
Modelling the seasonal climate variability and its 

effects on vintage wines from Marlborough, NZ 
 

Subana Shanmuganathan and Ana Perez Kuroki 

 Geoinformatics Research Centre,  

School of Computing and Mathematical Sciences, 

Auckland University of Technology 

New Zealand 

Ajit Narayanan and Philip Sallis  

Geoinformatics Research Centre,  

School of Computing and Mathematical Sciences,  

Auckland University of Technology 

New Zealand 

 

 
Abstract— The paper presents interim results of ongoing research on 

the application of data/text mining methodologies investigated to 

modelling the seasonal climate variability and its effects on the world 

famous Marlborough vintage wines. The research efforts are an 

extension to the investigation thus far conducted on modelling the 

effects of seasonal climate variability on Kumeu wines and all the 

sub-projects contribute to an overarching project which is aimed at 

developing a scheme/ suitable set of procedures for the identification 

and characterisation of wines produced from New Zealand’s major 

wine regions. The distinctive New Zealand wine styles along with the 

regions from where the wines come from are initially elaborated. The 

major issues regarding the topic are; firstly, there is no single 

method that could be considered as the best way to establish the links 

between precise independent (climate/ weather) and the rather 

imprecise dependent (subjective wine quality) data sets.  Secondly, 

the data on New Zealand wine quality is not sufficient enough to 

perform any conventional rigorous analytical approaches as data on 

wine quality spans only a decade, hence we look at data/ text mining 

methods and a combination of explorative and statistical data 

analysis methodologies to resolve the issues. Following a brief 

outline on the methods investigated and results achieved in the 

Kumeu wine case study, the paper presents the new methods and 

approaches explored with Marlborough wines produced from 1996 to 

2007.  Finally, wine descriptors that are found to be linked with wine 

quality and therefore considered as correlated to the regional 

climatic conditions experienced in different wine regions of New 

Zealand, are discussed. 
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I.  INTRODUCTION 

The quality of a vintage wine depends on the climate, the 
seasonal weather conditions that ripened the grapes as much as 
the winemaker experience and talent. This has been well-
documented in literature as seen in (1) (2). But knowledge on 
“how” and the “precise” weather conditions that affect the 
grape composition and the ripening process is fragmented (3). 
The major reason for this being lack of consistent data on wine 
quality to scientifically validate the anecdotal evidence by 
establishing the correlation/s between the two vital sets of 
factors, namely, the wine quality which is arguably a subjective 
issue when compared with the more precise and readily 
available weather data. This is especially the case with wines 
produced from most of the new world wine producing 
countries, such as New Zealand, Australia, Chile and South 

Africa. However, in recent years, the interest in scientifically 
understanding the long- and short-term climate change effects 
on viticulture has been significant in both old as well as new 
world wine producing countries to improve vineyard operations 
and grape wine production.  Nonetheless the lack of consistent 
data makes the modelling of climate change effects on 
grapevine growth, phenology and wine quality difficult using 
conventional methodologies.  

In view of the above facts, researchers at AUT’s 
Geoinformatics Research Centre (GRC) began investigating 
into experimenting with approaches that are generally referred 
to as other than the rigorous statistical data analysis 
methodologies to modelling the influence of weather 
conditions on the quality of vintages produced from different 
wine regions of New Zealand.  The ultimate aim of this effort 
is to find a set of ideal features that can be used for the 
identification and characterisation of vintages produced from 
New Zealand’s major wine regions under different seasonal 
weather conditions (4).  Section II gives an outline on the 
results obtained with approaches already investigated using 
vintage ratings, sommelier comments (5) and grape yield (6) 
from Kumeu River Wines against local weather conditions.  
Section III looks at Marlborough wine and climate data being 
used in the research, following which results and future 
direction of this research are briefly outlined.                   

II. CLIMATE EFFECTS ON WINES OF DIFFERENT VINTAGES  

Recent research in modelling the effects of seasonal climate 
variability on grapevine phenology, berry composition and 
wine quality showed that of the many factors, weather as the 
main influencing one at this temporal scale (7). 

