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A B S T R A C T

In this article, we introduce a new approach to air pollution prediction using the CEEMDAN time series
decomposition method combined with the two-layered ensemble of predictors created based on the stacking
and bagging techniques. The proposed ensemble approach is outperforming other selected state-of-the-art
models when the bagging ensemble consisting of evolving Spiking Neural Networks (eSNNs) is used in the
second layer of the stacking ensemble. In our experiments, we used the PM10 air pollution and weather dataset
for Warsaw. As the results of the experiments show, the proposed ensemble can achieve the following error
and agreement values over the tested dataset: error RMSE 6.91, MAE 5.14 and MAPE 21%; agreement IA
0.94. In addition, this article provides the computational and space complexity analysis of eSNNs predictors
and offers a new encoding method for spiking neural networks that can be effectively applied for values of
skewed distributions.
1. Introduction

Prediction of air pollution values is an important research task
intensively studied in the research literature. Long-term exposition to
excessive air pollution levels can lead to severe medical conditions,
such as cardiovascular diseases, stroke or asthma (Badyda and Grellier,
2014). According to the European Environment Agency estimations,
excessive air pollution levels contribute to around 50 000 premature
deaths in Poland each year (EEA, 2020). Brunekreef and Holgate (2002)
comprehensively reviewed scientific literature providing strong evi-
dence for the adverse effects of air pollution on human health and
well-being.

Among the most hazardous air pollutants (Brunekreef and Holgate,
2002) enumerates 𝑃𝑀10 and 𝑃𝑀2.5 - fine particles with diameters
<10 μm and <2.5 μm, respectively. Both 𝑃𝑀10 and 𝑃𝑀2.5 pollutants
tend to accumulate in the human respiratory system and can con-
tribute to developing different types of respiratory diseases. The other
commonly monitored and hazardous pollutants are ozone pollution
(O3) or nitrogen oxides (NOx). High levels of O3 and NOx pollution
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contribute to the irritation and emergencies of the human respira-
tory system (Zhang et al., 2019). In a meta-review based on 2091
publications of hazardous effects of ozone pollution from the years
1988–2013, Bell et al. (2014) concluded that the damaging effects of
short-term ozone pollution exposure are most dangerous for the older
populations, significantly rising the mortality rate when compared to
the younger populations. Thus, it is of particular importance to develop
effective methods of air pollution prediction in order to minimize its
harmful impact on human health and life.

1.1. Key scientific issues in air pollution prediction

Despite continuous development of new and more advanced meth-
ods dedicated to air pollution prediction, there are still key scientific
problems that remain. One can enumerate several of them:

• Lack of appropriate sensors. Often times a large number of obser-
vations of air pollution values in the existing datasets is missing
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due to the sensors’ failures or even lack of appropriate sensors in
specific locations. In addition, sensors in even the most developed
air pollution monitoring networks (such as the DEFRA DEFRA,
2018 network) usually provide data for only limited, most com-
mon types of pollutants, such as PM2.5 or O3 pollution. Data for
some other pollutant types, such as e.g. sulfur dioxide (SO2), are
generally much less available.

• Effective integration of data from multiple sources. The datasets
applied for the training of an effective air pollution predictor
often need to integrate data from multiple sources, such as air
pollutant values measured by various sensors and meteorological
data (e.g. registered precipitation or wind parameters). Moreover,
often sensors measuring air pollution values and weather param-
eters are placed in slightly different locations. Thus, it becomes
the question of how to accurately interpolate such attributes in
a specific location for which historical measurements are not
available.

• Collecting a wide spectrum of data. In order to improve effec-
tiveness of air pollution, it becomes increasingly important to
collect datasets consisting not only of time series attributes (such
as observed air pollution or precipitation values), but also of
other data e.g. satellite images representing cloud coverage in a
region of pollution prognosis (Mao et al., 2017). Such diverse and
multimodal data can be difficult to obtain or can be available only
in limited locations.

• Effective training of a prediction model given limited amount of
data. Often only limited sources can provide data (such as only a
few air pollution sensors). If that is the case we cannot improve
effectiveness of air pollution prediction simply by training model
using more data. Thus, we must then search for a model that
provides the best prediction results given the limited amount of
data that we were able to acquire.

.2. Main limitations of existing approaches and possible solutions

Several recent studies focused on analyzing key limitations of the
xisting approaches to air pollution prediction. Masood and Ahmad
2021) enumerates the following key limitations of the most popular
rediction models, such as Support Vector Machine (SVM), Artificial
eural Networks (ANNs) and Deep Neural Networks (DNNs):

• Sensitivity to the selection of input parameters and their impact
on the effectiveness of prediction quality.

• Significant computational and memory complexity of some type
of prediction models, especially DNNs.

• Susceptibility to underperform in prediction of air pollution due
to suboptimal selection of learning parameters affecting certain
types of predictors (e.g. ANNs).

One of the possible solutions to the above-mentioned limitations are
achine learning methods that combine model’s training with algo-

ithms (often inspired by nature) that aim to optimize the prediction
uality of a taught model. Examples of such methods proposed in the
iterature are:

• Adnan et al. (2023a) presented prediction models that combine
Convolutional Neural Networks (CNNs) and Long-Short Term
Networks (LSTM) with two optimization methods called Reptile
Search Algorithm (RSA) and weighted mean of vectors (INFO).
The models of Adnan et al. (2023a) were successfully applied
for prediction of water temperature. As it was shown there, the
LSTM-INFO model was highly effective in making predictions,
outperforming other combinations of prediction and optimization
models tested there.
2

• In Adnan et al. (2022a), a heuristic-based Chaotic Red Fox Op-
timization Algorithm (CRFOA) was introduced. The developed
algorithm was applied to search for the optimal parameters of
the activation functions and neuronal weights of the Extreme
Learning Machine network. The authors of Adnan et al. (2022a)
named the model ELM-CRFOA and presented that it is highly
effective in performing prediction tasks such as the estimation of
the shear strength of concrete beams.

• Adnan et al. (2023b) offered a new method that combines op-
timization algorithm called Improved Manta-Ray Foraging Opti-
mization (IMRFO) with Relevance Vector Machine (RVM) model
in order to predict monthly pan evaporation. Similarly to the
results presented in Adnan et al. (2022a, 2023a), the offered
RVM-IMRFO was proven to be highly effective in making pre-
dictions, especially when compared with the models that did
not apply any optimization algorithm (such as the standard Mul-
tilayer Perceptron MLP network). Other innovative approaches
combining heuristic methods with time series single predictors
are: ANFIS-WCAMFO presented in Adnan et al. (2021) or SVM-
FFAPSO (Adnan et al., 2022b).

The other effective prediction approach (adopted by us in this
study) is to apply ensemble models and time series decomposition. For
example, Yang et al. (2023) proposed approach in which the two data
decomposition models (i.e. Variational Mode Decomposition, VMD,
and Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise, CEEMDAN) were linked with two predictors: Deep Belief Net-
work (DBN) and Gradient Boosted Regression Tree (GBRT) in order
to forecast multi-time-step water streamflow. Moreover, the tested pre-
diction models were combined into an ensemble using Bayesian Model
Averaging (BMA) technique. The experiments presented in Yang et al.
(2023) showed that the offered ensemble model gives better prediction
quality than singleton models. A similar BMA ensemble model was
applied to PM2.5 pollution prediction in Zhou et al. (2020).

1.3. Our approach

In order to effectively predict air pollution, in this work we propose
an advanced stacking ensemble model that is characterized as follows:

1. First, decomposition of air pollution time series data using the
CEEMDAN method (Torres et al., 2011) is used. The decomposed
modes of time series are combined with original air pollution
and weather time series in order to obtain training and testing
datasets.

2. Subsequently, the construction of a stacking ensemble that in the
first layer consists of a set of predictors, each of which is taught
using the same training dataset and makes its own air pollution
prediction.

3. The second layer of the stacking ensemble is composed of either
a bagging ensemble of predictors or a single predictor. Such
predictors are taught solely using prediction values obtained
from the first stacking layer. As we presented in the experiments,
the prediction quality tends to outperform other models when
the bagging ensemble of evolving Spiking Neural Networks
(eSNNs) is used.

Previous research showed that eSNN networks could be effectively
used for prediction in various tasks and problems. Examples of the re-
search problems that have already successfully adapted eSNNs include
classification in streaming data (Lobo et al., 2018), air pollution predic-
tion (Maciąg et al., 2019; Maciąg et al., 2020), traffic estimation (Laña
et al., 2019, 2018) and anomaly detection (Maciąg et al., 2021; De-
mertzis et al., 2019). To the distinctive characteristics of eSNNs belong
an evolving repository of output neurons that in the network’s training
process is updated with a new candidate output neuron created for each
new training instance of data. Another distinctive eSNNs feature is the
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method for calculating synapses’ weights between output neurons and
neurons in either internal or input layer using spikes’ ranks obtained for
the input values encoding (Kasabov, 2014). Thus, eSNNs are suitable
for incremental, theoretically, life-long learning.

eSNNs not only adopt spiking neuronal models, synapses’ learning
rules and encoding methods, but also provide mechanisms (such as
an evolving repository of output neurons) that are particularly useful
in various classification and prediction engineering tasks. Such a de-
sign of eSNNs is inspired by the Evolving Connectionist Systems design
paradigm (Kasabov, 1998). The connection weights of each output
neuron that represent a prototype area of the input data, can be
presented as a fuzzy rule, providing explainability, thus departing from
the black box neural network systems (Maciąg et al., 2019).

1.4. Contributions of the article

In this paper, we provide the following primary contributions:

• We propose an advanced air pollution prediction method that
consists of air pollution time series decomposition, stacking and
bagging ensembles of predictors. As we showed, the proposed
method is especially effective when the bagging eSNNs are ap-
plied in the second layer of the stacking ensemble.

• We offer learning and prediction algorithms with the bagging
ensembles of eSNNs. The results of experiments suggest that
bagging eSNNs in some cases perform substantially better than
a single eSNN. In this work, the proposed algorithms are adapted
for air pollution prediction, but they can also be adapted to other
prediction problems.

• To the best of our knowledge, for the first time in the literature we
provide the computational and space complexity analysis of the
learning and prediction algorithms of eSNN networks. We extend
this analysis also to the proposed bagging ensemble model.

