EvoLVING SPIKING NEURAL NETWORKS FOR
SPATIO- AND SPECTRO- TEMPORAL DATA ANALYSIS:

MODELS, IMPLEMENTATIONS, APPLICATIONS

by

NATHAN ScoTT

A thesis submitted to Auckland University of Technology
in fulfillment of the requirements for the degree of

DoCTOR OF PHILOSOPHY

in the
School of Engineering, Computing, and Mathematical Sciences

Faculty of Design and Creative Technologies

2015

http://www.nathanscott.co.nz/
http://www.aut.ac.nz/
http://www.aut.ac.nz/study-at-aut/study-areas/computing--mathematical-sciences
http://www.aut.ac.nz/study-at-aut/study-areas/computing--mathematical-sciences

To S.O.

CONTENTS

Attestation of Authorship

List of Figures

List of Tables

List of Listings

Acknowledgements

Publications

Abstract

1

2

3

Introduction
1.1 Research Questions
1.2 Structure of this Thesis

Spatio- and Spectro-Temporal Data: Challenges and Opportunities
2.1 Examples of Spatio- and Spectro-Temporal Data
2.1.1 Neuroimaging
2.1.1.1 Electroencephalography

2.1.1.2 Magnetic Resonance Imaging

2.2 Pulsars, Radiotelescope Transients, & Astrophysics
2.21 The Square Kilometre Array Project

2.2.2 Radio Frequency Interference Mitigation

2.3 STFT and Alternate Representations of SSTD
2.4 Traditional Techniques
2.5 Addressing These Challenges

Review of Spiking Neural Networks
3.1 Why Spiking Neural Networks?
3.2 Biological Inspiration

ii

viii

ix

xi

xii

Xiv

xvi

xix

10
12
15
17
18
18
19
19

4

3.3 Models of Spiking Neurons 25
3.31 Hodgkin-Huxley 26

33.2 Izhikevich Lo o 28

3.3.3 SpikeResponse 30

334 Thorpe. 31

3.3.5 Leaky Integrate-and-Fire 32

3.3.6 Probabilistic Leaky Integrate-and-Fire 34

3.3.7 Adaptive Exponential IAF 35

3.4 Spike Information Coding 36
341 RateCoding 37

342 TemporalCoding 37

3.5 Methods of Encoding Data into Spike Trains 38
3.5.1 Temporal Difference (Threshold-Based) 38

3.5.2 Population Encoding 40

3.5.3 Ben’s Spiker Algorithm 0oL 40

3.5.4 Knowledge Driven Data Encoding Method 43

3.6 Learning & Evolution 44
3.6.1 Unsupervised Learning 46
3.6.1.1 Spike-Time Dependent Plasticity 46

3.6.1.2 Spike Dependent Synaptic Plasticity 49

3.6.2 Supervised Learning 50
3.6.2.1 Remote Supervised Method 50

3.6.22 Tempotron, 51

3.6.23 Chronotron 53

3.6.2.4 Spike Pattern Association Neuron 54

3.6.3 Evolutionary Methods 56
3.6.3.1 Evolving Spiking Neural Network 56

3.6.3.2 Dynamic Evolving Spiking Neural Network . .. 58

3.6.3.3 Neuro-Genetic Regulatory Network 60

3.6.3.4 Quantum-Inspired Optimisation 62

3.7 Reservoir Computing 62
3.71 Echo State Networks 63

3.7.2 Liquid State Machine 64

3.8 Simulation Platforms oo L. 65
3.8.1 Software Simulators 66

3.8.2 Neuromorphic Hardware Simulators 68

383 PYNNo 68

3.9 The NeuCube: A New Spiking Neural Network Framework 69
The NeuCube Framework 70
41 InputEncoding 72
42 NeuCubeReservoir 73
43 OutputClassifiers 75

44 Neuro-Genetic Optimisation Network 75

4.5 Visualisation Technologies 75
4.5.1 Standard Visualisation of the NeuCube 76
4.5.2 Immersive Visualisation of the NeuCube 78

4.6 The NeuCube Framework in Practice: Design, Implementation, and
Applications Lo 82
Design Methodology of SNN based on the NeuCube Framework 85
5.1 Encoding Systems Design 86
52 ReservoirDesign. 0. 87
5.2.1 Reservoir Topology Design 87
5.2.2 Input Topology Design 91
5.23 Connectome Design 92
5.3 Output Classifier Design 93
5.4 Gene Regulatory Network Design 94
5.5 Influence of Computational Platform on Design 96
5.5.1 Software Based Simulations 96
5.5.2 Hardware Based Simulations 97
5.5.3 Heterogeneous Computational Platforms 97
5.6 Design Methodology Overview 98
5.7 Chapter Summary and Conclusion 98
Software Design Methodology and Implementations 101
6.1 A General Framework for Implementation of the NeuCube 101
6.1.1 Design Philosophy 102
6.2 Overall Software Architecture 104
6.3 A Reference Object-Oriented NeuCube Design 106
6.3.1 Software Design Pattern 106
6.3.2 ListofClasses 108
6.3.21 ControlClass 109
6.3.2.2 NeuCubeReservoirs. 110
6.3.2.3 Network Structure 112
6.3.24 Classifiers 113
6.3.25 Encoders 115
6.3.3 Inter-Module Communication 116
6.3.3.1 Address-Event Representation 117
6.3.3.2 File-BasedIOwithJSON 118
6.4 Implementation of this Framework Using PyNN 120
641 WhyPyNN? 120
6.4.2 Program Overview 120
6.43 Key Code Sections Explained 126
6.4.3.1 Manual 3D Structure Generation. 126
6.4.3.2 Just-In-Time Compilation of Large Loops 128

6.4.3.3 Input Location Mapping 131

7

6.4.4 Inconsistencies Between PyNN and MATLAB Versions . . . 132

6.44.1 STDP Implementation of MATLAB Version 133
6.4.4.2 Excitatory and Inhibitory Populations 134

6.443 3D Structure and Conceptual Distances of MAT-
LABVersion 137
6.5 DPosition & Future of NeuCube M1 Module 138
6.6 NeuCube Core Architecture 139
6.7 Chapter Summary and Conclusion 141
Neuromorphic Hardware Implementations 143
7.1 A Review of Neuromorphic Hardware Systems 144
7.1.1 Field-Programmable Gate Arrays 147
7.1.2 Application-Specific Integrated Circuits 148
713 TrueNorth 150
7.14 Memristor-Based Systems 151
7.1.5 Applied Neuromorphic Hardware Systems 152
7.1.5.1 Dynamic Vision Sensor 152
7.1.5.2 Neural Prosthetics 154
7.2 NeuCube on the Zhejiang FPGA 155
7.3 NeuCube on the INI Neuromorphic VLSI 156
7.3.1 Chip Architecture 157
7.3.1.1 ROLLS Architecture 157
7.3.1.2 cxQuad Architecture 158
732 PYNCS . . .ot 159
7.3.3 Considerations for the NeuCube on INI Neuromorphic VLSI 160
7.4 NeuCube on the SpiNNaker 162
7.4.1 The SpiNNaker Device 163
7.4.2 Significant Development Considerations 169
7.4.2.1 Code and Ecosystem Maturity of SpiNNaker . . . 171
7.4.2.2 IO Limitations 173
74.23 STDP Implementation 174
7.4.24 Random Number Generation 176
7.4.25 Fixed Point Hardware 176
7.4.2.6 Stochastic Spike Transmission 177
7427 Streaming [Owith AER 178
7.4.3 Modifications to the PyNN Implementation of the NeuCube 178
7.43.1 3D Structures and Distance in SpiNNaker 179
7.4.3.2 Simulation Repetition in SpiNNaker 182
7.4.3.3 Summary of Important Minor Changes 186
7.44 Operation of the NeuCube on SpiNNaker 186
7.5 Empirical Comparison of SNN Simulation in Software and Hardware 187

7.5.1 Execution Speed Dynamics 188
7.5.2 Memory Use Dynamics 192

7.6 Ideal Neuromorphic Hardware for the NeuCube
7.7 Chapter Summary and Conclusion

Conclusions

8.1 Novel Contributions L.
8.2 ResearchQuestions
8.3 Caveats and Limitations of this Study
8.4 Open Questions & FurtherWork
8.5 Closing Thoughts

References

Abbreviations

A Case Study in Neuroinformatics

A.1 NeuCube Architectures for Neuroinformatics
A.1.1 Electroencephalography
A.1.2 Functional Magnetic Resonance Imaging
A.1.3 Diffusion Tensor Imaging

A.2 Classification of Complex Natural Hand Movements via EEG
A.2.1 Motivation & Research Questions
A2.2 Experimental Design
A23 Results
A24 Discussiono

A3 Application of Neuromorphic Systems

A4 Appendix Summary and Conclusion

Case Study in Radioastronomy

B.1 NeuCube Architecture for Spectro-Temporal Data

B.2 Dispersed Transient and Pulsar Search
B.2.1 Motivation & Research Questions
B.2.2 Experimental Design
B23 Results.
B.24 Discussion Lo

B.3 Application of Neuromorphic Systems

B.4 Appendix Summary and Conclusion

200
200
204
205
206
208

210

232

235
235
236
237
238
238
239
242
243
244
246
247

Listing of Significant Classes for a NeuCube Implementation in PyNN257

C.1 Main e e
C.2 NeuCubeReservoir.
C.3 NetworkStructure
C.4 GenericClassifier.
C.5 DynamicEvolvingSNNClassifier

257

C.6 GenericEncoder 270

C.7 TemporalDifferenceEncoder 271
C.8 Deprecated: NeuCubeStructure 272
Source and Version Control 274
Memory Profiles of NeuCube Implementation in PyNN 276
Basic Configuration file in JSON 278

Listing of Method for the Generation of Simulated Radioastromony
Events 279

ATTESTATION OF AUTHORSHIP

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person (except where explicitly defined in the acknowledgements or refer-
ences), nor material which to a substantial extent has been submitted for the award
of any other degree or diploma of a university or other institution of higher learning.

Signed:

Date:

viil

1.1

2.1

2.2

3.1

3.2
3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10

4.1
4.2

4.3
4.4

4.5

4.6

6.1
6.2

LisT OF FIGURES

The structure of thisthesis

Scalp chart for the International 10-20, 10-10, and 10-5 EEG sensor
positioning systems
Intuition of a pulsar and its rotation affecting an earth-based radi-
otelescope at two time points

[lustration of a simplified spiking (temporally dependent) artificial
NEUIOIL « . v v vttt et e e e e
Diagram of typical mammalian neurons
Example circuit schematic of the Hodgkin-Huxley model of neural
behaviour
[lustration of the types of neurons it is possible to emulate with the
Izhikevich neural model
Ilustration of the Threshold-Based Temporal Difference spike encod-
ingscheme
[lustration of the Rank-Order Population spike encoding scheme

[lustration of the Ben’s Spiker Algorithm encoding scheme
lustration of the canonical STDP learning window
Block diagram of the principle of a Liquid State Machine
Map of PyNN and sPyNNaker simulator interface coverage

Block diagram of the NeuCube framework
Examples of the basic visualisation system developed for the imple-
mentation of the NeuCube in PyNN introduced here
Immersive Visualisation system architecture overview
Stereographic view of the Talairach atlas as being displayed within
the HMD of theuser.
A cursor node can be used in a natural way to view additional in-
formation about a specific neuron and its activity in the reservoir

A user navigating through the virtual representation of the NeuCube
network, using an intuitive, hand position based 3D cursor

Block diagram of the NeuCube software architecture
Simplified UML diagram of the newly introduced NeuCube reference
implementation Lo L Lo

X

13

16

22
23

26
29
39
41
42
47

65
68

71

77
79

80

81

82

105

108

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4
7.5

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.12

7.13

Al

B.1

E.1

Performance improvements found when applying Just-In-Time com-
pilation to the Network Structure generation loop.
Mlustration of the synapse and neuron population dynamics imple-
mented correctly in the PyNN version, and incorrectly implemented
inthe Mlversion
[lustration of the inconsistency in axonal delay implementations
between the M1 and the PyNN implementation
Block diagram of the proposed NeuCube Core architecture

Intuition of tradeoff between power consumption and relative per-
formance in neuromorphic systems L.
Intuition of tradeoff between power consumption and relative model
flexibility in neuromorphic systems
Circuit diagram of a spiking Hodgkin-Huxley neuron realised in
ASIC-style analog hardware
Hybrid analog-digital SNN SRAM chip
Block diagram of a simplified Dynamic Vision Sensor responding to
amovingobject
Simplified schematic diagram of the cxQuad and ROLLS chip neuron
circuitso
Block diagram of the architecture of a single SpiNNaker core
Block diagram of the architecture of a single SpiNNaker chip
Block diagram of the SpiNNaker chip interconnection fabric
Photograph of a SpiNN-3 4-Node SpiNNaker board
Photograph of a SpiNN-5 48-Node SpiNNaker board
Intuition of the ring buffer system used for simulating axonal delays
inthe SpiNNaker
Overall execution time for a single simulation of the NeuCube reser-
voir on a software simulation and the available SpiNNaker devices .
Memory consumption on the host computer over the progression of
the application L

Example visualisation of the connectome of the trained NeuCube.
Blue lines show strong excitatory connections between two neurons,
and red strong inhibitory. o000

Example of the synthetic radioastronomy data compared with the
realdata

Overall memory consumption for a simulation of the NeuCube reser-
voir on software and SpiNNaker simulation systems

130

135

137
140

145

146

149
150

152
158
164
165
166
169
170
181
190

193

245

252

3.1
3.2
7.1

Al

A2

LisT oF TABLES

Hodgkin-Huxley neural model parameters 28
Basic proteins and their synapticeffects 62

Comparison table for key features of the major neuromorphic systems
explored in thisthesis 147

Examples of EEG collection positions in the International 10-10 Sys-
tem in Talairach space, used to select input neurons in the NeuCube
Reservoir 237
Results of the comparative study for imagined limb movement cap-
tured withEEG L o 244

xi

3.1

3.2
33

6.1
6.2

6.3
6.4
6.5
6.6

7.1

7.2

7.3

7.4

C.1
C.2
C3

C4
C.5
C.6
C.7
C.8

F1

LISTINGS

Pseudocode implementation of the Temporal Difference Encoding
Algorithm.
Pseudocode implementation of Ben’s Spiker Encoding Algorithm. .
Pseudocode implementation of the deSNN Learning Algorithm.

Definition of the NeuCube’s neuron parameters in PyNN.
Definition of the NeuCube’s Spike-Timing Dependent Plasticity rules
InPyNN. . ..
Connection of the NeuCube’s reservoir network in PyNN.
Pseudocode implementation of 3D reservoir structure generation. .
Simple annotation of Numba JIT to standard Python.

Pseudocode implementation of STDP-style Unsupervised Learning
inM1Reservoir.

Pseudocode algorithm of the control process of a single simulation
runon SpiNNaker. Lo oo
Alterations in SpiNNaker API file plastic_weight_synapse_row_io.py
to ensure that synaptic weight scaling would no longer cause a failure
of the SpiNNaker board boot sequence.
Pseudocode implementation of an idealised case of reservoir training
insoftware.. L
Pseudocode implementation of reservoir training under the limita-
tions of the the SpiNNaker device.

Implementation of the main control loop of the application
Implementation of a generic NeuCube 3D reservoir
Manual implementation of structure and distance for the reservoir,
implemented in standard Python
Superclass of any Classifiers implemented
Implementation of the Dynamic Evolving SNN Classifier
Superclass of any Encoders implemented
Implementation of a simplified Temporal Difference Encoder
Deprecated method of implementing structure and distance for the
reservoir, implemented with PyNN

Example NeuCube configuration file in JSON format.

xii

38
41
59

123
124
128
129

134

167

172

182

183

257
258

262
265
265
270
271

G.1 Method for the generation of simulated radioastromony events . . . 279

ACKNOWLEDGEMENTS

During the duration this work, I have been lucky enough to have been supported by
a great number of people.

To Pror. N1korLAa KasaBov, thank you for your constant support and guidance. I'm
sure I am not the easiest student to supervise, so I should also thank you for your
patience. I am greatly indebted to you for the huge number of opportunities I have
been offered, which I know would not have been the case with any other supervisor.
Banaromapsa Bu muoro!

Pror. Gracomo INDIVERI (INI, ETH & U. Ziirich), grazie di tutto! It has been a pleasure
working with you and your excellent research group. The Capo Caccia workshops
have been the most intellectually stimulating challenges of my research so far, and I
am grateful for the chance to attend with your support. I look forward to working
with you in the future.

ProF. ZENG-GUANG Hou (CASIA) #f #ff %51 %5 B). Thank you for kindly hosting
me at your institution at such an early stage in my studies. Living in Beijing was a
unique experience, and I greatly appreciate your hospitality.

My utmost gratitude to Joyce D’MELLO, the heart of KEDRI. Thank you for the advice
and for your tireless efforts to make everything easier for us.

DR. STEFAN MARKsS (CoLab, AUT) Vielen, herzlichen dank! It has been an extremely
enjoyable few years working in so many different environments and on so many
different things with you. I look forward to further Jedi training in the Holodeck!

My labmates at KEDRI, especially NEELAVA SENGUPTA, REGGIO HARTONO, VIVIENNE
BREEN, JOoSAFAITH ISRAEL EsPINOSA-RAMOS, DR. SRIPIRAKAS SAKTHITHASAN, and DR.
PauL Davipson: thank you for endless interesting conversations and for your help
when an experiment went up in flames.

To those I have worked with outside KEDRI over these years, particularly CAROYLN
McNaBB of UoA, MarmMouD MAHMOUD of AUT’s IRASR, and Dr. SiMON DAVIDSON,
PRroF. STEVE FURBER, and JaMIE KNIGHT of the SpiNNaker group at U. Manchester’s
APT, thank you for taking the time to share your work with me and including me in
such interesting areas of research.

To my parents CLARE AND DouG ScoTT, my friends, especially DR. ADAM REEVE,
DonNNA REEVE, WARREN NICHOLSON, CHRIS RYAN, KSENTIA KOVALEVA, ANDREW SMITH,

Xiv

and ANNA DEKLERK, thank you for your help, your friendship, for putting up with me
during this process, and for sticking around when I disappeared behind my computer.

Finally, thanks to my wonderful partner SARAH OHLEMACHER, who is presently
experiencing the same challenges in her own PhD studies. Thank you for your
unwavering support, and understanding of the unique stresses and pressures such a
project brings. I am sure yours will go more easily than this.

I am sure to have forgotten people here. To them I apologise. Your presence on or
absence from this list is not a reflection on the level to which I am appreciative of
your help. Thank you all.

Funping: This work was supported financially by the Auckland University of
Technology Vice Chancellor’s Doctoral Scholarship, and the Knowledge Engineering
and Discovery Research Institute. Travel support was also provided by the Chinese
Academy of Sciences Institute of Automation, the IEEE Computational Intelligence
Society, the Convergent Science Network, and Zhejiang University. Some research
was performed with funding from the New Zealand Ministry of Business, Innovation
and Enterprise (MBIE) through a Strategic Partnership New Zealand-China Grant,
and from the Auckland University of Technology’s Strategic Research Investment
Fund INTELLECTE Grant.

PUBLICATIONS

This thesis contains original material by the author published during the course of
this study, in the following peer-reviewed papers:

1.

Kasabov, N., Sengupta, N., Scott, N. M. (2016). From von Neumann, John
Atanasoff and ABC to Neuromorphic Computation and the NeuCube Spatio-
Temporal Data Machine. In Proceedings of the 2016 IEEE Intelligent Systems
Conference. September 4-6. Sofia, Bulgaria. IEEE.

. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman,

M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I., Zhou, L., Alvi, F.,
Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M., Hou, Z.-G. and Yang,
J. (2016). Evolving Spatio-Temporal Data Machines Based on the NeuCube
Neuromorphic Framework: Design Methodology and Selected Applications.
Neural Networks, 78, 1-14. Special Issue on “Neural Network Learning in Big
Data". Elsevier. doi:10.1016/j.neunet.2015.09.011

. Sengupta, N., Scott, N. M., and Kasabov, N. (2015). Framework For Knowledge

Driven Data Encoding For Brain Data Modelling Using Spiking Neural Net-
work Architecture. In Proceedings of the 5th International Conference on Fuzzy
and Neural Computing. 17-19 December 2015. Hyderabad, India. Springer.
doi:10.1007/978-3-319-27212-2_9

. Scott, N. M., Mahmoud, M., Hartono, R., Gulyaev, S., and Kasabov, N. (2015).

Feasibility analysis of using the NeuCube Spiking Neural Network Architecture
for Dispersed Transients and Pulsar Detection. In Proceedings of the 13th Inter-
national Conference on Neuro-Computing and Evolving Intelligence. February
19-20, Auckland, New Zealand.

. Taylor, D., Chamberlain, J., Signal, N., Scott, N. M., Kasabov, N., Capecci, E.,

Tu, E., Saywell, N., Chen, Y., Hu, J., and Hou, Z.-G. (2015). Brain-Computer
Interfaces for Neuro Rehabilitation. In Proceedings of the 13th International
Conference on Neuro-Computing and Evolving Intelligence. February 19-20,
Auckland, New Zealand.

. Marks, S., Estevez, J. E., and Scott, N. M. (2015). Immersive Visualisation of 3-

Dimensional Neural Network Structures. In Proceedings of the 13th International
Conference on Neuro-Computing and Evolving Intelligence. February 19-20,
Auckland, New Zealand.

. Scott, N. M., and Kasabov, N. (2015). Feasibility of Implementing NeuCube

on the SpiNNaker Neuromorphic Hardware Device. In Proceedings of the
13th International Conference on Neuro-Computing and Evolving Intelligence.
February 19-20, Auckland, New Zealand.

xvi

http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://dx.doi.org/10.1007/978-3-319-27212-2_9

10.

11.

. Hu, J., Hou, Z.-G., Chen, Y., Kasabov, N., and Scott, N. M. (2014). EEG Based

Classification of Upper-Limb ADL Using SNN for Active Robotic Rehabilit-
ation. In Proceedings of the 5th IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics. August 12-15, Sdo Paulo, Brazil. IEEE.
doi:10.1109/BIOROB.2014.6913811

. Taylor, D., Scott, N. M., Kasabov, N., Tu, E., Capecci, E., Saywell, N., Chen,

Y., Hu, J., and Hou, Z.-G. (2014). Feasibility of the NeuCube SNN architecture
for detecting motor execution and motor intention for use in BCI applications.
In Proceedings of the IEEE International Joint Conference on Neural Networks.
Beijing, China. IEEE. doi:10.1109/IJCNN.2014.6889936

Kasabov, N., Hu, J., Chen, Y., Scott, N. M., and Turkova, Y. (2013). Spatio-
temporal EEG data classification in the NeuCube 3D SNN Environment: Meth-
odology and Examples. In Proceedings of the 20th International Conference on
Neural Information Processing, 3—7 November 2013, Daegu, Korea. Springer.
doi:10.1007/978-3-642-42051-1_9

Scott, N. M., Kasabov, N., and Indiveri, G. (2013). NeuCube Neuromorphic
Framework for Spatio-Temporal Brain Data and Its Python Implementation. In
Proceedings of the 20th International Conference on Neural Information Processing,
3-7 November 2013, Daegu, Korea. Springer. doi:10.1007/978-3-642-42051-1_11

I have also disseminated aspects of its subject matter in the following forums:

12.

13.

14.

15.

16.

17.

Scott, N. M. and Kasabov, N. (2016) Spiking Neural Networks: The Machine
Learning Approach. Invited Tutorial at the International Joint Conference on
Neural Networks, World Congress on Computational Intelligence. Vancouver,
Canada.

Scott, N. M. and Kasabov, N. (2015). Spiking Neural Networks for Machine
Learning and Predictive Data Modelling: Methods, Systems, Applications. Invited
Lecture and Tutorial Session at the IEEE Computational Intelligence Society
Summer School on Neuromorphic and Cyborg Intelligent Systems. Hangzhou,
China.

Scott, N. M. (2015). Scientific Research Collaboration in the Asia-Pacific Re-
gion: Challenges and Opportunities. Invited Talk for the Asia New Zealand
Foundation. Auckland, New Zealand.

Kasabov, N., Modha, D., and Scott, N. M. (2015). Spiking Neural Networks
and Neuromorphic Data Machines. Workshop Session at the INNS Big Data
Conference 2015. San Francisco, USA.

Rast, A., Stokes, A., Rowley, A., Davies, S., Lester, D., Furber, S., Whatley,
A., Luck, C., Iakymchuk, T., Ros, P.-M., Partzsch, J., Reza, A., Bi, S., Neil, D.,
Stefanini, F., Binas, J., Scott, N. M., Waniek, N., Celiker, O., Isaacs, P., George,
R, and Urgese, G. (2015). AERIE-P: AER Intersystem Exchange Protocol. Draft
Protocol developed at the Convergent Science Network of Biomimetic and
Biohybrid Systems Cognitive Neuromorphic Engineering Workshop, Capo
Caccia, Sardinia, Italy.

Scott, N. M., Indiveri, G., and Davidson, S. (2015). Neucube on High Performance
Neuromorphic Computers. Invited Talk at the 13th International Conference on
Neuro-Computing and Evolving Intelligence. Auckland, New Zealand.

http://dx.doi.org/10.1109/BIOROB.2014.6913811
http://dx.doi.org/10.1109/IJCNN.2014.6889936
http://dx.doi.org/10.1007/978-3-642-42051-1_9
http://dx.doi.org/10.1007/978-3-642-42051-1_11

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Taylor, D., Chamberlain, J., Signal, N., Scott, N. M., Kasabov, N., Capecci, E., Tu,
E., Saywell, N., Chen, Y., Hu, J., and Hou, Z.-G. (2015). Brain—-Computer Interfaces
for neuro rehabilitation. Invited Talk at the 13th International Conference on
Neuro-Computing and Evolving Intelligence. Auckland, New Zealand.

Scott, N. M., Mahmoud, M., Hartono, R., Gulyaev, S., and Kasabov, N. (2015).
Neuromorphic Computing with NeuCube for Dispersed Transients and Pulsar De-
tection. Invited Talk at the Computing for SKA (C4SKA) Colloquium. Auckland,
New Zealand.

Theunissen, M. (2015, January 25). Brainy Robot Predicts Danger [Interview].
Herald on Sunday. Available online from http://www.nzherald.co.nz.

Beran, R. (2014, August 21). Using the Mind to Control Robots [Interview].
Radio New Zealand. Available online from http://www.radionz.co.nz.

Scott, N. M. (2014). Spiking Neural Networks for Personalised and Predictive
Medicine. Invited Talk at the School of Pharmacy, Faculty of Medical and Health
Sciences, University of Auckland. Auckland, New Zealand.

Scott, N. M. (2014). Building the NeuCube: Tools and Techniques for In Silico
Neuromorphic Simulation. Invited Talk at the State Key Laboratory of Man-
agement and Control for Complex Systems, Institute for Automation, Chinese
Academy of Sciences, Beijing, China.

Kasabov, N., and Scott, N. M. (2014). Machine Learning and Predictive Modelling
for Large Stream Data using Neuromorphic Computation. Invited Talk at the
International Neural Network Society ‘Big Data and Neural Networks’ Special
Talks event. Beijing, China.

Kasabov, N., and Scott, N. M. (2014). Spiking Neural Networks for Machine
Learning and Predictive Data Modelling: Methods, Systems, Applications. Tutorial
Session at the International Joint Conference on Neural Networks, World
Congress on Computational Intelligence. Beijing, China.

Kasabov, N., and Scott, N. M. (2014). Predictive Data Modelling of Large and Fast
Streams of Spatio- or Spectro- Temporal Data using Neuromorphic Computation.
Invited Talk at the Computing for Square Kilometre Array Workshop, Multicore
World 2014. Auckland, New Zealand.

Scott, N. M. (2013). Neuromorphic Computing for Spatio- and Spectro-Temporal
Pattern Recognition of Neuroinformatics Data: Applications in Neurorehabilit-
ation. Invited Talk at the State Key Laboratory of Management and Control
for Complex Systems, Institute for Automation, Chinese Academy of Sciences,
Beijing, China.

Scott, N. M. (2012). Pattern Association and Learning in Computational Models
of Spiking Neural Networks. Group Session Chair at the Convergent Science
Network of Biomimetic and Biohybrid Systems Cognitive Neuromorphic En-
gineering Workshop, Capo Caccia, Sardinia, Italy.

Where these materials or discussions have contributed to this body of work they
have been appropriately cited or otherwise acknowledged.

http://www.nzherald.co.nz
http://www.radionz.co.nz

ABSTRACT

EvoLVING SPIKING NEURAL NETWORKS FOR SPATIO- AND SPECTRO- TEMPORAL DATA
ANALYSIS: MODELS, IMPLEMENTATIONS, APPLICATIONS
Nathan Scott

Doctor of Philosophy

School of Engineering, Computing, and Mathematical Sciences
Faculty of Design and Creative Technologies
Auckland University of Technology

Arguably the most significant challenge in modern machine learning regards how
we address the complexities of Spatio- and Spectro-Temporal Data (SSTD); i.e., data
with some spatial, spectral, and temporal component. Addressing this issue is of vital
importance to our understanding of the world around us.

Traditional machine learning techniques like the Support Vector Machine and Multi-
Layer Perceptron struggle with the implicit representation of these characteristics.
Typically, traditional ML abstracts away one or more of these components — and with
it, a significant proportion of the information implicit in the relationships between
place and time in the data. When we begin to look at brain data, seismic data,
ecological data — in fact, any SSTD - this information is vital, and abstracting it is to
destroy the data.

Instead, we can look to the brain for inspiration. The field of Spiking Neural Networks
(SNN) - the mathematical-computational modelling of biological neural networks
— provides a theoretical platform for the compact and integrated representation of
spatial, spectral, and temporal characteristics in complex data. However, it is complex
to design effective SNN which truly capture SSTD dynamics; indeed, this issue has
yet to be adequately addressed in the present literature.

To this end, the NeuCube SNN framework has been abstractly established in recent
works. Herein, the design and concrete implementation of systems based on this
framework, and their practical application on SSTD is addressed. The NeuCube
provides a framework for the processing of SSTD, including data encoding, reser-
voir computing, and classification. Additionally, immersive visualisation tools are
introduced to facilitate the extraction of knowledge from the evolution of the model.

XIiX

http://www.nathanscott.co.nz/
http://www.aut.ac.nz/study-at-aut/study-areas/computing--mathematical-sciences
http://www.aut.ac.nz/study-at-aut/study-areas/computing--mathematical-sciences
http://www.aut.ac.nz/

Firstly, a design methodology for the creation of NeuCube framework based SNN is
introduced, including discussion of how to design reservoirs based on the implicit
data structure, and encoding and output devices based on the data and selected
application.

A complete software architecture and design philosophy for the implementation of
such systems in software is then introduced. A concrete implementation developed
in the Python simulator interface library PyNN is presented, including considerations
for adaptive network structures and input mappings. This implementation has been
developed for cross-platform, massively scalable simulation of NeuCube models.

Subsequently, the considerations for, and an implementation of, this architecture on
a number of specialised computational platforms known as neuromorphic hardware
is introduced. Neuromorphic hardware is a compact and power-efficient method of
implementing SNN based on implementing the biophysical properties of neurons in
dedicated circuits. Here is discussed preliminary work in implementing the NeuCube
on FPGA, and neuromorphic VLSI systems such as the cxQuad. An implementation
of the NeuCube on the SpiNNaker neuromorphic hardware device — a massively
scalable digital computation platform — is provided and discussed.

Two primary appendices are attached to this thesis. Firstly, considerations for the
design of NeuCube systems for spatio-temporal data are discussed, in the context
of neuroinformatics. The most common neuroimaging tools (EEG and fMRI) are
introduced here, and considerations for the design of NeuCube reservoirs to process
such data is introduced, using the Talairach and Montreal Neurological Institute
atlases. Empirical evidence of this system’s effectivness on EEG based motor imagery
is provided, where the NeuCube outperforms traditional ML techniques.

Secondly, considerations for the design of NeuCube systems in the context of spectro-
temporal data are discussed, with a particular emphasis on radioastronomy. Intro-
duced here is a conceptual mapping from spectral characteristics into the spatial
structure of the NeuCube reservoir, which is a generalisable system. A proof-of-
concept case study for the classification of complex spectro-temporal signals is
presented, where it is shown that a NeuCube-based system can identify pulsar sig-
nals in synthetic radioastronomy data.

This thesis introduces generalisable design and implementation methodologies for
SNN applied to complex SSTD, in the particular context of the NeuCube. Additionally,
it provides some empirical evidence towards the efficacy of such methodologies for
spatio-temporal and spectro-temporal data, in the context of neuroinformatics and
radioastronomy respectively.

The principles now being discovered at work in the brain may provide, in the future,
machines even more powerful than those we can at present foresee.

— J.Z. Young
(Doubt and Certainty in Science: A Biologist’s Reflections on the Brain, 1960).

CHAPTER

INTRODUCTION

Arguably the most complex challenge in modern machine learning lies in the analysis,
prediction, and classification of Spatio- and Spectro-Temporal Data (SSTD). That
is, some data source which has its temporal component strongly coupled with its
spatial or spectral components, or both. A vast proportion of data in the real world
is composed of these properties. However, as yet, traditional machine learning
practice struggles to address these issues effectively — even in isolation. This issue
is compounded when we look at these data sources as an integrated signal. A vast
amount of information is implicit in the relationships between the spatial, spectral,
and temporal components of SSTD; information which is typically lost, abstracted
away in order to mitigate the limitations of traditional machine learning techniques
like the Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP).

Consider a data source such as an Electroencephalographic (EEG) Brain Computer
Interface (BCI). The strongly coupled nature of the spatial, spectral, and temporal
components of the recorded brain signal is immediately apparent. The story of the
subject’s response to — for example — a visual stimulus, is told in the propagation
and relative timing of activity from the eye, through the lateral geniculate nucleus,
to the occipital cortex, and then on to the temporal and parietal lobes. To neglect
these relationships is to neglect a significant portion of the information contained
in the data. The question therefore then becomes — how do we model and interpret

these dynamics in an appropriate way?

In short, we draw inspiration from that most powerful of adaptive learning devices:
the human brain. Why should we be interested in the brain, when we are looking

for improved techniques in information processing? The human brain excels like no

1.1 ReESeEARCH QUESTIONS 2

other system in its ability to learn from experience, operate in noisy and complex

environments, and adapt when that environment changes.

A natural question then, is just how can we draw inspiration from brain processes
in a computational context? Computational intelligence research addresses this
through an area known as Spiking Neural Network (SNN) modelling. Here, we make
some mathematical-computational model of the dynamics of biological neurons and
networks thereof, thereby emulating — to some extent — the complex neurological
dynamics which lead to the vast learning ability of the human brain. It is remarkably
simple to model a single neuron. Their effectiveness lies not in their computational
power as a single unit, but in the way a large group of them can communicate and
collaborate with relatively simple inputs and outputs. They are a key example of an
emergent system, wherein a computationally simple process at a large enough scale

generates interesting and meaningful behaviours.

These networks, for all their apparent simplicity, are complex to design and optimise.
Traditional techniques in this area have mitigated this issue by imposing some
arbitrary structure on a network of neurons, which may or may not represent the
internal dynamics required to deal with SSTD. To address this issue of arbitrary
design, we can again take some cues from our environment. There is an implicit
structure in SSTD by definition; it in some way represents a physical or environmental
dynamic over time. With some informed decision-making, the structures inherent in
SSTD can be modelled in the structure of a SNN, which will retain the vital interplay

between the spatial or spectral components, and the temporal component.

To this end, the NeuCube framework was initially introduced in the work of Kasabov
(2012b). In this, the NeuCube was abstractly defined. Herein concrete realisations of

this framework, and design methodologies for the same will be introduced.

1.1 ReESeARCH QUESTIONS

Inspired by this motivation, this thesis seeks to answer the following fundamental

questions:

1. Can a specific SNN framework known as the NeuCube be used to model and
interpret the dynamics of a system consisting of tightly coupled spatial, spectral,
and temporal data components?

2. Is there a design methodology we can use to inform the development of NeuC-

ube models?

1.2 THESIS STRUCTURE 3

With the assumption that those questions defined above are satisfied, the following
supplementary questions are asked:

3. What considerations are there for an implementation of this system on:
(a) Commodity computers,
(b) Large scale clusters, or
(c) Dedicated neuromorphic hardware?
4. Can we show some empirical evidence of a NeuCube model’s effectiveness,

when implemented on the above systems and designed utilising the newly
established methodology, in the context of:

(a) Spatio-Temporal data, and
(b) Spectro-Temporal data?

1.2 STRUCTURE OF THIS THESIS

The structure of this thesis is fairly straightforward. A schematic overview of its
structure can be seen in Figure 1.1. In this section, we briefly discuss each section

and its contributions to the thesis, in the order they appear in text.

Review Methodology Implementations
- ~ '
Chapter 2: C|1Dae|:iterr1 5:
Spatio- and g

Methodology

Spectro-Temporal
Data and Its

Challenges Chapter 4: Chapter 6:
The NeuCube Software Design and
Framework

Implementations

Chapter 3:
Review of Spiking V
Neural Networks Chapter 7:
Neuromorphic
Hardware

Implementations

FIGURE 1.1: The structure of this thesis.

CHAPTER 2 — SPATIO- AND SPECTRO-TEMPORAL DATA: CHALLENGES AND OPPORTUNITIES:
Here, we briefly introduce the context of SSTD, and the particular challenges and
opportunities it represents. This will be discussed in the context of existing machine

learning systems, and their limitations which have motivated the development of
this thesis.

1.2 THESIS STRUCTURE 4

CHAPTER 3 — REVIEW OF SPIKING NEURAL NETWORKS: This chapter introduces the
existing work in the field of SNN, which provides the foundation for the primary
contributions of this thesis. SNN is reviewed. Here, concepts of spike coding, con-
temporary models of SNN, learning algorithms, and simulation platforms for the

same are introduced.

CHAPTER 4 — THE NEUCUBE FRAMEWORK: The chapter introduces the NeuCube
framework as it existed in the literature prior to the work in thesis. It introduces the
basic concepts of the different NeuCube components, and also discusses an immersive

visualisation system which has been developed specifically for the NeuCube.

CHAPTER 5 — DESIGN METHODOLOGY FOR SNN BASED ON THE THE NEUCUBE FRAMEWORK:
Here a methodology for the development of NeuCube models is discussed. This
introduces considerations for the design of encoding systems, reservoir topologies
and parameters, output devices, and an overview of the influences our computational

platform has on the model.

CHAPTER 6 —SOFTWARE DESIGN METHODOLOGY AND IMPLEMENTATIONS: In this chapter,
a general implementation framework for software realisations of the NeuCube,
including a general design philosophy and software architecture, is introduced. An
implementation of this framework is shown and discussed, developed in Python
using the PyNN library. An alternative software architecture known as the NeuCube

CoRrE is also briefly introduced.

CHAPTER 7 — NEUROMORPHIC HARDWARE IMPLEMENTATIONS: Here, a number of con-
siderations for implementation of the NeuCube on neuromorphic hardware systems
are discussed. An implementation of the NeuCube for the SpiNNaker neuromorphic
device is presented. Considerations for analog- and FPGA-based implementations

are discussed.

CHAPTER 8 — ConcLusions: Here conclusions, a summary of contributions from
the thesis, and suggestions on future works are presented. We close with some
final thoughts. Subsequent to this section, the references, list of abbreviations, and

Appendices can be found. Two key Appendices should be highlighted:

1. Appendix A - Case Study in Spatio-Temporal Data: This chapter dis-
cusses applications of the NeuCube for Spatio-Temporal data, in the context of
a neuroinformatics task. An experiment which seeks to identify the NeuCube’s

potential efficacy in a BCI task is performed.

1.2 THESIS STRUCTURE 5

2. Appendix B — Case Study in Spectro-Temporal Data: This chapter identi-
fies considerations for Spectro-Temporal data in the NeuCube. Additionally, a
proof-of-concept experiment which seeks to identify the NeuCube’s effective-

ness in identifying radioastronomy signals is presented.

CHAPTER

SPATIO- AND SPECTRO-TEMPORAL DATA:
CHALLENGES AND OPPORTUNITIES

Nature uses only the longest threads to weave her patterns, so that each
small piece of her fabric reveals the organization of the entire tapestry.

— Richard P. Feynman
(The Character of Physical Law, 1964)

In the previous chapter Spatio- and Spectro-Temporal Data (SSTD) is mentioned as a
particular challenge in modern machine learning. Its properties have prompted the
development of the systems explored in this thesis. So, for clarity, what is SSTD, and
why is it so challenging to deal with?

Firstly, we should define SSTD. In our context, we consider it as data which must

contain:

1. A temporal component - i.e. that such data must change over time; and,
2. One or both of the following:
(a) A Spectral component - i.e. that the data has some spectral or frequency
based information; and/or,
(b) A Spatial component - i.e. that the data has some physical representation,
such as a multiple collection channels which are physically dispersed in

some way.

The interplay between these components gives rise to the significant complexities
of SSTD. Simultaneously, this interplay is the source of the significant theoretical

advantages of such data. The two are inextricably linked.

6

2.0 SSTD: CHALLENGES & OPPORTUNITIES 7

It is, therefore, a difficult proposition to address these complexities in such a way
as to not destroy the theoretical advantages they present. There are a number of
additional characteristics of such data. In this section, we have identified three
primary considerations. Each of these enumerated here is a contributing factor in

traditional machine learning’s inability to effectively represent SSTD.
A key issue here is the concept of what we have termed representation.
1. Representation

Primarily, it is meant that alternative machine learning techniques are not generally
capable of adequately addressing these significant intrinsic properties in their rep-
resentations of data; those of space and time. With such a temporal component, the
data is continuous rather than discrete (Bogorny & Shekhar, 2010). Additionally, the

spatial charateristics of the data can have some influence on each other.

Traditional techniques typically separate these two components; i.e., they are ana-
lysed individually as a temporal stream, and as spatial data (Venkateswara, Govardhan
& Chalapati, 2012). However, it is somewhat disingenuous to imply that this is spatio-
temporal data analysis. These two components are inextricably linked; it is naive
to assume that the spatial characteristics of the data have no effect on the temporal,

and vice versa.

Consider a simple example here. Say that we take telemetry from a moving car. The
engine speed (RPM) over time, or, the temporal component, is meaningful in and
of itself. Its spatial component (physical location on a road) is also meaningful in
isolation. However, to model such a data source in this way discards much of the
important contextual information in the data. If they are modelled together, we can
infer some meaningful knowledge. A high engine speed over time will indicate that
the vehicle is travelling at a high speed. In conjunction with our knowledge of its
spatial context, we can — for example — judge whether this vehicle is exceeding the
road speed limit near a school. This contextualisation is the core precept of SSTD

data mining. The relationships within this data are both significant and meaningful.

Let us consider the temporal component in isolation. This by itself is often not rep-
resented effectively in traditional machine learning algorithms (Kasabov, Hu, Chen,
Scott & Turkova, 2013). In this case, we typically use a concept called ‘windowing’,
where a segment of a temporal sequence is separated out, and each temporal value
in that sequence is treated as an individual static variable. The temporal nature

of the data is implicitly ignored when the data is flattened in this way. It is akin

2.0 SSTD: CHALLENGES & OPPORTUNITIES 8

to compressing a video to a single static frame; clearly, information remains, but

significant data can be abstracted away in favour of a simpler data representation.

This ‘flattening’ effect is acceptable in certain contexts. For basic image recognition
in moving images, it may lose no significant information. These are, after all, merely
static images shown in quick succession. However, when we attach some context
like a human’s interaction with those objects, this temporal — and indeed, spatial —
data is significant and meaningful. This issue is even more pronounced when we
consider more complex data sources like neuroinformatics recordings. The nature of
how our brains process information is inherently a spatio-temporal process, as data

propagates through the various specialised areas of the brain over time.

Most traditional machine learning algorithms can generally not effectively address
the issues of temporal data. Additionally, these generally struggle to represent a single
data source in multiple formats in the same model, and as a result, incorporation of

the the relationships between the spatial and the temporal is difficult.

The issue of representation in SSTD is closely related to the fact that it generally
represents some physical behaviour or quantity in the real world; the data has some

inherent structure and with it, meaningful internal relationships.
2. Structure

Structure does not necessarily mean spatial structure — although that is certainly
a component. By structure, we define that there are some inherent relationships
within the data. Place and time are intrinsically linked within SSTD. This issue is

heavily entwined with the issue of representation discussed above.

However, there is an important semantic difference here. Whereas previously we were
discussing the issue of representing the data in the model, here we are identifying
the issue of how the source of the data is represented in the data itself. This is a lower
level of abstraction than the issue of representation. It is also one that traditional
machine learning generally ignores (Andrienko, Malerba, May & Teisseire, 2006).
There is an opportunity to improve the effectiveness of our systems by incorporating
this low-level information. A better representation of the data generation paradigm
in the model is advantageous in terms of that model’s effectiveness in addressing the
data (Lemm, Blankertz, Dickhaus & Miiller, 2011).

2.1 REVIEW: NEUROIMAGING TECHNOLOGIES 9

3. Non-stationarity

Typically in SSTD there is some component of non-stationarity. The data, of course,
changes over time as a consequence of being a temporal sequence. However, in
the context of how such data is generally collected, there is the potential for some
non-stationarity in the data. By this is meant some slow change of the data baseline

over time.

A key example of this is in the case of neurorehabilitation. Neurorehabilitation is
the process of restoring, minimising and compensating for functional deficits in
people suffering from spinal or neurological insults. Typically, this takes the form of
some physical rehabilitation (exercises) in conjunction with neurological feedback

(Sastre-Garriga, Galan-Cartafia, Montalban & Thompson, 2005).

In the case that this process is to be mediated by a robotic device (cf. Section A.2)
or BCI, the control system must be trained on the subject’s behaviour. As a natural
result of this rehabilitation process, the subject will gradually improve at the task,
whether through task-specific adaptation or through improvement of their physical
capabilities. As they improve, there will be some baseline change in the behavioural
data classified by the BCI device. This shift will impair the system’s ability to classify
accurately, and may as a result actively discourage further improvement of the subject
due to negative feedback (D. Taylor et al., 2014). Equally, this non-stationarity could
be induced by sensor degredation or seasonal effects, for example. Here, we need a

system which can adapt to the changing baseline with no loss of accuracy.

2.1 EXAMPLES OF SPATIO- AND SPECTRO-TEMPORAL DATA

With the understanding of what we define SSTD as, it should be contextualised. It is
difficult to choose examples of SSTD as it is so common in the real world. Here, we
introduce the background of SSTD recorded from two vastly different sources; the

human brain, and space.

2.1.1 NEUROIMAGING

A considerable number of different neuroinformatics modalities exist. However, only
a few of these have as-yet attained mainstream appeal and availability in the typical
collection contexts of neuroinformatics data. This section will briefly introduce

the most common of these technologies. Electroencephalography (EEG) has been

2.1 REVIEW: ELECTROENCEPHALOGRAPHY 10

discussed in more depth there as it provides context for the case study introduced,

and was the initial area of application for the NeuCube.

Two key categories of neuroimaging devices exist: invasive, and non-invasive. In
the case of ‘invasive’ devices, these typically require some surgical intervention
in order to place them. They are invasive in the sense that they are in some way
inside the body; a typical example in electrophysiology is the use of a patch clamp
for directly recording the action potentials of neurons. Such devices are costly and
require highly specialised environments in order to be implanted and to operate
effectively. Non-invasive devices, however, record signals from outside the body,
and as a result avoid the issues with invasive data collection. Additionally they are

generally cheaper and may not require specially trained personel to operate them.

Those readers familiar with this area will note that it is more precise to consider EEG
as an electrophysiology technique, rather than a neuroimaging one. However, here
these have been incorporated together as this better represents the general family of

data sources we use in the neuroinformatics form of the NeuCube.
2.1.1.1 ELECTROENCEPHALOGRAPHY

Electroencephalography, typically abbreviated as EEG, is a non-invasive form of
electrophysiological monitoring (Niedermeyer & Da Silva, 2005). It generally uses
electrodes placed on the outside of the scalp, which are arranged using the Inter-
national 10-5, 10-10, or more commonly, 10-20 system. This placement system is
discussed later. EEG represents the synchronous activity of a small volume of neurons
as it reaches the scalp. Estimates suggest that each electrode represents the averaged

activity of around 1 cm? of brain volume.

