σ̂ 0.0182 20.22 0.0103 2.38 n.a. n.a. n.a. 0.0476 23.97
Ψ̂ 0.0413 11.05 0.0264 2.28 n.a. n.a. n.a. 0.1319 34.95
Ω̂ 0.0072 36.90 0.0104 2.35 0.0106 43.43 n.a. n.a. n.a.

3× 4 SMtAR(3)
B̂ 0.1037 n.a. 0.1081 2.36 0.1078 n.a. 0.1161 0.1078 n.a.
Σ̂ 0.0183 16.76 0.0099 2.35 n.a. n.a. n.a. 0.0487 28.02
Ψ̂ 0.0395 12.99 0.0256 2.30 n.a. n.a. n.a. 0.1275 28.91
Ω̂ 0.0070 36.24 0.0107 2.48 0.0206 52.50 n.a. n.a. n.a.

3× 4 SMtAR(p)
B̂ 0.0471 n.a. 0.0895 2.26 0.0480 n.a. 0.0843 0.0480 n.a.
Σ̂ 0.0249 14.75 0.0099 2.41 n.a. n.a. n.a. 0.0478 22.85
Ψ̂ 0.0318 13.26 0.0269 2.14 n.a. n.a. n.a. 0.1374 41.40
Ω̂ 0.0092 45.59 0.0104 2.31 0.0092 47.66 n.a. n.a. n.a.

Notes: MCMC iterations = 26,000 with 1,000 burn-ins and thin = 50
n.a. = not available
∗Unavailable MAPEs for B̂ due to some zero-valued true parameters
∗∗ Σ̂, Ψ̂, and the S.E. of Ω̂ are not estimated under the FGLS.
∗∗ Ω̂ is not estimated under the MLE.
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TABLE 3
Posterior Means and Standard Errors for Σ̂ and Â0

Σ̂ % 4 interest inflation % 4 unemployment % 4 real GDP % 4 share
% 4 interest 20.442* 0.051 -0.648 0.104 -0.259

(2.301) (0.072) (0.483) (0.105) (0.951)
inflation 0.051 0.101* 0.022 -0.002 0.120*

(0.072) (0.009) (0.035) (0.007) (0.062)
% 4 unemployment -0.648 0.022 3.995* -0.086 0.020

(0.483) (0.035) (0.450) (0.047) (0.423)
% 4 real GDP 0.104 -0.002 -0.086 0.185* 0.084

(0.105) (0.007) (0.047) (0.018) (0.088)
% 4 share -0.259 0.120* 0.020 0.084 14.418*

(0.951) (0.062) (0.423) (0.088) (1.597)
Â0 % 4 interest inflation % 4 unemployment % 4 real GDP % 4 share

% 4 interest 0.224*
(0.013)

inflation -0.128 3.181*
(0.157) (0.144)

% 4 unemployment 0.035 -0.017 0.507*
(0.027) (0.028) (0.028)

% 4 real GDP -0.113 0.031 0.236 2.339*
(0.128) (0.124) (0.127) (0.115)

% 4 share 0.006 -0.027* -0.002 -0.014 0.265*
(0.015) (0.013) (0.015) (0.014) (0.014)

Notes: Number in parenthesis is standard error.
* denotes statistical significance at 5%.
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TABLE 4
Posterior Means and Standard Errors for Ψ̂ and Λ̂0

Ψ̂ US UK Canada France Germany Italy Japan
US 2.909* 1.533* 1.627* 1.292* 1.590* 1.022* 1.688*

(0.327) (0.217) (0.223) (0.197) (0.229) (0.207) (0.321)
UK 1.533* 2.437* 1.167* 1.405* 1.438* 0.971* 1.119*

(0.217) (0.266) (0.182) (0.194) (0.209) (0.194) (0.278)
Canada 1.627* 1.167* 2.546* 1.217* 1.423* 1.046* 1.328*

(0.223) (0.182) (0.270) (0.183) (0.209) (0.199) (0.278)
France 1.292* 1.405* 1.217* 2.350* 1.773* 1.590* 1.373*

