Baire Spaces and the Wijsman Topology

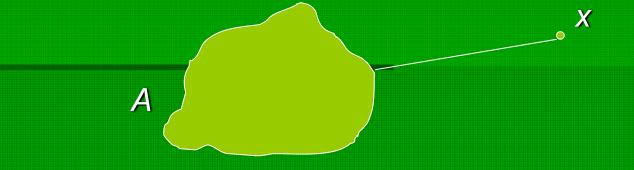
Jiling Cao Auckland University of Technology New Zealand

This is joint work with *Artur H. Tomita* São Paulo University, Brazil

International Conference on Topology and its Applications 2007 December 3-7, Kyoto, Japan

What is the Wijsman topology?

- It originates in the study of convergence of convex sets in Euclidean space by R. Wijsman in 1960s. The general setting was developed in 1980s.
- Let (X,d) be a metric space. If x is a point in X, and A is a nonempty closed subset of X:



The gap between A and x is: $d(A,x) = \inf \{d(a,x): a \in A\}$.

Define

 $F(X) = \{ all nonempty closed subset of X \}.$

If A runs through F(X) and x runs through X, we have a **two-variable mapping**: $d(\cdot, \cdot)$: $F(X) \times X \to R$.

• For any fixed A in F(X), it is well-known (and simple) that $d(A, \cdot)$: $(X,d) \rightarrow (R, T_u)$ is a continuous mapping.

What will happen if we consider d(·, x): F(X) → (R, Tu) for all fixed x in X ?

- The Wijsman topology *Twd* on *F(X)*, is the weakest topology such that for each *x* in *X*, the mapping *d(·,x)* is continuous.
- By definition, a subbase for the Wijsman topology is

$$\left\{ \{A: d(A,x) < \epsilon\} : x \in X, \epsilon > 0 \right\} \bigcup \left\{ \{A: d(A,x) > \epsilon\} : x \in X, \epsilon > 0 \right\}.$$

 In the past 40 years, this topology has been extensively investigated. For more details, refer to the book, "*Topologies* on closed and closed convex sets", by G. Beer in 1993.

Some basic properties

- The Wijsman topology is not a topological invariant.
- For each *A* in *F*(*X*), *A* \leftrightarrow *d*(*A*,·): (*X*,*d*) \rightarrow (*R*, *T*_u). Then, (*F*(*X*), *T*_{wd}) embeds in *C*_p(*X*) as a subspace. Thus, (*F*(*X*), *T*_{wd}) is a **Tychonoff space**.
- Theorem For a metric space (*X*,*d*), the following are equivalent:
 (1) (*F*(*X*), *T*_{wd}) is metrizable;
 (2) (*F*(*X*), *T*_{wd}) is second countable;
 (3) (*F*(*X*), *T*_{wd}) is first countable;
 (4) *X* is separable.
 (Cornet, Francaviglia, Lechicki, Levi)

Completeness properties

Theorem (Effros, 1965): If X is a **Polish** space, then there is a compatible metric d on X such that (F(X), T_{wd}) is Polish.

Theorem (Beer, 1991): If (X,d) is a complete and separable metric space, then $(F(X), T_{wd})$ is Polish.

Theorem (Constantini, 1995): If X is a Polish space, then $(F(X), T_{wd})$ is Polish for every compatible metric d on X.

Example (Constantini, 1998): There is a complete metric space (X,d) such that (F(X), T_{wd}) is not **Čech-complete**.

Baire spaces

A space X is Baire if the intersection of each sequence of dense open subsets of X is dense in X; and a Baire space X is called hereditarily Baire if each nonempty closed subspace of X is Baire.

Baire Category Theorem: Every Čech-complete space is hereditarily Baire.

 Concerning Baireness of the Wijsman topology, we have the following known result:

Theorem (Zsilinszky, 1998): If (X,d) is a complete metric space, then $(F(X), T_{wd})$ is Baire.

Theorem (Zsilinszky, 20??): Let X be an almost locally separable metrizable space. Then X is Baire if and only if $(F(X), T_{wd})$ is Baire for each compatible metric d on X.

A space is almost locally separable, provided that the set of points of local separability is dense.

In a metrizable space, this is equivalent to having a **countable**in-itself π -base.

Corollary (Zsilinszky, 20??): A space X is separable, metrizable and Baire if and only if (F(X), T_{wd}) is a metrizable and Baire space for each compatible metric d on X. Motivated by the previous results, Zsilinszky posed two open questions. The first one is:

Question 1 (Zsilinszky, 1998): Suppose that (X,d) is a complete metric space. Must $(F(X), T_{wd})$ be hereditarily Baire?

Therefore, the answer to Question 1 is negative.

Theorem (Chaber and Pol, 2002): Let *X* be a metrizable space such that the set of points in *X* without any compact neighbourhood has weight 2^{ω} . Then for any compatible metric *d* on X, $\mathbb{N}^{2^{\omega}}$ embeds in (*F*(*X*), *T*_{wd}) as closed subspace. In particular, the Wijsman hyperspace contains a closed copy of rationals.