• We experimentally compare the results obtained using our pro-
posed bagging ensembles of eSNNs with other seven state-of-the-
art predictors. We use the Warsaw air pollution and weather
datasets for this purpose. The experimental results show that
the proposed approach gives better prediction quality than other
broadly used predictors.

In addition to the above enumerated primary contributions, the
article provides also the following secondary contributions:

• We introduce a new formula for calculating an eSNN’s prediction
value based on weighting output values of output neurons in this
eSNN.

• We develop a categorical data encoding method for an eSNN and
provide a formula that allows us to calculate the tight upper
bound between a vector of synapses’ weights of a candidate
output neuron and vectors of synapses’ weights of output neurons
present in the network’s repository.

• In Appendix, we provide a new method for allocating Gaussian
Receptive Fields (GRFs) values based on a histogram of val-
ues of a given attribute. This method can be particularly useful
in a case of highly skewed values distributions of dataset’s at-
tributes/features. The GRFs allocation method is based on the
encoding method proposed in Maciąg et al. (2022).

This paper is structured as follows. Section 2 summes up the related
work. Section 3 gives a description of the introduced stacking ensemble
model. Section 4 presents learning and prediction principles of eSNNs.
In Section 5, we present the designed bagging eSNNs algorithms. In
Section 6, we provide the computational and space complexity anal-
ysis of the eSNNs learning and prediction algorithms as well as its
bagging ensembles. Section 7, first describes the selected datasets and
then presents the results of the experiments. Section 8 concludes and
discusses the work. Finally, in Appendix we provide our method for
3

allocating GRFs based on a histogram of values of an attribute.
2. Related work

Many types of air pollution models have been recently introduced
in the literature. Sometimes they are dedicated to the prediction of a
specific air pollutant type, such as ozone (O3), particulate matter PM10
and PM2.5 or carbon dioxide (CO2). Neural networks are among the
most widely used types of predictors. The initial attempts to predict
air pollution applied the MLP neural networks. For example, Gardner
and Dorling (1999) and Kukkonen et al. (2003) used this type of
neural network for the prediction of NO2 air pollutants in London and
Helsinki, respectively. A comparison of the prediction effectiveness of
an MLP network with the regression trees and linear regression in pre-
dicting air quality in Christchurch, New Zealand, presented in Gardner
(1999) suggests that MLP predictors perform better than the other two
selected methods. In Maciąg et al. (2020), a prediction model of an
online evolving spiking neural network was adapted to air pollution
forecasting in streaming data. The model offered in Maciąg et al. (2020)
was superior to several other types of predictors, such as the RBF neural
networks and the Elman networks.

Recently, some works studied the effectiveness of using ensembles
of air pollution predictors. In Siwek et al. (2009), an ensemble of vari-
ous types of predictors (such as the RBF neural network, support vector
regression, Elman networks, MLP neural network or Auto-Regressive
with eXogenous input predictor) combined with the wavelet decompo-
sition of input pollution and weather time series data was applied to
forecast PM10 pollutant. The ensemble architecture presented in Siwek
et al. (2009) consisted of the above-mentioned types of predictors, each
providing its own forecasting result. The final ensemble forecast was
calculated as an average of the results each predictor returned. Maciąg
et al. (2019) proposed a clustering-based ensemble model consisting of
eSNNs networks, each of which is taught using a set of air pollution
time series obtained from the clustering of an input training dataset.
The examples of recent applications of ensembles to air pollution
prediction are presented in Van Roode et al. (2019), Zhou et al. (2020)
and Guo et al. (2020).

Other studies investigated the relationship between different types
of pollutants and meteorological factors in the effectiveness of air pol-
lution prediction. For example, Shaharuddin et al. (2008) and Zaharim
et al. (2009) showed that there is a significant correlation between
values of PM10 pollution and low-frequency components of weather
attributes (such as temperature, rainfall or wind speed).

In this work, we experimentally compare the proposed bagging en-
semble of eSNNs with a number of the other state-of-the-art predictors
offered in the literature, namely: SVM (Suthaharan, 2016), MLP neural
network (Gardner and Dorling, 1998), Elastic net, linear regression and
LSTM networks. We also provide the prediction results for the SNN
implementation available in the SNNTorch package (Eshraghian et al.,
2021). A distinctive feature of the SNNTorch implementation is its abil-
ity to combine the SNNs neuronal models (such as the Leaky-Integrate-
and-Fire model) with the learning algorithms of MLP networks (such
as the backpropagation algorithm). The enumerated predictors were
combined with the CEEMDAM decomposition method and the proposed
stacking ensemble.

The review of the current methods of air pollution prediction can
be found in Siwek and Osowski (2016), Kowalski and Warchałowski
(2018), Mao et al. (2017), Zaharim et al. (2009), Feng et al. (2015) and
Bozdağ et al. (2020), while Cabaneros et al. (2019) provides a review of
methods that specifically use neural networks to predict air pollution.

3. The proposed prediction method

In this section, we offer our proposed air pollution prediction
method that combines data decomposition, stacking and bagging en-
sembles. In Fig. 1, we present the architecture of the proposed method.
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Fig. 1. The architecture of the proposed ensemble model.
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.1. Air pollution time series decomposition

Previous research (see, for example, Siwek et al. (2009), Siwek and
sowski (2012)) showed that decomposing air pollution time series

nto several modes and including these modes in a model’s training
ata can significantly improve air pollution prediction quality. Such de-
omposition is particularly useful for air pollution prediction problem
ince training datasets are often composed of only a limited number
f attributes (such as weather attributes only weakly correlated with
ir pollution). Thus, by including attributes highly correlated with air
ollution we can improve prediction quality.

In our approach, for the air pollution time series decomposition we
pplied the CEEMDAN method (Torres et al., 2011). CEEMDAN is a
ethod that is based on another time series decomposition method

alled Ensemble Empirical Mode Decomposition (EEMD) (Wu and
uang, 2009). Unlike EEMD, which adds white noise to the decom-
osed time series before the decomposition is conducted, CEEMDAN
dds white noise to each subsequent component obtained as the result
f decomposition. As the Wu and Huang (2009) showed, CEEMDAN
equires less decomposition steps than EEMD and is significantly more
4

t

computationally efficient. For the preprocessing of the Warsaw air pol-
lution time series, we applied the CEEMDAN implementation available
in the PyEMD Python package (Laszuk, 2023). We presented the details
of the applied CEEMDAN parameters in Section 7.

Let us denote the original, acquired dataset containing air pollution
and weather attributes as 𝐃𝑜. After air pollution time series of 𝐃𝑜 is
ecomposed by CEEMDAN, the obtained modes are inserted into 𝐃𝑜 in
rder to obtain input dataset 𝐃 (𝐃 is split into training 𝐃𝑡𝑟 and testing
𝑡𝑠 parts).1 Dataset 𝐃 consists of dataset instances 𝐷, each of which
ontains a vector of values of attributes 𝐴1,… , 𝐴𝑚 ∈ 𝐀 and a target
alue.

1 Please note that in our approach we decompose air pollution time series
f 𝐃𝑜 using CEEMDAN before splitting it into training and testing parts. In a
eal deployment scenario, one would usually expect to separately decompose
ir pollution of only training dataset 𝐃𝑡𝑟, and subsequently, decompose also
he dataset used for real-time predictions.



Environmental Modelling and Software 170 (2023) 105851P.S. Maciąg et al.
3.2. Stacking ensemble

After air pollution time series is decomposed by the CEEMDAN
method, the stacking ensemble is constructed and used to make air
pollution predictions. In the proposed approach, the stacking ensemble
consists of two layers:

1. The first layer contains a set of different types of predictors, each
of which being taught using the training dataset 𝐃𝑡𝑟 consisting
of historical air pollution, weather and decomposed air pollution
time series as well as target air pollution values. As the result,
the first layer generates a dataset containing air pollution pre-
dictions from each predictor. In the preliminary experiments, we
tested different types of predictors for the first layer and selected
the best results they provide.

2. The second layer of the proposed ensemble contains the set of
bagging eSNNs predictors.2 Such nested bagging ensemble is
taught solely using data obtained from the first layer.

4. Evolving spiking neural networks

As we will present in Section 7, bagging eSNNs are highly effective
predictors. Thus, in this section, we first review the most important dif-
ferences between eSNNs and a typical SNNs architecture. Subsequently,
we provide a description of the encoding, training and prediction prin-
ciples of an eSNN. The description provided in this section is essential
to define the bagging eSNNs learning and prediction algorithms given
in the next section.

4.1. Key differences between eSNNs and SNNs

SNNs are a type of neural networks whose learning and classifica-
tion rules are highly inspired by the learning and working principles
of biological neural networks (Ponulak and Kasinski, 2011; Gerstner
et al., 2014; Kugele et al., 2020). In particular, the developed neuronal
models of SNNs (such as the Integrated-and-Fire or Leaky-Integrated-
and-Fire models Gerstner and Kistler, 2002) as well as the learning rules
of SNNs, such as the Spike-Time Dependent Plasticity, are supposed to
closely mimic the behavior of biological neurons. Unfortunately, this
often leads to situations in which for some machine learning tasks,
such as classification or prediction, SNNs can be outperformed by other
types of models whose learning mechanisms are aimed to maximize the
model’s accuracy (Kugele et al., 2020). On the other hand, as presented
by Kugele et al. (2020), SNNs use an event-driven, asynchronous model
of spike emissions, and thus they can be more computationally and
energy efficient than synchronous ANNs.

eSNNs adapt and modify the usually complex architecture of SNNs
in order to make it more effective in performing machine learning
tasks, such as classification, prediction or anomaly detection. While
SNNs were designed to simulate various processes of biological neural
networks, eSNNs were proven to be suitable for solving engineering
tasks that require minimization of an error calculated as the difference
between the results returned by the taught model and the ground-truth
labels of the input dataset.

In Table 1, we provide an overview of key differences between
eSNNs and SNNs.

4.2. Architecture of eSNNs

Herein, we present the adapted architecture of an eSNN network
as well as its learning and prediction principles. In this work, we use
an eSNN network consisting of two layers (input and output). The
architecture of a singleton eSNN is presented in Fig. 2.

2 For comparison purposes we also tested other predictors in this layer.
5

The aim of the input layer of an eSNN network is to encode values
of attributes 𝐀 of each dataset instance 𝐷 into firing order of input
neurons 𝐍𝐈. The firing order of an input neuron 𝑛𝑗 ∈ 𝐍𝐈 is denoted
as 𝑜𝑟𝑑𝑒𝑟𝑛𝑗 . The encoding method that we apply is based on the rank-
order encoding frequently used in spiking neural networks (Ponulak
and Kasinski, 2011). According to rank-order encoding, each input
value (such as an input pollution value) is transformed to a firing order
of a set of input neurons.

