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Abstract 
 
 
An electrocardiogram (ECG) is a bioelectrical signal which records the heart’s electrical 

activity versus time. It is an important diagnostic tool for assessing heart functions. The 

interpretation of ECG signal is an application of pattern recognition. The techniques 

used in this pattern recognition comprise: signal pre-processing, QRS detection, feature 

extraction and neural network for signal classification. In this project, signal processing 

and neural network toolbox will be used in Matlab environment. The processed signal 

source came from the Massachusetts Institute of Technology Beth Israel Hospital (MIT-

BIH) arrhythmia database which was developed for research in cardiac electro-

physiology. 

Five conditions of ECG waveform were selected from MIT-BIH database in this 

research. The ECG samples were processed and normalised to produce a set of features 

that can be used in different structures of neural network and subsequent recognition 

rates were recorded. Backpropagation algorithm will be considered for different 

structures of neural network and the performance in each case will be measured. This 

research is focused on finding the best neural network structure for ECG signal 

classification and a number of signal pre-processing and QRS detection algorithms were 

also tested. The feature extraction is based on an existing algorithm. 

The results of recognition rates are compared to find a better structure for ECG 

classification. Different ECG feature inputs were used in the experiments to compare 

and find a desirable features input for ECG classification. Among different structures, it 

was found that a three layer network structure with 25 inputs, 5 neurons in the output 

layer and 5 neurons in its hidden layers possessed the best performance with highest 

recognition rate of 91.8% for five cardiac conditions. The average accuracy rate for this 

kind of structure with different structures was 84.93%. It was also tested that 25 feature 

input is suitable for training and testing in ECG classification. Based on this result, the 

method of using important ECG features plus a suitable number of compressed ECG 

signals can dramatically decrease the complexity of the neural network structure, which 

can increase the testing speed and the accuracy rate of the network verification. 

It also gives further suggestions to plan the experiments for the future work. 
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Chapter 1 

Introduction 

 

 
In the hospital and health community, there are considerable commercial interests in the 

classification of the Electrocardiogram signals (ECG). This research is aimed at 

developing a system that categorises the ECG signals. Signal processing techniques and 

artificial neural network (ANN) will be used in this project to implement a real time 

processing, intelligent, cost effective, and easy-to-use ECG diagnostic system. It also 

gives suggestion to improve the experiments and  use of remote diagnostic medical 

systems for diagnosing at homes in the future. This research is currently at the 

experimental stage at the moment but will be realised in the future work. 

 
The ECG is a bioelectric signal, which records the heart’s electrical activity versus time; 

therefore it is an important diagnostic tool for assessing heart function. The electrical 

current due to the depolarisation of the Sinus Atria (SA) node stimulates the 

surrounding myocardium and spreads into the heart tissues. A small proportion of the 

electrical current flow to the body surface. By applying electrodes on the skin at the 

selected points, the electrical potential generated by this current can be recorded as an 

ECG signal. 

 

The interpretation of the ECG signal is an application of pattern recognition. The 

purpose of pattern recognition is to automatically categorise a system into one of a 

number of different classes (Chazal D. P., 1998). An experienced cardiologist can easily 

diagnose various heart diseases just by looking at the ECG waveforms printout. In some 

specific cases, sophisticated ECG analysers achieve a higher degree of accuracy than 

that of cardiologist, but at present there remains a group of ECG waveforms that are too 

difficult to identify by computers. However, the use of computerised analysis of easily 

obtainable ECG waveforms can considerably reduce the doctor’s workload. Some 

analysers assist the doctor by producing a diagnosis; others provide a limited number of 

parameters by which the doctor can make his diagnosis (Granit R., 2003).  
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As illustrated in Figure 1.1 there are four major steps to the ECG signal pattern 

recognition, namely, pre-processing of the signal, QRS detection, ECG feature 

extraction and ECG signal classification (Chazal D. P., 1998).  

 
 

 
QRS 

detection

Feature

extraction

ANN  
signal 

classification

Signal pre - 
processing 

 
 
 

Figure 1.1 Pattern Recognition 
 

The first step is the measurement of acquisition period, which requires a wide range of 

the ECG signal collection including different abnormalities. The data could be collected 

from real subjects in the future, but it is presently available from the database. The 

second step is QRS detection which to corresponds to the period of ventricular 

contraction or depolarisation. The third step is to find the smallest set of features that 

maximise the classification performance of the next step. ECG feature extraction is 

mainly used in this step. 

 

The choice of features depends on the techniques used in the forth step. Consequently 

the set of features that are optimal for one technique are not necessarily optimal for 

another. Because of the unknown interactions of different sets of features, it is 

impossible to predict the optimum features for a chosen classification technique. 

Different techniques such as statistical classifiers, artificial neural network and artificial 

intelligence can be used for ECG classification. The artificial neural network will be 

used in this project to do the ECG classification. Neural networks are especially useful 

for classification function, which are tolerant of some imprecision if plenty of training 

data is available. If there are enough training data and sufficient  computing resources 

for a neural network, it is possible to train a feed-forward neural network to perform 

almost any signal classification solution.  

 

Generally, the ECG is one of the oldest and the most popular instrument-bound 

measurements in medical applications. It has followed the progress of instrumentation 

technology. Its most recent evolutionary step, to the computer-based system, has 

allowed patients to wear their computer monitor or has provided an enhanced, high 
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resolution ECG that has opened new scene of ECG analysis and interpretations (Carr J. 

J. and John M.Brown J. M., 1998). 

 
1.1 The Heart function and ECG 
 

The heart contains four chambers and several one-way valves as shown in Figure 1.2. A 

wall or septum divides the heart into left and right sides, in a double pump 

configuration. Each side is then further divided into an upper chamber, the atrium, and a 

lower chamber, the ventricle. The right side of the heart receives de-oxygenated blood 

from the venous systems, which is then pumped to the lungs via the pulmonary loop, 

where the carbon dioxide in the blood is exchanged for oxygen. The left side of the 

heart receives the oxygenated blood from the lungs and pumps it into the systemic loop 

for distribution throughout the body. 

 

The contraction of the various muscles of the heart enables the blood to be pumped. 

While the myocardial muscle cells can contract spontaneously, under normal conditions 

these contractions are triggered by action potentials originating from pacemaker cells 

situated in two areas of the heart – the Sino-Atrial (SA) and Atrio-Ventricular (AV) 

nodes.  The SA pacemaker cells can spontaneously generate action potentials at 60-80 

times per minute, but are themselves under the control of the sympathetic and 

parasympathetic nervous system. The SA node is generally the site to trigger the action 

potential for a heartbeat, but the AV node can take over this role if for some reason the 

SA node fails. 

 
 

Figure1.2 The Structure of the heart 
 

The normal cycle of a heartbeat has the following sequence of events: 
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a) The SA node generates an action potential, which spreads across both atria. 

b) This spreading action potential results in the simultaneous contraction of the 

left and right atria. 

c) This action potential is also passed to the AV node via the inter-nodal 

conducting fibres, taking about 40 msec.  

d) During the contraction of the atria, blood from the atria is pushed to the 

respective ventricle. 

e) The AV node’s own action potential is triggered by the action potential 

arriving from the SA node. The AV action potential is spread to the ventricles 

via further conducting fibres, resulting in a delay of about 110 msec, which is 

sufficient time to ensure that the atrial contraction has finished.  

f) The AV action potential triggers both ventricles to contract and push blood 

into the arterial system. The left ventricle supplies the systemic arterial system 

while the right ventricle supplies the pulmonary system where the blood is 

oxygenated by the lungs.  

g) All muscles of the heart then relax and blood continues to flow due to the 

elastic recoil of the arterial walls. During this period both atria and ventricles fill 

with blood as it returns from the body via the venous system. A series of one-

way valves at the input and outputs of the atria and ventricles determine the 

direction of blood flow.   

 

1.2 Electrocardiography 
 
The various propagating action potentials within the heart produce a current flow, which 

generates an electrical field that can be detected, in significantly attenuated form, at the 

body surface, via a differential voltage measurement system. The resulting 

measurement, when taken with electrodes in standardised locations, is known as the 

electrocardiogram (ECG). The ECG signal is typically in the range of  and 

requires a recording bandwidth of 0.05 to 150Hz. 

mv2±

 

The ECG is a graphic representation of the electrical activity of the heart’s conduction 

system recorded over a period of time. Under normal conditions, ECG tracings have a 

very predictable direction, duration, and amplitude. Because of this, the various 

components of the ECG tracing can be identified, assessed, and interpreted as to normal 

or abnormal function. The ECG is also used to monitor the heart’s response to the 

therapeutic interventions. Because the ECG is such a useful tool in the clinical setting, 

 4



the respiratory care practitioner must have a basic and appropriate understanding of 

ECG analysis. The essential knowledge components required for a systematic 12-ECG 

interpretation are discussed in the following chapter (Jardins T. D., 2002). 

 

1.2.1 The standard 12 ECG system  
 

The standard 12 ECG systems consist of four limb electrodes and six chest electrodes. 

Collectively, the electrodes (or leads) view the electrical activity of the heart from 12 

different positions, 6 standard limb-leads and 6 pericardial chest-leads showed in 

Table1.1 (Jardins T. D., 2002). Each lead:  

(1) Views the electrical activity of the heart from a different angle, 

(2) has a positive and negative component, and 

(3) monitors specific portions of the heart from the point of view of the positive 

electrode in that lead. 

 

 

Table 1.1 ECG lead system. Source:(Jardins T. D., 2002) 

Standard Leads Limb Leads Chest Leads 
Biopolar Leads Unipolar Leads Unipolar Leads 

Lead I 
Lead II 
Lead III 

AVR 
AVL 
AVF 

V1 
V2 
V3 
V4 
V5 
V6 

 
The explanation of this three lead system will be in the development history of the ECG 

diagnostic system. 

 
The ECG, over a single cardiac cycle, has a characteristic morphology as shown in 

Figure 1.3 comprising a P wave, a QRS complex and a T wave. The normal ECG 

configurations are composed of waves, complexes, segments, and intervals recorded as 

voltage (on a vertical axis) against time (on a horizontal axis). A single waveform 

begins and ends at the baseline. When the waveform continues past the baseline, it 

changes into another waveform. Two or more waveforms together are called a complex. 

A flat, straight, or isoelectric line is called a segment. A waveform, or complex, 

connected to a segment is called an interval. All ECG tracings above the baseline are 
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described as positive deflections. Waveforms below the baseline are negative 

deflections.  

 

 

 
 

Figure 1.3 The Human ECG signal over one cardiac cycle 
 

1.2.2 The P wave 
 

The propagation of the SA action potential through the atria results in contraction of the 

atria (depolarisation), producing the P wave. The magnitude of the P wave is normally 

low (50-100uV) and 100 msec in duration. 

 

1.2.3 The PR interval 
 

The PR interval begins with the onset of the P wave (Pi) and ends at the onset of the Q 

wave (Qi). It represents the duration of the conduction through the atria to the 

ventricles. Normal measurement for PR interval is 120ms-200ms. It is shown in Figure 

1.4. 

 

 
 

Figure 1.4 PR Interval 
 

The PR Segment begins with the endpoint of the P wave (Pt) and ends at the onset of 

the Q wave (Qi). It represents the duration of the conduction from the atrioventricular 
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node, down the bundle of its end through the bundle branches to the muscle. It is shown 

in Figure 1.5. 

 

 
 

Figure 1.5 PR Segment 
 

1.2.4 The QRS complex 
 

The QRS complex corresponds to the period of ventricular contraction or depolarisation. 

The atrial repolarisation signal is swamped by the much larger ventricular signal. It is 

the result of ventricular depolarisation through the Bundle Branches and Parkinje fibre. 

The QRS complex is much larger signal than the P wave due to the volume of 

ventricular tissue involved, although some signal cancellation occurs as the waves of 

depolarisation in the left and right sides of the heart move in opposite directions. If 

either side of the heart is not functioning properly, the size of the QRS complex may 

increase. As shown in Figure 1.6. 

QRS can be measured from the beginning of the first wave in the QRS to where the last 

wave in the QRS returns to the baseline. Normal measurement for QRS is 60ms-100ms.  

 

 
 

Figure 1.6 QRS Duration 
 

1.2.5 The ST segment 
 

The ST segment represents the time between the ventricular depolarisation and the 

repolarisation. The ST segment begins at the end of the QRS complex (called J point) 

and ends at the beginning of the T wave. Normally, the ST segment measures 0.12 

second or less. 

The precise end of depolarisation (S) is difficult to determine as some of the ventricular 

cells are beginning to repolarise. It is shown in Figure 1.7. 
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Figure1.7 ST Segment 
 

1.2.6 The T wave 
 

The T wave results from the repolarisation of the ventricles and is of a longer duration 

than the QRS complex because the ventricular repolarisation happens more slowly than 

depolarisation. Normally, the T wave has a positive deflection of about 0.5mv, although 

it may have a negative deflection. It may, however, be of such low amplitude that it is 

difficult to read. The duration of the T wave normally measures 0.20 second or less. 

 

1.2.7 The QT interval 
 
The QT interval begins at the onset of the Q wave (Qi) and ends at the endpoint of the T 

wave (Tt), representing the duration of the ventricular depolarisation/repolarisation 

cycle. 
 
 

 
 

Figure 1.8 QT Interval 
 

The normal QT interval measures about 0.38 second, and varies in males and females 

and with age. As a general rule, the QT interval should be about 40 percent of the 

measured R-R interval. The QT interval is shown in Figure 1.8. 

 

1.2.8 Summary 
 

Table 1.2 below provides approximate values for the duration of various waves and 

intervals in the normal adult ECG. 

 

 8



 

Table 1.2 Duration of waves and intervals in a normal adult human heart 

 
Parameter Duration (Sec) 

Intervals  
P-R interval 0.12-0.20 
Q-T interval 0.30-0.40 

Waves  
P wave duration 0.08-0.10 
QRS duration 0.06-0.10 

 

In the normal rhythm, the PR interval should not exceed 0.20 second. The QRS duration 

should not exceed 0.10 second. The P wave duration should not exceed 0.10 second. 

The T wave should be at least 0.20 second wide. A heartbeat rate between 60 and 100 is 

considered "normal," so the R-R interval should be between 0.6 and 1 second (Dubowik 

K., 1999).  

 

1.3 Heart problems in this research 
 

Changes from the normal morphology of the electrocardiogram can be used to diagnose 

many different types of arrhythmia or conduction problems. The electrocardiogram can 

be split into different segments and intervals, which relate directly to phases of cardiac 

conduction; limits can be set on these to diagnose abnormality. The physician normally 

uses the ECG and other factors to determine the gross condition of the heart. 

 

There are a lot of heart problems, which can be diagnosed from different ECG 

waveforms. This project aims at classifying 5 different ECG waveforms from the 

database. They are: Normal (N), paced beats (P), right bundle branch block (R), atria 

premature beat (A) and fusion of paced and normal beats (F). They will be explained as 

follows (Wartak J., 1978). 

 

1.3.1 Paced beats 
 

This is the artificial beat from the device called pacemaker. A pacemaker is a treatment 

for dangerously slow heart beats. Without treatment, a slow heart beat can lead to 

weakness, confusion, dizziness, fainting, shortness of breath and death. Slow heart beats 

can be the result of metabolic abnormalities or occur as a result of blocked arteries to 
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the heart's conduction system. These conditions can often be treated and a normal heart 

beat will resume. Slow heart beats can also be a side effect of certain medications in 

which case discontinuation of the medicine or a reduction in dose may correct the 

problem. 

 

1.3.2 Right bundle branch block 
 

Right bundle branch block (RBBB) can be suggested by the following ECG characters: 

1) The QRS duration between 0.10 and 0.11sec (Incomplete RBBB) or 0.12sec. or 

more (complete RBBB); 

2) Prolonged ventricular activation time or QR interval (0.03sec. or more in V1-V2); 

3) Right axis deviation. 

Incomplete RBBB often produce patterns similar to those of right ventricular 

hypertrophy. The ECG pattern of RBBB is frequently associated with ischemic, 

hypertensive, rheumatic and pulmonary heart disease, right ventricular hypertrophy and 

some drug intoxication; occasionally it may be found in healthy individuals. 

 

1.3.3 Atrial premature beat (extrasystoles) 
 

Occasionally, a rhythm may be interrupted by impulses originating outside of the SA 

node. These impulses occur before a normal SA discharge take place, spread throughout 

the heart and, if the myocardium is not refractory, they cause it to contract prematurely. 

Extrasystoles originate either above (supraventricular) or below (ventricular) the 

atrioventricular node. 

Extrasystoles may occur individually as rare of frequent events or in short or long runs. 

An extrasystole may be coupled with each normal beat (bigeminy) or each normal beat 

may be followed by two extrasysoles (trigeminy) or more extrasystoles.   

 

1.3.4 Fusion of paced and normal beats 
 

Ventricular fusion beats occur when impulses from an ectopic ventricular focus and 

supraventricular pacemaker simultaneously activate the ventricular pacemaker 

simultaneously activate the ventricules; the resulting QRS complex is of shorter 

duration as compared to those of ventricular origin. 
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Ventricular tachycardia is caused by rapid and regular discharge in an ectopic focus in 

any portion of the ventricular myocardium. Consequently, the ECG shows the following 

characteristic features: 

1) A heart rate between 140 and 200 per minute; occasionally the rate may be 

slightly slower or faster; 

2) Wide and bizarre QRS complexes; 

3) Regular or slightly irregular RR intervals; 

4) P waves of sinus or atrial origin occurring at a slower rate (60-14); 

5) A P wave bears no fixed relationship to the QRS complex. 

Ventricular tachycardia has a premature onset and its termination is followed by a 

pause. When the rate is below 150 per minute, the tracing may show ventricular capture 

beats or ventricular fusion beats characterised by a narrow QRS complex. 