 The second question was posed by Zsilinszky at the 10th Prague Toposym in 2006.

Question 2 (Zsilinszky, 2006): Suppose that (X,d) is a metric hereditarily Baire space. Must $(F(X), T_{wd})$ be Baire?

 The main purpose of this talk is to present an affirmative answer to Question 2.

To achieve our goal, we shall need three tools:

- The ball proximal topology on F(X).
- The pinched-cube topology on the countable power of X.
- A game-theoretic characterization of Baireness.

The ball proximal topology

• For each open subset *E* of *X*, we define

 $E^{++} = \{A \in CL(X) : d(A, X \setminus E) > 0\}.$

The ball proximal topology T_{bpd} on F(X) has a subbase $\{U^- : U \text{ is open }\} \cup \{(X \setminus B)^{++} : B \text{ is a proper closed ball}\},$ where $U^- = \{A \in CL(X) : A \cap U \neq \emptyset\}.$

■ In general, T_{wd} is coarser than but different from T_{bpd} on F(X). Thus, the identity mapping *i*: $(F(X), T_{bpd}) \rightarrow (F(X), T_{wd})$ is continuous, but is not open in general.

- For each nonempty open subset U in (F(X), T_{bpd}), i(U) has nonempty interior in (F(X), T_{wd}).
- A mapping $f: X \to Y$ is called **feebly open** if f(U) has nonempty interior for every nonempty open set U of X.
- Similarly, a mapping *f*: X → Y is called feebly continuous whenever the pre-image of an open set is nonempty, the preimage has a nonempty interior.

Theorem (Frolik, 1965; Neubrunn, 1977): Let $f: X \rightarrow Y$ be a feebly continuous and feebly open bijection. Then X is Baire if and only if Y is Baire.

Theorem (Zsilinszky, 20??): Let (X,d) be a metric space. Then $(F(X), T_{bpd})$ is Baire if and only if $(F(X), T_{wd})$ is Baire.

The pinched-cube topology

- The idea of pinched-cube topologies originates in McCoy's work in 1975.
- The term was first used by Piotrowski, Rosłanowski and Scott in 1983.
- Let (X, d) be a metric space. Define
 ∆d = {finite unions of proper closed balls in X}.
- For *B* in Δd , and *U_i* (i < n) disjoint from *B*, we define $[U_0, ..., U_{n-1}]_B = \prod_{i < n} U_i \times (X \setminus B)^{\omega \setminus n}.$

The collection of sets of this form is a base for a topology T_{Pd} on X^{ω} , called the pinched-cube topology.

Theorem (Cao and Tomita): Let (X,d) be a metric space. If X^{ω} with T_{pd} is Baire, then $(F(X), T_{bpd})$ is Baire.

 Let S(X) be the subspace of (F(X), Tbpd) consisting of all separable subsets of X.

Define $f: X^{\omega} \to \mathcal{S}(X)$ by letting

 $f((x(k):k<\omega)) = \overline{\{x(k):K<\omega\}}.$

It can be checked that f is continuous, and feebly open. Then, it follows that $(F(X), T_{bpd})$ is Baire.

The Choquet game

Now, we consider the Choquet game played in X.

There are two players, β and α, who select nonempty open sets in X alternatively with β starting first:
 U₀ (β) ⊇ V₀ (α) ⊇ U₁ (β) ⊇ V₁ (α) …
 We claim that α wins a play if
 ∩_{n<ω} U_n (= ∩_{n<ω} V_n) ≠ Ø.

Otherwise, we say that β has won the play already.

• Without loss of generality, we can always restrict moves of β and α in a base or π -base of X.

 Baireness of a space can be characterized by applying the Choquet game.

Theorem (Oxtoby, Krom, Saint-Raymond): A space X is not a Baire space if and only if β has a winning strategy.

 This theorem was first given by J. Oxtoby in 1957. Then, it was re-discovered by M. R. Krom in 1974, and later on by J. Saint-Raymond in 1983.

By a strategy for the player β , we mean a mapping defined for all finite sequences of moves of α . A winning strategy for β is a strategy which can be used by β to win each play no matter how α moves in the game.

Main results

Theorem (Cao and Tomita): Let (*X*,*d*) be a metric space. If X^{ω} with the Tychonoff topology is Baire, then X^{ω} with T_{pd} is also Baire.

 The basic idea is to apply the game characterization of Baireness.

Suppose that X^{ω} with the Tychonoff topology is Baire. Pick up any strategy σ for β in T_{pd} .

We apply σ to construct inductively a strategy Θ for β in the Tychonoff topology. Since Θ is not a wining strategy for β in the Tychonoff topology, it can be show that σ is not a winning for β in T_{pd} either. **Theorem** (Cao and Tomita): Let (X,d) be a metric and hereditarily Baire space. Then $(F(X), T_{wd})$ is Baire.