EEG provides us with a high-frequency signal, most commonly between 256 Hz and
512 Hz, up to a typical limit of ~ 2000 Hz and in some extreme cases, 20 000 Hz. The
caveat here is that as this is a surficial electrode reading, it is heavily influenced by
the electrical activity of muscle activation on the head. Activities such as blinking
eyes or chewing motions can cause significant artifacting of the EEG signal, as the
electrical potentials evoked by these muscle movements are much stronger than the

typical 10-100 pV potentials evoked by brain activity (Aurlien et al., 2004).

Readers interested in the technical details and applications of EEG are directed to

the standard text in this area, Niedermeyer and Da Silva (2005).

2.1 REVIEW: ELECTROENCEPHALOGRAPHY 11

EEG is an interesting data source, as it contains rich information about the temporal
dynamics of the brain, and the signal responds rapidly to mental activity due to
its relatively high sampling frequency. As a result, it is commonly used in medical

diagnostic tasks, and is increasingly being used as a data source for BCI applications.

SNN have been used for EEG analysis, and have shown remarkable performance
in comparison to other traditional methods for classification task. For example, an
implementation of spiking neural networks for EEG classification of epileptic seizure
detection was shown in Ghosh-Dastidar and Adeli (2007), and Ghosh-Dastidar and
Adeli (2009). Their experiments resulted in high classification accuracy, approxim-
ately 90% correct. Buteneers, Schrauwen, Verstraeten and Stroobandt (2008) analysed
rat EEG data using a reservoir computing approach known as an echo state network,
for epileptic seizure detection in real-time, based on data from 4 EEG channels. The
study claimed that performance was higher than the other four traditional methods
in terms of detection time, which was around 85% accuracy in 0.5 seconds for seizure
and 85% accuracy in 3 seconds for tonic-seizure. However, this study is limited in its
credibility due to the use of rat EEG data, acquired from only 4 channels and with a
foreknowledge of the key frequencies for detecting seisure (8, 16, and 24 Hz).

It has been shown in Nuntalid, Dhoble and Kasabov (2011) that traditional classifiers
do not perform optimally on raw EEG data with no preprocessing. However, when
suitably encoded (in that case with the Ben’s Spiker Algorithm) and passed through
an SNN reservoir, those same classifers work especially well. This suggests that SNN,
with their inherent temporal dependency, are appropriate for use on this temporal
data. There is therefore an opportunity for us to apply the NeuCube framework with

its meaningful reservoir structure and adaptive learning to this task.

EEG has been classified perviously in the literature using traditional techniques
such Support Vector Machines (Garcia, Ebrahimi & Vesin, 2003), non-negative tensor
factorisation (Lee, Kim, Cichocki & Choi, 2007), and the Common Spatial Pattern
algorithm (Tomioka & Dornhege, 2006) all focusing on the spectral domain, and
multilayer perceptrons with the intent of using the Berlin Brain-Computer Interface
tool for text entry (Miiller et al., 2008). While these attempts have been effective
to some degree, they have all required a significant amount of data preprocessing.
In addition, none of these techniques adequately address the issues of spatial and
temporal dependency in the data. The contention that raw EEG data can be accurately
classified by SNN systems was confirmed in recent papers (J. Hu, Hou, Chen, Kasabov
& Scott, 2014; Kasabov, Hu et al., 2013; D. Taylor et al., 2014) on this subject, utilising
the architecture proposed in Appendix A.

2.1 REVIEW: MAGNETIC RESONANCE IMAGING 12

Perhaps more importantly in this case, none of the existing classification technolgies
adequately address (or indeed, address at all) the issue of learning in the subject. It is
well known that repeated practice of a task will increase efficiency and adaptation to
that task in a subject. This requires a classification tool which can adapt or change
with the subject as they learn or rehabilitate. A traditional technique such as the
SVM involves the creation of a classification tool which is, at the end of training,
fixed. The system’s adaptation or retraining requires it to be completely regenerated,;
there is typically no facility for iterative updating of its training data. In contrast,
the NeuCube framework is able to adapt on-line, and is therefore more appropriate

for application in such a context.
INTERNATIONAL 10-20 AND 10-10 SYSTEMS

As mentioned, EEG electrodes are placed on the scalp using a standardised system
known as the International 10-20 system. In fact, there are three of these systems,
each with different resolution; the International 10-20, 10-10, and the least common,
10-5. The first of these was introduced in Herbert (1958), and comprises a set of
standard locations for electrode placement based on proportional measurements
between the inion and nasion of the skull. This location system is supported by all
EEG devices, with the specific system generally defined by the number of electrodes

present in the device. See Figure 2.1 for a visual intuition of this system.
2.1.1.2 MAGNETIC RESONANCE IMAGING

Magnetic Resonance Imaging (MRI) is a non-invasive neuroimaging technique, which
uses the interference our body provides to a strong magnetic field to generate a 3D
image of the brain in ‘slices’ (Lauterbur, 1973). An oscillating magnetic field is
first applied, which excites the hydrogen atoms present in the water in our body.
These excited atoms then emit a characteristic signal. By redirecting the angle of
the magnetic field, positional information about the source of these signals can be
inferred, which provides us with a representation of the physical structure of the
area in question. A number of these ‘slices’ can then be stacked together to form a
3D image of the brain, comprised of 3D pixels known as voxels. Different forms of
Magnetic Resonance Imaging (MRI) exist; we are primarily interested in ‘Functional’
Magnetic Resonance Imaging (fMRI), but structural MRI and the derivative Diffusion
Tensor Imaging (DTI) are also of interest. This introduction has described the basic

concept of structural MRL

2.1 REVIEwW: MAGNETIC RESONANCE IMAGING 13

.Fpl ‘FPZ .FpZ
AF7 AF8
S o
. ‘AF3 AFz ‘AFA ‘

.F7 F8
F5 F6 .
Ceooeooe®
FT7 FT8
® o 00" 0 0" 0" o o
0 & & & & & O 9" O
o o O O O @ @ g o:
‘TP7 .TPS
1 z 2
o0 O & ¢ o

.FT9 .FT] 0

o® s
@ g ° O L e
L L& | L @or
o

FIGURE 2.1: Scalp chart for the standardised EEG sensor positioning systems. Each
coloured dot represents an electrode location on the scalp. Top of the page is the
anterior direction (towards the nasion). Darker blue dots are International 10-20
standard locations. Lighter blue dots are International 10-10 standard locations.
Orange dots are expanded International 10-5 locations. Red dotted rings around
a location indicates that this is a sensor in the Emotiv Epoc device. Locations Al
and A2 are optional reference or ground electrodes attached near the ear. Figure
inspired by Oostenveld and Praamstra (2001).

FuncTioNAL MRI

Functional MRI, or ‘Functional’ Magnetic Resonance Imaging (fMRI), is an extension
of structural MRI. While structural MRI is a static image of the brain, fMRI is a
temporal sequence of these images. Typically, lower resolution structural MRI images
are taken at a time interval (generally ~ 500 ms). In this case, we do not look for
the density of the water in the brain; we instead look for the Blood Oxygenation
Level Dependent (BOLD) signal. This represents the amount of oxygenated blood in
an area at the given time (Thulborn, Waterton, Matthews & Radda, 1982). This is
typically correlated with the intensity of activity in that particular voxel, as more
active neurons require a greater blood supply to support them. We are particularly

interested in this technique in a neuroinformatics context as it provides a 3D view

2.1 REVIEW: MAGNETIC RESONANCE IMAGING 14

of the activity in the entire brain over time, when given some task (Heeger & Ress,
2002). Particular caveats, however, are the low temporal resolution and the high cost

of such a device.

The current state of the art in fMRI classification tools are firmly statistical techniques,
and classical machine learning techniques. Recently, the first studies applying SNN
to fMRI data have been performed, in Doborjeh, Capecci and Kasabov (2014b) and
Doborjeh, Capecci and Kasabov (2014a), and also reported in Kasabov et al. (2015).
These studies utilise the NeuCube framework and the design process introduced in
this thesis, and in particular, the considerations for developing reservoir structures

for neuroinformatics discussed later in this chapter.

In a number of studies, it is established that the Naive Bayes and Support Vector
Machine techniques are (relatively) superior when compared to other techniques
such as k-Nearest-Neighbour (kNN) or linear discriminant analysis (Cox & Savoy,
2003; Ku, Gretton, Macke & Logothetis, 2008; Misaki, Kim, Bandettini & Kriegeskorte,
2010; Mitchell et al., 2004; Naselaris, Prenger, Kay, Oliver & Gallant, 2009), and that
nonlinear SVM are superior to linear SVM (LaConte, Strother, Cherkassky, Anderson
& Hu, 2005)

Recently, the first paper on the use of raw fMRI data for classification has been pub-
lished, in Misaki et al. (2010). By ‘raw’, in this sense it is meant that no ‘spotlighting’
or dimensionality reduction has been performed, and the data is unprocessed apart
from standard warp and movement correction. This is also an advantage of the
NeuCube architecture, in that theoretically no preprocessing has to be performed
in order for the system to accurately learn and classify the data. Related to this,
there has recently been a move away from single-location stimulus classification to

multi-location stimulus classification (Formisano, de Martino & Valente, 2008).

It should be noted that while the BOLD contrast mechanism commonly used for
fMRI analysis linearly reflects the neural activity at a given voxel, this is primarily
thought to be showing the input and intracortical processing, not necessarily its
spiking output (Logothetis, Pauls, Augath, Trinath & Oeltermann, 2001). Furthermore,
the observations in that same paper suggest that general statistical analysis and
thresholding techniques normally applied to the haemodynamic response of a brain
to stimuli probably underestimates a great deal of actual neural activity, particularly
where localisation is a factor. This contention is also supported in Formisano et al.
(2008) and Naselaris et al. (2009). It is therefore suggested that the NeuCube approach

2.2 REVIEw: PuLsARS, RADIOTELESCOPES, & ASTROPHYSICS 15

is superior with respect to this typical limitation, as there is no localisation effect or

culling performed on the data.
DiFFusioN TENSOR IMAGING

Diffusion Tensor Imaging (DTI) is a further extension of structural MRI, which
generates an image of water diffusion across physical tracts of the brain - i.e., the
axons (Mori & Zhang, 2006). Instead of a static magnetic field that is moved to
generate the image, DTI uses two magnetic fields in opposition. In places where
the magnetic fields are maximally coherent, there is no diffusion of water across
the material. If there is some incoherence, this implies that the area of interest
has changed its properties between magnetic pulses. From the duration, direction,
and spacing between these magnetic pulses, the direction and magnitude of water
diffusion can be measured, and from this, the size and direction of white matter tracts
inferred (Alexander, Lee, Lazar & Field, 2007). We are interested in this as it is clearly
a candidate for the meaningful initialisation of a reservoir connectome; if we are
structuring the shape of the reservoir based on the properties of the subject’s brain,

it is logical to also take inspiration from their brain’s connectome where possible.

2.2 PuLsARs, RADIOTELESCOPE TRANSIENTS, & ASTROPHYSICS

To address why we are interested in radioastronomy data as an example of SSTD, we
must first provide some background. The reader is directed to the cited literature for
comprehensive discussion of this area. Primarily, we discuss one narrow subset of

this field; the search for, and anaylsis of, pulsars.

A pulsar (‘pulsating star’) is a super-dense, rotating neutron star, which emits a
beam of electromagnetic radiation from its mangetic poles (Michel, 1982). This beam
is relatively narrow in astronomical terms, and coupled with the rotation of the
pulsar, causes a ‘lighthouse effect’ whereby this signal is periodic. See Figure 2.2
for a visual intuition of this behaviour. An additional property of a pulsar signal
is its dispersion. By this, it is meant that the initial signal is dispersed over the
journey from source to collection site by interstellar media, in much the same way
that a prism diffracts light. The mechanism is different, but the principle is more
or less the same. This dispersion creates a characteristic inverse-quadratic shaped
signal, with lower frequencies arriving later. The degree to which this is dispersed is
proportional to the distance travelled by the signal, i.e. how far away the pulsar is

from Earth. A single signal of this type is considered a transient, and its source is

2.2 REVIEW: PULSARS, RADIOTELESCOPES, & ASTROPHYSICS 16

Radio
emission

< .

Rotation

Earth-based
radiotelescope

FIGURE 2.2: An intuition of a pulsar and its rotation affecting an earth-based radi-
otelescope at two time points. At time t; we see that the radio emission (orange
cone) of the pulsar is directed at our radiotelescope’s collection device. At t, we
see that the pulsar has rotated around its axis and the radio emission is no longer
directed at our collection device, causing the characteristic ‘lighthouse effect’. Note
that the axes of rotation and radio emission are not the same. The direction of radio
emission is aligned with the magnetic poles of the pulsar. Here, the dotted lines
denote this magnetic field.

unknown. It is theorised that these may be the result of a supernova explosion, but as

yet, radioastronomy is not yet capable of localising and identifying these transients.

In fact, it is this periodicity which is the most interesting characteristic of a pulsar. A
certain subset of these stars, known as milli- or micro-second pulsars, have such a
regular periodicity that they are a more accurate timekeeper than an atomic clock
(Backer, Kulkarni, Heiles, Davis & Goss, 1982; J. H. Taylor, 1991).

The regularity of the signal period is extremely useful in astrophysics. Any changes in
its period are significant, particularly when the changes themselves have a periodicity.
Here, we consider a pulsar with a companion star (i.e. two stars orbiting each other).
If this companion star is of sufficent density, a gravitional lensing will occur when
the pulsar is occluded by it, ostensibly changing the period of the pulsar. The

magnitude of this change will be proportional to the two stars relative positions in

2.2 Review: RFI MITIGATION 17

orbit. Of particular interest here is a pulsar with a companion black hole; due to the
black hole’s immense density, this will cause the most significant alteration to the
pulsar’s periodicity (Lyne et al., 2004). Additionally, by analysing and comparing
the properties of similar pulsars with ordinary companions and pulsars with a black
hole companion, it may be possible to shed some light on the properties of the black
hole itself — currently a defiant challenge to astrophysicists. The interested reader is
directed to the discussions in Backer and Hellings (1986), J. H. Taylor and Weisberg
(1989) and the more recent papers by Angélil, Saha and Merritt (2010) and Deneva,
Cordes and Lazio (2009).

The introduction of a new project which will vastly increase the number of pulsars

identified is nearing completion; the Square Kilometre Array.

2.2.1 THE SQUARE KILOMETRE ARRAY PROJECT

The Square Kilometre Array (SKA)! is an international project to develop the world’s
largest radiotelescope array, totalling one square kilometre of collection area (Dewd-
ney, Turner, Braun, Juande & Tan, 2015). Once completed, it will be approximately
fifty times more sensitive than any other radiotelescope in operation, and require
a data transmission capacity of one exabyte per day, around ten times larger than
the total per-day bandwidth usage of the current Internet. As a result, it is spurring

development in a number of areas of computation, including machine learning.

The SKA is intended to identify a total of around 2,000,000 new pulsars. Their
identification in the data is a costly and laborious process. A recently concluded
survey (one of the largest to date) identified a total of around 3,000 pulsars from 35,000
candidates, and took a team of graduate students nearly three years to complete
(B. Stappers, personal communication, April 2014). The typical class ratio of pulsar :
non-pulsar in a candidate signal is between 1 : 10,000-12,000. Clearly, at the scale of
the SKA, it is no longer feasible to perform this search activity by hand. There is a

pressing need for an automated method of candidate selection.

However, it is also a difficult task for machine learning to approach. This data has a
number of characteristics which make it a significant challenge: most particularly,
the scale, nonstationarity, noise level, and ambiguity of the data. This will be dis-
cussed further in Section B.2. These properties make the identification of pulsars in
radioastronomy data an interesting application for the NeuCube, as these are similar

to properties of neuroinformatics data we have already explored (cf. Appendix A).

Thttps://www.skatelescope.org/

https://www.skatelescope.org/

2.3 STFT AND ALTERNATE REPRESENTATIONS OF SSTD 18

2.2.2 RADIO FREQUENCY INTERFERENCE MITIGATION

Automated radio frequency interference mitigation technologies are also a key area
of research in modern radioastronomy, and will be an important component in the
effectiveness of the SKA. A Radio Frequency Interference (RFI) incident is some
unwanted interference in the signal recorded by a radiotelescope; typically, this is
caused by devices emitting radio waves, such as cellular telephones or aircraft radar.
For this reason, the SKA will be located in ‘radio quiet’ areas of the desert. It is
important to be able to identify these incidents quickly, so that mitigation techniques

can be applied before the recording is spoiled or lost.

State of the art RFI identification at present is statistical in nature. The primary
technique used is relatively straightforward spectral kurtosis. This compares the
distribution of channel intensities in a Fourier-transformed signal of the different
sensors in a radiotelescope Antoni (2006), Nita and Gary (2010). Effectively, this forms
an analytic measure of the skewedness of the distribution, and with it, whether the
signal is dispersed or not. Depending on the distribution, it can be inferred whether

a signal is terrestrial in nature (i.e. an RFI event) or extra-terrestrial (i.e. a real signal).

Unfortunately, in the case of the SKA, this technique cannot be applied. It relies
on the radiotelescope to be a multisensor array; i.e. that there are multiple sensors
across a small collection area. The telescopes to be built in the SKA are single sensor.
As a result, a picture of the skewedness of the signal cannot be developed, as there
is no comparison possible between signals. An alternative technique is therefore

sought for RFI identification.

2.3 SHORT-TERM FOURIER TRANSFORM AND ALTERNATE REPRESENTA-
TIONS OF SSTD

It is possible in some cases to represent SSTD in an alternative form, which may
represent the spatial and spectral dynamics of the data in a more compact way than
in their raw form. One such example of this type of representation is the Short-
Term Fourier Transform (STFT). Here, we perform a number of Discrete Fourier
Transformations on small segments of an input signal, and treat these as the input
vectors. We are therefore to an extent windowing the input data — although, in
such a way that the direct relationship between the spectral change over time is still

effectively represented.

2.5 ADDRESSING THESE CHALLENGES 19

This representation has not been addressed in the literature relating to the NeuCube
at present, as emphasis has been primarily directed to the analysis of un-preprocessed
data where possible. The impact of alternative data representations such as STFT

when analysing SSTD should be addressed in future.

2.4 ‘TRADITIONAL’ TECHNIQUES

In the previous discussion, ‘traditional’ machine learning was referred to. By the
term ‘traditional’, we mean those techniques which are typically applied to datasets
of this type, techniques which are well established in the literature. Here, we refer to
learning systems like the MLP and SVM, and the more recent attempts at Recurrent
Neural Networks (RNNs) and ‘deep learning’. These techniques almost universally
treat a temporal data stream as a static vector. Additionally, they are generally
incapable of addressing multimodal data — in this case, data which contains both a

temporal element and one of spatial or spectral components.

2.5 ADDRESSING THESE CHALLENGES

Current, the state of the art in SSTD analysis are typically statistical or standard
machine learning models, such as the Support Vector Machine or real-valued RNN.
These models do not take into account the inherent spatial and temporal dependencies
within data such as EEG or fMRI, or general SSTD. In addition, these techniques
commonly ‘spotlight’ areas of interest defined by some metric and discard the rest of
the data (Lemm et al., 2011). For data such as fMR], this can lead to vitally important
dynamics being culled. The proposed NeuCube technique does not perform this type
of dimensionality reduction, and is therefore theoretically superior in the sense that
all of the data is retained (Kasabov et al., 2015). It is noted here that of course, this
does mean that potentially spurious data is also retained. This factor, however, is
handled through the unsupervised learning present in the reservoir computing stage

of the framework.

There is a clear necessity for an effective evolving classification system identified
in the literature. Applications as diverse as neurorehabilitation, brain computer
interfaces, radioastronomy, and seismic prediction (among others) require accurate
multimodal classification of complex SSTD. The current state of the art is reasonably
effective, but there is significant room for improvement. Moreover, none of these
models explicitly incorporate aspects of temporal dependence, spatial or spectral

relationships within the data, or stochasticity, which are all implicit characteristics

2.5 CONTRIBUTIONS 20

of the data itself. In particular, none have incorporated these factors together into a

cohesive tool for the classification and modelling of SSTD (Kasabov, Hu et al., 2013).

The context of this data and the limitations of the existing approches prompt the
question — is there a better way? Can we address the challenges raised here in
an attempt to exploit the considerable advantages of this type of data? There is a
significant opportunity to improve upon the state of the art, and perhaps bring about

a revolution in the classical thinking that has prevailed in the field to date.

We contend that there is, indeed, a better way. The following chapters will expand
on, and justify, this contention, in both the context of SNN, and a specific SNN
architecture known as the NeuCube. In the next chapter, we introduce the existing
literature in SNN which will lead to a novel approach to the challenges established

here.

1. An overview and review of the challenges inherent in SSTD, and the limita-
tions of existing approaches.

2. A novel characterisation of the challenges of SSTD.

3. The motivation for a new approach to these issues: Spiking Neural Networks
and the NeuCube Framework.

CHAPTER

REVIEW OF SPIKING NEURAL NETWORKS

By brain is meant, in the first instance, something more than the pink-
grey jelly of the anatomist. It is, even to a scientist, the organ of imagin-
ation.

— W. Grey Walter
(The Living Brain, 1953)

Containing on the order of 10!! neurons and some 10'* connections, and consuming
around 20 Watts, the human brain is arguably the world’s most powerful and effi-
cient computer. It is outclassed by orders of magnitude with regards to arithmetic
computation, even when compared to a toy pocket calculator. However, its ability to
learn from experience and function under uncertainty, at low power, and in the most

extreme of environments dwarfs even the greatest current supercomputers.

In straightforward terms, Spiking Neural Networks (SNN) are an attempt to create
biologically plausible computational and mathematical models of the inner workings
of the brain at either a macro (outside the neuron) or micro (inside the neuron) level.
SNN are typically considered to be the third generation of Artificial Neural Network
(ANN) after the perceptron and the MLP. It could be argued that they are in fact, the
fourth generation, after the modern forms of ‘deep learning’ architectures, as none
of these models incorporate a temporal dependency. In addition, SNN are similar
to biological neurons in that they communicate through discrete pulses of current
known as ‘spikes’ (Maass, 1997), while previous generations of neural networks
encoded information through continuous values and mean firing rates. See Figure 3.1

for a visual intuition of a spiking neuron.

21

3.2 REVIEwW: BioLoGICAL INSPIRATION 22

yi () y; (1)

ui(t) = 2 wijyi
y;(t) = F(u;)

FIGURE 3.1: Illustration of a simplified spiking (temporally dependent) artificial

neuron where: y;(t) is the input spike train from presynaptic neuron i over time; w;;

is the weight of an synapse between neurons i and j; u;(t) is the internal membrane

voltage of neuron i over time; F(u;) is the neuron model (e.g. LIF, Izhikevich, etc.);
and y;(t) is the output spike train from postsynaptic neuron j over time.

3.1 WHY SPIKING NEURAL NETWORKS?

Spiking Neural Networks have a number of positive features, including compact rep-
resentation of space and time; fast information processing; and time- and frequency-
based information representation. They are therefore appropriate to address the
issues raised in Chapter 2, in the analysis of spatio- and spectro-temporal data. Re-
cently a number of novel SNN methods for spatio-temporal pattern recognition have
been developed. Among them are two types of evolving SNN classifiers, including the
deSNN by Dhoble, Nuntalid, Indiveri and Kasabov (2012), and SPAN by Mohemmed
and Kasabov (2012), and related pilot applications for moving object recognition and
simple EEG data classification.! This thesis proposes to further develop the existing
research towards SSTD classification for a number of purposes, using the NeuCube

framework recently proposed in Kasabov (2012b).

3.2 BioLOGICAL INSPIRATION

Detail about the functionality of the human brain has been discussed in great depth
in a number of textbooks. Those by Kandel and Schwartz (2000) and Bear, Connors
and Paradiso (2007) are standard sources on the subject, from which the following

brief summary is drawn.

Here, we will begin with a definition of a neuron. According to the literature, a
number of features define a neuron: primarily, electrical excitability, and the presence

of synapses, which are complex connectionist junctions that transmit signals to other

1http ://ncs.ethz.ch/projects/evospike

3.2 REVIEwW: BioLoGICAL INSPIRATION 23

{al Multipolar () Maotor {cl Sensory
interneurans neuron neuran
Dendrite Dendrite
~~ a] sle
J b ,,g\
1 Receptor
- cell
i Paripharal
R / Cell \ branch

hillock body

A&
Cell

=

[
— Axon Axon
!_

\.

|
Axon ﬂ rﬁxcn
C;i’

body

Node of

Ranvier

Axon

- r Myelin
sheath central
| branch
JF - | Neuron-muscle
| 3 | synapse \
! | |
| - e !
i e Al 4
! | = K g /V:l myh g 0%
\ 7 \ 1R
Axon Axon !
terminals Muscle terminals

F1GURE 3.2: Diagram of typical mammalian neurons. Arrows indicate the direction

of action potentials. (a) Multipolar interneurons (b) A motor neuron that innervates

a muscle cell (c) A sensory neuron in which the axon branches just after it leaves
the cell body. From Lodish et al. (2000).

cells. The body’s neurons, plus the glial cells that give them structural and metabolic
support, constitute the nervous system. Typically, the majority of neurons belong
to the central nervous system, but some reside in peripheral ganglia, and others
are situated in sensory organs such as the retina and cochlea. For the purposes of
this thesis, we are primarily interested in the behaviour of neurons in cortex. See

Figure 3.2 for a schematic illustration of a typical neuron.

A typical neuron is divided into three parts; the soma (cell body), dendrites, and axon.
The soma (bulbous structure of Figure 3.2) is usually compact, while the axon and
dendrites are filaments that protrude from it. Dendrites (thin branchlike structures
off the soma in Figure 3.2) generally give rise to an abundance of branches which
thin at each division, and extend their longest branches a few hundred micrometres
from the soma. The axon (long thin structure towards the bottom of Figure 3.2)
extends from the soma at a swelling called the axon hillock. Axons are capable of
extending great distances, giving rise to hundreds of branches. Unlike dendrites, an

axon usually maintains the same diameter as it extends. While a soma generally has

3.2 REVIEwW: BioLoGICAL INSPIRATION 24

numerous dendrites, in no case does it ever extend more than one axon. These axons
may be myelinated, or covered in a layer of a fatty substance known as myelin which

acts as an electrical insulator.

Synaptic signals from other neurons are received by the soma and dendrites, while
signals to other neurons are transmitted by the axon. A typical synapse is some area

of contact between the axon of one neuron, and a dendrite or soma of another.

The synaptic signalling process, which is partly electrical and partly chemical, is the
key to neural function. The electrical aspect depends on properties of the neuron’s
membrane. Every neuron is surrounded by a plasma membrane, a bilayer of lipid
molecules with a number of different protein structures embedded within the plasma.
This lipid bilayer is a strong electrical insulator. In these neurons, many of the protein

structures embedded in the membrane are electrically active.

In particular, these electrically active components include ion channels that permit
electrically charged ions to flow across the membrane, and ion pumps that actively
transport ions from one side of the membrane to the other. Most ion channels are
permeable only to specific types of ions (e.g. Calcium or Potassium). Some ion
channels are voltage gated, meaning that they can be switched between open and
closed states by altering the voltage difference across the membrane. Others are
chemically gated, meaning that they can be switched between open and closed
states by interactions with chemicals that diffuse through the extracellular fluid. The
interactions between ion channels and ion pumps produce a voltage differential across
the membrane, which provides a basis for electrical signal transmission between
different parts of the membrane. The interactions between these ion currents are

defined in the Nobel prize winning Hodgkin-Huxley model described in Section 3.3.1.

Neurons communicate by chemical and electrical synapses in a process known as
synaptic transmission. The fundamental process that triggers synaptic transmission
is the action potential, a propagating electrical signal that is generated by exploiting
the electrically excitable membrane of the neuron. This is also known as a ‘wave
of depolarisation’, or in our case, a ‘spike’. The biological functions that cause this
behaviour will be omitted here as this is beyond the scope of this thesis. Effectively,
the net excitation received by a single neuron through its synapses over a short period
of time reaches a firing threshold, the neuron generates a brief pulse called an action
potential (which in SNN modelling is termed a ‘spike’), that originates at the soma and
propagates rapidly along the axon, activating synapses to other neurons. A synaptic

transmission can be either excitatory or inhibitory depending on the type of synapse.

3.3 REVIEW: MODELS OF SPIKING NEURONS 25

Different neurotransmitters and receptors are involved in excitatory and inhibitory
synaptic transmissions respectively. Excitatory synapses release a transmitter called
L-glutamate and increase the likelihood of the post-synaptic neuron triggering an
action potential following stimulation. Inhibitory synapses on the other hand, release
a neurotransmitter called y-Aminobutyric Acid (GABA), and decrease the likelihood
of a post-synaptic potential. See the Hodgkin-Huxley model described in Section 3.3.1
and the Computational Neuro-Genetic Model (CNGM) in Section 3.6.3.3 for further

details of these neurotransmitters.

Although action potentials can vary somewhat in duration, amplitude and shape,
they are typically treated as identical stereotyped events in computational modelling.
If the brief duration of an action potential (about 1 ms) is ignored, an action potential
sequence, or ‘spike train’, can be characterized simply by a series of all-or-none
point events in time (Gerstner & Kistler, 2002), generally modelled as §-functions.
The lengths of interspike intervals between two successive spikes in a spike train
often vary, often randomly (Stein, Gossen & Jones, 2005). These interspike intervals
give rise to the SNN’s inherent temporal dependency. Spike timing precision in vivo
is rarely below 5-10 ms (Butts et al., 2007; Desbordes, Jin, Alonso & Stanley, 2010,
2008; Marre, Yger, Davison & Frégnac, 2009) but as the timescales we work with
in models such as these are arbitrary (in the sense that they are not the same as
biological time), this is not a significant factor in the accuracy of our networks. It does
however, suggest that coarser calculations than are the norm (updates every 1 ms) of
network and neuron dynamics, or processing delays thereof, may be acceptable with

no significant loss of accuracy.

3.3 MODELS OF SPIKING NEURONS

As briefly discussed in the introductory section of this chapter, computational models
of spiking neurons can typically be divided into two levels of abstraction: macro-, or

micro-scopic models.

Microscopic spiking neurons refer to those which model the internal dynamics of
the neuron with biological accuracy; that is, they calculate neuronal dynamics at the
level of ion channels. A canonical example of this type of neuron is the Nobel Prize

winning model introduced in Hodgkin and Huxley (1952).

However, for our purposes, macroscopic models are favourable for their lower com-
putational costs and simpler implementation. With macroscopic models, we look at

the neuron as a homogenous unit, or as a ‘black box’. Here it is meant that we model

3.3 REeviEw: HobDGKIN-HUXLEY 26

I(t) T

T

FIGURE 3.3: Example circuit schematic of the Hodgkin-Huxley model of neural

behaviour. The semi-permeable cell membrane separates the interior of the cell

from the extra-cellular liquid and thus acts as a capacitor. Ion movements through

the cell membrane (in both directions) are modelled in the form of resistors. Inspired
by Gerstner, Kistler, Naud and Paninski (2014).

the neuron at the level of its external dynamics and effects on neighbouring neurons,
rather than at a great level of internal detail (Gerstner & Kistler, 2002). Therefore, this
section will focus primarily on those macroscopic models which may be appropriate
for implementation in this thesis. The Hodgkin-Huxley model will be introduced for

context, and for its historical importance.

3.3.1 HobGKIN-HUXLEY

The Hodgkin-Huxely (HH) model of spiking neurons is one of the earliest proposed,
first published in 1952. Drawn from empirical studies on the axons of a Giant Squid,
it describes the influence conductances of ion channels have on the spike responses
of the axon (Hodgkin & Huxley, 1952). Axons from a squid were selected due to
their large size; at around 1 mm in diameter, they are one of the few axons visible to
the naked eye. Contrast this with typical human axons at around 1 pm in diameter,
or around one thousand times smaller (Debanne, Campanac, Bialowas, Carlier &
Alcaraz, 2011). This large size was necessary as electrodes had to be inserted into the
axon, in order to record the changes in electrical state experienced when neurons

are active.

Three different ion currents were identified in the neuron; one sodium, one potassium,

and one leak current. Voltage-dependent ion channels control the flow of ions across

3.3 Review: HobGkIN-HUXLEY 27

the cell membrane. An active transport mechanism results in an electrical potential
across the membrane, due to the ion concentration within the cell differing from that

of the extra-cellular medium.

In their model, this membrane is described in terms of an electrical circuit with a
capacitor in parallel with batteries and resistors. See Figure 3.3 for an example circuit
schematic of this model. The current I at time ¢ is split between that being stored in
the capacitor and that passing through each of the ion channels. In formal terms,

this is represented by
1(t) = Leap() +)~ Ie(2) (3.1)
k

From the definition of capacitance, C = % where C is capacitance, Q is charge, and u

is the voltage across the capacitor, we are able to substitute I.,p(t) = C %, giving us
cdu_ D L) + 1) (3.2)
dt £ ¢ '

As three ion channels are identified in this model, the sum above runs over all three,

which are generally formulated as

D 1) = Gramh(u = Vi) + Gien* (= V) + Greak (4 = View) (3.3)
k

where W, Vk and Vi ek are constants known as ‘reverse potentials’. The variables
Gna and Gk respectively represent the maximum conductance of the sodium and
potassium channels, while the voltage-independent leak channel is represented as
GLeak- The variables m, n and h are gating variables whose dynamics are described

in the differential equations

o = ()1 =m) = fu(w)m

4 = ()1 =) = By (wn (3.4)
h

3 = @A = h) = Pu(w)h

where m and h control the sodium channel, and n the potassium channel. Functions
and Sy, where x € {m, n, h} represent empirically determined voltage dynamics across
capacitor u, are adjusted to simulate different types of neuron. See the parameters in

Table 3.1 for values discovered in their experiments.

3.3 REVIEW: |ZHIKEVICH 28

X Vx (in mV) Gx (in mS/cm?)

Na 55 40
K =77 35
Leak -65 0.3
x ax(F)[msT'] Be()[ms]
0.02(u—25) 0.02(u—25)
N e | [1-e®-29/9]
0.182(u+35) ~0.124(u+35)
[1-e~(+39/79] [1—e(3)5]
ho 0.25e-@+90) 1y 0256

e(v+90)/12

TaBLE 3.1: Hodgkin-Huxley model parameters, as reported in Gerstner, Kistler,

Naud and Paninski (2014). The voltage scale has been shifted to have a resting

. . . F
potential of zero, and the membrane capacitance is C = C”F

This model is computationally costly, and is generally used only when biophysical
realism is vital. As previously mentioned, in engineering applications of SNN, we
typically use macro-scale models instead. The following neuronal models are all

macroscopic.

3.3.2 |zHIKEVICH

The Izhikevich Model claims to combine the biological plausibility of the Hodgkin-
Huxley with the lower computational complexity of Leaky Integrate-and-Fire type
neurons (Izhikevich, 2003). Based on the theory of dynamical systems, the dynamics

of this model are governed by two equations,
v =0.040° + 50+ 140 —u + I (3.5)
where v is the membrane potential of the neuron, and
u' = a(bv —u) (3.6)

where u is a membrane recovery variable providing negative feedback for v; variables

u and v, and parameters a, b, ¢ and d, are dimensionless; and " = % where t is the

time. Stimuli in the form of synaptic currents are represented by I.

3.3 REVIEW: IZHIKEVICH

29

(A) tonic spiking

input dc-current

20 ms

(E) mixed mode

|

(1) spike latency

(M) rebound spike

(Q) depolarizing
after-potential

DAP

7

ﬂ—

(B) phasic spiking

(F) spike frequency
adaptation

(J)) subthreshold
oscillations

(N) rebound burst

(R) accommodation

/_/_

(C) tonic bursting

(G) Class 1 excitable

_— _

(K) resonator

(O) threshold
variability

(S) inhibition-induced
spiking

[S R

(D) phasic bursting

(H) Class 2 excitable

_—_1

(L) integrator

(P) bistability

(T) inhibition-induced

bursting

[SR

FIGURE 3.4: Illustration of the neuronal types it is possible to emulate using the
Izhikevich neural model. In each sub-figure, the top (blue) trace is the membrane
potential or internal voltage of the neuron, and the bottom (red) trace is the input
(bias) current to the neuron. The solid bar to the bottom right of each sub-figure
represents 20ms. Image recreated from Izhikevich (2004) and izhikevich.org.

http://www.izhikevich.org/publications/whichmod.htm

3.3 REvVIEW: SPIKE RESPONSE 30

When the membrane potential reaches the (fixed) threshold § = 30 mV, the neuron

spikes and resets u and v as

) v o«
if v > 30mV, then (3.7)

u «—u+d

Dependent on parameters a (decay rate of membrane potential), b (sensitivity of
membrane recovery), c and d (reset values of v and u respectively), a huge variety
of neuronal types can be modelled with relative ease. Izhikevich (2004) claims that
all cortical neuron types can be modelled. See Figure 3.4 for a demonstration of this
feature. Care must be taken to ensure that the parameters are selected such that the
neuron type matches that required, as minor changes in these parameter values can

have significant impacts on the model’s behaviour.

3.3.3 SpPIKE RESPONSE

Introduced in Gerstner and Kistler (2002), the Spike Response Model (SRM) is a
generalisation of the Leaky Integrate-And-Fire (LIF) model, representing the state of
a neuron with a single variable u. Different kernel functions are used to describe the
effects of stimuli and presynaptic spikes on u, in addition to the shape of the actual
postsynaptic spike and after-potential. As with the LIF, when variable u reaches
the threshold J from below, a spike is triggered. However, in contrast with LIF,
this threshold ¢ does not need to be a fixed value, but can vary with the last spike
time #; of a neuron i. In practice, it is common for this behaviour to be utilised in
the post-spike (refractory) period, increasing the threshold to suppress potential

unwanted spikes.

The evolution of state variable u; at time ¢, where { is the time of the last postsynaptic

spike, can be modelled by

w(t) =n(t—1)+ f k(¢ = fis) I(t = 5) ds (3.8)
where t;f) are the firing times of presynaptic neurons j, w;; represents the synaptic

weight between neurons j and i, kernels 7, ¢ and « are response kernels, and the last
term accounts for the effect of an external current I(t) (Jolivet, Lewis & Gerstner,
2003). The integration process is characterised by the kernel x, which is an additional

external current. Kernel n defines the spike form and the post-spike membrane

3.3 REvVIEw: THORPE 31

potential if required. The choice of kernel x is not restricted in the model, other than

the fact that it inherits the time dependency of the overall model.

The spiking threshold J can be constant or variable based on time. In the introductory

paper, this is given as

N +Ooa 1f t_f < refr T
9t —1) = () Yrefractory (3.9)

o+ K exp(—tr;;), otherwise,

Where yrefractory is a fixed refractory period; parameters &y, ¢ and 7y are empirically

chosen to yield an optimal fit to a test dataset (Jolivet et al., 2003).

3.3.4 THORPE

A simplified form of LIF, in which each neuron in a network is allowed to emit a
single spike at most, was formally proposed in Thorpe and Gautrais (1998). This
formulation omits the post-synaptic potential leakage that is a common factor in the
more complex spiking neural models. As a result, the spike response of a Thorpe
neuron depends only on presynaptic spike times. It is capable of imposing precise
timing on output spikes, although it is limited by the number of output spikes which

can be generated for a single neuron.

Despite being limited to a single postsynaptic spike per neuron, this model is suffi-
ciently effective to solve complex recognition tasks. This observation is consistent
with studies of human sight, where it has been shown that processing of visual data
requires only 150 ms (Thorpe, Fize & Marlot, 1996). In this short time, each neuron
has the capability to emit very few spikes. As a result the Thorpe model is effective

in these types of task, despite its simplicity.

The dynamics of this model are described by the time course of the postsynaptic

potential u;(¢) of a neuron i

0 ift > fi
JfG)<t

wi(t) = (3.10)

ift <t

where wj; is the weight of a presynaptic neuron j and f(j) is the firing time of j,
and 0 < m; < 1 is the modulation factor of the model. The function ¢(j) represents
the rank or index of the spike emitted by j. A rank of ¢(j) = 0 is assigned to the

first spike of a given neuron if that spike is the first of all the presynaptic neurons,

3.3 REVIEW: LEAKY INTEGRATE-AND-FIRE 32

and a rank of 1 if that spike is the second, and so on. In this way, the spikes of all
presynaptic neurons are ranked and used in the calculation of ;. Similar to most
other neural models, a postsynaptic neuron i spikes when u; reaches a threshold
from below and resets to u; = u,, where u, is generally zero, after this. The threshold
J = ¢ Umay is set to a fraction 0 < ¢ < 1 of Uy,y, the maximum potential for that
neuron (Schliebs & Kasabov, 2013). This model differs from normal multiply-firing
neuronal models by the case in Equation 3.10. Here it is defined that if a neuron has

previously spiked u; is set to 0, thereby permanently suppressing any further spikes.

These simplifications of the general neural model allow for low computation cost
when simulating large networks. As a result, the Thorpe model has been used
in a number of complex domains, such as image and speech recognition (Thorpe,
Guyonneau, Guilbaud, Allegraud & van Rullen, 2004) where it showed a reasonable
level of effectiveness. This model is however, incompatible with the concept of
precise spike timing for multiple spike output sequences. This is a constraint that
means the Thorpe model is of limited used in the NeuCube paradigm, although it
does see use in the Dynamic Evolving Spiking Neural Network Classifier (dleSNN)

classifier introduced in Section 3.6.3.2.

3.3.5 LEAKY INTEGRATE-AND-FIRE

The LIF neuron is one of the most popular models in the simulation of spiking neural
networks. It was first described in the work of Louis Lapicque over a century ago
(Lapicque, 1907), and discussed in a more modern context in Abbott (1999), and Brunel
and Van Rossum (2007). Some biological plausibility is sacrificed for a more concise

model, making LIF far less computationally costly than most other approaches.

It can be conceptualised as a simple electrical circuit containing a capacitor of capa-
citance C, and a resistor of resistance R. Both capacitance and resistance are constant.
We represent the dynamics of a neuron i of this model by:
du;
Tm— = —u;(t) + R[" (1) (3.11)
dt
where 7,,, = RC is the membrane time constant of the neuron. When the membrane
potential u; reaches a threshold ¢ from below, a spike is emitted by the neuron and
its potential is set to a reset potential u,. From Gerstner and Kistler (2002) we then

define the firing times of neuron i as

t) u (1) =9, fefo,....n-1) (3.12)

3.3 Review: ProBasiLisTic LIF 33

where n is the number of spikes it emits. It is noted that the shape of the spike is not
described in the basic LIF model; it only considers the firing times of the neurons.
As a result, we can define a number of different shapes for the synaptic current. For

example, Mohemmed, Schliebs, Kasabov and Matsuda (2011) uses an a-kernel, as
1) = wy > K (-) (3.13)
J f

where w;; € R is the synaptic weight describing the strength of the connection

between pre-synaptic neuron j and neuron i. The a-kernel used is defined as
Ko(t) = et te™ O(t) (3.14)

where 7; is the synaptic time constant (current decay rate) and O(t) refers to the

Heaviside function, shown here as a function of time ¢

0, wheret <0
o(t) = (3.15)
1, wheret >0

which ensures that the kernel will equate to zero if the neuron has not emitted a

spike.

We could define an exponential function to replace the a-kernel, such as that from
Brette et al. (2007) and Vogels and Abbott (2005),

Keyp = €7 O(1) (3.16)

where Key, replaces K, in the equation above, simplifying the model somewhat.
The a-kernel is both more biologically plausible and easily controlled than this

exponential shape.

LIF neurons are used in this thesis due to their relatively high level of biological simil-
arity, low computational cost, and common presence across the simulation platforms
used herein. Their dymanics are well understood and studied, and their behaviour
can be compared across platforms to ensure that the various implementations of the

NeuCube act as expected regardless of the simulation tool used.

3.3 Review: ProBasiLisTic LIF 34

3.3.6 PROBABILISTIC LEAKY INTEGRATE-AND-FIRE

Synaptic transmission in vivo has been shown to be unreliable (Allen & Stevens,
1994; Hardingham & Larkman, 1998), and processing in neuronal systems thus
unavoidably becomes a stochastic process (Tuckwell, 1988). Deterministic modelling
of a stochastic process is impossible, and therefore, these models should be adapted
to incorporate this probabilistic behaviour (Svirskis & Rinzel, 2000). The probability
function used here is not specified in the literature, but typically a Gaussian function

is utilised.

In a probabilistic model of the LIF neuron, first introduced in Kasabov (2010), three

probabilistic parameters are added to the standard form.

« A probability p,(¢) that a spike emitted by a neuron n; at time ¢ through
the connection c;; between n; and n; will reach the neuron n;. If p = 0, no
connection and no spike propagation is possible between these two neurons.
If p = 1, the connection exists and the probability of a spike reaching the

postsynaptic neuron is 100%.

« A probability p, (¢) for the synapse s;; to contribute to the total postsynaptic
potential of neuron n; after it has received a spike from n;. If p = 0, no
contibution will ever be made to the PSP of n;. If p = 1, there will be a

contribution made on every presynaptic spike.

« A probability p;(t) for the neuron n; to emit an output spike at time t once
the total internal potential reaches its threshold. If p = 0, neuron n; will never

spike. If p = 1, neuron n; will spike every time it reaches its threshold.

The postsynaptic potential of the probabilistic spiking neuron n; is now calculated

as:

PSPi(t) = >)] ejg(pcij(t—p))f(psij(t—p))wij(t)+ﬁ (3.17)

p=to,t1,....t j=1,2,..., m (- 0)

where e; is 1 if a spike has been emitted from neuron n; and 0 otherwise; g (pcij(t))
is 1 with a probability p., (¢) and 0 otherwise; f (psij(t)) is 1 with probability p;,; and
0 otherwise; t, is the time of the last spike emitted by n;; and m is an additional
term representing decay in the postynaptic potential. Here we have defined the

model in terms of the postsynaptic potential, rather than its current as was the case

3.3 REeview: ADEX 35

with the traditional LIF model; while it would be neater to cast this in terms of
current, the voltage-based definition has been kept to keep consistency with the

existing literature.

In the special case that all probabilities p,, ps,;, p; are set to 1, the model is simplified
(i.e. there is no probabilistic element) and behaves as the standard Leaky-Integrate-
and-Fire neuron. This neuron model is flexible and depending on the probabilistic
parameters selected, can represent a number of biologically inspired behaviours. It is
also suitable to integrate with the computational neurogenetic model discussed in
Section 3.6.3.3 (Kasabov, 2012a).

In Schliebs, Nuntalid and Kasabov (2010) and Nuntalid et al. (2011) it is shown that
replacing the deterministic LIF discussed above with a Probabilistic Leaky Integrate-
And-Fire (pLIF) yields better separation and classification results. This may be a result
of it mimicking biological behaviours known as “slow learning” (Amit & Fusi, 1994;
Fusi, 2003). Slow Learning is a phenomenon where synaptic weight modification
is moderated (or ‘slowed’) in order to reduce the significance of new input data on
existing ‘memories’, thereby increasing the memory retention of the synapse and

reducing potential impacts of any aberrant input.

Few other significant comprehensive probabilistic neural models have been proposed.
By comprehensive, it is meant that those models incorporating considerations for
both the axonal projections and the neuron itself. A simplified stochastic model
was introduced in Svirskis and Rinzel (2000), which only modelled the membrane

potential as a stochastic process.

3.3.7 ADAPTIVE EXPONENTIAL IAF

The Adaptive Exponential Integrate-And-Fire (AdEx) introduced in Brette and Ger-
stner (2005) is described by two equations - the first describing the dynamics of
the membrane potential with an exponential voltage term, and the second which
describes spiking threshold voltage adaptation. The combination of adaptation and
exponential voltage dependence gives rise to the name AdEx. The AdEx model
is shown in Naud, Marcille, Clopath and Gerstner (2008) to be capable of describ-
ing a number of known neuronal firing patterns (adapting, bursting, delayed spike

initiation, initial bursting, fast spiking, regular spiking, etc.)