(0.197) (0.194) (0.183) (0.259) (0.235) (0.229) (0.286)
Germany 1.590* 1.438* 1.423* 1.773* 3.078* 1.568* 1.937*

(0.229) (0.209) (0.209) (0.235) (0.334) (0.238) (0.336)
Italy 1.022* 0.971* 1.046* 1.590* 1.568* 3.156* 1.539*

(0.207) (0.194) (0.199) (0.229) (0.238) (0.358) (0.311)
Japan 1.688* 1.119* 1.328* 1.373* 1.937* 1.539* 7.969*

(0.321) (0.278) (0.278) (0.286) (0.336) (0.311) (0.922)
Λ̂0 US UK Canada France Germany Italy Japan
US 0.844*

(0.046)
UK -0.278* 0.843*

(0.055) (0.047)
Canada -0.309* -0.157* 0.765*

(0.051) (0.047) (0.039)
France -0.023 -0.337* -0.203* 0.952*

(0.065) (0.067) (0.059) (0.054)
Germany -0.121* -0.141* -0.194* -0.400* 0.694*

(0.050) (0.054) (0.046) (0.050) (0.036)
Italy 0.014 0.036 -0.036 -0.275* -0.290* 0.595*

(0.044) (0.046) (0.045) (0.046) (0.039) (0.035)
Japan -0.058* -0.007 -0.038 -0.014 -0.113* -0.115* 0.356*

(0.023) (0.023) (0.022) (0.024) (0.023) (0.022) (0.020)
Notes: Number in parenthesis is standard error.

* denotes statistical significance at 5%.
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A Selected Results from Some SMtAR Models

TABLE A1
Estimated Regression Coefficients (B̂)

2× 2 SMtAR(1) MCMC FGLS
Parameter T.V. Mean S.E. Mean S.E.
c1

c11 0.5 0.39 0.06 0.38 0.06
c12 -0.7 -0.78 0.04 -0.79 0.04
A1

1

a111,t−1 0.5 0.51 0.03 0.51 0.03
a121,t−1 0.4 0.42 0.02 0.43 0.02
a112,t−1 0.1 0.09 0.03 0.09 0.03
a122,t−1 0.5 0.49 0.02 0.48 0.02
c2

c21 -0.9 -0.80 0.08 -0.80 0.08
c22 1 1.08 0.05 1.09 0.06
A2

1

a211,t−1 0.1 0.13 0.03 0.13 0.03
a221,t−1 0.2 0.24 0.02 0.24 0.03
a212,t−1 0.3 0.31 0.04 0.31 0.04
a222,t−1 0.3 0.29 0.03 0.29 0.03
3× 4 SMtAR(1) MCMC FGLS
Parameter T.V. Mean S.E. Mean S.E.
c1

c11 0.5 0.48 0.02 0.49 0.01
c12 -0.7 -0.66 0.07 -0.67 0.07
c13 0.1 -0.10 0.14 -0.12 0.14
A1

1

a111,t−1 0.5 0.53 0.02 0.52 0.01
a121,t−1 0.4 0.34 0.07 0.34 0.07
a131,t−1 0.25 0.48 0.14 0.51 0.14
a112,t−1 0.1 0.11 0.01 0.11 0.01
a122,t−1 0.2 0.15 0.03 0.15 0.03
a132,t−1 0.25 0.34 0.06 0.33 0.06
a113,t−1 0.05 0.05 0.00 0.05 0.00
a123,t−1 0.1 0.10 0.02 0.10 0.01
a133,t−1 0 -0.03 0.03 -0.04 0.03
c2

c21 -0.9 -0.91 0.01 -0.91 0.01
c22 1 1.01 0.04 1.02 0.04
c23 0.6 0.54 0.08 0.55 0.08
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TABLE A1
(Continued)

