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Abstract: In this paper, we consider the robust portfolio selection problem for an insurer in the sense of maximiz-
ing the exponential utility of his wealth. This special robust investment problem, where underwriting results and a
risk-free asset are considered, differs from ordinary robust portfolio selection problems. The insurer has the option
of investing in a risk-free asset and multiple risky assets whose returns are described by the factor model. The
rate of underwriting return is also assumed to be correlated with returns of risky assets. When the parameters are
perturbed in a joint uncertainty set, the robust investment problem for an insurer is established and this problem is
reformulated and solved as a cone programming problem. Finally, some computational results are given for raw
market data.
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1 Introduction
Since insurers are permitted to invest in financial

markets in practice, there has been much attention to
the optimal investment problem for insurers recently.
It is well-known that the overall result of an insurer
taking investment into consideration is analyzed into
two parts: the underwriting result and the investmen-
t income. Underwriting results cause a large amount
of claim and then bring lots of risks, thus an insur-
er needs to take the underwriting risk into account.
As considering the underwriting risk, the investment
problem for an insurer is similar to, but not the same
as, the ordinary portfolio selection problem. The port-
folio selection problem for insurers has been studied
for a long time. Kahane and Nye [1], Krous [2], Lam-
bert and Hofflander [3] tackled this problem via us-
ing the portfolio theory developed by Markowitz [4].
Briys [5] studied investment behavior of insurers by
analyzing the expected utility.

In the Markowitz portfolio selection model, the
optimal portfolio can be identified by solving a con-
vex quadratic program. However, this mean-variance
model is not successful in practice in spite of its the-
oretical elegance. One of the main reasons is that the
optimal portfolios are often very sensitive to pertur-
bations in the parameters of the problem. Since there
are some statistical errors when estimating the market
parameters, the result of the subsequent optimization

is not very reliable.

In order to alleviate the sensitivity of optimal
portfolios to the inputs, many researches apply the ro-
bust optimization to model portfolio selection prob-
lems. In particular, this approach has been successful
in optimization with uncertain parameters. Generally
speaking, the parameters of robust optimization prob-
lems are uncertain in bounded sets, and optimization
problems are solved under the worst case behavior of
these uncertain parameters. This robust optimization
framework was introduced and studied in [6], [7], [8],
[9], [10], and has been used in a wide spectrum of
domains since late 1990s, see [11] for a survey. Re-
garding portfolio selections, the major contributions
have come in 2000s, see [12] for details. Goldfar-
b and Iyengar [13] introduced a robust factor model
for asset returns and parameterize the uncertainty sets
from the market data through statistical procedures.
They showed that the robust optimization problems
corresponding to their uncertain sets can be reformu-
lated as second-order cone programs. El Ghaoui et
al. [14] defined the worst-case Value-at-Risk (VaR)
for given partial information on the returns’ distribu-
tion, and they showed that the robust problems of opti-
mizing the worst-case VaR can be cast as semidefinite
programs. Zhu and Fukushima [15] investigated the
minimization of worst-case conditional Value-at-Risk
(CVaR) and present its application to robust portfolio

WSEAS TRANSACTIONS on MATHEMATICS Hui Zhao, Ximin Rong, Jiling Cao

ISSN: 1109-2769 321 Issue 9, Volume 10, September 2011



optimization.
Determining the structure of uncertainty sets is

essential in formulating and solving robust portfolio
selection problems. Goldfarb and Iyengar [13] pro-
posed a box uncertainty set and an ellipsoidal set for
different parameters, respectively. In [16] (see also
[17]), two box-type uncertainty sets were proposed for
the mean vector and the covariance matrix of the as-
set returns, respectively. But in most of the mentioned
works, the uncertainty sets of the parameters are sep-
arable. Lu [18] pointed out the common drawbacks of
these separable uncertainty structures and proposed a
joint ellipsoidal uncertainty set for his model parame-
ters to overcome the disadvantages of the afore men-
tioned models. He also showed that the joint uncer-
tainty set could be constructed as a confidence region
for any desired confidence level through a statistical
procedure. With this uncertainty set, the robust maxi-
mum risk-adjusted return portfolio selection problem
presented in [18] is reformulated and solved as a cone
programming problem.