The output layer of the network consists of a repository of neurons
𝐍𝐎, each of which is linked to every input neuron in 𝐍𝐈. Each output
neuron of 𝐍𝐎 is assigned an output value that can be returned by the
network in the prediction phase.

4.3. Input data encoding

In eSNN, a dedicated group of input neurons (denoted here as
𝐍𝐈(𝐴)) is used to encode input values of each attribute 𝐴 ∈ 𝐀 of
a dataset 𝐃. We assume that each attribute 𝐴 ∈ 𝐀 contains either
continuous (real) values, ordinal (ordered discrete) values or nominal
(unordered discrete) values. We refer to the sets of these types of
attributes using the following notation: 𝐀(𝑐) - continuous attributes,
𝐀(𝑜) - ordinal attributes, 𝐀(𝑛) - nominal attributes. More importantly,
we assume that the values of each ordinal and nominal attribute of
the acquired dataset 𝐃 are transformed in the preprocessing step into
distinct and consecutive numbers starting with number 1. For example,
weekdays are encoded using consecutive numbers between 1 and 7.

Previous research focused specifically on the encoding of values of
continuous attributes 𝐀(𝑐) into the firing order of eSNN input neurons.
For this purpose, one can consider adaptation of the GRFs encoding
method (Lobo et al., 2020; Maciąg et al., 2021), which calculates firing
times of input neurons, or the encoding technique offered in Maciąg
et al. (2020), which directly calculates the firing order of input neurons
without computing their firing times (the method of Maciąg et al.
(2020) can also be applied to encode ordinal attributes 𝐀(𝑜) after their
transformation into numbers denoting levels of values). Alternatively,
one can consider applying the encoding method offered in Maciąg et al.
(2022) that is particularly useful in the encoding of continuous values
that have non-uniform distributions.

4.3.1. Encoding of continuous and ordinal values
In order to encode values of continuous and ordinal attributes

one can select from different methods proposed in the literature. The
examples of methods that can be effectively used with eSNN networks
are presented in Fig. 3.

After the preliminary experiments and the dataset’s analysis, for
the encoding of values of continuous and ordinal attributes we applied
the method of Maciąg et al. (2020). To the distinctive features of this
method belong: (i) efficient encoding even for a large number of input
neurons, (ii) lack of numerical errors when values are encoded (which
are often present in the case of the other methods such as GRFs) and
(iii) only one control parameter of the method: the number of input
neurons encoding each continuous or ordinal attribute (we denoted this
parameter as 𝑁𝐼𝑠𝑖𝑧𝑒).

After the input neurons of attributes 𝐀(𝑐) ∪ 𝐀(𝑜) are initialized, they
are used to calculate firing order for each dataset instance 𝐷 in either
training or testing datasets: 𝐃𝑡𝑟 or 𝐃𝑡𝑠. Let 𝐷(𝐴) denote the value of an
attribute 𝐴 for a dataset instance 𝐷. According to the method of Maciąg
et al. (2020), for each attribute 𝐴 ∈ 𝐀(𝑐) ∪ 𝐀(𝑜), firing order function
𝑜𝑟𝑑𝑒𝑟𝑛𝑗 of the first firing input neuron in 𝑛𝑗 ∈ 𝐍𝐈(𝐴) is equal to 1 and
the value of the 𝑜𝑟𝑑𝑒𝑟 function is incremented by 1 for each subsequent
firing input neuron in 𝐍𝐈(𝐴). We refer the reader to Maciąg et al. (2020)
for the complete description of the encoding method employed by us
to encode continuous and ordinal attributes.

In Appendix, we provide the extension of the other encoding method
for the continuous and ordinal attributes proposed in Maciąg et al.
(2022) that incorporates the GRFs encoding. The main difference



Environmental Modelling and Software 170 (2023) 105851P.S. Maciąg et al.
Table 1
Key differences between SNNs and eSNNs.

Network property SNNs eSNNs

Architecture of the
network

The network consists of three layers: input, internal and output. Only
internal layer fully mimics neuronal models of biological neurons and
related learning rules (such as STDP). The aim of the input layer is to
encode data, while the output layer contains neurons directly
responsible for classification/prediction. Neurons in the internal layer
can be organized into three dimensional structure mimicking the
structure of human brain.

The architecture does not contain internal layer (only input and
output layers are present). Neurons of the input layer are fully
connected to the neurons of the output layer.

Data encoding
methods

Uses various encoding methods depending on the type of input data
(e.g. GRFs encoding or time-series encoding algorithms, such as TR,
BSA or MV Tu et al. (2017))

Uses either the GRFs method or a method that directly calculates
firing order of input neurons without calculation of their exact
firing times.

Neuronal models Internal layer adapts different types of neuronal models, such as IF or
LIF. The behavior of input neurons is dependent on the used data
encoding method. Output neurons can use simplified IF model and are
assigned decision classes present in the input data.

The input layer consists of sets of input neurons, each set encoding
values of a distinctive attribute of input data (the number of input
neurons is a user-specified parameter 𝑁𝐼𝑠𝑖𝑧𝑒). The output neurons
can use e.g. IF neuronal model.

Applications Medical data analysis, simulation of brain processes. Engineering applications: classification, prediction, anomaly
detection, air pollution prediction.
Fig. 2. Architecture of the singleton eSNN network adapted in this work.
Fig. 3. Selection of encoding method for continuous and ordinal attributes considered
and applied in the preliminary experiments of this study.
6

between the encoding method of Maciąg et al. (2022) and the extension
provided in Appendix lies in the fact that the method of Maciąg et al.
(2022) directly calculates the firing order of input neurons without the
calculation of their exact firing times, while our extension offered in
Appendix allows us to calculate such exact firing times based on the
allocation of GRFs that uses a histogram of values of an input attribute.

The selection of the specific version of the encoding method (either
the method of Maciąg et al. (2020) used in this work, the encoding
method of Maciąg et al. (2022) or the method introduced in Appendix)
should be based on the used SNN architecture. If an SNN network
consists of a reservoir of input neurons connected using e.g. recurrent
synapses whose weights are calculated according to the Spike-Time
Dependent Plasticity (Hebb, 2005; Ponulak and Kasinski, 2011) rules,
then the encoding method of Appendix will be more appropriate.
Otherwise, if the SNN network consists of only two layers and it is
enough to calculate only firing order of neurons rather than their exact
firing times, the method of Maciąg et al. (2022) will be more efficient.

4.3.2. Encoding of nominal values
To encode values of nominal attributes 𝐀(𝑛) into the firing order of

input neurons, we adapted the one-hot encoding method. The number
of input neurons encoding each nominal attribute 𝐴 ∈ 𝐀(𝑛) of a dataset
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𝐃 is equal to the number of distinct values of that attribute in 𝐃.
Specifically, assuming that a nominal attribute 𝐴 consists of 𝐽 distinct
values in 𝐃, a set of input neurons 𝐍𝐈(𝐴) will consist of 𝐽 input neurons.

iven dataset instance 𝐷 ∈ 𝐃 and a value 𝐷[𝐴] of a nominal attribute
∈ 𝐀(𝑛) of 𝐷, only an input neuron 𝑛𝑗 ∈ 𝐍𝐈(𝐴) whose 𝑗 = 𝐷[𝐴] will

ire (that is, the value of 𝑜𝑟𝑑𝑒𝑟𝑛𝑗 will be set to 1, while the 𝑜𝑟𝑑𝑒𝑟𝑛𝑗
alues for the remaining of neurons in 𝑁𝐼 (𝐴𝑛) will be set to 0). For
he sake of consistency, in this article we denote the number of input
eurons encoding each attribute 𝐴 ∈ 𝐀 as |𝐍𝐈(𝐴)| (please note that for
ontinuous and ordinal attributes |𝐍𝐈(𝐴)| is equal to 𝑁𝐼𝑠𝑖𝑧𝑒, while for
ominal attributes |𝐍𝐈(𝐴)| is equal to 𝐽 ).

Algorithm 1 presents the encoding procedure for the values of a
ataset instance 𝐷.

Algorithm 1 InputLayerEncoding(D)
Input: 𝐷 - a dataset instance to be encoded
1: for each 𝐴 ∈ 𝐀(𝑐) ∪ 𝐀(𝑜) do ⊳ For each continuous or ordinal

attribute
2: Calc. 𝑜𝑟𝑑𝑒𝑟𝑛𝑗 of all 𝑛𝑗 ∈ 𝐍𝐈(𝐴) according to the encoding method

proposed in Maciąg et al. (2022)
3: end for
4: for each 𝐴 ∈ 𝐀(𝑛) do ⊳ For each nominal attribute
5: for each 𝑛𝑗 ∈ 𝐍𝐈(𝐴) do
6: if j ≠ D[A] then
7: 𝑛𝑗 ← does not fire
8: 𝑜𝑟𝑑𝑒𝑟𝑛𝑗 ← 0
9: else
0: 𝑛𝑗 ← fires
1: 𝑜𝑟𝑑𝑒𝑟𝑛𝑗 ← 1
2: end if
3: end for
4: end for

4.4. Network’s training

The output layer of eSNN consists of a repository of output neurons
𝐍𝐎, each of which is assigned a real value. In the network’s learning
process, for each dataset instance 𝐷 in the training set of instances
𝐃𝑡𝑟, a new candidate output neuron 𝑛𝑐 is created and used to update
repository 𝐍𝐎. The weights of synapses linking 𝑛𝑐 to each input neuron
𝑛𝑗 ∈ 𝐍𝐈 are stored in a vector 𝐰𝑛𝑐 = [𝑤(𝐴1)

𝑛1 ,𝑛𝑐 ,… , 𝑤(𝐴1)
𝑛
|𝐍𝐈(𝐴1) |

,𝑛𝑐 ,… , 𝑤(𝐴𝑚)
𝑛1 ,𝑛𝑐 ,… ,

(𝐴𝑚)
𝑛
|𝐍𝐈(𝐴𝑚 )

|

,𝑛𝑐 ] and are initialized according to equation: 𝑤(𝐴)
𝑛𝑗𝑛𝑐 = 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟𝑛𝑗 ,

here 𝑚𝑜𝑑 is a modulation factor whose value is specified by the user
nd should be in the range (0, 1). If 𝑛𝑗 does not fire, then the synapse’s
eight 𝑤𝑛𝑗𝑛𝑐 is set to 0. Finally, 𝑛𝑐 is assigned a target value 𝑣𝑛𝑐 of the
ataset instance 𝐷. Additionally, update counter 𝑀𝑛𝑐 of each candidate
utput neuron 𝑛𝑐 is equal to 1.