A. Year- to year-variability in climate and its effects on wine 

In viticulture, it is believed that factors responsible for the 

vintage-to-vintage variability and in turn on the quality of 

grapes produced in that season, could be classified into two 

broader categories, namely terroir (climate, soil and location 

related) and cultiva (or variety). Of these two, the influence of 

terroir factors is described to be the major at this temporal 

scale. Research by van Leeuwen (8) found the proportions (in 

percentage) exerted by different factors and accordingly (50%) 

was derived to be by climate, (25%) by soil and (10%) by 

cultivar. Hence, the research concluded climate as the major 



influencing factor and its affects being described as realised 

specifically through vine water balance status. The study 

looked at the influences of all variables (from terroir and 

cultiva) simultaneously on vintage-to-vintage vine 

development and berry composition. Non irrigated vitis 

vinifera was studied on gravelly soil (with heavy clay subsoil 

and sandy soil, and water table within the reach of roots). 

Merlot, Cabernet franc and Cabernet Sauvignon were the 

varieties used in the study. The climate variables used 

consisted of maximum and minimum temperatures, degree 

days (base of 10°C), sunshine hours, ETo, rainfall, and water 

balance for a four year period from 1996 to 2000.  Similarly, 

(9) (10) studied the seasonal climate effects on grapevine 

phenology and wine quality, and concluded that the 

temperature and weather related factors as the main 

deterministic factor/s.     

B. Year-to-year variability and its effects on Kumeu wines 

The initial results of the analysis carried out using 30 

Kumeu (in northern New Zealand) wines showed the 

correlations between yearly total of 12 std deviation in 

monthly average temperatures and wine descriptor frequencies 

of 12 grouped descriptors extracted from sommelier comments 

given for the 30 wines produced during 1997-2006 (8). The 

wine descriptors were grouped using the WEBSOM approach 

to reduce the 51 descriptors into 12 groups. The WEBSOM
1
 of 

45 nodes was created with 51 descriptors and a commercial 

software package viscovery. 

An interesting observation made from this study was that 

year 1998, with the highest ssd/mean within the period 

analysed consisted of high descriptor frequencies for clusters 

C2, C3, C6 and C10 descriptors. Meanwhile, year 2002 with 

the lowest ssd/mean temperature consisted of higher 

frequencies for C5, C8 and C11 descriptors. Discriminant 

analysis ran on the data set produced 11 words (underlined) as 

contributing factors in determining the variable vintage (or 

year considered as a dependent variable on the 11 descriptors). 

C1 descriptors were present in all years. The model correctly 

classified 76.7% of original grouped cases and 50.0% of cross-

validated grouped cases (30 cases in total). (ssd/meant: 

standard deviation of daily mean temperature for the growing 

season (Sep.-April)). Temperature data for the study was 

obtained from National Institute for Water and Atmospheric 

Research (NIWA).  

III. THE METHODOLOGY 

The research elaborated upon in this paper initially looked 
at different non conventional methods for modelling the 
correlations between wine descriptors of 778 Marlborough 
vintages and their ratings for studying the correlations between 
wine descriptor/ ratings and the seasonal weather conditions. 
The following are the steps of the methodology adopted here: 

                                                           
1

 WEBSOM: The WEBSOM method provides an approach to organise a textual 

document collection onto a graphical map display with an facilitates to browse the 

document collection.  The approach allows for content-directed search within the 

collection. Initially each document is encoded into a histogram of word categories that are 

used by the self-organizing map (SOM) algorithm to create a map based on the 

similarities in the contexts of the words. The encoded documents can be organized on 

several hierarchical SOMs, in which nearby locations contain similar documents (9) 

1) create a matrix of descriptors considered as useful and 
relevant after discarding common and rare words from the 
corpus of words in sommelier comments.  In this study 195 
descriptors were selected from 2351words extracted from the 
original wine comments given for Marlborough 778 wines (for 
details on the text mining method (vector space model) see 9).   