3.4 REeview: SPIKE INFORMATION CODING 36

This model is described in Brette and Gerstner (2005) and Gerstner and Brette (2009)

by two differential equations:

C% = —gL(V—EL)+gLATexp(V_VT) —w+1 (3.18)
and 4
de—”t” —a(V—-E)—w (3.19)

where: V is the membrane potential; w the adaptation variable; I the input current;
C the membrane capacitance; g; the leak conductance; E; the leak reversal potential;
Vr the threshold potential; At the slope factor; a the adaptation coupling parameter;

and r,, the adaptation time constant.

The exponential nonlinearity describes the process of spike generation and the
upswing of the action potential. A spike occurs at the time t/ when the membrane
potential V diverges towards infinity. In practice, integration of the model equations
is usually stopped and the firing time / recorded when the membrane potential
reaches a finite value (e.g. 0 mV or 30 mV). The downswing of the action potential is
not described by the model but is generally implemented by a reset of the voltage to
a fixed V,, following the rule that:

att =t/ reset V-V, (3.20)
Simultaneously, the adaptation value w is also altered by an amount b, following:
att =t/ reset w — (w+b) (3.21)

The AdEx is used in a number of neuromorphic hardware systems including Indiveri
(2003), Indiveri and Horiuchi (2011), Moradi and Indiveri (2013) and Meier, Millner,
Gr, Schemmel and Schwartz (2010). For further details, see Section 7.3.

3.4 SPIKE INFORMATION CODING

An open question in neuroscience regards the manner in which information is coded
by neurons. The series of spikes (action potentials) that represents an event or
message must have some structure in order for it to be meaningful to postsynaptic
neurons. As mentioned in the previous section, if the brief duration of an action
potential is ignored, a spike train is represented by a series of all-or-nothing events

in time (Gerstner & Kistler, 2002). The difficulty then, is to extract meaningful

3.4 Review: TEMPORAL CODING 37

information from this spike train. While there is still significant debate regarding
the form of neural encoding in the brain, two primary forms have been defined in

the previous literature: rate and temporal (pulse) coding.

3.4.1 RATE CODING

Rate coding suggests that the mean firing rate of a neuron carries most or all of the
significant information for a spiking event. A mean firing rate v is generally defined
as the ratio of the average number of spikes ngpikes Over a specific time interval ¢ and

Nspikes

this time interval itself, as v = . This form of information coding is commonly
used in older generation SNN, and has been identified in motor neural systems and

sensory perception in animals (Adrian, 1926).

Rate coding as a concept is criticised, largely because of the comparably slow trans-
mission of information between neurons (Dayan & Abbott, 2001). The minimum time
possible for information to be extracted from the spike sequence is at least t,;,, which
is not the case for pulse coding. The extremely short response times of the brain
to certain stimuli indicate that this form of neural encoding is too time-consuming
to be effective. In particular, we note the case of human vision, where it has been
shown that the brain can identify a visual stimulus in approximately 150 ms (Thorpe
et al., 1996). With a moderate number of neural layers involved in this process, if
every layer is made to wait at least time period i, and given that each spike has a
duration of 1 ms, this identification process would necessarily be slower. As a result,
this method of encoding is inappropriate for representing sensory data, which is
necessarily real-time. To address this issue, the concept of Temporal Encoding is

used primarily in more recent works.

3.4.2 TempPoRAL CODING

Temporal, or Pulse, coding assumes that the precise timing of the spikes in a sequence
represents all or most of the significant information carried by that spike train (Bohte,
2004). A number of features, absent in rate coding, can be extracted from these time
sequences. These include characteristics based on the second and higher statistical
moments of the inter-spike interval probability distribution, spike randomness, or
precisely timed groups of spikes (temporal patterns). As there is no absolute time
reference in the nervous system, the information is carried either in terms of the
relative timing or with respect to an ‘ongoing brain oscillation’, generally represented

in simulations by an external clock. A growing body of literature supports the premise

3.5 REVIEW: TEMPORAL DIFFERENCE 38

of pulse coding. This includes theoretical studies of LIF models by Lestienne (1996),
and empirical biological studies of rat cortices, both in vitro (Nawrot, Schnepel,
Aertsen & Boucsein, 2009) and in vivo (Villa, Tetko, Hyland & Najem, 1999).

A popular form of temporal coding is known as time-to-first-spike, and was discussed
by Thorpe et al. (1996). This encoding is based on the timing of the first spike after a
reference signal (generally taken to be the beginning of a simulation period), and is
inspired by human vision processing. As discussed above, it is argued that in this
context, each neuron has the opportunity to emit only a few relevant spikes. As a
result, it is suggested that earlier spikes carry a greater amount of information about
the stimulus, and should be emphasised. The Thorpe model given in Section 3.3.4 is

based on this principle.

3.5 METHODS OF ENCODING DATA INTO SPIKE TRAINS

A natural question at this point regards how we turn a real-valued input such as
a time series from an EEG or seismograph into a train of spikes. A number of
encoding schemes have been proposed in the literature. Here, we primarily focus on
those providing precise spike times as their outputs, rather than rate-based encoding
methods. One spike rate based method (the so-called BSA) will be introduced here
as it has been applied successfully to EEG data in a previous study.

3.5.1 TempoRAL DIFFERENCE (THRESHOLD-BASED)

The Threshold-Based Temporal Difference (TD) encoding algorithm is simple. In
short, some threshold ¢ is defined. We calculate an output spike s(t), such that

S(t) = +, ifi(t) > 3+ i(tast) (3.22)
—, ifi(t) < = i(tst)

Where i(t) is the input value at the current time and i(#,) is the previous time
point, and +, — represent excitatory and inhibitory spikes respectively. In the case
that neither of these conditions are met, no spike is emitted. The pseudocode of this

method is given in Listing 3.1. See Figure 3.5 for a visual intuition of this process.

last_value = 0
for (i = 1 to size(input))
current_value = input[i]

if (current_value >= threshold + last_value)
output_excitatory (i)

3.5 ReviEw: TEMPORAL DIFFERENCE 39

Signal and Reconstruction

Output Spike Train

F1GURE 3.5: Illustration of the Threshold-Based Temporal Difference spike encoding

scheme. In the upper figure, a real-valued input stream (orange dotted line) and its

reconstruction (solid blue line) is converted to a series of excitatory (positive, blue)
and inhibitory (negative, red) spikes, shown in the lower figure.

+

else if (current_value <= threshold - last_value)
output_inhibitory (i)
end if
last_value = current_value
end for

LisTING 3.1: Pseudocode implementation of the Temporal Difference Encoding
Algorithm.

Despite its relative simplicity, it has been established that this type of encoding is
biologically plausible, particularly with regards to the encoding of visual stimuli
(K. Kim & Rieke, 2001; Kuang, Poletti, Victor & Rucci, 2012; Oesch & Diamond, 2011;
Rieke, 2001). TD is also appropriate for implementation in neuromorphic hardware
systems (Freeman, Rizzo & Fried, 2011; Lichtsteiner, Posch & Delbruck, 2006).

TeEmPORAL CONTRAST & AER: The Temporal Difference algorithm is sometimes
incorrectly conflated with Address-Event Representation (AER) due to the use of
the conceptually similar Threshold-Based Temporal Contrast (TC) algorithm and
AER use in the Dynamic Vision Sensor (DVS) (cf. Section 7.1.5.1). AER is in fact
a communication protocol, not a spike encoding scheme. Some prior literature on
the NeuCube including Capecci, Kasabov and Wang (2015), Doborjeh et al. (2014a),
Kasabov and Capecci (2015), Kasabov, Hu et al. (2013), Scott, Kasabov and Indiveri

3.5 Review: BSA 40

(2013) and Schliebs, Capecci and Kasabov (2013) carries this inaccuracy. In cases
where these papers have referred to the use of ‘AER Encoding’, the Temporal Differ-
ence spike encoding algorithm is meant. See Section 6.3.3.1 for details of the AER

communication protocol.

3.5.2 PopuLATION ENCODING

Population Encoding, or, more properly, Rank-Order Population Encoding, is an
extension of the rank order importance system in the work of Thorpe and Gautrais
(1998). Using it, we can map a vector of real-valued elements into a spike sequence
through the use of relative spike delays. An implementation based on Gaussian
receptive fields was introduced Bohte, Kok and Poutre (2002). Receptive fields allow
the encoding of continuous values through a collection of neurons with overlapping
spike sensitivity profiles. Each input variable (channel) is encoded independently
by a group of M one-dimensional fields. For each variable n we define an interval
[Ignn’ I{;ax]. The Gaussian shaped receptive field of a neuron i is then given by its

centre y;, where

2i =3 Inax — Iy
pi =10+ o % M_;m“ (3.23)

and its width o, where

1 I* —I".
U:EX% (3.24)

ensuring that 1 < < 2. Parameter § controls the width of each receptive field. In
effect, we translate the relative similarity of the real valued input and its representative
neurons to spike time delays for those neurons. The neuron representing the value
closest to our input value spikes first, followed by the next most similar, and so on.

See Figure 3.6 for a visual intuition of this method.

3.5.3 BEN’S SPIKER ALGORITHM

Ben’s Spiker Algorithm (BSA), first introduced by Schrauwen and van Campen-
hout (2003) is an extension of the Hough Spiker Algorithm spike encoding scheme
introduced in Hough, de Garis, Korkin, Gers and Nawa (1999).

The key benefit of using BSA is that the frequency and amplitude features are
smoother in comparison to HSA. Due to the smoother threshold optimization curve,
it is also less susceptible to changes in the filter and the threshold. Studies have
shown that this method offers an improvement of 10 dB-15 dB Signal-to-Noise Ratio

3.5 REeview: BSA 41

Input Value
0

B D ot B U Aa it SUREE St RN & SN
L - N - s . s . - s
. - ., g S, 0 S, S, 4 .,
- ., - S, 0 S, # s, X .
- . ’ . - . + ., 4 .
, ., - s, e s, 0 ., -
. . - . + O
N ¢ '~ '

Excitation

0' , LS LS
CARN SN N
L x S o . 0 S
. % X L . % 274
0l ~~s o S o ~, o ~,
L . N
0.2 5 S0 ool S .
tog s o Y P Sa.

1.0
0.8}

04+t
0.2} -
0.0

Spike Time

-2 -1 0 1 2
Representative Neuron

F1GURE 3.6: Illustration of the Rank-Order Population spike encoding scheme. For
an input value v = 0.75 (shown here as a broad orange line in the top figure), the
intersections with each Gaussian receptive field is shown, which are transformed
into relative spike delays for the representative population of neurons. Here, the
neuron representing the value ‘1’ spikes at 0.2 s as it represents the proportionally
closest value. Similarly, the neuron representing the value ‘0’ spikes next, at time
0.6 s, and neurons representing values ‘2’ and -1’ spike proportionally later. In this
way, we can represent a continuous value as a discrete series of encoded spikes.

(SNR) over the HSA spike encoding scheme. See Figure 3.7 for a visual intuition of

this encoding scheme.

According to Schrauwen and van Campenhout (2003), the stimulus s is estimated

from the spike train

+00

St = (R X %)(1) = f

—0o0

N
x(t - 7) h(r) dr = Z h(t — ti) (3.25)
k=1

Where t; is the neuron’s firing time, h(t) is the linear filter’s impulse response, and

x(t) is the spiking behaviour of the neuron which is calculated as

N

x(t) = Z o(t - t) (3.26)

k=1

The basic algorithm to calculate a spike train from a given input using Ben’s Spiker

Algorithm (BSA) is given here as pseudocode.

i and j are the indexes of samples at time f; and f; respectively
for (i = 1 to size(input))
error_1 = 0

3.5 ReviEw: KNowWLEDGE DRIVEN DATA ENCODING METHOD

42

Signal and Reconstruction

Output Spike Train

I TICHITTNEITI

F1GURE 3.7: Illustration of the Ben’s Spiker Algorithm encoding scheme. In the

upper figure, the original signal (orange dotted line) and the signal reconstruction

(solid blue line) after it has been converted to a train of spikes are overlayed. The
output spike train generated by BSA is shown in the lower figure.

error_2 = 0
for (j = 1 to size(filter))
if (i + j - 1 <= size(input))
error_1 += abs(input(i; - 1) - filter(j))

error_2 += abs(input(i; - 1))
end if
end for
if (error_1 <= (error_2 - threshold))

output (i) = 1

for (j = 1 to size(filter))
if (i +j - 1 <= size(input))

input(i + j - 1) -= filter(j)
end if
end for
else
output (i) = 0
end if
end for

LisTING 3.2: Pseudocode implementation of Ben’s Spiker Encoding Algorithm.

BSA was used successfully for the encoding of EEG-based brain data in Nuntalid

et al. (2011). Here, it was hypothesised that as EEG is in the spectral domain, BSA

(which is designed for sound data) could equally be applied. This contention proved
accurate, with EEG spike train encoding using BSA shown to be highly effective. It

has yet to be studied in the context of the NeuCube, but its effectiveness here does

suggest that it is a viable area of future exploration.

3.5 ReviEw: KNowWLEDGE DRIVEN DATA ENCODING METHOD 43

3.5.4 KNOWLEDGE DRIVEN DATA ENCODING METHOD

Introduced in Sengupta, Scott and Kasabov (2015), the Knowledge Driven Data
Encoding Method is primarily designed for the encoding of brain data into trains of

spikes.

The process of transforming neurologically defined events to a signal can be defined
as a reverse encoding or decoding method, formally described as a signal estimation
function S := g(B). Several mathematical models g(B) for signal estimation of fMRI
or EEG data source exist in present literature (Fransson, Kriiger, Merboldt & Frahm,
1999; Glover, 1999). However, as the observed signal is an additive function of neural
activity and the multisource noise generated from the device and the experimental

setup, the observed signal S can be formulated as:
S=f(B)+N (3.27)

For encoding brain data, we propose a generalised optimisation based framework
based on minimisation of Root Mean Squared Error (RMSE) between an observed

signal S and a predicted signal S. It can be formalised as:

_3< 2

min \/ 2:(S = 5(8,6)) (3.28)

B,0 t

Such that:

B=T1" (3.29)
Z B <a (3.30)
0<B<1 (3.31)
b<O<c (3.32)

The above optimiser solves for the RMSE, subject to the following constraints:

1. Binary constraints for spikes: The binary contraint for the spikes are imple-
mented by forcing B to be integer and within range of [0,1].

< a constraint enforces the

2. Constraint on the number of spikes: The }}; B;
maximum number of spikes to be limited to a. This constraint is of major
importance from a biological plausibility perspective. Since the encoding

scheme discussed here aims to mimic temporal coding behaviour of the human

3.6 REVIEW: LEARNING & EvOLUTION 44

brain, it is always preferable to encode maximal information with minimal
number of spikes.

3. Bounds can be set on the other parameters 6 to be optimised as part of the
prediction model S(B, 0)

The aforementioned optimisation problem belongs to the paradigm of mixed integer
programming, where a subset of parameter or decision variables to be optimised, are
integers. In our implementation, we have used a mixed integer Genetic Algorithm
(GA) solver (Deep, Singh, Kansal & Mohan, 2009) for solving the above optimisation
problem. As opposed to traditional GA solvers that optimise a fitness function, a
mixed integer GA minimises a penalty function which include terms for feasibil-
ity. This penalty function is combined with binary tournament selection to select
individuals for subsequent generations. The reader is directed to Sengupta et al.
(2015) for details of this process, and in particular, how a-priori knowledge of the

data source can be utilised to improve the formalisation.

3.6 LEARNING & EvOLUTION

In order to take advantage of the powerful spatio-temporal information processing
abilities of SNN, we must be able to train them in some manner. By this, we mean that
a predictable output sequence must be able to be defined for a given input sequence
(or, more commonly, sequences). Without this ability to predict or impose an output

sequence on a SNN, their applications are highly limited.

There are a number of complexities in defining learning rules for SNN. The explicit
temporal dependence of these types of network results in asynchronous information
processing, requiring complex and high-performance software or hardware environ-
ments for simulation. In addition, recurrent and self-referential network topologies
are often used in SNN. This invalidates the effectiveness of older generation learning
methods, such as the form of error backpropagation commonly used in multi-layer
perceptrons. Despite these difficulties, a number of different training methods have
been proposed. All of these techniques function in a similar manner; through some
change in the synapse (generally the alteration of synaptic weights), they simulate
an increase or decrease in the amounts of ions passing from the presynaptic neuron

to the postsynaptic neuron.

Learning rules for SNN can be categorised into three general paradigms; supervised,
semi-supervised or reinforcement, and unsupervised. In supervised learning, we

have some output signal we wish to impose on a system; through some method of

3.6 REVIEW: LEARNING & EvOLUTION 45

error calculation, we explicitly alter parameters in the model to iteratively obtain
that output signal. Supervised learning is typically used where there is a good deal of
information about the data context, and the features which contribute to a successful
output, e.g. the identification of a cancer marker in genetic samples. Supervised
learning is discussed in the context of SNN in Section 3.6.2. In semi-supervised or
reinforcement learning, we have some ‘teacher signal’ which provides an independent
feedback to the learning system, encouraging it to converge on the desired output
signal. Finally, in unsupervised learning, we do not define a specific output, and
instead allow the algorithm to identify features of interest and generate some output
based on its own representation of the data. Here, we can imagine a clustering task;
for example, the grouping of unknown products in a digital marketplace based on
features rather than brand or model name. Unsupervised learning is discussed in the
context of SNN in Section 3.6.1.

Existing SNN learning techniques include Spike Time Dependent Plasticity (STDP)
(already discussed), Spike Dependent Synaptic Plasticity (SDSP) (Brader, Senn & Fusi,
2007; Fusi, 2000), Remote Supervised Method (ReSuMe) (Ponulak, 2005; Ponulak &
Kasinski, 2006), Tempotron (Giitig & Sompolinsky, 2006), Chronotron (Florian, 2010),
deSNN (Dhoble et al., 2012), and the Spike Pattern Association Neuron (SPAN) of
Mohemmed, Schliebs, Kasabov and Matsuda (2011).

Despite their differences, most of these techniques function in a similar manner;
through some change in the synapse (generally the alteration of synaptic weights),
they simulate an increase or decrease in the amounts of ions passing from the
presynaptic neuron to the postsynaptic neuron. This mechanism was proposed by
Donald Hebb in 1949, and as a result, is generally termed ‘Hebbian Learning’. Hebb
postulated that

“When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased” (Hebb, 1949)

The alteration of these weights, or ‘synaptic plasticity’, leads to the amplification
or suppression of the effect of presynaptic neurons, in turn leading to a desired or
predictable output sequence. In the case of these computational models of SNN, the
connection weight between the presynaptic and postsynaptic neurons is changed,
amplifying or suppressing the entire input spike sequence from that presynaptic

neurom.

3.6 REeviEw: SPIKE-TIME DEPENDENT PLASTICITY 46

A precise temporal coding paradigm is required in some artificial control systems.
Examples are neuroprosthetic systems which aim at producing functionally useful
movements of paralysed limbs by exciting muscles or nerves with sequences of short
electrical impulses (Popovi¢ & Sinkjaer, 2000). Precise relative timing of impulses is
critical for generating desired, smooth movement trajectories (Kasinski & Ponulak,
2006a). For this purpose, the learning algorithm known as SPAN is appropriate. Other
applications, such as classification of emotional states or identification of particular
events in streaming data can instead rely on properties other than defined spike

times to represent class or regression values.

3.6.1 UNSUPERVISED LEARNING

For unsupervised learning in SNN, it has been well established that the timing of pre-
and post-synaptic spikes determines potentiation and depression of synaptic weights.
A number of models have been proposed to explain the unsupervised learning
occuring in the mammalian brain. Among the two most popular (and biologically
plausible) are Spike Time Dependent Plasticity (STDP) introduced in (among others)
the paper by Bi and Poo (1998); and Spike Dependent Synaptic Plasticity (SDSP),
introducted in Fusi (2000) and explored further in Fusi (2003). Only STDP will be
explored in this thesis, though SDSP has merit for later exploration as it is a technique

occasionally used in neuromorphic hardware systems (cf. Chapter 7).
3.6.1.1 SpPIKE-TIME DEPENDENT PLASTICITY

Spike Time Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian
learning induced by temporal correlations between the spike timings of pre- and post-
synaptic neurons (Markram, Gerstner & Sjostrom, 2012; S. Song, Miller & Abbott,
2000). As with other forms of synaptic plasticity, it is thought to underly learning and
memory in the brain, as well as the development and refinement of neuronal circuits
during brain development (Allen, Celikel & Feldman, 2003; Bi & Poo, 1998). With
STDP, repeated presynaptic spike arrival a few milliseconds before postsynaptic
action potentials leads (in many synapse types) to Long-Term Potentiation (LTP)
of the synapses, whereas repeated spike arrival after postsynaptic spikes leads to
Long-Term Depression (LTD) of the same synapse. The synaptic weight change as a
function of the relative timing of pre- and post-synaptic action potentials is called
the STDP function or ‘learning window’, and varies between synapse types. See

Figure 3.8 for a visual example of the learning window.

3.6 REeviEw: SPIKE-TIME DEPENDENT PLASTICITY 47

0.4

0.3

0.2

0.1

0.0

Weight Modulation

-0.1

-0.2

-60 -40 -20 0 20 40 60
Time Difference Between Presynaptic and Postsynaptic Spike (ms)

FIGURE 3.8: An illustration of the STDP learning window, recreated from the canon-

ical formulation in S. Song, Miller and Abbott (2000). The STDP function shows

the change of synaptic connections as a function of the relative timing of pre- and

post-synaptic spikes. The magnitude of the weight change (y-axis) is modulated

by the A, |- parameters and the duration of the weight modulation effect by the
respective 7, |- parameters.

The net result of STDP is that a neuron can discriminate between, and then integrate,
temporally significant inputs and transform this into a meaningful output, even
though the actual meaning is not strictly known by the neuron (Markram et al., 2012).
Networks employing STDP (and indeed, SDSP) operate as palimpsests; that is, older

stimuli are forgotten to make room for new ones (Amit & Fusi, 1994; Fusi, 2000).

In general, the synaptic weight is altered based on the timing of post-synaptic action
potentials in relation to the pre-synaptic spike. The weight change Aw; at a synapse

from presynaptic neuron j is defined simply as

N N
Aw; = Z >w (e - t/) (3.33)

Jj=1 n=1

where f and n label the firing times of the pre- and post-synaptic spike times t]f of
presynaptic neuron j and t" respectively. Function W (x) denotes an STDP learning

window, often defined as

A exp (;—f) , forx>0

W(x) = (3.34)

M

A_exp(_), forx <0

3.6 REeviEw: SPIKE-TIME DEPENDENT PLASTICITY 48

where A, and A_ are generally an empirically determined constant, but can vary
with wj, and time constants 7, and 7_ are generally on the order of 10 ms (the “critical

window”). The general shape of the learning window is shown in Figure 3.8.

This most common version of STDP eventually (i.e. with sufficient learning time)
converges in a bimodal distribution of synaptic weights, where each weight assumes
its minimal or maximal possible value (Kasinski & Ponulak, 2006a). This observation
supports the work in Indiveri, Stefanini and Chicca (2010) on Very Large Scale Integ-
ration (VLSI) Application-Specific Integrated Circuit (ASIC) hardware, suggesting
that bistable synapses are sufficient for effective learning through synaptic weight

updates.

It is noted though, that pre- or post-synaptic dynamics alone are not enough to
model this learning properly. Instead, a third factor should be introduced, typically
suggested to be a gene expression (Markram et al., 2012; Pawlak, Wickens, Kirkwood
& Kerr, 2010). This factor supports the later contention that the CNGM discussed in
Section 3.6.3.3 may in the future be an important component for optimal functionality
of an SNN-based reservoir that utilises STDP.

STDP has been argued against (Frégnac et al., 2010), but the role of STDP in brain
function has been supported in a number of studies including those of Gerstner
(2010), Hebb (1949), Konorski (1948), Schulz (2010) and Lisman and Spruston (2010).
The effect of STDP is not yet resolved (Bi & Poo, 2001; Kepecs, van Rossum, Song &
Tegner, 2002), and it has been postulated that STDP may actually be a byproduct of
learning behaviours that optimise other network properties (Chechik, 2003). In any
case, there is sufficient evidence that STDP increases the effectiveness of reservoir
and SNN computing (Bohte, 2004).

Computationally, STDP updates can be handled as a Lookup Table (LUT) to reduce
memory and computational demand. This has been implemented in practice in Pfeil
et al. (2012). LUTs do not limit the flexibility of the weight update as long as their
weight dependence does not change over time. This LUT can also be projected or
mapped to a wider range of weights than the table can contain. Pfeil et al. (2012)
contend that 64-bit precision in terms of network accuracy is possible using 8-bit
synaptic weights and mapping these values to a wider range of weights. Bounded
STDP models such as the one introduced in Giitig, Aharonov, Rotter and Sompolinsky
(2003) are the most appropriate to use in such a case. Pfeil et al. implement STDP such

that weight updates are accumulated over several steps and applied. This technique

3.6 Review: SDSP 49

is not common, but it is worth noting as a constraint of this particular hardware

based approach.

STDP in hardware is typically implemented for a limited range of synapses (Ra-
makrishnan, Hasler & Gordon, 2010), and does not generally implement long-term
plasticity (Vogelstein, Mallik, Culurciello, Cauwenberghs & Etienne-Cummings,
2007). Software simulations therefore currently allow for greater numbers of plastic
synapses and LTD-LTP. New hardware systems (Chapter 7) are beginning to incor-
porate larger numbers of plastic synapses in an effort to model neuronal behaviours

more precisely.
3.6.1.2 Spike DEPENDENT SYNAPTIC PLASTICITY

Spike Dependent Synaptic Plasticity (SDSP) is a modification of the STDP learning
rule, as described in the prior section. In its strictest form, SDSP is an unsupervised
method, although a supervised formulation using reference or ‘teacher’ neurons
exists (Brader et al., 2007; Fusi, 2000).

Similar to STDP, presynaptic spikes arriving at the neuron before a postsynaptic
spike increases the synaptic weight. At this time, if the postsynaptic membrane
potential V., is greater than some threshold voltage Vy potentiation of the neuron
occurs. Similarly, if it is lower than the threshold, depression will occur. Here, this
postsynaptic site is represented by its Calcium concentration C(t). The synaptic

weight W therefore changes according to

W +a, if Vien > Vo and O} < C(t) < O (5.35)
W =b, if Viem < Vg and €} < C(t) <] |

W =

where a and b represent the amount of potentiation and depression respectively;
[@fm, @got] and [@éep, @gep] are the bounds for C(t) for potentiated and depressed
states, respectively (Azghadi, Iannella, Al-Sarawi, Indiveri & Abbott, 2014; Fusi, 2000).

In the case that these conditions are not satisfied, there will be no change to the
afferent synapses; and in the case that there is no input at all, these synaptic weights
will drift into bistability. The direction of this drift will depend on the synaptic weight

at the last stimulus, and whether it is above or below a weight threshold ©,,, as

3.6 RevieEw: RESUME 50

dw (t) _ a, ifW() >0, (3:36)

de —B, ifW(t) <O,

A supervised version of the SDSP rule can be implemented through the use of a
reference or ‘teacher’ neuron, similar to that used in ReSuMe (cf. Section 3.6.2.1 or
Ponulak, 2005). This teacher neuron is separate from the network except to provide
this desired output sequence, which is then used in the calculation of the synaptic
weight change. This form of SDSP was used for character recognition, where it

showed reasonable levels of effectiveness (Brader et al., 2007).

A significant divergence from STDP in this model is that the synapses are essentially
binary on long time scales. Synaptic transitions are initiated only by elevated presyn-
aptic rates. For low presynaptic rates, there are essentially no synaptic transitions.
This solves the problem of synaptic stability when using the device in engineering
applications (Fusi, 2000). Additionally, this means that these synapses can likely be
efficiently implemented by exploiting the bistability of memristors.

3.6.2 SUPERVISED LEARNING

Supervised learning refers to those techniques which define or impose a specific be-
haviour as the result of a learning algorithm. Depending on the method of supervised
learning, these specifically imposed behaviours could be the generation of a defined
spike train from some given input spike trains, or the identification of such a spike
train in the context of classification or regression. Here, we introduce the primary
established techniques for supervised learning in SNN such as the ReSuMe of Ponulak
(2005) and Tempotron introduced in Giitig and Sompolinsky (2006), and emerging
techniques such as SPAN (Mohemmed, Schliebs, Kasabov & Matsuda, 2011).

3.6.2.1 REMOTE SUPERVISED METHOD

The Remote Supervised Method (ReSuMe) differs from most SNN learning algorithms
by incorporating a reference, or ‘teacher’ neuron to provide the desired output spike
sequence for a given neuron (Ponulak, 2005; Ponulak & Kasinski, 2006). It functions
by modifying the synaptic weight w of a connection between a presynaptic neuron

n'® and a postsynaptic neuron n°" such that

(0 = 1[0 (0) - ™)

a+ f) W(s) ®"(t —s) ds (3.37)
0

3.6 REVIEW: TEMPOTRON 51

where ®45(t), ®"(t) and ®°%(t) are the target, pre- and post-synaptic spike trains
respectively, where these are defined by the sums of their firing times (Gerstner &
Kistler, 2002). The target spike train ®% is produced by a reference or ‘teacher’
neuron, separate from the network except to provide this reference signal. The
parameter a expresses the amplitude of the non-correlation contribution of the total
weight change, while the convolution function defines the Hebbian response of
the weight w. The integral kernel W(s) is known as a learning window, which is
defined over a time delay s between the spikes occurring in the pre- and post-synaptic
neurons. For excitatory synapses a is a positive, and W (s) is of a similar shape to
STDP. For inhibitory synapses, this is reversed, with a a negative and W (s) of a
similar shape to anti-STDP (Ponulak & Kasinski, 2006). The factor A is a learning
rate adjustment, to increase or decrease the magnitude of the weight modification
described by the learning rule. The error between the desired and actual output

sequences is generally defined as a cross-correlation of a kernelised version of these.

ReSuMe, when used in conjunction with a Liquid State Machine, is theoretically
capable of transforming any input spike train to any output spike train (Kasinski &
Ponulak, 2006b). This differentiates it from most other established forms of learning
in SNN, as these are typically able to only categorise or classify data, not impose
precise spike timing on a sequence. One other such learning method is the SPAN; (cf.
Section 3.6.2.4).

The Tempotron method (cf. Section 3.6.2.2) has been described as a specific, limited
application of ReSuMe (Florian, 2008), where a = 0, and W replaces ¢ in Equation
3.38. The abilities of ReSuMe, particularly in that it can impose precise spike timing
on an output sequence and discriminate between more than two classes of data, are
significantly greater than that of Tempotron for a marginal increase in computational

complexity.
3.6.2.2 TEMPOTRON

The Tempotron learning rule (Giitig & Sompolinsky, 2006) functions by modifying the
synaptic weights of the input synapses such that the trained neuron emits one spike
when presented with inputs corresponding to one category and no spike when the
inputs correspond to another category. Before being presented with an input spike
train, it is assumed that the neuron’s potential is at rest, and that after the neuron
emits a spike in response to an input pattern all other incoming spikes are suppressed
and have no effect on the neuron. By this, it is meant that even if the neuron would be

sufficiently stimulated to fire more than one spike, the spikes following the first one

3.6 REVIEW: TEMPOTRON 52

are artificially suppressed. The membrane voltage u of a trained neuron is modelled

as a sum of postsynaptic potentials

u(t) = up + Z wi Z € (t - tlf) (3.38)

Y
where u is the resting potential, w; is the synaptic efficacy of synapse i, and ¢ (t - tif)
describes the form of the postsynaptic potential induced in the neuron i by a spike at
tif received from neuron i. The first sum runs over all presynaptic neurons, and the
second one runs over all spikes of neuron i prior to t. When u overcomes the firing
threshold &, the neuron emits a spike. Tempotron learning minimises the following

cost function, for each input pattern:

0 — Umax, if Umax < & and the neuron should fire for this pattern

C =19 umax — 9, if the neuron fired (upmax > &) but should be silent (3.39)

0, otherwise

where Umay = U(tmax) is the maximal value of the postsynaptic potential u, in the case
that the neuron did not fire. In the case that the neuron fired, uy,y is the maximal
value that u would have been reached if the neuron would have not fired. Applying
the gradient descent method in the space of synaptic efficacies for minimising the

above cost function leads to the Tempotron learning rule:

Ay, € (tmax — tl.f) , if a desired postsynaptic spike is absent
Aw; =1 =AY ey € (tmaX - tif) , if'an undesired postsynaptic spike is present
0, otherwise
(3.40)
where A > 0 is the learning rate. During learning, synaptic changes Aw; are applied
after each presentation of an input pattern. It can be seen that the dynamics of this

learning rule have little biological plausibility, as it requires the monitoring of the

maximum of u.

While the rule assumes that the precision of spike times in input patterns is important,
it does not apply this same precision to the timing of output spikes. The output
pattern is also limited to firing either one or no spikes per input pattern with no
level of temporal precision. This behaviour is not supported by the literature, which
suggests that a level of precise spike timing in biological neurons is a primary means
of information encoding (Bohte, 2004; Nawrot et al., 2009; Stein et al., 2005; Villa et al.,

3.6 REeviEw: CHRONOTRON 53

1999). It is also assumed that learned input patterns are isolated from other inputs
and thus that the trained neuron is initially at rest, which is not the case in the brain.
This lack of precise spike timing makes it impossible to use the output spikes as a
temporally meaningful sequence, limiting the usefulness of the Tempotron method

in practice.
3.6.2.3 CHRONOTRON

Similar to ReSuMe, Chronotron is capable of learning spike sequence mappings using
the precise timing of spikes. Two forms of the learning rule have been proposed; an
analytically derived version termed ‘E-learning’, and a biologically plausible version
known as T-learning’ (Florian, 2012). E-learning is a gradient-descent optimisation
of the synaptic weights to minimise an error function E defined as the difference

between the actual output spike train and the desired spike train,

E = u(t) - u (i) + U(M) 3.41

tf627"*) EerGE*) <ﬁ‘§> " o

{f eF-F*

t9e F-F*
where F = {t!,t?,...,t"} and F = {t!,#%,...,t"} are the actual and desired spike
trains, and F* and F* are the subsets of these sets representing the spikes that
should be removed and added respectively. This difference is measured using a
modified version of the Victor and Purpura (VP) distance metric (Victor & Purpura,
1997) that can handle the discontinuities inherent in this measure. The VP metric is
one of the two metrics commonly used in neurobiology for quantifying the distance
between two spike trains; the other is the Van Rossum metric (van Rossum, 2001). In
contrast to the I-learning rule, E-learning implements an off-line learning process
that requires the identification of the firing times of all spikes in the network in order
to compute the error, similar to the Batch formulation of SPAN. The E-learning rule

is defined after derivation with o(x) = x—zz as

Aw; =y ZA(Zf)— ZA(tf)+y—; Z (¢ -) 4 (/) (3.42)
HeF+ tfe F g)
t9e F—-F*

[}

where y is a positive learning rate and y, is another positive parameter.

3.6 Review: SPAN 54

The other version of Chronotron, I-learning, is similar to ReSuMe and can be used
for online learning in the same manner as Incremental SPAN. In Florian (2010), an
extensive analysis was undertaken to demonstrate the performance of the algorithm
regarding its learning ability, memory capacity, learning behaviour in the context
of noisy input patterns, and the effect of various parameters. The results show that
E-learning, although less biologically plausible, achieves better performance in terms
of the number of temporal patterns that can be learned compared to both I-learning

and ReSuMe. I-learning is defined as

Aw; =y sign(w;) Z I (ff) — Z I (tf) (3.43)

feF tfeF

where y is a positive learning rate and J; is the synaptic current of a synapse j.
3.6.2.4 SPIKE PATTERN ASSOCIATION NEURON

The Spike Pattern Association Neuron (SPAN) learning algorithm, introduced and
extended in Mohemmed and Kasabov (2012), Mohemmed, Schliebs and Kasabov
(2011), Mohemmed, Schliebs, Kasabov and Matsuda (2011), Mohemmed, Schliebs,
Matsuda, Dhoble and Kasabov (2011), Mohemmed, Schliebs, Matsuda and Kasabov
(2013), is primarily an extension of classical error backpropagation using the Widrow-

Hoff (‘Delta’) learning rule. More formally, the Delta rule is defined as
Aw; = A x; (Ya — Ya) = Ax; 5 (3.44)

where A € R is a positive learning rate; x; is the input through synapse i; and y4 and
y, respectively denote the desired and actual neural outputs. Here §; = y4 — y,, or

the error between the desired and actual outputs of the neuron.

The difficulty here is applying this rule, developed for use with older generation
neurons, to SNNs. In older generation ANNS, the input and output signals of a neuron
are real-valued, making the calculation of §; trivial. However, in SNNs, we pass spike
trains, which require us to seek an alternative approach. In more formal terms, if we

consider x;, yg and y, as spike trains s(¢) in the form

s(t)=>"6(t-) (3.45)
7

3.6 Review: SPAN 55

where tf is the firing time of a spike and (. . .) is the Dirac delta function

1, wherex =0
d(x) = (3.46)

0, otherwise

the difference between the actual and desired spike trains does not define an error

landscape that can be minimised with gradient descent.

SPAN addresses this through the application of convolution kernels. To effectively
define a distance (error) between spike trains, each is convolved with some kernel
function x(t). We define

()=) k(t-t) (3.47)
l{GFm

)= >k (t=19) (3.48)
t9eFy

Ja(t) = > x(t—1l) (3.49)
tfl’eFa

where Fy,, Fq and F, are respectively the input, desired and actual spike trains. We
then substitute x;, y; and y, with the kernelised spike trains x;(t), §4(t) and 7,(t),

and obtain a new learning rule for spiking neurons

Aw;(t) = A %i(t) (Ga(t) = Fa(t)) (3.50)

This equation represents a real-time learning rule, i.e. the synaptic weights change

over time. By integrating this equation, we derive the batch version of SPAN

Aw, = 2 fo (1) (Ga(t) — Gu(t)) dt (3:51)

As noted above, in order to define a suitable error landscape, we convolve the spike
trains with a function denoted as k(t). The primary exploration of SPAN has used
alpha kernel. This is defined as

Kke(t) = et e O(t) (3.52)

3.6 Review: ESNN 56

where O(t) refers to Heaviside function (Equation 3.15) and 7 € R is a time constant.

We can therefore represent a convolved spike train as
§(t) = ZK(t—tf)
tf
=Y ert (t-t) e 7 O(t-t/)
tf
and using this kernel function, perform the integration of Equation 3.51,

AWi = A,f Awl-(t) dt
0

:A(g)z Zg:; (|t o

|-

eSS -
h f

+1')e_ T

(3.53)

An interesting study of SPAN was performed in Scott (2012), where the behaviour of
this learning rule in the context of memory capacity and network structure effects

was explored.

SPAN is a viable candidate for implementation in the NeuCube framework, par-
ticularly for the generation of arbitrary spike sequences for motor control, among

others.

3.6.3 EvoOLUTIONARY METHODS

Evolutionary Methods are so called because they share the property of ‘evolution’,
in the sense that they are adaptive and dynamic with regards to their structure and
behaviour over time. A canonical example of this is the Evolving Connectionist
System (eCoS) family of methods discussed in Kasabov (2015), and the current state
of the art deSNN (Dhoble et al., 2012) introduced here. The interested reader is
directed to the reviews of this area in Schliebs and Kasabov (2013) or Watts (2009).

3.6.3.1 EvoLVING SPIKING NEURAL NETWORK

Based on the eCoS principles, an Evolving Spiking Neural Network (eSNN) architec-
ture was proposed in Kasabov (2007) and Wysoski, Benuskova and Kasabov (2010). It
was initially designed as a visual pattern recognition system. The first eSNNs were

based on the Thorpe’s neural model (Thorpe, 2001), in which the importance of early

3.6 Review: ESNN 57

spikes (after the onset of a certain stimulus) is boosted, called rank-order coding
and learning. Synaptic plasticity is employed by a fast supervised one-pass learning

algorithm.
These eCoS principles were established in Kasabov (1998):

1. Fast learning from large amount of data, e.g. using ‘one-pass’ training, starting
with little prior knowledge;

2. Adaptation in a real time and in an on-line mode where new data is accom-
modated as it comes based on local learning;

3. ‘Open’, evolving structure, where new input variables (relevant to the task),
new outputs (e.g. classes), new connections and neurons are added/evolved
‘on the fly’;

4. Both data learning and knowledge representation is facilitated in a compre-
hensive and flexible way, e.g. supervised learning, unsupervised learning,
evolving clustering, ‘sleep’ learning, forgetting/pruning, fuzzy rule insertion
and extraction;

5. Active interaction with other eCoSs and with the environment in a multi-modal
fashion;

6. Representing both space and time in their different scales, e.g.: clusters of data,
short- and long-term memory, age of data, forgetting, etc.;

7. System’s self-evaluation in terms of behaviour, global error and success and

related knowledge representation.

The main advantage of the eSNN when compared with other supervised or unsuper-
vised SNN models is that it is computationally inexpensive and boosts the importance
of the order in which input spikes arrive, thus making the eSNN suitable for on-line
learning with a range of applications. For a comprehensive review of eSNN see
Wysoski et al. (2010).

An eSNN evolves its structure and functionality in an on-line manner, from incoming
information. For every new input data vector, a new output neuron is dynamically
allocated and connected to the input neurons. The neuron’s connections are initially
established using the Rank-Order Learning (RO) rule for the output neuron to recog-
nise this vector (frame, static pattern) or a similar one as a positive example. The
weight vectors of the output neurons represent centres of clusters in the problem

space and can be represented as fuzzy rules (Soltic & Kasabov, 2010).

In some implementations neurons with similar weight vectors are merged based on

the Euclidean distance between them. That makes it possible to achieve a very fast

3.6 ReviEw: DESNN 58

learning (only one pass may be sufficient), in both supervised and unsupervised modes
(Dhoble et al., 2012). When in an unsupervised mode, the evolved neurons represent a
learned pattern (or a prototype of patterns). The neurons can be labelled and grouped
according to their class membership if the model performs a classification task in
a supervised mode of learning. One specific architecture of the eSNN paradigm is

explained here.
3.6.3.2 DyNAMiIc EvoLVING SPIKING NEURAL NETWORK

The Dynamic Evolving Spiking Neural Network Classifier (deSNN) introduced in
Dhoble et al. (2012) and more comprehensively in Kasabov, Dhoble, Nuntalid and
Indiveri (2013), combines the rank-order learning of Thorpe (cf- Section 3.3.4) and
temporal learning such as the STDP or SDSP algorithms (cf. Section 3.6.1.1 & 3.6.1.2).
The initial values of synaptic weights are set according to the rank-order learning
principle, which assumes the first incoming spikes are more important than the rest.
The weights are further modified to accommodate following spikes activated by the

same stimulus, with the use of a temporal learning rule.

Rank-order learning has several advantages when used in SNN, mainly: fast, one-
pass learning (as it uses the extra information of the order of the incoming spikes)
and asynchronous data entry (synaptic inputs are accumulated into the neuronal
membrane potential in an asynchronous way). The postsynaptic potential of a neuron

i at a time t is calculated as:

PSP(i, t) = Z pOrder) 7 (3.54)

Where p is a modulation factor; j is the index for the incoming spike at synapse
i,j and w; ; is the corresponding synaptic weight; order(j) represents the order (the
rank) of the spike at the synapse ji among all spikes arriving from all m synapses to
the neuron i. The order(j) has a value 0 for the first spike and increases according
to the input spike order. An output spike is generated by neuron i if the PSP(i, t)
becomes higher than a threshold PSPy (i).

During the training process, for each training input pattern (sample, example) a
new output neuron is created and the connection weights are calculated based on
the order of the incoming spikes. In the eSNN, the connection weights of on-line
created connections between a neuron n;, representing an input pattern of a known

class, and an activated input (feature) neuron n;, are established using the RO rule of

3.6 ReviEw: DESNN 59

Thorpe and Gautrais (1998):

AM]i,j — porder(i,j(t)) (3.55)

After the whole input pattern (example) is presented, the threshold of the neuron n;
is defined to make this neuron spike when this or a similar spatio-temporal pattern
(example) is presented again in the recall mode. The threshold is calculated as a
fraction (C) of the total PSP, as:

m T
Prax Z order(l] l,j(t)) (356)
Jj=1 t=1
and
PSPy = C X PSPpax (3.57)

If the connection weight vector of the trained neuron is similar to the one of an
already trained neuron in a repository of output neurons for the same class, the new
neuron will merge with the most similar one, averaging the connection weights and
the threshold of the two neurons (Kasabov, 2007; Wysoski et al., 2010). Otherwise, the
new neuron will be added to the class repository. The similarity between the newly
created neuron and a training neuron is computed as the inverse of the Euclidean

distance between weight matrices of the two neurons.

In a typical eSNN, these weights are calculated once and do not evolve further. Dhoble
et al. (2012) contend that this is appropriate for static pattern recognition, but not
for signals which may change over time. In the latter case, the weights need to be
adjusted based on the subsequent spikes, using some form of temporal learning (i.e.
STDP or SDSP). While the RO learning will set the initial values of the connection
weights for a spatio-temporal pattern recognition system utilising the existing event
order information, the temporal learning process will adjust these connections based
on following spikes as part of the same spatio-temporal pattern. In this way, we
extend an eSNN to a deSNN, by incorporating this dynamic behaviour. See Listing 3.3

for a pseudocode implementation of this straightforward algorithm.

SET deSNN parameters (p, C, Sim, SDSP)

for (input i represented as AER):
create a new output neuron j
calculate values of connection weights using RO learning rule
adjust connection weights w; for consecutive spikes with SDSP
calculate PSP

3.6 REeviEw: NEURO-GENETIC REGULATORY NETWORK 60

calculate threshold value
if(w; is similar to existing w;)
merge neurons
end if
end for

L1STING 3.3: Pseudocode implementation of the deSNN Learning Algorithm.

3.6.3.3 NEURO-GENETIC REGULATORY NETWORK

Properties of all biological cell types, including neurons, are determined by the
proteins expressed within them. In turn, these proteins are determined by gene
expressions in relation to some internal or external stimulus (Lodish et al., 2012).
The properties of these cells (in this case, the neurons) then determine the struc-
tural and functional dynamics of the network they exist within, leading to gene
expressions determining the behaviour of a neural network (Benuskova & Kasabov,
2008). Therefore, when modelling biological behaviours through SNN, it can be
extremely important for us to take these gene expressions into account. This leads
us to the CNGM introduced and extended in Benuskova and Kasabov (2008), Kas-
abov, Benuskova and Wysoski (2005a, 2005b, 2005c, 2011), Marnellos and Schreiber
(2003), Mjolsness, Sharp and Reinitz (1991), Storjohann and Marcus (2005), Watts and
Kasabov (1999) and Kasabov (2012a).

In this approach, gene expressions control neural parameters, which are no longer
constant over a simulation. Through optimising these gene interactions, the initial
gene and protein expressions and neural parameters, an optimal state for the neural
network can be evolved (Benuskova & Kasabov, 2008). This is typically known as a
Gene Regulatory Network (GRN).

A general computational neurogenetic model, as described in the previously in-
troduced papers, but particularly from Kasabov et al. (2005a, 2005b, 2005c) and

Benuskova and Kasabov (2008), is presented below.

In general, we consider two sets of genes — a set Gge, that relates to general cell
functions and a set Ggpec Which defines specific neuronal information processing
functions (e.g. receptors, ion channels, etc.) The two sets together form a set G =
{G1,Ga, . ..,Gn}. We assume that the expression level of each gene g;(t + At) is a

nonlinear function of the expression levels of all the genes in G(t) as

gi(t+At) =0 (Z ijgk(t)> (3.58)

k=1

3.6 REeviEw: NEURO-GENETIC REGULATORY NETWORK 61

We work with normalised gene expression values in the interval (0, 1). The coeffi-
cients w;; € (0, 4) are elements of the square matrix W of gene interaction weights.

Initial values of gene expressions are small random values, generally g;(0) € (0,0.1).