After the candidate neuron 𝑛𝑐 is created and its synapses’ weights
re initialized, it is either added to the repository of output neurons 𝐍𝐎
r merged with one of the output neurons already existing in 𝐍𝐎. Next,
uclidean distances 𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑖 between the vector of synapses’ weights
𝑛𝑐 and the vectors of synapses’ weights 𝐰𝑛𝑖 of each output neuron
𝑖 ∈ 𝐍𝐎 are calculated. If there exists such an output neuron 𝑛𝑠 for
hich 𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑠 is minimal and below the value 𝑠𝑖𝑚𝑇 𝑟 ⋅ 𝐷𝑖𝑠𝑡, then the

vector 𝐰𝑛𝑠 and counter 𝑀𝑛𝑠 are updated according to Eq. (1) and 𝑛𝑐
s discarded. Otherwise, 𝑛𝑐 is simply inserted into 𝐍𝐎. 𝑠𝑖𝑚𝑇 𝑟 is a user-
iven similarity factor whose value is in the range [0, 1] and 𝐷𝑖𝑠𝑡 is the

tight upper bound on Euclidean distances between a vector of synapses
weights of a candidate 𝑛𝑐 and a vector of synapses weights of any
output neuron in 𝐍𝐎 and is calculated according to our Proposition 1.
Additionally, output value 𝑣𝑛𝑠 is updated according to Eq. (1).

𝐰𝑛𝑠 =
𝐰𝑛𝑠 ⋅𝑀𝑛𝑠 + 𝐰𝑛𝑐 , 𝑣𝑛𝑠 =

𝑣𝑛𝑐 +𝑀𝑛𝑠 ⋅ 𝑣𝑛𝑠 ,𝑀𝑛𝑠 = 𝑀𝑛𝑠 + 1. (1)
7

𝑀𝑛𝑠 + 1 𝑀𝑛𝑠 + 1
roposition 1. The tight upper bound on the Euclidean distances between
ny possible candidate output neuron and any output neuron in 𝐍𝐎 is equal
o:

𝐷𝑖𝑠𝑡 =
[

∑

𝐴∈𝐀(𝑐)∪𝐀(𝑜)

𝑁𝐼𝑠𝑖𝑧𝑒
∑

𝑗=1

(

𝑚𝑜𝑑𝑗 − 𝑚𝑜𝑑𝑁𝐼𝑠𝑖𝑧𝑒−𝑗−1
)2

+ 2 ⋅
∑

𝐴∈𝐀(𝑛)

𝑚𝑜𝑑2
]

1
2

(2)

The internal state of each output neuron 𝑛𝑖 ∈ 𝐍𝐎 is characterized
by the value of a Post-synaptic Potential, 𝑃𝑆𝑃 . The value of 𝑃𝑆𝑃𝑛𝑖 of an
output neuron 𝑛𝑖 given current firing order of input neurons 𝐍𝐈 for the
encoded dataset instance 𝐷 is calculated according to Eq. (3).

𝑃𝑆𝑃𝑛𝑖 =
∑

𝐴∈𝐀

∑

𝑛𝑗∈𝐍𝐈(𝐴)
𝑤(𝐴)

𝑛𝑗𝑛𝑖
⋅ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟𝑛𝑗 . (3)

4.5. Prediction

Given a dataset instance 𝐷 being subject to prediction and the
encoding of attributes’ values of 𝐷 into firing order of input neurons
𝑛𝑗 ∈ 𝐍𝐈, the first step of the prediction is the calculation of 𝑃𝑆𝑃
values of all output neurons in 𝐍𝐎. Some previous research (e.g. Lobo
et al. (2018)) applied a prediction method according to which the
dataset instance is assigned an output value of an output neuron in 𝐍𝐎
whose 𝑃𝑆𝑃 value at first reaches a user-given 𝑃𝑆𝑃 threshold. In order
to increase prediction quality, Maciąg et al. (2020) proposed to first
calculate 𝑃𝑆𝑃 values of all output neurons and, subsequently, assign
to the instance 𝐷 a prediction value of an output neuron in 𝐍𝐎 whose
𝑃𝑆𝑃 is maximal (if two or more neurons have the same maximal 𝑃𝑆𝑃
alues then dataset instance is assigned the average of output values
f these neurons). However, as it was explained above, in the eSNN
earning process, candidate output neurons are occasionally merged
ith output neurons in 𝐍𝐎 (the number of these merges for each output

neurons 𝑛𝑖 ∈ 𝐍𝐎 is equal to update counter 𝑀𝑛𝑖 ). To reflect these
updates of output neurons, we propose to calculate a target value to
be assigned to the dataset instance in the following way. First, a set
of output neurons 𝐍𝐎𝑚𝑎𝑥 whose 𝑃𝑆𝑃 values are maximal is obtained.
Subsequently, the predicted value is calculated according to Eq. (4).

Predicted-Value =

∑

𝑛𝑖∈𝐍𝐎𝑚𝑎𝑥
𝑣𝑛𝑖 ⋅𝑀𝑛𝑖

∑

𝑛𝑖∈𝐍𝐎𝑚𝑎𝑥
𝑀𝑛𝑖

. (4)

Contrary to, for example, Maciąg et al. (2020), Eq. (4) calculates
target value based on weighted average of output values of output
neurons in 𝐍𝐎𝑚𝑎𝑥 rather than based on arithmetic average.

5. eSNNs bagging model

The already developed eSNN learning and prediction methods tend
to cause overfitting of the results and thus decrease the prediction
quality when a predictor is deployed in a real-world application or
a forecasting system. In Fig. 4, we illustrated such a situation for
a singleton eSNN that was applied for a 1-day ahead prediction of
air pollution in Warsaw using the training and testing datasets. A
single eSNN tends to provide superior prediction results on a training
dataset (for which the most predicted values are nearly equal to the
observed values) but much more inferior on a testing dataset. This fact
can be explained by a specific prediction method applied in eSNNs:
each candidate output neuron (for each training instance a candidate
output neuron is created) is assigned an output value (directly used
for prediction) being the same as the target value of a corresponding
training instance in 𝐃𝑡𝑟. Hence, the taught network can easily lose its
ability to generalize prediction results when testing data is used.

Thus, in this article, we propose and experimentally verify learning
and prediction algorithms of eSNN that apply the bootstrap aggregating
(bagging) technique (Breiman, 1996; Polikar, 2012) to provide bet-
ter prediction results. As we present in the experiments, the applied
bagging eSNN ensembles provide substantially better prediction results

than a singleton eSNN model.
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Fig. 4. An example of PM10 prediction results obtained using a singleton eSNN (blue triangles denote predictions for the training dataset and red dots denote predictions for the
testing dataset) obtained for the Warsaw air pollution dataset.
5.1. Proposed bagging algorithm

In Algorithm 2, we present the proposed prediction procedure with
the bagging ensemble of eSNN. The algorithm receives two datasets:
training 𝐃𝑡𝑟 and testing 𝐃𝑡𝑠 (obtained from a random split of the original
ataset 𝐃) and the following input parameters: 𝑁𝐼𝑠𝑖𝑧𝑒 - the number
f input neurons encoding continuous and ordinal attributes, 𝑚𝑜𝑑 -

the modulation factor, 𝑠𝑖𝑚𝑇 𝑟 - the fraction of the tight upper bound
istance 𝐷𝑖𝑠𝑡, 𝑁 - the number of eSNNs in the ensemble. The algorithm
onsists of two phases: the first phase in which each eSNN in the
nsemble is trained using a randomly generated sample of training
ataset 𝐃𝑡𝑟 (we denote them as 𝐃(𝑖)

𝑡𝑟 , 𝑖 = 1,… , 𝑁), and the second phase
in which each eSNN in the ensemble returns a prediction value for
each instance of testing dataset 𝐃𝑡𝑠. In our implementation, the size
of each training sample 𝐃(𝑖)

𝑡𝑟 is equal to 75% of the number of dataset
nstances in 𝐃𝑡𝑟. The final prediction value assigned to an instance of
𝑡𝑠 is an average value obtained from all output values returned by
ach individual eSNN in the ensemble.

Algorithm 2 proceeds as follows. First, samples 𝐃(𝑖)
𝑡𝑟 , 𝑖 = 1,… , 𝑁

are generated (samples have the same size). Subsequently, 𝑖th eSNN in
the ensemble is trained using a respective sample of instances 𝐃(𝑖)

𝑡𝑟 . For
each instance 𝐷 ∈ 𝐃(𝑖)

𝑡𝑟 , the first firing order of input neurons of eSNN𝑖 is
calculated given values of attributes of 𝐷. Next, a new candidate output
neuron 𝑛𝑐 is created and the weights of its synapses to all input neurons
are initialized according to the obtained firing order of input neurons in
𝐍𝐈. Please note that the synapses’ weights between 𝑛𝑐 and input neurons
hat do not fire are set to 0. Additionally, 𝑛𝑐 is assigned the target value

of the instance 𝐷.
After the candidate 𝑛𝑐 is initialized, Algorithm 2 finds such an

output neuron 𝑛𝑠 in the repository 𝐍𝐎 for which the Euclidean distance
alculated between vectors of synapses’ weights 𝐰𝑛𝑐 and 𝐰𝑛𝑠 is the

smallest. If the distance is less than or equal to 𝑠𝑖𝑚𝑇 𝑟 ⋅𝐷𝑖𝑠𝑡 threshold,
hen the vector of synapses weights of 𝐰𝑛𝑠 is updated according to
q. (1) and update counter 𝑀𝑛𝑠 is incremented. Eventually, candidate
𝑐 is discarded. Otherwise, if the distance 𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑖 is greater than
𝑖𝑚𝑇 𝑟 ⋅ 𝐷𝑖𝑠𝑡 threshold or there are no output neurons in 𝐍𝐎, then 𝑛𝑐
s inserted to 𝐍𝐎.