In this paper, we apply the robust optimization to
study the portfolio selection problem for a general in-
surer and choose the joint uncertainty set for parame-
ters. In [13] and [18], there is no risk-free asset. How-
ever, a risk-free asset is an important component for
the safety of the investment of an insurer. Therefore,
in this paper we consider a model with a risk-free as-
set. Moreover, the underwriting rate of return is re-
garded as a random variable and assumed to be cor-
related with returns of the risky assets. These factors
make our model more complicated than the ordinary
robust portfolio selection problem. Consequently, nu-
merical results show that the robust optimal portfolio
for an insurer is different from that for a general in-
vestor and an insurer is much more conservative than
a general investor.

This paper is organized as follows. Section 2 de-
scribes the robust portfolio selection problem for an
insurer. In Section 3, our robust portfolio selection
problem with joint uncertainty structure is reformu-
lated as a cone programming problem. Some compu-
tational results for real market data are presented in
Section 4. Section 5 contains some conclusions.

2 Robust investment model for an in-
surer

Suppose that an insurer can invest in a discrete-
time market with n risky assets (hereinafter called
‘stocks’) and a risk-free asset (hereinafter called
‘bond’). The rates of returns on stocks are described
by the factor model which is introduced by Goldfarb
and Iyengar [13]. The vector of the rates of returns

on stocks over a single market period is denoted by
r0 ∈ Rn. The rates of returns on the stocks in dif-
ferent market periods are assumed to be independent.
The single period rate of return r0 is assumed to be a
random vector given by

r0 = µ+VTf + ϵ, (1)

where µ ∈ Rn is the vector of the mean rates of re-
turns, f ∼ N(0,F) ∈ Rm denotes the rates of returns
of the m factors that drive the market, V ∈ Rm×n

represents the factor loading matrix of the n stocks,
and ϵ ∼ N(0,D) ∈ Rn is the vector of the residual
rates of return. Here x ∼ N(µ,Σ) denotes that x is a
multivariate normal random variable with mean vector
µ and covariance matrix Σ. In addition, we assume
that the covariance matrix D = diag(d) ≽ 0, where
diag(d) denotes a diagonal matrix with the vector d
along the diagonal, and the vector ϵ which is related
to the residual returns is independent of the vector f .
Thus, r0 ∼ N(µ,VTFV +D).

Goldfarb and Iyengar [13] have developed a ro-
bust counterpart for the afore mentioned factor model.
In their work, even though F and D are perturbed in
some uncertainty structures, they are usually assumed
to be known and fixed in computation. Thus, for the
convenience of presentation, we only assume the un-
certainty structures for µ and V in this paper.

Suppose that the collected premium is P and r
is the underwriting rate of return. Then the under-
writing return of the insurer is rP . Let g be the in-
vestable proportion of the premium, which is fixed
and decided by the government. Then the insurer’s
amount of wealth for investment is gP 1. The insurer
is allowed to invest in those stocks as well as in the
bond. An investment plan can be expressed in terms
of the proportion invested in each asset. Let ϕi be the
percentage invested in stock i for i = 1, . . . , n and
ϕ = (ϕ1, . . . , ϕn)

T ∈ Rn. Then 1 − 1Tnϕ represents
the proportion invested in the bond, where 1n ∈ Rn
is the all-one vector. In terms of the security of an
insurer’s investment, it is required that certain amoun-
t of wealth should be invested in the bond and thus
1Tnϕ < 1. In addition, short sales are not allowed
throughout this paper. Therefore, the set of all admis-
sible trading strategies is denoted by

Φ = {ϕ : 0 < 1Tnϕ < 1,ϕ ≥ 0}. (2)

Corresponding to an admissible trading strategy ϕ,
the total profit of the insurer (underwriting result and