3× 4 SMtAR(1) MCMC FGLS
Parameter T.V. Mean S.E. Mean S.E.
A2

1

a211,t−1 0.1 0.11 0.01 0.11 0.01
a221,t−1 0.2 0.15 0.03 0.15 0.03
a231,t−1 0.25 0.28 0.06 0.29 0.06
a212,t−1 0.3 0.31 0.01 0.31 0.01
a222,t−1 0.3 0.28 0.03 0.27 0.03
a232,t−1 0.2 0.24 0.05 0.24 0.05
a213,t−1 0.2 0.20 0.00 0.20 0.00
a223,t−1 0 0.00 0.01 0.00 0.01
a233,t−1 0.1 0.09 0.03 0.09 0.03
c3

c31 -0.5 -0.51 0.11 -0.53 0.07
c32 0.6 0.34 0.37 0.33 0.38
c33 0.7 0.96 0.62 0.98 0.72
A3

1

a311,t−1 0.9 0.90 0.02 0.89 0.01
a321,t−1 0.4 0.37 0.06 0.37 0.06
a331,t−1 0.6 0.65 0.09 0.66 0.11
a312,t−1 0.05 0.05 0.01 0.05 0.01
a322,t−1 0.3 0.28 0.03 0.27 0.03
a332,t−1 0.2 0.15 0.06 0.15 0.06
a313,t−1 0 0.00 0.00 0.00 0.00
a323,t−1 0.1 0.10 0.02 0.10 0.02
a333,t−1 0.05 0.06 0.03 0.06 0.03
c4

c41 1 1.00 0.07 0.93 0.05
c42 0.2 0.56 0.25 0.58 0.25
c43 -0.1 -0.44 0.47 -0.43 0.47
A4

1

a411,t−1 0.6 0.61 0.02 0.62 0.01
a421,t−1 0.3 0.20 0.07 0.19 0.07
a431,t−1 0.25 0.32 0.13 0.32 0.13
a412,t−1 0.2 0.20 0.01 0.20 0.01
a422,t−1 0.1 0.09 0.04 0.09 0.04
a432,t−1 0.25 0.30 0.07 0.30 0.07
a413,t−1 0.1 0.10 0.00 0.10 0.00
a423,t−1 0 0.01 0.02 0.01 0.02
a433,t−1 0.25 0.25 0.03 0.25 0.04
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TABLE A1
(Continued)

3× 4 SMtAR(p) MCMC FGLS
Parameter T.V. Mean S.E. Mean S.E.
c1

c11 0.5 0.48 0.02 0.47 0.02
c12 -0.7 -0.63 0.08 -0.63 0.08
c13 0.1 0.21 0.16 0.20 0.15
A1

1

a111,t−1 0.5 0.52 0.02 0.53 0.02
a121,t−1 0.4 0.32 0.08 0.32 0.07
a131,t−1 0.25 0.09 0.15 0.11 0.15
a112,t−1 0.1 0.10 0.01 0.10 0.01
a122,t−1 0.2 0.21 0.03 0.21 0.03
a132,t−1 0.25 0.25 0.06 0.26 0.06
a113,t−1 0.05 0.05 0.00 0.05 0.00
a123,t−1 0.1 0.11 0.02 0.10 0.02
a133,t−1 0 -0.05 0.03 -0.06 0.03
c2

c21 -0.9 -0.90 0.03 -0.90 0.02
c22 1 1.08 0.08 1.08 0.08
c23 0.6 0.65 0.16 0.64 0.16
A2

1

a211,t−1 0.1 0.11 0.04 0.12 0.02
a221,t−1 0.2 0.24 0.09 0.24 0.09
a231,t−1 0.25 0.09 0.18 0.09 0.18
a212,t−1 0.3 0.30 0.01 0.30 0.01
a222,t−1 0.3 0.33 0.03 0.34 0.03
a232,t−1 0.2 0.20 0.05 0.20 0.05
a213,t−1 0.2 0.20 0.00 0.20 0.00
a223,t−1 0 -0.01 0.02 -0.02 0.01
a233,t−1 0.1 0.05 0.03 0.04 0.03
A2