After training of each eSNN in the ensemble, the prediction of a
arget value for each instance in the testing dataset 𝐃𝑡𝑠 is conducted.
ach testing instance 𝐷 ∈ 𝐃𝑡𝑠 is encoded by all eSNNs in the ensemble.
he final predicted value assigned to 𝐷 is the average value of all

ndividual output values returned by each eSNN. In order to obtain the
rediction for instance 𝐷 by each individual eSNN network, 𝐷 is first
8

Algorithm 2 Bagging Ensemble eSNN Algorithm
Input: 𝐃𝑡𝑟,𝐃𝑡𝑠, 𝑁𝐼𝑠𝑖𝑧𝑒, 𝑚𝑜𝑑, 𝑠𝑖𝑚𝑇 𝑟,𝑁
1: for 𝑖 ∈ 1…𝑁 do ⊳ Teach each eSNN in the ensemble separately
2: 𝐃(𝑖)

𝑡𝑟 - randomly generate 𝑖-th bootstrap sample from 𝐃𝑡𝑟
3: Initialize input layer of 𝑒𝑆𝑁𝑁𝑖
4: for each training instance 𝐷 ∈ 𝐃(𝑖)

𝑡𝑟 do
5: InputLayerEncoding(𝐷) ⊳ Algorithm 1
6: Create a candidate output neuron 𝑛𝑐
7: for each 𝐴 ∈ 𝐀, each 𝑛𝑗 ∈ 𝐍𝐈(𝐴) of eSNN𝑖 do
8: Create a synapse between 𝑛𝑗 ∈ 𝐍𝐈(𝐴) and 𝑛𝑐 ; 𝑤𝑛𝑗𝑛𝑐 ← 0

9: if 𝑛𝑗 fires then 𝑤(𝐴)
𝑛𝑗𝑛𝑐 ← 𝑤(𝐴)

𝑛𝑗𝑛𝑐 + 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟𝑛𝑗 end if
10: end for
11: if |𝐍𝐎| > 0 then
12: for each 𝑛𝑖 ∈ 𝐍𝐎 do 𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑖 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐰𝑛𝑐 ,𝐰𝑛𝑖 ) end

for
13: 𝑛𝑠 ← an output neuron in 𝐍𝐎 such that

𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑠 = 𝑚𝑖𝑛{𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑖 | 𝑛𝑖 ∈ 𝐍𝐎}
14: end if
15: if |𝐍𝐎| > 0 ∧𝐷𝑖𝑠𝑡𝑛𝑐 ,𝑛𝑠 ≤ 𝑠𝑖𝑚𝑇 𝑟 ⋅𝐷𝑖𝑠𝑡 then
16: 𝐰𝑛𝑠 ← (𝐰𝑛𝑐 +𝑀𝑛𝑠 ⋅ 𝐰𝑛𝑠 )∕(𝑀𝑛𝑠 + 1)
17: 𝑣𝑛𝑠 ← (𝑣𝑛𝑐 +𝑀𝑛𝑠 ⋅ 𝑣𝑛𝑠 )∕(𝑀𝑛𝑠 + 1); 𝑀𝑛𝑠 ← 𝑀𝑛𝑠 + 1
18: else
19: Insert 𝑛𝑐 to 𝐍𝐎;
20: end if
21: end for
22: end for
23: for each testing instance 𝐷 ∈ 𝐃𝑡𝑠 do
24: for 𝑖 ∈ 1…𝑁 do ⊳ For each eSNN in the ensemble
25: InputLayerEncoding(𝐷) ⊳ Algorithm 1
26: for each 𝐴 ∈ 𝐀, 𝑛𝑗 ∈ 𝐍𝐈(𝐴), 𝑛𝑖 ∈ 𝐍𝐎 do
27: if 𝑛𝑗 fires then 𝑃𝑆𝑃𝑛𝑖 ← 𝑃𝑆𝑃𝑛𝑖 + 𝑤(𝐴)

𝑛𝑗𝑛𝑖 ⋅ 𝑚𝑜𝑑
𝑜𝑟𝑑𝑒𝑟𝑛𝑗 end

if
28: end for
29: 𝐍𝐎𝑚𝑎𝑥 ← {𝑛𝑖 | 𝑛𝑖 ∈ 𝐍𝐎 ∧ 𝑃𝑆𝑃𝑛𝑖 is maximal}
30: 𝑉 𝑎𝑙𝑢𝑒(𝑖) ← (

∑

𝑛𝑖∈𝐍𝐎𝑚𝑎𝑥
𝑣𝑛𝑖 ⋅𝑀𝑛𝑖 )∕(

∑

𝑛𝑖∈𝐍𝐎𝑚𝑎𝑥
𝑀𝑛𝑖 )

31: end for
32: 𝑉 𝑎𝑙𝑢𝑒𝐷 ← (

∑𝑁
𝑖=1 𝑉 𝑎𝑙𝑢𝑒(𝑖))∕𝑁 ⊳ Prediction value assigned to

instance 𝐷
33: end for
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encoded into the firing order of input neurons of this eSNN. Afterwards,
𝑃𝑆𝑃 values of all output neurons are calculated and the set of output
neurons having the same maximal values of 𝑃𝑆𝑃 is remembered as
𝐍𝐎𝑚𝑎𝑥. According to the proposed Eq. (4), eSNN returns an output
value being a weighted average of output values of output neuron
𝑛𝑖 ∈ 𝐍𝐎𝑚𝑎𝑥. The weights of output values are equal to the update
counters of output neurons 𝑛𝑖 ∈ 𝐍𝐎 (update counter of an output
euron reflects the number of candidate output neurons merged with
hat output neuron, and thus can be perceived as a significance of an
utput neuron in 𝐍𝐎). Our algorithm implementation is available at
he GitHub repository.3

. Analysis of computational and space complexity

Since we are unaware of any other work that attempted to analyze
he computational and space complexity of eSNNs’ learning and pre-
iction algorithms, we provide such analysis herein. We also analyze
omputational & space complexity of the proposed eSNNs bagging
nsemble model.

.1. eSNN computational complexity analysis

omputational complexity of the learning phase. Before the learning
nd prediction phases begin, the input layer of eSNNs needs to be
nitialized. Thus, we start the analysis by assessing the computational
omplexity of the network’s initialization step.

The computational complexity of the input neurons’ allocation step
or each attribute 𝐀(𝑐) ∪ 𝐀(𝑜) is linearly dependent on the number of
nput neurons 𝑁𝐼𝑠𝑖𝑧𝑒 (the user-given parameters) as well as the dataset

size |𝐃(𝑖)
𝑡𝑟 | and equals to 𝑂(|𝐀(𝑐) ∪ 𝐀(𝑜)

|) ⋅ (|𝐃(𝑖)
𝑡𝑟 | + 𝑁𝐼𝑠𝑖𝑧𝑒) (this follows

from the fact that each attribute in 𝐀(𝑐) ∪ 𝐀(𝑜) has its own group of
input neurons). For the nominal attributes 𝐀(𝑛), Algorithm 1 requires a
single scan of each dataset sample. Thus, the computational complexity
equals 𝑂(|𝐀(𝑛)

| ⋅ |𝐃(𝑖)
𝑡𝑟 |).

Given the above, the computational complexity of the initialization
of input layer, 𝑂𝑖𝑛𝑖𝑡, of each eSNN network in the ensemble equals to:

𝑂𝑖𝑛𝑖𝑡(|𝐀(𝑛)
| ⋅ |𝐃(𝑖)

𝑡𝑟 | + |𝐀(𝑐) ∪ 𝐀(𝑜)
| ⋅ (|𝐃(𝑖)

𝑡𝑟 | +𝑁𝐼𝑠𝑖𝑧𝑒)). (5)

After the input layer of each eSNN is initialized, each dataset
instance is encoded into spikes and used to create a candidate output
neuron that is either added to the repository 𝐍𝐎 or merged with one
of the output neurons already existing there as presented in Section 4.
The computational complexity of these steps for all 1…𝑁 eSNNs in the
ensemble is:

𝑂𝐿(𝑁 ⋅ |𝐃(𝑖)
𝑡𝑟 | ⋅ (𝑂𝑒 + 𝑂𝑙)), where (6)

𝑂𝑒(|𝐀(𝑐) ∪ 𝐀(𝑜)
| ⋅𝑁𝐼𝑠𝑖𝑧𝑒 + |𝐀(𝑛)

| ⋅𝐾), (7)

𝑂𝑙(|𝐍𝐎| ⋅ (|𝐀(𝑐) ∪ 𝐀(𝑜)
| ⋅𝑁𝐼𝑠𝑖𝑧𝑒 + |𝐀(𝑛)

| ⋅𝐾)). (8)

In Formulae (6)–(8), by 𝐾 we denote the average number of distinct
values of attributes 𝐀(𝑛), while |𝐍𝐎| is the average number of output
neurons in the repository 𝐍𝐎.

Computational complexity of the prediction phase. The computational
complexity of the prediction step is highly affected by the fact that each
output neuron in 𝐍𝐎 is connected to each input neuron in the internal
layer 𝐍𝐈.

In order to make a prediction, each eSNN in the ensemble calculates
the 𝑃𝑆𝑃 value given the encoded dataset’s instance 𝐷 and selects the
output value of an output neuron 𝑛𝑖 ∈ 𝐍𝐎 whose 𝑃𝑆𝑃 value is the
greatest. Similarly to the learning phase, the prediction needs to be
made for each testing instance 𝐷 ∈ 𝐃𝐭𝐬 and separately for each eSNN.

3 https://github.com/piotrMaciag32/Bagging-eSNN-Prediction.
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Thus, we can denote the computational complexity of the prediction
phase as:

𝑂𝑃 (𝑁 ⋅ |𝐃𝑡𝑠| ⋅ (𝑂𝑒 + 𝑂𝑝)), where (9)

𝑒(|𝐀(𝑐) ∪ 𝐀(𝑜)
| ⋅𝑁𝐼𝑠𝑖𝑧𝑒 + |𝐀(𝑛)

| ⋅𝐾), (10)

𝑝(|𝐍𝐎| ⋅ |𝐍𝐈|). (11)

In Formula (11), |𝐍𝐈| denotes the total number of input neurons in
ach eSNN.