2) ascertain the correlations between descriptors/ groups of 
descriptors often used to describe different wine styles/ their 
ratings to select the high and low wine rate years for wine 
styles produced from the Marlborough region. The methods 
investigated in this research are: WEBSOM for grouping the 
co-occurring words (describing a feature) relating to wine style 
perhaps indicating high or low ratings.  The Marlborough main 
wine styles being analysed in the paper are: Chardonnay, Pinot 
Noir, Riesling, Sauvignon Blanc, Pinot Gris and 
Gewürztraminer.   

3) establish the correlations between style related 
descriptors and ratings using statistical  methods 

4) study the correlations between style related descriptors 
and ratings using data mining (DM) methods. The DM 
methods used in the research are: JRip and J48 (tree based) rule 
classification using WEKA software.  

5) 254 Chardonnay vintages of New Zealand produced 
between 1996-2007 are studied to establish the wine 
descriptors related to the regions using statistical methods and 
then with data mining techniques.   

IV. RESULTS 

Results obtained from different statistical and DM methods 

investigated to establish the correlations between wine 

descriptors and vintages of different NZ wine styles are 

discussed in this section 

 

1) The WEBSOM approach to Marlborough wine styles  

Using the WEBSOM approach word segments (features) 
relating to Marlborough vintages of different wine styles were 
initially analysed to establish the words (descriptors) that are 
correlated to the wine styles produced from this region.  

  

Figure 1.  WEBSOM of 195 descriptors extracted from sommelier comments 

provided for 778 Marlborough vintages of styles produced from this famous 

wine region.  The different segments in the SOM show the descriptors used to 

state the features (S1-S22) of the vintages by sommeliers. 
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Figure 2.  S1 (Sauvignon Blanc): eleg-61, tea-176, layer-92, flower-70, ampl-

6  earthi-60, cranberri-48, meati-106, bake-16, brown-28, red-142, gri-79, 

perfum-128, dusti-59, leather-96, menthol-110, ag-2, woodi-193, anis-7  

heavi-85  strawberri-164, live-102, hai-82, blossom-24, blackberri-23, 

raspberri-140, bitter-21, tannic-173, cook-47, currant-51, integr-90, cedar-33  

oaki-120, slight-154, fat-62, lusciou-103, pure-137, tight-178, wood-192, 

leafi-94, capsicum-31, auster-14, develop-55, muscular-114, success-168, 

young-194, hard-83  round-150, concentr-46, length-98, flinti-68, thick-177, 

warm-189, lemon-97, group-80  orang-123, apricot-10, steeli-163, citric-39, 

leaf-93  tomato-181, persist-129, fig-63, herbac-87  power-135, bai-15  

harmoni-84  sharp-151, open-122, sour-160, alcohol-4  aromat-11  strong-165, 

viscou-188, dessert-54, variet-184, medicin-107  syrupi-172, rough-149, 

approach-9  astring-13  flabbi-66  fleshi-67  zesti195, quinc-138, almond-5  

butterscotch-30, distinct-56  mint-112  nutti-118, banana-1 S2 (Chardonnay): 

smoki-156, oak-119, vanilla-183, spice-161, subtl-167, toast-180, butter-29, 

delic-53, smoke-155, spici-162, linger-101, fine-64, floral-69 (chardonnay)  

S3 (Pinot Noir): smooth-157, suppl-169, complex-45, tannin-174, plum-134  

silki-152, dri-57, vintag-187, cinnamon-38, structur-166, firm-65, chocol-37, 

clove-42, mushroom-115, dark-52, berri-20  caramel-32, velveti-186, roast-

147, coffe-43, readi-141 S19: herbal-88  tropic-182 S20: clean-41  crisp-50  

fresh-71  herb-86  melon-109, grapefruit-75 S21: black-22  cherri-36  noir-117  

pinot-133, cola-44 S22: grassi-77 

Chardonnay: S2 Pinot Noir: S3 Riesling: S5 Sauvignon Blanc: S1 

Sauvignon Blanc: S8 

Chardonnay: S13 Pinot Gris: S13 Sauvignon Blanc: S11 

Pinot Noir: S21 

Gewürztraminer :S1 



(lyche104 >= 0.97) => style2=G (9.0/1.0) 
(pear126 >= 0.51) and (spice161 >= 0.53) and (butter29 