2

a211,t−2 0.05 0.04 0.02 0.04 0.01
a221,t−2 0.1 0.08 0.04 0.07 0.04
a231,t−2 0.05 0.15 0.07 0.15 0.07
a212,t−2 0.1 0.10 0.02 0.10 0.01
a222,t−2 0.2 0.16 0.03 0.16 0.03
a232,t−2 0.1 0.12 0.07 0.13 0.07
a213,t−2 0.05 0.05 0.01 0.05 0.00
a223,t−2 0.1 0.09 0.02 0.09 0.02
a233,t−2 0.2 0.22 0.03 0.22 0.03
c3

c31 -0.5 -0.45 0.17 -0.51 0.10
c32 0.6 0.49 0.54 0.40 0.50
c33 0.7 0.08 1.00 0.00 0.99
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TABLE A1
(Continued)

3× 4 SMtAR(p) MCMC FGLS
Parameter T.V. Mean S.E. Mean S.E.
A3

1

a311,t−1 0.9 0.86 0.05 0.89 0.03
a321,t−1 0.4 0.37 0.17 0.38 0.16
a331,t−1 0.6 0.47 0.31 0.48 0.31
a312,t−1 0.05 0.05 0.01 0.05 0.01
a322,t−1 0.3 0.31 0.04 0.31 0.04
a332,t−1 0.2 0.25 0.08 0.25 0.07
a313,t−1 0 0.00 0.01 0.00 0.00
a323,t−1 0.1 0.09 0.02 0.09 0.02
a333,t−1 0.05 0.04 0.03 0.04 0.03
A3

2

a311,t−2 0.01 0.03 0.07 -0.02 0.04
a321,t−2 0.05 0.16 0.22 0.14 0.21
a331,t−2 0 -0.09 0.41 -0.10 0.41
a312,t−2 0 0.01 0.01 0.00 0.01
a322,t−2 0.05 0.01 0.04 0.01 0.04
a332,t−2 0.1 0.03 0.07 0.03 0.07
a313,t−2 0 0.00 0.00 -0.01 0.00
a323,t−2 0.05 0.07 0.02 0.07 0.02
a333,t−2 0.01 0.00 0.03 0.00 0.03
A3

3

a311,t−3 0 0.03 0.05 0.04 0.03
a321,t−3 0 -0.10 0.16 -0.09 0.15
a331,t−3 0 0.16 0.31 0.16 0.29
a312,t−3 0 0.00 0.01 0.00 0.01
a322,t−3 0 0.02 0.03 0.02 0.03
a332,t−3 0.01 0.03 0.06 0.03 0.06
a313,t−3 0 0.00 0.00 0.00 0.00
a323,t−3 0 0.01 0.02 0.00 0.01
a333,t−3 0 0.01 0.03 0.00 0.03
c4

c41 1 0.99 0.06 0.98 0.04
c42 0.2 0.19 0.21 0.20 0.22
c43 -0.1 -0.42 0.43 -0.40 0.44
A4

1

a411,t−1 0.6 0.61 0.02 0.61 0.01
a421,t−1 0.3 0.29 0.06 0.28 0.06
a431,t−1 0.25 0.32 0.12 0.32 0.12
a412,t−1 0.2 0.20 0.01 0.20 0.01
a422,t−1 0.1 0.12 0.04 0.12 0.03
a432,t−1 0.25 0.33 0.07 0.33 0.07
a413,t−1 0.1 0.10 0.00 0.10 0.00
a423,t−1 0 0.00 0.02 0.00 0.02
a433,t−1 0.25 0.23 0.03 0.23 0.04
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TABLE A2
Estimated Across-row Covariance Coefficients (Σ̂)