 

1.4 Development of the ECG diagnostic system 
 

1.4.1 The development history 
 
Kolliker and Mueller (Bronzino D. J. et al., 2000)using frogs discovered electric activity 

related to the heartbeat. Donder recorded the frog’s heart muscle twitches, producing the 

first electrocardiographic signal. Waller originally observed the ECG in 1889 (Waller 

A. D., 1889) using his pet bulldog as the signal source and the capillary electrometer as 

the recording device. In 1903, Einthoven (D.Bronzino, 2000) enhanced the technology 

by employing the string galvanometer as the recording device and using a human 

subject with a variety of cardiac abnormalities. 

 

Traditionally, the differential recording from a pair of electrodes in the body surface is 

referred to as a lead. Einthoven (D.Bronzino, 2000) defined three leads numbered with 

the Roman numerals II, III, and I. They are defined as: 

 

Lead RALA VVI −=                                                             (1.1) 

Lead RALL VVII −=                                                            (1.2) 

Lead LALL VVIII −=                                                           (1.3) 

 

where the subscript RA=right arm, LA=left arm, and LL=left leg. Because the body is 

assumed purely resistive at ECG frequencies, the four limbs can be thought of as wires 

 11



attached to the torso. Lead I could be recorded from the respective shoulders without a 

loss of cardiac information. The relationship of them is: I=I+III. The lead system 

presented in this research is largely focused on processing a modified limb II (MLII) 

obtained by placing the electrodes on the patient chest (Moody G. and Mark R., 1992). 

 
 

Figure 1.9 Development procedure of the 12-lead ECG 

 

Not long after Einthoven described his string galvanometer, efforts were begun in the 

United Stated to create an electrocardiograph that used vacuum tubes. Between 

introduction of the string galvanometer and the hot stylus recorder for ECG, attempts 

were made to create direct inking ECG recorders. Despite the instant availability of 

inked recording of the ECG, those produced by the string galvanometer were superior, 

and it took some time for a competitor to appear. Such an instrument did appear in the 

form of the hot stylus recorder. 

 

In 1933 Wilson added the concept of a “unipolar” recording, where tying the three 

limbs together creates a reference point and averaging their potentials so that individual 

recording sites on the limbs or chest surface would be differentially recorded with the 

same reference point. 
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However, from the mid-1930s until today, a standard 12-lead ECG system comprises 3 

limb leads, 3 leads in which the limb potentials are referenced to a modified Wilson 

terminal, and 6 leads placed across the front of the chest and referenced to the Wilson 

terminal. Figure1.9 shows the development procedure of the 12-lead ECG and the 3-

lead systems as were indicated in Table1.1. 

The final step toward modern electrocardiography was the introduction of the hot stylus 

recorder by Haynes (Haynes J. R., 1936) of the Bell Telephone Laboratories in New 

York. Following the end of World War II, vacuum tube electrocardiographs with heated 

stylus recorders became very popular and are still in use today.The vectorcardiogram 

uses a weighted set of recording sites to form an orthogonal xyz lead set, providing as 

much information as the 12-lead system, but with fewer electrodes. Cardiac surface 

mapping uses many recording sites (>64 electrodes) arranged on the body so that the 

cardiac surface potential can be computed and analysed over time. Other subsets of the 

12 lead ECG are used in limited mode recording situations such as the tape recorded 

ambulatory ECG (usually 2 leads) or intensive care monitoring at the bedside (usually 1 

or 2 leads) or telemeter within regions of the hospital from patients who are not 

confined to bed (1 lead). 

 

Automated ECG interpretation was one of the earliest uses of computers in medical 

applications. This was initially achieved by linking the ECG diagnostic machine to a 

centralised computer via phone lines or computer network. The modern ECG machine 

is completely integrated with an analogue front end, a high-resolution analogue to 

digital converter and a microcomputer (Bronzino D. J. et al., 2000).  

 

1.4.2 Computerised ECG interpretation 
 

Application of the computer to the ECG for machine interpretation was one of the 

earliest uses of computers in medicine (Jenkins J. M., 1981). Of primary interest in the 

computer-based systems was replacement of the human reader and elucidation of the 

standard waves and intervals. Originally this was performed by linking the ECG 

machine to a centralised computer via phone lines or computer network. The modern 

ECG diagnostic machine is completely integrated with an analogy front and end, a 12-to 

16-bit analogy to digital (A/D) converter, a central computational microprocessor, and 

dedicated input and output (I/O) processor.  
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The above-mentioned systems can compute a measurement matrix derived from the 12 

lead signals and analyse this matrix with a set of rules (such as neural network) to obtain 

the final set of interpretive statements (Pryor T. A. et al., 1980). 

 
Figure 1.10.The ECG measurements that can be made with computer-based algorithm 

 

Figure1.10 (Berbari J. E., 2000) shows the ECG of a heartbeat and the types of 

measurement that might be made on each of the component waves of the ECG and used 

for classifying each beat type and subsequent cardiac rhythm. The depiction of the 12 

analogy signals and this set of interpretive statement form the final output,  are shown in 

Figure 1.11 (D.Bronzino, 2000). 

 

 
 

Figure 1.11 An example of an interpreted 12-lead ECG 
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The physician will over-read each ECG and modify or correct those statements, which 

are deemed inappropriate. The larger hospital based system will record this correction 

and maintain a large database of all ECGs accessible by any combination of parameters. 

There are hundreds of interpretive statements from which a specific diagnosis is made 

for each ECG, but there are only about five or six major classification groups for which 

the ECG is used. The first step is analysing an ECG requirement determination of the 

rate and rhythm for the atria and ventricles. Included here would be any conduction 

disturbances either in the relationship between the various chambers or within the 

chambers themselves. Then one can proceed to identify features that  relate to the events 

that would occur with ischemia or an evolving myocardial infarction (Bronzino D. J. et 

al., 2000). 

 

1.5 Aims and Objectives 
 

The objectives of this research are: 

• To carry out research into computerised ECG signal diagnostic systems. 

• To design the desirable digital filter for the ECG noise removal using signal 

processing tools. 

• To find the efficient features of the ECG signal. 

• To use neural networks to do signal classification. 

• To make suggestions on the future improvement of the experiment and 

development of the system into a remote control diagnostic system. 

 

My contributions to this project can be listed as follows: 
 

• To find a suitable method for the ECG diagnostic using Matlab environment. 

• To find suitable features for improving the performance of diagnosis. 

• To find the best neural network architecture for the ECG signal classification. 

 

1.6 Thesis Organisation 
 

The thesis is divided into 5 chapters. The rest of the thesis is organised as follows: 

 

Chapter 1 is the introduction of the thesis. It describes the physiology of the normal 

heart condition and heart problems related with the ECG classification. It also gives the 
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introduction of the ECG analysis history, development and computerised ECG 

interpretation. 

 

Chapter 2 provides a brief overview of the background and theory of the research. The 

ECG signal analysis literature review and the main steps of the ECG classification are 

presented. 

 

Chapter 3 is the method of this research project, which includes the ECG analysis 

procedures and tools are discussed. An introduction to Matlab experiment environment 

and signal processing and neural network toolboxes of Matlab, and MIT/BIH ECG 

database is presented. The experiments are based on the signal processing and artificial 

neural network techniques. The procedure, which includes signal pre-processing, QRS 

complex, efficient features extracted from the ECG waveform and the classification by 

the neural network are further discussed in relation to the employed experimental 

techniques. 

 

Chapter 4 is the results and discussion of the experiments. The results and discussions 

based on the experiments from the Matlab toolbox, which include: the experiments of 

Signal pre-processing, QRS detection algorithm, ECG feature extraction and Neural 

Network classification results. 

 

Chapter 5 is the conclusion of the project and also give the suggestion of the future 

works such as the improvement of the experiment and the on-line or tele-diagnostic of 

the ECG instrumentations.  
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Chapter 2 

Background and Theory of Experiments 

 

 
This chapter presents the theoretical background and theory of experiments in signal 

pre-processing, QRS detection, QT interval, ST segment analysis, ECG feature 

extraction and neural network classification.  

 

2.1 Signal Pre-processing 
 

It is to be expected that any ECG recognition system will have to operate in a noisy 

hospital environment. The ECG signal is normally corrupted with different types of 

noises. Often the information cannot be readily extracted from the raw signal, which 

must be processed first for a useful result. 

2.1.1 Noise in the signal 
 

There are many sources of noise in a clinical environment that can degrade the ECG 

signal. A noisy ECG signal extracted from the MIT/BIH database is shown in Figure 

2.1. 

 
 
 

Figure 2.1: Typical ECG signal with noise 
 
The common sources of ECG noise are: 

• Power line interference,  

• Muscle contraction noise, 

• Electrode contact noise, 

• Patient movement,  
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• Baseline wandering and ECG amplitude due to respiration, 

• Instrumentation noise generated by electronic devices used in signal processing, 

and  

• Electrosurgical noise, and other, less significant noise resource.  

A brief description of these noise signals will be discussed as follows (Friesen G. M. 

and Jannett C. T. et al., 1990): 

  

1) Power line interference  

Power line interference consists of 50 Hz pickup and harmonics, which can be 

modelled as sinusoids and combination of sinusoids (Furno G. S. and Tompkins W. 

J., 1983). Typical parameters: Frequency content-50 Hz (fundamental) with 

harmonics; Amplitude-up to 50 percent of peak-to-peak ECG amplitude. 

 

2) Muscle contraction noise, 

Muscle contraction noise causes artificial milivolt-level potentials to be generated. 

The baseline electromygram is usually in the microvolt range and therefore is usually 

insignificant. Typical parameters: Standard deviation-10 percent of peak-to-peak 

ECG amplitude; Duration-50 ms; Frequency content-dc to 10000 Hz. 

 

3) Electrode contact noise, 

Electrode contact noise is transient interference caused by loss of contact between 

the electrode and skin, which effectively disconnects the measurement system from 

the subject. Typical parameters: Duration-1s; Amplitude-maximum recorder output; 

frequency-50 HZ time constant-about 1s. 

 

4) Patient movement,  

Patient movements  are transient (but not step) baseline changes caused by  

variations in the electrode skin impedance with electrode motion. Typical 

parameters: Duration-100-500 ms; amplitude-500 percent of peak-to-peak ECG 

amplitude. 

 

5) Baseline wandering and ECG amplitude due to respiration, 

The drift of the baseline with respiration can be represented as a sinusoidal 

component at the frequency of respiration added to the ECG signal. Typical 
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parameters: Amplitude variation-15 percent of peak-to-peak ECG amplitude; 

Baseline variation-15 percent of p-p ECG amplitude variation at 0.15 to 0.3 Hz 

 

6) Instrumentation noise generated by electronic devices used in signal processing, 

and artifacts generated by electronic devices in the instrumentation system. 

 

7) Electrosurgical noise,  

Electrosurgical noise completely destroys the ECG and can be represented by a large 

amplitude sinusoid with frequencies approximately between 100 kHz and 1 MHz. 

Typical parameters: Amplitude-200 percent of peak-to-peak ECG amplitude; 

Frequency content-Aliased 100 kHz to 1 MHz; Duration-1-10s. 

 

2.1.2 Signal processing and filters 
 

Signal processing can be defined as the manipulation of a signal for the purpose of 

extracting information from the signal, extracting information about the relationship of 

two (or more) signals, or producing an alternative representation of the signal. Most 

commonly the manipulation process is specified by a set of mathematical equations, 

although qualitative or “fuzzy” rules are equally valid (Bruce N. E., 2001). 

 

There are numerous specific motivations for signal processing, but many fall into the 

following categories:  

(1) To remove unwanted signal components that are corrupting the signal of interest;  

(2) To extract information by rendering it in a more obvious or more useful form;  

(3) To predict future values of the signal in order to anticipate the behaviour of its 

source.  

 

The first motivation clearly comprises the process of filtering to remove noise; most 

methods of signal processing implicitly provide some basis for discriminating desired 

from undesired signal component. 

 
In some proposed signal processing methods (Hosseini H. G. et al., 1998b), digital 

filters can be designed and applied to ECG signals for noise cancellation. An adaptive 

filter is a digital filter with self-adjusting characteristics and in-built flexibility. In most 

cases where there is a spectral overlap between the signal and noise or if the band 

 19



occupied by the noise is unknown or varies with time the fixed coefficient filter must 

vary and cannot be specified in advance. 

 

Adaptive filtering techniques are an effective method in cancelling most interference 

polluting the ECG signal. An adaptive self-tuning filter structure was selected for 

minimising noise. This filter uses the least mean square (LMS) algorithm. The LMS 

algorithm was incorporated into Matlab software environment. The use of the graphical 

and interactive programming environment of Matlab enables viewing of the result of 

applying two stages of adaptive filter on noisy ECG signal. It is possible to decrease the 

computational load of LMS algorithm by using the FFT command and frequency 

domain implementation of a block of data instead of processing one sample at a time. 

 

An alternative noise cancellation method is bandpass filtering. The bandpass filter 

proposed by Lo (Lo T. Y. and Tang P. C., 1982) was selected for noisy removal. This 

filter is the combination of a lowpass and highpass filter. A lowpass filter was 

implemented with the first side-lobe zero amplitude response placed at 50 Hz. This filter 

with a cutoff frequency at about 18 Hz can easily remove noise and other less important 

high-frequency components of the ECG signal. The cutoff frequency of the highpass 

filter is at about 1 Hz. 

 

Besides the above-mentioned filters, there are still many other ways for signal pre-

processing, such as filter bank or neural network. Moreover, diagnostic tools must be in 

variant to different noise sources and should be able to detect components of ECG 

signal even when the morphology of the ECG signal varies with respect to time. 

In this project some available algorithm for noise reduction are outlined and a better 

algorithm was selected and tested.  

 

2.2 QRS detection 
 
The QRS complex is the most striking waveform within the electrocardiogram (ECG). 

Since it reflects the electrical activity within the heart during the ventricular contraction, 

the time of its occurrence as well as its shape provide much information about the 

current state of the heart. Due to its characteristic shape, it serves as the basis for the 

automated determination of the heart rate, as an entry point for classification scheme of 

the cardiac cycle, and it is often used in ECG data compression algorithms. In that 
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sense, QRS detection provides the fundamentals for almost all automated ECG analysis 

algorithms (Kohler B.U. et al., 2002). 

The QT interval is one parameter that is needed to receive the maximum attention 

(Sahambi J. S. and Tandon S. N. et al., 2000). Normal QTc length is 420ms, but it 

maybe potential concern if QTc> 450 ms and it may increase the risk of 

tachyarrhythmia if QTc> 500 ms. 

 

The shape of ST segment in the ECG is another important indication in the diagnosis of 

heart problem. So, the measurements taken on the ST segment forms another 

predominant factor in the interpretation phase of the ECG (Paul J. S. et al., 1998).  

 

2.2.1 QRS detection algorithms 
 

A large number of QRS detection scheme are described in the literature (Furno G. S. 

and Tompkins W. J., 1983). It is hard to compare all of them. Several considerations 

were used to limit the number of QRS detections schemes to a reasonable cross section 

of different basic techniques described in the literature. The two basic criteria used in 

selection were complexity and performance. Only relatively simple algorithms were 

used (Friesen G. M. and Jannett C. T. et al., 1990). 

 

So, four basic types of algorithms were included in this research. The first three types 

are named by a two letters prefix “AF” for algorithms based on both amplitude and first 

derivative, “FD” for algorithms based on first derivate only, “FS” algorithm utilises 

both first and second derivate. The last one is “median” algorithm. 

 

1) Algorithms based on both amplitude and first derivative (AF1, AF2, and AF3) 

AF1 concept for this QRS detector was derived form the algorithm developed by 

Moriet-Mahoudeaux (Mahoudeaux P. M. et al., 1981). If X(n) represents a one-

dimensional array of n sample points of the synthesised digitised ECG, an amplitude 

threshold is calculated as a fraction of the largest positive valued element of that 

array. A QRS candidate occurs when three consecutive points in the first derivative 

array exceed a positive slope threshold and followed within the next 100 ms by two 

consecutive points which exceed the negative threshold. 
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AF2 algorithm is an adaptation of the analog QRS detection scheme developed by 

Fraden and Neuman (Fraden J. and Neuman M. R., 1980). 

 

AF3 concept was taken from Gustafson (Gustafson D. et al., 1977). The first 

derivative is calculated at each point of the ECG. The first derivative array is then 

searched for points which exceed a constant threshold, then the next three derivative 

values must also exceed the threshold. If these conditions are meet, point i can be 

classified as a QRS candidate if the next two sample points have positive slope 

amplitude products. 

 

2) Algorithms based on first derivate only (FD1 and FD2) 

FD1 algorithm was adapted from the one developed by Menard (Menrad A. et al., 

1981). 

 

FD2 algorithm is a modification of an early digital QRS detection scheme developed 

by Holsinger (Holsinger W. P. et al., 1971). The derivative is calculated for the ECG. 

This array is searched until a point is found that exceeds the slope threshold. A QRS 

candidate occurs if another point in the next three sample points exceeds the 

threshold.  

 

3) Algorithm utilises both first and second derivate (FS1 and FS2) 

FS1 algorithm is a simplification of the QRS detection scheme presented by Balda 

(Balda R.A. et al., 1977). The absolute values of the first and second derivate are 

calculated from the ECG. Two arrays are scaled and then summed. One of the array 

is scanned until a threshold is met or exceeded. Once this occurs, the next eight 

points are compared to the threshold. If six or more of these eight points meet or 

exceed the threshold, the criteria for identification of a QRS are met. 