<= 0) and (ripe146 <= 0) => style2=G 
(4.0/0.0) 

(gri79 >= 0.57) => style2=PG (15.0/1.0) 
(appl8 >= 0.23) and (bai15 >= 1.4) => style2=PG 

(4.0/1.0) 
(almond5 >= 0.73) => style2=PG (4.0/1.0) 
(riesl145 >= 0.46) => style2=R (33.0/1.0) 
(lime100 >= 0.31) and (sweet171 >= 0.35) => style2=R 

(10.0/3.0) 
(apricot10 >= 0.87) => style2=R (9.0/4.0) 
(dry58 >= 0.34) and (bodi25 >= 0.3) => style2=R 

(4.0/1.0) 
(oak119 >= 0.35) and (cherri36 <= 0) and (pinot133 <= 0) 

=> style2=C (46.0/11.0) 
(pear126 >= 0.34) and (butter29 >= 0.75) => style2=C 

(8.0/0.0) 
(toast180 >= 0.43) and (cherri36 <= 0) => style2=C 

(13.0/4.0) 
(chardonnai35 >= 0.52) => style2=C (13.0/2.0) 
(cherri36 >= 0.24) => style2=PN (148.0/8.0) 
(pinot133 >= 0.42) => style2=PN (19.0/1.0) 
(plum134 >= 0.71) => style2=PN (6.0/2.0) 
(tannin174 >= 0.43) => style2=PN (3.0/1.0) 

(veget-111 >= 0.37) and (fruit-37 <= 0) and (fresh-36 <= 
0.26) => rate scale=low (11.0/3.0) 

(asparagu-8 >= 0.6) and (fruit-37 <= 0) => rate scale=low 
(7.0/2.0) 

(sour-99 >= 0.94) => rate scale=low (3.0/0.0) 
(heavi-50 >= 0.9) => rate scale=low (6.0/2.0) 
(group-45 >= 0.84) => rate scale=low (5.0/2.0) 
(complex-22 >= 0.4) => rate scale=high (24.0/10.0) 
 => rate scale=med (325.0/71.0) 

complex-22 <= 0 
|   asparagu-8 <= 0.4 
|   |   rich-88 <= 0.36 
|   |   |   creami-25 <= 0 
|   |   |   |   group-45 <= 0 
|   |   |   |   |   bean-12 <= 0 
|   |   |   |   |   |   honei-54 <= 0.49: med (278.0/57.0) 
|   |   |   |   |   |   honei-54 > 0.49 
|   |   |   |   |   |   |   finish-34 <= 0.1: med (4.0) 
|   |   |   |   |   |   |   finish-34 > 0.1: high (6.0/1.0) 
|   |   |   |   |   bean-12 > 0 
|   |   |   |   |   |   bean-12 <= 0.75 
|   |   |   |   |   |   |   fresh-36 <= 0: med (3.0) 
|   |   |   |   |   |   |   fresh-36 > 0: low (2.0) 
|   |   |   |   |   |   bean-12 > 0.75: low (2.0) 
|   |   |   |   group-45 > 0 
|   |   |   |   |   lime-63 <= 0: low (5.0) 
|   |   |   |   |   lime-63 > 0: med (2.0) 
|   |   |   creami-25 > 0 
|   |   |   |   melon-68 <= 0: med (8.0/1.0) 
|   |   |   |   melon-68 > 0: high (2.0) 
|   |   rich-88 > 0.36 
|   |   |   veget-111 <= 0 
|   |   |   |   melon-68 <= 0 
|   |   |   |   |   grassi-43 <= 0 
|   |   |   |   |   |   sweet-104 <= 0.52 
|   |   |   |   |   |   |   lime-63 <= 0 
|   |   |   |   |   |   |   |   tropic-109 <= 0: med (10.0) 
|   |   |   |   |   |   |   |   tropic-109 > 0: high (3.0/1.0) 
|   |   |   |   |   |   |   lime-63 > 0: high (3.0/1.0) 
|   |   |   |   |   |   sweet-104 > 0.52: high (2.0) 
|   |   |   |   |   grassi-43 > 0: high (2.0) 
|   |   |   |   melon-68 > 0: high (3.0) 
|   |   |   veget-111 > 0: low (2.0) 
|   asparagu-8 > 0.4 
|   |   fruit-37 <= 0.05: low (9.0/2.0) 
|   |   fruit-37 > 0.05: med (11.0/2.0) 
complex-22 > 0 
|   linger-64 <= 0 
|   |   herbal-53 <= 0.36 
|   |   |   fruit-37 <= 0.17 
|   |   |   |   appl-5 <= 0 
|   |   |   |   |   eleg-30 <= 0 
|   |   |   |   |   |   nectarin-72 <= 0: med (8.0) 
|   |   |   |   |   |   nectarin-72 > 0: high (2.0) 
|   |   |   |   |   eleg-30 > 0: high (2.0) 
|   |   |   |   appl-5 > 0: high (2.0) 
|   |   |   fruit-37 > 0.17: high (5.0) 
|   |   herbal-53 > 0.36: high (3.0) 
|   linger-64 > 0: med (2.0) 