1In this paper we assume that initial endowment equals zero
as in [5]. It does not change the spirit of the model and allows
easier derivations.
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the investment income) at the end of one single period
is:

π = rP + gP [rT0 ϕ+ (1− 1Tnϕ)rf ], (3)

where r0 is given in (1) and the constant rf denotes
the risk-free rate. Suppose that the insurer has a util-
ity function U(x) of the total profit. The aim of the
insurer is to maximize the expected utility E[U(π)],
i.e.,

max
ϕ∈Φ

E[U(π)]. (4)

In this paper, we consider the common used
CARA utility function U(x) = − 1

β exp(−βx) with
β > 0 and the investment problem of this paper is

max
ϕ∈Φ

E

[
− 1

β
exp (−βπ)

]
. (5)

By (1), on the portfolio ϕ, we have

rT0 ϕ = µTϕ+ fTVϕ+ ϵTϕ

∼ N(µTϕ,ϕT(VTFV +D)ϕ).
(6)

Denote by Cov(r, ri) the covariance of r and ri (the
ith component of r0) for i = 1, ..., n, we derive

Cov(r, ri) = Cov(r, µi + (VTf)i + ϵi)

=
m∑
j=1

VjiCov(r, fj) + Cov(r, ϵi)

(7)
from (1), where µi, (VTf)i, ϵi represent the ith
components of µ, VTf and ϵ respectively, Vji
denotes the element of V in the jth row and
ith column, and Cov(X,Y ) denotes the covari-
ance of random variables X and Y . Define
ρ = (Cov(r, r1), . . . ,Cov(r, rn))

T, Cov(r,f) =

(Cov(r, f1), . . . ,Cov(r, fm))
T and Cov(r,ϵ) =

(Cov(r, ϵ1), . . . ,Cov(r, ϵn))
T. With the help of (7),

we have

ρ = VTCov(r,f) +Cov(r,ϵ). (8)

Thus the covariance of r and the rate of return on the
stock portfolio rT0 ϕ is ρTϕ.

According to the above results, we rewrite the ob-
jective function of problem (5). Substituting (3) into
(5) yields

E

[
− 1

β
exp(−βπ)

]
= − 1

β
E
{
exp

[
−βP (r + grT0 ϕ)

]
· exp

(
−βrfgP + βrfgP1

T
nϕ
)}

= − 1

β
exp

(
−βrfgP + βrfgP1

T
nϕ
)

·E
{
exp

[
−βP (r + grT0 ϕ)

]}
.

(9)

It is reasonable to assume that (r, rT0 ϕ) has the bivari-
ate normal distribution. Thus, r + grT0 ϕ is a normal
random variable. Following from (6), we have

E(r + grT0 ϕ) = E(r) + gµTϕ,

Var(r + grT0 ϕ)

= Var(r) + g2[ϕT(VTFV +D)ϕ] + 2gρTϕ.
(10)

The result of the moment generating function of nor-
mal random variables together with (10) implies

E
{
exp

[
−βP (r + grT0 ϕ)

]}
= exp

{
−βP

[
E(r) + gµTϕ

]
+
β2P 2

2
[Var(r)

+g2ϕT(VTFV +D)ϕ+ 2gρTϕ]

}
.

(11)
Substituting (11) into (9) yields

E

[
− 1

β
exp(−βπ)

]
= − 1

β
exp

{
− βrfgP + βrfgP1

T
nϕ− βPE(r)

−βgPµTϕ+
β2P 2

2
Var(r) +

β2g2P 2

2
ϕTVTFVϕ

+
β2g2P 2

2
ϕTDϕ+ β2gP 2ρTϕ

}
.

(12)
Since − 1

β < 0 and exp(x) is strictly increasing, then
problem (5) is equivalent to

min
ϕ∈Φ

(
− βrfgP + βrfgP1

T
nϕ− βPE(r)

−βgPµTϕ+
β2P 2

2
Var(r) +

β2g2P 2

2
ϕTVTFVϕ

+
β2g2P 2

2
ϕTDϕ+ β2gP 2ρTϕ

)
.