 

FS2 algorithm was adapted from the QRS detection scheme developed by Ahlstrom 

and Tompkins (Ahlstrom M. L. and Tompkins W. J., 1983). The rectified first 

derivative is calculated from the ECG. Then this first rectified derivative is 

smoothed. The rectified second derivative is calculated. The first smoothed 

derivative is added to the rectified second derivative. The maximum value of this 

array is determined and scaled to serve as the primary and secondary thresholds. The 

array of summed derivative is scanned until a point exceeds the primary threshold. In 
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order to find a QRS candidate, the next six consecutive points must all meet or 

exceed the secondary threshold. 

 

4) Algorithm based on median filter 

A median filter is a non-linear filter for processing digital signal. It is also a good 

selection for QRS detection (Chazal D. P., 1998). 

 

All of the above-mentioned algorithms have limitations. No algorithm expressed in this 

research is clearly superior for all sources of QRS complexes considered. The 

performance of these algorithms was in part attributable to QRS detection. This research 

will use all of them to find a better one for the detecting QRS complexes. 

2.2.2 QT interval and ST segment analysis 
 
        a) QT interval analysis 

QT interval reflects the electrical signal from ventricular depolarisation to 

depolarisation. QTc interval is the QT interval corrected for heart rate. In 

assessing QT interval variability, determination of absolute QT duration is 

relatively unimportant sometimes, but the method must be sensitive to subtle 

changes in QT interval from one beat to the next, as well as relatively insensitive 

to signal noise. The detection and localisation of the QT interval requires the 

detection of onsets and offsets of the QRS complex, the T-wave and J-point. This 

is done after reliable detection of the QRS complex. 

 

         b) ST segment detection: 

The ST segment represents the part of the ECG signal between the QRS complex 

and T wave. Changes in the ST segment may indicate ischaemia caused by 

insufficient blood supply to the heart muscle. Evaluation and depression of the ST 

segment together with T-wave changes indicate that the zone of ischaemia is 

around the applied lead. Therefore, analysis of the ST segment is an important 

task in cardiac diagnosis (Hosseini H.G., 2001). 

 

Some of the most recent literatures in the area of QT interval and ST segment analysis 

are summarised as follows: 
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Beat to beat QT interval variability was measured by automated analysis on the basis of 

256 second records of the surface ECG. A QT variability index (QTVI) was calculated 

for each subject as the logarithm of the ratio of normalised QT variance to heart rate 

variance (Sahambi J. S. and Tandon S. N. et al., 2000). 

 

Another new algorithm which is composed of several steps: pre-processing, QRS 

detection to position beats(Laguna P. et al., 1990), QRS onset and T-wave end 

definition, and selection of possible noisy beats in order to remove them. Algorithm for 

QT value selection is as follows: 

 

12 QRSTQT −=        
RR

QTQTc =                                         (2.1) 

11 QRSTQTP −=       
RR

QTPQTPc =                                        (2.2) 

 

Where RR is the previous R-R interval. T1, T2 is defined as T wave peak, is 

defined as the first detected QRS waveform. QT, QTc, QTP, QTPc and RR 

measurement were obtained from 24-hour holter ECG signal processing. 

1QRS

 

In dynamic measurement of the QT interval, algorithms to automatically estimate the R, 

Q and T fiducial points have been developed and their sensitivity to baseline noise and 

wave morphology fluctuations have been tested on simulated ECGs (Nollo G. and 

Speranza G. et al., 1990). The variability of the QT and RR interval is analysed in the 

time and frequency domain. 

 

An important limitation when using QT as an indirect marker of hypoglycaemia is the 

need to compensate for spontaneous variations in QTc. Calculation of the cumulative 

average and standard deviation is a simple statistical technique used for industrial 

process control. However, in this clinical situation the test cannot accurately 

discriminate between the two conditions. Hypoglycaemia also causes flattening of the T 

wave (Harris N. D. and Ireland R. H. et al., 2001). 

 

In a real-time QT interval measurement method, the first step of data processing 

consisted of band pass filtering using a moving average filter proposed by Ligtenberg 

with a bandpass between 0.6 and 39 Hz in order to remove electromyographic artefact 
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and to avoid baseline wander. After that a function of Spatial Velocity (FSV) was 

computed, point by point, to detect QRS complexes. This step includes two stages: the 

learning phase and the detection phase. QRS width and RR interval were measured; a 

mean value was computed for each one. The QT duration was the difference between 

the T wave offset and the QRS complex onset. The maximum and minimum QT 

intervals as well as its mean value were computed for each five-minute strip (Gonzalez 

R. and Fernadez R. et al., 2000). 

 

Generally, the QT interval is an important indicator for the study of the ventricular 

repolarisation because it is a non-invasive measure of the process. This interval has been 

studied since the beginning of electrocardiology because of the evidence of a 

relationship between QT duration and different pathologies. 

 

Many algorithms have been developed to study the QT interval, but these techniques are 

not considered as standard and research as are looking for better solution. The main 

problem is to define the T wave offset because it can be influenced by noise and 

baseline wonder. 

 

Real time study of the QT interval is difficult for different reasons but is very useful 

while a cardiac patient is monitories in order to study the evolution of his cardiac 

activity after heart attack. 

 

In one approach for ST segment analysis, a software was developed to detect the R 

wave. It can determine sustained capture, and calculate beat by beat and average ST 

level and slope on captured beats by five computer methods (single points, average, 

weighted average, linear least-squares, parabolic least-squares) (Jadvar H. et al., 1989). 

The single points method was given as an example: 

STrestSSlevelST RR _)(_ 6060 −−= −+                               (2.3) 

 

10/)(_ 60100 ++ −×= RRs SSfslopeST                                  (2.4) 

 

where sampling frequency (250Hz), ST point=R+80 ms, PR point=R-60 ms, 

rest_ST = average ST level in the rest ECG, =ECG signal amplitude at the discrete 

time index i in mV, ST level is in mV, ST slope is in mV/s, = R+100 ms. 

=sf

iS

100+RS
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In another approach (Paul J. S. et al., 1998), the ST segment waveform is extracted by 

identifying the J-point and the onset of the ensuing T wave. The fiducial points are 

obtained by separating out the QRS complex and T wave using eigen filters in the DCT 

(Discrete Cosine Transform) domain. The method extracted the ST segment features 

from ECG cycles successfully. Generally, in this research two features from ST segment 

will be analysed and extracted by the exiting algorithm (Hosseini H.G., 2001). 

 

2.3 ECG feature extraction 
 

After pre-processing, the second stage towards classification is to extract features from 

the signals. The features, which represent the classification information contained in the 

signals, are used as inputs to the classifier used in the classification stage. 

 

The goal of the feature extraction stage is to find the smallest set of features that enables 

acceptable classification rates to be achieved. In general, the developer cannot estimate 

the performance of a set of features without training and testing the classification 

system. Therefore, a feature selection is an iterative process that involves trailing 

different feature sets until acceptable classification performance is achieved. 

 

Feature extraction is a key step in most pattern analysis tasks; the procedure is often 

carried out intuitively and heuristically. The general guidelines are: 

• Discrimination: features of pattern in different classes should have significantly 

different values. 

• Reliability: features should have similar values for pattern of the same class. 

• Independence: features should not be strongly corrected to each other. 

• Optimality: some redundant features should be deleted. A small number of 

features are preferred for reducing the complexity of the classifier. Among a 

number of approaches for the task, the principal component analysis has, by far, 

been the most widely used approach. 
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Figure 2.2 ECG feature extraction 
 

In one work by Chazal, 178 features were abstracted from a QRS complex for a 

representative ECG beat. After applying the transforms to the features there were a total 

of 229 transformed features. Methods for calculating these features were determined 

from many existing ECG literatures (Chazal D. P., 1998). 

 

In another work 30 features were extracted for a neural network using a 

backpropagation training algorithm (Pretorius L.C. et al., 1992). These features will be 

the input of the next stage. 

 

With the above-mentioned features, the more the input the more complex will be the 

network structure of the classification. The classification speed will become so slow in 

the normal personal computer that it cannot be accepted in research. To solve this 

problem, important and basic features from ECG waveform will be introduced from the 

introduced literature. Moreover, the compressed form of the signal is added to the 

extracted features to check the improvement of the classification performance in 

classification stage. 

 

The selected features in this research are based on the existing feature extraction 

algorithm (Hosseini H. G. et al., 1999). The ECG features can be divided into two main 

categories: morphological and statistical features. 

 

Figure2.2 illustrates a general indication of the P wave, QRS complex, T wave, and U 

wave as well as the ST segment, P-R and Q-T intervals in a normal ECG cycle. A group 

of important morphological parameters such as: the QRS complex duration, R-R 
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interval, P-R interval, Q-T interval, ST segment, and R wave amplitude can be detected 

by applying different signal processing techniques such as QRS detection, QT interval 

and ST segment analysis. 

 

The ECG features can be extracted from the QRS complex, the ST segment, the 

statistical, and power spectral density (PSD) of the signal. The selected features are 

explained below(Hosseini H. G. et al., 1999): 

 

2.3.1 Morphological feature 
 

2.3.1.1 The QRS complex features 
The QRS duration is one of the main characteristics of this complex and can be 

used in analysing and classifying of the ECG signal. 

 

The QRS area is defined as the area located above the isoelectric line (ISO) and 

between the Q and S points 

 

The R-R interval is the distance between two subsequent QRS complex and 

represent the heart beat rate (HBR). 

 

The PR interval represents the time lag from the start of atrial depolarisation to 

the start of ventricular depolarisation and allows atrial systole to occur.   

 

The R wave amplitude is the amplitude of the R wave. That is the highest 

distance of the height of R wave. 

 

The R-T interval is the intervals between the peaks of QRS complex and the 

consecutive peaks of T waves. It is the time interval from the peak of a ventricular 

depolarisation to the consecutive peak of the ventricular polarisation. 

 

2.3.1.2 The QT interval and ST segment feature 
The Q-T interval is the longest distance between the Q wave and the T wave. 
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The ST segment represents the part of the ECG signal between the QRS complex 

and T wave changes. The analysis of the ST segment is another important task in 

heart conditions diagnosis.  

 

The S point is identified as the first inflection after the R-wave. In normal ECG, 

the S point can be recognised as a relative minimum after the R-wave. Generally, 

it can be recognised by a change in the slope of the ECG signal. The T-wave is the 

inflection after the S point and within 0.75 of the RR interval (Hosseini H. G. et 

al., 1998a).  

 

Three important features from ST segment are introduced which are ST slope, ST 

segment area and ST level. 

The ST slope is the most important feature of the ECG for investigating 

myocardial ischaemia (Hosseini H.G., 2001). 

 

Other important features of the ST-segment are ST segment area and ST level.  

The ST-segment area is the area between the ST-segment and the isoelectric-

level from J to T points.  

 

The ST level is the maximum deviation from the isoelectric level. The isoelectric 

level is determined between the offset of the P-wave and the onset of the Q-wave.  

 

2.3.2 Statistical features 
 

The most basic step to extract statistical of the ECG signal is to take the n pre-aligned 

time sampled values  and form a vector A. )(),...,( 1 ntAtA

 

)](),...,(),([]...,,[ 2121 nn tAtAtAaaaA ==                               (2.5) 

 

)( itA  is a random vector variable due to ECG signal characteristic. This random vector 

A can define a large number of statistical features. Some of these statistical features 

which will be used in this research are discussed: 

 

The expectation or mean of a random vector is one important feature. It is defined by: 

 29



∑
−

=

−=
1

0

1)]([
N

n
nxNnxE                                                    (2.6) 

where E denotes expectation of a time series with data values x(n), n=0,1,…,N-1, and N 

is the number of data points. This parameter can be employed as one of the statistical 

ECG features for classification of cardiac arrhythmia. 

 

Covariance matrix is another important statistical feature which indicates the dispersion 

of the distribution. The variance of the time series x(n) is defined by: 

 

}])({[)](var[ 2MnxEanx −==                                          (2.7) 

 

The autocovariance of x(n) is given by: 

 

]})(][)({[)( MmnxMnxEamC a −+−==                                    (2.8) 

Or  

}])(][)({[)( T
a MnxMnxEamC −−==                                         (2.9) 

Where m denotes the lag in the data points and  is the transpose of the 

matrix 

TMnx ])([ −

])([ Mnx − . 

 

Autocorrelation matrix of x(n) is related to the covariance matrix and contains the same 

amount of information, the autocorrelation matrix of the n-dimensional vector x(n) is 

defined by: 

})()({ TnxnxES =                                                          (2.10) 

The correlation coefficient can be used in place of the autocorrelation to classify the 

selected ECG beats. If C is the covariance matrix, then correlation coefficient form a 

matrix whose (i,j) element is as follows: 

 

),(),(/),(),( jjCiiCjiCjiCC =                                       (2.11) 

 

Identifying the highest cross correlation between a set of stored templates and an 

unknown ECG signal can perform the classification of the ECG signal. The template, 

which has given the maximum cross correlation, would be the match candidate with the 

unknown ECG signal. 
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The PSD features: The PSD of a signal is a measurement of its energy at various 

frequencies. The PSD can be calculated by multiplying the FFT of the signal and its 

conjugate. 

 

The standard deviation (STD) of the QRS complex can be computed from the FFT of 

the QRS complex and its complex conjugate(Hosseini H. G. et al., 1999). 

 

2.3.3 Compressed ECG samples 
 

As introduced in the previous, ECG compression methods have attempted to reduce the 

dimensionality of the ECG data while retaining all clinically significant features 

including the P-wave, QRS complex, and the T-wave. The compressed signal enables 

designers to improve performance of arrhythmia classifier networks for real-time 

processing. A large number of ECG data compression techniques have been proposed in 

the literature (Hamilton P. et al., 1991; Hutchens G. et al., 1990; Nashash H. A., 1995). 

These techniques have been divided into direct, transformation, and parameter 

extraction methods(Nave G. and Cohen A., 1993). 

 

To conclude this paragraph, morphological and statistical features derived from normal 

and abnormal ECG signals are introduced which will be used in this research by the 

existing feature extracting algorithm. The compressed form of the signal is added to the 

extracted features enable us to check the improvement of the classification performance 

in a classification stage.  

 

2.4 Neural network classification 
 
Artificial neural networks (ANN) have been trained to perform complex function in 

various fields of application including pattern recognition, identification, classification, 

speech, vision and control system. 

A neural network is a massively parallel-distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It 

resembles the brain in two respects (Chazal D. P., 1998):  

1) Knowledge is acquired by the network through a learning process, 

2) Inter-neuron connection strengths known as synaptic weights are used to store the 

knowledge.  
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In theory, neural networks can do anything a normal digital computer can do. We can 

train a neural network to perform a particular input leads to a specific target output. 

Such a situation is shown in Figure 2.3 (Demuth H. and Beale M., 2001). There, the 

network is adjusted, based on a comparison of the output and the target, until the 

network output matches the target. Typically many such input/target pairs are used, in 

this supervised learning, to train a network. 

 

 

 
 
 

Figure 2.3: Neural Network adjust system 
 
In practice, neural network have been trained to perform complex function in various 

fields of application. They are especially useful for signal classification. If there are 

enough training examples and enough computing resources it is possible to train a feed-

forward neural network to perform almost any mapping to an arbitrary level of 

precision. 

 

2.4.1 The Neuron Model and Architectures 

2.4.1.1 The neuron 
The simplest NN is the single layer perceptron. It is a simple net that can decide 

whether an input belongs to one of two possible classes. Figure2.4 displays a 

schematic diagram of a perceptron the output of which is passed through a 

nonlinearity called a transfer function. This transfer function is of different types; 

the most popular is a sigmoidal logistic function. 
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Figure 2.4 Neural Model 

 
A simple description of the operation of a neuron is that it processes the electric 

currents, which arrive on its dendrites, and transmits the resulting electric currents 

to other connected neurons using its axon. The classical biological explanation of 

this processing is that the cell carries out a summation of the incoming signals on 

its dendrites. If this summation exceeds a certain threshold, the neuron responds 

by issuing a new pulse, which is propagated along its axon. If the summation is 

less than the threshold the neuron remains inactive. 
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                                                     (2.12) 

)( jjj ufO θ−=                                                   (2.13) 
 

In these two equations, each set of synapses is characterised by a weight or 

strength of its own. A signal X, at the input of synapse i connected to neuron j is 

multiplied by the synaptic weight . It is important to make a note of the 

manner in which the subscripts of the synaptic weight  are written. The first 

subscript refers to the neuron in question and the second subscript refers to the 

input end of the synapse to which the weight refers. The weight  is positive if 

the associated synapse is excitatory, it is negative if the synapse is inhibitory. 

jiW

jiW

jiW

An adder sums the input signals, weighted by the respective synapses of the 

neuron. 

The amplitude of the output of a neuron limits an activation function. The 

activation function is also referred to as a squashing function in that it squashes 

the permissible amplitude range of the output signal to some finite value. 

 

2.4.1.2 Transfer function 
Many transfer functions have been included in Matlab neural network toolbox. 

The most commonly used functions are log-sigmoid, tan-sigmoid and linear 

transfer functions.  
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Multi-layer networks often use the log-sigmoid transfer function as shown in 

Figure 2.5. 

 

 
Figure 2.5 Log-Sigmoid Transfer function 

 

Math expression: se
y −+

=
1

1                                           (2.14) 

 

Alternatively, multiplayer network may use the tan-sigmoid transfer function as 

shown in Figure 2.6. 

. 

 
 

Figure 2.6 Tan-Sigmoid Transfer Function 
 

Math expression: s
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Occasionally, the linear transfer function purelin is used as shown in Figure 2.7.  

 

 
Figure 2.7:Linear Transfer Function 

 
Math expression: ssfy == )(                                         (2.16) 
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The sigmoid transfer function squashes the input, which may have any value 

between plus and minus infinity into the range of 0 to 1. This transfer function is 

commonly used in back-propagation networks, in part because it is differentiable. 