In the current model, we assume a simple scenario where one protein is coded by
one gene; the relationship between the protein level and the gene expression level is
linear; and protein levels lie between the minimal and maximal values. The protein

level p;(t + At) is therefore expressed by

pi(t + At) = (pM™ = p"™) & (Z wjkgk(t)) + pioin (3.59)
k=1

The delay At corresponds to time intervals of gathering the expression data for genes
and proteins. The GRN model exposed above can be integrated with an SNN model
into a CNGM. To reduce model complexity and make the large number of parameters

manageable, a few simplifications are usually made. Specifically that:

1. Each neuron has the same gene regulatory network

2. Each GRN starts from the same values of gene expressions

3. There is no feedback from neuronal activity or other external factors to the
GRN

4. Delays At are the same for all genes/proteins.

Some proteins are directly related to neuronal parameters p;, such that P;(t) =
P;(0)p;(t) where P;(0) is the initial value of the neuron parameter at time ¢ = 0.
In this way, the gene/protein dynamic can be linked to the dynamics of a neural
network. For the purposes of this thesis, a number of genes are potentially useful.
However, to simplify this introduction, four specific genes will be discussed here.
The effect of these four gene-protein pairings (Table 3.2) is modelled in the following
equation, which utilises them to represent four distinct synaptic types and their
respective contributions to a generic neuron’s membrane voltage or Post-Synaptic
Potential (PSP). Other genes (e.g. mGLuR3, Jerky, GLAR1) could be introduced to the

model later, to model the effects of different genetic neurodegerative illnesses.

This information is used to calculate the contribution of each of the different synapses

to a neuron’s postsynaptic potential, as

£ii(s) = A((—i_) p (%)) (3.60)
Tij Tij

3.7 REeviEw: RESERVOIR COMPUTING 62

Protein Expression Synaptic Effect

AMPA Fast Excitation
NMDA Slow Excitation
GABA, Fast Inhibition
GABAg Slow Inhibition

TaBLE 3.2: Basic proteins and their synaptic effects, to be utilised in the GRN

where Ti}' and 7;; are time constants represeting the rise and fall of an individual
PSP; and A is the PSP’s amplitude; ¢;; represents the activity on the synapse between
neurons n; and n;, modelled separately for fast excitation or inhibition, and slow

excitation and inhibition (Kasabov, 2012a; Kasabov et al., 2011).
3.6.3.4 QUANTUM-INSPIRED OPTIMISATION

QeSNN s use the principle of superposition of states to represent and optimize features
(input variables) and gene parameters of an eSNN model (Kasabov, 2007). They are
optimized through quantum inspired genetic algorithm (Defoin-Platel, Schliebs &
Kasabov, 2009) or QiPSO. Features or genes are represented as qu-bits in a superposi-
tion of 1 (selected), with a probability «, and 0 (not selected) with a probability f.
When the model has to be calculated, the quantum bits ‘collapse’ into a state of either
1 or 0. QeSNN need to be developed further in terms of both theory and applications.
The interested reader is directed to the PhD thesis of Schliebs (2010), which covers
this topic in depth.

3.7 RESErRVOIR COMPUTING

Reservoir computing is conceptually simple. We define a ‘reservoir’ as a recurrently
connected network of computational elements, that has a fixed structure. In our
case, these computational elements are spiking neurons, but in the case of the Echo
State Network (ESN) of Jaeger (2001) these can be traditional real-valued artifical
neurons. In this way, they are a specific case of a RNN (Goudarzi, Banda, Lakin,
Teuscher & Stefanovic, 2014). Maass, Natschldger and Markram (2002) demonstrated
that a reservoir computing method had the capacity to approximate any time series,

although this contention has been challenged (Hazan & Manevitz, 2012).

The internal structure of this reservoir is fixed, and does not change over the life

cycle of the network, including when the network is ‘trained’ (Lukosevicius & Jaeger,

3.7 Review: EcHO STATE NETWORKS 63

2009). In effect, this reservoir acts to raise the input data to a higher dimensional state,
in much the same way as the SVM kernel machine. This property is discussed in
Section 4.2. Their computational capacity is theoretically attributed to a short-term
memory property exhibited by reservoirs, which retains and separates temporal

sequences from input signals (Jaeger, 2007).

A simple readout mechanism (usually a traditional linear artifical neuron) is then
trained on the spiking states of the reservoir. This readout function is the only
component of the reservoir which changes after it is initially created (Verstraeten,
Schrauwen, D’Haene & Stroobandt, 2007). A benefit of this computational paradigm
is in terms of training cost over a more dynamic RNN, as the complex reservoir does
not change its structure over time. This mechanism takes advantage of the property
demonstrated in Schiller and Steil (2005), where it was shown that in traditional RNN
learning methods where all network weights can adapt, the only significant weight

changes occur in the output layer.

Here, we define the Liquid State Machine (LSM), the primary form of reservoir
computing when dealing with SNN. For more information on reservoir computing,
the reader is directed to the review of Lukosevicius and Jaeger (2009), Maass, Markram
and Natschlager (2002), and Maass and Markram (2004).

3.7.1 EcHo STATE NETWORKS

The Echo State Network (ESN) of Jaeger (2001) is an attempt to exploit the theoretical
benefits of RNN systems while simultaneously avoiding issues implicit in them such
as the vanishing gradient problem. A large reservoir of sparsely connected (i.e.
< 1% connections in a network) non-spiking neurons are initially generated. The
connectome and weighting of connections is generated randomly, and are fixed at
the time of generation. Similarly, input neurons are chosen at random, and their
input weighting generated the same way. No learning or evolution occurs inside
the reservoir. The intent is that the sparse recurrent connections allow a short-term
memory of a signal due to its propagation around the network. This memory is

colloquially termed an ‘echo’ (Jaeger, 2002).

Learning in an ESN is limited to the output layer. Here, some mechanism - typically
simple error backpropagation — is used to adapt the weighting of the connections
between the reservoir and the output neurons (Lukosevicius, 2012). Learning is
therefore a fairly efficient process, as only a small number of weights are adapted

during the process.

3.7 REeviEw: LiQqub STATE MACHINE 64

Readers interested in a more comprehensive review of the ESN are directed to Jaeger
(2007).

3.7.2 LiQuiD STATE MACHINE

The Liquid State Machine (LSM) introduced in Maass, Natschldger and Markram
(2002) is a specific form of reservoir computing (Verstraeten et al., 2007) that con-
structs a random RNN of spiking neurons. All parameters of the network (i.e. synaptic
weights, connectivity, delays, and neural parameters) are randomly chosen and fixed
during simulation. Such a network is also referred to as a ‘liquid’. This liquid serves
as an unbiased analog (fading) memory about current and preceding inputs to the
circuit. If excited by an input stimulus, the liquid exhibits very complex non-linear
dynamics that are expected to reflect the inherent information of the presented

stimulus.

The response of the network can be interpreted by a learning algorithm. Figure 3.9
illustrates the principle of the LSM approach. As a first step in the general imple-
mentation of the LSM a suitable liquid is chosen. This step determines for example,
the employed neural model along with its parameter configuration, as well as the
connectivity strategy of the neurons, network size and other network-related para-

meters.

After creating the liquid, so-called ‘liquid states’ x(t) can be recorded at various time
points in response to numerous different (training) inputs u(t). Finally, a supervised
learning algorithm is applied to a set of training examples of the form (x(t), v(¢))
to train a readout function f, such that the actual outputs f(x(t)) are close to v(t).
Maass, Markram and Natschlager (2002) and Maass and Markram (2004) argue that
the LSM has universal computational power — i.e. that it can potentially act as a
Turing machine. As previously mentioned, a very appealing feature of the applied
training method (the readout function) is its simplicity, since only a single layer of
weights is actually modified. A linear training method is therefore sufficient. This is
of course in contrast to the forms of ‘deep learning’ introduced in Hinton, Osindero
and Teh (2006), LeCun, Kavukcuoglu and Farabet (2010) and Bengio and LeCun (2007),

which require a considerable amount of training time and computational cost.

Hazan and Manevitz (2012) argue that, in contrast to the contention in Maass,
Natschlidger and Markram (2002), the LSM alone is not sufficient to model human
brain functionality. To resolve this issue it is necessary to incorporate some topolo-

gical constraints — most particularly, the ‘small world” connectivity property — on the

3.8 REVIEW: SOFTWARE SIMULATORS 65

[Input u(-) ’

Liquid
| | | |
Liquid State x(t)

! | | !

Readout f

|

Output v(-)

FIGURE 3.9: Block diagram of the basic principle of a Liquid State Machine (LSM).

The liquid transforms inputs u to neurons n into a ‘liquid state’ x which is in turn

mapped by a readout function f into the output v of the network. Figure recreated
from Maass, Markram and Natschlager (2002).

network. In addition, the effectiveness of the network is heavily dependent on the
random selection of parameters; while such systems are generally robust to noise,
their structure and behaviour is not informed by the application. It is further argued
that there is no way to extract knowledge from the network, i.e. it is a black box.
While some work has been done to rectify this last issue — for example, the work of

Ozturk, Xu and Principe (2007) - this is still a difficult task, and one not yet solved.

These contentions are resolved in the context of the NeuCube framework in Sec-
tion 4.2, as the NeuCube’s structured reservoir shares computational properties with

this basic paradigm.

3.8 SIMULATION PLATFORMS

At some point, we must actually implement these models and algorithms in some sys-
tem that simulates their dynamics efficiently and accurately. To resolve this, a number
of simulation platforms have been created. These simulation platforms provide com-
putational units representing neurons and synapses, which can be interacted with in
some way to create our desired network. We can broadly categorise them into two
main types of simulation system; software simulators, and neuromorphic hardware

systems.

3.8 REVIEW: SOFTWARE SIMULATORS 66

3.8.1 SOFTWARE SIMULATORS

Software simulation systems are typically a more flexible approach to SNN dynamics
modelling. By flexible, it is meant that it is possible to implement a large number of
neuronal models on the same computational platform, without the need to physically
change the device. Typically, this flexibility comes at a performance cost; software
simulation typically requires high-performance computing platforms such as clusters
or supercomputers, which are expensive in terms of both power requirements and
monetary cost. In this section, we briefly introduce the three most common soft-
ware simulators for engineering purposes. Other simulators, such as GENESIS and
CarlSIM exist, but are typically directed more towards computational neuroscience

applications rather than the domain in which we intend to utilise them.
BRIAN

Brian is an open source Python package for developing simulations of networks
of spiking neurons. Introduced in Goodman and Brette (2008), Brian is aimed at
researchers developing models based on networks of spiking neurons. Goodman
and Brette claim that it is intended to minimise development time, with execution
speed a secondary goal. Brian is unique in that users specify neuron models by
giving their differential equations in standard mathematical form (plain text), which
is interpreted by Brian itself. As a result of this, Brian is capable of modelling any
neural behaviour which can be represented in this manner. This feature is intended to
make the process as flexible as possible, so that researchers are not restricted to using
a limited number of neuron models typically included in simulators. It is written in
Python, using the NumPy and SciPy numerical and scientific computing packages.
Parts of the simulator can optionally be run using C code generated procedurally.
Computationally, Brian uses vectorisation techniques, so that for large numbers of
neurons, execution speed is of the same order of magnitude as C code - claimed to
be around 25% slower on the Brian website?, although this claim is unverified in any

peer-reviewed sources.
PYNEST

The Neural Simulation Tool NEST is a computer program for simulating large hetero-
geneous networks of point neurons or neurons with a small number of compartments.

NEST is best suited for models that focus on the dynamics, size, and structure of

*http://www.briansimulator.org

http://www.briansimulator.org

3.8 REVIEW: NEUROMORPHIC HARDWARE 67

neural systems rather than on the detailed morphological and biophysical properties
of individual neurons (Gewaltig & Diesmann, 2007). It was officially introduced in
Diesmann and Gewaltig (2001), but versions of this environment were in varying
stages of development and use as early as 1995. NEST’s original inteface language
is known as SLI, but more commonly in recent developments, a Python interface
called PyNEST is used. Extensions to neural behaviour can be implemented in C++,
requiring recompilation of the whole software package. In order to increase accuracy
over that of other simulation environments, the size of the integration step h can be
chosen independent of the simulation step At. Models with approximate differential
equation solvers such as Runge-Kutta can set the h an order of magnitude smaller
than At. Within a simulation step At it is also possible to solve the equations with

an adaptive step-size, which is unique to NEST.
NEURON

Formally introduced in Hines and Carnevale (2001), NEURON is a simulation envir-
onment for modelling individual neurons and networks of neurons. This simulator
is primarily aimed at computational neuroscience applications, as NEURON models
individual neurons at a microscopic level, simulating the transfer of ions through
membrane channels in as precise a manner as possible. It is, therefore, as biologically

plausible as current microscopic models of neural behaviour.

The primary scripting language that is used to interact with it is ‘hoc’, but a Python
wrapper for the library is also available. Simulations can be written interactively in
a shell, or loaded from file. NEURON supports local parallelisation, and distributed
computing over clusters via Message-Passing Interface (MPI). The properties of the
membrane channels of the neuron are simulated using compiled mechanisms written
using the NMODL language or by compiled routines operating on internal data
structures that are set up with a GUI tool (‘ChannelBuilder’). Interestingly, networks
instantiated the GUI tool actually execute faster than identical mechanisms specified
with NMODL. Their states and total conductance can be simulated as deterministic,
or stochastic. NEURON’s ability to model biophysically realistic network dynamics
is vital in computational neuroscience applications, but will introduce unnecessary

overhead for our more abstracted engineering applications.

3.9 THe NeEuCuBE: A NEW SPIKING NEURAL NETWORK FRAMEWORK 68

[pynn.nest pynn.pcsim pynn.brian pynn.facets pynn.neuron

[pynn.neuroml

pynn.genesis] pynn.moose pynn.spinnaker|
4 4 4 4 4 4 4

! ! ! l ! ! !

[PyNEST [PyPCSIM] [Brian] [PyHAL] [nrnpy [PyMOOSE] PACMAN

SLI NeuroML

[NEST [PCSIM] [FACETS

NEURON GENESIS [MOOSE]{ SpiNNaker

PyNN SpyNNaker

FIGURE 3.10: A map of PyNN and sPyNNaker simulator interface coverage. Blue
(leftmost) boxes represent simulators supported in standard PyNN. The orange
(rightmost) box represents sPyNNaker coverage, the SpiNNaker device. The topmost
row of boxes shows the PyNN package used to interface with the simulator shown in
the bottom boxes. The middle boxes represent that simulator’s traditional interface
language. Figure recreated from Davison et al. (2008) with the addition of sPyNNaker.

3.8.2 NEUROMORPHIC HARDWARE SIMULATORS

Neuromorphic hardware systems provide a power-efficient computation platform
for the simulation of SNN. We will not discuss these devices in any specifics here;
see Chapter 7 for a detailed discussion of available neuromorphic hardware systems

and the considerations for implementing the NeuCube framework on the same.

3.8.3 PYNN

PyNN? is a simulator interface library for building neuronal network models, where a
user can write a single model and have it run on any of the simulators PyNN supports.
First introduced in Davison et al. (2008), PyNN is quickly becoming a de facto language
for neuromorphic hardware systems. See Figure 3.10 for a visual overview of the
PyNN’s simulator support. As discussed later in Section 7.4, Galluppi, Rast, Davies
and Furber (2010) have introduced a version of PyNN known as sPyNNaker, for use

on the SpiNNaker neuromorphic hardware device.

The primary advantage of PyNN is that a single simulation can be run on multiple
simulation platforms. In this way, we can create one simulator-agnostic version
of the NeuCube which can be implemented in a vast number of environments; in
conjuction with the small changes needed for sPyNNaker, and a version written in
PyNCS (Section 7.3.2), a fairly comprehensive coverage of software and hardware

simulation platforms can be supported with only minor code changes.

Shttp://neuralensemble.org/PyNN

http://neuralensemble.org/PyNN

3.9 CONTRIBUTIONS 69

3.9 THE NEUCUBE: A NEW SPIKING NEURAL NETWORK FRAMEWORK

The NeuCube exploits the principle that structural and functional links within the
data are significant and meaningful. It explicitly incorporates temporal, spatial, and
spectral dynamics (Kasabov, 2012b; Kasabov et al., 2015; Scott et al., 2013) to represent
complex data in a manner similar to the way our brains would process it. This system,
in a very rough form and without significant aspects such as the neurogenetic
regulatory system, has already proven itself in J. Hu et al. (2014), Kasabov, Hu et al.
(2013), D. Taylor et al. (2014) and others to be a state of the art tool for the classification
of SSTD. Further work on this system should improve its performance as a general
SSTD classification tool, and its applicability to the identified need for a tool like it
in BCIL, neurorehabilitation, and clinical tasks. The following chapters will introduce
this framework, guidelines for its design and implementation, and concrete versions
of it on both commodity computers and specialised hardware. Case studies in the

fields of neuroinformatics and radioastronomy will also be introduced.

1. A review of the existing state-of-the-art in Spiking Neural Networks, in-
cluding:
(a) Their biological motivation;

1. Sengupta, N., Scott, N. M., and Kasabov, N. (2015). Framework For Know-
ledge Driven Data Encoding For Brain Data Modelling Using Spiking Neural
Network Architecture. In Proceedings of the 5th International Conference
on Fuzzy and Neural Computing. 17-19 December 2015. Hyderabad, India.
Springer. doi:10.1007/978-3-319-27212-2_9

2. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,
Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I.,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

http://dx.doi.org/10.1007/978-3-319-27212-2_9
http://dx.doi.org/10.1016/j.neunet.2015.09.011

CHAPTER

THE NEUCUBE FRAMEWORK

Swiftly the brain becomes an enchanted loom, where millions of flashing
shuttles weave a dissolving pattern —

always a meaningful pattern —

never an abiding one.

— Charles Sherrington
(Man on his Nature, 1940)

The NeuCube, a form of the RNN reservoir computing paradigm, and an extension of
the LSM, is a novel SNN framework for the classification and analysis of Spatio- and
Spectro-Temporal Data (SSTD). It explicitly incorporates a-priori information about
the nature and source of data, and is capable of learning and evolving on-line. In this
chapter, this framework and its place in the literature is introduced. This chapter is
primarily a review of the NeuCube in the existing literature; it has been separated

from the previous review section in order to discuss it in more depth.

The basic framework of the NeuCube was established in a theoretical sense in Kasabov
(2012b) and more comprehensively in Kasabov (2014). It was initially codified into a
concrete software system in Scott et al. (2013), and has subsequently been extended
in terms of both applications and theory in a number of papers. For a review of the
development of the NeuCube outside the context of this thesis, the reader is directed
to Kasabov et al. (2015), which covers the history of the NeuCube to this point and

the various applications it shows promise in.

The intention of the NeuCube was originally to support the creation of modular
integrated systems, where those modules corresponded to functions of the brain,

and the system as a whole could be integrated together for brain signal pattern

70

4.0 THe NeEuCuBE 71

Input Data NeuCube Reservoir

/\/\V&: Classifier

—_— > \ Py < -
\
\ -
A \ -
t \ / . P

\{ ‘ - Regressor
\

\, ;-
e

Gene Regu];fg)ry Network

FIGURE 4.1: Block diagram of the NeuCube framework. From left to right, we

note the: input data encoding component; feeding into the NeuCube 3-D reservoir

component; the optional gene regulatory network that modulates the behaviour of
the the reservoir; and the output or classification component.

recognition (Kasabov, 2012b). The framework was originally introduced for the
explicit purpose of brain data classification; it is only subsequent to that original
paper that it has been extended for use on general SSTD. In straighforward terms,

the following components! comprise a standard NeuCube model:

1. Input Encoding (Section 4.1);
2. NeuCube 3D Reservoir (Section 4.2); and,
3. Output and Classification (Section 4.3)

With the optional components:

4. Gene Regulatory Network (Section 4.4); and,

5. Visualisation (Section 4.5).

These components are discussed in their respective sections, and a basic block

diagram of the framework is shown in Figure 4.1.

The NeuCube is consistent with the contention in Lemm et al. (2011, pp 397) that “..a
close interdisciplinary interaction between paradigm and computational model [is]
essential” It is on this conceptual foundation that the NeuCube is built, explicitly
incorporating spatial, spectral, temporal, and potentially genetic dynamics (Kasabov,
2012b; Scott et al., 2013).

The original architectural nomenclature established in (Kasabov, 2012b) defined ‘Components’
as ‘Modules’. It has been changed in this thesis to avoid confusion with the software ‘modules’
introduced in Section 6.2

4.2 NeuCuBE RESERVOIR 72

According to Kasabov (2014), the process of creating a NeuCube model for a given

SSTD is performed in the following steps:

1. Encode the data into spike sequences: continuous value input information is
encoded into trains of spikes;

2. Construct and train in an unsupervised mode a recurrent 3D SNN reservoir to
learn the spike sequences that represent individual input patterns;

3. Construct and train in a supervised mode an evolving SNN classifier to learn
to classify different dynamic patterns of the reservoir activities that represent
different input patterns from SSTD belonging to different classes;

4. Optimise the model through iteration of steps 1-3 above for different parameter
values until maximum accuracy is achieved.

5. Recall the model on new data.

Each of these primary components will be briefly introduced in the following sections.
In this chapter, specifics of these components with regard to a practical implementa-
tion will not be discussed; these discussions will be introduced later in this thesis.
Chapter 5 will go into depth regarding our informed choices of discrete components
(including encoding, reservoir structure, and classifier) and how these decisions may
affect the behaviour of the NeuCube as a whole. Chapter 6 introduces a practical
software implementation of this framework, and design considerations which will
be generally applicable to further versions of the NeuCube. Neuromorphic hardware
implementations are introduced in Chapter 7, and further considerations for these
specific computational substrates are discussed there. Therefore, this chapter will be
brief; here, it is merely intended to introduce the general framework and conceptual

overview of the NeuCube. Primary contributions are discussed later in this thesis.

4.1 INPUT ENCODING

This component is responsible for the conversion of input data to trains of spikes,
following the encoding principles established in Section 3.5. Specific methods of
input encoding, including the deSNN and BSA techniques will not be discussed
here, and can be found in their respective sections (Section 3.5.1-3.5.4) in Chapter 3.
Considerations for their use in the NeuCube with respect to algorithm and parameter

choice are discussed in Section 5.1.

4.2 NeuCuBE RESERVOIR 73

4.2 NeUCUBE RESERVOIR

The NeuCube reservoir is arguably the most complex and novel component of this
framework. A major contribution of this thesis is the formulation of design rules for

these reservoirs. Specifics of reservoir design are introduced in Section 5.2.

The reservoir in the NeuCube architecture can be considered to be an extension of
the LSM discussed in Section 3.7.2. It shares a number of conceptual similarities
to the LSM, primary among which is the fading memory and ability to transform
otherwise non-linearly separable data to a higher dimensional state. Recall from that
section the limitations of that architecture, particularly the issues raised by Hazan
and Manevitz (2012):

1. In contrast to the contention in Maass, Natschlager and Markram (2002), the
LSM alone is not sufficient to model human brain functionality.

2. The effectiveness of the network is heavily dependent on the random selection
of parameters.

3. There is no way to extract knowledge from the network.

The NeuCube reservoir seeks to address these issues through meaningful structure
of the network. The random connectome of the LSM is replaced with a meaningful,
small-world neuronal structure and connectome. This network structure and conn-
ectome is designed to physically encode our a-priori knowledge of the data we are
processing. This allows us to inspect the evolution of areas of the model based on its
unsupervised learning, and extract some meaning from this. In contrast, with the
random structure and connectome of the LSM, no meaningful insights can be drawn
from the way that the connectome evolves. This is related to the fact that a canonical
LSM has a fixed connectome and performs no internal learning or modification of
its synapses. This feature ensures that in conjunction with common neural network
analysis techniques to extract knowledge from the structure of the network, we can
also visualise it in a meaningful way. This means that general patterns, abberant
behaviours, and insights not otherwise able to be identified with traditional signal
processing can be surfaced to the researcher. Additionally, this represents a similar
processing paradigm to the brain; the structure is meaningful, and not arbitrarily
generated. More complex models can incorporate heterogenous neuronal or synaptic
populations in different areas of the model, in some way providing the ability to
represent the biological properties found in these areas. In this way, we primarily

address issue three of the above list, with some benefit to issues one and two.

4.3 NEeuCuBE RESERVOIR 74

Unlike the LSM only some network parameters are chosen at random; most particu-
larly, the initial starting weights of the synapses. In the case of the NeuCube, these
are no longer fixed, and can evolve with the incoming data using the STDP learning
rule. By incorporating these key features, the NeuCube framework can resolve the
issues raised, as the random initialisation of the network is no longer its final state. It
can, instead, evolve and respond to the input data, and learn over time. Additionally,
if the network is intially generated in a suboptimal state, the system can recitfy this
autonomously, minimising any impact of poor starting state. This directly addresses

issue two of the above list.

The reservoir structure was defined abstractly in Kasabov (2012b) to spatially map
brain areas for which data is available. Scott et al. (2013) introduced a concrete
mapping for reservoir structures in a neuroinformatics context, based on the Talair-
ach Atlas. This mapping is discussed further in the context of reservoir design in
Section A.1, and applied to a neuroinformatics data classification task in Section A.2.
General SSTD reservoir designs are discussed in Section 5.2, where some guidelines
for the topology of NeuCube reservoirs for arbitrary data are introduced. Here, we
can address the first issue of the above list through the intelligent construction of a
NeuCube reservoir structure. The LSM cannot sufficently model brain functionality
due to its lack of capacity for evolution, and the fact that it is an arbitrary structure.
Through the use of a meaningfully shaped reservoir based on a-priori knowledge of
the structure of a general human brain, we are able to create a model which directly
encodes the spatial information in a neuroinformatics data set into the reservoir.
Further sophistication could be added to this model if more information was known.
For example, we could generate the connectome based on information from DTI,
which provides a measure of density and directionality of synaptic tracts in the brain.
Neuron populations in the model could be based on knowledge of the biological
properties of neurons in given areas of the subject brain, further encoding context
into the model. The model’s evolution over time can therefore be interpreted in
context, instead of isolation. An example of the potential of these brain-inspired
network models is given in Appendix A, and discussed in the papers of Capecci et al.
(2015), Chen, Hu, Kasabov, Hou and Cheng (2013), D. Taylor et al. (2014).

It was originally intended that the NeuCube use the pLIF neural model (cf. Sec-
tion 3.3.6). At present, all explorations of the NeuCube have been performed with
the standard LIF neural model. In the case of the generic model, it is not important

which neuronal model is chosen. In a specific case, this selection may matter, most

4.5 VISUALISATION TECHNOLOGIES 75

particularly when we implement the NeuCube on neuromorphic hardware systems

which have limited neuronal models available.

4.3 OuTtpPUT CLASSIFIERS

After training the NeuCube reservoir, we must then classify or otherwise create
some meaningful output from the reservoir behaviour. The spiking trajectories of the
reservoir neurons are meaningful, and recorded over time represent the transformed
input data. We train a classification, regression, or other output system on these
spike train recordings. Kasabov (2012b) and Kasabov (2014) suggest the deSNN and
SPAN learning algorithms previously discussed for use in this context. Any suitable
technique can be used here, including the learning systems discussed in Section 3.6.2,

and a number of traditional machine learning systems such as the SVM.

Specific methods of output for the NeuCube will not be discussed here. These will
follow the principles established in Sections 3.6.2 and 3.6.3. Considerations for their
use in the NeuCube framework and in the context of our desired application are

discussed in Section 5.3.

The definition of the NeuCube framework in Kasabov (2012b) established the possib-
ility for recurrent connections from the classifier to the reservoir. This is feasible only
in on-line learning - as otherwise, the reservoir naturally has no ability to adapt to

these recurrent connections as it is no longer active — and has yet to be implemented.

4.4 NEURO-GENETIC OPTIMISATION NETWORK

The NeuCube framework also incorporates an Computational Neuro-Genetic Model
(CNGM). It was originally planned that the CNGM introduced in Section 3.6.3.3 would
either interface with or replace these neuronal models. The CNGM feature has yet to
be implemented; a future development will incorporate this feature. Considerations
for the design of the CNGM are discussed in Section 5.4.

4.5 VISUALISATION TECHNOLOGIES

While not explicitly a part of the NeuCube framework, the facility for visualisation of
the complex networks created is vitally important. Whether it is used for behavioural
analysis and optimisation, or knowledge extraction from the fully evolved model,

a key component of the NeuCube is the discoverable and transparent memory and

4.5 STANDARD VISUALISATION 76

neuronal dynamics. This transparency is a significant advantage over many other
state-of-the-art machine learning approaches to SSTD, as these are typically treated as
a ‘black box’, or are otherwise structurally meaningless to an external observer. These
visualisation tools can be described in a little depth here, as they are a contribuition
of this thesis that is not directly related to the primary research questions identified
in the introductory chapter. Visualisation of these networks as a tool should be
performed in concert with the signal processing and statistical techniques commonly
used in the interpretation and analysis of SNN models, and are not intended to replace
these. They are however, intended to augment them, as in the case of the NeuCube
we have the ability to meaningfully interpret changes to the network structure. This
feature of the model is enabled by our use of a network structure that references
the data collection context, and the creation of connectomes which facilitate the

communication of coupled spatio-temporal signals in our input data.

The value in this feature of the NeuCube is that it allows for a richer interpretation
of the visual representation of the trained models. Here, we can more easily identify
anomalous behaviours or general trends visually, which may not be apparent in
statistical or signal-processing based interpretations of the model. Additionally, it
provides an intuitive entry to the analysis of such models for non-expert users, such
as neuroscientists or geoinformaticians. In Section A.2, the trained connectome was
interpreted by a neurologist who identified that the model had generally replicated
the weighting of the brain areas used in the generation of the input signal. This
could in theory then be used to interpret the differences between model responses to
diseased or control patients, or identify anomalous processing pathways not normally

apparent in such models.

Two levels of visualisation system have been developed for the NeuCube: the inbuilt

simulation visualiser, and the external immersive visualiser.

4.5.1 STANDARD VISUALISATION OF THE NEUCUBE

Incorporated in both the NeuCube implementations discussed later in this thesis and
the prototype M1 version, is a basic set of visualisation tools. We discuss these only
briefly; they are not particularly novel from a computer graphics or visualisation
perspective, but are still a necessary component of the knowledge extraction process,
and novel in the context of SNN. These visualisation tools are supported by the
visualiser introduced in the next section, which is more dynamic and meaningful in

the context of temporal data.

4.5 STANDARD VISUALISATION 77

(a) 3D reservoir network structure (B) 3D reservoir network structure
visualised from above. visualised from below.

Spike Raster 4500 Weight Histogram

IBdEEITET S LB BB Sl ST T
TR T

4000

3500

3000

2500

Spikes

2000

Number of Synapses

Y S RVIRR FEL T XTI YY ST 2 1L PR KPR O | 0
0 200 400 600 800 1000 0.0 0.2 0.4 0.6 08 1.0 1.2 14 16
Time (ms) Weights
(c) Raster plot of spike timings per (p) Histogram of synaptic weights
neuron in the reservoir after training

FIGURE 4.2: Examples of the basic visualisation system developed for the imple-

mentation of the NeuCube in PyNN introduced here. Basic plots supported include

visualisation of the 3D network structure (Figures 4.2a and 4.2b), spike timing raster
(Figure 4.2c), and synaptic weight histograms (Figure 4.2d).

Visualisation of the reservoir structure and connections is provided through an
orthogonal 2.5D plot, which can be moved and navigated through with the mouse
in a relatively intuitive manner. In the case of the implementation of the NeuCube
introduced in this thesis, the visualisation engine we have developed uses Python’s
matplotlib and seaborn libraries. Additional plots, including spike rasters and
weight histograms, have been developed, and provide the core of the knowledge
extraction process. Plotting in the PyNN version can be automatically shown after a
simulation, automatically saved, or a combination of the two. This automated plot
saving is intended for use in unattended simulations, such as when the model is run

remotely on a cluster. Examples of these plots are shown in Figure 4.2.

These tools have been used directly in the validation and analysis of the NeuCube
models developed in Appendix A and B. In particular, in Appendix A and Figure A.1,

it is shown that a trained NeuCube model, when properly intialised and visualised,

4.5 [MMERSIVE VISUALISATION 78

can demonstrate a connectome which represents a biological phenomenon with some

accuracy.

4.5.2 |IMMERSIVE VISUALISATION OF THE NEUCUBE

With a system like the NeuCube, where the 3D structure and behaviour over time
is significant and meaningful, the amount and complexity of the acquired data
necessitates new forms of visualisation to allow users to extract meaning and structure
from it (Bruckner et al., 2009; Lin et al.,, 2011). In these cited examples, effective
visualisation enables navigation in the dense 3D space, and selective rendering of
regions, pathways, and structures. However, the render is confined to the 2D screen
of the host computer. Navigation within the 3D space is mediated by mouse and
keyboard controls, providing only an indirect perception and a reduced representation
of a rich 3D space. Similarly, the basic visualisation tools discussed in Section 4.5.1
limit the amount of useful structural and temporal dynamics that can be extracted
from a NeuCube model. To address this issue, in Marks, Estevez and Connor (2014)
and Marks, Estevez and Scott (2015), we introduced an immersive and intuitive truly
3D visualisation system. In this section we review this contribution. Interested
readers are directed to the cited papers, particularly Marks et al. (2014), for further
details.

Through the use of stereoscopic Head Mounted Displays (HMDs), a sub-millimetre
precise motion tracking system, and a bespoke rendering system, Marks et al. (2014)
and Marks et al. (2015) present a framework incorporating both hardware and soft-
ware?, for natural human gesture interaction with an accurate 3D visualisation
incorporating depth cues. Users can control the system using natural gestures. Nav-
igation within the space is performed by walking, the render view by the user’s head
position, and selection of visual cues by pointing with a glove-based marker system.’
A haptic interface device for the system was introduced in Foottit, Brown, Marks
and Connor (2014), which provides the facility for the user to receive natural, tactile

feedback from the system.

This natural interaction is in contrast to the existing visualisation systems, such as
those in Bruckner et al. (2009) and Lin et al. (2011), which require the use of a keyboard

and mouse controller. Our system can also incorporate these control schemes, as

ZPrivate repository forked to https://github.com/nmscott/NeuVis. For access please contact the
author or Dr. Stefan Marks of AUT’s CoLab.

3Video of the visualisation being used in the AUT MoLab motion capture space can be seen at
https://youtu.be/NJVxYdvM-W8, https://youtu.be/s]ND8jp9QgU, and https://youtu.be/MsuPp3D4iaw.

https://github.com/nmscott/NeuVis
https://youtu.be/NJVxYdvM-W8
https://youtu.be/sJND8jp9QgU
https://youtu.be/MsuPp3D4iaw

4.5 IMMERSIVE VISUALISATION 79

Gigabit MoCap Camera Network

MoCap
Software

MoCap
Server

HMD with Markers

Wireless HDMI

Render Engine

(()) HMD with Markers

802.11ac
Wireless
Access
Point

Render Engine

- Gigabit MoCap Studio Network m

FIGURE 4.3: Immersive Visualisation system architecture overview. The 24 tracking

cameras send positional data back to the render engine, which generates the ste-

reoscopic 3D visualisation data and sends it wirelessly to the HMD. Figure adapted
from Marks, Estevez and Connor (2014).

well as standard gaming control pads, if the space is limited and the motion capture
systems are not available. More similar to our system is the work of von Kapri,
Rick, Potjans, Diesmann and Kuhlen (2011) which uses a Computer Assisted Virtual
Environment (CAVE) to visualise the spatial structure and activity of a spiking
neural network. Again, natural navigation is not possible in this environment, and
concurrent users are not possible. Our system can support an arbitrary number of

users, provided that sufficent hardware (HMD, markers, render nodes) is available.

The Immersive VR Space, shown in Figure 4.3 comprises the following major com-

ponents:

1. A wide area motion capture suite,
2. Head Mounted Display (HMD), and

3. Render engines.

The motion capture system uses infrared optical markers, captured through 24

cameras mounted in a capture volume of 6 m X 6 m X 3 m. These cameras provide

4.5 IMMERSIVE VISUALISATION 80

FIGURE 4.4: Stereographic view of the Talairach atlas as being displayed within the

HMD of the user. The leftmost figure is displayed in the left lens, and the rightmost

in the right lens, giving an illusion of depth. Note that the background is white for

print purposes. The actual visualisation uses a dark textured background pattern.
Figure from Marks, Scott and Estevez (n.d.).

positional accuracy of up to 0.1 mm at 180 fps. Infrared is used to minimise interfer-
ence from natural lighting conditions, and the high number of cameras is required to
ensure that accurate positional information can be inferred regardless of the subject’s
pose. Marker positions are captured and localised into the space by a motion capture
server, which data is then broadcast to the render engines. These render engines
then create scenes based on this position and orientation information, combined
with the position and orientation of other significant markers such as pointer devices
(in our case, a glove with tracking markers). A more comprehensive discussion of

this architecture is given in Marks et al. (2014).

Presently, the system is capable of rendering up to 1.5 million neurons and their
connections with a steady framerate of 60 fps. See Figure 4.4 for an example of what
is rendered here. The view frame is divided between the two brain shapes, which
are offset sufficiently that when rendered separately in the two lenses of a typical
HMD they show a true 3-dimensional view of the network. Individual neurons can
be selected using the hand-based cursor shown in Figure 4.6, which shows visual
and textual information about the selected neuron; e.g. type, potential, incoming
and outgoing connections. For an example of what is visualised, see Figure 4.5. This
allows us to analyse the behaviour of single neurons or populations as a whole,

within the same space and using the same tools.

The capacity to render a large number of neurons and connections efficiently al-

lows us to visualise and interpret large scale networks which would be otherwise

4.5 IMMERSIVE VISUALISATION 81

bndex: — 362 »
Labels: —Default, OK
Position——-30,-10, -10*
Threshold:0.470
otential: 0.275

FIGURE 4.5: A hand-based cursor node can be used in a natural way to view additional

information about a specific neuron and its activity in the reservoir: for example,

internal membrane voltage, spiking histories, etc. Figure from Marks, Estevez and
Scott (2015).

impossible to view in standard visualisation tools. This allows us a greater potential
understanding of the general patterns and behaviours of such networks than would
otherwise be available. As yet, the networks developed in the NeuCube have been
small (< 5,000 neurons), so standard visualisation tools such as those introduced in

Section 4.5.1 are still sufficiently effective.

While as yet a systematic study has not been conducted, so far, around 50 visitors of
the Immersive VR space have experienced this visualisation. It was reported in Marks
et al. (2015) that we have observed in general, people quickly start to move around
and look at structures and point out individual neurons using the 3D cursor. We
have received positive feedback about the appearance of the visualisation and that
interaction metaphors are very intuitive. This system has also been used to discover
some small bugs or inconsistencies in alternative mappings of the NeuCube reservoir,
such as that in Capecci et al. (2015) where input neurons were being inadvertently

duplicated over the lifecycle of a single simulation.

The only larger issue is related to distortion of the field of view and different ratios
between actual motion and “visible motion”. When users move the hand cursor,
experience and muscle memory provides a different “perceived position” of the
cursor than is visible in the HMD. This issue, however, can be adjusted by a more
careful selection of render parameters and distortion correction for the lenses of the

particular HMD chosen.

It should be noted here that this visualisation system is not limited to use in the
large motion capture space. It is equally useable when in a standard lab space. The

motion capture system can be replaced with the simplified motion tracking systems

4.6 NEUCUBE IN PRACTICE: DESIGN, IMPLEMENTATION, AND APPLICATIONS 82

FIGURE 4.6: A user navigating through the virtual representation of the NeuCube

network, using an intuitive, hand position based 3D cursor. Markers on the HMD

and glove are translated to position and orientation, and used to localise the user
within the render space. Figure from Marks, Estevez and Connor (2014).

incorporated in most modern HMDs. The intuitive gesture-based control system can
be replaced with either a gaming controller or a keyboard and mouse combination.
Additionally, this visualisation is not limited to true 3D stereoscopic rendering; it
can as easily be rendered in pseudo-3D on a standard desktop monitor. This allows
us to use the system in different environments, and does not tie our interpretation of

a complex model to the availability of a state-of-the-art motion capture suite.

It is expected that going forward, as the networks implemented in the NeuCube
grow in scale and complexity, that this system will be applied more directly. It
should eventually supplant the basic orthogonal visualisation tools incorporated in
the various NeuCube packages, although with the assumption that basic plotting

functions such as spiking rasters will always be available.

4.6 THE NEuCuUBE FRAMEWORK IN PRACTICE:

DESIGN, IMPLEMENTATION, AND APPLICATIONS

In this chapter, we have introduced the basic concepts of the NeuCube framework,
as it was initially defined in Kasabov (2012b) and Kasabov (2014). The NeuCube is an

4.6 CONTRIBUTIONS 83

adaptive and novel SNN framework, designed for the analysis and interpretation of
SSTD. This introduction was abstract; we introduce details of these concepts in later

chapters.

The question at this point, then, concerns how this framework can be applied in
practice. How do we design a NeuCube? How should it be implemented in software
or hardware, and is there some empirical evidence that it is advantageous over

traditional techniques?

In the successive chapters, we resolve these questions. Firstly, we discuss a general
design methodology for the NeuCube in Chapter 5; i.e., which components and
parameters should be used given some context, and how these may affect each
other. Chapter 6 introduces a general software framework and architecture for
the implementation of the NeuCube, and a concrete implementation of the same
using the PyNN library. Subsequently, in Chapter 7 this software framework will
be adapted for implementation on different neuromorphic hardware devices, with
a particular emphasis on the SpiNNaker system. Empirical evidence in the form of

two proof-of-concept case studies are discussed in Appendices A and B.

1. A review of the already established NeuCube architecture

1. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,
Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

2. Sengupta, N., Scott, N. M., and Kasabov, N. (2015). Framework For Know-
ledge Driven Data Encoding For Brain Data Modelling Using Spiking
Neural Network Architecture. In 5th International Conference on Fuzzy
and Neural Computing. 17-19 December 2015. Hyderabad, India. Springer.
doi:10.1007/978-3-319-27212-2_9

3. Marks, S., Estevez, J. E., and Scott, N. M. (2015). Immersive Visualisation of
3-Dimensional Neural Network Structures. In 13th International Conference
on Neuro-Computing and Evolving Intelligence. February 19-20, Auckland,
New Zealand.

4. Scott, N. M., Kasabov, N., and Indiveri, G. (2013). NeuCube Neuromorphic

http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://dx.doi.org/10.1007/978-3-319-27212-2_9

4.6 CONTRIBUTIONS

84

Framework for Spatio-Temporal Brain Data and Its Python Implementation.
In Proceedings of the 20th International Conference on Neural Information

Processing, 3-7 November 2013, Daegu, Korea. Springer. doi:10.1007/978-3-
642-42051-1_11

http://dx.doi.org/10.1007/978-3-642-42051-1_11
http://dx.doi.org/10.1007/978-3-642-42051-1_11

CHAPTER

DESIGN METHODOLOGY OF SNN BASED ON THE
NEUCUBE FRAMEWORK

Every man can, if he so desires,
become the sculptor of his own brain.

— Santiago Ramon y Cajal
(Recuerdos de Mi Vida, 1937)

A meaningful contribution of this thesis is the development of a methodology for the
design of arbitrary NeuCube implementations. In this chapter, the key considerations

for design of a NeuCube application in will be raised in context.

The design considerations introduced here (bar the discussions regarding the 3D
structure of the network) are applicable and generalisable to all SNN systems. They
are introduced here in the context of the NeuCube framework, but are equally relevant
when considering alternative SNN architectures. In particular, the considerations for
encoding systems and output classifiers are of value to any generic SNN model. In
the absence of a robust information theory of SNN, the design process for NeuCube
architectures must be heavily based on empirical observations and heuristics. Here,
we attempt to develop a meaningful and effective methodology based on these

heuristics.
We inform our design decisions by two primary factors:
1. What a-priori information do we have about the data?

And, subseqently:

85

5.1 ENCODING SYSTEMS DESIGN 86

2. What is our intended application?

Some specific considerations need to be made in the design of such systems depending
on the computational platform chosen. See Section 5.5 for a brief discussion of
this topic, or Chapters 6 and 7 for comprehensive discussions on considerations
for software- or hardware-based simulation, respectively. When interpreting the
following discussions, the reader should bear in mind the context of the computational
device used; e.g. when utilising a neuromorphic VLSI ASIC (cf. Section 7.3) which is
physically limited to the AdEx neuronal model, we should not make a decision in

the reservoir design to use the pLIF or Izhikevich type neuronal models.

5.1 ENCODING SYSTEMS DESIGN

It is not possible to state with certainty what the most efficient spike encoding method
is, as this is inextricably linked with the context of the simulation and the type of data
used. Furthermore, it is heavily dependent on the intent behind the term “efficient”;
here, do we mean the most compact representation? The fastest to process the input
data? The most effective in terms of the output quality? These decisions cannot be
made in isolation, as they affect the system as a whole. Additionally, there is no body
of literature to indicate this with any theoretical rigour. For these reasons, it is not
possible to define the most efficient spike encoding. This is, at present, a heuristic

process.
In order to select an effective encoding method, we must consider the data.
1. What are the characteristics of the data are we encoding?

In this we identify the context of the data. Is it high-frequency, with a low number
of channels? Is it streaming or fixed? Is there some known representation which we
can utilise? The rate and nature of the incoming data will dictate which encoding

method is optimal — given that the next question is resolved.
2. Rate or temporal coding?

Do we intend for the spiking times of the encoded data to be temporally significant, or
are we content with rate coding? These different forms of encoding are appropriate
in different contexts. While the NeuCube is typically considered to use the temporal
coding paradigm, it is also capable of rate-based input. Unless we have a specific
and deliberate reason to use a rate-coding scheme, we would default to a temporal

coding scheme. One notable exception to this rule is when we wish to use the BSA

5.2 RESERVOIR ToPoLOGY DESIGN 87

algorithm for the encoding of EEG data. Depending on the context this may be more

appropriate than a temporal-coding method.

In a general sense, the Threshold-Based Temporal Difference (TD) is useful for
most types of data, given that appropriate parameters are selected. The threshold
rate and step size of this algorithm is particularly vital in effectively encoding data.
The optimal value for these variables should be possible to derive analytically: for
example, the threshold by setting this value to some proportion of the average
statistical variance of the input data, and the step size by some proportion of the
average internal frequency of the data using the Nyquist-Shannon theorem. This
is an area which we intend to address in the future, as the behaviour of encoding

systems is not well researched.

Other forms of encoding are more appropriate for different data contexts. As men-
tioned, both the TD and BSA encoding schemes have been shown to be effective for
certain EEG data. The Knowledge Driven Data Encoding scheme has been shown
to be effective on fMRI data, particularly when the issue of signal reconstruction is
concerned. Population Encoding may be more approriate when we are dealing with

static (real-valued) data.

5.2 RESERVOIR DESIGN

The design of a NeuCube reservoir is very much a heuristic process. However, it is
not done blind; a number of factors based on the nature of the data influence the

decisions made during this process. Primarily, we must first consider:

1. What a-priori information do we have about the nature and structure of the

data?

This informs the design of the NeuCube reservoir’s 3D structure, its connectome,

and the locations for data to be input.

In general, our primary heuristic is that the reservoir should represent the inherent
spatial or spectral charateristics of the data as well as possible; in doing so, it will
retain the vital temporal links within the data, and the implicit information contained

within them.

5.2.1 RESERVOIR TorPOLOGY DESIGN

2. How can we best represent the data source with the reservoir topology?

5.2 RESERVOIR ToPoLOGY DESIGN 88

This question, in essence, asks what network structure we should use, based on our
understanding of the properties of the data. Of most interest at this point is any
inherent structure in the data collection context. In this, it is meant — is there some
physical representation which best captures the spatio-temporal dynamics of that
data? In the case of neuroinformatics data collection, this would likely be a brain
shape, as this best represents the physical properties causing the temporal dynamics
of the data.

The emphasis here is on maintaining the representation of the physical reality of the
data in the model. In this way, we can retain the vital spatio-temporal links inherent
in the data, which in many cases are the most significant property of that data. As a
corollary of this, the retention of a 3-dimensional structure over an n-dimensional
model ensures that we can intuitively analyse the network structure and evolution
through visualisation tools. An n-dimensional network structure would not explicitly
represent the input data space in most cases. This type of NeuCube has not been
explored in the literature as yet, due to the initial emphasis on the explicit structural
representation of real-world data in the NeuCube reservoir. In the case that there is
no inherent structure to the data, we can structure the model in an arbitrary way,
with no meaningful shape. It is often possible to provide a known architecture, based

on the context of the data.