.2. Space complexity analysis

The space complexity depends on the number of input and output
eurons in each eSNN of the ensemble. Thus, the space complexity of
n input layer of a single eSNN can be assessed as 𝑂𝑖𝑛(|𝐀(𝑐) ∪ 𝐀(𝑜)

| ⋅
𝐼𝑠𝑖𝑧𝑒 + |𝐀(𝑛)

| ⋅ 𝐾). Subsequently, the space complexity of the output
ayer of eSNN equals to 𝑂𝑜𝑢(|𝐃

(𝑖)
𝑡𝑟 |). The 𝑂𝑜𝑢 space complexity represents

he worst case when each candidate output neuron created for a dataset
nstance 𝐷 ∈ 𝐃(𝑖)

𝑡𝑟 is added to the repository 𝐍𝐎 as a new output neuron.
hus, the space complexity of the ensemble of 1…𝑁 eSNNs equals:

𝑆 (𝑁 ⋅ (|𝐀(𝑐) ∪ 𝐀(𝑜)
| ⋅𝑁𝐼𝑠𝑖𝑧𝑒 + |𝐀(𝑛)

| ⋅𝐾 + |𝐃(𝑖)
𝑡𝑟 |)).

. Experiments

In this section, we describe the dataset selected for the experiments
nd the preprocessing we apply. Subsequently, we describe the selected
rror and agreement measures that are used to assess air pollution pre-
iction quality. Next, we describe the experimental setup and provide
he values of the parameters for which we obtained the best results.
inally, we provide the results of our experiments.

.1. Air pollution dataset for warsaw

To verify our approach experimentally, we used the PM10 air pol-
ution and weather dataset for Warsaw. The similar dataset was pre-
iously applied in the other studies (see, for example, Siwek and
sowski (2012)) that compared air pollution prediction results for

everal types of predictors. The dataset consists of 1096 daily air pol-
ution observations collected over years 2006–2008 as well as several
eather-related attributes: temperature, precipitation, humidity, wind

peed and cloudiness. The dataset can be obtained from the website
f the Chief Inspectorate of Environmental Protection of Poland (GIOS,
015). Similarly to the results presented in Siwek and Osowski (2012),
e applied our proposed ensemble for 1-day ahead prediction of air
ollution.

In Fig. 5, we present the basic characteristics of the dataset. The
ollowing attributes 𝐀 of the dataset (selected based on a significance
f the correlation with the pollution level) are applied in the learning
rocess. Continuous attributes 𝐀(𝑐): air pollution values observed in
he current and two previous days as well as the temperature on the
urrent day. The set of nominal attributes 𝐀(𝑛) consists of one attribute
epresenting a day of the week (encoded as a number from 1 to 7). As
entioned previously, we denote acquired dataset as 𝐃𝑜.

.2. Air pollution decomposition

In order to obtain dataset 𝐃 containing decomposed air pollution
ime series from 𝐃𝑜, we use the CEEMDAN method with the maximum
umber of generated components set to 5. This is motivated by the fact
hat each subsequent component generated by CEEMDAN is usually
ess correlated with the decomposed air pollution time series and by
ncluding such weakly correlated components in the training data we
an decrease the prediction quality.

In Fig. 6, we presented the original air pollution time series dataset

nd its generated components.

https://github.com/piotrMaciag32/Bagging-eSNN-Prediction
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Fig. 5. Parameters of the attributes of the acquired dataset and linear correlation coefficient between continuous attributes and the distribution of the pollution values.
Fig. 6. The decomposed PM10 pollution time series data using CEEMDAN and 5 main components.
Table 2
Linear correlation coefficient between air pollution time series and its 5 components.

1st component 2nd component 3rd component 4th component 5th component

PM10 air pollution 0.38 0.44 0.43 0.27 0.55
The linear correlation coefficient between the air pollution time
series and its components are given in Table 2.

The obtained PM10 components are combined with dataset 𝐃𝑜 in
order to obtain dataset 𝐃. The dataset 𝐃 is subsequently randomly split
into training 𝐃𝑡𝑟 and testing parts 𝐃𝑡𝑠 in proportion 7:3.

7.3. Selected error and agreement measures

For the assessment of the quality of prediction we selected the fol-
lowing three error measures for which the lower value indicates better
prediction results: Mean Absolute Error (MAE), Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE). Definitions of
these error measures are presented in Eqs. (13)–(14). To assess the
agreement between the predicted and observed values, the Index of
Agreement, IA (also known as Willimott index) and 𝑟 measures are
applied (we presented this measure in Eqs. (15)–(16)). The higher
values of the agreement measures indicate better prediction results.
10
In Eqs. (13)–(14) and (15)–(16), 𝑛 denotes the number of testing
instances in the testing dataset 𝐃𝑡𝑠, 𝑜𝑖 and 𝑝𝑖 are a target value (observed
air pollution value) and a predicted value of an 𝑖th testing instance,
respectively.

The values of the MAE and RMSE errors are in the range [0,+∞],
while the values of the MAPE error are in percent. The values of
the IA agreement measure are in the range [0, 1], where 0 implies no
agreement between observed and predicted values, while 1 implies that
the predicted values are equal to the observed values. The values of
the 𝑟 coefficient are in the range [0, 1], where 0 indicates the absence
of a linear correlation between the predicted and observed values and
1 indicates the strongest positive linear correlation between the pre-
dicted and observed values (each predicted value equals the respective
observed value).

MAE =
∑𝑛

𝑖=1 |𝑜𝑖 − 𝑝𝑖| . (12)

𝑛
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Table 3
Tested and selected parameters for each used model (except for the LR and EN models that do not require any input parameters). The predictors’ parameters not listed beneath
were set to their default values.

Predictor Tested parameters Selected parameters

eSNN N = {1, 5, 10, … , 60}; simTr = {0.01, 0.011, … , 0.025}; 𝑁𝐼𝑠𝑖𝑧𝑒 = {50, 55, … , 100} 𝑁𝐼𝑠𝑖𝑧𝑒 = 75, 𝑠𝑖𝑚𝑇𝑅 = 0.023
SVR C = {1, 2, … , 15}; kernel = {𝑙𝑖𝑛𝑒𝑎𝑟, 𝑟𝑏𝑓} 𝐶 = 9, kernel = 𝑙𝑖𝑛𝑒𝑎𝑟

MLP hidden-layer-size = {100, 200, 300}; max-iter = {500, 750, 1000}; 𝛼 = {0.0001,
0.0004, 0.0007, 0.001} learning-rate-init = {0.001, 0.004, 0.007, 0.01}

hidden-layer-sizes = 200, max-iter = 1000, 𝛼 = 0.0007,
learning-rate-init = 0.001

LSTM batch-size = {10, 20, … , 50}; epoch = {100, 200, … , 500} epoch = 100, batch-size = 20, lstm-layer-hidden-units = 100

SNNTorch SNNs neurons type = {single LIF layer, layer of synaptic neurons, double layer of LIF
neurons}

SNNs neurons type = single LIF layer
RMSE =

√

∑𝑛
𝑖=1(𝑜𝑖 − 𝑝𝑖)2

𝑛
. (13)

MAPE =

∑𝑛
𝑖=1

|

|

|

|

𝑜𝑖−𝑝𝑖
𝑜𝑖

|

|

|

|

𝑛
⋅ 100. (14)

IA = 1 −
∑𝑛

𝑖=1(𝑜𝑖 − 𝑝𝑖)2
∑𝑛

𝑖=1(|𝑝𝑖 − 𝑜| + |𝑜𝑖 − 𝑜|)2
. (15)

=
𝑛
∑𝑛

𝑖=1 𝑜𝑖𝑝𝑖 −
∑𝑛

𝑖=1 𝑜𝑖
∑𝑛

𝑖=1 𝑝𝑖
√

[

𝑛
∑𝑛

𝑖=1 𝑝
2
𝑖 − (

∑𝑛
𝑖=1 𝑝𝑖)2

][

𝑛
∑𝑛

𝑖=1 𝑜
2
𝑖 − (

∑𝑛
𝑖=1 𝑜𝑖)2

]

. (16)

.4. Obtained air pollution prediction results

In Table 4, we show the results of the comparison of the prediction
esults obtained for the selected prediction models, namely:

• Single models of Linear Regression (LR), Support Vector Machine
(SVM), Multilayer Perceptron (MLP), Long-short Term Memory
(LSTM)4 network, Elastic Network (EN) and the SNNTorch SNNs
implementation. For LR, SVM, MLP and EN the sklearn pack-
age is used, while for LSTM, we created a model using the Keras
package.

• The above models taught using original data incorporating the
CEEMDAN decomposition.

• The proposed stacking ensemble that in the first layer includes:
LR, SVM, MLP, LSTM and EN, and in the second layer includes
either the bagging eSNNs or a single predictor from the set of the
predictors used in the first layer.

In the performed experiments, we conducted grid search procedure
n order to find the best parameters of each selected model (except for
he LR and EN models that do not require any input parameters). The
ets of tested parameters and the selected best parameters are presented
n Table 3.

In the case of SNNTorch network, the parameters other than the
ype of hidden neurons were set as follows:

• PSP leak value - 0.9 for LIF neurons and 0.8 for synaptic neurons.
• Learning rate - 0.001.
• Optimization algorithm - Adam.

As it can be noted from Table 4, the proposed model achieves the
est prediction results when it is combined with 30 eSNNs organized in
he bagging ensemble. The obtained prediction results are visualized by
s in Fig. 7 using Taylor diagram. For each model, the diagram shows
he linear correlation coefficient between real and predicted pollution
alue, the standard deviation of predicted values as well as the RMSE
rror. The diagram clearly shows two separate prediction groups: the
irst one when no decomposition is used, and the second one when
he CEEMDAN components are incorporated into training and testing

4 The network consisted of one LSTM layer followed by one Dense layer of
neuron making prediction.
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data. For the second group, the bagging ensemble of 30 eSNNs achieves
superior results in terms of the correlation coefficient and the RMSE
error.

In Fig. 8, we present the scatter plots of the observed pollution
values and the predicted pollution values for the testing dataset 𝐃𝑡𝑠
as well as the parameters of the fitted linear regression and the linear
correlation coefficient 𝑟. The presented four plots were obtained for the
ensemble consisting of CEEMDAN, stacking and 1, 5, 15, 30 bagging
eSNNs, respectively. It can be noticed that the use of bagging ensembles
of eSNN improves the quality of prediction when compared to a single
model. The violin plots illustrating the prediction results are given in
Fig. 9.