 

2.4.1.3 Single-layer feed-forward network 
 

 
 

Figure 2.8 Single-layer feed-forward network(Demuth H. and Beale M., 2001) 
 

A layered neural network is a network of neurons organised in the form of layers. 

Figure 2.8 shows the simplest form of a layered network, which has an input layer 

of source nodes that projects onto an output layer of neurons but not vice versa. In 

other words, this network is strictly of a feed forward type. The designation 

'single-layer' refers to the output layer of computation nodes. The input layer of 

source nodes does not count, because no computation is performed there. 

 

A one-layer network with R input elements and S neurons are shown in Figure 

2.8. In this network each element of the input vector p is connected to each neuron 

input through the weight matrix Wp. The ith neuron has a summer that gathers its 

weighted inputs and bias to form its own scalar output n(i). The various n(i) taken 

together form an S-element net input vector n. Finally, the neuron layer outputs 

form a column vector a. It is shown the expression for a at the bottom of the 

Figure. 

 

It is common for the number of inputs to a layer to be different from the number 

of neurons. A layer is not constrained to have the number of its inputs equal to the 

number of its neurons. 
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2.4.1.4 Matrix-vector input 
A neuron with a single R-element input vector, , is shown in Figure 

2.9. The individual element inputs are multiplied by weights, . 

Rppp ,...., 21

Rwww ,12,11,1 ,...,

 

The weighted values are fed to the summing junction. Their sum is simply Wp, 

the dot product of the (single row) matrix W and the vector p. 

 

 
 

Figure 2.9: A neuron with a single R-element input vector (Howard Demuth, 2001) 
 

The neuron has a bias b, which is summed with the weighted inputs to form the 

net input n. This sum, n, is the argument of the transfer function f. 

 

bpwpwpwn RR ++++= ,122,111,1 ...                                (2.17) 

 

A layer of a network is defined in Figure 2.9 shown above. A layer includes the 

combination of the weights, the multiplication and summing operation (here 

realised as a vector product Wp), the bias b, and the transfer function f. The array 

of inputs, vector p, will not be included in or called a layer. 

 

The input vector elements enter the network through the weight matrix W. 
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The row indices on the elements of matrix W indicate the destination neuron of 

the weight and the column indices indicate which source is the input for that 
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weight. Thus, the indices in  say that the strength of the signal from the second 

source to the first (and only) neuron is . 

12W

12W

 

2.4.1.5 Multi-layer feed-forward network 
 

 
 

Figure 2.10 Multi-layer feed-forward network(Demuth H. and Beale M., 2001) 
 

The second class of feed forward neural networks is multi-layer, shown in Figure 

2.10. It may distinguish itself by the presence of one or more hidden layers, whose 

computation nodes are correspondingly called hidden neurons or hidden units. 

The function of the hidden neurons is to intervene between the external input and 

the network output. By adding one or more hidden layers, the network is enabled 

to extract higher-order statistics and is particularly valuable when the size of the 

input layer is large. 

 

Each neuron in the hidden layer is connected to a local set of source nodes that lie 

in its immediate neighbourhood. Likewise, each neuron in the output layer is 

connected to a local set of hidden neurons. Thus, each hidden neurons responds 

essentially to local variations of the source signal. 

 

A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. To distinguish between the weight matrices, 

output vectors and so on, for each of these layers, we will append the number of 

the layer to the names for each of these variables. For instance, the weight matrix 

and output vector for the first layer are denoted as W1 and A1, for the second layer 

these variables are designated as W2, A2 and so on. 
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The network shown above has R1 inputs, S1 neurons in the first layer, S2 neurons 

in the second layer, etc. It is common for different layers to have different 

numbers of neurons. A constant input 1 is fed to the biases for each neuron.  

 

The outputs of each intermediate layer are the inputs to the following layer. Thus 

layer 2 can be analysed as a one-layer network with S1 inputs, S2 neurons, and an 

S1xS2 weight matrix W2. The input to layer 2 is a1, the output is a2. Now that we 

have identified all the vectors and matrices of layer 2 we can treat it as a single 

layer network on its own. This approach can be taken with any layer of the 

network. The layers of a multi-layer network play different roles. A layer that 

produces the network output is called an output layer. All other layers are called 

hidden layers. (Demuth H. and Beale M., 2001) 

 

Multiple layer networks are quite powerful. For instance, a network of two layers, 

where the first layer is sigmoid and the second layer is linear, can be trained to 

approximate any function (with a finite number of discontinuities) arbitrarily well. 

This kind of two-layer network is used extensively in backpropagation neural 

network. 

 

2.4.1.6 Nodes, inputs and layers required 
 

The number of nodes must be large enough to form a decision region, which is as 

complex as required by the given problem. However, it cannot be so large that the 

many weights required cannot be reliably estimated from the available training 

data. No more than three layers are required in perceptron like feed-forward 

networks, because a three-layer network can generate complex decision regions. 

 

The number of nodes in the second layer must be greater than one when decision 

regions are disconnected or meshed and cannot be formed from one convex area. 

The number of second layer nodes required in the worst case is equal to the 

number of disconnected regions in input distributions. The number of nodes in the 

first layer must typically be sufficient to provide three or more edges for each 

convex area generated by every second-layer node. Typically there should be 

more than three times as many nodes in the second as in the first layer. 
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2.4.2 Training Algorithm 
 

2.4.2.1 Backpropagation 
 

Generalising the Widrow-Hoff learning rule to multiple-layer networks and 

nonlinear differentiable transfer function created backpropagationn. Input vectors 

and the corresponding output vectors are used to train a network until it can 

approximate a function, associate input vectors with specific output vectors, or 

classify input vectors in an appropriate way as defined. 

 

Standard backpropagation is a gradient decent algorithm, as is the Widrow-Hoff 

learning rule. The term backpropagation refers to the manner in which the 

gradient is computed for nonlinear multiplayer networks. There are numbers of 

variations on the basic algorithm which are based on other standard optimisation 

techniques, such as conjugate gradient and Newton methods 

 
The backpropagation neural network is a feed-forward network that usually has 

hidden layers, as shown in Figure2.10. The activation function for this type of 

network is generally the sigmoid function. Since the activation function for these 

nodes is the sigmoid function above, the output from each node is given by 

(Hasnain S. K. U. and Asim S. M., 1999) 
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where  is the total input to node i, which is given by: ia
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Note how the weights are indexed. Weight is the weight of the connection 

from node j to node i. Now, as for the perceptron, we will minimise the error in 

the network by using the gradient descent algorithm to adjust the weights. So the 

change in the weight from node j to node i is given by 
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where kE  is the mean square error for the  pattern. The error for a hidden node 

i is calculated from the errors of the nodes in the next layer to which node i is 

connected. This is how the error of the network is backpropagated.   

thK

 

So, putting it all together, the change for weight , where node i is in a hidden 

layer, is given by: 
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(2.22) 

 

 

The changes in the weights of the network, which allow the network to learn, are 

now totally defined. This generalised delta rule for backpropagation neural 

networks defines how the weights between the outputs layer and the hidden layer 

change, and how the weights between other layers change also. This network is 

called backpropagation because the errors in the network are fed backward, or 

backpropagated, through the network. 

 

Generalisation is perhaps the most useful feature of a backpropagation network. 

Since the network uses supervised training, a set of input patterns can be 

organised into groups and fed to the network. The network will “observe” the 

patterns in each group, and will learn to identify the characteristics that separate 

the groups. Often, these characteristics are such that a trained network will be able 

the correct groups, even if the patterns are noisy. The network learns to ignore the 

irrelevant data in the input patterns. 

 

2.4.2.2 Conjugate Gradient Algorithm  
 

The basic backpropagation algorithm adjusts the weights in the steepest descent 

direction (negative of the gradient). This is the direction in which the performance 

function is decreasing most rapidly. Although the function decreases most rapidly 
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along the negative of the gradient, this does not necessarily produce the fastest 

convergence. In the conjugate gradient algorithms a search is performed along 

conjugate directions, which produces generally faster convergence than steepest 

descent directions.  

 

In most of the conjugate gradient algorithms the step size is adjusted at each 

iteration. A search is made along the conjugate gradient direction to determine the 

step size which will minimise the performance function along that line(Demuth H. 

and Beale M., 2001). There are different search functions that are included in the 

toolbox and we will discuss one of them. 

 

          Fletcher-Reeves Update: 

All of the conjugate gradient algorithms start out by searching in the steepest 

descent direction (negative of the gradient) on the first iteration. 

 
00 gP −=                                                             (2.23) 
 

 
A line search is then performed to determine the optimal distance to move along 

the current search direction: 
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Then the next search direction is determined so that it is conjugate to previous 

search direction. The general procedure for determining the new search direction 

is to combine the new steepest descent direction with the previous search 

direction: 
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The various version of conjugate gradient are distinguished by the manner in 

which the constant βk is computed. For the Fletcher-Reeves update the procedure 

is 
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This is the ratio of the norm squared of the current gradient to the norm squared of 

the previous gradient. 

The conjugate gradient algorithm is usually much faster than variable learning rate 

backpropagation. Although the result will vary from one problem to another, the 

conjugate gradient algorithms require only a little more storage than the simpler 

algorithms, so they are often a good choice for networks with a large number of 

weights. 

 

2.4.2.3 Levenberg-Marquardt (TrainLM)  
 

The Levenberg-Marquardt algorithm appears to be the fastest method for training 

moderate-sized feedforward neural network. The Levenberg-Marquardt algorithm 

was designed to approach second order training speed without having to compute 

the Hassian matrix. When the performance function has the form of a sum of 

squares (as is typical in training feedforward networks), then the Hessian matrix 

can be approximated Newton’s method. Newton’s method is faster and more 

accurate near an error minimum, so the aim is to shift towards Newton’s method 

as quickly as possible. 

 

2.4.3 Neural network application in ECG classification 
 

Pattern classification is perhaps the most important application of artificial neural 

network. In fact a large number of different approaches to computerised ECG signal 

classification have been proposed in the literature. 

 

A new neural network called MART (multi-channel adaptive resonance theory) was 

developed by Carpenter and Grossberg. It has been considerably modified with the 

objective of carrying out an adaptive and self-organising classification of multi-channel 

pattern. MART carries out a process that is characterised by on-line and unsupervised 

learning, updating its weights with each QRS that is presented as input data. MART 

uses a non-supervised learning process with regard to the morphologies that are 

presented in the input data, storing a representation of each of them. Another important 

characteristic of MART is the selective evaluation of the beat class differences in each 

channel, as a function of the signal quality (Barro S. M. and Delgado F., 1998). 
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An artificial neural network (ANN) structured as an auto-associator is implemented to 

perform arrhythmia detection because of its capability to reject unknown or ambiguous 

pattern. Both a static and a recurrent ANN approach are implemented in several 

architecture to detect ischemic episodes. While the first approach features an easier 

learning process, the second one is able to learn the input signal evolution even on a 

reduced training set. Several ANN’s structure combined with different pre-processing 

and post-processing techniques are designed and evaluated for arrhythmia classification, 

ischemia detection, and recognition of chronic myocardial diseases (Silipo R. and 

Marchesi C., 1998). Every ANN has been tested and compared with the most common 

traditional ECG analysers on appropriate database. Thus, based on the results, the 

ANN’s approach is shown to be capable of dealing with ambiguous nature of the ECG 

signal. 

 

In another research project, a novel approach to demonstrate the feasibility of having a 

patient-adaptable ECG beat classification algorithm was developed. A self organisation 

map/linear vector quantisation (SOM/LVQ) based approach was presented to illustrate 

that these requirements can be met. (Yu H. H. and Tompkins W. J., 1997). 

 

Another method uses the principle of a Kohonen self-organising feature map and a one 

layer perceptron (Conde T., 1994).  

 

Supervised learning networks based on a decision-based formulation are explored. More 

specifically, a decision based neural network (DBNN) is proposed, which combines the 

perceptron-like learning rule and hierarchical nonlinear network structure (Kung S. Y. 

and Taur J. S., 1995). 

 

Recent results from another application to both simulated and real registers are shown 

and benchmarked with the classical LMS (Least Mean-Square) and normalised LMS 

(NLMS) algorithms. Outcomes indicate that the Finite Impulse Response (FIR) network 

is a reliable method for the fatal ECG recovery (Camps G., 2001). 

 

There are shortcomings associated with all of the above-mentioned techniques. For 

example, some techniques suffer from long processing times, other classifiers may 

depend on the patient ECG waveform characteristics, and a few of the classifiers require 

noise and artifact removal. Moreover, many of the proposed algorithms analyse only 
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one part of the signal and hence detect only one or two abnormalities(Miller A. S. Blott 

B. H. and Hames T. K., 1992). It is observed that there exist more than 40 symbols in 

the MIT/BIH ECG database (Moody G. and Mark R., 1992) to describe the number of 

different waveforms. Current analysers have failed to cluster all abnormalities. 

 

The other common problem of intelligent ECG signal classification is that structural 

complexity grows as the size of the training parameters increases. Moreover, 

performance of the analysers is poor in recognising a specific type of ECG when it 

occurs only rarely in a patient's ECG record. In this research, several neural network 

architectures were designed for comparing their performance to detect and classify up to 

5 different ECG waveforms.  
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Chapter 3 

 

Research Methodology 

 

 
The methods of ECG signal diagnostic involve signal acquisition, noise removal, QRS 

detection, features extraction and artificial neural network (ANN) techniques for signal 

classification. The output can be used for ECG signal classification or making a report 

of the patient’s heart condition. 

 

The experimental procedure is as follows: 

1) ECG signal acquisition 

2) ECG signal pre-processing for noise removal 

3) QRS complex and QT interval detection 

4) Efficient feature extraction for applying to the input of ANN 

5) Neural Network for the classification 

 

In this project the development of an ECG signal analyser using extracted data obtained 

from the MIT/BIH database will be investigated. In the experimental phase with real 

subjects, Labview will be employed for data acquisition. Labview has a number of 

features such as using noise reduction filter and multi-channel data acquisition channel. 

A multi-channel data logger system, which has more channels, can be considered 

instead of Labview. But at this stage the above-mentioned tools will not be used.  

 

3.1 Experimental Tools 

3.1.1 The Matlab Environment 
 
Matlab is a powerful, comprehensive, and easy to use environment for technical 

computations. It provides engineers, scientist, and other technical professionals with a 

single interactive system that integrates numeric computation, visualisation, and 

programming. Matlab includes a family of application specific solutions called 

toolboxes. 
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One of its greatest strengths is that Matlab allows building its own reusable tools. 

Customised special functions and programs can be easily created in Matlab code. 

Biomedical engineers use Matlab in research, design, and manufacturing of medical 

devices and to develop embedded algorithms and systems for medical instrumentation.  

Matlab has several advantages over other traditional means of numerical computing. 

• It allows quick and easy coding in a very high level language. 

• Data structures require minimal attention, in particular, arrays need not be 

declared before first use. 

• An interactive interface allows rapid experimentation and easy debugging. 

• High-quality graphic and visualisation facilities are available. 

• Matlab M-files are completely portable across a wide range of platforms. 

• Toolboxes can be added to extend the system, giving, for example, specialised 

signal processing facilities. 

 

Furthermore, Matlab is a modern programming language and problem-solving 

environment: it has sophisticated data structures, contains built in debugging and 

profiling tools, and supports object oriented programming. These factors make Matlab 

to be an excellent language for teaching and a powerful tool for research and practical 

problem solving.  

 

3.1.1.1 Signal processing toolbox 
 

The Signal Processing Toolbox is a collection of Matlab functions that provides a 

rich, customisable framework for analogy and digital signal processing (DSP). 

Graphical user interfaces (GUIs) support interactive designs and analyses, while 

command-line functions support advanced algorithm development. The Signal 

Processing Toolbox is the ideal environment for signal analysis and DSP 

algorithm development. It uses industry-tested signal processing algorithms that 

have been carefully chosen and implemented for maximum efficiency and 

numeric reliability. Functions are mostly implemented as M-file routines written 

in the Matlab language, giving access to the source code and algorithms. The 

open-system philosophy of Matlab and the toolboxes enables making changes to 

existing functions or adding own experiments. 
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The main features of the signal processing toolbox are as follows(Little J. N. and 

Shure L., 2001): 

• A comprehensive set of signal and linear system models 

• Tools for analogy filter design 

• Tools for finite impulse response (FIR) and infinite impulse response (IIR) 

digital filter design, analysis, and implementation 

• The most widely used transforms, such as fast Fourier transform (FFT) and 

discrete cosine transform (DCT) 

• Methods for spectrum estimation and statistical signal processing 

 

3.1.1.2 Neural Network Toolbox 
 

The Neural Network Toolbox extends the Matlab computing environment to 

provide tools for the design, implementation, visualisation, and simulation of 

neural networks. Neural networks are very powerful tools that are used in 

applications where formal analysis would be difficult or impossible, such as 

pattern recognition and non-linear system identification and control. The Neural 

Network Toolbox provides a comprehensive support for many proven network 

paradigms, as well as a graphical user interface that enables the experiment to 

design and manage the networks. The toolbox's modular, open, and extensible 

design simplifies the creation of customised functions and networks. 

The main features of Neural Network toolbox are as follows (Demuth H. and 

Beale M., 2001): 

• Support for the most commonly used supervised and unsupervised network 

architectures 

• A comprehensive set of training and learning functions 

• Modular network representation, allowing an unlimited number of input setting 

layers, and network interconnections 

• Pre- and post-processing functions for improving network training and assessing 

network performance 

 

3.1.2 Signal acquisition and MIT/BIH ECG database 
 
The source of ECGs included in the MIT-BIH Arrhythmia database is a set of over 4000 

long-term Holter recordings. Approximately 60% of these recordings were obtained 
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from in-patients. The database contains 23 records (numbered from 100 to 124 inclusive 

with some numbers missing) chosen at random from this set, and 25 records (numbered 

from 200 to 234 inclusive, again with some numbers missing) selected from the same 

set to include a variety of rare but clinically important phenomena that would not be 

well-represented by a small sample of Holter recordings. Each of the 48 records is 

slightly over 30 minutes long. 