For example, in the case of a neuroinformatics task, there are a number of established
stereotactic altases which map known brain locations or features to positions in 3D
space. One such example is the Talairach atlas introduced in Talairach and Tournoux
(1988), which is commonly used in MRI and EEG data collection. As we know this
atlas reasonably represents the volume and structure of the human brain in space, it
is therefore logical for us to use this information to structure the NeuCube reservoir.
The greater volume of the Talairach space can be transformed to a point cloud, where
the points represent reservoir neurons in that space. This point cloud can have
an arbitrary resolution; the highest resolution Talairach atlas at present contains
about 1.4 million points each representing around 1 mm? of brain volume. Our most
common NeuCube structure uses 1471 neurons representing about 1 cm? of brain
volume each. The resolution here — i.e. the number of neurons in the model - is
adaptable depending on the data source and application context. In this example we
have developed a model where each neuron represents 1 cm?, as this is the rough
resolution of the EEG device selected. Most EEG devices have the capacity to collect
signals from around 1 cm? of scalp area, with the penetration depth around the same

depending on the device and task type (D. Taylor et al., 2014). Equally, if we were to

5.2 RESERVOIR ToPoLOGY DESIGN 89

use a high-resolution fMRI input signal, our spatial resolution could be increased up
to 1 mm? per neuron or beyond. This selection is highly contextual, and has not yet
been formalised. Here, we must make some heuristic decisions based on the data

and the overall performance of the system.

Similarly, in the case of seismic data, we could use some map representation of the
seismograph sites, with distances in the network set proportionally to the distances

in the real world.

If there is no meaningful spatial component to the data collection context — for
example in the case of radioastronomy or financial time-series data — there may be
some spectral structure which we can conceptually represent in the reservoir. In
this case the reservoir structure is less significant. Here, we should ask what the
underlying structure of the data is, and how this might best be transformed into
a spatial representation. Is there some characteristic to the data collection context

which may be of interest?

In the case that there is no known underlying structure to the data, we can structure
the reservoir arbitrarily. By this, we mean that instead of a meaningful 3D represent-
ation of the data collection context, we can use an arbitrary shape (e.g. a 10 x 10 X 10
neuron cube) as we would normally do in the reservoir computing paradigm. It is
worth noting that in this case, the actual representation of the data in the model may
be more meaningful than that of an LSM or typical reservoir computing architecture
due to the explicit encoding of the data structure into the NeuCube’s input topology

and connectome (Kasabov, Hu et al., 2013).

The neural model chosen is dependent on the computational platform and the par-
ticular application area. Generally, we should avoid microscopic neuron models
like the Hodgkin-Huxely in favour of more concise engineering formulations like
the LIF or Izhikevich models, as the extra biological accuracy is not necessary and
computational efficiency is more beneficial.. Section 4.2 mentioned that the original
intent of the NeuCube framework was to use the pLIF neuronal model. It is expected
that the pLIF will improve the NeuCube reservoir’s non-linear pattern separability,
in line with the results reported in Schliebs et al. (2010) and Nuntalid et al. (2011). At
present, we have found acceptable results with the standard LIF model neuron. It is
worth trialling the pLIF if the standard LIF does not provide sufficient performance on
your particular dataset; however, in this case, we must be aware of the caveats of this
model. The use of the pLIF is not typically computationally feasible when utilising a

neuromorphic hardware simulation platform. In the case of the SpiNNaker, it was

5.2 RESERVOIR ToPoLOGY DESIGN 90

previously too computationally costly to implement Random Number Generation
(RNG) in software on small devices, as the chip architecture used does not incorporate
hardware for this (cf. Section 7.4.2.4). Subsequent to the initial development of this
thesis, a computationally efficient RNG has been implemented in software, which
has therefore enabled the use of pLIF model neurons. In the case of systems such as
the VLSI ASICs introduced in Section 7.3, it is not possible to change the neuronal
model as this is a physical property of the circuit. This issue is discussed more in
depth in Section 5.5.

Typically we would have around 20% inhibitory neurons in the reservoir, as is standard
practice in reservoir computing. The vast majority of computational platforms
support some form of inhibitory neuron or synapse. A lack of inhibition in the
network can cause it to ‘avalanche’ and saturate, spiking as rapidly as the simulation
system can process. This is an undesirable behaviour - in biological networks, this
is the cause of certain types of seizure — and should be avoided. If inhibition is not
possible in a simulation, as a mitigation strategy the use of an adaptive neuron model
such as the AdEx should be considered. In this case, the neuron’s spiking threshold

automatically increases as its spike rate increases, self-regulating to an extent.

The resolution of this reservoir (i.e., the number of neurons per unit of space and
number of synapses per neuron) is generally set heuristically, as there is not yet
any significant information theory for SNN. Recall that larger networks, and more
particularly networks with a high number of synapses, are generally considered
to have better ability at handling complex patterns, and greater memory capacity.
However, with the meaningful structures introduced in this thesis, smaller networks
are also effective in complex applications. Additionally, with these meaningful
structures, we can in some cases infer the network resolution from the data itself.
Consider fMRI; this data source represents a temporal series of 3D brain volumes.
This volume is comprised of voxels — 3D pixels — which have a certain resolution.
We can therefore draw some idea of the network structure from this voxel set,
representing each of these fMRI voxels with one or a small number of neurons in
the simulation. This is consistent with the biological reality generating the data,
as one voxel represents the collective activation of a number of neurons in that
particular location. In this way, we ensure that the reservoir represents the underlying
relationships within the data as best we can, which retains the implicit information

in these relationships.

In reality, network resolution is a tradeoff between computational cost and the

complexity of the data; typically we should err on the side of larger networks in order

5.2 INPuT ToPoLOGY DESIGN 91

to exploit their advantages, provided that the computational cost does not negatively
impact on the system’s real-world effectiveness. Smaller networks are of course,
better optimised, and so in the case of low-power or high-speed applications, we
should attempt to find the smallest functional network possible. In certain cases it
may be acceptable to sacrifice some effectiveness for a smaller network, particularly

when implementing systems in neuromorphic hardware.

5.2.2 INPUT ToPOLOGY DESIGN

3. How can we best represent the structure of the input data in the reservoir

topology?

The issue of input location design is similarly difficult. In essence, we must ask if
there is some known or meaningful mapping of the input locations, within the space

created by the reservoir?

For example, consider the case of EEG. This particular architecture is discussed in
more depth in Section A.1. The location of the collection (EEG) device is based on
a well-known standard template which can also be associated to a known cortical
location in the Talairach or Montreal Neurological Institute (MNI) spaces. In the
case that we have used one of these spaces to structure our reservoir as discussed
in Sections 5.2.1 or A.1, these two spaces are easily reconcilable. A known physical
data capture point in the real world can be conceptually mapped to its equivalent

location in the reservoir in this way (D. Taylor et al., 2014).

The location of these inputs, therefore, is contextual. From our understanding of
the type of data used and its collection context, we should be able to develop a
mapping which retains the positioning of the input in the reservoir proportional to
their relationship in the real world. In this way, our model can explicitly encode the
spatial context of the signal, informing our interpretation of the output data and the
evolution of the model as it learns (Kasabov, Hu et al., 2013; Kasabov et al., 2015).
It is possible here that there is a more advantageous n-dimensional structure for
the reservoir. High-dimensional reservoir structures have not been examined in the
existing NeuCube literature, as the intent of the system is to model the reservoir
in as close to a natural context as possible to facilitate knowledge capture and
interpretability of the trained models. This is a valid area of exploration in future,
and should be considered where a natural 3-dimensional mapping is not possible or

feasible.

5.2 CoNNECTOME DESIGN 92

We must also consider the structure and resolution of the reservoir when generating
our input locations. In the case of fMRI, the number of voxels in a high-resolution
image can be upwards of 100,000. If we are attempting to map this into a smaller
network (e.g. the typical 1,471 neuron Talairach-based reservoir), obviously some
data merging must be performed prior to a mapping being created. In a case such as
this, it is possible to combine a number of input channels whether through averaging
or some statistical measures. This combined input channel can then be represented
by one reservoir input location. Dimensionality reduction is to be avoided where
possible. If performed, it should be done with awareness of the data context. The
so-called ‘curse of dimensionality’ - various phenomena arising from the analysis and
processing of data in high-dimensional spaces — is largely avoided in the NeuCube,
as despite the fact that the reservoir processes data in a high-dimensional space, our
input and outputs are generally of limited dimensionality. Additionally, if issues of
dimensionality are apparent in the behaviour of the NeuCube, its reservoir size or

number of dimensions can be increased to mitigate this.

In the case of purely spectro-temporal data, the issue of mapping input to reservoir
space is more complex. For example, in the case of the radioastronomy task discussed
in Appendix B, there is some characteristic shape of the spectro-temporal data. Here,
the frequency bands are dispersed in an inverse-quadratic shape due to delays in the
lower frequency bands caused by interstellar media. We can represent this structural
characteristic of the spectral data in a physical form, by creating input locations in
the reservoir to physically match this dispersion pattern in 3D. This ensures that
the structural links — though they may not necessarily be spatial links — in the data
are retained, preserving the timing of the original signals and with it, the implicit

information of those timing patterns.

5.2.3 CONNECTOME DESIGN

We must now make some design decisions regarding the synaptic matrix of the
reservoir. This synaptic matrix is responsible for the spike communication within

the network, and its evolution provides the basis for the unsupervised learning.
4. What connectome should we use?

In almost all cases this will be the ‘small world’ structure discussed below. However,
certain cases we may have some a-priori knowledge of the network structure we
should use. For example, in the case of a neuroinformatics task, we may have DTI
data.

5.3 Output CLASSIFIER DESIGN 93

Neurons in cortex are commonly connected with what is known in graph theory as
‘small world’ connections (Stam, 2004). In most cases, this is modelled as a simple
lambda-distance dependent probability, where closer neurons are more likely to be
connected and more distant neurons are less likely to be connected. Small world

interconnectivity of neurons can be calculated with

P(cijj) =Cxe _—dl] (5.1)
)2

as detailed in Maass, Natschlager and Markram (2002), Nuntalid et al. (2011), where
P(c;j) is the probability that a connection will be made between neurons i and j, d
is the distance between those neurons, C is a constant, and A is a factor controlling
the probability of a connection. Due to its biological plausibility and effectiveness
in prior experiments, this connection structure is appropriate for use in this thesis.
This basic connection generation method is discussed further in Section 6.4.3.1, albeit

with some small modifications for ease of implementation.

If we have some additional information about the structure of the network, it may be
possible to extrapolate a connectome from that. As briefly mentioned, in the case of
Diffusion Tensor Imaging (DTI), we can directly generate a network connectome from
this. DTI is a measure of fluid diffusion in the brain, which indicates the direction
and mass of white matter (i.e., the connections) in that volume. Essentially, DTI
provides us a list of 3D locations within a brain volume and the primary direction of
the connections in that area. As this is typically registered to the Talairach or MNI
spaces, it is therefore possible for us to use the actual connection structure within a
person’s brain to generate a NeuCube reservoir’s connectome. In this way, not only
can we keep the physical locations of inputs and neurons within the same space, we
can ensure that the connections between these areas represent — to the best of our
ability - the physical reality of the original connections. Note that the connectivity
in the brain is typically considered to be small-world (Stam, 2004) so even without
this informed connectome generation, the default probabilistic process will still yield

a meaningful network structure.

The actual synapse dynamics will primarily be dependent on the computation plat-

form used. This consideration will be discussed in Section 5.5.

5.3 OuTpPUT CLASSIFIER DESIGN

This section is entitled ‘Classifier’ design as this is the most common form of output

for the NeuCube, although the considerations here will largely be common across all

5.4 GEeNE REcuLATORY NETWORK DESIGN 94

output devices, regression or prediction included. Naturally, the first question in the

design of the output device, then, is:
1. Classification, prediction, or regression?

The intent of this question should be clear. From this, we branch into three different
areas of output device: classifiers intended to group and cluster data, and respond to
these clusters in some defined way; predictors, intended to classify data prior to all
of the information being available; or regressors, intended to extrapolate from the

data in some way. This question is directly related to the second:
2. What is the context of the application?

Do we intend to use it for adaptive classification of fast moving vision data? Smooth
motion control of a robotics device? Simple classification of financial data? Our
response to this question defines the type of classifier or predictor algorithm chosen.

It has less applicability to regressors.

The actual learning mechanism should be chosen pragmatically, based on the inten-
ded application of the NeuCube model we are developing. SNN classification methods
have been initially suggested here as they will retain the temporality of the reservoir
response, and process it in the same manner. This is advantageous when operating on
highly temporally-dependent input data, but may not be necessary for simple offline
classification tasks. In this latter case, more traditional machine learning techniques
such as the SVM applied to a time window of the reservoir response may be appropri-
ate. There is not yet a formalisation of the optimal selection of output algorithm, as
it is highly contextual based on the data and the desired application (Kasabov et al.,
2015). The SNN learning methods discussed in Section 3.6.2 are generally applicable
to most NeuCube models, with specific selections being based on the properties of
the method. For example, in the case that we want adaptive, predictive classification
of fast-changing data, we could implement the deSNN algorithm, utilising a low C
value. For smooth control of a robotics device (i.e., precisely timed output spikes),
we could implement the SPAN learning algorithm. Our selection of classification

algorithm should be based on the desired output characteristics.

5.4 GENE REGULATORY NETWORK DESIGN

The most reasonable question to ask at this point is whether we even need to use
the CNGM in our model. At present, the CNGM is not implemented and without

it, the NeuCube has shown some remarkable results — including those presented

5.4 GEeNE REcuLATORY NETWORK DESIGN 95

in Capecci et al. (2015), Chen et al. (2013), J. Hu et al. (2014), Kasabov and Capecci
(2015), Kasabov, Hu et al. (2013), Kasabov et al. (2015), Scott et al. (2013) and D. Taylor
et al. (2014). Therefore, we must first ask:

1. Do we need to incorporate the CNGM?

The application of a CNGM is of more importance in the case of brain data, as
discussed below. In the case of general data (i.e. anything other than brain data in
this context) the CNGM would only be meaningful as an automated optimisation
system; used in this way, a more efficient system such as the quantum-inspired PSO

of Schliebs and Kasabov (2013) may be more effective at lower computational cost.
2. Can we use some a-priori information about the gene expressions?

The CNGM simplifications introduced in Section 3.6.3.3 are valid for earlier forms
of GRN and CNGM. For our purposes however, we are able to introduce some
sophistication to these assumptions. In particular, with the assumption that we are
studying brain data with a brain-shaped reservoir, we are no longer bound by each
GRN having the same initial point. Using an appropriate gene ontology, we are able
to map specific gene expressions and therefore, protein levels, to a spatial location in
the CNGM. This is contended to be a significant advantage over the current state of
the art, as it should lead to a less homogenous model and higher non-linear pattern

separation ability.

Real gene data obtained by microarray analysis should be used in CNGM to address
a number of issues, including introduction of the capacity for exploration of addition
and deletion of genes within the model, or its use for modelling neurodegenerative
diseases (Benuskova & Kasabov, 2008). A useful source of this gene data, appropriate
for this thesis, is the comprehensive Allen Brain Atlas! (Hawrylycz et al., 2012). This
atlas contains the averaged gene expressions of a large number of donor brains, with

genes associated with the physical location in the brain that they are expressed.

Useful knowledge can be extracted from networks modelled in this way. For example,
in an SNN-based computational model of epilepsy, the desired epileptic behaviour
is achieved by a biologically inspired moderation of the network parameters con-
trolling neuronal inhibition (GABA, or GABAg expressions for example) (Kudela,
Franaszczuk & Bergey, 2003; Wendling, Bartolomei, Bellanger & Chauvel, 2002).
The same could theoretically be done for most genetic brain impairments, including

degenerative diseases such as Alzheimer’s and Parkinson’s (Kasabov et al., 2011).

! Available from http://human.brain-map.org

http://human.brain-map.org

5.5 INFLUENCE OF SOFTWARE BASED SIMULATION 96

CNGM design becomes more difficult when we are no longer using the brain-shaped
reservoir. Without the biophysical cues and a-priori information from sources like
the Allen Brain Atlas, where do we express which genes? Here, we must make some
heuristic decisions. If we are integrating a multimodal source, we could choose to
more strongly express inhibitory genes in an input area which is expected to see
high-frequency data, and excitatory genes in an area expected to see low-frequency
in an attempt to balance the network. Over a long enough time-frame, the CNGM
should eventually reach some form of homeostasis regardless of its initial starting

point.

55 INFLUENCE OF COMPUTATIONAL PLATFORM ON DESIGN

Our choice of computational platform - that is, the simulation platform used to
model the behaviour of our model — will directly affect a number of factors in the
design of NeuCube models. The use of software-based simulation provides a different

set of constraints to the use of a neuromorphic hardware simulation.

Here, we very briefly discuss some of the major considerations we must make when
developing models on different computation systems, and in particular, some specific
considerations we must make when developing for mixed-platform simulation. By
this, we mean those models we intend to develop to run on heterogeneous simulation

systems, such as a model trained in software which is then run on a SpiNNaker

board.

The relative merits of each approach will not be addressed here — this discussion will
focus specifically on those constraints that directly affect the design of SNN models,
particularly those that affect the NeuCube framework. See Chapters 6 and 7 for a

discussion on the nature of software- or hardware-based simulation, respectively.

5.5.1 SOFTWARE BASED SIMULATIONS

In broad terms, software based simulation systems offer the user greater flexibility in
terms of model design. Scaling of network size, choice of neural or synaptic model,
and reconfigurability are all significantly eased when developing for a software-based
simulation. Network scaling has been stated as an advantage in software; in this,
the ease with which we can define a larger or smaller model is meant. In reality,
neuromorphic hardware systems are advantageous when scaling due to their power

consumption and computational performance.

5.6 DESIGN METHODOLOGY OVERVIEW 97

We would primarily implement the NeuCube on a software based system when
principles of reconfigurability are at a premium, and the power cost is not a concern.
Software based simulation of such a framework is ideal in the early stages of a model’s
development. See Chapter 6 for further discussion on this topic, and considerations

based on the specific software simulation tool chosen.

5.5.2 HARDWARE BASED SIMULATIONS

Generally speaking, a hardware based simulation will provide advantages in absolute
scaling, power consumption, and performance guarantees. The actual degree to
which they are advantageous in terms of power consumption is dependent on the
specific hardware system. For the very lowest power cost implementation of the
NeuCube we would look to use a system like the cxQuad neuromorphic VLSI ASICs
of Indiveri, Corradi and Qiao (2015). This power advantage comes at the cost of
model flexibility. In general, we would consider an implementation on neuromorphic
hardware after we had implemented a reference version of the network in software,
and shown it to be viable given the constraints of these platforms. See Chapter 7
for further discussion on this topic and considerations for some specific hardware

systems.

5.5.3 HETEROGENEOUS COMPUTATIONAL PLATFORMS

One example of an issue caused by functional differences in the computational
platform used can be seen in some detail in Section 6.4.4. It is vital that future
development of cross-platform models take such issues into account. A discussion of
mitigation strategies for such issues can be seen in Chapters 6 and 7, where reference
implementations of the NeuCube framework for different software and hardware
platforms, and a generalised development framework for such implementations are
introduced. See Section 7.4.3 for an example of the alterations necessary to a software-
based implementation of the NeuCube for an implementation on the SpiNNaker

neuromorphic hardware platform.

In effect, we must ensure that the NeuCube model we wish to implement will func-
tion adequately on the most-constrained platform; for example, when developing
a NeuCube model for both software and neuromorphic VLSI, we must ensure that
both systems can operate in a satisfactory manner using the particular synapse and

neuron models physically implemented on that particular chip.

5.7 CHAPTER SUMMARY & CONCLUSION 98

5.6 DESIGN METHODOLOGY OVERVIEW

To codify this framework, then, we introduce the following methodology. It should
be read in the context of this chapter, and indeed, the rest of this thesis. In order to

optimally design a NeuCube-based SNN system for a given application, we must:

Define the a-priori information we have about the data.
Define our intended application.
Select a computational platform.

Select the most appropriate encoding scheme.

SANE I A

Construct a representative reservoir:
(a) Define the inherent structure of the data (if any) and represent this in a
3D structure of neurons.
(b) Define the most meaningful representation of the data collection context
and use this to structure the input locations.
(c) Generate a connectome, preferably based on knowledge of the data.
6. Create an output device based on our intended application and the data context.
7. Define whether the CNGM is necessary, and if so, what the initial point of the
genes modelled should be.

We apply this framework with the theoretical support of the review in Chapter 3.
Following this framework, it should be clear at each point what the optimal design

decision is.

5.7 CHAPTER SUMMARY AND CONCLUSION

Here, a design methodology intended to codify and regulate the heuristic decisions
necessary to design a NeuCube SNN system for arbitrary SSTD has been introduced.
The development of NeuCube based systems is heavily informed by the specific data
source we intend to use; it is from the structure and nature of this data that we draw
the structure of the NeuCube reservoir. Additionally, other properties of the data
such as its speed or density of channels inform our design decisions with regards
to the system as a whole. In particular, these affect the encoding scheme chosen,
and the parameters of the reservoir neurons and synapses. Our intended application

informs the type and nature of the output device chosen.

A subsequent consideration is that of the computational platform selected. These
systems have unique constraints depending on their underlying paradigm. Software

based simulations are more flexible in terms of the network simulated and more

5.7 CONTRIBUTIONS 99

computationally costly, while in neuromorphic hardware systems we sacrifice some
flexibility for higher computational efficiency and lower power consumption. Finally,
this methodology has been summarised in a set of simple questions, the answers to

which will inform the design decisions made.

To codify this system will introduce more rigour and repeatability to the process of
creating NeuCube systems. At present this is very much a heuristic basis, with very
little in the way of theoretical background for the majority of design decisions made.
This is largely a property of the fact that this is a new model, and has yet to be explored
in depth. Additionally, there is still not a rigorous information theoretic approach to
the design of SNN systems in general. Some literature exists for the design of LSM
systems, but this is not directly applicable to the NeuCube’s dynamic structure as
LSM use fixed, randomly initialised structures with no evolutionary functionality.
There is some value in a more comprehensive assay of the LSM literature to identify
any areas of potential overlap in future. This should especially assess any theoretical
judgements in the area of readout functions in LSM, as there is the potential for this
to be applied to optimise the linkage between the NeuCube reservoir and its readout
functions. With the knowledge that the NeuCube conceptually draws inspiration
from the specific data it is applied on, we have the opportunity to make better
informed heuristic choices. It is the intention of this design methodology to make

these choices more explicit and ensure that they are made in a meaningful way.

1. Introduction of a design methodology for SNN within the NeuCube Frame-
work.
2. Empirically established guidelines for design and development of
(a) Encoding systems,
(b) Reservoir design, especially the topology and connectome of these
reservoirs,
(c) Reservoir input location mappings,
(d) Output devices such as classifiers or regressors, and
(e) Application and inspiration of the CNGM.
3. Summary of considerations for SNN simulation on different computational
platforms.
4. Identification of a possible method for the automated optimisation of the
Threshold-Based Temporal Difference (TD) encoding algorithm.

5.7 CONTRIBUTIONS 100

1. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,
Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I.,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

http://dx.doi.org/10.1016/j.neunet.2015.09.011

CHAPTER

SOFTWARE DESIGN METHODOLOGY AND
IMPLEMENTATIONS

There are billions of neurons in our brains, but what are neurons? Just
cells. The brain has no knowledge until connections are made between
neurons. All that we know, all that we are, comes from the way our
neurons are connected.

— Tim Berners-Lee
(Weaving The Web, 1999)

One of the primary aims of this thesis is to provide a general, platform-agnostic
framework for the implementation of the NeuCube. Interestingly, despite the signi-
ficant differences between concrete implementations of the NeuCube in software
simulation or neuromorphic hardware, with careful consideration the core principles

and design patterns behind a robust and efficient NeuCube can remain the same.

The considerations discussed in this chapter — with some obvious caveats based on
the specific context in which it is developed — can be generalised to SNN systems
other than the NeuCube. Obviously, it is not the implementation level details that
we refer to here, but the high-level design principles (such as those discussed in
Section 6.1.1).

6.1 A GENERAL FRAMEWORK FOR IMPLEMENTATION OF THE NEUCUBE

In this chapter, we intend to introduce one primary software framework (Section 6.3)
for implementation of the NeuCube. A secondary discussion will address a wholly-

integrated form of the NeuCube, which has been termed the Core architecture

101

6.1 DESIGN PHILOSOPHY 102

(Section 6.6). These approaches are developed within the Object-Oriented design
paradigm. In addition, a tangible implementation of this first framework, written
in Python using the PyNN library (Section 6.4) is discussed. These frameworks will
be introduced in the context of the Design Philosophy (Section 6.1.1) which has

informed the decisions preceeding them.

6.1.1 DESIGN PHILOSOPHY

In order to develop a sufficiently modular and multipurpose framework for the NeuC-
ube, we draw inspiration from the Unix design philosophy. This philosophy informs
the majority of the design decisions made on this software system, particularly with
regards to modularity of code. Kernighan and Pike (1984, pp vii) summarise the Unix

design process:

Even though the UNIX system introduces a number of innovative pro-
grams and techniques, no single program or idea makes it work well.
Instead, what makes it effective is the approach to programming, a philo-
sophy of using the computer. Although that philosophy can’t be written
down in a single sentence, at its heart is the idea that the power of a
system comes more from the relationships among programs than from
the programs themselves. Many UNIX programs do quite trivial things
in isolation, but, combined with other programs, become general and

useful tools.

Here, we consider ‘programs’ to be individual components in the NeuCube framework
such as input encoding or the 3D reservoir, or modules in the greater NeuCube
software architecture (cf. Figure 6.1). In Scott et al. (2013), aspects of this design
philosophy in the context of the NeuCube framework were discussed. Further core
design rules intrinsic to the Unix design philosophy were codified in Raymond (2003),
extending Kernighan and Pike’s early work. The following enumerated sections are
paraphrased from this text and contextualised in the NeuCube framework. A number
have been consolidated together some of the features codified in Raymond (2003) are
redundant or better explained in conjunction with other features, in this particular

context.

1. Modularity; Separation; Simplicity; Parsimony; Robustness; Diversity; Composi-

tion; Extensibility: Build programs out of simple parts connected by well defined

6.1 DESIGN PHILOSOPHY 103

interfaces. Simplify where possible, as this is easier to develop and more ro-
bust. Programs should be flexible and open. Programs should be designed to

communicate easily with other programs. In essence, design for the future.

As the NeuCube architecture as a whole explicitly incorporates aspects of modularity,
so too should the implementation reflect this. If developing a NeuCube implementa-
tion in an Object-Oriented paradigm, consideration should be paid to best practices
in OO such as limiting class coupling and cohesion, and encouraging the use of

polymorphism and inheritance, and appropriate design patterns.

Open and simple data formats should be used for file Input-Output (I0) and inter-
module communication. For example, the use of AER for streaming data and JavaS-

cript Object Notation (JSON) files for parameter IO is discussed later in this chapter.

2. Clarity; Transparency: Emphasise clarity of code and documentation rather
than highly optimised and unreadable code. Design software for visibility and

discoverability.

The system should be comprehensively documented, and preferably, written in a self-
documenting manner. Complex operations should be simplified where possible, or
at least explained fully. Such operations should make use of libraries where possible,
as these provide a reduction of complexity for the developer and subsequent readers
of the code.

Additionally, readability and clarity are implicitly improved in the particular sys-
tem introduced in Section 6.4 due to the use of Python, which is somewhat self-
documenting, especially when written in conjunction with established code standards
like Python’s PEPS!.

3. Least Surprise: Build on top of the potential users’ expected knowledge; user

interfaces should do the least surprising thing.

The user should be able to interact with the system in an intuitive and logical manner;
that is, method names and interfaces should be obvious and predictable in their effects

on the system.

A canonical example of this is that the + operator in a calculator program should add
two numbers together. In our case, we should reasonably expect that a method call
like Reservoir.generateStructure(neuron_locations.csv) should load a CSV

file containing neuron locations and use that to create the structure of the NeuCube

Thttps://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/

6.2 SOFTWARE ARCHITECTURE 104

reservoir, or Classifier.train(data) should train the chosen classifier on the

given data.

4. Silence; Repair: Only output concise and necessary information. When pro-
grams fail, they should fail in a manner that is obvious and easy to diagnose,

or in other words “fail noisily”.

Options should be provided for the verbosity of the program’s output, depending on
the context it is being run in. Long experiments (particularly those with optimisation
or large numbers of experiment repetitions) should provide some report of progress.
Failures should be reported immediately and with as much information about the
source as possible, preferably including the computational platform’s equivalent of a

stack trace.

5. Generation; Optimization; Economy: Avoid manual optimisation; write abstract
high-level programs that generate their own code or use libraries. Prototype
software before polishing it; your code should work before you optimise it.

Value developer time over machine time.

Here, we can make use of libraries such as PyNN and Scipy when using Python, and
the software support provided for other computational substrates. This allows us
to leverage the (generally) highly optimised code in these libraries and reduce both
computational cost and development timelines. We also avoid premature optimisa-
tion, and develop a system from which we can make such improvements iteratively

as the system demands it.

Such a design philosophy is applicable regardless of the implementation context —
we can use these principles equally when developing a NeuCube implementation
for the SpiNNaker as we can for an ASIC or a commodity PC. Adherence to this
philosophy will encourage future development of the NeuCube to be performed in
an efficient and sustainable manner, and allow for it to be iteratively improved in the

future.

6.2 OVERALL SOFTWARE ARCHITECTURE

The software systems introduced here exist as a part of a larger software architecture.
As the NeuCube framework has grown from a neuroinformatics classification tool,
additional software modules have been added to the basic version. See Figure 6.1 for a
visual overview of the general software ecosystem. Of particular note are the M2 and

M3 modules; these, along with the M4 Visualisation module, have been introduced

6.3 REeFeEReNCE OO NEeuCuBE DESIGN 105

Basic Configuration Standard Configuration
M1: M2: M3: M4:
Prototyping PyNN for Large Neuromorphic Immersive
and Testing Scale Simulation Hardware Visualisation

M5: 1/0 and Information Interchange

I 2 B £ A ¢ A ¢ A

Data
\/\oiel

R (T

Meé: M7: MS: M10: M1o0:
Neurogenetic Personalised Multimodal Event On-line
Modelling Modelling Brain Data Detection and Applications
Prediction

Full Configuration

FIGURE 6.1: Block diagram of the NeuCube software architecture. Blue and red

arrows represent data flow and saving/loading trained NeuCube models respectively.

This thesis introduces implementations for Modules 2 & 3 (orange boxes), along
with a general implementation framework for the remaining modules.

for the first time in this thesis. The other modules, save for the M1 Prototyping

module, have commenced development only recently, and are not yet functional.

It is the intent of this chapter to introduce a generalisable software architecture for
the implementation of these systems, and the refactoring of the M1 module. This
chapter will also introduce an implementation of the M2 (software) module, and lead
in to the M3 (neuromorphic hardware) module discussed in Chapter 7. Additionally,
this will introduce a reference implementation of the NeuCube in Python, which is
intended to be the basis of further development. This system has been developed
with concepts of modularity and extensibility in mind, and is therefore a superior

platform for the future of the NeuCube framework due to these factors.

Importantly, these modules must be identical in their shared functionality; for ex-
ample, it must be expected that the calculation of the membrane potential of a LIF
neuron must be identical across the modules, regardless of their extra features. At
present this is not the case. See Section 6.4.4 for a discussion of this issue in some
depth. This issue will be mitigated somewhat in future developments by the principles
introduced in this thesis. Additionally, the future NeuCube CoRE system architecture
discussed in Section 6.6 should mitigate this issue further, by providing a common
set of functions that are interacted with by applications developers, rather than them

implementing features from scratch.

6.3 SOoFTWARE DESIGN PATTERN 106

6.3 A REFERENCE OBJECT-ORIENTED NEUCUBE DESIGN

Aspects of this reference NeuCube design have been published in some detail in both
Scott et al. (2013), and in a more general context in Kasabov et al. (2015). Here, some
technical specifics relating to an object-oriented implementation of the NeuCube,
including the design pattern, class structure, and internal communication schemes
are introduced. A software architecture has been detailed in UML format in Figure 6.2.
This section defines the software architecture used to develop the later systems in
this thesis, which have been implemented in Python using the PyNN library in
Section 6.4, and on the SpiNNaker device in Section 7.4.3. This design is not presently
used elsewhere in the NeuCube; Modules 1, and 4-10 as defined in Figure 6.1 either
use their own software architecture or are not yet under development. It is likely
that this design is appropriate for use in the other identified NeuCube Modules, but

it has not yet been adopted or extended for their use.

6.3.1 SOFTWARE DESIGN PATTERN

With the design philosophy described in Section 6.1.1 in mind, it is logical at this point
to discuss the software design pattern suggested for the reference implementation of
the NeuCube.

A software design pattern is a general system towards a solution for a commonly
occurring problem within a given context in software design. In this sense, they are
simply best practices in software development, with the understanding that soft-
ware development generally shares common challenges even across different fields.
They are generally considered to be the intermediary layer between programming

paradigms (e.g. Object-Oriented, Functional) and a specific algorithm or program.

The de-facto standard text in this area is Gamma, Helm, Johnson and Vlissides
(1995). These authors are the so-called ‘Gang of Four’ in software architecture
nomenclature. More recently, McConnell (2004) has provided an updated discussion
of software design patterns. C. Zhang and Budgen (2012) show empirical evidence
for the usefulness of design patterns in providing a framework for maintenance and

extension — two areas of software development which this system is concerned.

The following software architectures are developed under the assumption that we
will use the Template Method behavioural pattern. A behavioural pattern is a design
pattern concerned with the activity of the system and how the software structure

facilitates code reuse and communication.

6.3 List oF CLASSES 107

TEMPLATE METHOD BEHAVIOURAL PATTERN: The basic concept behind the Template
Method design pattern is relatively simple. We create a (generally abstract) class
representing the necessary steps for a general algorithm or operation. We then create

a class that implements these steps with any necessary extension.

In this case, we will use the example of a classifier. No matter which specific algorithm
(e.g. SVM, MLP, Naive Bayes, deSNN, etc.) is used, all classifiers have a number of
basic steps required in common; in particular, in a simplified case one must first train,

and then verify the classier. We are therefore led to the basic template class:

abstract class GenericClassifier
public abstract train()
public abstract test()

In this case, these methods are abstract as they are not directly implemented here.
We then wish to implement both an SVM and a deSNN. Obviously these are vastly
different classification paradigms; SVM is an analytical technique, and the deSNN uses
SNN and evolutionary computation principles. However, despite their differences, as
long as they both implement the abstract methods defined in their template class
(GenericClassifier) with the same input parameters and outputs, they can be
swapped in-place with each other with no further code changes. Any extra methods
required for the specific classifier is implemented in these subclasses. This design
principle is used extensively in the development of the NeuCube and will be explored

further in the following section.

Analagously, we could consider the Template class to be a ‘motor vehicle’ with
subclasses such as ‘bus’, ‘car’, ‘truck’. All of these share similar properties (an engine,
wheels, passenger space) but implement them in different ways. Despite this, they
can interface with the greater environment (roads) in the same way (steered with a

steering wheel, passenger entry is through doors, etc.).

It would be a natural extension of this architecture to incorporate the Strategy Pattern.
The Strategy pattern is conceptually similar to the Template pattern, except that
the subclass (e.g. which classifier to choose) is selected automatically by the system.
This technique could be implemented in the future when the optimisation strategies
are better developed. We could utilise the strategy pattern in extending this system
as an automated process for non-expert users. Consideration should be paid to this
concept if commercialisation of the NeuCube is eventually sought and the user base

is expanded to those inexperienced in SNN systems.

6.3 List oF CLASSES 108

NeuCubeManager]

setupModel(encoderParams, reservoirParams,
classifierParams)

runModel(runTime)

doAnalysis()

[GenericNeuCubeReservoir]

setStructure(structureFile, connectionType)
r==o takelnput(
getSpikes()
getWeights()

v temmmmemmemeeeee- ;
NetworkStructure [«GenericNeuCubeReservoir»
calculateConnectionMatrix(structureFile, NeuCubeReservoirBrain

connectionType)| | setStructure(brainStructure, connectionType)
takeln utSbrainData)

getSpikes(

getWeights()
[GenericClassifier] -
setParameters() GenericEncoder
train (daty setParameters()
validate(data) encode(data)
test(data)

A a
1 | |
- — «GenericEncoder»
«(?esnr\el;\llcCCllass.l?.er» TemporalContrastEncoder
° assrer setParameters(threshold, timeStep)

setParameters(mod, drift) :
takelnput(brainData) lelcllpuil{ralinDeiz)

F1GURE 6.2: Simplified UML diagram of the reference Object-Oriented NeuCube
implementation, showing only major methods of each class. These are example
classes only, and the architecture shown in this figure should be implemented in
the context of the design guidelines established in this chapter and with respect to
the computational patform used (e.g. SpiNNaker, commodity PC). This design has
been implemented in Python, and is discussed further in Sections 6.4 and 7.4

6.3.2 LisT oF CLASSES

Here, a suggested list of classes for a basic implementation of the NeuCube is in-
troduced, and visualised in Figure 6.2. This is relevant only for an object-oriented
implementation of the NeuCube. A functional or imperative programming style
implementation would likely be considerably different to this set of suggestions.
By functional, we mean using a ‘functional’ language such as Lisp or Haskell. A
functional approach to the NeuCube is not addressed here, although it would be
an interesting exercise to implement it in this way. The NeuCube CoRrE approach,
an alternative implementation developed independently from an SNN simulation

engine, is discussed in Section 6.6.

6.3 List oF CLASSES: CONTROL 109

It is also important to note at this point that this is merely a suggested list of classes
and methods, which may vary in reality depending on considerations for the compu-
tational platform and application context. Regardless, this provides a baseline design

for the implementation of a NeuCube-based system in most general contexts.

The following classes have been detailed with simplified Java-style method signatures,
despite the fact that later in this thesis (cf. Sections 6.4 and 7.4) they have been
implemented in Python. This is to ensure that the method visibility and inheritance
structure is made explicit to the reader, as these are poorly delineated in native
Python. In fact, the actual implementation language is arbitrary. The NeuCube could
as easily be implemented in C/C++, Java, Python, MATLAB, or any language — as, in

fact, it has been. Java-style syntax is used here simply for clarity.

A number of assumptions have been made to simplify this description. In particular,
the calculation of neuronal and synaptic dynamics is assumed to be a solved problem;
i.e. this is a higher level implementation of the general NeuCube framework on some
computational platform, rather than a to-bare-metal implementation. With this in

mind, the following assumptions are made in the subsequent sections:

1. A suitable SNN simulation backend (PyNEST, Brian, SpiNNaker, etc.) has been
selected.

2. Utilities, such as those responsible for file loading and plotting functions, are
omitted.

3. The development is performed in the context of the design guidelines intro-
duced in Chapter 5 and this chapter, and the considerations for the specific

computational platform.

The relative brevity of the code template introduced here and the implementation in
Section 6.4 are made possible by this first assumption. Utilities have been ignored
here as they are platform & case dependent, and would in any case be subsumed by
other methods. For example, loading a Comma-Separated Value (CSV) file would be
handled implicitly by the method to set up a reservoir structure. Additionally, only
public methods have been identified here. Private or protected methods would be
implemented on a case-by-case basis, and are in any case subsumed into the greater

logic of the public methods.

6.3.2.1 ConNTRrOL CLASS

class NeuCubeManager
public setupModel

6.3 LisT oF CLASSES: RESERVOIRS 110

public runModel
public doOutput
public doAnalysis

This should be considered the ‘main’ class, containing the main logic loop of the
system. This class is responsible for scheduling and initiating the simulation, and
managing any ancilary steps required, including any automated plotting or statistical

analysis.
setupModel

Subsumes the methods required for loading configuration files, encoding input data,
and setting up the network strucuture. Prepares the system for simulation. Also sets

up the chosen output device.
runModel

Runs the simulation, and manages any concurrent tasks such as streaming IO (cf.
Section 7.4.2.7) or external influences on the network. Handles cleanup after the
simulation is run, including readback of spike time records for neurons in the network,

and synaptic weight matrices.
doOutput

Train and test the output device (classifier, regressor). If online output (e.g. for
robotics applications) is required this method is subsumed into runModel . This
method can be modified and separated into training and testing methods, to allow

the system to be used repeatedly instead of ‘one-shot’ training.
doAnalysis

Perform any necessary automated analysis steps required, including statistical meas-
ures of spiking times and synaptic weights, and any plotting necessary. This method

may be run interactively, or ‘silently’ when used in batch job form.

6.3.2.2 NEUCUBE RESERVOIRS

abstract class GenericNeuCubeReservoir
public abstract setStructure
public abstract takelInput
public getSpikes
public getWeights

6.3 LisT oF CLASSES: RESERVOIRS 111

These methods deal with the creation and management of the 3D NeuCube reservoirs,
including the actual setup of the structure. We have not mentioned the calculation
of network dynamics (i.e. the calculation of neuron spike times), as in this discussion
this has been abstracted away to the computational platform. In reality, this function
would most likely be delegated through this class. In the case we chose not to use a
simulation platform, the calculation of such dynamics would be managed here and

implemented in a new class.

This class is primarily abstract, or could be implemented as an interface. It has been
abstracted to allow different NeuCube reservoirs to be implemented later with no
changes to the interface code. In this way, NeuCube reservoirs using alternative
dynamics such as the CNGM can be transparently implemented, as long as they all
implement the methods defined in this class. This supports the Template Method
design pattern identified in Section 6.3.1, and will allow for later implementation of

the Strategy pattern where the selection of subclasses is automated.
setStructure

Sets up the 3D reservoir structure, given some file or data structure containing these
locations. Generates the connectome from a formula (e.g. the distance-dependent
probability in Section 6.4.3.1), some a-priori information about the data collection

context such as DTI (¢f Section 2.1.1.2), or a given list of connections.
takeInput

Manage the input of data into the system. This is either some data structure with
spike times, or streaming spike IO as discussed in Section 7.4.2.7. This data structure
will be dependent on the implementation language; for example, in Python this

would likely be a list or dictionary, whereas in Java it may be an ArrayList or similar.
getSpikes

After a simulation, return spike trains of neurons in the reservoir, whether this is the
whole network or a given selection of the total neurons. In the case of streaming spike
IO, this method will output these spikes in as close to real-time as possible, else they
will be returned as a data structure containing key-value pairs of neuron-spiketimes
(i.e. in the format ny = {t1,t;...,t,}). This method is not abstract as the general
implementation will be identical among all of its subclasses, as spike retrieval should

not change significantly between different network structures.

getWeights

6.3 LisT oF CLASSES: NETWORK STRUCTURE 112

Retrieve the synaptic weight matrix of all or a subset of the connections in the
reservoir after a simulation. Updated synaptic weights could be retrieved in real-time
as they change, as long as the simulation overhead was acceptable. This method is

not abstract as synaptic weight retrieval should be general among all subclasses.

class NeuCubeReservoirBrain extends GenericNeuCubeReservoir
public setStructure
public takeInput
public getSpikes
public getWeights

This class would implement a form of the GenericNeuCubeReservoir defined above,
for the specific case of a NeuCube reservoir for brain data. In this, it would implement
the defined methods in the context of that brain data; i.e. the reservoir would be
structured using the Talairach or MNI brain data atlases, the connectome would be

generated in a small-world manner or by using some DTI information, and so on.

Similarly, for the example of seismic data, a NeuCubeReservoirSeismic could be
implemented, where the network structure and behaviour would be significantly

different to a NeuCube reservoir designed for brain data.
takeInput

This method should accept encoded input spike trains in the particular format of the
brain data collection device used, and pass it to the simulation. This may stream in
online in the case of a BCI or Motor Neuron Prosthetic (MNP) control application (cf.
Section 7.1.5.2), or it may be batched.

getSpikes
getWeights

In the case of the NeuCubeReservoirBrain, these methods can be omitted, as the
general versions in GenericNeuCubeReservoir should suffice. In the case that some
specific behaviour is required here, these methods can be implemented to override

the generic version in the superclass.

6.3.2.3 NETWORK STRUCTURE

class NetworkStructure
public loadNetworkFile
public loadNetworkMatrix
public calculateConnectionMatrix

6.3 LisT oF CLASSES: CLASSIFIERS 113

This class is responsible for the creation of the 3D structures of a NeuCube reservoir.
It should be general enough that different structures can be generated without code
changes, depending on the location file or data structure given as input. In the case
of different connectome generation schemes (e.g. one based on DTI or a different
small-world scheme) this class could be extended with a subclass that overrides this
method.

loadNetworkFile

Load a file containing the 3D locations of the reservoir neurons, and any ancillary

data required for the network structure setup.
loadNetworkMatrix

Load a file containing a known network structure; for example, one that has been pre-
trained in a different module of the NeuCube. This should contain neuron positions,
and a connection weight matrix for the known connections. If no known network

matrix is available, use the calculateConnectionMatrix method below.
calculateConnectionMatrix

Calculate the connection matrix (i.e. the synapses between neurons) based on the
loaded network structure, and some established formula for connection structure.
The basic form used in the NeuCube is the distance dependent method established in
Section 6.4.3.1. This method implements that part of the GenericNeuCubeReservoir

unless it is overridden in a subclass.

6.3.2.4 CLASSIFIERS

abstract class GenericClassifier
public abstract setParameters
public abstract train
public abstract validate
public abstract test

This is the generic superclass of the classifiers or regressors (i.e. the output devices
of the NeuCube). In this case, the output device is considered to be a classifier, as
this is the default in the NeuCube model. It would be trivial to refactor this design
to have a GenericOutputDevice which both the GenericClassifier and a new
GenericRegressor would extend further. This is, in fact, the correct behaviour if

we approach this design from an object-oriented point of view, but as no regressor is

6.3 LisT oF CLASSES: CLASSIFIERS 114

yet planned in the NeuCube, we will follow the original approach here. The concepts

introduced here would in any case, extend to this alternative design.

The concept behind making this class abstract is primarily that classifiers implement-
ing these abstract methods can then be interchanged without modification of the
code interfacing with them, in the same manner as the GenericNeuCubeReservoir .
This facilitates later adoption of the Strategy design pattern, and adheres to the
current Template Method pattern.

setParameters

Load and setup the required parameters for the classifier. This method is entirely

dependent on the specific classifier selected.
train

Train or generate a classifier model for the given data using the pre-loaded parameters.
The implementation of this method is entirely specific to the chosen classifier. For
example, in the case of an SVM, in this method we would analytically create the
separation hyperplanes as detailed in Cortes and Vapnik (1995). In the case of the
deSNN, this will be discussed specifically in the next example. This process can be

performed on-line in the case of some classifiers.
validate

Validate the pre-trained classifier model. This process is performed to validate the
performance of the classifier with a given set of parameters against a known result set,
and can be used in automated optimisation of the same. This process may continue
the classifier’s training if that is consistent with the algorithm selected (e.g. the
deSNN can continue to evolve during validation but an SVM cannot). Validation may

be performed on-line if this is supported by the classifier algorithm and the reservoir

defined.
test

Test the pre-trained classifier model on an unseen data set, to provide independent
classification performance metrics. This process may continue the classifier’s training
if that is consistent with the algorithm selected. Testing may be performed on-line if

this is supported by the classifier algorithm and the reservoir defined.

class DeSNNClassifier extends GenericClassifier
public setParameters

6.3 LisT oF CLASSES: ENCODERS 115

public train
public test

This is an example of an implementation of the GenericClassifier defined above,
for the specific case of a deSNN (cf. Section 3.6.3.2) classifier.

setParameters

Loads and sets the deSNN-specific parameters, including the Mod, C, and drift

parameters.
train

Inital training of the deSNN. Propagates the spike trains recorded from the NeuCube
and generates the neuron clusters and synaptic matrices responsible for classification
of those spike trains. In the case that the data is streaming, this training phase can

be completed on pre-recorded data in the same way, or streamed in.
test

Validation and operational method of the classifier. In a normal case the training
aspect of the learning algorithm would be switched off here, although in the case of
the deSNN, the learning and adaptation is life-long. A distinction is made here for
statistical purposes, to ensure that the accuracy is properly recorded. In the case that
the input data to the greater NeuCube is to be streamed, this method could be run in
parallel with the reservoir, and spikes transferred in real-time from the reservoir to
this method.