(13)
Furthermore, (13) reduces to

max
ϕ∈Φ

(
µTϕ− rf1

T
nϕ− βgP

2
ϕTVTFVϕ

−βgP
2

ϕTDϕ− βPρTϕ

)
.

(14)
Substituting (8) into (14), we can reformulate (14) as

max
ϕ∈Φ

(
µTϕ− rf1

T
nϕ− βgP

2
ϕTVTFVϕ

−βgP
2

ϕTDϕ− βPCovT
(r,f)Vϕ− βPCovT

(r,ϵ)ϕ

)
.
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Considering the uncertainty of µ and V, we formulate
the robust portfolio selection problem for an insurer,
i.e.,

max
ϕ∈Φ

{
min

(µ,V)∈S

{
µTϕ− βgP

2
ϕTVTFVϕ

−βPCovT
(r,f)Vϕ

}
− βgP

2
ϕTDϕ− rf1

T
nϕ

−βPCovT
(r,ϵ)ϕ

}
,

(15)
where S is the uncertainty set for (µ,V).

The insurer’s robust investment model (15) con-
siders the bond and the covariance of the underwriting
rate of return and the rate of return on stock portfolio,
which is different from the general robust portfolio s-
election problems. Moreover, we see that the optimal
portfolio is independent of the mean and the variance
of the underwriting rate of return, but relates to the
vector of covariance ρ. Furthermore, (15) tells us that
in contrast to classical robust portfolio selection prob-
lems, for a robust portfolio model of an insurer, we
should consider the worst case of βPCovT

(r,f)Vϕ.
In the following, we construct the joint ellip-

soidal uncertainty structure for (µ,V). Suppose that
the market data consists of rates of returns on stock-
s {rt0 : t = 1, . . . , p} and the corresponding rates of
factor returns {f t : t = 1, . . . , p} for p trading peri-
ods. Let yi = (r1i , r

2
i , . . . , r

p
i )

T, i = 1, . . . , n be the
rates of returns on stock i over p periods, and

B := (f1, f2, ..., fp) ∈ Rm×p, A = (1p,B
T)

xi := (µi, V1i, V2i, ..., Vmi)
T,

where 1p ∈ Rp is the all-one vector. Furthermore,
let xi be the least-square estimate of xi. Because the
columns of A are linearly independent and p ≫ m
in practice, it is assumed that A has the full column
rank. It follows that

xi = (ATA)−1ATyi.

Define

s2i =
∥yi −Axi∥2

p−m− 1
, (16)

where ∥ · ∥ denotes the Euclidean norm. Let c̃(ω) be
a critical value for a standard normal variable Z, i.e.,
P (Z ≤ c̃(ω)) = ω and

µF =
p−m− 1

p−m− 3
,

σF =

√
2(p−m− 1)2(p− 2)

(m+ 1)(p−m− 3)2(p−m− 5)
.

(17)

Define c(ω) by

c(ω) = (m+ 1)
(
c̃(ω)σF

√
n+ nµF

)
.

Then the joint ellipsoidal uncertainty set with ω-
confidence level is in the form of

Sµ,V ≡ Sµ,V(ω)

=

{
(µ,V) :

n∑
i=1

(xi − xi)
T(ATA)(xi − xi)

s2i
≤ c(ω)

}
,

(18)
and when n is relatively large (saying a couple dozen),
we have

P

(
n∑
i=1

(xi − xi)
T(ATA)(xi − xi)

s2i
≤ c(ω)

)
≈ ω,

(19)
(see Section 3 of [18] for more details). Since
(µ,V) ∈ Sµ,V, we rewrite (15) as

max
ϕ

{
min

(µ,V)∈Sµ,V

{
µTϕ− βgP

2
ϕTVTFVϕ

−βPCovT
(r,f)Vϕ

}
− βgP

2
ϕTDϕ

−rf1Tnϕ− βPCovT
(r,ϵ)ϕ

}
s.t. ϕ ∈ Φ.