 

The first group of patients is intended to serve as a representative sample of the variety 

of waveforms and artifacts that an arrhythmia detector might encounter in routine 

clinical use. A table of random numbers was used to select tapes, and then to select half-

hour segments of them. Human experts excluded segments selected in this way only if 

neither of the two ECG signals was of adequate quality for analysis. 

 

Records in the second group were chosen to include complex ventricular, junctional, 

and supraventricular arrhythmia and conduction abnormalities. Several of these records 

were selected because the rhythm, QRS morphology variation, or signal quality might 

be expected to present significant difficulty to arrhythmia detector; these records have 

gained considerable notoriety among database users. The subject was 25 men aged 32 to 

89 years, and 22 women aged 23 to 89 years (Mark, 1992). ECG records of 100, 118, 

232, 104, 114, 217, 106 and 233 from the database will be used in this research. 

 

In conclusion introduction of the method, in the pre-processing stage of ECG signals, 

Matlab was used for removal of noise components. Different Matlab filter functions 

from signal processing toolbox were employed for this purpose. The Matlab filter and 

other functions will also be used for software implementation of feature extraction, 

morphology classification. The neural network toolboxes will conclude the end of this 

period of research. 

 

3.2 Experiment1: Signal Pre-processing 
 

The first experimental method in this research is to extract non-noise signal from ECG 

data coming from a variety of sources. Digital signal processing techniques provide a 

flexible and effective solution. These techniques can be applied to source such as ECG 

data to enhance the quality of bio-signals and help us to detect significant signal events. 
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3.2.1 Filter design and filtering 
 

A filter alters or removes unwanted components from signals. Depending on the 

frequency range that the filters either pass or attenuate, filters can be classified into: 

• Low-pass filter which passes low frequencies but attenuates high frequencies,  

• High-pass filter which passes high frequencies but attenuates low frequencies, 

• Bandpass filter which passes a certain band of frequencies,  

• Band-stop filter, which attenuates a certain band of frequencies. 

 

3.2.1.1 Filter implementation and analysis 
A digital filter’s output y(n) is related to its input x(n) by convolution with its 

impulse response h(n) 
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Matlab toolbox provides a rich and customisable support for the key areas of filter 

design and spectral analysis. It is easy to implement a design technique that suits 

the application, design digital filters directly, or create analogy prototypes and 

discrete them. 

 

3.2.1.2.Filters and transfer functions 
The Z-transform of a digital filter’s output Y(z) related to the z-transform of the 

input X(z) by: 
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Where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are the 

filter coefficients and the order of the filter is the maximum of na and nb. 

Many standard names for filters reflect the number of a and b coefficients present: 

 
• When nb=0(that is, b is a scalar), the filter is an Infinite Impulse Response (IIR). 

• When na=0(that is, a is a scalar), the filter is a Finite Impulse Response (FIR). 
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Filter is implemented as a transposed direct from II structure (Little J. N. and 

Shure L., 2001): 

 
 

 
 

Figure 3.1 Filter structure 
 

Where n-1 is the filter order. This is a canonical form that has the minimum 

number of the delay elements. 

At sample m, filter computes the difference equations: 
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3.2.1.3 Different types of filters (IIR and FIR) 
If the classification method is based on their impulse response, digital filter are 

divided into two classes, infinite impulse response (IIR) and finite impulse (FIR) 

filters. The input and output signals to the filter are related by the convolution 

sum, which is given in equation3.4 for the IIR and in equation3.5 for FIR. 
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The choice between FIR and IIR filters depends largely on the relative advantage 

of the two filter types. Generally: 

Use IIR when the only important requirement is sharp cut-off filters and high 

throughput, as IIR filters, especially those using elliptic characters, will give fewer 

coefficients than FIR. 

Use FIR if the number of filter coefficients is not too large and, in particular, if 

little or no phase distortion is desired (Ifeachor E. C. and Jervis B. W., 1993). 
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3.2.1.4 Median filter 
 

If your data contains outliers, spikes or filers, you can consider a median filter. 

The median filter is based on a statistical, or non-linear algorithm. The advantage 

of the median filter is that it neatly removes outliers while adding no phase 

distortion. In contrast, regular IIR and FIR filters are nowhere near as effective at 

removing outliers, even with high orders. The price paid is speed (Jamal R. and 

Pichlik H., 1998).  

 

The function medfilt1 in signal processing toolbox implements one-dimensional 

median filtering, a non-linear technique that applies a sliding window to a 

sequence. The median filter replaces the centre value in the window with the 

median value of all the points within the window. 

The design of digital filters is an extensive topic whose practical implementation 

is eased considerably by the availability of modern computer software. Often we 

will refer to commands in the Matlab Signal Processing Toolbox that may be 

utilised for designing different type of digital filters.  

The principles and algorithm for designing digital filters and the advantages and 

limitations of various methods in biomedical applications will be discussed in the 

next section. 

 

3.2.2 Different type of filters for use with Matlab 
The signal processing toolbox provides functions that support a range of filter design 

methodologies. They will be introduced as follows. 

3.2.2.1 Filter design steps 
 

In the experiment, we use remez, Fir1, Fir2, Yuelwalk, Butterworth, ellip, 

Chebyshev I and II and median filter to do the signal processing and get the result.  

The design of a digital filter involves five steps (Ifeachor E. C. and Jervis B. W., 

1993): 

• Specification of the filter requirements; 

• Calculation of suitable filter coefficients; 

• Representation of the filter by a suitable structure; 
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• Analysis of the effects of finite word length on filter performance; 

• Implementation of filter in software and/or hardware.  

 
The principles and algorithm for these IIR, FIR and median will be introduced as 

follows: 

3.2.2.2 IIR filters 
 

IIR filter is mainly consisting of Butterworth, Chebyshev I and II, elliptic (Little J. 

N. and Shure L., 2001); 

 

Table 3.1 Matlab functions for IIR filters 

Filter Type Design Function 
Butterworth [b, a]=butter (n, Wn, options) 
Chebyshev type I [b, a]=cheby1 (n, Rp, Wn, options) 
Chebyshev type II [b, a]=cheby2 (n, rs, Wn, options) 
Elliptic [b, a]= ellip (n, Rp, Rs, Wn, options) 

 

 

The above-mentioned IIR filters design lowpass, bandpass, highpass, and 

bandstop digital and analog filters. Different Matlab IIR functions are explained 

as follows: 

 

>>[b,a] = butter(n,Wn) 

Designs an order n lowpass digital Butterworth filter with cutoff frequency Wn. It 

returns the filter coefficients in length n + 1 row vectors b and a. 

 

>>[b,a] = cheby1(n,Rp,Wn) 

Designs an order n lowpass digital Chebyshev filter with cutoff frequency Wn and 

Rp decibels of ripple in the passband. 

 

>>[b,a] = cheby2(n,Rs,Wn) 

Designs an order n lowpass digital Chebyshev type II filter with cutoff frequency 

Wn and stopband ripple R decibels down from the peak passband value. 

 

>>[b,a] = ellip(n,Rp,Rs,Wn) 
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Designs an order n lowpass digital elliptic filter with cutoff frequency Wn, Rp 

decibels of ripple in the passband, and a stopband Rs decibles down from the peak 

value in the passband. 

 

3.2.2.3 FIR filters 
 

FIR filter is mainly consist of Parks-McClellan (remez), fir1, fir2 and Yulewalk. 

 

Table 3.2 Matlab functions for FIR filters 

Filter Type Design Function 
Parks-McClellan (remez) b=remez (n, f, m) 
Fir1 b=fir1 (n, Wn) 
Fir2 b=fir2 (n, f, m) 
Yulewalk b=yulewalk (n, f, m) 

 

 

The above-mentioned IIR filters design lowpass, bandpass, highpass, and 

bandstop digital and analog filters. Different FIR Matlab functions are explained 

as follows:  

 

>> b = remez(n,f,m)  

It returns row vector b containing the n+1 coefficients of the order n FIR filter 

whose frequency-amplitude characteristics match those given by vectors f and m. 

 

>> b = fir1(n,Wn)  

It returns row vector b containing the n+1 coefficients of an order n lowpass FIR 

filter. This is a Hamming-windowed, linear-phase filter with cutoff frequency Wn. 

 

>> b = fir2(n,f,m)  

It returns row vector b containing the n+1 coefficients of an order n FIR filter. The 

frequency-magnitude characteristics of this filter match those given by vectors f 

and m: 

 

>> [b,a] = yulewalk(n,f,m)  
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It returns row vectors b and a containing the n+1 coefficients of the order n IIR 

filter whose frequency-magnitude characteristics approximately match those given 

in vectors f and m. 

 

3.2.2.4 Median filter 
 

y=medfilt1 (x, n) applies an order n, one-dimensional median filter to vector x, y 

is the same length as x; the function treats the signal as if it is 0 beyond the end 

points.  

 

3.2.2.5 Filter implementation 
 

The above-mentioned techniques were implemented using Matlab. The main steps 

in this process comprised of: 

• Loading data from an ASCII file or MAT-file with Matlab’s load command, 

• Applying different filter functions to the loaded signals, 

• Using plot command to draw different results of the filter functions, 

• Choosing the best filters based on their performance. 

• Signal to noise ratio (SNR) calculation for quantitative measurement 

 

3.2.3 SNR calculation for quantitative measurement 
 

The performance of the selected filters will be compared by visual evaluation but also 

need to be evaluated by the quantitative measurements. I calculated signal to noise 

ration (SNR) for the quantitative measurement purposes. The SNR is defined as  

 

)
__
__(log10 10 noiseofsumsqr

signalofsumsqrSNR =                                        (3.6) 

 

The ECG signal without noise can be obtained from MIT/BIH database and various 

percentage of noise will be added. A random function is used to produce the noise 

signal. The selected filter is coming from the better visual result in the experiment. The 

SNR will be calculated by adding the appropriate percentage noise to these filters. This 

is the verification of the visual performance judgement. 
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3.3 Experiment2: QRS complex detection  
 

The second experiment is preparing QRS complex detection, Q-T interval and ST 

segment analysis on the signals. 

3.3.1 The algorithms for QRS complex detection 
 

The QRS complex is a graphical representation of the electrical activity caused by the 

depolarisation of the ventricle mass of the heart. Conventional QRS vector 

cardiographic features were chosen to represent the diagnostic information of the ECG. 

Before extracting the features, it is necessary to isolate the QRS complexes from the rest 

of the ECG recording.  

 

The first step towards this process is to identify the regions in the ECG recording where 

QRS complexes are believed to exist. From a signal-processing perspective, the QRS 

complexes usually contain higher frequencies and larger amplitudes than the rest of the 

signal. Once these complexes are located the next step is to determine the onset and 

offset points for each QRS complex and to identify the component waves of the QRS 

complex. 

 

Algorithm based on first derivate, first and second derivative, amplitude and first 

derivate and median filter were used in the experiments (Friesen G. M. and Jannett C. T. 

et al., 1990): 

 

1) Algorithms based both amplitude and first derivative (AF) 

a) Algorithm AF1 

Let X(n)=X(0), X(1),…X(8191) represent a one-dimensional array of sample points 

of the synthesised digitised ECG. An amplitude threshold is calculated as a fraction 

of the largest positive valued element of that array. 
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The first derivative is calculated at each point of X(n) 
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81901).......1()1()( <<−−+= nnXnXnY                                       (3.8) 

 

A QRS candidate occurs when three consecutive points in the first derivative array 

exceed a positive slope threshold. 

 

b) Algorithm AF2 

A threshold is calculated as a fraction of the peak value of the ECG. 

 

Amplitude threshold=0.4max[(X(n))]    0<n<8191                         (3.9) 

 

The first derivative is calculated at each point of the clipped, rectified array: 

 

Y(2)=Y1(n+1)-Y1(n-1)      1<n<8190                                       (3.10) 

 

A QRS candidate occurs when a point in Y2(n) exceeds the fixed constant 

threshold.  

 

c) Algorithm AF3 

The first derivative is calculated at each point of the ECG. 
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If these conditions are met, point i can be classified as a QRS candidate. 

 

2) algorithms based on first derivate only (FD) 

a) Algorithm FD1 

 

)max(7.0_
)2(2)1()1()2(2)(

datathresholdSlope
nxnxnxnxnY

=
++++−−−−=

       2<n<8189          (3.12) 

 

The first derivative array was searched until a point is found that exceeds the slope 

threshold. The first point that exceeds the slope threshold is taken as the onset of a 

QRS candidate. 
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b) Algorithm FD2 

The first derivative is calculated for the ECG 

 

Y(n)=X(n+1)-X(n-1)    1<n<8190                                           (3.13) 

 

This array is searched until a point is found that exceeds the slope threshold 

Y(i)>0.45. 

A QRS candidate occurs if another point in the next three sample points exceeds the 

threshold 

 

3) Algorithm utilises both first and second derivate 

a) Algorithm FS1 

The absolute values of the first and second derivate are calculated from the ECG. 
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If six or more of these eight points meet or exceed the threshold, the criteria for 

identification of a QRS are met. 

 

b) Algorithm FS2 

The rectified first derivative is calculated from the ECG. 
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In order to find a QRS candidate, the next six consecutive points must all meet or 

exceed the secondary threshold. 

 

4) Algorithm based on median filter 
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A non-recursive median filter with window size 2n+1 is defined as(Chazal D. P., 

1998): 

 

Y(n)=median[y(n-m),…y(n-1), x(n),x(n+1),…x(n+m)]                         (3.16) 

 

Median filters with a window width of 2n+1 have some properties, making them well 

suited to QRS detection 

• They provide non-liner high pass filtering. The amount of smoothing increases 

with the width of the filter window. 

• They do not smear out sharp discontinuities in the input signal, providing the 

duration of the discontinuity is greater than n+1 points long. 

• A signal spike of width n or less will be eliminated. 

 

3.3.2 QT interval and ST segment analysis 
 

a) QT interval analysis: 

Once the QRS onset ( QRSonesetτ ) and T wave offset ( Toffsetτ ) have been detected, the 

QT interval is defined as the time interval between two points: 

This is the longest distance between Q wave and T wave which will be calculated by 

Matlab. 

 

b) ST segment analysis 

The relevant points of the ST segment are indicated in Figure 3.2. The S point is 

identified as the first inflection after the R-wave. In normal ECG, the S point can be 

recognised as the first inflection after the R-wave. In normal ECG, the S point can be 

recognised as a relative minimum after the R wave. The T wave is the inflection after 

the S point and within 0.75 of the RR interval. The T wave peak, which is the 

maximum absolute value, relative to the isoeletric line, can be found between 

J+80ms (J80) and R+400ms. The T point is among the most difficult features to 

identify. If this point is not detected, the J+120ms can be assumed as the position of 

the T point(Hosseini H.G., 2001).  
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Figure 3.2. The relevant ST segment points in ECG signal 

 

In order to extract accurate features from the ST segment, precise detection of the T 

wave is required. This technique is used on the exiting algorithms (Hosseini H.G., 

2001), and will be illustrated in the next experimental method in this research. 

 

3.4 Experiment3: ECG feature extraction 
 

The third stage for ECG signal analysis is to extract efficient features from the signals. 

The features, which represent the classification information contained in the signals, are 

used as inputs to the classifier. 

 

The problem faced in feature extraction is to determine what features are to be used. If 

there are too many features are extracted and used, the training process of the neural 

network will be more complex. On the other hand, if too few features are selected the 

classification information may be insufficient for achieving the acceptable Moreover, 

training of the network will be also difficult and testing results will be poor. In this 

research, a total of 8 features from QRS complex, QT interval and ST segment plus 4 

ECG statistical features and 13 compressed samples will be used. 
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3.4.1 QRS complex features 
 

Matlab was used to calculate QRS duration, R-R, P-R, Q-T intervals and R amplitude 

from ECG waveforms. The FD1 algorithm proposed for QRS complex detection was 

applied to the ECG signal to detect the R-wave. The Q-wave and S-wave were also 

determined by finding a change in the slope of the ECG signal before and after the R-

wave. 

 

The area under the QRS complex was obtained by assuming a triangular shape for this 

area and the QRS duration was calculated using the following equation. 

 

QRS duration = 2x(Area under the QRS complex) / (R-wave amplitude)    (3.17) 

 

The QRS duration is one of the main characteristics of this complex and can be used in 

analysis and classification of the ECG signal. 

 

The QRS area is defined as the area located above the isoelectric line (ISO) and 

between the Q and S points, this area is calculated approximately as shown in the 

following equation: 
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The PR interval represents the time lag from the start of atrial depolarisation to the start 

of ventricular depolarisation and allows atrial systole to occur. 

 

The R-R interval (RR_int) is the distance between two subsequent QRS complexes 

and represents the heart beat rate (HBR). 

 

))int(_/*60( iRRratesampRoundHBR −=                           (3.19) 

 

The R wave amplitude is the amplitude of R wave, which is the highest distance of the 

height of R wave. 
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The R-T interval is the intervals between the peaks of QRS complex and the 

consecutive peaks of T waves. 

3.4.2 QT interval feature 
 

The Q-T interval is the longest distance between Q wave and T wave. 