6.3.2.5 ENCODERS

abstract class GenericEncoder
public abstract setParameters
public abstract encode

This is the generic superclass of all spike encoding methods implemented in the
NeuCube. The ability to easily change encoding schemes is important in the NeuCube
framework, as they can have significantly different dynamics and should be imple-
mented in different scenarios. Creating a GenericEncoder will allow us to change
encoders without alteration to the rest of the NeuCube software, and is consistent

with both of the design patterns previously identified in this chapter.

setParameters

6.3 AER 116

Loads and sets the parameters for the encoder. This method is specific to the encoding

scheme selected.
encode

Performs the actual data — spike train conversion. In the case of on-line data

streaming, this method must be able to support on-the-fly encoding of data.

class TemporalContrastEncoder extends GenericEncoder
public setParameters
public encode

This is an example of the GenericEncoder , where we implement a Threshold-Based

Temporal Difference (TD) encoding scheme (cf. Section 3.5.1).
setParameters

Loads and sets the TD-specific parameters, including the spike generation thresholds,
step size, and whether to encode both excitatory and inhibitory spikes or a choice of

one.
encode

Encodes the given data into trains of spikes using the defined algorithm and para-

meters. Passes these to the NeuCube reservoir modules.

6.3.3 INTER-MoODULE COMMUNICATION

Each of these separate components and modules must be able to communicate with
the others in some standardised way. Internal communication between components
of a module is generally straightforward; as these will likely be within the same
software package, provided that they follow the expected parameter format of the
various methods called, their communication is subsumed by the application itself.
More complex is the communication between the greater software modules, and

with external devices like the DVS or an EEG collection device.

To address this communication, two primary forms of inter-module IO are proposed;
the AER format for streaming or real-time data, and a JSON-based file format for the

interchange of static or pre-prepared data.

6.3 AER 117

6.3.3.1 ADDRESS-EVENT REPRESENTATION

Address-Event Representation (AER) is a conceptually simple technique for the
labelling of spike trains. In essence, it is a pairing of a neuron number or spatial
location (‘address’) with the time that neuron spiked (‘event’). This technique is
typically used in neuromorphic hardware devices, including the SpiNNaker (Furber,
2012) and Institute for Neuroinformatics (INI) VLSI ASICs such as those introduced
in Indiveri et al. (2010), Mitra, Fusi and Indiveri (2009) or Moradi and Indiveri (2013).
Devices such as these may extend AER depending on their structural and functional
requirements — for example, SpiNNaker encodes its ‘addresses’ as a chip-core-neuron

heirarchy, to aid in its internal routing process (cf. Section 7.4.1).

This principle is perhaps best seen in the Dynamic Vision Sensor (DVYS), a spike-based
computer vision system detailed in Section 7.1.5.1. Here AER is used to represent a
pixel location (‘address’) and its spike time (‘event’). For a visual intuition of how

this system works, see Figure 7.5. See Section 3.5.1 for further details.

At the 2015 Capo Caccia Cognitive Neuromorphic Engineering Workshop, a group
developed a draft protocol for the general implementation of AER on heterogeneous
systems. This protocol is discussed in draft form by the group participants in Rast
et al. (2015). This work was a response to the issue of intersystem communication
in neuromorphic systems. As these hardware devices become more prevalent, it be-
comes more important that they are able to communicate with one another. However,
there is as yet no universally agreed-upon standard for the specific format of an AER
‘packet’, nor any attempt to make it suitable for transmission over industry-standard
networks like Ethernet. This specification document addresses the format used in the
interchange of such messages between compatible AER-generating and -receiving
devices, providing a common message interchange medium. It is at present a draft
specification, and therefore we will not go into significant detail here, as it is subject

to change at any time.

As this protocol can be used over a wide variety of communication means, it does
not specify the transmission layer; rather, it focuses only on the content of the
transmission. It is expected that the interface can be bidirectional, i.e. that a device
can both issue and receive spikes. However, it is not required that a given device
must be able to do both. A device could be either a blind issuer of spikes or a passive

receiver.

6.3 JSON 118

This protocol was developed with all major academic neuromorphic systems de-
velopers (e.g. INI’s ASICs, Heidelberg’s FACETS-BrainScaleS, SpiNNaker) and it is
therefore likely that future devices from these groups will work towards compatabil-
ity with this protocol. NeuCube systems should in future implement this protocol for
compatability with such hardware devices, and any software systems also supporting
it. Section 7.4.2.7 discusses an example of how spike IO can be implemented with

AER when running the NeuCube on a SpiNNaker device.

In the case of the NeuCube, the AER paradigm would be best used for streaming
data, rather than parameter values or network structures. Here we would first load a
network structure either programmatically or via the JSON-style format discussed
in the next section, and then stream the encoded input data in via AER. This would
allow the NeuCube to be applied in real-time contexts like robotics or prosthetics

control more easily than with file-based IO of spike times.
6.3.3.2 FiLE-BAseD O witH JSON

JavaScript Object Notation (JSON) is a general specification for text-based file in-
terchange. As the name suggests, it was initially designed for use with Javascript,
but has been adopted as a more human-readable and concise alternative to XML. In
our case, the JSON format has been chosen to ensure that in the greater NeuCube
software architecture, we have true cross-platform support. Bearing in mind that
various modules of the NeuCube are currently written in three different languages
(MATLAB, Python, or Java), it is difficult to implement a binary format which can
be easily interpreted by all of these languages. It is, of course, possible, but it would
require us to implement a custom binary format. Coupled with the concept that
these systems may eventually be remotely accessible over a network, and that they
are currently implemented on both Windows- and Linux-based platforms, the choice
was made to use a flat file format for data interchange. This is also consistent with the
design philosophy in Section 6.1.1, where modularity, simplicity, and transparency
were emphasised in making implementation decisions. In these files, values are
encoded as key-value pairs, with a syntax very similar to Python. It is a trivial matter

to map this file structure into our language of choice.

Unfortunately, after the decision to use a JSON-format for important file-based 10
was made, these files were implemented without group consultation by another
developer, in the MATLAB M1 module (introduced in Section 6.4.4). An example

of the files generated is too long to print here. A significantly reduced version is

6.4 FRAMEWORK IMPLEMENTATION WITH PYNN 119

available online.? Presently, a JSON representation of the typical brain-shaped 1471
neuron reservoir structure is around 15 MB, when in theory it should be less than
~ 200 KB. Detail will not be entered into about the issues with this representation,
as an attempt is currently being made to bring this back in line with the principles
established in this thesis. In particular, a sparse representation of the connectome will
be implemented, as this is by nature a sparse matrix. Representing this connectome
as a dense array will result in exponential growth of the representation, a behaviour
which is untenable as we move to larger network sizes. Representing it as a sparse
matrix will significantly save on file size, as at present, the majority of the data in

this file is redundant or otherwise unnecessary.

All that is necessary to represent in this file is the neuron locations in 3D space, their
basic parameters, the connection matrix, and the weight matrix. The first must be a
dense n X 3 array, and the others sparse n X n matrices, where n is the number of
neurons. Neuron parameters can be consolidated together, as at present we model
these neurons homogenously; i.e., their dynamics such as spiking thresholds or leak
rates are identical. Currently, the spiking history of the reservoir is saved here, along
with a number of redundant data structures (e.g. the input location names, which
should be contained in the input data file), but this should be a separate file as it can

change independently of the structure.

Of course, this type of representation will begin to face limits when the network
size increases. This is an issue which we have yet to face in our development of
the NeuCube. However, in the near future, we may need to seek an alternative
formulation for connectivity matrix definition, and so on. One possible alternative to
this list-based network structure definition is the Connection Set Algebra introduced
in Djurfeldt (2012) and implemented in a number of simulation platforms. This can
represent a network structure deterministically as a set of formulas, which can be
interpreted in the simulator. This representation is advantageous here as it would be
constant regardless of network size. but can still be deterministic with regard to the

networks it produces.

A simplified JSON-formatted configuration file, as used in this version of the NeuCube,
is given in Appendix F. Here, the file links to the other files required - neuron
positions, input data, and input positions. This is a more efficient and compact
representation of the necessary configuration data than the previous configuration

system employed in M1.

“https://gist.github.com/nmscott/e569c¢2b957849242ce67

https://gist.github.com/nmscott/e569c2b957849242ce67

6.4 PROGRAM OVERVIEW 120

6.4 IMPLEMENTATION OF THIS FRAMEWORK USING PYNN

A concrete implementation of the NeuCube developed using the principles discussed
in this chapter is introduced here. It is hoped that this system will form the basis of a
‘reference’ NeuCube; i.e. a system used for benchmarking new implementations of

the NeuCube, and one developed in a mindful way.

The general application flow has been discussed in Section 6.4.2. However, the
primary contribution of this section is not given here; instead, it is the full listing
of the code required to realise the NeuCube in PyNN, given in Appendix C. Key
segments of the code have been reproduced and explained in this section. Certain
challenges were encountered in the development of this implementation, and are

primarily discussed in Sections 6.4.3 and 6.4.4.

6.4.1 WHy PYNN?

The motivation to use PyNN in developing the primary code artefact of this thesis
should be clear at this point, due to the nature of the system being developed and
the nature of PyNN. However, to make explicit for completeness’ sake, the reasons

are straightforward:

+ PyNN allows for a more concise model representation than developing for a

simulation tool directly.

« PyNN provides cross-simulator support — a much greater number of computa-
tion platforms are supported by a single PyNN application, when compared
to developing for one of these computation platforms specifically. In addition,
with minimal changes a PyNN application can also be run on neuromorphic
hardware like the SpiNNaker.

PyNN is therefore a natural choice for a system such as the NeuCube, which is
intended to run across multiple platforms (including hardware) and be modularly
configurable. For further clarification of PyNN and why it is an optimal choice for
the NeuCube, see Section 3.8.3.

6.4.2 PROGRAM OVERVIEW

The simulator selection in PyNN is based on which PyNN package we import.

For example, to use the NEST or Brian simulators, we would import PyNN as

6.4 PROGRAM OVERVIEW 121

import pyNN.nest or import pyNN.brian, respectively. Similarly, to implement
the SpiNNaker port of PyNN known as sPyNNaker, we can either import sPyNNaker

or import pyNN.spinnaker to keep consistency with the rest of the PyNN imple-
mentation. The SpiNNaker will not be discussed here, as the modifications necessary
to convert our PyNN implementation to sPyNNaker are covered in some detail in
Section 7.4.3.

An application written in PyNN requires at minimum, three method calls:

1. setup() which initialises the simulator platform and sets any simulator-
specific parameters such as the time resolution;

2. run(time) which intialises and runs the actual simulation for time ; and

3. end(Q) , which ‘cleans up’ after the simulation is completed, freeing memory

and so on.

For the NeuCube implementation, these methods have been implemented separately
in the NeuCube reservoir and the SNN classifiers, as these are separate networks and

as such cannot be simulated together.

In reality, a number of other methods are required to ensure that the network and
simulation are set up and run succesfully. Here we briefly introduce the application
flow for implementing the NeuCube in PyNN. In cases where the code is complex or
otherwise non-obvious, the code will be reproduced when explained. Key areas of
code which merit intensive discussion are given in Section 6.4.3. Note that this im-

plementation generally follows the software architecture introduced in Section 6.3.2.
The basic application flow for a single operation of the NeuCube is as follows:
1. Load configuration files

A configuration file (or more precisely, files) will contain the necessary network para-
meters for a NeuCube model; for encoding (the scheme chosen, scheme parameters,
whether to stream or batch this encoding), for the network (neuron type chosen,
neuron parameters, network structure, connectome type), and for the output device
(classification or regression scheme chosen, parameters for the previous). One such

example configuration file is given in Appendix F.
2. Encode data with the chosen encoding scheme

Firstly, the selected data is loaded, and the encoding scheme set up. In the case of the

TD encoder, we set the spike emission threshold, timestep, and whether to encode

6.4 PROGRAM OVERVIEW 122

inhibitory spikes. The data is then propagated through the encoding scheme, and as

streaming IO is not yet implemented, it is returned as a list of lists.

The encoding step could be implemented in parallel with the actual simulation;
encoding only the information which is required at that point in the simulation. This
would reduce the memory usage of the application when large (e.g. for dense channel

or temporally long) data is processed in the NeuCube.

To this point, we are not yet using PyNN, or any simulation backend. Our encoding is
implemented in standard Python; in some cases it may be accelerated using libraries

such as SciPy or NumPy which provide optimised mathematical operations.
3. Set up reservoir

Prior to setting up the network, we must select our simulation platform and import
it. As discussed in Section 7.4.3.3 this import statement will differ depending on our
simulation platform. In this case, we will use NEST, although it is equally possible for
use to use Brian or the SpiNNaker in its place. To import our simulator, we simply
import pyNN.nest as p. This aliases p to PyNN, allowing us to shorthand the

later method calls and keep them distinct from non-library code.

We then need to set up the structured NeuCube reservoir. We firstly set up the
neuron parameters and structure. The parameters of the neurons are easily set; in
PyNN, the syntax to create a Python dictionary to contain the key-value pairs for

the parameters is straightforward:

cell_params_lif = {’cm’:0.25, 'i_offset’:0.0, ’'tau_m’:10.0,
"tau_refrac’:2.0, ’'tau_syn_E’:3.0, ’'tau_syn_I’:3.0,
v_reset’:-65.0, 'v_rest’:-65.0, ’'v_thresh’:-50.0}

L1STING 6.1: Definition of the NeuCube’s neuron parameters in PyNN.

We then call the network structure generation method, which has been implemen-
ted as discussed in Section 6.4.3.1. This generates two primary lists, respectively
representing the excitatory and inhibitory connectomes. Subsequent to generating
the network structure, we select our input neurons using the method discussed in
Section 6.4.3.3. As these methods are all based in native Python, we have not yet
needed to access PyNN’s methods. Were we to use the inbuilt network structure
generation methods of PyNN, we would need to call PyNN’s setup method prior to

generating the network.

Next, we set up a data_prefix to prepend the saving of plots and result files from

the current simulation. This prefix is automatically generated based on the simulation

6.4 PROGRAM OVERVIEW 123

start time, run (simulation repetition) number, and data sample indentifier. In this way,

we can automatically tag and save data in a traceable manner for large simulations.

At this point, we must call PyNN’s setup() method to initalise both PyNN and its
interface to our chosen simulation system. Here, we call setup with the parameters

timestep = 1.0 and min_delay = 1.0, to ensure that all simulations run have an
identical time resolution. This is also the minimum time resolution and axonal delay
possible for the SpiNNaker device, ensuring that our simulation behaviour should be

cross-compatible between software and SpiNNaker simulation.

From here, the methods of PyNN are made available to us. Firstly, we initialise a
population of neurons to represent our reservoir. This is the total network size. Here,
we use the cell_params_lif previously shown in Listing 6.1 to define the neuron

properties.

We then set up the parameters of the chosen STDP model. In the case of the NeuCube,
we use a non-homogenous form of STDP, wherein the excitatory and inhibitory
populations have different parameters to ensure that the weight of the inhibitory

synapses is never such that the network is silenced.

Set up excitatory STDP
timing_rule_ex = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)

weight_rule_ex = p.AdditiveWeightDependence(w_min=0.1, w_max=1.0,
A_plus=0.02, A_minus=0.02)
stdp_model_ex = p.STDPMechanism(timing_dependence=timing_rule_ex,

weight_dependence=weight_rule_ex)
Set up inhibitory STDP
timing_rule_inh = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
weight_rule_inh = p.AdditiveWeightDependence(w_min=0.0, w_max=0.6,
A_plus=0.02, A_minus=0.02)
stdp_model_inh = p.STDPMechanism(timing_dependence=timing_rule_inh,
weight_dependence=weight_rule_inh)

L1STING 6.2: Definition of the NeuCube’s Spike-Timing Dependent Plasticity rules
in PyNN.
The inputs are then set up. We use the encoded spike times in the lists created earlier,
and feed one channel each to a number of SpikeSourceArray spike generators,

which are attached to our selected input neurons.

The excitatory and inhibitory populations are then connected together. This step
(Listing 6.3) is somewhat convoluted at first glance. To connect the excitatory popu-
lation to the whole population of neurons (including inhibitory ones), we use the

excitatory_connector list generated earlier. We then repeat the process for the

6.4 PROGRAM OVERVIEW 124

inhibitory neurons with the inhibitory_connector . The difficulty in this operation

is discussed in Section 6.4.3.1.

connected_excitatory_neurons = p.Projection(neurons, neurons,
excitatory_connector,
synapse_dynamics=p.SynapseDynamics (slow=stdp_model_ex),
target="excitatory")

connected_inhibitory_neurons = p.Projection(neurons, neurons,
inhibitory_connector,
synapse_dynamics=p.SynapseDynamics (slow=stdp_model_inh),
target="inhibitory")

L1STING 6.3: Connection of the NeuCube’s reservoir network in PyNN.

Data recorders are then attached to the neuron population. These record spike
timings for all of the neurons in the population, and can also record other properties

such as membrane voltage over time.

At this point, the network is set up, and ready to be loaded into the computational

platform for the actual simulation to be run.
4. Run reservoir simulation

Once the network has been set up, it is a relatively trivial exercise to actually run
the network. We simply call p.run(sim_time) , where sim_time is the length of
the simulation in milliseconds - i.e. the length of each input sample. Internally,
this method loads the network into the simulation platform and executes the actual

simulation (the calculation of spike dynamics over time).

At the end of a simulation, our data recorders will contain the spiking history of the
reservoir, and this can be saved. Additionally, the synaptic weight matrix will have

evolved. This too, can be saved if desired.

We then p.reset() the network. This method resets the network to an initial state;
the internal clock of the network is reset to zero, the neuron membrane potentials
are set back to their resting state, and any spikes in transmission are deleted. The
weight matrix and network structure are, however, retained in memory. Next, we
reset the input spikes to the next pattern, and run the network again. By repeating
these steps, we can perform the unsupervised learning process in the reservoir, as

the weight matrix will be iteratively updated with each sample presented.

This process is simple only for software simulation; in the case of the SpiNNaker
device, the unsupervised learning process is much more involved as the reset

method is not supported. This issue is discussed in Section 7.4.3.2. After the training

6.4 PROGRAM OVERVIEW 125

or validation process is completed, we call p.end() to clean up and free the resources
held by the simulator.

5. Set up output device

The steps discussed in the next two sections will be more general; their implementa-
tion is heavily dependent on the type of output device chosen. There are, however,
some processes in common among all of the possible output devices. From here, we
will use the example of a deSNN classifier, identifying the key steps necessary in

implementing that particular learning algorithm in PyNN and in this context.

This will involve mapping the parameters given in the configuration file to the device;
in the case of a deSNN, this will be the Mod, C, and drift parameters.

The rest of the set up follows the same basic process as that given for the reservoir.
However, instead of generating a large population of neurons, we begin with a single
neuron, with n input neurons (where n is the number of neurons in the reservoir).
This is due to the fact that in PyNN, dynamic generation of neurons is not supported;
i.e. we cannot evolve new neurons on-demand as is required in the deSNN algorithm.
Instead, these new neurons will need to be added to the population in a process
explained in the next section, similar to the manner in which the original population

is generated.
6. Run output device
To actually run and evolve a deSNN classifier in this context is less trivial.

Effectively, we will add one neuron every time a sample is propagated through the
classifier. Recall from Section 3.6.3.2 the basic algorithm. In this learning method, a
new neuron is evolved for each sample, and compared against the current neurons of
that class. If they are sufficiently similar, they are merged. Logically then, we begin
the network with one neuron to represent the first sample. We perform the deSNN

learning algorithm, including the calculation of the PSP and PSP,x.

The synaptic weights are saved, and end() called. For the next training sample, we
reconstruct the original network, with an extra output neuron. The first neuron’s
synaptic weights are restored from our saved version, and the new neuron’s synaptic

weights are generated according to the deSNN algorithm.

The repetition of this process is somewhat inefficient, but as there is no explicit
ability to evolve new neurons in the same architecture, we must work around this

limitation.

6.4 PYNN CobpE ExpPLAINED: MANUAL 3D STRUCTURE 126

It would also be possible to create a full network of neurons (i.e. one neuron per
sample) and simply set the as-yet unused synaptic connections to a weight of 0.
However this is an inefficient method, as we are then incurring an unnecessary
computational cost for the reserve neurons — their dynamics are calculated at each

timestep regardless of whether incoming spikes occur.

Clearly from these last two steps, the implementation of an output device is very
much contingent on the method chosen; however, this example should identify a few

of the key challenges in implementing such an algorithm in this context.

In the following sections, some of these points will be addressed in more detail.

6.4.3 KEey CoDE SECTIONS EXPLAINED

As mentioned in Section 6.4, key sections of the PyNN code worth deeper explanation
will be discussed here. If necessary for context, these will be reproduced; otherwise,

for a listing of the code required to run the NeuCube in PyNN?, see Appendix C.
6.4.3.1 MANUAL 3D STRUCTURE GENERATION

Initially, the 3D structure of the NeuCube was developed using the native PyNN
Structure classes. This provides a concise and efficient representatation of 3D
space in a simulation, and allows access to the native PyNN distance calculation and
connection generation methods. To implement custom network shapes in PyNN, it
is possible to extend the space package’s BaseStructure . We extended this class
to create NeuCubeStructure, which is a generic class designed to load CSV files
containing arbitrary neuronal locations and build a 3D structure from these. See

Appendix C.8 for the Listing of this deprecated method of structure generation.

However, as development continued, and the structures became more complex, the
implementation PyNN provides were shown to be inadequate. Primarily, these
structures were not able to support two populations of neurons within one structure.
This means that the native PyNN structure was unable to represent both excitatory
and inhibitory populations within the same list of 3D neuron locations. To mitigate

this issue, there are two primary options:

1. Generate separate lists for excitatory and inhibitory populations with the

correct proportions

3 Also found online at https://github.com/nmscott/NeuCube_PyNN

https://github.com/nmscott/NeuCube_PyNN

6.4 PYNN CobpE ExpPLAINED: MANUAL 3D STRUCTURE 127

2. Manually implement methods for connection structure, and distance generation

methods.

The simplest option is to split the current neuron location list into two separate lists
— one excitatory and one inhibitory — which proportionally occupy the same space.

However, this is not an effective solution due to a further limitation of PyNN.

As mentioned in Section 3.8.3, PyNN provides a number of connection schemes,
including all-to-all, fixed-probability, and from-file connectors. Perhaps most usefully
for us, it also provides a DistanceDependentProbabilityConnector , which takes
an arbitrary function P(c;;) = F(d;;) where P(c;;) is the probability of a connection
between neurons i and j and F(d;;) is some function of the distance d between neurons

d

i and j. By ‘distance dependent connection probability’ it is meant that P(c;;) oc ™9,

i.e. that the likelihood of a connection decreases as inter-neuron distance increases.

These connection schemes operate within neuronal populations, and are not applic-
able when we have two populations sharing the same space. Typically, this would
not be an issue, as these populations can generally be separated with no loss of func-
tionality. Unfortunately, as the 3D structure of the NeuCube reservoir is meaningful,

we cannot separate the excitatory and inhibitory populations in a structural way.

Therefore, a ‘manual’ (i.e. not native PyNN) connection generation method was
implemented. See Listing 6.4 for the pseudocode of this implementation. This
operates across populations of neurons in the same space. At present, it is written
to calculate distance-dependent connection probabilities both within and between
two populations of neurons, although this could easily be generalised to the multiple

populations of neurons required for a CNGM or for different connection schemes.

This implementation of an exponentially inverse distance dependent connection prob-
ability P(c) between neurons i and j is straightforward, and supported by Gerstner,

Kistler, Naud and Paninski (2014), though in their case autapses are not considered:

—d;; .

e % ifd;; >0

P(cyj) = b Y (6.1)
0 otherwise

Where ps is a probability scaling factor and d;; in this implementation is the Standard-
ised Euclidean distance between neurons i and j. If ps is zero, no connections will be
made, and in the case that p; = 1 the network will be fully connected. The case test
is required to prevent self-referential connections (autapses). If the distance between

neurons is zero, it can be reasonably assumed that they are the same neuron, and

6.4 PYNN CobEe ExpLAINED: JIT COMPILATION 128

therefore P(c;;) should also be zero, unless autapses are acceptable. Removal of this
check would allow autapses if they are required in the model. It would be trivial
to extend this formulation in the case that different connection rules were required
either between or within neuronal populations. A pseudocode implementation of

the process is given below.

for (presynaptic neuron i = 1 to size(input))
for (postsynaptic neuron j = 1 to size(output))

calculate distance;;

if distance > 0
calculate p_connection;; by Equation 6.1
generate random number r € (0,1)
if p_connection > r

add to connected neurons list

L1STING 6.4: Pseudocode implementation of 3D reservoir structure generation.

This calculation provides us with a list of connections, which are based on distance.
In order to represent these distances in a computational model, we employ simulated
axonal delays. In effect, by deliberately delaying the normally instantaneous spike
transmission exhibited in silico, we represent the slower axonal transmission exhibited
in vivo. These delays should be proportional to the axonal length (i.e., the inter-
neuron distance, d;;). However, in the case of some neuromorphic hardware systems,
constraints on such delays are imposed. In both the SpiNNaker and Zheijiang systems,
the maximum axonal delay is 16 ms. Section 7.4.3.1 discusses how these axonal delays

should be calculated in the case where they are constrained by the simulation system.

This method of network generation has a time complexity of O(n?) where n is the
number of neurons, and is therefore not appropriate for large networks. It would
be straightforward to perform this calculation using matrices if larger networks
were required. However, for the network sizes it has currently been applied on, this
implementation is sufficient, and has deliberately been implemented in as straight-
forward a way as possible, for readability and the understanding of the user. Some

performance improvements are discussed in the next section.
6.4.3.2 JusT-IN-TIME COMPILATION OF LARGE LooPs

As mentioned prior, this type of calculation has a rough complexity of O(n?) where n
is the number of neurons. As a result, for large numbers of n the calculation can be

slow.

6.4 PYNN CobEe ExpLAINED: JIT COMPILATION 129

import numba
subsequent lines omitted here

@numba.jit # activate JIT compilation of the following method
def calculate_connection_matrix(self, inhibitory_split=0.2,
connection_probability=0.025):
for i, presynaptic_pos in enumerate(self.positions_list):
subsequent lines omitted here

LISTING 6.5: Simple annotation of Numba JIT to standard Python.

To identify the extent of this issue, profiling on a number of network scales was
performed. Here, the kernprof library* has been used to time the execution of
method calls in the NeuCubeReservoir class, which is responsible for the setup and
operation of the large-scale structured reservoir. An example of such a report is too

long to print here, but a representative copy is available online.’

Firstly, a series of arbitrarily shaped (cuboid) networks at a roughly linear scale with
regard to the network ‘sides’ were generated. These networks were then run three
times each in the PyNN version of the NeuCube, on the Brian simulation platform.
The results of this experiment are shown as the blue (starred) traces in Figure 6.3.
From the results of this experiment, it is clear that the performance of a pure-Python
nested loop for the generation of a network structure is inefficient. This is in line
with the general performance of Python, in that looping operations are generally
slow and should be avoided where possible. However, as our intent here is to make
the operation of the NeuCube as transparent as possible, it is undesirable to move
this calculation to a complex set of vector operations — more efficient though that

may be.

In order to address this issue, we look to performance improvements for native
Python code. The numba library® uses the LLVM’ compiler to just-in-time compile
Python code to native machine operations, bypassing the normal Python interpreter.
As aresult, it is possible to significantly improve the execution speed of mathematical

and looping operations.

The addition of Numba to our system is straightforward. In the simplest case, we
firstly import numba, and annotate the declaration of the method we wish to optim-

ise, as described in Listing 6.5.

*https://github.com/rkern/line_profiler
>https://gist.github.com/nmscott/ec48d0fe2fd6928d5f95
®http://numba.pydata.org/

"http://llvm.org/

https://github.com/rkern/line_profiler
https://gist.github.com/nmscott/ec48d0fe2fd6928d5f95
http://numba.pydata.org/
http://llvm.org/

6.4 PYNN CobpEe ExPLAINED: JIT COMPILATION 130

250 Execution time for Network Structure Generation Loop

~4— JIT Compiled With Numba
—4— Standard Python Loops

Time of Execution in Seconds

0 2000 4000 6000 8000 10000
Network Size in Neurons

(a) Execution time performance increase for the Network
Structure generation loop.

600 Execution time for Varying Scales of Neural Network

~4— JIT Compiled With Numba
—f— Standard Python Loops

Time of Execution in Seconds

0 2000 4000 6000 8000 10000
Network Size in Neurons

(B) Execution time performance increase for whole
NeuCube reservoir system.

FIGURE 6.3: Performance improvements found when applying Just-In-Time com-

pilation to the Network Structure generation loop. Here we see a speedup in both

relative and absolute terms, for the loop itself (Figure 6.3a) and the application as a

whole (Figure 6.3b). In both cases, blue (starred) markers represent standard Python
loops, red (caret) represents those JIT-compiled with Numba.

Our earlier profiling experiment was repeated for this alteration. The results are
shown as the red (caret) trace in Figure 6.3. There is a significant performance increase
found in JIT compilation of this single method. This method executes in around
half of the time of the ordinary Python version, with only one line of code added,
and still operating in native Python code. This performance increase is sufficent

for these scales of networks, but as discussed in the above section, a matrix-based

6.4 PYNN CobpE EXPLAINED: INPUT LOCATION MAPPING 131

implementation should be sought for much larger networks.

The MATLAB (‘M1’) implementation of the NeuCube has not been compared here,
as it functions in a fundamentally different manner, and for a fundamentally differ-
ent application context, to the PyYNN/Python version. The inherent issues in the
implementation of the M1 model alone would be sufficient justification to render a
direct comparison void. Additionally, the PyNN implementations are complicated
by their use of a neuromorphic hardware system to perform the simulations. A
more meaningful comparison would be the difference in performance between the
different simulation platforms utilised by the PyNN implementation; this is presented

in further detail in Section 7.5.
6.4.3.3 INPUT LOCATION MAPPING

Input location selection for the reservoir is of critical importance in the NeuCube,
as it is here that the most significant contribuition to representing the underlying
spatial or spectral distribution of the data is made. However, it is also a difficult task
to map the at-times inaccurate or general input locations into the specific space of
the NeuCube reservoir. If we have a general input location /; which may or may not
have a corresponding neuron location [, € L where L is the list of neuron locations
in the NeuCube reservoir, we need some method of searching for [, (or, at least its

closest match). We can use a data structure called a k-d tree for this task.

In straightforward terms, a k-d tree is an extension on a binary tree, where each
node in the tree is a point in k-dimensional space. More formally, it provides a binary
space partitioning tree-style decomposition for a point set, where the point set can

be of any dimension.

Informed by its introduction in Bentley (1975), the generation of a k-d tree will
be explained in general terms. Non-leaf nodes (i.e. those which have sub-nodes)
can be considered to implicitly generate a splitting hyperplane that divides the k-
dimensional space into two sub-spaces, named in the literature as ‘half-spaces’. Points
to the conceptual left of this hyperplane are represented by the left subtree of that
node, and points conceptually right of the hyperplane are represented by the right
subtree. To choose the hyperplane direction, we associate every node in the tree to
one of the k-dimensions, with the hyperplane perpendicular to that dimension’s axis.
In its worst case, a k-d tree search has a time complexity of O(n) and an average case

O(log n). The worst case is seen only when k — n, i.e. that the number of dimensions

6.4 MATLAB-PYNN INCONSISTENCIES 132

approaches or is greater than the number of elements to search. As we are only

searching in a maximum of three dimensions, we should never reach this worst case.

As we have a relatively straightforward use case (searching a constrained 3D space
for a single point or neighbourhood of points), the optimised function provided in

scipy.spatial.KDTree hasbeen used, which follows the work of Maneewongvatana
and Mount (2001).

Interestingly, as traversing the k-d tree can be thought of as a nearest-neighbour
search with a neighbourhood of one (i.e. a kNN where k = 1), it is trivial to extend
this algorithm to provide an arbitrary neighbourhood size. Instead of searching for
the single closest neuron i in the k-d tree tree to our search location, we can instead
simply select the nearest n locations and discover the neighbourhood of that search
location. This feature has been implemented in the system introduced in this chapter,
although it is not yet in use. This feature may be useful in the future, as it will allow
us to select a neighbourhood of neurons to represent a single input, in much the same
way that an EEG represents an area of cortical activity. This may have an impact
on the performance of the unsupervised learning in the NeuCube reservoir, as it
will increase the number of neurons that are activated with a single input channel.
This may be an effective way to ‘boost’ a weak signal. Exploration of this behaviour,
particularly in the context of spatially-disperse signals such as seismograph data, is

warranted.

6.4.4 INCONSISTENCIES BETWEEN PYNN AND MATLAB VERSIONS

A basic implementation of the NeuCube was intially developed in MATLAB by two
students visiting KEDRI. This version, with a number of additions and improvements,
has subsequently become the de facto prototying and testing system for general
users of the NeuCube framework. It is identified as Module 1 in Figure 6.1, and will

hereafter be referred to as M1.

Unfortunately, due to the expedited manner in which this system was written, the
software exhibits a number of inconsistencies with the supporting theory. The
architecture of M1 here will not be discussed here in any detail, except to say that it
is monolithic and an effort is now being made to refactor this code with modularity

and extensibility in mind, following the principles established in this chapter.

Three primary issues in M1 were identified in the development of this thesis:

6.4 MATLAB-PYNN INCONSISTENCIES: STDP IMPLEMENTATION 133

1. An implementation of the unsupervised learning in the NeuCube reservoir
which diverges from the literature (Section 6.4.4.1);

2. An alternative implementation of excitatory and inhibitory synapses and neur-
ons (Section 6.4.4.2); and

3. A lack of ‘distance’ (axonal delays) in the model (Section 6.4.4.3).

These issues and how they impact the subsequent development of NeuCube models
and behaviours will be introduced here. Inter-module communication (Section 6.3.3)
is also directly affected. Due to the inconsistencies discussed herein, a model trained
in M1 cannot at present be directly transferred to a different implementation of the
NeuCube.

This is not to say that the existing system does not work — simply that it works in a
slightly divergent manner to the way it was intended and described in the theory.
This MATLAB version does produce results in accordance with most of the basic
principles of the NeuCube framework. It is, however, a simplified form of most of
these principles. The behaviours of the MATLAB version will likely be different
to any alternative versions (e.g. the PyNN implementation in Section 6.4) for the
reasons introduced in this section. The NeuCube CoRE architecture in Section 6.6
introduces one way we seek to address this issue in the non-PyNN implementations

of the NeuCube framework.
6.4.4.1 STDP IMPLEMENTATION OF MATLAB VERSION

Unsupervised learning is a key component of the NeuCube framework. The unsu-
pervised learning implementated in the MATLAB M1 version of the NeuCube can
be described as STDP ‘inspired’, rather than a strict implementation of the learning
rule as it is described in the literature. The Python/PyNN version of the NeuCube
introduced in this thesis uses the canonical form of STDP introduced in Section 3.6.1.1

and discussed in the context of the SpiNNaker device in Section 7.4.2.3.

In effect, the learning rule as implemented in the M1 approximates a spike-rate
proportional weight increase, based on the spike rate of the postsynaptic neuron
only. A pseudocode implementation of this alternative learning rule is given in
Listing 6.6. Here we will refer to this as Rate Dependent Synaptic Plasticity (RDSP)

in this section.

6.4 MATLAB-PYNN INCONSISTENCIES: EXCITATION AND INHIBITION 134

For clarity, the updated synaptic weight w’ calculation is expanded here rather than

in the pseudocode,
a

’
w = w;;(f e — 6.2
1](last) f— fagr + 1 ()
where w is the current synaptic weight; ¢ is the current time point; #, is the last

time the postsynaptic neuron spiked; and « is a scaling function.

Of interest to us is the fact that this weight update formula is divergent from that
of STDP (cf. Section 3.6.1.1). That is not to say that it is incorrect: merely that it is

different from the implementation suggested in the literature.

for (presynaptic neuron i = 1 to size(input))
for (postsynaptic neuron j = 1 to size(output))
if connectionjj
Wij(t) = w

LI1STING 6.6: Pseudocode implementation of STDP-style Unsupervised Learning in
M1 Reservoir.

In the case where a model is trained in M1 using this RDSP, an otherwise identical
model trained in the PyNN implementation will converge to drastically different
synaptic weights. Different synaptic matrices will of course lead to different network
dynamics, and would render a model originally trained in the M1 unable to train fur-
ther in alternative implementations of the NeuCube. A mapping of the connectomes
from one module to the other would still be possible, but further cross-platform

training of the reservoir would be meaningless.

Functionally, the results of the training process are similar between the RDSP intro-
duced here and the canonical STDP, with the primary difference in the magnitude
of the weight changes. RDSP will not limit the maximum synaptic weight over the
lifetime of the network, and as a result, a network trained with this algorithm will
most likely have higher levels of spiking activity at the end of a simulation than an

identical network trained with STDP.

6.4.4.2 EXCITATORY AND INHIBITORY SYNAPSES AND NEURON PopuLATIONS OF MATLAB

VERSION

Recall that in biological neural networks, there are two basic types of neuronal
dynamics; excitatory and inhibitory. In basic terms, excitatory and inhibitory neur-
ons increase or decrease the membrane potential of their postsynaptic neurons,
respectively. These neurons act to maintain a balance of activity within the network,

preventing either too many spikes (leading to neuronal saturation), or too few spikes

6.4 MATLAB-PYNN INCONSISTENCIES: EXCITATION AND INHIBITION 135

A I I

() Separate excitatory (top, blue, (B) Combined excitatory (top, blue,
circular) and inhibitory (bottom, circular) and inhibitory (bottom,
red, triangular) populations. red, triangular) populations.

FIGURE 6.4: An illustration of the synapse and neuron population dynamics imple-

mented correctly (Figure 6.4a) in the PyNN version, and incorrectly implemented

(Figure 6.4b) in the M1 version. Note that in Figure 6.4a the neuron spiking beha-

viours between excitatory and inhibitory are uncoupled and may be significantly
different, whereas in Figure 6.4b they are identical.

(leading to a silent network). In biological terms, this is the difference between an
epileptic state or death. This homeostasis is of vital importance in models of SNN,
and is therefore generally included. Typically, we would find that the excitatory/in-
hibitory division of neurons in a large network is on the order of 80% excitatory and
20% inhibitory. In computational models, these are often distributed randomly in the
network, unless following some a-priori biological pattern such as that seen in the

human visual cortex. See Section 3.2 for further details of the biological basis of this

property.

Currently, M1 represents excitatory and inhibitory neurons as one homogeneous
unit. That is to say, a single neuron is both excitatory and inhibitory. This is achieved
through the simple expedient of positively- and negatively-weighted synapses repres-
enting excitatory and inhibitory connections, respectively. Implementing excitation
and inhibition in this manner is not unheard of. For example, see the Zheijiang
University FPGA described in Section 7.2. However, it is certainly uncommon in, and
unsupported by, the established body of theory, with respect to biological plausibility.
See Figure 6.4 for a visual intuition of the principle described here. Figure 6.4b
shows the combined neurons identified in the M1, and Figure 6.4a shows the desired

separate populations as used in the PyNN version (cf. Section 6.4).

Such a simplification leads to an undesirable situation, where a single presynaptic
neuron excites its postsynaptic neurons connected via excitatory synapses and simu-
lataneously inhibits those connected via inhibitory synapses, with identical spike
trains. This means that as a neuron is more excitatory, it is also more inhibitory,

in exactly the same proportions. In turn, this property affects the network’s ability

6.4 MATLAB-PYNN INCONSISTENCIES: 3D STRUCTURE & DISTANCE 136

to self-regulate, as proportionally equivalent excitation and inhibition may not be
desired in the network at that time. Just as significantly, this behaviour affects the
unsupervised training present in the network as it is then learning the wrong spike

trains.

In an ideal case these excitatory and inhibitory neurons would be entirely separate, i.e.
a population of excitatory neurons with only excitatory synapses, and a population of
inhibitory neurons with only inhibitory synapses. Each of these populations would
be connected both within itself, and to neurons in the other population. Generally
speaking, these populations would also have different properties in terms of neuronal

and synaptic dynamics.

This ideal case is in fact how the vast majority of SNN simulation systems, including
networks defined with PyNN, require their networks to be defined. The systems in-
troduced in this chapter, particularly that of the PyNN implementation in Section 6.4,

all use this system of neuronal and synaptic dynamics.

When looking at model portability between NeuCube implementations, this incon-
sistency is an obvious issue. It is impossible to map a trained model developed in
M1 to any other implementation, including the PyNN version introduced prior. Two
possible mitigation strategies for this issue and their inadequacies are discussed

below.
1. Simply map the neurons and their connectome directly;

This is not possible, as there is no ability for a neuron to be simulataneously excitatory
and inhibitory in the vast majority of simulation systems, including those supported
by PyNN.

2. Create two neurons (one excitatory and one inhibitory) in the same physical

location to represent a single M1 neuron;

These new neurons will then have separated the pre- and post-synaptic populations
and therefore have different membrane potentials at different times, leading to the
trained synaptic weights being meaningless and in either case, different spiking

behaviour from the two populations.

Until this oversight is corrected it will not be possible to directly port a model from
the M1 module to the PyNN module, and vice-versa. Section 6.4.3.1 discusses how

these populations should be generated in the future.

6.4 MATLAB-PYNN INCONSISTENCIES: 3D STRUCTURE & DISTANCE

137

t=17

d=14
_ t=2
d=10 d=4

(a) 3D network structure with distance
proportional axonal delays (all other
NeuCube versions)

=0
d=14
t=0 o
— 4 . =0
d=10 { ' d=4

....

(B) 3D network structure without dis-
tance proportional axonal delays (M1
version)

FIGURE 6.5: An illustration of the inconsistency in axonal delay implementations

between the PyNN implementation (Figure 6.5a) and M1 (Figure 6.5b). Blue (solid)

circles represent the physical location of neurons in the network. Red (dashed)

circles represent their positions as they are conceptually located in the simulation.

Axonal delay ¢ should be proportional to the physical distance d of that connection.

In M1, tV = 0, whereas in reality (as in the PyNN version) t o« d. Values of t and d
are arbitrary and for illustration only.

6.4.4.3 3D STRUCTURE AND CONCEPTUAL DiSTANCES oF MATLAB VERSION

A vital aspect of the NeuCube framework is the concept of a 3D, meaningfully struc-
tured network. Without this structuring, the NeuCube is effectively a traditional LSM
with STDP. Typically, in the simulation of spiking neurons, the distances between
the neurons (and therefore, their structure) is represented as a propagation delay
between two neurons. This delay then represents the time a signal should take to

propagate along the length of the axon between pre- and post-synaptic neurons.

Axonal delays are handled differently depending on which simulation platform is
used by your model. In almost all cases, the physical propagation of the signal from
one conceptual neuron to another in silico is negligible — in most cases, less than
microseconds. Actual axonal delays then, must be simulated in the simulation system
in some manner. Typically these delays will be represented by a queue of incoming
spike times (PyNEST, Brian) or rotating buffer (SpiNNaker, cf. Section 7.4.3.1) that
takes the incoming spike time and adds a delay proportional to the axonal distance.
After waiting until this time (to simulate transmission time) the spike is propagated
to the postsynaptic neuron. In this way, a complex 3D structure can be conceptually

represented by a simple series of matrices.

6.5 MATLAB-PYNN INCONSISTENCIES: 3D STRUCTURE & DISTANCE 138

No delays are implemented in networks simulated in M1. This means that conceptu-
ally the neurons have no distance between them, and therefore, no 3D structure. The
3D locations of the neurons are used initially in the generation of the connectome, but
in the actual simulation of the network dynamics spike transmission is functionally
instantanous, i.e. that the postsynaptic neurons universally receive the spikes by the
next timestep regardless of their actual distance from the presynaptic neuron. See

Figure 6.5 for a visual intuition of this issue.

Consequently, the STDP learning in M1 will learn the spike trains for a network of
neurons with effectively instantaneous (and universally equal) spike transmission,

and not those that would represent a network with distance dependent axonal delays.

In the NeuCube versions introduced in this thesis, these axonal delays exist and
are proportional to the distance between neurons. Axonal delays are necessary,
as mentioned above, to functionally incorporate the concept of distance and 3D
structure in these networks. Without this 3D structure, the NeuCube lacks the ability

to conceptually map SSTD in a meaningful way.

Therefore, we cannot directly transfer a model trained in M1 to any of the other NeuC-
ube versions, due to the fact that the trained synaptic weights in such a model are
trained for instantaneous transmission delays, and not distance dependent transmis-
sion delays. The correct method of calculating axonal delays is given in Section 7.4.3.1,

and was also briefly discussed earlier in this chapter, in Section 6.4.3.1.

6.5 PosiTioN oF NEUCUBE M1 MODULE AND ITS FUTURE

Given that a number of issues in the M1 (MATLAB) version of the NeuCube have
been made evident in the previous sections, its position in the development of the

NeuCube - and particularly, its position in this thesis — should be clarified.

The M1 version of the NeuCube is presently the dominant implementation of the
NeuCube as it exists in the literature. This justifies its discussion in this thesis, in the
contexts it has been introduced. We can consider the M1 NeuCube to be a prototype

implementation, with some issues to be rectified.

It is also difficult to make a great deal of direct comparisons between this imple-
mentation and the PyNN implementation introduced in this thesis. Due to the issues
discussed in the previous sections (cf. Section 6.4.4), and the fundamentally differ-
ent computational platforms, we cannot directly compare performance or network

behaviours across implementations other than their direct outputs.

6.6 NEeuCuBE CORE ARCHITECTURE 139

We can reasonably state that while the MATLAB implementation of this system has
a number of identified incosistencies, it is not, as a whole, incorrect. Its effectiveness

in the case studies presented in the literature attest to this.

While the M1 NeuCube is discussed in this thesis and comparisons are made in some
contexts, this implementation is used as a reference only where it is pragmatic and
meaningful. It is not intended that the M1 should be considered a general reference
implementation; in fact, one of the intents of this work is to introduce a more general

purpose and consistent implementation into the literature.

6.6 NEUCUBE ‘CORE’ ARCHITECTURE

We have introduced a number of issues in terms of cross-platform compatability and
implementation differences leading to discontinuities in the dynamics of a NeuCube
model in the previous sections. These challenges, along with the realisation that we
are duplicating efforts and ‘reinventing the wheel’, has led to the conception of the
NeuCube Core system. This system is still in its infancy, and as a result, only an

overview can be given here.

The CoRre is a novel architecture for the efficient implementation of NeuCube systems
across a number of platforms. Developed by the author of this thesis, S. Marks, and
N. Sengupta, the Core is still very much in the planning stages; as yet, no code has
been written. However, it has been developed from first principles to better address
the issues of scaling, extensibility, and multi-platform multi-language support which

the NeuCube will require in future applications.

The basic concept of this approach is the development of a Core® system to provide
the functionality for simulating neuronal and synaptic dynamics in an efficient way.
See Figure 6.6 for a schematic overview of this architecture. This Core will likely be
developed in C++. Access via our typical high-level modelling languages (Python,
MATLAB, etc.) will be provided through language-specific wrappers on the Core APL
Facility for add-on modules such as the CNGM and personalised modelling systems
identified in the greater NeuCube architecture (Figure 6.1) to interface with the model
dynamics calculations in the Core will be provided. A similar facility will be provided
for the immersive visualisation system discussed in Section 4.5.2. At a lower level,
a hardware interface layer will provide support for cross-platform deployment of

NeuCube systems on standard computing hardware (including AWS/Cloud systems

8The terms Core and ‘Core’ are distinct concepts; the Core is the overarching architecture, while
the ‘Core’ is the specific module of that architecture responsible for network dynamics calculation

6.6 NEeuCuBE CORE ARCHITECTURE 140

Language-Specific Wrappers

Matlab Java Python ?
[‘Core’ AP]
{ Hardware Interface] { Neuromorphic Hardware Interface
PyNN ’ [PyNCS ’
AWS / Cloud GPU Cluster Commodity PC 0 0
v v
‘ SpiNNaker ’ cxQuad / ROLLS ’

FIGURE 6.6: Block diagram of the proposed NeuCube Core software architecture.
The central structure is the NeuCube Core, which will provide a thoroughly tested
and optimised development of neuronal and network dynamics for the simulation
of NeuCube architectures, which functionality will be provided through an API. The
topmost boxes are language-specific wrappers for the methods the NeuCube Core
API provides. To the left are the add-on modules such as personalised modelling. To
the right is a direct interface to the immersive visualisation tool. To the bottom we
see the hardware interface layers; these provide control and optimisation facilities
for the CoRrE system on a variety of different hardware systems.

and clusters). A neuromorphic hardware interface layer will pass-through commands
from the API to neuromorphic systems like the SpiNNaker or analog VLSI. It can
therefore subsume the SpiNNaker implementation of the NeuCube introduced in

Section 7.4.