2× 2 SMtAR(1) MCMC MLE
Parameter T.V. Mean S.E. Mean
σ11 1 0.9266 0.3866 0.8362
σ21 0.3536 0.3057 0.1293 0.2751
σ12 0.3536 0.3057 0.1293 0.2751
σ22 0.5 0.4927 0.2055 0.4432
3× 4 SMtAR(1) MCMC MLE
Parameter T.V. Mean S.E. Mean
σ11 0.01 0.0159 0.0007 0.0075
σ21 -0.025 -0.0228 0.0018 -0.0182
σ31 0.01 0.0131 0.0027 0.0113
σ12 -0.025 -0.0228 0.0018 -0.0182
σ22 0.25 0.2328 0.0119 0.1840
σ32 0.15 0.1292 0.0124 0.1061
σ13 0.01 0.0131 0.0027 0.0113
σ23 0.15 0.1292 0.0124 0.1061
σ33 1 0.9119 0.0460 0.7441
3× 4 SMtAR(p) MCMC MLE
Parameter T.V. Mean S.E. Mean
σ11 0.01 0.0157 0.0007 0.0078
σ21 -0.025 -0.0230 0.0017 -0.0199
σ31 0.01 0.0100 0.0027 0.0083
σ12 -0.025 -0.0230 0.0017 -0.0199
σ22 0.25 0.2312 0.0120 0.1904
σ32 0.15 0.1216 0.0116 0.1059
σ13 0.01 0.0100 0.0027 0.0083
σ23 0.15 0.1216 0.0116 0.1059
σ33 1 0.8609 0.0441 0.7334
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TABLE A3
Estimated Across-column Covariance Coefficients (Ψ̂)

2× 2 SMtAR(1) MCMC MLE
Parameter T.V. Mean S.E. Mean
ψ11 0.7 0.8014 0.3277 0.8271
ψ21 -0.753 -0.8672 0.3550 -0.8929
ψ12 -0.753 -0.8672 0.3550 -0.8929
ψ22 1 1.1449 0.4685 1.1755
3× 4 SMtAR(1) MCMC MLE
Parameter T.V. Mean S.E. Mean
ψ11 1 0.9103 0.0491 1.3315
ψ21 0.6364 0.5570 0.0317 0.8511
ψ31 0.2324 0.1890 0.0211 0.2916
ψ41 0.0949 0.0864 0.0236 0.1398
ψ12 0.6364 0.5570 0.0317 0.8511
ψ22 0.5 0.4757 0.0249 0.6728
ψ32 0.2739 0.2349 0.0178 0.3552
ψ42 0.1342 0.1237 0.0181 0.1932
ψ13 0.2324 0.1890 0.0211 0.2916
ψ23 0.2739 0.2349 0.0178 0.3552
ψ33 0.6 0.5835 0.0323 0.8202
ψ43 -0.2939 -0.2563 0.0232 -0.3865
ψ14 0.0949 0.0864 0.0236 0.1398
ψ24 0.1342 0.1237 0.0181 0.1932
ψ34 -0.2939 -0.2563 0.0232 -0.3865
ψ44 0.9 0.8070 0.0456 1.1824
3× 4 SMtAR(p) MCMC MLE
Parameter T.V. Mean S.E. Mean
ψ11 1 0.9902 0.0540 1.3696
ψ21 0.6364 0.6025 0.0342 0.8669
ψ31 0.2324 0.1910 0.0201 0.2749
ψ41 0.0949 0.1235 0.0245 0.1808
ψ12 0.6364 0.6025 0.0342 0.8669
ψ22 0.5 0.5019 0.0265 0.6759
ψ32 0.2739 0.2244 0.0169 0.3260
ψ42 0.1342 0.1571 0.0189 0.2292
ψ13 0.2324 0.1910 0.0201 0.2749
ψ23 0.2739 0.2244 0.0169 0.3260
ψ33 0.6 0.5397 0.0289 0.7346
ψ43 -0.2939 -0.2618 0.0222 -0.3852
ψ14 0.0949 0.1235 0.0245 0.1808
ψ24 0.1342 0.1571 0.0189 0.2292
ψ34 -0.2939 -0.2618 0.0222 -0.3852
ψ44 0.9 0.8801 0.0480 1.2234
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