Once the QRS onset ( QRSonsetτ ) and T wave offset ( Toffsetτ ) have been detected, the QT 

interval is defined as the time interval between two points: 

QRSonsetToffsetQT ττ −=                                                   (3.20) 

 

3.4.3 ST segment features 
 

After detecting the QRS complex and the position of the R-wave, the level and slope of 

the ST segment were calculated. To extract accurate features from the ST segment, 

precise detection of the T wave is required. QRS detection techniques have been applied 

to the detection of the T wave with acceptable performance. The signal interval after the 

QRS complex is tested for a maximum slope. During this process if the maximal slope 

is less than half of that measured for the QR segment of the QRS waveform, it can be 

considered as a T wave; otherwise, it is the next QRS complex. 

 

Accurate detection of the T wave improves the accuracy of the ST segment features. A 

method was developed to detect the location of T waves in the interval between J80 and 

a point located at a 400 ms interval after the R-peak (Hosseini, 1999). The method of 

detecting T waves uses a similar principle to that used for P wave detection and finds 

the first maximum value of the signal in the selected interval. If the R-R interval were 

less than 1.1s, the search for the T wave would be performed in an interval between J80 

and half of the RR interval. This is an extra condition to the algorithm for high heartbeat 

rate signals in order to prevent any error due to the misdetection of the second R wave 

as the T wave. 

Two important features namely ST slope and ST area were used in this research. The 

method of extracting these features from the ST segment is explained as follows 

(Hosseini H.G., 2001): 

The ST slope of the segment parameter can be determined by calculating the difference 

between the amplitude of the staring point of the ST segment (J-point) and its ending 

point (J80). The J-point is defined as the first inflection point after the S point, or may 
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be the S point itself in certain ECG waveforms. The ST area can be calculated by 

summing all sample values between the J and T points after subtracting the isoelectric-

line value from each point. 

 

3.4.4 The Statistical features 
 

A total of four statistical features will be used in this research. They are: 

• Mean or expectation vector, 

• QRS energy, 

• Autocorrelation coefficient, 

• Maximum amplitude of signal histogram. 

 

The expectation vector feature was employed to distinguish between three different 

classes of the ECG signals using two pre-selected thresholds 

as follows:  

THR1 = 0.2MAX(M).                                                (3.21) 

THR2 = 0.7MAX(M).                                                (3.22) 

where M is the expectation vector of the input data.  

 

Other statistical features such as correlation coefficient, autocorrelation were employed 

as a mechanism for computerised cardiac arrhythmia classification. 

 

The PSD features: Two features were extracted based on the PSD calculation. These 

features are: 

• The frequency of maximum energy component in the signal 

• The total energy of each pre-aligned ECG beat. 

 

3.4.5 Compression of the ECG samples 
 

In this research, not only the above-mentioned features were used but compressed ECG 

waveforms were also used to increase the accuracy of the classification. A fixed 52 

sample interval centred at the QRS complex was selected with compression ratio CR = 

4 to form second part of input vectors of the network. This vector contains 13 

compressed ECG samples. 
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The set of 12 extracted features plus 13 compressed samples formed the input vector ith 

N = 25 elements for each heartbeat. Arranging the input vector using this small number 

of features for each heartbeat. Instead of using the whole raw ECG samples (about 360 

sample per heartbeat) decreased the complexity of the classifiers. A list of 25 extracted 

features character and source is shown in Table 3.3: 

 

Table 3.3 25 extracted features used in the research 

Feature Type Source Description 

1 M R, S waves R-S interval 

2 M P, R waves P-R interval 

3 M QRS complex QRS area 

4 M Q, T waves Q-T interval 

5 M R waves R amplitude 

6 M R waves HBR 

7 M ST segment ST-area 

8 M ST segment ST-slope 

9 S QRS complex QRS energy 

10 S ECG waves Auto correlation coefficient 

11 S ECG waves Mean or expectation vector 

12 S Histogram Maximum amplitude of signal histogram 

13-25 C ECG waveform 13 compressed ECG sample 
M: Morphological features 
S: Statistical features 
C: Compressed signals 
 
The size of the input layer of a multi-layer ANN-based network could be determined 

according to the size of input vector, which in this case was equal to 25 neuron nodes. 

The number of the hidden layer neuron nodes consequently could be chosen as small 

enough for fast training and yet sufficiently large to give adequate network accuracy. 

 

Construction of the input vector based on the extracted features and compressed 

information of the signal improved the performance of the ANN-based classifiers. 
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3.5 Experiment4: Neural network for ECG classification 
 

Developing a classifier involves choosing an appropriate classifier model and then using 

the training algorithm to train and then test the input signal to classify them into 

different categories.  

Backpropagation algorithm will be used in this experiment as a training function to train 

feedforward neural networks to solve ECG signal classification problems. 

There are generally four steps in the training process: 

1. Assemble the training data 

2. Create the network object 

3. Train the network 

4. Simulate the network response to new inputs 

The backpropagation training algorithm is an iterative gradient algorithm designed to 

minimise the mean square error between the actual output to a multi-layer feed-forward 

perceptron and the desired output. It requires continuous differentiable non-linearity. 

 

3.5.1 Design a Neural Network 
 

In order to diagnose heart conditions using neural network technique, the most common 

ECG waveforms were selected from the MIT/BIH database. The selected ECG 

waveform which will be used in this project are divided into five categories, namely 

normal (N), paced beats (P), right bundle branch block (R), atrial premature beat (A), 

and fusion of paced and normal beats (F).  

 

Different neural network architectures were designed for detecting and classifying these 

five different ECG waveforms. The performances of different neural network 

architectures were compared for choosing the best architecture. 

A set of 25 object-sensitive ECG features was selected to form the input vector of the 

network. They are shown in Table 3.3. 

Either 12 extracted features or 25 input features (features plus 13 compressed signal) 

were used for minimising the structural complexity of the network. They will also be 

used to compare the performance of the training and testing results of the ANN 

implementation. 
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3.5.1.1.Problem definition 
To achieve clustering of the ECG waveforms into five different classes, the 

number of neurons in output layer should be either 3 or 5. Both were used to 

decide upon analysing the experimental results. A target vector was arranged as 

the desired output for each class. It is a set of Boolean value vectors. 

Accompanying each record in the MIT/BIH database there is an annotation file in 

which each heartbeat has been identified by expert cardiologist annotators. This 

annotated information can be employed for designing the target vector and 

evaluating the classifier performance. 

Based on the size of output vector, the heart conditions were defined as follows 

Table 3.4, Table 3.5: 

 
Table 3.4 The 3 output target vector 

 
Signal Vector Heat condition 

N [1 0 0] Normal 
A [0 1 0] Atrial premature beat 
P [0 0 1] Pace beat 
R [1 1 0] Right bundle branch block 
F [1 0 1] Fusion of paced and normal beats 

 
 

Table3.5 The 5 output target vector 
 

Signal Vector Heat condition 
N [1 0 0 0 0] Normal 
A [0 1 0 0 0] Atrial premature beat 
P [0 0 1 0 0] Pace beat 
R [0 0 0 1 0] Right bundle branch block 
F [0 0 0 0 1] Fusion of paced and normal beats 

 
 

The training and testing data used in this research comes form the MIT/BIH 

database and was extracted by the existing feature extraction algorithm. 

The training data sets contain five classes of ECG waveforms (N, P, R, A, F). 

ECG signal from the MIT/BIH database is pre-processed to form input vectors of 

neural network. Each network structure will use 100 samples to train the network 

for each class. These training data sets contained a total of 641 N, 248 P, 270 R, 

158 A, and 120 F. 

 

The testing data was randomly selected to evaluate the performance of the 

algorithms after all details of the algorithms and parameters had been finalised. 
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The test data sets contain a wide range of ECG waveforms for testing the signal 

classifier network. These test data sets contained a total of 104 N, 236 P, and 115 

R, 104 A, and 101 F beats. 

 

The multi-layer feed-forward backpropagation networks are designed for 

diagnosing the heart conditions by ECG signals. The multi-layer feed-forward 

networks consist of N layers and the transfer function of neurons can be any 

differentiable transfer function such as ‘Log sigmoid’, ‘Hyperbolic sigmoid’ or 

‘Linear’ transfer functions. Weighted input signals apply to the first layer named 

input layer. Each subsequent layer has weighted inputs coming from the previous 

layer. All layers have biases. The last layer is the network output. Each layer’s 

weights and biases are initialised with the specific initialisation algorithm. The 

network training is done with the specific initialisation. The network training is 

done with training function of Gradient Descent with momentum and adaptive 

learning rate Back-propagation. The network performance is measured according 

to the Mean squared Error (MSE) performance function. 

 

A 25- or 12-element input vector is defined as a matrix of input vectors for one 

sample to compare the neural network performance. The input vector is defined 

for each heartbeat and the corresponding element in the target vector is also 

defined with a combination of 1s or 0s to represent each of the class. Each input 

vector will use 100 samples. Output vectors include 3- or 5- vectors. The network 

is required to classify 5 heart conditions by responding with this output vector. 

Each output vector represents one of 5 classes. 

 

To compare the performances of different networks, the same conditions were 

kept in initialising the networks. The same training parameters and learning 

function were also adopted during the training process.  

 

Log sigmoid transfer function was used as the neurons transfer function in 

different layers. It calculates a layer’s output from its net input. 

 

Learning function of Gradient Descent with momentum and bias adjustment was 

used for network learning. Learning occurs according to the defined gradient, 

learning rate, and momentum constant. The weight change matrix dW, for the 
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given neurons was calculated from the neurons’ input P, error E, the weight (or 

bias) W, learning rate Lr, and momentum constant MC according to the learning 

function: 

 

dW = MC * d Wp + ( 1- MC ) * Lr*gW                          (3.23) 

 

where, dWp is the previous weight change matrix. It is stored and read from the 

learning state matrix Lr. gW is the gradient matrix with respect to performance. 

 

3.5.1.2 Training algorithm 
 

The Levenberg-Marquardt backpropagation was used to train the multi-layer feed-

forward backpropagation networks. It is very fast but requires a lot of memory to 

run. For each epoch, if the network performance decreases toward the goal, the 

learning rate is increased. If the performance increases, the learning rate is then 

adjusted and the change, which increased the performance, is not made. Different 

network architectures have been evaluated to find an optimum solution to the 

problem of intelligent ECG signal diagnosis. Among the vast number of network 

architectures, 4 networks were selected to compare and choose a better ECG 

signal classifier. 

 

3.5.2 Architecture 
 

Different network architectures  were used in this research. Table 3.6 shows different 

definitions of the network structures. The main network architectures were NET1, NE2, 

NET3 and NET4. NET1 which consists of three network architectures with 12 inputs, 3 

outputs and hidden layer of 5, 8 and 12 defined as NET1_5, NET1_8 and NET1_12. 

Other networks NET2, NET3 and NET4 have also the same definition method as NET1, 

shown in Table 3.6. 

 67



Table 3.6 The Definition of Neural Network Architecture in this research 

 
Network Input 

layer 
Output  
layer 

Hidden 
layer 

Network 
Definition 

5 NET1_5 
8 NET1_8 

 
NET1 

 
12 

 
3 

12 NET1_12 
5 NET2_5 
8 NET2_8 

 
NET2 

 
12 

 
5 

12 NET2_12 
5 NET3_5 
8 NET3_8 

 
NET3 

 
25 

 
3 

12 NET3_12 
5 NET4_5 
8 NET4_8 

 
NET4 

 
25 

 
5 

12 NET4_12 
 
 

3.5.2.1 Neural Network Architecture 1 (NET1) 
Figure 3.3 depicts a two-layer log-sigmoid/log-sigmoid neural network. It has 12 

inputs to receive 12 extracted ECG features and 3 neurons in its output layer to 

identify 5 classes of heart conditions. Log-sigmoid/log-sigmoid transfer function 

was selected because its output range (0 to 1) is perfect for learning to output 

Boolean values. 
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Figure 3.3 NET1 architecture with 12 inputs and 3 neurons in its output layer 
 

The hidden layer of NET1 was first selected with 5 neurons. This number was 

picked by experience, then changed into 8 and 12 for comparing system 

performance during experiments. In the experiment, these three network structures 

were defined as network NET1_5, NET1_8 and NET1_12.  
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The target vector is a 3-element vector in this case. The network should respond 

with 1s or 0s in the different position of the class presented to the network. Each 

output vector corresponds to one class. A log-sigmoid transfer function was also 

used for hidden layer and output layer. For example, class N (normal) is to be 

represented by a 1 in the first element and 0’s in the other elements. If the heart 

condition is N, the output vector should be [1 0 0]. 

 

3.5.2.2 Neural Network Architecture 2 (NET2) 
Figure 3.4 depicts the flow diagram of the multi-layer back propagation network 

with 12 inputs and 5 neurons in its output layer. A log-sigmoid/log-sigmoid 

transfer function was used for hidden and output layers. The hidden layer first 

used 5 neurons, then changed into 8 and 12 for comparing system performance. In 

the experiment, these three network structures were defined as network NET2_5, 

NET2_8 and NET2_12. 
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Figure 3.4 NET2 architecture with 12 inputs and 5 neurons in its output layer 
 

The target vector is a 5-element vector in this case. Each output vector is 

corresponding to one class. The network should respond with a 1 in the position of 

the class presented to the network. All other values in the output vector should be 

0. For example, class N (normal) is to be represented by a 1 in the first element 

and 0’s in other elements. If the heart condition is N, the output vector should be 

[1 0 0 0 0 0]. 

 

3.5.2.3 Neural Network Architecture 3 (NET3) 
The NET3 showed in Figure 3.5 is similar to that in Figure3.3, but 25 features 

were used for inputs including 12 compress signals from ECG database. Therefore 
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the input vector of neural network is a 25-element vector. The purpose of them is 

to investigate what change the neural network performance will be when input 

elements are increased, and how about diagnosis precision will be changed with 

the compressed signals. In the experiment, these three networks structure were 

defined as network NET3_5, NET3_8 and NET3_12. 

 

The target vector is also 3-element vector in NET3, which is similar to the target 

vector of NET1. 
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Figure 3.5 NET3 architecture with 25 inputs and 3 neurons in its output layer 
 

3.5.2.4 Neural Network Architecture 4 (NET4) 
Figure 3.6 shows NET4 which is similar to that of Figure 3.4. Firstly, its hidden 

layer has 5 neurons and then is changed to 8 and 12 for comparing system 

performance. The target vector is a 5-element vector in this case. The input is a 

25-element vector with 12 features and 13 compressed signals from ECG 

database. In the experiment, this three network structures were defined as network 

NET4_5, NET4_8 and NET_12. 

 

The target vector is an 5-element vector in NET4, which is similar to the target 

vector of NET2. 
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Figure3.6 NET4 architecture with 25 inputs and 5 neurons in its output layer 
 

3.5.3 Initialisation 
 

To compare the performances of different networks, the same condition was kept in 

initialising the networks. The same training parameters and learning function during 

were adopted in training process.  

 

Nguyen-Widrow initialisation algorithm was used in this research. This algorithm 

chooses values in order to distribute the active region of each neuron in the layer evenly 

across the layer’s input space. It generates initial weight and bias values for a layer, so 

that the actived regions of the layer’s neurons will be distributed roughly evenly over 

the input space. The Nguyen-Widrow initialisation algorithm has advantages over 

purely random weights and biases with few neurons wasted (all the neurons are in the 

input space) and the training works faster (each area of the input space has neurons). 

 

3.5.4 Training  
 

The example of the data for training is shown in Figure 3.7 (R.Mark, 1992). 
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Figure 3.7 The training data sample 
 
The Levenberg-Marquardt backpropagation was used to train the multi-layer feed-

forward backpropagation networks. The training data sets were selected from the most 

common ECG waveforms in the MIT/BIH database. 5 classes with 100 samples in each 

were selected to train the networks 

 

Training parameters are chosen delicately. Maximum Epoch was 20000. Minimum 

Gradient limited 0.00001, Goal 0.005. The training networks were done to evaluate the 

performance of the algorithms after all details of the algorithms and parameters had 

been finalised. The training result details are shown in Chapter 4. 

 

3.5.5 Testing:  
 

A testing data example is shown in Figure 3.8 (R.Mark, 1992): 
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Figure3.8: A testing data sample 

 
In order to compare the recognition behaviour of the networks for five ECG classes, 

recognition rate can be defined and used in evaluating the performance of the classifiers. 

The corresponding recognition rates for the selected ECG waveforms were assigned as 

in Table 3.7: 

 

Table 3.7 Recognition rate assigned to relevant ECG waveforms 

 
Average recognition rate ECG 

Nr Normal (N) 
Pr Paced beats (P) 
Rr Right bundle branch block (R) 
Ar Atrial premature beat (A) 
Fr Fusion f paced and normal beats(F) 

 

The first and second test was performed using NET1 and NET2 with 12 basic features 

from 5 ECG classes. The third and fourth test was performed by NET3 and NET4 using 

test signals consist of 12 basic features plus 13 compressed samples. All of the results 

are shown in Chapter 4. 
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Chapter 4 

 
Results and Discussions 

 
 
 

 
4.1 Results and Discussions of experiment1 (pre-processing) 
 
The graphical and signal generation commands in Matlab enable us viewing the results 

of noise cancellation methods applied to ECG signals. An ECG record from MIT/BIH 

database was imported in ASCII format to Matlab environment for the experiments. 

The result of signal processing is based on applying digital filters on the selected ECG 

signal from MIT/BIH database. Based on the experimental results of different filter 

structures, it was found that Remez, Filr1, Fir2, Yulewalk and median filters have a 

better performance in removing noises from the ECG signals. Figures 4.2, 4.3, 4.4, 4.9, 

and 4.10 illustrate the results of the above-mentioned filters to the ECG signals. It was 

found that Butterworth, elliptic, Chebyshev1 and Chebyshev2 filters have poor 

performance in removing noise from the selected ECG signal as shown in Figures 4.5, 

4.6, 4.7, and 4.8. 
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Figure 4.1 The noisy signal selected from MIT/BIH database for the pre-processing 
experiments. 
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Figure 4.2 The result of signal de-noising by remez filter. 
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Figure 4.3 The result of signal de-noising by Fir1 filter. 
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Figure 4.4 The result of signal de-noising by Fir2 filter. 
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Figure 4.5 The result of signal de-noising by Yulewalk filter. 
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Figure 4.6 The result of signal de-noising by median filter. 
 