(20)

3 Solution to robust investment
problem for an insurer

In this section, the robust investment problem
(20) for an insurer is reformulated as a cone program-
ming problem, and then we can use the optimization
solvers (e.g., SeDuMi proposed by Sturm [19] and S-
DPT3 by Tütüncü et al. [20]) to solve it. By introduc-
ing auxiliary variables ν and t, problem (20) can be
reformulated as

max
ϕ,ν,t

(
ν − βgP

2
t− rf1

T
nϕ− βPCovT

(r,ϵ)ϕ

)
s.t. min

(µ,V)∈Sµ,V

{
µTϕ− βgP

2
ϕTVTFVϕ

−βPCovT
(r,f)Vϕ

}
≥ ν

ϕTDϕ ≤ t

ϕ ∈ Φ.
(21)
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Next we aim to reformulate the inequality

min
(µ,V)∈Sµ,V

{
µTϕ− βgP

2
ϕTVTFVϕ

−βPCovT
(r,f)Vϕ

}
≥ ν

(22)

as linear matrix inequalities. First, we give two lem-
mas that will be used subsequently.

Lemma 1. (S -procedure) Let Fi(x) = xTAix +
2bT

i x + ci be quadratic functions of x ∈ Rn for i =
0, ..., p. Then F0(x) ≤ 0 for all x such that Fi(x) ≤
0, i = 1, ..., p, if there exists τi ≥ 0 such that

p∑
i=1

τi

(
ci bT

i

bi Ai

)
−
(
c0 bT

0

b0 A0

)
≽ 0.

Moreover, if p = 1 then the converse holds whenever
there exists x0 such that F1(x0) < 0.

For the S -procedure and its applications, one can
refer to [21]. Before proceeding further, we need to
recall the definition of the standard Kronecker product
from [22], denoted by ⊗.

Definition 2. Given A = [aij ] ∈ Rm×n and B =
[bij ] ∈ Rp×q, the standard Kronecker product A⊗B
of A and B is defined by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

In the following lemma, we list one simple prop-
erty of the standard Kronecker product from [23].

Lemma 3. If H ≽ 0 and K ≽ 0, then H⊗K ≽ 0.

The following lemma reformulates constrain-
t (22) as a collection of linear matrix inequalities
(LMIs).

Lemma 4. Let Sµ,V be defined in (18) for ω > 0.
Then, the inequality (22) is equivalent to the following
LMIs τM− βgPS⊗

(
0 0
0 F

)
τh+ q

τhT + qT τη − 2ν

 ≽ 0,

(
1 ϕT

ϕ S

)
≽ 0, τ ≥ 0,

(23)

where

M =


ATA

s21
. . .

ATA

s2n

 ∈ R[(m+1)n]×[(m+1)n],

(24)

η =

n∑
i=1

xT
i

(
ATA

s2i

)
xi − c(ω), (25)

h =


−ATAx1

s21
...

−ATAxn
s2n

 ∈ R(m+1)n, (26)

q =


ϕ1

−βPϕ1Cov(r,f)
...
ϕn

−βPϕnCov(r,f)

 ∈ R(m+1)n. (27)

Proof: Given any (ν, β, g, P,ϕ) ∈ R×R×R×R×
Rn, we define

H(µ,V) = −µTϕ+
βgP

2
ϕTVTFVϕ

+βPCovT
(r,f)Vϕ+ ν.

As xi = (µi, V1i, V2i, . . . , Vmi)
T, i = 1, . . . , n, we

view H(µ,V) as a function of x = (xT
1 , . . . ,x

T
n )

T ∈
R(m+1)n. Then we easily see that

∂H

∂xi
=

(
−ϕi

βgPϕiFVϕ+ βPϕiCov(r,f)

)
,

∂2H

∂xi∂xj
=

(
0 0
0 βgPϕiϕjF

)
, i, j = 1, . . . , n.

(28)
Using (28) and performing the Taylor series expan-
sion for H(µ,V) at x = 0, we obtain

H(µ,V) =
1

2

n∑
i,j=1

xT
i

(
0 0
0 βgPϕiϕjF

)
xj

+

n∑
i=1

(
−ϕi

βPϕiCov(r,f)

)T

xi + ν.