■ Note that the Tychonoff product of any family -{X_i : i ∈ I} of metric hereditarily Baire spaces is Baire (Chaber and Pol, 2005).

It follows that X^{ω} with the Tychonoff topology is Baire, and thus X^{ω} with T_{pd} is Baire.

By one of the previous theorems, $(F(X), T_{pd})$ is a Baire space.

Finally, by another previous theorem, $(F(X), T_{wd})$ is Baire.

Comparison and examples

 For a space X, recall that the Vietoris topology T_v on F(X) has

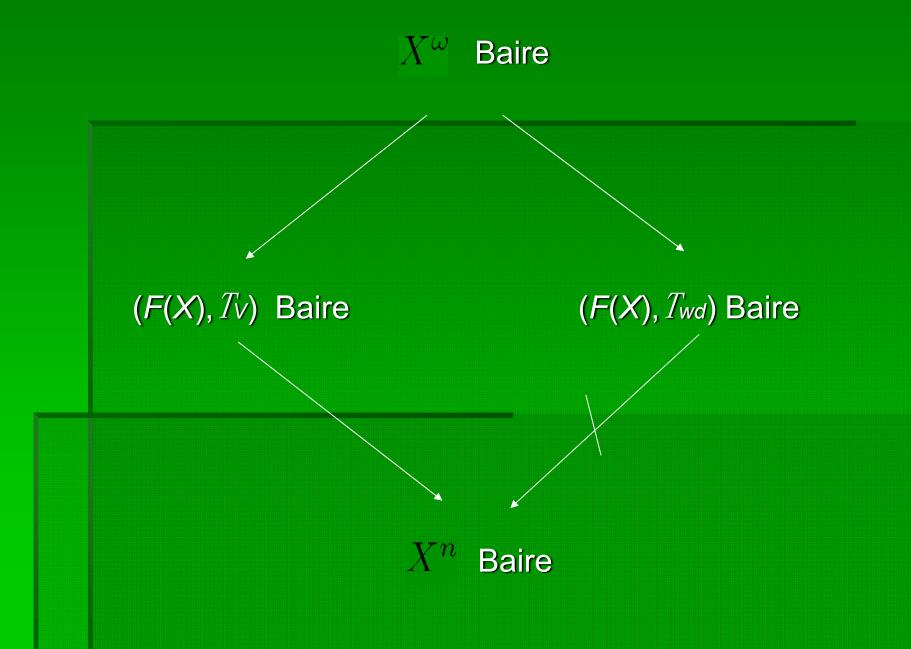
 $\{\langle U_0, \cdots U_{n-1} \rangle : U_0, \cdots, U_{n-1} \text{ are open sets of } X\}$

as a base, where

 $\langle U_0, \cdots U_{n-1} \rangle = \{ A \in CL(X) : A \subseteq \bigcup_{i < n} U_i, A \cap U_i \neq \emptyset \}.$

The relationship between the Vietoris topology and the Wijsman topologies is given in the next result.

Theorem (Beer, Lechicki, Levi, Naimpally, 1992): Let *X* be a metrizable space. Then, on F(X), $T_V = \sup\{T_{wd}: d \text{ is a compatibe metric on } X\}.$ • For a metric space (*X*,*d*), we have the following diagram:



Example (Pol, 20??): There is a separable metric (X,d) which is of the first Baire category such that (F(X), T_{wd}) is Baire.

• Consider ω^{ω} equipped with the metric defined by

$$e(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 2^{-n}, & n = \min\{m : x(m) \neq y(m)\} \text{ if } x \neq y. \end{cases}$$

Let $\omega^{<\omega}$ be the subspace consisting of sequences which are eventually equal to zero. This subspace is of the first Baire category.

The product space $X = \omega^{<\omega} \times \omega^{\omega}$ is a separable metric space which is of the first Baire category.

It can be shown that $(F(X), T_{wd})$ is Baire.

Example (Cao and Tomita): There is a metric Baire space (X,d) such that $(F(X), T_{wd})$ is Baire, but X^{ω} with the Tychonoff topology is not Baire.

Let {A_y : y ∈ ω^ω} be a family of disjoint stationary subsets of C_ωc⁺. For each y ∈ ω^ω, we put C_y = ∪{A_{y'} : y' ∈ ω^ω, y(0) ≠ y'(0)}. Let (ω^ω, e) be the metric space defined before. On (c⁺)^ω, we consider the metric defined by

 $\varrho(f,g) = \begin{cases} 0, & \text{if } f = g; \\ 2^{-(n+1)}, & n = \min\{m : f(m) \neq g(m)\} \text{ if } x \neq y. \end{cases}$

Then, the required space will be

 $X = \{ (y, f) \in \omega^{\omega} \times (\mathfrak{c}^+)^{\omega} : \sup\{ f(n) + 1 : n < \omega \} \in \overline{C_y} \}$

equipped with the product metric $e \times \rho$ from $\omega^{\omega} \times (\mathfrak{c}^+)^{\omega}$.