 

The 22 word segments (figure 2) generated from the 

WEBSOM (figure 1) illustrate the correlations between the 

Marlborough wines styles and the wine descriptors (figure 2).  

The correlations were found between Chardonnay: S2, Pinot 

Noir: S3, Riesling: S5, Sauvignon Blanc: S1 Pinot Gris: S13 

and Gewürztraminer: S1 descriptors. The 195 wine descriptors 

used were extracted from sommelier comments from a web 

magazine (http://buyingguide.winemag.com/regions/new-

zealand) for the vintages of 1996-2007 analysed in the study. 

Based the DM results some descriptors can be attributed 

to certain styles. For example, either a) an higher weight of 

lychee or b) higher pear and spice along with low values of 

butter and ripe relate to Gewürztraminer style of 

Marlborough.   Similarly, the descriptors and their respective 

weights relating to Marlborough’s Pinot Noir, Pinot Gris, 

Riesling and Chardonnay are listed in Table 1.  Anything that 

does not meet the conditions in the Table 1 is stated as 

Sauvignon Blanc (SB). Hence, to reveal the exact descriptors 

of SB, comments of SB vintages were analysed alone. 

Similarly, Chardonnay from all New Zealand regions during 

1996 - 2006 were studied as an individual collection and the 

results are discussed in the next section. 

TABLE I.  MARLBOROUGH VINTAGES (1997-2007) AND STYLES 

JRip rules (WEKA) show the correlations between the descriptors and Marlborough wine styles 

TABLE II.  MARLBOROUGH VINTAGE (1996-2006) DESCRIPTORS & RATINGS 

 

 

 

 

 

 

 

 

 

  

JRip rules show the correlations between Marlborough SB vintages and descriptors   

2) Marlborough Sauvignon Blanc vintages and descriptors 

The collection of comments given for 381 Marlborough 

vintages was converted into matrix of 118 wine descriptors 

and their rates transformed into “low <80” “medium (med) 

>79 and <90” and “high >89” based on their rating (100 point) 

for analysing with DM techniques using WEKA software.  

The JRip rules listed in Table II produced (at training 76% and 

cross validation 70%) for this indicate that high values of the 

descriptor veget (meaning vegetable 6 vegetal 26) and low 

values of fruit and fresh as related to “low” (<80) rate in 

Marlborough SB vintages.  Similarly, either higher weights of 

a) asparagus (>= 0.6) and fruit (<= 0) or b) high sour-99 

(0.94) or c) heavy (>= 0.9) group-45 (>= 0.84) are seen to be 

related to low rated SB vintages.  On the other hand, high 

value of complex (>= 0.4) is related to higher ratings with an 

accuracy of 24.0 correct and 10.0 wrong.   