(29)
Since A has the full column rank, from (19), we get

ω > 0 ⇒ c(ω) > 0. (30)
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In view of (18), Sµ,V can be written as

Sµ,V =

{
(µ,V) :

n∑
i=1

xT
i

(
ATA

s2i

)
xi

−2

n∑
i=1

(
ATAxi
s2i

)T

xi +

n∑
i=1

xT
i

(
ATA

s2i

)
xi

−c(ω) ≤ 0

}
.

(31)
For ω > 0, (30) implies that x = x strictly satisfies
the inequality given in (31). According to (29), (31)
and Lemma 1, we conclude that H(µ,V) ≤ 0 for all
(µ,V) ∈ Sµ,V if and only if there exists a τ ≥ 0
such that

τ

(
M h
hT η

)
−
(

K −q
−qT 2ν

)
≽ 0, (32)

where M, η, h and q are defined in (24), (25), (26)
and (27) respectively, and K is given by

K = (Kij) ∈ R[(m+1)n]×[(m+1)n],

Kij =

(
0 0
0 βgPϕiϕjF

)
∈ R(m+1)×(m+1),

i, j = 1, . . . , n.

In terms of Definition 2, we have

K = βgP (ϕϕT)⊗
(

0 0
0 F

)
.

This together with Lemma 3 and the fact F ≽ 0 shows
that (32) holds if and only if there exists a τ ≥ 0 sat-
isfying, τM− βgPS⊗

(
0 0
0 F

)
τh+ q

τhT + qT τη − 2ν

 ≽ 0,

S ≽ ϕϕT.

Using the Schur Complement Lemma, S ≽ ϕϕT can
be written as (

1 ϕT

ϕ S

)
≽ 0.

Hence, it follows that H(µ,V) ≤ 0 for all (µ,V) ∈
Sµ,V if and only if (23) holds. It is easy to find that
the inequality (22) holds if and only if H(µ,V) ≤ 0
for all (µ,V) ∈ Sµ,V. Then the proof is completed.
⊓⊔

In the following theorem, the robust investment
problem (20) is reformulated as a cone programming
problem.

Theorem 5. Let Sµ,V be given by (18) for ω > 0.
Then the robust investment problem (20) for an insur-
er is equivalent to the following cone programming
problem,

max
ϕ,ν,t,τ,S

ν − βgP

2
t− rf1

T
nϕ− βPCovT

(r,ϵ)ϕ

s.t.

 τM− βgPS⊗
(

0 0
0 F

)
τh+ q

τhT + qT τη − 2ν

 ≽ 0

(
1 ϕT

ϕ S

)
≽ 0,

 1 + t
1− t

2D
1
2ϕ

 ∈ Ln+2

0 < 1Tnϕ < 1, ϕ ≥ 0, τ ≥ 0,
(33)

where M, η, h and q are defined in (24), (25), (26)
and (27) respectively, 1n ∈ Rn is the all-one vec-
tor, D

1
2D

1
2 = D and Ln denotes the n-dimensional

second-order cone given by

Ln =

z ∈ Rn : z1 ≥

√√√√ n∑
i=2

z2i

 .

Proof: Since D = diag(d) ≽ 0, the constraints
ϕTDϕ ≤ t can be transformed into a second-order
cone constraint as follows:

ϕTDϕ ≤ t⇔ 4ϕTD
1
2D

1
2ϕ ≤ (1 + t)2 − (1− t)2

⇔

 1 + t
1− t

2D
1
2ϕ

 ∈ Ln+2.

(34)
The above result (34), Lemma 4 and constraint (2)
imply that (21) is equivalent to (33). The conclusion
immediately follows from this result and the fact that
(20) is equivalent to (21). ⊓⊔

Theorem 5 shows that the robust investment prob-
lem for an insurer under a joint uncertainty can be re-
formulated as a cone programming problem. Then,
problem (20) can be solved by optimization solvers.
In the case where there is no bond and the underwrit-
ing rate of return is regarded as being independent of
the stock return, our model is reduced to the following
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general robust portfolio selection model:

max
ϕ,ν,t,τ,S

ν − βgP

2
t

s.t.