Fig. 10 presents the obtained values of the error and agreement
measures (in the form of a heatmap) for the changing number of eSNNs
in the second layer of the ensemble (parameter 𝑁) and the eSNN’s
similarity threshold 𝑠𝑖𝑚𝑇 𝑟 parameter. Similar results are presented in
Fig. 11 for the changing number of eSNNs and the 𝑁𝐼𝑠𝑖𝑧𝑒 parameter. It
can be observed from both figures that the use of as few as five eSNNs
can substantially improve the error and agreement indicators when
compared to a singleton eSNN. Moreover, the indicators are improving
even more for the greater values of the 𝑁 parameter.

7.5. Discussion

The obtained prediction results and the conducted comparison of
models suggest that applying CEEMDAN decomposition method to air
pollution time series data can allow us to substantially improve predic-
tion results. This is inline with the previously reported results, such as
the results of Siwek and Osowski (2016), where wavelet decomposition
was applied.

Our experiments also suggest that by employing a stacking ensemble
of various predictors can improve prediction quality even further. In
particular, we were able to obtain slightly better prediction results
when the second layer of the proposed ensemble consisted of bagging
eSNNs. This can be explained by the fact, that such bagging ensem-
ble is trained solely using data highly positively correlated with the
target air pollution values. Previous work suggest that eSNNs tend
to underperfrom when the training dataset contains attributes weakly
correlated with target values, but can outperform other models when
such attributes are entirely eliminated from the dataset.

8. Conclusions and future work

This article introduced a new approach to air pollution prediction
using the ensembling method consisting of: (i) CEEMDAN air pollution
time series decomposition, (ii) stacking ensemble that in the first layer
contains a set of predictors, each of which making its own air pollution
prediction and in the second layer contains a bagging ensemble of
eSNNs. To this end, we proposed and implemented the bagging eSNNs
algorithm that randomly selects a specified number of samples from a
given training dataset, each of which is next used to teach a distinct
eSNN in the ensemble.

The prediction results obtained with the proposed approach were

compared with the prediction results obtained from other selected
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Fig. 7. Taylor diagram presenting models’ comparison for the prediction results for the tested models. CE. stands for CEEMDAN decomposition; STA. stands for the first layer of
stacking ensemble consisting of LR, SVM, MLP, EN and LSTM predictors.

Fig. 8. Scatter plots presenting prediction results obtained for the proposed model consisting of CEEMDAN, stacking and, respectively, a single eSNN as well as bagging ensembles
consisting of 5, 15 and 30 eSNNs. All plots were obtained using the CEEMDAN air pollution decomposition and the first layer of stack consisting of LR, SVM, MLP, LSTM and EN
predictors. The plots contain also fitted linear models representing dependency between the observed and predicted values as well as the values of the linear correlation coefficient.
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Table 4
Comparison of the obtained air pollution prediction results for the selected predictors. First layer of stacking ensemble consists
of prediction results made by LR, SVM, MLP, LSTM and EN (we denoted the set of these predictors as Stacking in the table
beneath).
Predictor RMSE [μg/m3] MAE [μg/m3] MAPE% IA

LR 11.27 8.13 37 0.77
SVM 11.21 7.91 35 0.79
MLP 11.16 7.92 33 0.78
LSTM 11.15 8 35 0.78
EN 11.19 8.05 37 0.78
SNNTorch 13.73 8.89 35 0.78

CEEMDAN + LR 7.66 5.62 25 0.92
CEEMDAN + SVM 7.69 5.56 25 0.93
CEEMDAN + MLP 7.32 5.58 24 0.93
CEEMDAN + LSTM 7.36 5.41 23 0.93
CEEMDAN + EN 7.60 5.59 25 0.92
CEEMDAN + SNNTorch 14.53 11.21 48 0.85

CEEMDAN + Stacking + Single LR 7.16 5.42 24 0.94
CEEMDAN + Stacking + Single SVM 7.21 5.34 23 0.94
CEEMDAN + Stacking + Single MLP 7.27 5.4 23 0.93
CEEMDAN + Stacking + Single LSTM 7.78 5.55 25 0.92
CEEMDAN + Stacking + Single EN 7.14 5.4 24 0.94
CEEMDAN + Stacking + Single eSNNs 7.71 5.84 24 0.93
CEEMDAN + Stacking + Bagging eSNNs (15) 7.42 5.39 22 0.92
CEEMDAN + Stacking + Bagging eSNNs (30) 6.91 5.14 21 0.94
Fig. 9. Violin plots of real pollution values (observed) and predictions of the best performing prediction models tested in the experiments.
state-of-the-art predictors. As the results of the experiments showed,
the proposed ensemble can provide substantially better prediction qual-
ity than the tested singleton models. Moreover, as the results of the
experiments suggest, to the advantages of the proposed stacking en-
semble model that uses bagging eSNNs provide more stable error and
agreement measures when a range of eSNNs internal parameters is
tested than when a singleton eSNN is applied. In particular, for the
changing values of the parameter 𝑠𝑖𝑚𝑇𝑅, the variance of obtained
measures/agreement values is much higher for a singleton eSNN than
when a bagging ensemble of eSNNs is used.

In this work, we also analyzed the computational and space com-
plexity of the eSNNs’ learning and prediction algorithms. To the best of
our knowledge, this is the first time when such an analysis is done. Also,
we proposed a formula for calculating the tight upper bound on the
Euclidean distances between synapses weights of any possible candi-
date output neuron and any output neuron that simplifies the selection
of a similarity threshold parameter of eSNN and can be applied when
13
training and testing datasets consist of continuous, ordinal and nominal
attributes.

The work discusses the encoding methods applied to eSNNs and
(in Appendix) provides the new encoding method that (i) calculates
a histogram of input values of each ordinal or continuous feature and
(ii) allocates the GRFs fields and input neurons encoding each attribute
according to the calculated histogram of values. This allows for more
effective encoding of the values of unevenly distributed features, such
as highly skewed features when compared to the GRFs method used
previously in the literature.

The study in its current form posses some limitations that should
be addressed in the future studies. First, we would expect to conduct
more extensive experiments using datasets of the other geographical
locations. Second, one could expect to test different types of ensemble
models with eSNNs (for example, boosting ensembles). The other po-
tential recommendation for the future research could be applying one
of the nature-inspired algorithms mentioned in Section 1 in order to
search for the best parameters of eSNNs networks.
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Fig. 10. The error and agreement values for the proposed ensemble model for the changing values of 𝑁 (the number of eSNNs in the bagging ensemble), 𝑠𝑖𝑚𝑇 𝑟 (similarity
hreshold of eSNN) and constant 𝑁𝐼𝑠𝑖𝑧𝑒 (number of input neurons encoding attributes 𝐀(𝑐) ∪ 𝐀(𝑜)). The plots were obtained for the fixed 𝑁𝐼𝑠𝑖𝑧𝑒 = 50 eSNNs parameter. Please note

that MAPE is given in percent.
Fig. 11. The error and agreement values for the changing values of 𝑁 (number of eSNNs in the ensemble) and 𝑁𝐼𝑠𝑖𝑧𝑒 (the number of input neurons in eSNN encoding attributes
𝐀(𝑐) ∪ 𝐀(𝑜)). The plots were obtained for the fixed 𝑠𝑖𝑚𝑇 𝑟 = 0.02. Please note that MAPE is given in percent.
Nevertheless, we believe that the proposed ensemble model can
be successfully used in other prediction tasks, such as prediction of
electricity consumption or stock prices forecasting.

Software and Data availability

• Name of the software: Bagging-eSNNs
• Author: Piotr Maciąg, Warsaw University of Technology, Institute

of Computer Science
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• Contact Information: piotr.maciag@pw.edu.pl
• Year of first available: 2021
• Programming language: C++
• Availability: https://github.com/piotrMaciag32/Bagging-ensem

ble-eSNN
• Cost: free, License: GPLv3
• Software required: C++ v 14 compiler, CMake compatible envi-

ronment
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ppendix. A new GRFs-based encoding method

Many types of the input data encoding methods for SNNs have been
roposed and successfully applied in various domains. Herein, we first
eview the GRFs encoding method and subsequently provide our new
ncoding method for SNNs networks.

.1. Gaussian receptive fields encoding method

One of the most commonly used encoding method is population-
ased encoding that applies Gaussian Receptive Fields (GRFs) in order
o obtain precise spiking times of input neurons for a given input
timuli. An example of a population-based coding that uses GRFs is
resented in Fig. 12. The values 𝐼𝐴𝑚𝑖𝑛 and 𝐼𝐴𝑚𝑎𝑥 are the minimal and

the maximal values of a continuous or ordinal attribute 𝐴 in a dataset,
respectively, and they should be calculated in the input layer initial-
ization step. 𝑁𝐼𝑠𝑖𝑧𝑒 is the number of GRFs (and their respective input
eurons) that is specified by the user. Each GRF (𝑗 = 1,… , 𝑁𝐼𝑠𝑖𝑧𝑒) is

used to obtain excitation value for an input value 𝐷[𝐴] according to
Eq. (17). In Eq. (17), 𝜇𝑗 is a mean value of each GRF that is calculated
according to Eq. (18), while 𝜎 is a standard deviation of each GRF that
is calculated according to Eq. (19).

𝐸𝑥𝑐(𝐴)𝑗 = 𝑒𝑥𝑝
(

−1
2
(

𝐷[𝐴] − 𝜇(𝐴)
𝑗

𝜎
)2
)

(17)

𝑗 = 𝐼 (𝐴)𝑚𝑖𝑛 + (𝑗 − 0.5) ⋅𝑤𝑖𝑑𝑡ℎ(𝐴), (18)

here 𝑗 = 1,… , 𝑁𝐼𝑠𝑖𝑧𝑒 and 𝑤𝑖𝑑𝑡ℎ(𝐴) =
𝐼 (𝐴)𝑚𝑎𝑥−𝐼

(𝐴)
𝑚𝑖𝑛

𝑁𝐼𝑠𝑖𝑧𝑒
. 𝑤𝑖𝑑𝑡ℎ(𝐴) is a distance

between mean values of GRFs.