TABLE III.  RULES (J48) FOR MARLBOROUGH SB VINTAGES (1997-
2007) & RATINGS 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gisborne 
 
sweet-19 <= 0 
|   spice-18 <= 0 
|   |   appl-1 <= 0.27: med (28.0/7.0) 
|   |   appl-1 > 0.27: high (2.0) 
|   spice-18 > 0: high (3.0/2.0) 
sweet-19 > 0 
|   vanilla-23 <= 0: med (3.0) 
|   vanilla-23 > 0: low (3.0) 
 
Training: 76% 
Cross validation : 46% 
 
Waipara 
 
toast-8 <= 0.26 
|   citru-3 <= 0: med (8.0/2.0) 
|   citru-3 > 0: high (2.0/1.0) 
toast-8 > 0.26: high (3.0) 
 
Training: 76% 
Cross validation : 38% 
 
Hawke’s Bay 
 
lime-19 <= 0 
|   ripe-28 <= 0.23 
|   |   orang-23 <= 0 
|   |   |   creami-9 <= 0 
|   |   |   |   honei-17 <= 0 
|   |   |   |   |   intens-18 <= 0: med (19.0/3.0) 
|   |   |   |   |   intens-18 > 0: high (5.0/1.0) 
|   |   |   |   honei-17 > 0: high (2.0) 
|   |   |   creami-9 > 0: high (2.0) 
|   |   orang-23 > 0: high (3.0) 
|   ripe-28 > 0.23: med (8.0/1.0) 
lime-19 > 0: med (6.0/1.0) 
 
Training: 86% 
Cross validation : 48% 
 

 

Meanwhile, classifier model created with J48 pruned trees 

(Table III, with WEKA, (training at 82% and cross validation 

at 67%)) produced rules with additional words (compared with 

that of the JRip) relating to rate classes (low, medium and 

high). The additional words included in J48 were: creami 

(creamy), bean, honei (honey), lime, melon, grassi (grassy), 

sweet, tropic, nectarine, eleg (elegant), apple, fruit, herbal, 

and linger. 

 

3) New Zeland’s Chardonnay vintages and descriptors 

Finally, Chardonnay vintages produced from three regions of 

New Zealand (Gisborne, Waipara and Hawks’ Bay) between 

1996 and 2007 were analysed separately to identify the region 

related descriptors and their correlations between ratings as 

analysis conducted all the styles and vintages together using 

either WEBSOM descriptor groupings or JRip/ J48 model 

classifiers did not produce any interesting rules.  The results 

obtained analysing the chardonnay vintages classified based 

on the regions produced interesting rules. The rules show the 

correlations between “low”, “med” and “high” rate classes and 

are presented in Table IV. 

TABLE IV.  HAWK’S BAY VINTAGES (1996-2006) AND DESCRIPTORS 

V. CONCLUSIONS 

The paper illustrated statistical and data mining approaches 

investigated to establishing the correlations between wine 

descriptors (embedded in sommelier comments) and wine 

ratings in order to modelling the seasonal weather influences 

on New Zealand wine vintages. The results show potential for 

establishing the descriptors that can be used to characterise 

different wine styles, ratings and regions.  The approaches can 

be further developed to find the identifying/ the special 

attributes in terms of wine descriptors, that could be used to 

relate wine style as well as quality i.e., ratings and then to 

model the seasonal weather variability and its effects on New 

Zealand vintage wines.  The methods can as well provide a 

means to develop a viticulture zoning scheme as well as 

geographical indicators for New Zealand vintage wines. 

VI. FUTURE WORK 

The research is on going and it is anticipated that once the 
specific descriptors for different wine styles, ratings and 
regions are identified and verified they could be incorporated 
into an GIS to model the climate as well as other local 
influences, such as environmental (soil, aspect, slope) at more 
finer scales, i.e., within vineyards on grapevine phenology and 
wine quality. 
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