 τM− βgPS⊗
(

0 0
0 F

)
τh+ q̂

τhT + q̂T τη − 2ν

 ≽ 0

(
1 ϕT

ϕ S

)
≽ 0,

 1 + t
1− t

2D
1
2ϕ

 ∈ Ln+2

1Tnϕ = 1, ϕ ≥ 0, τ ≥ 0,
(35)

where q̂ = (ϕ1,0, . . . , ϕn,0)
T ∈ R(m+1)n.

4 Numerical analysis
In this section, we present some computational re-

sults for raw market data. These computational ex-
periments aim to obtain the optimal portfolio for an
insurer and to compare the performance of the robust
investment strategies for an insurer with that of the
general robust portfolio selection strategies. We con-
duct all computation using SeDuMi V1.1 with Matlab
6.5.1 and R 2.7.2.

Firstly, the hypotheses are verified by using real
market data. Through quantile-quantile plots, we can
regard (r, rT0 ϕ) as a bivariate normal distributed vec-
tor. By correlation analysis, the underwriting rate of
return r is correlated with the rate of return on each
stock.

We choose 12 industries from fi-
nance.cn.yahoo.com in 2009 according to real
market data and n=47 well-performed stocks are
chosen for investment from these industries (see
Table 1). We fix 15 factors through principal compo-
nent analysis of asset returns, i.e., m=15. The data
sequence consists of daily asset returns from January
3, 2005 to August 26, 2009, which were the most
recent data when they were collected.

The following is a complete description of the ex-
perimental procedures. The entire data sequence is di-
vided into investment periods of length p = 90 days.
For each investment period t, the rates of returns on
factors are calculated by principal component analysis
on the rates of stock returns. The rates of returns on
these factors are used to estimate the factor covariance
matrix F. The variance of the residual rate of return di
is set to di = s2i , where s2i is given in (16). The risk-
free rate rf is set according to the daily bank interest
rate of each period. We set P = 500000, g = 0.8 and
β = 0.02. The data sequence of underwriting rate r
is computed basing on the business statistics of some
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Figure 1: overall proportion invested in 47 stocks for
ω = 0.95

insurance companies in one year. Denote by I the pre-
mium income and by C the benefit paid in one year.
Then

r =
I − C

360I
.

The historical data of r are used to estimate Cov(r,ϵ)
and Cov(r,f). Given an ω > 0, the joint uncertainty
set Sµ,V is built as (18). The robust portfolio for an
insurer (resp. general robust portfolio) is computed by
solving model (33) (resp. model (35)).

Since a block of data of length p = 90 is required
to estimate the parameters for the robust model, the
first investment period labeled t = 1 starts from (p +
1)th day. The time period January 3, 2005-August
25, 2009 contains 13 periods of length p = 90, so
there are 12 investment periods in total. A portfolio
ϕt is held constant for the period t and rebalance to
portfolio ϕt+1 in period t+ 1.

In Figure 1, We see that for an insurer, the overall
proportion invested in the 47 stocks is small, which
implies the safety orientation of the investment for an
insurer.

The diversification number of a portfolio is de-
fined as the number of its components that are above
10−3. In comparison with the robust portfolio for a
general investor, Figure 2 shows that our robust port-
folio is highly non-diversified. This fact is consisten-
t with the intuition. The insurer should consider the
claim paid, so she/he is much more conservative than
the general investor and will choose less stocks for in-
vestment in order to reduce risk. We also find that
in periods t = 5, t = 6, t = 7, t = 8 and t = 12,
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the proportions invested in stocks by the insurer are
nearly zero, which is due to the fall of stock market.
This fact implies that insurers are more sensitive than
general investors on fluctuations of stock prices. A-
gain, this result is consistent with intuition. Figure
3 plots the average diversification numbers for differ-
ent confidence levels respectively. Since in periods
t = 6, t = 7, t = 8 and t = 12, the proportions invest-
ed in stocks are so small, we only consider the other
periods and define the average diversification number
as

1

8

(
5∑
t=1

I(ϕt) +

11∑
t=9

I(ϕt)

)
,

where I(ϕt) denotes the diversification number of the
portfolio ϕt.