𝜎 = 𝑤𝑖𝑑𝑡ℎ(𝐴)

𝛽
. (19)

𝛽 is a user given parameter that controls the standard deviation of
ach GRF. Given the calculated excitation values of GRFs, the firing of
nput neurons 𝑗 = 1,… , 𝑁𝐼𝑠𝑖𝑧𝑒 can be obtained as follows:

𝑇𝑛𝑗 = 1 − 𝐸𝑥𝑐𝑗 (𝐷[𝐴]). (20)

Let us consider an example GRFs coding given in Fig. 12. First, let
s assume that the value of an attribute 𝐴 to be encoded is 𝐷[𝐴] = 6.5
nd the minimal and maximal values of this attribute in the dataset
re 𝐼 (𝐴)𝑚𝑖𝑛 = 0, 𝐼 (𝐴)𝑚𝑎𝑥 = 10, respectively. Additionally, let us assume that
e apply 𝑁𝐼𝑠𝑖𝑧𝑒 = 5 input neurons to encode values of 𝐴 and 𝛽 = 2.
15

he other GRFs parameters will be calculated as follows:
Fig. 12. The GRFs encoding method as explained in, for example, Kasabov (2014).

• The 𝑤𝑖𝑑𝑡ℎ(𝐴) = 10−0
5 = 2.

• The center values of GRFs calculated according to Eq. (18) are as
follows: 𝜇1 = 1, 𝜇2 = 3, 𝜇3 = 5, 𝜇4 = 7, 𝜇5 = 9.

• 𝜎 value of Eq. (19) equals to 1.
• GRFs excitation values for 𝐷[𝐴] = 6.5 are as follows:

– 𝐸𝑥𝑐1(6.5) = 2.69958𝐸−07,
– 𝐸𝑥𝑐2(6.5) = 0.002187491,
– 𝐸𝑥𝑐3(6.5) = 0.324652467,
– 𝐸𝑥𝑐4(6.5) = 0.882496903,
– 𝐸𝑥𝑐5(6.5) = 0.043936934.

• Thus, the respective firing times of input neurons are as follows:

– 𝐹𝑇𝑛1 (6.5) = 1,
– 𝐹𝑇𝑛2 (6.5) = 0.997812509,
– 𝐹𝑇𝑛3 (6.5) = 0, 675347533,
– 𝐹𝑇𝑛4 (6.5) = 0, 117503097,
– 𝐹𝑇𝑛5 (6.5) = 0, 956063066.

A.2. Proposed encoding method

The already developed encoding methods that apply GRFs are prone
to numerical errors and may not be adequate for datasets in which
values of some or all attributes are of non-uniform distributions, such
as normal or highly skewed distributions. Let us consider a histogram of
values of the attribute 𝐴 presented in Fig. 13 and the allocation of GRFs
as explained in the above example. One may notice that the number of
the GRFs allocated to the range [0, 4] is the same as the number of GRFs
allocated to the range [6, 10] despite the fact that the former range has
many more values than the latter one.

Thus, herein we introduce our method that allocates GRFs (and
their respective input neurons) based on a histogram of input values
of a given attribute. The method introduced here extends the encoding
method previously introduced in Maciąg et al. (2022). However, unlike
the method of Maciąg et al. (2022) that is suitable for the calculation
of only firing order of input neurons based on a given input value,

the method provided here allows us to calculate exact firing times of
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Fig. 13. A highly skewed distribution of input values of the attribute 𝐴 and a uniform
allocation of GRFs (𝑁𝐼𝑠𝑖𝑧𝑒 = 10, the number of bins in the histogram is 5).

Fig. 14. A highly skewed distribution of input values and GRFs allocated according to
the method presented in this appendix.

input neurons for a given input value. To the distinctive features of
the method provided here belongs the fact that GRFs are not allocated
uniformly over the range [𝐼 (𝐴)𝑚𝑖𝑛, 𝐼

(𝐴)
𝑚𝑎𝑥] of values, but according to the

actual distribution of values of attribute 𝐴 and the calculated histogram
of these values.

In addition to 𝑁𝐼𝑠𝑖𝑧𝑒 (GRFs number) and 𝛽 (a single GRF width),
parameters typically required by GRFs, our allocation method requires
user to specify one more parameter: 𝐵 - the number of bins in the
histogram to be generated for values of attribute 𝐴. The number of
GRFs 𝑁𝐼𝑠𝑖𝑧𝑒 should be equal to or greater than the number of bins 𝐵.
In our method, first for the range of values of each bin a single GRF
is allocated regardless of the number of values of 𝐴 in that bin. The
rest of 𝑁𝐼𝑠𝑖𝑧𝑒 − 𝐵 GRFs (and their respective neurons) are allocated
proportionally to the number of values in each bin.

The width of each bin for the range of values of attribute 𝐴 equals:

𝐵𝑖𝑛𝑠𝑤𝑖𝑑𝑡ℎ =
𝐼 (𝐴)𝑚𝑎𝑥 − 𝐼 (𝐴)𝑚𝑖𝑛

𝐵
(21)

Thus, the range of values in each bin is as follows:
16
Table 5
The input and calculated parameters of our GRFs allocation method for the dataset
provided in Fig. 14.

Input parameters Values

𝐵 (no. bins) 5
𝑁𝐼𝑠𝑖𝑧𝑒 10
𝛽 2

Calculated parameters Values

𝑤𝑖𝑑𝑡ℎ 2
𝐵𝑖𝑛𝑖 .𝛥 𝐵𝑖𝑛1 .𝛥 = 1, 𝐵𝑖𝑛2 .𝛥 = 0.67,

𝐵𝑖𝑛3 .𝛥 = 2, 𝐵𝑖𝑛4 .𝛥 = 2, 𝐵𝑖𝑛5 .𝛥 = 1

𝐵𝑖𝑛𝑖 .𝐺𝑅𝐹𝑠 𝐵𝑖𝑛1 .𝐺𝑅𝐹𝑠 = 2, 𝐵𝑖𝑛2 .𝐺𝑅𝐹𝑠 = 3,

𝐵𝑖𝑛3 .𝐺𝑅𝐹𝑠 = 1, 𝐵𝑖𝑛4 .𝐺𝑅𝐹𝑠 = 1, 𝐵𝑖𝑛5 .𝐺𝑅𝐹𝑠 = 2
𝜇𝑗 𝜇1 = 0.(3), 𝜇2 = 1, 𝜇3 = 0.(6),

𝜇4 = 2.(3), 𝜇5 = 3, 𝜇5 = 2.(6), 𝜇7 = 5,
𝜇8 = 7, 𝜇8 = 8.5, 𝜇10 = 9.5

𝜎 1

•
[

𝐼 (𝐴)𝑚𝑖𝑛 + (𝑖− 1) ⋅𝐵𝑖𝑛𝑤𝑖𝑑𝑡ℎ, 𝐼
(𝐴)
𝑚𝑖𝑛 + 𝑖 ⋅𝐵𝑖𝑛𝑠𝑤𝑖𝑑𝑡ℎ

)

, for 𝐵𝑖𝑛𝑖 = 1,… , 𝐵 − 1.

•
[

𝐼 (𝐴)𝑚𝑖𝑛 + (𝐵 − 1) ⋅ 𝐵𝑖𝑛𝑤𝑖𝑑𝑡ℎ, 𝐼
(𝐴)
𝑚𝑎𝑥

]

for 𝐵𝑖𝑛𝐵 .

Let 𝐵𝑖𝑛𝑖.𝑉 𝑎𝑙𝑢𝑒𝑠 be the number of values that are in 𝐵𝑖𝑛𝑖 of the
generated histogram. In addition to one GRF always allocated for each
𝐵𝑖𝑛, the allocation of additional number of GRFs is calculated according
to Proposition 2.

Proposition 2 (Adapted from Maciąg et al. (2022)). Let 𝐵𝑖𝑛𝑖.𝐺𝑅𝐹𝑠, 𝑖 =
1,… , 𝐵 represents the number of GRFs to be allocated to encode the values
of 𝐵𝑖𝑛𝑖 and let 𝐃 be the number of a dataset’s instances in 𝐃.5

𝐵𝑖𝑛𝑖.𝐺𝑅𝐹𝑠 = round
(𝐵𝑖𝑛𝑖.𝑉 𝑎𝑙𝑢𝑒𝑠

𝐃
⋅ (𝑁𝐼𝑠𝑖𝑧𝑒−𝐵)

)

+1, for 𝑖 = 𝑖 ∈ {1,… , 𝐵}.

Please note that the number of GRFs allocated according to Propo-
sition 2 may not necessarily be equal to 𝑁𝐼𝑠𝑖𝑧𝑒. After obtaining the
number of GRFs allocated to each 𝐵𝑖𝑛 of the histogram, first we
calculate the center value 𝜇𝑖 of each GRF.

To this end, the width between center values of GRFs for each bin
is calculated according to Eq. (22).

𝐵𝑖𝑛𝑖.𝛥 =
𝐵𝑖𝑛𝑠𝑤𝑖𝑑𝑡ℎ

𝐵𝑖𝑛𝑖.𝐺𝑅𝐹𝑠
(22)

Subsequently, we calculate the center value of each GRF as follows.
For bins 𝑖 ∈ {1,… , 𝐵}, the center value of GRF, 𝐺𝑅𝐹𝑗 ∈ 𝐵𝑖𝑛𝑖.𝐺𝑅𝐹𝑠, 𝑗 ∈

{1,… , 𝐵𝑖𝑛𝑖.𝐺𝑅𝐹𝑠} is calculated as follows:

𝜇𝑗 = 𝑀𝑖𝑛(𝐹 ) + (𝑖 − 1) ⋅ 𝐵𝑖𝑛𝑠𝑤𝑖𝑑𝑡ℎ + (𝑗 − 0.5) ⋅ 𝐵𝑖𝑛𝑖.𝛥. (23)

To illustrate the proposed GRFs allocation method, let us consider
the example given in Fig. 14. First, let us assume that 𝐼 (𝐴)𝑚𝑖𝑛 = 0, 𝐼 (𝐴)𝑚𝑎𝑥 =
10, 𝐵𝑖𝑛𝑠 = 5 and 𝑁𝐼𝑠𝑖𝑧𝑒 = 10. Subsequently, let us assume that the
distribution of values of 𝐴 is as presented in the histogram in Fig. 14.
In Table 5, we present the input and the calculated values of our
GRFs allocation method. After allocation of GRFs, for a given input
value 𝐷[𝐴], excitations, as well as firing times of input neurons, can
be calculated as presented in Eqs. (17), (20).

5 Please note that we propose to calculate histogram over the overall 𝐃
dataset before it is split into the training and testing parts. However, in the
case of big data datasets, the parameters of our method can be calculated using

only the training part of the dataset or a sample of the dataset.
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