It is our intention that this system will eventually supplant the current development
practices. As evidenced by the issues in Section 6.4.4, there is considerable potential
for mistakes when developing such systems in a siloed manner. There is no sense in
implementing multiple versions of the same neuronal and synaptic dynamics; this
is inefficient, and draws developer attention away from implementing the specific
features they are researching. If the basic features are provided for by the CoRE,
development in this context can move away from this duplicated effort and towards
meaningful new features. This type of system ensures that the network dynamics
are traceable and predictable. We can ensure that a specific extension of the NeuC-

ube utilises identical neuronal and synaptic model dynamics. Additionally, in this

6.7 CONTRIBUTIONS 141

way, if some advances are made to the efficiency or features of the CorE, they are
immediately available to all subsystems. Bug fixes and feature development are eased
through this architecture, particularly when source and version control such as that

identified in Appendix D is applied.

With the theoretical advantages it provides, we identify the expansion and imple-

mentation of this system as a future work of this thesis.

6.7 CHAPTER SUMMARY AND CONCLUSION

In this chapter, a number of major contributions to this thesis have been introduced.
Firstly, an abstract design philosophy for the development of NeuCube systems,
based on the Unix philosophy, is discussed. This philosophy emphasises aspects of
modularity and simplicity in the software we create. With this in mind, we have
then introduced a general software architecture and implementation framework
for the NeuCube systems. This draws on aspects of object-oriented design and
the Template Method, and provides a foundation for the later introduction of a
concrete implementation of this framework. Considerations for integration with
existing systems were introduced, including the use of AER for streaming data. A
realisation of the previously introduced framework using Python and PyNN was
introduced. PyNN has been chosen here due to its straightforward model definition,
cross-platform simulator support, and additionally because it will support certain
neuromorphic systems. This system was comprehensively discussed, including
challenges in its development. Finally, an alternative software architecture for the
integrated development of NeuCube systems known as the Core was introduced,

which is intended to further centralise and speed development of NeuCube systems.

1. The introduction of a specific ‘design philosophy’ for implementations of
the NeuCube architecture.

2. A general architecture for the implementation of NeuCube software systems
in an object-oriented context.

3. A reference implementation of the NeuCube framework developed in PyNN.

4. The identification of a theoretical improvement in the adoption of the
Strategy design pattern, which should facilitate automated optimisation of
the NeuCube.

5. Identification of a research area in the use of a neighbourhood of neurons
to represent one input channel.

6.7

CONTRIBUTIONS 142

. Identification of issues in the MATLAB M1 implementation of the NeuCube

and how this affects the integration with the new PyNN implementation.

. The introduction of the Core architecture for integrated development of

NeuCube systems.

. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,

Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I.,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

. Scott, N. M., Mahmoud, M., Hartono, R., Gulyaev, S., and Kasabov, N. (2015).

Feasibility analysis of using the NeuCube Spiking Neural Network Archi-
tecture for Dispersed Transients and Pulsar Detection. In 13th International
Conference on Neuro-Computing and Evolving Intelligence. February 19-20,
Auckland, New Zealand.

. Scott, N. M., and Kasabov, N. (2015). Feasibility of Implementing NeuCube

on the SpiNNaker Neuromorphic Hardware Device. In Proceedings of the
13th International Conference on Neuro-Computing and Evolving Intelligence.
February 19-20, Auckland, New Zealand.

. Scott, N. M., Kasabov, N., and Indiveri, G. (2013). NeuCube Neuromorphic

Framework for Spatio-Temporal Brain Data and Its Python Implementation.
In Proceedings of the 20th International Conference on Neural Information
Processing, 3—7 November 2013, Daegu, Korea. Springer. doi:10.1007/978-3-
642-42051-1_11

http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://dx.doi.org/10.1007/978-3-642-42051-1_11
http://dx.doi.org/10.1007/978-3-642-42051-1_11

CHAPTER

NEUROMORPHIC HARDWARE IMPLEMENTATIONS

The brain is a monstrous, beautiful mess. Its billions of nerve cells lie in
a tangled web that displays cognitive powers far exceeding any of the
silicon machines we have built to mimic it.

— William F. Altman
(Apprentices of Wonder, 1989)

Neuromorphic hardware as a field of study attempts to model the complex dynamics
of biological neurons in some physical circuit, be it digital or analog. Such hardware-
based implementations of SNN are currently undergoing something of a renaissance,
due to a number of factors. Primary among these is the consideration that the human
brain has a remarkable power efficiency — somewhere on the order of 20 Watts — for

its ability to learn and operate in an uncertain environment.

Certain applications which have for one reason or another become hugely important
in recent times, including neural prosthetics and autonomous robotic control, are
particularly appropriate for SNN. These opportunities are difficult to take advantage
of when we are limited to software emulation of SNN behaviour. Significant concerns
here include power consumption and heat production of such circuits, which are
serious impediments to robotic implementations or implanting neural prosthetics in
humans. Additionally, neuromorphic systems generally operate in real-world time,
which is of interest to us when SNN systems interact with real world stimuli. Here,
it is meant that there is a 1:1 mapping of simulation (device) time to wall-clock time;
i.e. that if we simulate a network for 1 s of device time, this will take 1 s of wall-clock

time to complete.

143

7.1 REVIEW: NEUROMORPHIC HARDWARE SYSTEMS 144

The motivation for this thesis’ interest in such an area is the theoretical applicability
of a framework like the NeuCube in the domains which neuromorphic systems excel;
primarily, where noise-tolerant, adaptive, low power, fast learning is required. In
addition, it is impossible for the developers of such hardware systems to demonstrate
the practical viability of their respective approaches without an effective and com-
plementary learning system. Here, we introduce these main families and in a later

section describe considerations for implementing the NeuCube on the same.

7.1 A REVIEW OF NEUROMORPHIC HARDWARE SYSTEMS

Motivating neuromorphic hardware development are a number of factors. Current lit-
erature suggests that ongoing enhancement of traditional von Neumann architectures
are not likely to reduce simulation runtime significantly, as single and multi-core
scaling face their limits in terms of transistor size (Thompson & Parthasarathy, 2006),
energy consumption (Esmaeilzadeh, Blem, St. Amant, Sankaralingam & Burger,
2011), and communication (Perrin, 2011). Neuromorphic hardware systems are an
alternative to such systems that have the potential to alleviate these limitations.
Their underlying circuits are especially designed to solve neuron dynamics and can
be highly accelerated compared to biological time (Belatreche, Maguire & McGinnity,
2006). The interested reader is directed to the reviews in Indiveri et al. (2011) and
Furber (2016) for further details.

Hardware implementations of neuromorphic systems began at CalTech during the
late 1980’s, in the laboratory of Carver Mead. He was the first to recognise the
ability of transistor-capacitor circuits to accurately simulate the spiking behaviour
of biological neurons. See Mead (1989) for an example of his early work. Since then,
a vast number of different neuromorphic systems have been trialled. Such systems
can be broadly categorised in one of the families of Application-Specific Integrated
Circuit (ASIC), Field Programmable Gate Array (FPGA), or digital systems. Here, we
will introduce these main families and in later sections describe considerations for

implementing the NeuCube on the same.

A visual intuition of these devices (including software simulation on commodity
hardware) with regards to the trade-offs between power consumption and perform-
ance is shown in Figure 7.1, and between power consumption and model flexibility
in Figure 7.2. A tabular comparison has been given in Table 7.1. In general, as the

hardware systems become more specific and dedicated (i.e., towards the direction

7.1 REVIEW: NEUROMORPHIC HARDWARE SYSTEMS 145

High
Analog VLSI
Hybrid Digital-Analog VLSI
SpiNNaker
GPGPU
Power Consumption
High Low
FPGA
. O]
Commodity Computer e
<
8
o
a
Low

FIGURE 7.1: Intuition of tradeoff between power consumption and relative perform-
ance in neuromorphic systems. Depending on the underlying goal of the specific
hardware, relative computational cost for the same network will generally be lower
on lower powered systems, as these have dedicated circuits for the calculation of
neuronal and synaptic dynamics and less process overhead. This of course depends
on the specific hardware device and network chosen. The baseline is shifted to
emphasise that even commodity computing solutions are relatively effective at
simulation of such networks.

of ASICs), both power consumption and computational cost is reduced, with a pro-
portional reduction in the model and network selection choices. For example, a
subthreshold analog VLSI ASIC will have remarkably low power consumption, at
the cost of not being able to change the neuronal model. We note that this is not a
negative characteristic; merely that it is a consideration when making a selection

from the available hardware.

When discussing neuromorphic hardware, it is interesting to mention an unique
constraint. Manufacturing tolerances of analog hardware can account for up to +£20%
variability in network parameters such as the firing threshold, leak rate, and synaptic
weights, which are typically fixed (G. Indiveri, personal communication, April 2012).
This is also the case for the FACETS system (Pfeil et al., 2012) and most VLSI. The

effect of this ‘device mismatch’ is particularly evident as circuit density increases

7.1 REVIEW: NEUROMORPHIC HARDWARE SYSTEMS 146

. High
Commodity Computer
GPGPU
SpiNNaker
Power Consumption
High Low
FPGA
=
= Hybrid Digital-Analog VLSI
.‘.>_'<‘
£
[Analog VLSI
Low

FIGURE 7.2: Intuition of tradeoff between power consumption and relative model

flexibility in neuromorphic systems. Typically, lowered power consumption is

correlated with lower flexibility in terms of model design and selection, as there is a
higher liklihood that such models are specifically implemented in the hardware.

and the relative sizes of the components shrink. However, with normal learning
algorithms, the accuracy of learning is not affected by the asymmetry between
synapses that may come as a result of this hardware variablity as it can be ‘learned
away’. Bear in mind that software simulations typically start with some randomness

in at least their synaptic weights, if not other parameters (cf. Section 3.7.2 and 4.2).

In order to implement these systems with the lowest die (circuit) area and lowest
power consumption, some further constraints are imposed, particularly with respect
to synaptic weights. The synapic weights of FACETS hardware have a 4-bit resolution
(Pfeil et al., 2012). Other networks employ bistable 1-bit resolution synapses (Badoni,
Giulioni, Dante & Del Giudice, 2006; Indiveri et al., 2010). Bistable synapses are
sufficent for memory formation (Amit & Fusi, 1994; Brader et al., 2007; Fusi, Drew &
Abbott, 2005). However, in some cases these models do not only use the spike timings
to calculate the weights (Bi & Poo, 2001; Markram, Liibke, Frotscher & Sakmann,
1997), but also the postsynaptic potential requiring additional hardware (Sjostrom,

Turrigiano & Nelson, 2001). Bistable synapses are supported in computational models

7.1 Review: FPGA NEUROMORPHIC SYSTEMS 147

TaBLE 7.1: Comparison table for key features of the major neuromorphic systems
explored in this thesis. Details for the SpiNNaker and TrueNorth devices are from the
table in Furber (2016), which provides an excellent review of modern neuromorphic

systems.
Platform

Feature SpiNNaker Zheijang FPGA TrueNorth cxQuad
Type Programmable Digital FPGA Fixed Digital Subthreshold ASIC
Neuron model Programmable LIF LIF AJAF
Synapse model Programmable Programmable Binary Mixed
Max # Neurons
— (Per Element) 16K 20438 M 1024
- (Planned System) 460M Not Defined Arbitrary Not Defined
Max # Synapses
- (Per Element) 14M 4.2M 256M 64K
- (Planned System) 460B Not Defined Arbitrary Not Defined
Runtime Plasticity Programmable No No Programmable Biases
Energy Per Connection 10nJ Unknown 25p] Unknown
Routing Model Mesh Multicast Mesh Multicast Mesh Multicast Mesh Multicast
Biological Speedup 1x 1x 1x 1x

as well as in hardware. If the probability of a transition between states is low, and long
term potentiation is balanced against long term depression, optimal storage capacity
in terms of its behaviour as a palimsest is retained, even with two state (bistable)
synapses (Amit & Fusi, 1994; Fusi, 2000). Therefore, this property of the hardware is
not a limitation in theoretical terms. In practical terms, we must be careful when
developing learning algorithms and networks for these hardware systems that they
function correctly with the relevant synapse/neuronal parameter limitations. A
further work identified in this thesis and discussed in Section 7.3 regards this in the

context of the NeuCube.

7.1.1 Fi1ELD-PROGRAMMABLE GATE ARRAY NEUROMORPHIC SYSTEMS

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to be
configured by end users after its initial manufacture. The FPGA configuration is
generally specified using a Hardware Description Language (HDL), and can be
used to implement any logical function that an ASIC could perform. The ability to
update the functionality after shipping, configuration of design aspects and the low
non-recurring engineering costs relative to an ASIC design, offer advantages for
many applications. FPGAs contain programmable logic components known as ‘logic
blocks’, and a hierarchy of reconfigurable interconnects that allow these blocks to
be connected. Logic blocks can be configured to perform complex combinational

functions, or merely simple logic gates like AND and XOR. In most FPGAs, the

7.1 Review: ASIC AND VLS| NEUROMORPHIC SYSTEMS 148

logic blocks also include memory elements, which may be simple flip-flops or more

complete blocks of memory.

Rapid design time, low cost, flexibility, digital precision, and stability are beneficial
characteristics of FPGAs, which are encouraging their exploration as a promising
alternative for designing neuromorphic systems. The general FPGA approach uses
digital computation to emulate individual neuron behaviour, and a parallel and
distributed network architecture with large numbers of chips to implement the
system behaviour. In addition, it is possible to utilise off the shelf FPGAs. While
digital computation consumes more silicon area and power per function than its
analog counterpart, it is high precision, and has greater stability, reliability, and
repeatability, as it is not susceptible to power supply and thermal noise, or device
mismatch (Cassidy, Denham, Kanold & Andreou, 2007). Despite a lower level of
biophysical realism, implementations of non-trivial neuro-biological functions such
as speech processing (Cassidy et al., 2007), autonomous robotics control (de Garis,
Korkin & Fehr, 2001), and detailed models of neural behaviour (Graas, Brown &
Lee, 2004; Pearson et al., 2005) have been demonstrated in FPGAs. FPGA are also
used for monitoring and board IO processes in the SpiNNaker hardware system
described in Section 7.4.1. An implementation of the NeuCube on FPGA is discussed

in Section 7.2.

7.1.2 APPLICATION-SPECIFIC INTEGRATED CIRCUIT AND

VERY LARGE SCALE INTEGRATION NEUROMORPHIC SYSTEMS

Very Large Scale Integration (VLSI) is the process of creating integrated circuits by
combining thousands of transistors into a single chip. Application-Specific Integrated
Circuit (ASIC) devices are customised integrated circuits, designed for a particular
task. Most VLSI ASIC devices (almost everything thought of as a ‘microchip’ or
‘microprocessor’) operate above threshold and are considered digital devices. By this,
they operate at voltages above the gate voltage of the transistors present in the chip,
leading to high precision in the representation of gating and binary data. However,
transistors are also capable of operating in a sub-threshold capacity, and can be
combined in a large scale, the result of which is known as analog VLSI. Remarkably,
certain implementations of these analog designs can emulate the behaviour of biolo-
gical neurons with a very high level of precision. These VLSI circuits operate using
the same physics of computation used by the nervous system; i.e. they are silicon
neuron circuits that exploit the physics of the silicon medium to directly reproduce

the bio-physics of nervous cells (Indiveri et al., 2011), including complex behaviours

7.1 Review: ASIC AND VLS| NEUROMORPHIC SYSTEMS 149

vad
vdd
Xd i vdd
M;
bp— |
5
vmem

_I_Cmem M4

FIGURE 7.3: A circuit diagram of a simple spiking neuron realised in ASIC-style

analog hardware recreated from Indiveri et al. (2011). This particular circuit recreates

the dynamics of the Hodgkin-Huxley neural model. Such circuits are low power

and occupy a small die area, so can be integrated on a massive scale at relatively
low cost.

such as adaptive firing thresholds and Hebbian learning. An example of a single
spiking neuron realised in hardware is shown in Figure 7.3, and an example of a

whole spiking neuron chip (32 AdEx neurons) is shown in Figure 7.4.

VLSI is an important tool for investigating and implementing neural algorithms. It
enables rapid prototyping of neural algorithms for the implementation of theories
on neural computation, structure, network architecture, learning, and plasticity. Due
to its high computational power, neuromorphic VLSI enables implementation of
biologically inspired algorithms in real-time operation. This is of particular interest
for sensory processing systems and biologically-inspired robotics. In the case of the
NeuCube, this is of particular interest when we consider such end-use applications

as BCI and neurorehabilitation.

Analog VLSI is advantageous in areas such as biophysical realism, density of neurons
per chip, and low power, by comparison to digital circuits such as FPGA. It was
shown in Kuon and Rose (2006) that designs implemented on FPGA need on average
40 times as much die (circuit) area, draw 12 times as much power, and are three times
slower than the corresponding ASIC implementations. Analog VLSI systems have
been used for simulation of biologically accurate Hodgkin-Huxley models (Yu &
Cauwenberghs, 2010), neuromorphic vision sensors (Azadmehr, Abrahamsen & Héfli-
ger, 2005; Lichtsteiner, Posch & Delbruck, 2008; Olsson & Héfliger, 2008), and learning

7.1 ReviEw: TRUENORTH 150

- e [olofelolels]s]efelofe]olo] oo (o gol

input [17:13] Bias Generator]30 T
| Jo— . sy s " [
REQ—3| L - N\ % : g
ACK <—]| ; B : =
T 3 A o . N
5 EIRE . « (| E 7] -Bias-Generator =
= 1% = - X R | -

[1 ‘5 H i
| i SRAM [oiEliC B :
z a 8] |8 H o 3 Y a g
il g Q| 32X32 WORDS E e g]
< — 2 a [EACH WORD*= 5bits T3 8 T lu o (= =
_ | g : = I wu
S| ; : o 19} 2 E
< W —H __ g SRAM neural core % |
: NEURAL CORE ™ H | 1024x5-bit 2 =
e e o e v e rerroreeey) | DR R S A 71 © H
: DECODER-X \DECODER-S n =
- L AERIO 1 2] —
Bundled-dam | . e - — -
Lo i async. controller
bualrail ([synapse (JNeuron N NENENARNANRNNEENER 0
(a) Block diagram. (B) Micrograph.

FIGURE 7.4: The hybrid analog-digital SNN chip introduced in Moradi and Indiv-
eri (2013). This chip comprises 32 AdEx neurons, each with 32x4 programmable
synapses.

(Indiveri et al., 2010) among others. This wide range of applications, including the
power and size advantages previously mentioned, indicate that analog neuromorphic
VLSI is a promising area of research. The device discussed in Section 7.3 is one such

area of research.

7.1.3 TRUENORTH

Introduced in Merolla et al. (2014) — where it was the cover of that issue of Science — the
TrueNorth chip of IBM is a result of their engagement in the DARPA SyNAPSE project.
It comprises a wholly digital chip with 4096 neurosynaptic cores interconnected
via an custom communication fabric. This architecture provides roughly 1 million
programmable spiking neurons and 256 million configurable synapses per wafer.
Wafers can be tiled in two dimensions via a communication interface, providing
the capacity to scale the architecture to what they state is an arbitrary size, but
is intended to be somewhere on the order of 10 billion neurons with 100 trillion

synapses total (Merolla et al., 2014).

While a considerable amount of funding (=~ US$50 million) has been awarded to this
project, it has yet to show empirical evidence of viability in realistic applications.
Experiments applying the TrueNorth architecture to a number of different applica-
tion areas (e.g. computer vision, sound recognition) were presented in Esser et al.
(2013). However, these experiments were performed using their ‘Compass’ hardware

simulator running on a standard BlueGene-P commodity supercomputer, and not on

7.1 REVIEW: MEMRISTOR-BASED SYSTEMS 151

the actual TrueNorth hardware itself. The use of hardware emulators for simulations
of this complexity leads to the possibility of markedly different results between those
presented in Esser et al. and identical experiments run on real hardware. While
device mismatch (manufacturing tolerances) are not a significant source of variability
in above-threshold digital systems, no software emulation of a hardware system can
be 100% accurate. However, with this said, the TrueNorth architecture combined
with IBM’s financial and research resources suggests that it will likely become a

viable system in the near future.

7.1.4 MEMRISTOR-BASED SYSTEMS

Memristors, or memory-resistors, are a relatively recent development in neuromorphic
systems. They are considered to be a form of Resistive RAM and were initially the-
orised in Chua (1971), but a physical example was not produced until the work of
Strukov, Snider, Stewart and Williams (2008). A memristor’s electrical resistance
is not constant (as a typical passive resistor) but depends on the immediate history
of current flow through the device. They therefore have a ‘memory’; i.e. they are
non-volatile, as when their current supply is removed, the memristor will remember

its most recent resistance until current is applied again (Chua, 2011).

They are, therefore, perfectly suited for representing bistable synapses in neur-
omorphic VLSI ASIC devices. Typically, synapse weighting in devices such as that
introduced in Moradi and Indiveri (2013) are implemented with transistor gates. This
forms a volatile memory. When power is removed from the device, the device’s
synaptic state is lost. More importantly for low power contexts, this means that
current must be constantly applied when the device is in use, even when it is idle.
The use of a memristor in place of this traditional synaptic memory structure could
theoretically lower the current draw of such devices. By shrinking the die area
required for a synapse due to needing only one component rather than several, it will
potentially increase the density of neurons and synapses on the same die (Gelencsér,
Prodromakis, Toumazou & Roska, 2012). Such devices can be designed to implement
STDP- or SDSP-type learning (Zamarrefio-Ramos et al., 2011). Unfortunately, current
memristive devices suffer from relatively high device mismatch, and as a result may
introduce undesirable characteristics in synaptic dynamics (M. Hu, Li, Chen, Wang
& Pino, 2011).

A crossbar-style synapse array using memristors was introduced in Jo et al. (2010),

where its ability to represent the canonical STDP curve was demonstrated. Indiveri,

7.1 REeviEw: DYNAMIC VISION SENSOR 152

Physical Reality Sensor Representation
Moving Object DVS Outputs
t:
0 b 30 ’ 3
)
h
3 3

FIGURE 7.5: Block diagram of a simplified (4x4 pixel) Dynamic Vision Sensor re-

sponding to a moving stimulus. From left to right, we see: the stimulus (diagonally

oriented bar moving upwards), the DVS, and its AER based responses to the move-

ment at times #; and t,. Dark blue pixels represent positive (excitatory) spikes,

orange pixels represent negative (inhibitory) spikes. Although this figure has been

presented with fixed timesteps, the DVS itself is asynchronous and timesteps are
only imposed when recording input on a digital computer.

Linares-Barranco, Legenstein, Deligeorgis and Prodromakis (2013) introduce a more
effective memristive synapse architecture, which uses different scales of memristors
to emulate realistic biophysical structures. They note in this paper that memristive
devices are uniquely suited to the simulation of spiking neural networks, and are
difficult to implement for traditional real-valued neural networks. The interested
reader to the review in Serafino and Zaghloul (2013) or Indiveri et al. (2013) for

further discussion of memristors.

7.1.5 APPLIED NEUROMORPHIC HARDWARE SYSTEMS

As the underlying concepts of neuromorphic hardware mature, a number of applied
systems have become viable. Of particular interest (given the context of this thesis)
are the Dynamic Vision Sensor and the general concept of neuromorphic prosthetics

control. These will be briefly introduced here.
7.1.5.1 DyNAMIC VISION SENSOR

The Dynamic Vision Sensor (DVS) is a biologically-inspired vision sensor whose
pixels respond asynchronously to relative changes in intensity, much as the human
eye does. Introduced in Lichtsteiner et al. (2006) and improved in Lichtsteiner et al.
(2008) and subsequently in Yang, Liu and Delbruck (2015), the sensor output is an

asynchronous stream of pixel AERs that directly encode scene intensity changes

7.1 REeviEw: NEURAL PROSTHETICS 153

at each pixel. See Figure 7.5 for a visual intuition of this. The DVS is also cap-
able of a much higher dynamic range than normal Complementary Metal-Oxide
Semiconductor (CMOS) cameras, closer to the capacity of the human eye. These
properties are achieved by modelling three key properties of biological vision: its
sparse, event-based output; its representation of relative luminance change (thus
directly encoding scene reflectance change); and its rectification of positive and
negative signals into separate output channels. The DVS asynchronously responds
to temporal contrast rather than absolute illumination. The pixel response is based
on a logarithmic intensity difference (either positive or negative) at that pixel, and is
formulated as

i logl = % (7.1)

dt I
The DVS has pixels that produce an ‘on’ (+) or ‘off’ (-) event signifying quantised
increases and decreases of log intensity since the last event from the pixel. This
is analogous to the functionality of a human eye’s rod photoreceptor, which is
responsive only to changes in relative intensity. It has already been used successfully
for a number of applications, including high-speed robotic target tracking (Delbruck
& Lichtsteiner, 2007) and traffic data analysis (Litzenberger et al., 2006).

In Figure 7.5, we would see that the AER output would be something like

AERout(tl) _ += {(O’ 3)’ (17 2)’ (2’ 1)} (72)

{(1,3),(2,2)}

AERy(f3) = +=1{(0,2),(1,1),(2,2)} (7.3)

-=1{(0,3),(1,2), (2, 1)}

The time resolution has also been simplified in this example. In reality from a typical
DVS we would receive spikes at a 50 ps rate. This is of course with the obvious
caveat that these spikes are asynchronously processed, and time windowing is only
applied by the microcontroller handling the input-output processes required for USB
interfaces with commodity computers. These sensors can be truly asynchronous
when connected to neuromorphic hardware systems like the INI VLSI chips, which
communicate through AER (cf. Section 6.3.3.1). An example of asynchronous visual
data processing using the DVS and INI neuromorphic chips is given in Indiveri et al.
(2015).

7.2 ZHEJNIANG FPGA 154

7.1.5.2 NEURAL PROSTHETICS

MNPs, more commonly known as ‘neural prosthetics’, have the potential to help
restore motor functionality for patients suffering from a wide range of neurological
injuries and disorders. These systems convert the electrical activity measured from
neurons into control signals, which can then be used to guide assistive technologies,
such as prosthetic arms or computer pointing devices (Chestek & Shenoy, 2012).
In this way they are a specific implementation of a BCIL. The electrical activity of
neurons can be acquired from a variety of electrodes. These signals are acquired
using custom electronics. Neural decoder algorithms are then applied to this neural
activity to classify it, and in most cases, approximate movement commands for the

physical prosthetic device the neural prosthetic is controlling.

Neural prosthetics are inspired by a large body of prior literature in basic motor
control neuroscience that identified the relationship of the firing rates of individual
neurons to various movement parameters such as position, velocity, and force (Evarts,
1968; Georgopoulos, Kalaska, Caminiti & Massey, 1982). The first human experiment
using an implantable neuroprosthetic device was described in Kennedy and Bakay
(1998), where electrodes were implanted in a patient who had lost the ability to com-
municate due to amyotrophic lateral sclerosis. The patient was able to voluntarily
modulate the recorded signals. The first two primate experiments demonstrating real-
time control of a computer cursor by an ensemble of neurons in D. M. Taylor, Tillery
and Schwartz (2002) and Serruya, Hatsopoulos, Paninski, Fellows and Donoghue
(2002). Brain Machine Interfaces are the focus of a rapidly growing field, with a wide
range of applications including localisation of seizures in cortex (Leuthardt, Schalk,
Wolpaw, Ojemann & Moran, 2004), and wheelchair or prosthetic limb control (Hoch-
berg et al., 2006; S.-P. Kim, Simeral, Hochberg, Donoghue & Black, 2008). Recently,
attempts have been made to address the oversimplified notion of a linear relationship
between neural activity and end point position or velocity. Non-linear machine
learning techniques such as classical neural networks have been used (Aggarwal
et al., 2008). There is also a movement towards using more biologically plausible
activity decoders (Fagg et al., 2007; Pohlmeyer, Solla, Perreault & Miller, 2007). This
is a potential opportunity to include spiking neural networks, as they are effective
for use on spatio-temporal sequences with non-linear relationships. Appendix A
will introduce an example case study on the classification of neuroinformatics data

which shows the NeuCube is indeed applicable in this domain.

7.2 ZHEJNIANG FPGA 155

7.2 NEeEuCUBE ON THE ZHEJIANG FPGA

Zhejiang University in Hangzhou, China, have recently initiated the development of
a neuromorphic simulation system, based on commercial off-the-shelf FPGA. This
system is still very much in its infancy, and has yet to be formally published or
released. The following details were released in personal communication with the
project leader, Z. Gu (August 2015). Here, we introduce the preliminary steps of a

project to implement the NeuCube on this hardware system.

The system itself provides the capacity for 2048 neurons, with full connectivity over
a 16-bit synapse resolution. Axonal delays (i.e., axonal distances) are supported up
to a duration of 16 time units. These time units are arbitrary and functionally are
tied to the chip’s clock rate, but can be generally assumed to represent 1 ms per unit.
Interestingly, this system supports models defined in PyNN (cf. Section 3.8.3), so in
theory the NeuCube version introduced in Section 6.4 can be applied directly to this

hardware.

The axonal delay constraints should not impose any significant restriction on small-
scale NeuCube reservoirs, as they are to some extent shared by the SpiNNaker device.
See Section 7.4.3.1 for a mitigation strategy developed for the SpiNNaker, which
would be equally applicable here.

Internally, the models defined in PyNN are converted by the FPGA’s support softare
to a basic matrix of connection weights and delays. This matrix already exists
in the JSON-formatted model save files we can generate with the M1 or PyNN
implementations of the NeuCube. It is therefore possible, in the case that we have a
pre-trained reservoir, for us to skip the model definition in PyNN for this particular

device, and simply load these connection matrices.

Unfortunately, this system does not yet support any form of synaptic plasticity (e.g.
STDP or SDSP). We therefore cannot train a NeuCube reservoir or classifier on this
hardware device. This limits the device to acting as a ‘readback’; i.e. no evolution of
the reservoir is possible when it has been translated to this hardware. At this point, it
is fixed, and cannot adapt further to changing stimuli. In certain contexts, this is not
neccesarily a catastrophic issue. If we were to utilise the system in some environment
where we had sufficent inital training data, and knew that the data context in which
it would be applied was relatively static, a system could be trained in software and
deployed onto the FPGA for power savings. For example, consider computerised

fruit quality indication on a mechanised packing line; that set of input data (e.g.

7.3 INI NEUROMORPHIC VLSI 156

individual fruit weights, visual data) would be relatively static and unlikely to require
further on-line adaptation of the system. In the case adaptation was required, a model
could be retrained offline and then redeployed. This is in contrast to the typical
usage case of the NeuCube system, where online evolution of classification ability
is required. Synaptic plasticity (STDP) is planned for this device, but as yet has not

been implemented.

While at present no empirical evidence of this system’s effectiveness is available,
experiments are planned in the future to show the NeuCube’s effectiveness when
applied to such a computational platform. Firstly, we must show that the FPGA based
system behaves acceptably when compared to reference NeuCube implementation
(here, we have chose the M1). To test this, we must develop a version of the reference
NeuCube which fixes its synaptic weights at the end of the initial training phase -
i.e. STDP is replaced with static synapses with those end weights. A network will
be trained to this state, then a copy exported to the FPGA system. Both networks
(M1-fixed and the FPGA) will be run on the same data and their behaviours compared.
Subsequent to this, a version of the NeuCube with applications for real-time robotics

control will be generated and trialled on this hardware device.

This device is a good opportunity to show the NeuCube’s robustness when it is
applied to an environment where it cannot adapt further, and its applicability on
FPGA-based neuromorphic hardware. Additionally, it is a useful proof of the Zhejiang
system’s functionality, and can assist in the validation that both systems behave as

expected.

7.3 NeUCUBE ON THE INI NEUROMORPHIC VLSI

The concept of neuromorphic VLSI ASICs was briefly introduced in Section 7.1.2.
Here, we discuss the considerations for implementing the NeuCube framework on
a specific group of devices currently in development at the INI, a joint research
group within the Eidgendssische Technische Hochschule Ziirich (ETH Ziirich) and
University of Zirich. Two such devices will be discussed here; the 256 neuron
Reconfigurable On-Line Learning Spiking (ROLLS) system presented in Qiao et al.
(2015), and the 9,000 neuron cxQuad system more recently introduced in Indiveri
et al. (2015).

Initially, it was intended that one of the contributions of this thesis would be a NeuC-
ube implementation on these devices. Unfortunately, due to the extended timelines

required for the other contributions and the changes to the platform available, it

7.3 INI NEUROMORPHIC VLSI: CHIP ARCHITECTURE 157

was not feasible to complete this implementation. Instead, here we will discuss the
NeuCube on these devices in the context of a a future development. The contribu-
tions of this section, then, will be primarily theoretical, including a discussion of the
considerations for implementing NeuCube on these hardware devices. Firstly, we
identify the properties of the ROLLS and cxQuad systems, their HDL PyNCS, and
the considerations for implementing NeuCube on them. As our primary interest is

in the cxQuad system for its scale, the ROLLS will be introduced briefly for context.

7.3.1 CHIP ARCHITECTURE

The ROLLS and cxQuad chips are fabricated using a 180 nm 1P6M CMOS process
(Indiveri et al., 2015). Smaller fabrication processes are possible, but have the effect of
increasing device mismatch — i.e. the variabiliy of otherwise fixed parameters such as
firing threshold and membrane leak rates — along with both design and production
cost. This is particularly true when dealing with sub-threshold analog spiking
neurons, as their dynamics are more directly affected by component variability than

above-threshold digital systems.

Both of these devices use the Adaptive Exponential Integrate-And-Fire (AdEx) model
neuron introduced in Brette and Gerstner (2005) and discussed in this thesis in
Section 3.3.7. The model type is a physical property of the circuit, and cannot be
changed. The parameters of these neurons, however, can be changed within some
constraints; most particularly, that they must be homogenous across the chip (i.e.
all neurons share the same parameters), and are altered within the constraints of
the chip biases discussed later in this section. The schematic of the AdEx neuron’s
implementation on both of these chips is given in Figure 7.6. These devices work in

real-time, and are continuously operating when power is applied.

Despite these similarities, the devices in question here differ in a number of key
areas. Here, we briefly highlight the features which will most significantly affect our
implementation of the NeuCube. The interested reader is directed to the introduction
of the ROLLS in Qiao et al. (2015) or the cxQuad in Indiveri et al. (2015) for more

comprehensive and technical discussion of these architectures.
7.3.1.1 ROLLS ARCHITECTURE

The Reconfigurable On-Line Learning Spiking (ROLLS) device comprises 256 analog
AdEx neurons and 133,120 bistable plastic synapses (Qiao et al., 2015). Three synapse

types are implemented in this system, divided between 256 linear time-multiplexed,

7.3 INI NEUROMORPHIC VLSI: CHIP ARCHITECTURE 158

vdd vdd AHP K Vdd
Isyn l dc!o-ql /ACK vdd vdd /ACK
NMDA b—o ahw! Ib—
4 /REQ
Vmem nmda!
b-o ahthr! o-q
INa
I
Iy ldc
B Vmem

W,qi | L O - ﬁ

&

-

_I____D.

LEAK

F1GURE 7.6: Simplified schematic diagram of the cxQuad and ROLLS chip neuron
circuits. Input currents produced by the synapses I, are injected into the neuron
membrane capacitance Cy, in parallel with a programmable constant DC current.
The NMDA block models the voltage-gating mechanisms of NMDA synapses. The
LEAK block models the neuron’s leak conductance. The AHP block models the
generation of the after hyper-polarizing current in real neurons, responsible for
their spike-frequency adaptation behavior. The Na and K blocks model the effect of
Sodium and Potassium channels respectively. REQ and ACK signals represent the
digital voltages used to communicate Address-Events to the output AER circuits.
All signals ending with ‘!” represent global neuron firing variables. The Ijen and
L, currents represent the fast and slow variables in the AdEx model, respectively.
Figure and caption reproduced from Indiveri, Corradi and Qiao (2015).

64,000 short-term plastic and 64,000 long-term potentiated. Learning in these syn-
apses is consistent with the SDSP model introduced in Fusi (2000) and discussed in
this thesis in Section 3.6.1.2. This system is of interest despite its limited number of
neurons as it is an ideal candidate for the implementation of the deSNN learning

algorithm discussed in Section 3.6.3.2.
7.3.1.2 cxXQUAD ARCHITECTURE

The following characterisation is drawn from Indiveri et al. (2015) and discussion with
the developers (G. Indiveri & N. Qiao, personal communication, April 2015). A hybrid
digital-analog system, the cxQuad chip comprises 1,024 neurons with around 64,000
Content Addressable Memory (CAM) programmable synapses divided over four
cores. The synapse and neuronal dynamics calculations are implemented in analog
hardware, with an asynchronous digital communication infrastructure developed

to service the AER-based spike transmissions. This communication fabric extends

7.3 INI NEurRomoRrpHIC VLSI: PYNCS 159

across cores and beyond the chip edge. In this way, a number of these chips can be
joined to scale the device in a modular fashion. Spikes are sent in a multicast fashion
to a maximum of four cores over these digital links, and should pass from chip to
chip in around 15.4 ns. Due to this communication structure, a single neuron can
potentially address up to 1,024 neurons with each postsynaptic spike. However, as

discussed below, each neuron can only receive from 64 presynaptic neurons.

Each chip contains a 16 X 16 matrix of neuron ‘units’, the totality of which is referred
to here as a ‘core’. Each of these contain a single neuron, and a block of 64 incoming
synapses. These synapses can be further subdivided into groups representing fast
and slow excitation and inhibition through the use of the on-chip bias generators,
which are controlled by the user. Each of these synapses is associated with an address
in the AER protocol used, and can only be addressed by one neuron. Therefore, each

neuron can receive presynaptic spikes from a maximum of 64 neurons.

Previously, it was mentioned that the neuron parameters on these devices must be
homogenous; in fact, in the cxQuad this constraint applies only across the core (i.e.
this 256 neuron matrix), not the entire chip. It is therefore possible to have four

populations with distinct properties across each cxQuad chip.

Perhaps the most interesting device at present in the context of the NeuCube project
combines nine of these cxQuad chips onto one board, providing a total of 9,096
neurons and 5,821,440 programmable synapses on the same device. It is this board
which we intend to utilise in the future, as it provides sufficent scale for a typical

NeuCube reservoir at significantly reduced power cost.

7.3.2 PYNCS

PyNCS! is a Hardware Description Language (HDL) interface introduced in Stefanini,
Neftci, Sheik and Indiveri (2014) for the definition of neural network models to
be run on certain neuromorphic ASICs, primarily those developed at the INI. The
syntax of PyNCS is intended to be similar to that of the Brian simulator, with added
considerations for the specific requirements of hardware setup. It may in the future
be possible to integrate PyNCS with PyNN, extending the PyNN interface with
the capability to be run on neuromorphic ASIC devices. This concept is addressed
in Stefanini et al., where it is suggested that while the two interfaces share some
common characteristics, their design philosophies are divergent. In any case, the

design patterns used in the development of the PyNN version of the NeuCube should

Thttps://github.com/inincs/pyNCS or http://inincs.github.io/pyNCS/

https://github.com/inincs/pyNCS
http://inincs.github.io/pyNCS/

7.3 INI NEUROMORPHIC VLSI: CONSIDERATIONS FOR THE NEUCUBE 160

map to the PyNCS version with minimal changes, even without this PyNN-PyNCS

integration.

Both the ROLLS and cxQuad devices support models defined in PyNCS. However,
as the cxQuad system is so new (indeed, at the time of writing the introductory
paper had not yet been presented), a number of other support systems are still in
development. In particular, software to manage the mapping of neurons to chip
locations is not yet released. Without this software, it is not feasible to effectively
partition and place the network components and their respective routing tables
without intimate knowledge of the specific chip architecture. This functionality
is currently in production, and once it is released, we intend to implement the
NeuCube here. Realistically, the development of the PyNCS code should be relatively
straightforward once this mapping system is completed. The challenge to effectively
implement the NeuCube on these devices is in the tuning of the chip biases. This

issue is discussed in the next section.

7.3.3 CoNSIDERATIONS FOR THE NEUCUBE oN INI NEUROMORPHIC VLSI

The most obvious initial consideration for the implementation of the NeuCube on
such a device is the constraints on synapses. Typically in a computational simulation
or even in the case of some digital neuromorphic hardware (e.g. the SpiNNaker) we
have no meaningful constraint on the number and type of synapses used, save for
the tedium of model construction times. In the case of these ASICs however, there

are physical constraints on the number and behaviour of these synapses.

Most particularly, in the case of the cxQuad they are one of four types; fast or slow
excitation or inhibition. The synapse type is set using two of the 25 biases each core
can be controlled by. These synapses do not have a ‘weight’ as in traditional synapses
— their dynamics are controlled entirely by their bias setting. Learning can therefore
be implemented in a limited manner by altering the synapse type. This would
certainly result in a different network behaviour to an otherwise identical network
modelled in software, as the implementation of the unsupervised learning phase of
the NeuCube would therefore be different. We should be aware that these network
dynamics would be different, possibly leading to different training and classification
behaviour. This issue would make it difficult to directly map a pre-trained model

from or to this device, in much the same way as is discussed in Section 6.4.4.

Synapses are also limited to 64 incoming per neuron. This is a physical property of

the chip, and cannot be changed. Smaller numbers of synapses may be used, but

7.3 INI NEUROMORPHIC VLSI: CONSIDERATIONS FOR THE NEUCUBE 161

this is the upper bound. Whether this is sufficent depends entirely on the reservoir
implemented and the particular data context in which the system will operate. Recall
that a reservoir’s pattern separability and memory increase with larger numbers of
synapses. It may be that 64 incoming synapses is insufficient for a particular type of
highly-complex data; unfortunately, it is difficult to ascertain ahead of time whether
this is the case, as is discussed in Section 5.2. Recall that a typical human neuron
has on average 1,000 incoming synapses. In the case that we were intending to
perform a simulation of this type of network, the choice of this particular hardware
device would therefore likely be sub-optimal. The minimum number of synapses a
NeuCube has been run with at present is 100; it is a necessary future work to verify

the NeuCube’s behaviour and performance under this constraint.

Similarly, there is a structural constraint on the number and type of neuron used. In
a computational simulation we have complete freedom to use any neuron model we
choose, provided that we have sufficent computational power to support it. In this
case, our choice of neuron is fixed by the nature of the circuit which models it. We
must show that the NeuCube can function in a satisfactory manner using the AdEx

neural model prior to its application on this device.

Additionally, we must show that the NeuCube can function with a limited number
of these neurons. This second issue is less pressing; contemporary applications of
the NeuCube have used a maximum of around 5,000 neurons, and this framework
shows excellent results with significantly fewer (cf. Appendix A). As the scale of the

NeuCube grows, this may be a consideration in the future.

Due to the fact that these devices operate in continuous real-time, they are ideally
suited for application in areas such as BCI or robotics control. The formulation of
the NeuCube framework does theoretically support continuous-time operation of
both the reservoir. Some output devices including the SPAN classification algorithm
also support a continuous formulation, and as such, it is feasible that the NeuCube
framework could be implemented in this context in the future. Additionally, the
extremely low power draw of these devices compared to even the SpiNNaker or
Zhejiang FPGA systems (on the order of 945 uW in a worst-case) is ideally suited for

application in low-power environments such as prosthetics control.

In order for us to exploit these properties, we must carefully select both our NeuCube
framework components, and our application context. For example, it is likely mean-
ingless to model a financial time series in such a system. However, the application

of a BCI is admirably suited. Applications of the NeuCube on these devices should

7.4 SPINNAKER: NEUCUBE ON THE SPINNAKER 162

primarily be chosen to take advantage of the key benefits of such systems; extremely
low power consumption, continuous- and real-time operation, and interoperability
with AER-based sensor or communication systems. Furthermore, as stated, it is
necessary to show that the NeuCube is indeed still effective under the constraints
that such systems impose. To this end, a software simulation of the NeuCube using
the AdEx will be implemented, and comprehensively explored. This implementation
will also explore the effectiveness of the defined synapse dynamics. In doing so, we
should establish a baseline for expected network behaviour which can be used in
tuning the chip biases, and ensuring that the network behaviours are meaningful

and reproducible.

The applicability of the NeuCube framework to such a computational platform is
obvious. Taking as given that the above experiments are satisfactory, in the near
future a NeuCube implementation for the cxQuad system will be developed and

applied to different contexts, including for real-time adaptive BCL

7.4 NEUCUBE ON THE SPINNAKER

One of the most signficant contributions of this thesis is a massively-scalable, high-
performance implementation of the NeuCube on an emerging neuromorphic hard-
ware platform: the SpiNNaker. Using this system, NeuCube reservoirs can now be
scaled up to arbitrarily large numbers of neurons and synapses. Additional to the
scaling, the same network simulated on a SpiNNaker device will utilise an order of
magnitude less electrical power than a standard commodity computing simulation,
and run at a guaranteed constant wall-clock speed. By this, it is meant that a simula-
tion with 1,000 neurons or 100,000 neurons run for the same simulated time will take

the same real-world (wall-clock) time to complete, regardless of their network size.

This ability is necessary going forward with the NeuCube. As the problem domains
in which it is applied become more complex, and the data volume we deal with
becomes larger, it is necessary to scale the model up in terms of reservoir size. It is a
well established property of SNN that memory capacity increases with the number
of synapses, and so too does the network’s non-linear pattern separability (Kasabov
et al., 2005b). Correspondingly, we therefore need a scalable computational platform.
Our motivation for utilising neuromorphic systems in general to solve this issue
was established at the beginning of this chapter. Our motivation for utilising the
SpiNNaker specifically, will be explored in this section. Its primary advantages

for the NeuCube are that it provides an arbitrarily scalable, low power, adaptable

7.4 SPINNAKER: THE SPINNAKER DEVICE 163

computational platform which is relatively straightforward to develop for. This last
factor is, in the context of the NeuCube, its strongest benefit when compared to the

ASIC and FPGA systems introduced in Sections 7.3 and 7.2 respectively.

A brief discussion of the feasibility of implementing the NeuCube on Spinnaker was
previously published in Scott and Kasabov (2015), and in Kasabov et al. (2015).

Here, the SpiNNaker device and its place in the current literature is explained.
Secondly, in Section 7.4.2, some of the most significant considerations for implement-
ing the NeuCube on this hardware, and how this may affect more complex networks
as we iterate on the basic NeuCube framework are discussed. In Section 7.4.3, ne-
cessary changes to the PyNN version of the NeuCube introduced in Section 6.4 are

defined, in order to run it on the SpiNNaker.

7.4.1 THE SPINNAKER DEVICE

SpiNNaker is a general-purpose, scalable, multichip multicore platform for the real-
time massively parallel simulation of large scale SNN, developed as part of the
European Union Human Brain Project (Furber, 2012; Furber et al., 2013; Rast et al.,
2010). Each SpiNNaker chip contains 18 subsystems (‘cores’ here) responsible for
modelling up to one thousand neurons per core. The architecture of these cores can
been seen in Figure 7.7, while the architecture of the chips themselves is given in
Figure 7.8. These chips are connected to each other using six asynchronous links
per chip, arranged hexagonally. For an intuition of this connection structure, see
Figure 7.9. Spikes are propagated using a multicast routing scheme through packet-
switched links. SpiNNaker is a Globally Asynchronous Locally Synchronous (GALS)
system with processor nodes residing in what are termed ‘synchronous islands’,
surrounded by the light-weight, packet-switched asynchronous communications
infrastructure. Two SpiNNaker versions are available for the work in this thesis; a
small 4-node board, and a full-size 48-node board which are subsequently referred
to as the SpiNN-3 and SpiNN-5 types respectively. The differences between these

versions are explained in more detail later in this section.

The philosophy behind the system assumes that processors are ‘free’: the real cost of
computing is energy. In fact, this is borne out in commodity computing systems as
well, as the lifetime cost of power to run a commodity supercomputer is typically
one to two orders of magnitude higher than the inital cost of the hardware (Feng,
2003; Storlie et al., 2014). Low power ARM968 cores have been utilised to greatly

enhance power efficiency at the cost of some performance (Furber et al., 2013).