Figure 4 and Figure 5 compare the cost of imple-
menting two robust investment strategies. The trans-
action cost is quantified by

∥ϕt − ϕt−1∥1,

and the average transaction cost of portfolios
{
ϕt
}12
t=1

is quantified by

1

11

12∑
t=2

∥ϕt − ϕt−1∥1,

where ∥ · ∥1 denotes the 1-norm. For confidence lev-
el ω = 0.95, we see that the transaction cost for an
insurer is much less than that of a general investor
from Figure 4. More precisely, the 12 periods’ av-
erage transaction cost of the general investor is about
61 times more than that of the insurer. In Figure 5, we
plot the average transaction cost for different ω. With-
out loss of generality, the periods t = 6, t = 7, t = 8
and t = 12 are eliminated.

Figure 3 and Figure 5 show that the performances
of both robust portfolios are not much sensitive with
respect to ω. In particular, the average transaction cost
of the insurer’s robust strategy has hardly changed as
ω increases.

5 Conclusion
This paper studies the robust investment problem

for an insurer. In terms of the characteristics of the in-
surer’s investment problem, underwriting results and
a risk-free asset are considered in our formulation.
Based on the joint uncertainty set for the model pa-
rameters, the robust investment problem for an insur-
er is established. This robust portfolio selection model
is reformulated as a cone programming problem and
then can be solved through optimization solvers.
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Figure 2: comparison on diversification number for
ω = 0.95
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Figure 4: comparison on transaction cost for ω = 0.95
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Figure 5: comparison on average transaction cost

The computational results show that the optimal
strategy of an insurer is to invest a small amount of
money in stocks. In view of the results on the diversi-
fication number of stocks and the transaction cost, the
investment of an insurer is much more conservative
than a general investor, which implies that the insurer
is more concerned with safety than profitability of an
investment strategy.
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Appendix

Table 1: Stocks
Aerospace and Defense

AIR AAR corporation
BA Boeing Corp.

HON Honeywell Intl.
LMT Lockheed Martin
UTX United Technologies

Auto Manufactures
F Ford Motor Co.

TM Toyota Motor Cp ADR
Biotechnology and Drug Manufacturers
AMGN Amgen Co
GILD Gilead Science
JNJ Johnson & Johnson
PFE Pfizer

Chemicals
APD Air Products & Chem
DD DuPon

DOW Dow Chemical
EMN Eastman Chemical Co.

Communication Equipment
DTV Directv
GLW Corning Inc.
MOT Motorola
NOK Nokia

QCOM Qualcomm
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Computer Software
ADBE Adobe Systems Inc.
ARBA Ariba
MSFT Microsoft
ORCL Oracle Corp.

Discount
WMT Wal-Mart Stores Inc.

Diversified Computer Systems
HPQ Hewlett-Packard Co.
IBM Intl. Business Machines
IGT Intl. Game Technology

JAVA Sun Microsys
SGMS Scientific Games Corp.

Major Integrated Oil & Gas
BP BP Plc.

CVX Chevron Corp.
XOM Exxon Mobil Corp.

Semiconductor-Broad Line
ADI Analog Devices Inc.

INTC Intel Corp.
STM STMicroelectronics Ads
TXN Texas Instruments

Telecom Services
BCE BCE Inc.
CHT Chunghwa Telecom Co. Ltd.
CTL Centurytel Inc.

T AT&T
VZ Verizon Communications Inc.

Utilities (Gas & Electric)
D Dominion Resources Inc.

DUK Duke Energy Corporation
EXC Exelon Corp.
PEG Public Service Enterprise Group
SO Southern
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