 
Two types of filters, FIR and IIR, were investigated to remove noise from the ECG 

signal. The remez, fir1 and fir2  belongto FIR type and the Butterworth, elliptic, 

Chebyshev1, Chebyshev2 and Yulewalk belong to IIR filter, One median filter was also 

used. It was found that remez, Fir1, Fir2, Yulewalk and median filters had better 

performances in removing noise from the ECG signals. 

 

Table 4.1 SNR(dB) Calculation for different filters with different noise level 
 

Noise level 

Filter Type 

Noise with  
5%  

Noise with 
 10%  

Noise with 
 20% 

Noise with 
 30% 

Without Filter 31.5301 25.4939 18.3468 14.5969 
Parks-McClellan 
(remez) 

52.1439 52.2261 52.0133 52.1905 

Fir1 54.3288 52.4241 54.1614 54.3352 
Fir2 54.3996 54.4942 54.2321 54.4054 
Yulewalk 59.7589 59.8355 59.5208 59.5901 
Median 66.8339 67.4839 65.7762 65.9782 
 
Among the selected filters, Yulewalk had the best performance. Therefore Yulewalk 

filter will be used in signal processing period in this research. 

 

The performance of the selected filters is compared not only by visual evaluation but 

also by the quantitative measurements. SNR were calculated for the quantitative 
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measurement purposes which is shown in Table 4.1. Yulewalk and median filters had 

better visual results and provided a larger signal to noise ratio. Table 4.1 gives the 

examples of better filters quantitative measurement. SNR can be enhanced from 14 dB 

to 59 dB and 65 dB with the signal de-noising result of Yulewalk and median filter. In 

this project, Yulewalk filter was chosen because its implementation is much easier than 

median filter. For most analysis done using Matlab and the signal processing toolbox, 

IIR filters are the best choice because they give better performance with lower filter 

order. This is confirming the visual performance results we found in signal pre-

processing. 

 

The advantage of the IIR filters is that they have very small coefficient compared with 

FIR filters. Analogue filters can be readily transformed into equivalent IIR digital filters 

meeting similar specifications. This is impossible with FIR filters as they have no 

analogue counterpart. The disadvantage to IIR filters is that their stability cannot be 

guaranteed(Ifeachor E. C. and Jervis B. W., 1993). 

 

The disadvantage of FIR filters is that they often require a much higher filter order than 

IIR filter to achieve a given level of performance. Correspondingly, the delay of these 

filters is often much greater than for an equal performance IIR filter. FIR filters is 

algebraically more difficult to synthesise. 

 

But FIR filters also have some primary advantages which are as follows: 

• They can have exactly linear phase. 

• They are always stable. 

• The design methods are generally linear. 

• They can be realised efficiently in hardware. 

• The filter start up transients has finite duration. 

 

The main difference between FIR and IIR filter is that for FIR filters, the output 

depends only on the current and past input values, whereas for IIR filters, the output 

depends not only on the current and past input values but also on the past output values. 

Among them Yulewalk possessed the best performances in the experiment. This is an 

IIR filter, so in this research IIR filters have better results than FIR filters(Little J. N. 

and Shure L., 2001). 
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Median filter is also another good choice filter for this application and its performance 

is even better than Yulewalk filter according to the result of SNR calculation. 

 
4.2 Results and Discussions of Experiment2 (QRS complex detection) 
 
The input signals in QRS detection were tested with two ECG signals containing 8 and 

40 heartbeats to verify the experimental results. Different algorithms were used in the 

QRS detection. The performance of QRS detection algorithms depends on the threshold 

parameter. The proposed algorithm can detect all of the QRS components correctly by 

selecting a proper threshold value. The graphical results of applying FS1, AF1, AF2, 

AF3, FD1, FD2, FS2 and median algorithms to the QRS detection are illustrated in 

Figures 4.7, 4.8, 4.9 4.10, 4.11, 4.12, 4.13, 4.14. 

 

Based on the experimental results of different algorithms it was found that AF1, FD1, 

FD2 and median algorithms had better performance in QRS detection from the ECG 

signal. Figures 4.8, 4.9, 4.12, and 4.13 illustrate the results of the above-mentioned 

algorithms. It was found that FS1, FS2 and AF3 algorithms had poor performance in 

QRS detection of the selected ECG signal. The results are shown in Figures 4.7, 4.13, 

4.10. 
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Figure 4.7 The result of QRS detection using FS1 algorithm. 
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Figure 4.8 The result of QRS detection using AF1 algorithm. 
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Figure 4.9 The result of QRS detection using AF2 algorithm. 
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Figure 4.10 The result of QRS detection using AF3 algorithm. 
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Figure 4.11 The result of QRS detection using FD1 algorithm. 
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Figure 4.12 The result of QRS detection using FD2 algorithm. 
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Figure 4.13 The result of QRS detection using FS2 algorithm. 
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Figure 4.14 The result of QRS detection using median algorithm. 
 
 

However, FD1 possesses the best performance among the algorithms. The performance 

of QRS detection algorithms also depends on the threshold parameter. Another way of 

thinking improvement of the result is to change the threshold of FD1 algorithm. In order 

to improve the performance of the FD1 algorithm, different thresholds were tried to find 

the best threshold. The initial value of the threshold was 1, but when the threshold was 

enhanced to 1.2, a better result was achieved which can be seen from the Figure 4.15. 

 

 
 

Figure 4.15 The result of QRS detection using improved FS1 algorithm. 
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The QRS detection algorithms were tested with two ECG signals containing 8 and 40 

heartbeats. The QRS pulses were counted correctly with the same number of the input 

of heartbeats. Figure 4.16, 4.17 and 4.18 are the experiment result of the conclusion. 
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Figure 4.16 QRS pulses of FD1 algorithm 
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Figure 4.17 40 ECG cycles for QRS detection 
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Figure 4.18 FD1 algorithm QRS detection using 40 ECG cycles 
 

4.3 Results and Discussions of Experiment 3 (ECG feature extraction) 
 

ECG signal classifier becomes more complex as the number of signal abnormalities 

increase. To overcome this problem, a feature vector containing the following features 

was employed as the input vector for the classifier. This experiment is based on the 

existing feature extraction algorithm (Hosseini, 1999). A total of 12 features were 

extracted as follow: 

Eight Morphology features: 

ST segment area, ST slope, the R-S interval, the R-T interval, the QRS area, QT 

interval, R wave amplitude, and HBR 

 

Four Statistic features 

QRS energy, mean of PSD, auto-correlation coefficient, and signal histogram. 

 

13 Compression of the ECG samples 

 

A fixed 52-sample interval centred at the QRS complex was selected for compression 

purposes. These samples were obtained by applying a fixed-width window to the output 

of the R-wave detection algorithm. A two-stage compression process based on turning 

point (TP) algorithm was chosen to achieve a CR of 4:1. The TP algorithm compresses 
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the ECG signal with a fixed CR of 2:1 without diminishing the elevation of large 

amplitude QRSs. 

 

The set of 12 extracted features and 13 compressed ECG samples formed the input 

vector with N=25 elements will be used for each heartbeat in this research. Arranging 

the input vector using this small number of features for each heartbeat instead of using 

the whole raw samples dramatically decreased the complexity of the classifier. In other 

words, instead of using a raw ECG sample (about 360 sample per heartbeat), 25 samples 

were employed for each ECG waveform to minimise the structural complexity of the 

network. 

 

The extracted features, which were used in this research, obtained from applying 

existing feature extraction algorithms as applied to the selected signals from the 

MIT/BIH database. This research  focuses on the ECG classification, which is finding a 

suitable neural network structure for the classification  

 

The extracted features were devised to automatically detect and classify ECG signal 

abnormalities. Thus the combination of compressed ECG samples and the extracted 

features was an effective method of classifying the cardiac abnormalities that are mainly 

reflected in the QRS complex. With the extracted features from the ST segment, 

ischaemia can be recognised. In fact, pre-processing steps are necessary for removing 

noise from the ECG signal before extracting the morphological parameters. 

 

The accuracy of the ECG data classifiers using the statistical features is highly 

dependent on the number of classes present in the input data. With only two classes, 

each feature is able to provide correct classification. However, as the number of classes 

increases more features should be employed. The advantage of the ANN classifier using 

the proposed feature vector is its simplicity and ease of implementation.  

 

 

4.4 Results and discussions of Experiment 4 (ANN classification) 
 

In experiment 4, NET1, 2, 3 and 4 networks were trained and tested in the same way in 

order to compare their performances. Nguyen-Widrow initialisation algorithm was used 

to initialise all networks. The Log sigmoid transfer function and the Gradient Descent 
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with Momentum and Bias Adjust Learning Function as well as the Gradient Descent 

with Momentum and Adaptive Learning Rate backpropagation training function were 

also used for all network architectures 

4.4.1 The training results 
 

The training data set was selected from the most common ECG waveforms in the 

MIT/BIH database. Five cases with 100 samples  each were selected to train the 

networks. The samples for training NET1 and NET2 contain 12 features of the ECG 

waveforms. The samples for training NET3 and NET4 consist of 12 features plus 13-

compressed components of the signal in each waveform. 

Figure 4.19 and Table 4.2 show the training process and performance of NET1 with 12 

inputs and 3 neurons in its output for different choices of the number of neurons in 

hidden layer. 
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Figure 4.19 The training performance of NET1 
 
 

Table 4.2 The training performance of NET1 

Network Input 
layer 

Output 
Layer 

Hidden 
layer 

Epoch Escape 
Time 
(sec.) 

MSE 

NET1_5 5 3099 454.42 0.00351134 
NET1_8 8 7995 2240.9 0.00499969 
NET1_12 

 
12 

 
3 

12 16 9.7640 0.00305856 
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It can be observed that the behaviour of the three networks in terms of training speed 

were different. The NET1_12 trained with the least number of epochs and the CPU time 

employed was also lowest under the same goal. The NET1_8 trained with the most 

epochs and the CPU time employed was also highest under the same condition. 

Figure 4.20 and Table 4.3 display the training process and performance of NET2 with 

12 inputs and 5 neurons in its output for different choices of number neurons in hidden 

layer. It can be seen that NET2_12 and NET2_5 took the same epochs but NET2_5 took 

the smallest CPU time employed for training. NET2_12 is little more than for training 

NET2_8. NET2_12 trained with the most number of epochs and the CPU time 

employed was also highest. 
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Figure 4.20 The training performance of NET2 
 

 

Table 4.3 The training performance of NET2 

Network Input  
layer 

Output 
layer 

Hidden 
layer 

Epoch Escape 
Time 
(sec.) 

MSE 

NET2_5 5 23 7.48 0.00492607 
NET2_8 8 15 9.29 0.00499643 
NET2_12 

 
12 

 
5 

12 23 23.013 0.00474518 
 
 
It can be seen from the above results that NET2_8 and NET2_5 have better training 

behaviour with the least epoch and escape time. 
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Figure 4.21 and Table 4.4 show the training performance of NET3 with 25 inputs and 3 

neurons in its output for 5, 8 and 12 neurons in hidden layer. 
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Figure 4.21 The training performance of NET3 
 
 

Table 4.4 The training performance of NET3 

 
Network Input 

layer 
Output 
layer 

Hidden  
layer 

Epoch Escape 
Time 
(sec.) 

MSE 

NET3_5 5 11 5.3980 0.0047 
NET3_8 8 12 10.0380 0.00436 
NET3_12 

 
25 

 
3 

12 12 20.8410 0.0042 
 
 
The training behaviours of the three network architectures were different. The CPU time 

employed by NET3_12 was the lowest under the same goal. NET3_8 has the most 

number of epochs and the CPU time employed was also highest under the same 

condition. 

Figure 4.22 and Table 4.5 display the training performance of neural network 

architecture 4 with 25 inputs and 5 neurons in its output for 5, 8 and 12 neurons in 

hidden layer.  
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Figure 4.22 The training performance of NET4 (25-x-5) 
 
 
 

Table 4.5 The training performance of NET4 

 
Network Input 

layer 
Output 
layer 

Hidden 
layer 

Epoch Escape 
Time 
(sec.) 

MSE 

NET4_5 5 12 9.0650 0.00484 
NET4_8 8 13 10.755 0.00428 
NET4_12 

 
25 

 
5 

12 13 25.9900 0.00412 
 
 
The NET4_8 networks trained with the least number of epochs and the CPU time 

employed was also lowest under the same goal. The NET4_12 trained with the most 

epochs and the CPU time employed was also the highest under the same condition. 

 

4.4.2 The testing results: 
 

By definition the output result of a Boolean matrix, the classification results gave a one 

hundred result of a Boolean matrix  can  judge the classification result and counts the 

recognition rate of the diagnostic results. 

 
Table 4.6 reports on the performance of NET1 and NET2 with 12 basic features from 5 

ECG classes. NET1 and NET2 with 12 neurones in the hidden layer had respectively 

the lowest average classification rate of 33.34% and highest average classification rate 
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of 44%. NET2 with 8 neurones in the hidden layer had the highest average classification 

rate of 44% and with 5 neurones in the hidden layer had the lowest average 

classification rate of 33.4% respectively. It also was conclude that the NET2 had better 

classification rate than NET1. The best result achieved was with NET2_8 with 12 input, 

8 neurons in the hidden layer and 5 neurons in its output layer. But this result was also 

too low in the practical applications, which cannot be accepted in the diagnostic area. 

This means that the training result with 12 features input was not satisfactory and 

caused the testing result to be unacceptable. More features will be used in the next test 

using NET3 and NET4. 

 

Table 4.6 Different structures of ECG classifiers with 12 inputs 
 
Training Samples: 100 
Testing Samples: 100 
Network 
Structure 

Input 
layer 

Output  
layer 

Hidden 
layer 

Heart 
problem 

Recognition 
rate % 

Average 
rate% 

Nw 43 
Aw 46 
Pw 14 
Rw 1 

NET1_5 12 3 5 

Fw 66 

34 

Nw 8 
Aw 57 
Pw 7 
Rw 50 

NET1_8 12 3 8 

Fw 60 

36.4 

Nw 20 
Aw 69 
Pw 4 
Rw 21 

NET1_12 12 3 12 

Fw 76 

38 

Nw 11 
Aw 51 
Pw 25 
Rw 0 

NET2_5 12 5 5 

Fw 80 

33.4 

Nw 11 
Aw 42 
Pw 22 
Rw 61 

NET2_8 12 5 8 

Fw 84 

44 

Nw 10 
Aw 42 
Pw 1 
Rw 72 

NET2_12 12 5 12 

Fw 66 

38.2 

 
 

Table 4.7 reports on the testing results performed by NET3 and NET4 using test signals 

consist of 12 basic features plus 13 compressed samples. It shows that NET4_5 with 12 
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and 5 neurones in the hidden layer had almost the same average correct recognition rate 

around 91.8%. NET4_8 had 87.4% recognition rate. This result is general a good result 

in the experiment. Table 4.7 indicates that the NET4 with 5 neurones in the output layer 

has better classification rate than NET3 with 5 neurones in the output layer. So, it can be 

concluded that the best architecture was NET4_5 with 25 input, 5 neurons in hidden 

layer and 5 neurones in output layer. 

 

Table 4.7 Different structure ECG classification with 25 inputs 
 
Training Samples: 100 
Testing Samples: 100 
Network 
Structure 

Input 
layer 

Output  
layer 

Hidden 
layer 

Heart 
problem 

Recognition 
rate % 

Average 
rate 

Nw 77 
Aw 83 
Pw 100 
Rw 83 

NET3_5 25 3 5 

Fw 82 

85 

Nw 81 
Aw 43 
Pw 98 
Rw 99 

NET3_8 25 3 8 

Fw 90 

82.2 

Nw 64 
Aw 79 
Pw 92 
Rw 85 

NET3_12 25 3 12 

Fw 95 

83 

Nw 88 
Aw 99 
Pw 91 
Rw 100 

NET4_5 25 5 5 

Fw 81 

91.8 

Nw 76 
Aw 98 
Pw 100 
Rw 81 

NET4_8 25 5 8 

Fw 82 

87.4 

Nw 14 
Aw 96 
Pw 100 
Rw 94 

NET4_12 25 5 12 

Fw 74 

75.6 

 

4.4.3 Discussions and analysis results of experiment4 
 

ECG signal from MIT/BIH database is pre-processed to form input vectors of the neural 

networks. The train and test data sets used in the experiment contain 5 classes of ECG 

waveforms with 100 sample beats in each.  
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4.4.3.1 The training result discussions 
 

The training data included a total of 641 N, 248 P, 270 R, 158 A, and 120 F 

waveforms. The first 100 of the training data were used for training to test the 

performance of different network structure. 

Table 4.8 shows the training process performance of NET1 –NET4. The 

behaviours of the proposed networks in terms of training time are different. The 

samples for training NET1 and NET2 contain 12 basic features of the ECG signal. 

The samples for training NET3, NET4 consisted of 12 features plus 13 

compressed samples of the signal. Firstly, the same training parameters were 

delicately optioned for all networks and they were chosen including maximum 

epoch of 20000, minimum gradient limited of 0.0001, and a goal was 0.005. 

However, it was hard to train NET1 and NET2 with the goal 0.005 comparing 

with NET3 and NET4. 

 

Table 4.8 shows all the results of the performance of NET1-NET4. From Table 

4.7 NET1_8 take the most epoch (7995) and training time (2240.9s) and also the 

most MSE even when it reached the goal of training. NET_5 is also very slow but 

the MSE is pretty good. , There were the least epochs (12) for all networks with 

12 neurons in the hidden layer in NET1. The epoch and training time is also 

acceptable in NET2 and NET2_8 use and least epoch (15) and NET2_5 use the 

least training time (7.48s). 

 

All the training results of NET3 and NET4 are desirable. All of the network 

structures use almost the same epoch and training which means this kind of 25 

input enhanced the training performance of the network a lot compared with the 

12 input.  

 

The 12 input networks NET1, NET2 were more difficult to train than the 25 input 

network NET3 and NET4. This means that 12 feature input network cannot 

achieve a desirable result in training. It also means that 12 input features is not 

enough for training the network. 
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Table 4.8 The training performance of NET1-NET4 for discussion 

Network Input 
layer 

Output  
layer 

Hidden 
layer 

Epoch Escape 
Time 
(sec.) 

MSE 

5 3099 454.42 0.00351134 
8 7995 2240.9 0.00499969 

 
NET1 

 
12 

 
3 

12 16 9.7640 0.00305856 
5 23 7.48 0.00492607 
8 15 9.29 0.00499643 

 
NET2 

 
12 

 
5 

12 23 23.013 0.00474518 
5 11 5.3980 0.0047 
8 12 10.0380 0.00436 

 
NET3 

 
25 

 
3 

12 12 20.8410 0.0042 
5 12 9.0650 0.00484 
8 13 10.755 0.00428 

 
NET4 

 
25 

 
5 

12 13 25.9900 0.00412 
 
 

4.4.3.2 The testing results discussions 
 

In order to compare the recognition behaviour of the networks for 5 ECG classes, 

the recognition rate can be defined and used to evaluate the performance of the 

classifiers. This factor is equal to one when all real events in a specific subgroup 

are detected correctly. In the case of missing some true events during 

classification, the recognition rate value would fall below one. The corresponding 

recognition rates for the selected ECG waveforms were assigned as; Nr for 

Normal, Pr for Paced, Rr for R, Ar for A, and Fr for F beat. The test data set 

contains a total of 104 N, 236 P, 115 R, 104 A, and 101 F waveforms and the first 

100 samples were selected as the testing data for testing the ability of classifiers.  

 

The first test was performed using NET1 and NET2 with 12 basic features from 5 

ECG classes and the results were shown Table4.8. NET1 and NET2 with 5 

neurones in the hidden layer had respectively the lowest average classification rate 

of 33.4% and 34%. NET1 and NET2 with 8 neurones in the hidden layer had the 

highest average classification rate of 36.4% and 44% respectively. It also was 

seen that NET2 had better classification rate than NET1. The best performance 

was achieved by NET2_8 with 12 input, 8 neurons in hidden layer and 5 neurons 

in output layer, which can get the recognition rate of 44%. 
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Generally, the average recognition rate of NET1 and NET2, which had 12 input 

features, was only 36.13% recognition rate. This kind of result was too low to be 

accepted in the application. The reason for this result was that 12 features input 

was not enough for training and testing in the ECG diagnostic applications. So in 

NET3 and NET4 testing 12 basic ECG features plus 13-compressed ECG signal 

would be used to find the improvement of the classification result. 

 

Table 4.9 NET1 and NET2 classification for discussion 

Input 
layer 

Output 
layer 

Hidden 
layer 

 
Nr 
(%) 

 
Pr 

(%) 

 
Rr 
(%) 

 
Ar 
(%) 

 
Fr 

(%) 

 
Avr 
(%) 

5 43 14 1 46 66 34 
8 8 7 50 57 60 36.4 

12 3 

12 20 4 21 69 76 38 
Avr(%)   23.67 8.33 24 57.33 67.33 36.13 

5 11 25 0 51 80 33.4 
8 11 22 61 42 84 44 

12 5 

12 10 1 72 42 66 38.2 
Avr(%)   10.67 16 44.33 45 76.67 38.53 

 
 

Table 4.10 reports on the second testing results performed by NET3 and NET4 

using test signals consisting of 12 basic features plus 13 compressed samples 

which were 25 features input. It shows that NET4 with 12 neurones and with 8 

neurones in the hidden layer had classification rate 75.6% and 87.4% and the 

result generally indicated that the NET4_5 with 5 neurones in the output layer had 

the highest classification rate 91.8% but NET4_12 had the lowest rate 75.6%.  

 

The result NET3_5, NET3_8 and NET3_12 had almost the same average correct 

recognition rate around 83.4%. Also the recognition rate of NET4 was much 

different from that of NET3. The average recognition rate of NET4 was 84.93%, 

which was also better than NET3. This means 5-output layer is also better than 

that of 3 outputs. It could be also observed that the best result was network with 

25 input, 5 neurons in hidden layer and 5 neurons in output layer.  
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Table 4.10 NET3 and NET4 classification for discussion 

Input 
layer 

Output 
layer 

Hidden 
layer 

 
Nr 
(%) 

 
Pr 

(%) 

 
Rr 
(%) 

 
Ar 
(%) 

 
Fr 

(%) 

 
Avr 
(%) 

5 77 100 83 83 82 85 
8 81 98 99 43 90 82.2 

25 3 

12 64 92 85 79 95 83 
Avr (%)   74 96.67 89 68.33 89 83.4 

5 88 91 100 99 81 91.8 
8 76 100 81 98 82 87.4 

25 5 

12 14 100 94 96 74 75.6 
Avr (%)   59.33 97 91.67 97.67 79 84.93 
 
 
4.5 General Discussions 
 
Based on the above-mentioned discussion we can give the general discussion as 

follows: 

 

• Based on the result of the signal processing experiment, different types of signal 

processing algorithm were used with Matlab toolbox and found that the IIR 

filters are better than FIR filters. Some FIR filters are also accepted but not as 

good as IIR filter. FIR filters often require  much higher order than IIR filter to 

achieve a given level of performance. The delay of FIR filter is often much 

greater than for an equal performance IIR filter. Median filter is also as good as 

the Yulewalk filter. 

 

• Eight kinds of QRS detection algorithm were tested in the experiment. FD1 was 

found to give the best result. In order to improve the performance of the FD1 

algorithm, thresholds could be enhanced to a proper number, which gets the best 

result. In this experiment threshold 1.2 was found to get best result. 

 

• The extracted features were devised to automatically detect and classify ECG 

signal abnormalities. The combination of compressed ECG samples and the 

extracted features was an effective method in classifying the cardiac 

abnormalities, which are mainly reflected in the QRS complex. The advantage 

of the ANN classifier using the proposed feature vector is its simplicity and ease 

of implementation. Even though the 12 proposed basic features are the most 

important for ANN classifier, the other 13-compressed ECG signal are also 
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important for the classification. The total 25 element input features for the ANN 

classifier minimised the complexity of the network, but also could keep the 

recognition rate of the classification. 

 

• Training performance: In the experiment of ANN signal classification, the NET3 

and NET4 training performance is better than NET1 and NET2.This is because 

the 12 features input is not enough for training the neural network but the 12 

feature plus 13 compressed signals can efficiently enhance the training 

performance of the neural network. 

 

•  Testing result: The testing results of NET3 and NET4 are much better than 

NET1 and NET2. The recognition rates of NET1 and NET2 are so low that they 

cannot be used in the application. It also means that 12 basic ECG features are 

not enough in real usage. The recognition rates of NET3 and NET4 are better 

than and NET4 structure has the best testing result, which can be used in the real 

application. It also means 12 ECG features plus 13 compressed ECG signals, 

which formed a 25 input vector, are desirable in the experiment and real 

application. 
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Chapter 5 

 

Conclusion and Future Work 
 
 
 

5.1 Conclusion 
 

Computerised detection and classification of cardiac conditions is an active area of 

research worldwide. The methods developed for automatic cardiac classification have a 

vast number of applications and may provide significant contributions to the 

implementation of other intelligent diagnostic system. This research provides a 

complete description of the procedure required in a system that categorises the ECG 

signals into five cardiac conditions. 

 

The ECG signal classification using the proposed neural network architecture was 

satisfactory. Good result were achieved with an average recognition rates of 84.93% 

Different methods of signal pre-processing and QRS detection algorithm were tested 

Different structures of neural networks were employed utilising MIT/BIH database and 

existing feature extraction algorithm to determine the most suitable one. 

 

Based on the experimental results the conclusions of different experiments can be 

presented as follows: 

5.1.1 Conclusion of experiment1 (Signal pre-processing) 
 

In experiment 1, some pre-processing algorithms (including: Remez, Fir1, Fir2, 

Butterworth, ellip, Chebyshev1, Chebyshev2, Yulewalk and median filters) for ECG 

noise cancellation were implemented in Matlab. It was shown that Yulewalk and 

median filters perform quite successfully in removing most of the noise types. 

 

Based on the result of the experiment 1, it was concluded that IIR filters perform better 

than FIR filters for this application. The performance of the selected filters is compared 

not only by visual evaluation but also by the quantitative measurements. SNR were 

calculated for the quantitative measurement purposes. Yulewalk and median filters had 

better visual results and provided a larger signal to noise ratio. 
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5.1.2 Conclusion of experiment 2 (QRS complex detection) 
 
In experiment 2, eight QRS detection algorithms were tested to find a suitable one for 

QRS detection. This stage plays a fundamental role in automatic ECG signal diagnostic. 

It was found that FD1 algorithm provides a better result. Moreover, the performance of 

QRS detection depends on the selected threshold parameter. FD1 algorithm can detect 

the QRS components very well by selecting a proper threshold value. Different 

thresholds were also tested and the best threshold for this experiment was found. 

 

The QRS detection algorithms were tested with two ECG signals containing 8 and 40 

heartbeats. The QRS pulses were counted correctly with the same number of the input 

of heartbeats. 

5.1.3 Conclusion of experiment 3 (ECG feature extraction) 
 

In experiment 3, a number of features applicable to the ECG signal analysis and 

classification were presented. This experiment showed that important ECG features 

could be extracted from both morphological and statistical characteristics of the ECG 

signal. The problem of ECG signal variations among patients with the same 

cardiological conditions affects the performance of cardiac arrhythmia classifiers. The 

patient independent extracted ECG features in this experiment were employed as one 

part of the classifier input vector. These extracted features can enhance the performance 

of an ANN-based classifier. 

 

The compressed form of the ECG waveform was also used instead of the raw data as the 

second part of the input vector to improve the speed, noise immunity, simplicity and 

recognition rate of the classifier. A computerised ECG signal classifier can be 

developed by employing the extracted features and compressed signal for detection of a 

vast range of cardiac arrhythmias. 

 

The extracted features were devised to automatically detect and classify ECG signal 

abnormalities. The combination of compressed ECG samples and the extracted features 

was an effective method in classifying the cardiac abnormalities, which are mainly 

reflected in the ECG waveforms characters.  
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The advantage of the ANN classifier using the proposed feature vector is its simplicity 

and ease of implementation. It was found that not only the 12 proposed basic features 

play an important role in ANN classifier but also the other 13-compressed ECG signal 

are also very important. Using a 25-element input features for the ANN classifier 

minimised the complexity of the network and improved its recognition rate of the 

classification. This conclusion was tested and verified by experiment 4. 

 

25 features used in the ANN classifications were: eight morphological features, four 

Statistic features and 13 Compressed ECG signals 

5.1.4 Conclusion of experiment 4 (ANN classification) 
 

In experiment4, four selected network architectures were used which can  categorise 

into two basic types of feed forward neural networks.  

 

In NET1 and NET2, 12 ECG features have been extracted from ECG signal as input. In 

NET3, NET4 the same features plus 13-compressed ECG samples were used to form an 

input vector with 25 elements. Different hidden layers including 5, 8, and 12 neurons 

have been tested for each network to investigate the effect of neurons in the network 

hidden-layer. 

 

The training performance and recognition rate depended on the number of elements in 

input vector. The 25 input networks were more easy to train than the 12 input networks. 

This is because 12 input elements still cannot include enough characteristics of the ECG 

signal for training and classification. It needs more input features to enhance the 

efficient and speed of the network. 

 

The 25 input networks had better test results than the 12 input networks classifiers. This 

proved that the 13 compressed ECG samples vectors, which formed the second part of 

input vectors of the neural networks, had significantly contributed to enhance the 

correct classification rate for ECG diagnosis. 

 

In testing the training performance of ANN signal classifiers, NET3 and NET4 were 

performed better than NET1 and NET2. 
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The recognition rate results of NET3 and NET4 were much better than NET1 and 

NET2. It was found that NET4 had the best testing result, which can be used in the real 

application. It also means 12 ECG features plus 13-compressed ECG signal that formed 

a 25 input vector are desirable in the experiment and real application. This network 

improves the accuracy of diagnosis where the network deals with a large group of inputs 

and decreases the structure complexity of the networks. 

 

5.2 General Conclusion 
 

The most important step in ECG diagnostic is to detect and measure different waves, 

which form the entire ECG cycle, to extract efficient features and to find suitable 

structure and algorithm for ANN ECG signal classifications. Different methods of ECG 

signal processing and analysis were tested to achieve in this purpose. The selected 

features were suitable for diagnosis of five cardiac conditions and enhanced the 

efficiency, simplicity and recognition rate of the neural network. 

 

Based on the above discussion a general conclusion can be summarised as follows: 

• The performances of Yulewalk filter and median filter were better than other 

selected filters based on the results of visual and quantitative evaluation. 

 

• FD1 QRS detection algorithm was a suitable one in this application and a good 

threshold was also found. The FD1 algorithm was verified not only with eight 

heartbeats but also with 40 heartbeats. 

 

• The extracted features were devised to automatically detect and classify ECG 

signal abnormalities. The combination of compressed ECG samples and the 

extracted features was an effective method in classifying the cardiac 

abnormalities. The advantage of the ANN classifier using the proposed feature 

vector is its simplicity and ease of implementation. 

 

• In testing of the ANN signal classification, it was found that NET3 and NET4 

training performance and testing results were much better than NET1 and NET2. 

The best performance of network was NET4 which achieve in a highest 

recognition rate of 91.8% and an average recognition rate of 87.4%. This result 

means that 12 feature input is not enough for training and testing the neural 
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network but 12 feature plus 13 compressed ECG signals can efficiently 

enhanced the training performance of the neural network and decrease the 

complexity of the network structure. It also means that 12 ECG features plus 13 

compressed ECG signals, which formed a 25 input vector, are desirable in this 

experiment and real application for five cardiac conditions. 

 

• Matlab is a good tool for this research. The use of Matlab reduced the 

programming demands and allowed us to focus more on algorithm development 

rather than programming. 

 

The developed filters and neural networks are applicable to other types of cardiac 

conditions. However, there are some limitations on the experiments. For example, the 

proposed one-stage neural network is suitable for those five cardiac conditions listed in 

section1.3. This one-stage network is not suitable for classifying a large number of the 

ECG signal abnormalities because the training and testing speed maybe unacceptable. 

To solve this problem a multi-stage neural network should be designed to improve the 

speed. The selected 25 features are also more suitable for five cardiac conditions. Some 

of the features maybe changed if other cardiac conditions are selected. 

 

5.3 Future work 
 

Computerised ECG diagnostic system is an important tool used in clinical practice 

today. Analysis of ECG signal is a difficult task but with the help of Matlab, signal 

processing and neural network toolboxes, it is possible to automate this process. There 

is still a lot of works to do in the future: 

 
• In the signal processing stage, other techniques should be tested such as: 

adaptive filters, filter bank and neural network. 

 

• In the QRS detection stage, the techniques such as: singularity detection based 

approaches, Neural network approaches, wavelet based QRS detection and zero 

crossing based QRS detection etc should also be tested in the future. 

 

• In the feature extraction stage, other features related to other cardiac condition 

should be found. There are more than hundred ECG features introduced in the 

literature. The selected features in this research are suitable for five cardiac 
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conditions but for more cardiac abnormalities more features are required as each 

abnormality related with different features.  

 

• In signal classification stage, other structures and algorithms of the neural 

network should be tested. One stage network can perform very well with the 

present application, but there are more cardiac abnormalities than were covered 

in this project and a multi-layer and muti-stage classifier should be designed to 

separate them. This multi-stage neural network can use suitable algorithms in 

each stage and diagnostic part of the cardiac conditions which can minimise the 

whole complexity of network structure. In this way, the classifier can deal with 

more cardiac conditions while using a simple network structure at each stage. 

 

• This research can be applied to telemedicine application area. Remote access to 

ECG diagnoses is a very useful service for both medical community and 

patients. This service has been used actively in the last decade. The remote 

clinical session uses multimedia tools to transmit ECG information from one 

clinic to a remote site. This service can facilitate the training of specialists, 

researchers and doctors. This medical service is primarily dedicated to chronic 

patients. The patient’s ECG data are stored in the computer server in the form of 

personal electronic medical record. The patient send his medical data to hospital 

by using standard computer equipment and telephone line or by specially 

designed hardware. The explosive growth of the technology in the last decade 

allows us to utilise different devices and services. Generally, tele-ECG diagnosis 

research is a promising area in the future.  

 

The extension of this research should be under further work in the future. The overall 

objects of this research is to design and implement an intelligent, interactive ECG 

analyser with some specification as listed below (Hosseini H. G., 2002): 

 

• A versatile, cost effective, reliable and intelligent ECG signal analyser using an 

ordinary personal computer. 

• Ability to collect and detect a wide range of abnormalities of the ECG signal 

form different patient body. Then the final analysing report will be based on this 

collected signal database 

• On-line monitoring to improve management of signal abnormalities 
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• Ability to save and display a range of different data about the function of the 

human body as well as some other patient information for further analysis. 
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