7.4 SPINNAKER: THE SPINNAKER DEVICE 164

To Router Interrupts
S t
s N s v A
Communication PL190 VIC
Controller Interrupt
S) § Controller J
4 ™\ - ~
Dual 32-Bit
Timers
N\ J
N
ARM968 CPU) ITCM
‘ (32 KB)
J
s N
~ 7 DTCM
(64 KB)
P
DMA Controller 1
|) J

¥ To System Bus and SDRAM

FIGURE 7.7: Block diagram of the architecture of a single SpiNNaker core. Each
SpiNNaker chip contains 18 of these. Each core has 32 KB of Instruction Tightly-
Coupled Memory and 64 KB of Data Tightly-Coupled Memory, and a dedicated
Direct Memory Access controller for both these and the whole-chip SRAM. These
custom components surround a standard 200 MHz ARM968 processor.

The physical hierarchy of the system has each node containing two silicon dies: the
SpiNNaker chip itself, and the SDRAM, which is physically mounted on top of the
SpiNNaker die and wire-bonded to it. The nodes are packaged and mounted in a
hexagonal array (Figure 7.9) on a PCB. The full system requires 1,200 such boards. In
operation, the full SpiNNaker will consume at most 90 kW of electrical power (Furber
et al., 2013; Sharp, Galluppi, Rast & Furber, 2012). The maximum draw for a single
SpiNN-3 is 5 W, and for a single SpiNN-5 around 72 W. This is advantageous when
compared to the same network run on a commodity computer which would typically
be on the order of 400-600 W. In simulation, Sharp et al. report the SpiNN-5 consumes
100 nano-Joules per neuron per millisecond and 43 nJ per postsynaptic potential, the
smallest energy consumption reported for any digital computer simulation of SNN.
Of course, the subthreshold ASICs of Indiveri et al. are on the order of pico-Joules
per postsynaptic potential, but with the consideration that they are less adapable.

The system typically runs in real-time (i.e. that 1 ms wall clock time = 1 ms simulation

time), which means that it is feasible to implement interactive applications that

7.4 SPINNAKER: THE SPINNAKER DEVICE 165

Inter- chip Links
4(SW) 3(W) 2(N) 1(NE) o0(E)

L1 1]

v N
Router
j:;|corc O * * o
N
System Bus

I |-

[SDRAM (128 MB)] [Peripherals]

1

Ethernet GPIO

F1GURE 7.8: Block diagram of the architecture of a single SpiNNaker chip. Each chip
contains 18 SpiNNaker cores (cf. Figure 7.7), a whole-chip router, and system bus to
the peripherals and shared 128 MB SDRAM.

can inject spikes or change synaptic weights online (Galluppi et al., 2010). This is
particularly useful for the NeuCube, as it means that we can implement the learning
rules in a generic model and run this on the SpiNNaker hardware in real-time. The
architecture is also such that it performs best when neural connections exhibit some
kind of locality (Jin, Rast, Galluppi, Davies & Furber, 2010). It is noted in that same
paper that distance-dependent connectivity is optimal for the SpiNNaker system.
Our small-world lambda-distance connectivity is perfectly suited to this architectural
constraint. In addition, even though the chips are connected hexagonally, a standard
Cartesian coordinate system is suitable for these connections (Khan et al., 2008). The
SpiNNaker also implements a form of STDP between its connections (Jin et al., 2010),

further reinforcing its suitability for a platform to implement NeuCube on.

Applications can be programmed for SpiNNaker using a version of the high-level
neural modelling description language known as PyNN, which has been discussed
prior in this thesis (¢f. Section 3.8.3). The SpiNNaker interface of PyNN first in-
troduced in Galluppi et al. (2010) is now known as sPyNNaker, and is in fact a
reimplementation of PyNN in the context of the SpiNNaker. See Section 7.4.2 for

7.4 SPINNAKER: THE SPINNAKER DEVICE 166

1

Chip (0,1) 0 fe=»| Chip (1,1) —

! Chip (0,0) —> Chip (1,0) —

Vo T

FIGURE 7.9: Block diagram of the SpiNNaker chip interconnection fabric. Each block
represents one SpiNNaker chip (cf. Figure 7.8). The conceptual ‘North’ of the chip
orientation is noted. Dotted lines represent conceptual ‘wrap-around’ links; i.e. the
East-most connection of chip (1,1) is connected to the West-most connection of chip
(0,1). We label the hexagonal interchip links anticlockwise from East. These numbers
signify the link number identified in Figure 7.8. Chips are addressed using their
Cartesian coordinates from bottom left. Using this connection fabric, an arbitrary
number of chips can be connected together in a relatively simple way.

further discussion of the sPyNNaker software and challenges developing for it. It
is intended that a generic model description written in PyNN (sPyNNaker) can be
implemented transparently (to the user) on the SpiNNaker hardware just as it would
be on a commodity desktop, although this is not necessarily the case when dealing
with more complex models like the NeuCube. Alterations to the original PyNN code
introduced in Section 6.4 in order to run it efficiently on the SpiNNaker are discussed

in Section 7.4.3.

At start-up, the cores each bid to be elected to a special role as a Monitor Core and to
thereafter perform system management tasks. In a typical case, 16 cores per chip are
used for the actual simulation, and the remaining core is reserved as a spare for fault
tolerance and to account for manufacturing yield problems. As previously mentioned,
inter-processor communication is based on a multicast infrastructure. These packets
are source-routed; i.e. they only carry information about the issuer and the network
infrastructure is responsible for delivering them to their destinations (Furber et al.,
2013).

O 0 1 O\ U W=

—_
o

7.4 SPINNAKER: THE SPINNAKER DEVICE 167

In the SpiNNaker context, a network is treated as a graph; neurons are vertices, and
synapses are edges. These are futher decomposed into sub-vertices and sub-edges
when generating the machine-level representation of the network. These sub-vertices
are broken down so as to be handled by a single core. This is termed partitioning.
Each sub-vertex is allocated to a core on the SpiNNaker, known as placement. The
edges of the graph — here, representing synapses — between these sub-vertices are
translated into routing tables for the multicast ‘spike’ packets, thereby mediating

neuronal communication. These are written directly to each chip.

The basic algorithm for a single simulation, therefore, is straightforward:

create network description
partition and place network graph
generate machine files
load files
simulation:
synchronise simulation start on all cores
simulate network
end simulation
readout results
cleanup and post-processing

L1sTING 7.1: Pseudocode algorithm of the control process of a single simulation run
on SpiNNaker.

SpiNNaker is particularly interesting because of its hybrid nature; it draws some
inspiration from more dedicated neuromorphic hardware systems, but all of the model
and synaptic dynamics are performed in software. This means that it is theoretically
an universal platform with respect to SNN simulation; no models are fixed in hardware
(Khan et al., 2008). Interestingly, this not only means that it can handle networks
of heterogeneous neurons of the same model type, but incorporate networks of
heterogeneous model types in the same simulation. In fact, such an experiment
was shown in Rast et al. (2011), where a network of both LIF and Izhikevich model
neurons were simulated. This feature is of interest when applied to the NeuCube,
as it means that different neuronal types can easily be incorporated into the same
NeuCube model depending on the specific task, and the model can be adapted rapidly
to the same. In the same way, we can also use the SpiNNaker device to model other
neuromorphic hardware implementations; for example, with a network of AdEx
neurons with binary synaptic weights, we can simulate (to some reasonable degree
of behavioural accuracy) the dynamics of the same network implemented in the
INI neuromorphic ASIC. This is also possible in software simulation on commodity

hardware, of course, but implementing such a meta-simulation on the SpiNNaker

7.4 SPINNAKER: THE SPINNAKER DEVICE 168

would allow us to model much larger networks of other neuromorphic hardware

systems than would otherwise be feasible.

A rough estimation for the number of LIF neurons a single core on a single chip
can manage in real time is 256 without STDP, and around 128 with STDP. This is
contingent on a number of factors, including the complexity of the learning model
and the number of incoming synapses. More synapses, and more compex synapses
(i.e. those with learning) will reduce the maximum number of neurons per core
proportionally. This limitation is due to the memory structures used at present in
the software underlying SpiNNaker, and is intended to be improved to roughly 1,000
neurons per core in later iterations of the software. The maximum number of neurons
per core was reported in Serrano-Gotarredona, Linares-Barranco, Galluppi, Plana
and Furber (2015) where a convolutional neural network of traditional real-valued
neurons was was developed with 2048 neurons per core. This is an exceptional case,
as convolutional neural networks can been implemented to share synaptic memory,
so the computational cost can be significantly lower than using the unique synapses

seen in most neural network models.

At present, there are two SpiNNaker boards available to users. The ‘102 machine’,
here referred to as the SpiNN-3, is the 4-node circuit board shown in Figure 7.10. It
contains 72 SpiNNaker cores over four chips, which will typically be deployed as
64 application cores, 4 Monitor Processors and 4 spare. These chips are capable of
a current theoretical maximum network size of around 16,384 neurons simulated
in real time. This requires a 5V 1A (5W) supply, and can in theory be powered
from some USB ports. The control and IO interface is a single 100 Mbps Ethernet
connection. There is limited provision for connecting cards together with SpiNNaker

links to form larger systems or to other hardware systems like the DVS.

The other board currently available is the 48-node board shown in Figure 7.11, here
referred to as the SpiNN-5, which comprises 864 SpiNNaker cores over 48 chips.
These are typically deployed as 768 application cores, 48 Monitor Processors and 48
spare cores. This board requires a 12V 6 A (72 W) supply. These chips are capable of
a current theoretical maximum network size of around 196,000 neurons simulated in
real time. The control interface is two 100 Mbps Ethernet connections, one for the
Board Management Processor and the second for the SpiNNaker array. There are
options to use the six on-board 3.1 Gbps high-speed serial interfaces (using SATA
cables, but not necessarily the SATA protocol) for I0. The IO limitation is currently
an issue for non-trivial networks. As discussed in Section 7.4.2.2 and Section 7.4.3.2,

mode] IO times are much longer than the actual simulation run times.

7.4 SPINNAKER: SIGNIFICANT DEVELOPMENT CONSIDERATIONS 169

T
4587

F1GURE 7.10: Photograph of a SpiNN-3 4-Node SpiNNaker board. The black chips

in the centre are the four SpiNNaker chips each providing 18 SpiNNaker cores. A

single Ethernet port are seen in the bottom left for board management and low
speed IO.

These SpiNN-5 boards can be connected together to form larger systems using the
SATA links. This is the basis for the construction of the eventual full configuration

of SpiNNaker devices, modelling one billion neurons in real time at around 70 kW.

Early in this thesis, a SpiNN-3 board (Figure 7.10) was recieved on long-term loan from
the APT group. This board presently is used for protoyping and testing of models prior
to deployment on the larger SpiNN-5 board (Figure 7.11) KEDRI has subsequently
purchased. In the following subsections, some of the challenges encountered when
working with this device, and a number of specific behaviours for developers of

NeuCube systems to consider will be discussed.

7.4.2 SIGNIFICANT DEVELOPMENT CONSIDERATIONS

In developing for the SpiNNaker device, we must take a number of factors into
consideration. While the SpiNNaker provides a number of advantages in terms
of power cost, performance guarantees, and so on, our use of this device must be

a mindful one; there is, unfortunately, ‘no free lunch’. Particular concerns when

7.4 SPINNAKER: SIGNIFICANT DEVELOPMENT CONSIDERATIONS 170

FIGURE 7.11: Photograph of a SpiNN-5 48-Node SpiNNaker board. The topmost three
chips are Spartan-6 FPGA responsible for board IO management. The black chips in
the centre are the 48 SpiNNaker chips each providing 18 SpiNNaker cores. Around
the edges we see nine SATA ports for board interconnection and IO processes. Two
Ethernet ports are seen in the bottom left for board management and low speed IO.

developing for this system can be separated into two primary areas; the relative

immaturity of the system, and its architectural constraints.

By relative immaturity, we refer to those concerns discussed in Section 7.4.2.1, where
it is made clear that the SpiNNaker is still very much in development. Some key fea-
tures remain to be implemented due to the fact that it is a new simulation ecosystem,
and that developer attention is currently being paid to their primary users — com-
putational neuroscientists. However, it must be said that this system is developing

rapidly.

By architectural constraints, those issues raised later in this section are meant, where
the limited IO speeds, and the stochastic nature of simulations performed on it, are
discussed, among others. Such constraints can affect the behaviour of a simulation
run on this hardware, when compared to an identical simulation run in software. In
addition, it may require structural changes to the simulation (e.g. mean spike rate,

number of synapses per neuron).

7.4 SPINNAKER: CoDE AND EcosYySTEM MATURITY OoF SPINNAKER 171

Our decision to use the SpiNNaker device must be informed by these factors. Intro-
duced here will be the most significant considerations towards implementing the
NeuCube on a SpiNNaker device, and how these have affected the implementation

introduced in this thesis in practice.
7.4.2.1 CobDE AND EcosySTEM MATURITY OF SPINNAKER

A key example of the relative immaturity of the SpiNNaker support ecosystem is
given in Section 7.4.3.2, wherein a significant challenge faced when attempting to loop
the same simulation with different inputs is discussed; remarkably, this is currently a
non-trivial exercise in the SpiNNaker. Section 7.4.3.1 discusses an issue encountered
when initially setting up a network, and the constraints on network definition in the
existing software. In this secondary case, this issue is shared by both native PyNN
and the sPyNNaker port.

Here, we will briefly describe here a representative example of one of the significant
issues faced in developing the NeuCube for the SpiNNaker platform. This particular
issue would cause the device to crash on initialisation of a network, when scaling
high-resolution (32 bit floating-point) synaptic weights into the alternate resolution
(32 bit fixed-point) supported by SpiNNaker.

In the generation of synaptic weights for a NeuCube reservoir, the current PyNN
implementation randomly intialises these with a Gaussian distribution?, the charac-
teristics of which depend on the neuronal type (c¢f. Appendix C.3). For excitatory
connections the distribution’s y = 0.5 and ¢ = 0.3, and for inhibitory connections y =
0.4 and o = 0.2. These weight distributions follow the generally accepted practice of

excitatory connections being stronger than inhibitory ones.

It is theoretically possible for connection weights to be very close to zero, and outside
of the range of synaptic weights that the SpiNNaker will support. In a general case,
it is also possible for the synaptic weights to be significantly different in magnitude.
In any case, weights are scaled during the simulation preparation phase of the
SpiNNaker support software, with no intervention by the user. In the case that this
weight scaling reduces some small values to zero, the system should automatically
warn the user that this scaling has occurred. In the case of the early sPyNNaker
code, this warning was implemented as an Exception. When this condition was

reached, the Exception would be raised unhandled, and the system would crash.

_e=p?
2

2Using the common formulation of the Gaussian distribution, p(x) = \/27176 20

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

7.4 SPINNAKER: CoDE AND EcosYySTEM MATURITY OoF SPINNAKER 172

This particular behaviour is undesirable, and needed to be rectified in order to run a

NeuCube reservoir on this system.

The issue described was identified as being caused by the Exception shown in List-
ing 7.2. Subsequent to consultation with the members of the SpiNNaker development
group, it was determined that the changes shown in lines 101-104 of the same Listing
were sufficient for a short term fix. This issue has subsequently been corrected
permanently in the April 2015 release® of the sPyNNaker system. It now shows a

non-halting warning, as desired.

def get_packed_plastic_region(self, synapse_row, weight_scales,
n_synapse_type_bits):

mwon

Gets the plastic region of the row as an array of 32-bit words

Convert per-synapse type weight scales to numpy and

Index this to obtain per-synapse weight scales.

weight_scales_npy = numpy.array(weight_scales, dtype="float")
synapse_weight_scales = weight_scales_npy[synapse_row.synapse_types]

Scale weights
abs_weights = numpy.abs(synapse_row.weights)
abs_scaled_weights = numpy.rint(

abs_weights * synapse_weight_scales).astype("uintl6")

Check zeros

zero_float_weights = numpy.where(abs_weights == 0.0) [0]
zero_scaled_weights = numpy.where(abs_scaled_weights == 0)[0]
B oo

Removed by NS 03-MAY-15 at the suggestion of JK to correct
for the issue where intialisation crashes when scaling

weights - this should only be a warning, not an Exception

#1f (zero_float_weights.shape != zero_scaled_weights.shape or
(zero_float_weights != zero_scaled_weights).any()):

raise Exception(

"Weight scaling has reduced non-zero weights to zero")

Rest of method omitted

L1STING 7.2: Alterations in SpiNNaker API file plastic_weight_synapse_row_io.py to
ensure that synaptic weight scaling would no longer cause a failure of the SpiNNaker
board boot sequence.

This state had not been reached prior in ‘normal’ operation, as the applications
previously run on the SpiNNaker device had not required the specific connectome
of NeuCube reservoir. Due to the relatively recent introduction and corresponding

low level of maturity of the software ecosystem supporting the SpiNNaker, time was

Shttps://github.com/SpiNNakerManchester/sPyNNaker/releases/tag/2015.004

https://github.com/SpiNNakerManchester/sPyNNaker/releases/tag/2015.004

7.4 SPINNAKER: |O LIMITATIONS 173

lost in the development of mitigation strategies for missing features. A number of
key features required for the development of the NeuCube (including synaptic state
readout) were not available until late in the development process of this thesis. For

further examples, see the following Sections 7.4.3.1 or 7.4.3.2.

This software ecosystem is quickly improving; a number of the issues introduced
here and in later sections are merely indicators of the fact that the SpiNNaker device
is new and rapidly evolving. Additionally, the NeuCube is one of the few systems
which applies the SpiNNaker in a context other than computational neuroscience.
They are mentioned only due to their impact on the development process of the
NeuCube, and are not intended to imply that the SpiNNaker system is somehow

insufficient. In time, the issues raised here will be rectified.
7.4.2.2 10 LIMITATIONS

Currently, Input-Output (IO) speeds on the SpiNNaker device are limited. As previ-
ously discussed, IO between the device and the host computer is presently mediated
by a 100 Mbps Ethernet link. In practice, the actual IO speed is around 30 Mbps,
when processing on the SpiNNaker is taken into account. This is equally true for
both the SpiNN-3 and SpiNN-5 boards. As a result, model saving and loading is slow
(cf. Section 7.4.3.2) and high-speed input data streaming from a host computer is
not realistic. It is possible to stream high speed, asynchronous spike data from a

neuromorphic device compatibile with the FPGA headers available on the SpiNN-5.

This issue limits our possible areas of exploration for the NeuCube on this compu-
tational platform. For example, the application context introduced in Appendix B -
where we approach the classification of very high speed radioastronomy data using

the NeuCube on a neuromorphic system - is not feasible with such low IO speeds.

There are options to use the SpiNN-5’s on-board 3.1 Gbps SATA interfaces for IO.
Recall that these links are intended to be used in connecting the devices together
to form the large toroidal network. However, only five of these links per device are
technically necessary for this, leaving four free for general purpose I0. The software
configuration of the on-board FPGA for these links to be used in this way does not
yet exist, and in addition, they would most likely require some custom interface

hardware for the host computer.

A custom solution for this host device interface through SATA, used for streaming
DVS sensor data over one of the SpiNN-5’s SATA links, has been developed by the

7.4 SPINNAKER: STDP IMPLEMENTATION 174

University of Seville. Introduced in Iakymchuk et al. (2014), this ‘infrastructure card’
device uses a RaggedStone* FPGA development board containing a Spartan-6 FPGA,
identical to those used in the SpiNN-5 device. A custom interface card from whatever
input device we desired would need to be built and linked to this infrastructure card,
which is then responsible for the encoding of this information into the SpiNNaker
AER format, and injecting these formatted packets into the SpiNN-5’s on-board
FPGA. Note that this encoding is not encoding into trains of spikes; that process
would need to be implemented prior to interfacing with the infrastructure card.
This is an interesting development, but unfortunately not immediately applicable
to our work. After consultation with the developer (B. Linares-Barranco, personal
communication, April, 2015) it is clear that this device is not feasible to be used by
those without intimate knowledge of both the SpiNNaker hardware architecture and
FPGA programming.

For the moment, the Ethernet link limitations will need to be accepted, until such

time as the SATA links become available for general purpose IO.
7.4.2.3 STDP IMPLEMENTATION

In most desktop computer simulations, the implementation of STDP is quite straight-
forward. Because all synaptic weights are locally accessible, STDP can be calculated
at spike emission or reception. However, this straightforward implementation is
not the case with SpiNNaker. Recall from Section 7.4.1 that the SpiNNaker device
uses a shared memory system, where the synaptic weights are stored externally on
SDRAM, keyed to the presynaptic index and stored in the memory of the postsynaptic
neuron. They are recalled from memory when a presynaptic spike arrives. In this
structure, presynaptic neurons have no knowledge of their synaptic afferent on the
postsynaptic neuron, and canonical STDP can therefore not be implemented as-is
(Furber et al., 2013; Jin et al., 2010).

To address this, Jin et al. (2010) introduced the deferred event-driven (DED) model.
In DED, the STDP calculations are deferred until there are sufficient spike timing
records to calculate the pre- and post-synaptic weight changes, and the weight
update is applied retroactively. The detailed algorithm is discussed in Jin et al., and
will be omitted here for brevity. In this way, STDP can be applied even without

foreknowledge of the synaptic weight or postsynaptic neuronal dynamics.

*http://www.enterpoint.co.uk/products/spartan-6-development-boards/raggedstone-2/

http://www.enterpoint.co.uk/products/spartan-6-development-boards/raggedstone-2/

7.4 SPINNAKER: RANDOM NUMBER GENERATION 175

Alternative implementations of STDP have subsequently been proposed. Davies,
Galluppi, Rast and Furber (2012) introduced a forecast-based form of STDP, which
uses a new learning rule they have termed TTS (Time-To-Spike) for the LTP com-
ponent, and standard STDP rule for the LTD component of the learning. This TTS
method uses a statistical approach, with the basic concept that the higher a neuron’s
membrane potential, the higher the liklihood of it emitting a spike. Compared to
the algorithm introduced in Jin et al., this TTS-STDP method is favourable in both

memory and computational cost.

Most recently, Galluppi et al. (2015) have proposed a new concept for STDP calcula-
tions. In their method, neuronal and synaptic dynamic calculations are separated to
different cores. This in theory separates the concerns and can allow better computa-

tional efficiency, at the cost of some latency in synaptic dynamics.

In all of these cases, it is claimed that the implementation of STDP is close enough to
a canonical implementation (such as those in a software simulator) as to be negligibly
different. In practice, this is true for longer run simulations. In the case of the
NeuCube, however, there may be some small differences. It is noted in Galluppi et al.
that a network’s response to a stimulus may be slowed because it is not able to tune
to the earliest spike groups of the input patterns. In developing NeuCube models
for the SpiNNaker device we must be aware of this issue. Diehl and Cook (2014)
claim that the current implementation of STDP is within 3% of benchmarks set in
the software simulator Brian, which indicates that we should not be too concerned.
Nevertheless, it is still valuable for us to be aware of the possible sources of variance

in our experiments.

In practice it should make little significant difference; these ‘slow starts’ should the-
oretically be amortised out over the learning process of the network when presented
with multiple patterns. However, it is worth noting that if we were to train two other-
wise identical networks on a SpiNNaker and in a software simulator respectively, the
synaptic weights evolved by the STDP processes may differ. Additionally, if we are
using a Thorpe-inspired algorithm that weights early spikes more highly — such as
the deSNN algorithm in Section 3.6.3.2 — this ‘slow start’ may affect which spikes are
presented to the algorithm first and subsequently affect the evolution of the classifier

in certain cases.

7.4 SPINNAKER: FIXED POINT HARDWARE 176

7.4.2.4 RANDOM NUMBER GENERATION

No hardware support for RNG is included in the SpiNNaker chip (Rast et al., 2010).
Present estimates of random number generation times indicate that RNG in software
on this device is somewhere on the order of ~ 40x more computationally costly than
a single neuronal dynamics calculation (M. Hopkins, personal communication, April
2015).

This indicates that the implementation of probabilistic neuronal or synaptic dynamics
such as the probabilistic LIF model neuron discussed in Section 3.3.6 may not be
feasible. Recall from that section that the pLIF requires three separate probilistic
calculations: a probability that a spike will reach the postsynaptic neuron, a probab-
ility for that synapse to contribute to the postsynaptic neuron’s membrane voltage,
and a probability for that postsynaptic neuron to spike if its membrane threshold
is reached. In the best case, a network of pLIF neurons would be ~ 41x (RNG +
neuronal dynamic calculation) more computationally costly than the same network
of LIF neurons. This may be an unreasonable overhead depending on the use case of

the network simulated.

The speed of RNG is increasing as the SpiNNaker group optimise the software,
but unfortunately probabilistic neurons will always be second-class citizens in this
architecture. It has been indicated that the next generation of SpiNNaker device
(whenever this is officially proposed) will incorporate hardware RNG (S. Furber,
personal communication, April 2015). In this case, the generation of a single random
number would be performed in one clock cycle, indicating that pLIF-style stochastic

neuronal models will be feasible.
7.4.2.5 Fixep PoINT HARDWARE

No hardware support for floating point arithmetic exists in the ARM968 processor
cores used in the SpiNNaker device. Reportedly, this was a considered decision
to reduce power consumption (Furber et al., 2013; Jin, Furber & Woods, 2008). A
comprehensive discussion of the limitations of this approach is given in Hopkins and
Furber (2015), where the authors introduce an efficient differential equation solver
(required for neuronal dynamics calculation) for this hardware. As hardware arith-
metic operations are only supported on fixed-point (integer) numbers, floating-point
(decimal) operations must be implemented in software at considerable computational

cost, or translated to a fixed-point representation.

7.4 SPINNAKER: STREAMING O wiTH AER 177

The latter approach is used here. In practice, this is handled implicitly by the SpiN-
Naker’s support software and is not generally a significant concern for our imple-
mentation of the NeuCube. See Section 7.4.2.1 for an example of a case in which a
conversion to fixed-point caused an issue in the initialisation of the network. In the
case that we wished to implement a custom neuronal model (e.g. the pLIF) or synapse
model (e.g. the CNGM of Section 3.6.3.3), this would have to be a consideration.
In particular, we would have to ensure that our representation function — i.e. the
floating-point — fixed-point conversion process — provides sufficient resolution
to represent the desired values, without introducing discontinuities. Inspiration
should be drawn from the representation functions already implemented in the SpiN-
Naker support software as these are generally robust and have been created by the

developers of the hardware itself.
7.4.2.6 STOCHASTIC SPIKE TRANSMISSION

Spike transmission in the SpiNNaker device is a stochastic process (Rast et al., 2010).
Recall that it is handled through multicast packets. These packets are source-routed;
i.e. there is no handshaking or transmission/reception confirmation protocol. As a
result, there is no quality of service guarantee. Spikes may be dropped in communica-
tion if the receiving chip or core router is saturated, and this packet loss can occur at
any point in the transmission process. As a result, simulations run on the SpiNNaker
cannot be considered to be deterministic; i.e. there is no guarantee that an identical
simulation will return identical spike timing results. As spike transmission in vivo
is naturally a stochastic process (Allen & Stevens, 1994; Hardingham & Larkman,
1998), and stochastic neuronal models have been shown to be more effective than
deterministic models in certain contexts (Nuntalid et al., 2011), this is not necessarily
a negative characteristic of the system. However, it is an important consideration,

particularly when coupled with the other considerations introduced in this section.

In the case of the NeuCube, it is therefore theoretically possible that a reservoir
simulation may diverge slightly from an identical network modelled in software, as
this communication is not a deterministic process. However, it should be noted here
that packet loss should only occur when the network links are saturated; a relatively
rare occurrence under normal conditions. This link saturation is discussed further in

the following section (Section 7.4.2.7).

7.4 SPINNAKER: MoODIFICATIONS TO PYNN IMPLEMENTATION 178

7.4.2.7 STREAMING IO wiTH AER

An interesting feature of recent updates to the sPyNNaker system is the inclusion
of live spike streaming. This feature allows us to stream spike timings from the
host computer to the SpiNNaker device, and vice versa. If we intended to run
the NeuCube in an embedded (i.e. on a robotic device) or continuous real-time
manner (e.g. for BCI system control), it is possible for us to stream these spikes
from our host computer to the remote simulation in an event-based manner. Live
spike IO in sPyNNaker is interacted with in a syntactically similar manner to the
SpikeSourceArray spike generator of standard PyNN. The functionality is provided
in spynnaker_external_devices_plugin.pyNN.> Live spike IO is subject to the
spike transmission constraints discussed above, as it utilises the same communication

fabric and protocols.

At present, this feature has not been incorporated in the NeuCube as we have
primarily been dealing with discrete simulations rather than continuous ones. Imple-
mentation of this feature would have to be considered in light of the discussion in
Section 7.4.3.2, where we look at simulation repetition. A subsequent concern is that
high speed spike streaming may saturate the communication fabric of the SpiNNaker
device itself, leading to packet drops, and inconsistent simulation behaviour. For this
reason, it is suggested that it is used judiciously, and until the higher speed SATA
IO systems are developed further, avoided where possible. Practically, it would be
trivial to implement; as few as three lines of code need to be changed. However, it
must be considered in terms of its theoretical impacts first, and the context of the

simulation second.

7.4.3 MoDIFICATIONS TO THE PYNN IMPLEMENTATION OF THE NEUCUBE

Recall from Section 7.4.1 that in the case of the SpiNNaker device, the interface
used is actually a port of PyNN known as sPyNNaker. This sPyNNaker library is
still relatively immature and incomplete when compared to the reference version of
PyNN. In accommodating these limitations, a number of alterations to the original
PyNN implementation of the NeuCube were made. Here we will discuss the most
significant issues - the representation of network structure and distance, and simula-

tion repetition — along with the rationale for making these changes. A number of

>For a practical demonstration see https://github.com/SpiNNakerManchester/PyNNExamples/
blob/master/examples/external_device_examples/live_examples/spike_io.py

https://github.com/SpiNNakerManchester/PyNNExamples/blob/master/examples/external_device_examples/live_examples/spike_io.py
https://github.com/SpiNNakerManchester/PyNNExamples/blob/master/examples/external_device_examples/live_examples/spike_io.py

7.4 SPINNAKER: DISTANCE CALCULATION UNDER AXONAL DELAY CONSTRAINTS 179

small changes were also made, which will be summarised in Section 7.4.3.3 The code

listings in Appendix C incorporate these modifications.
7.4.3.1 3D STRUCTURES AND DISTANCE REPRESENTATION IN SPINNAKER

Recall from Section 6.4.4.3, and especially Figure 6.5, how distances should be mod-
elled in simulations of SNN. In Section 6.4.3.1 how these have been implemented in
PyNN is introduced, and why these have been implemented these manually rather
than using the inbuilt PyNN methods is rationalised. In that section, we also allude

to the fact that the maximum axonal delay is 16 ms.

This axonal length restriction is a limitation of the SpiNNaker system, which has
a maximum spike ring buffer size of 16. For the principle of this buffer limitation
and why it imposes a maximum axonal length on our networks, see the paragraph
‘Simulating Axonal Delays with a Ring Buffer’. In addition, in that paragraph we will

explain how these axonal delays are actually implemented in software.

For completeness, it is theoretically possible for a SpiNNaker device to support longer
axonal delays through the use of what can be termed ‘parrot’ neurons. In short, a
new neuron is generated external to the model. This new neuron n’ has no internal
dynamics and simply repeats (‘parrots’) its inputs. A neuron pair np and npes with a
desired axonal delay of greater than 16 ms is connected via n’ (i.e., npre — 1" — npost),
which is responsible for buffering the spikes from np,. for the required time length,
then sending them on to np0s. This results in a total maximum possible axonal delay
of (k — 1)b, where k is the number of neurons in the chain and b is their maximum
buffer depth. The theoretical maximum axonal delay at present is 144 ms. While it is
theoretically possible to implement longer axonal delays in this manner, this method
is not yet robustly implemented and can cause some irregular behaviour in networks
employing it. In addition, this requires additional processing cores to be assigned to

handle these parrot neurons.

With this constraint in mind, axonal delays have been implemented to have a max-

imum equivalent length of 16 ms. Here, we will explain how this has been managed.

DisTANCE CALCULATION UNDER AXONAL DELAY CONSTRAINTS: In order for all networks
to have a uniform maximum delay of 16 ms, we implement a simple normalising and

scaling function.

7.4 SPINNAKER: SIMULATING AXONAL DELAYS WITH A RING BUFFER 180

Firstly, we calculate the inter-neuron axonal lengths of our network list D, such that
d;jV € D where d;; is the Standardised Euclidean distance® between two neurons i and
j,and dj; € (0, 1). Secondly, we set the axonal delay ¢;; proportional to d;; with respect
to the maximum axonal delay possible, i.e. that t;; oc d;j;, where max; € D = 16 ms.
This can therefore be trivially calculated as t;; = d;; X 16. This ensures that regardless
of the actual maximum axonal length in a network, it will be scaled down to a delay

range which can be implemented effectively in the SpiNNaker.

Of course, a caveat of this method is that inherently scales all networks to fit within
a single proportional distance model, regardless of the actual distances. It is difficult
to mitigate this issue in a generalised sense, as networks can have hugely variable
connectomes. Depending on the network, axonal distances could be implemented
without requiring this scaling, due to the fact that networks developed in the NeuCube
exhibit high connectivity in a neuron’s immediate neighbourhood, but few long
distance connections. In graph theory sense, such networks exhibit small-world
properties. If the maximum actual connection distance within a model could be found,
we could therefore normalise relative to this distance, rather than the maximum
theoretically possible connection distance. At present, this is not a significant enough
issue to justify the extra development time, but as we find our models growing in

scale, it may be worth exploring this issue in the future.

Functionally, these axonal delays must be simulated somehow in the system. which

will be explained in the following section.

SIMULATING AXONAL DELAYS WITH A RING BUFFER: Axonal delays (i.e. the time of
spike propagation from one neuron to another) in the SpiNNaker device are generally
considered to be negligible; a spike from an arbitrary presynaptic neuron should
reach an arbitrary postsynaptic neuron in less than one machine timestep (~ 1 ms).
As mentioned in Section 7.4, spikes are transmitted across the SpiNNaker connection
fabric through multicast packets containing a spike address and a time point. Due to
the fact that actual propagation time of the ‘spikes’ is negligible in practice and is
effectively constant (i.e. it is not directly proportional to the distance, as explained in

Section 7.4.1), these spikes must be buffered somehow to simulate an axonal delay.

Here, the SpiNNaker implements a ‘ring buffer’ for each incoming synapse. In
straighforward terms, a ring buffer B is a rotating circular buffer with a finite and
fixed size. If there is incoming data, it is added to the current buffer location (Bgyst).

Simultaneously, the adjacent buffer location (By,st) prior to the current location is

SUsing the common formulation of Standardised Euclidean, d = /3, (u; — v;)?/V[x;]

7.4 SPINNAKER: SIMULATING AXONAL DELAYS WITH A RING BUFFER 181

tl t2 tn

FIGURE 7.12: A visual intuition of how ring buffers are used in the SpiNNaker device

to simulate axonal delays. A spike s; at time #; on an incoming synapse is inserted

into the ring buffer. The buffer then rotates at each time step, eventually reaching

time t, (the simulated axonal delay), where the spike s; is popped out of the buffer
and processed by the postsynaptic neuron.

inspected and any data contained within is removed. Regardless of whether data was
injected or removed, the buffer then rotates, and this newly empty buffer location
Bj.st becomes the new Bg,t. See Figure 7.12 for a visual intuition of this process. Data

can be injected in positions other than this By, depending on its logical position in

the buffer.

Alternatively, it can be conceptualised as a queue with a fixed size. At each time
step, the bottom element in the queue is popped out regardless of whether it is
null or contains a value. Simultaneously, a new element is pushed into the queue
regardless of whether this new element is null or contains a value. The queue never
changes length regardless of its contents, and the push/pop operations happen at

each timestep.

A natural extension of this data structure, therefore, is the simulation of a fixed
time-step axonal delay. Each synapse can represented by one ring buffer. The
required buffer length can be found simply by multiplying the maximum time for
spike propagation across the longest axon with the time resolution of the simulation
system. In the case of the SpiNNaker device, this is typically 16 ms (16 ms distance X

1 ms time resolution), as discussed in Section 7.4.

At each time step, if a spike is received at the buffer controller, it is inserted into
the buffer at its corresponding location. Simultaneously, the ‘last’ buffer location is
searched for a spike, and if one is found, the spike is then processed by the neuronal
dynamics calculation system. Regardless of whether a spike has been inserted
or removed, the buffer then rotates at the next time step. This process repeats

continuously. Depending on the length [of the buffer, our input spike has therefore

7.4 SPINNAKER: SIMULATION REPETITION IN SPINNAKER 182

been delayed I timesteps by the time it is processed by the neuron, conceptually

simulating axonal delay and the distance of the connection.

It may be possible that the length of the buffer (and thus, the memory footprint) could
be adapted with the known length of the axonal connection. Shorter links could be
represented by smaller buffers, as these do not require a long wait period to simulate
the axonal delay. There does not appear to be any existing literature on adapative
ring buffer size in simulations of SNN, and certainly none regarding the SpiNNaker
device. Adaptation of the memory requirement for synaptic weights could offer a
significant advantage when simulating large, highly connected networks, as these
are typically bound by both the memory and processing cost of large numbers of
synapses. These ‘length-adaptive’ ring buffers could significantly reduce the memory
footprint of a short axon in the SpiNNaker system, which currently uses fixed-length

ring buffers.

Taking inspiration from the SpiNNaker implementation, we have also briefly dis-
cussed the use of a ring buffer in the context of the NeuCube CORE system. See

(Section 6.6) for further details of this concept.
7.4.3.2 SIMULATION REPETITION IN SPINNAKER

As mentioned in Section 7.4.2.1, a challenge in the development of the NeuCube on
SpiNNaker was the act of training a reservoir. The conceptual process for training
such a reservoir in an SNN simulation system is to pass the first encoded sample to the
network over a simulation run time, which is normally the same as the data sample
length. After this data is passed, the internal state of the neurons is reset, any spikes
currently in transit are deleted, and the network time reset to zero, while the synaptic
structure (connections, weights) are retained. The next sample is presented, and this
process repeats. This is logically a simple procedure, as shown in the pseudocode

listing below.

intialise reservoir
for sample s with length t in data:
input s to reservoir
simulate for time t
reset reservoir time, neuron potentials

L1sTING 7.3: Pseudocode implementation of an idealised case of reservoir training
in software.

In the case of native PyNN, the reset() method is provided. This method takes

care of the aforementioned steps, including resetting all of the neurons to their

7.4 SPINNAKER: SIMULATION REPETITION IN SPINNAKER 183

resting state and the simulation time to zero. In that case, simulation repetition is
straightforward. Simulation repetition in the original PyNN version of the NeuCube

was implemented thusly.

Unfortunately in the case of sPyNNaker, no facility for the repetition of a single
simulation is provided. To rectify this issue, we are left with implementing one of

two options:

1. Concatenate the input data together into one spike train and perform one long
simulation; or,

2. Manually reset the network, with the process detailed in Listing 7.4.

Concatenating the data together and passing one long spike train to the reservoir is
one theoretical possibility. Viewed abstractly, this is how our brains learn. However,
it is unlikely in practice to have a continuous train of stimuli of equal weight and
properly ordered. Here, it is meant that natural input is unlikely to be presented in the
correct order (e.g. 10 samples of the first class, then 10 samples of the second class),
and that these presented samples will be of equal quality. When we view the reservoir,
using this technique there will be overlap of signals due to the ‘liquid’ memory of
the system. Spike trajectories from previous signals will still be propagating around
the reservoir when a new signal is presented, and would cause an additive effect on
the spike timings of the reservoir neurons. This feature, while useful in a real-world
application, results in confusion of the recorded outgoing spike trains passed to
the classifier, and in turn, reduced classification accuracy. It is worth exploring the
significance of this effect in later experiments. For the moment however, input spike
patterns will be separated and presented individually to the network. In this way, we
can identify an initial benchmark for the system’s accuracy, and analyse its behaviour

independent of the possible confounding impacts of overlapping patterns.

Therefore, we must instead perform this network reset manually. Admittedly, this
process is not difficult, but it does introduce additional, unnecessary delays to the
training process. Instead of the process shown in Listing 7.3, we manually save the
connectome after training, destroy the reservoir, reinitialise the reservoir with our
saved connectome, and then pass the data. This process is shown below, in Listing 7.4,

with the overall process described in Listing 7.1.

for sample s with length t in data:
intialise reservoir
if saved connectome:
load connectome
input s to reservoir

7.4 SPINNAKER: SIMULATION REPETITION IN SPINNAKER 184

simulate for time t
save connectome
destroy reservoir

LISTING 7.4: Pseudocode implementation of reservoir training under the limitations
of the the SpiNNaker device.

As discussed in Section 7.4.2.2, 10 for these devices is currently constrained to
100 Mbps Ethernet. In the case of the connectome, this is stored in the large SDRAM
on each chip. Recall that the SpiNNaker chips communicate through multicast
packets. In order for the connectome to be extracted from the device, the DMA
controllers for the management chip must make access to this SDRAM, package it,
pass it to the chip router, and in turn to the system bus and out through the Ethernet
port. Each step in this process induces additional delays. Observations from the work
in this thesis indicate that at present, the retrieval process for a small simulation
(~ 1500 neurons each with a mean of 10 synapses) takes around three seconds in
total, from request to completion. A similar amount of time is taken when loading
the connectome onto the device. The actual simulation runtime is dependent on
the parameter passed to the run() method of PyNN (in this case, sPyNNaker). See

Section 7.5 for a more comprehensive discussion of the time cost of simulations.

Of course, it is theoretically possible to reduce these load times by creating simpler
networks. However, the example given above is extremely simplistic with respect to
SNN, particularly when we consider the number of synapses. Typical models have
between 100-10,000 synapses per neuron, with the human brain having a mean of
around 1,000 (Kandel & Schwartz, 2000). This issue would be more pronounced with
larger networks, as SNN follow a power law with respect to the branching factor of
a single neuron. Clearly as we are intending to use the SpiNNaker to provide the

capacity for larger NeuCube reservoirs, this issue will quickly become untenable.

In discussion with the developers of SpiNNaker, it was made clear that this issue
was not considered in early development of the system. This is due to the fact that
it was originally intended as a platform for computational neuroscience, and not
neuromorphic applications. In the case of computational neuroscience applications,
such a device would be set up and a long term simulation run, with the synaptic
weights left to evolve online and interacted with only at the end of a single long
simulation (if at all). Here, they would be more concerned with spiking behaviour
of different cortical areas — data which is easily streamed out online — rather than

weight evolution. Online spike streaming is discussed in Section 7.4.2.7.

7.4 SPINNAKER: SIMULATION REPETITION IN SPINNAKER 185

The ability to extract the synaptic weight matrix from the hardware was initially
missing from the system. Until this was implemented, the implementation of NeuC-
ube on SpiNNaker was not feasible, as there was no facility to implement the learning
processes detailed in Section 4.2. The SpiNNaker group implemented this feature
after the April 2014 SpiNNaker Workshop. This issue directly relates to the chal-
lenges discussed in Section 7.4.2, particularly the sections on development ecosystem

maturity and IO limitations.
Therefore, two significant performance issues are raised by this methodology:

1. Time cost of generation of the simulation on the host computer, and

2. 10 speed over Ethernet.

The IO issue is a difficult challenge to overcome. As mentioned previously, the inten-
tion of the developers is to make the SATA links on each SpiNN-5 board available as
general purpose IO devices. Utilising the SATA links will raise the maximum band-
width from 100 Mbps to a theoretical maximum of 3.1 Gbps. This issue is discussed
in more detail in Section 7.4.2.2. Additionally, the simulation generation process
(partitioning & placing, etc.) induce extra delays. Simulation generation delays are
unnecessary as in this case, the network placement will always be identical; the same

neurons will be partitioned to the same cores.

The simulation repetition set up time issue can be avoided with some small changes
to SpiNNaker. At the end of a simulation, the connectome data is retained on the
SDRAM,; a cleanup process run during the sPyNNaker end() method (called at the
end of a simulation) invalidates this data when it is no longer needed. However, it is
theoretically a straightforward matter to simply reset the neuron states and internal
clock timer to their initial states, and retain the connectome in memory. This would
be the optimal resolution to this issue, as then the IO constraints for saving and
loading a network structure are amortised over a whole simulation rather than each
sample. Moreover, the simulation generation process will not need to be repeated, as
the neurons will not require partitioning & placing again. They simply remain in
their intial memory locations. Essentially, we then only need to implement lines 5-9
of Listing 7.1. Unfortunately, the scale of this change necessitates implementation by
those intimately familiar with the sPyNNaker software, which puts it outside the
scope of this thesis. The addition of this feature is currently under development by the

SpiNNaker group’ but at the time of writing this thesis it was not part of sPyNNaker

"https://github.com/SpiNNakerManchester/sPyNNaker/tree/work_flow_multi_run

https://github.com/SpiNNakerManchester/sPyNNaker/tree/work_flow_multi_run

7.4 OpPERATION OF THE NEUCUBE ON SPINNAKER 186

stable. This feature should be considered stable and added to the main sPyNNaker

code near the end of 2015 (A. Rowley, personal communication, December 2015).

As an alternative, the SpiNNaker group have been experimenting with the ability
for the connection structure to be generated on-board the device (A. Rast, personal
communication, April 2015). In effect, instead of this being generated on the host
computer and then being transferred to the SpiNNaker device, an abstract represent-
ation of the network would be transferred to the device, and the SpiNNaker itself left
to generate and place the network and its connections. This should improve network
setup speed, by reducing the effect of the external IO bottleneck. No practical imple-
mentation of this feature has yet been demonstrated, but it may be of use to us in
the future. For the moment though, we must make do with the mitigation strategies

discussed above.
7.4.3.3 SUMMARY OF IMPORTANT MINOR CHANGES

Summarised here are the important minor alterations to the PyNN implementation
of the NeuCube in order to run it on the SpiNNaker.

IMPORT STATEMENT: To run our model on the SpiNNaker we can import sPyNNaker
directly and remove the import pyNN.nest, or import pyNN.spiNNaker to keep
visual compatability instead. The latter has been used here, as it is then possible
to poll the system for the installed simulators and using Python’s exec function,
dynamically set the system to be imported. This is visually more understandable

when changing the package imported, rather than the whole library.

CorE LimiTs: As both the neuron dynamics and STDP are calculated on the same
device, the addition of plasticity can cause the SpiNNaker cores to be overloaded in
certain circumstances. In the case that we have extra cores, we can suppress this
small issue and ensure that the behaviour of the board is more consistent by manually
defining the maximum number of neurons partitioned to each core. We implement

this in sPyNNaker with set_number_of_neurons_per_core("IF_curr_exp", 128) .

7.4.4 OPERATION OF THE NEUCUBE ON SPINNAKER

The actual operation of the NeuCube code on the SpiNNaker is identical to that of the
standard PyNN code given in Section 6.4.2. Initially we write the configuration file

with the desired network structure and settings, here denoted as config_file. json

7.5 CoMmPARISON OF IDENTICAL SNN IN SOFTWARE AND HARDWARE 187

in the model_data directory. An example of such a configuration file in the JSON
format is given in Appendix F. We also need to make one minor code change, as
described in Section 7.4.3.3, where we change the import statement. In the future,
this should be an automated step where the desired simulator is drawn from the

configuration file.

From here, the internal steps are the same between the standard PyNN implement-
ation from Section 6.4 as this version. Subsequently, we call the main method of
the system giving the configuration file as the argument, i.e. in the root directory
of the project, call python main.py model_data/config_file.json. From there,
the process is as described in Section 6.4, with the obvious caveat that the actual

simulation will take place on the SpiNNaker device rather than the host computer.

In fact, this is largely the reason the NeuCube has been implemented in PyNN.
The code created using the PyNN library is portable, and can be moved between
computation platforms with little to no code changes, and ensures relatively constant
simulation dynamics. In this way, the discussions in Chapter 6 (and particularly,
Section 6.4) apply to both the software and neuromorphic hardware implementations

of the system.

7.5 EmpPiRICAL COMPARISON OF SNN SIMULATION IN SOFTWARE AND

HARDWARE

At this point, it is valuable to show some comparison between key dynamics in
software and neuromorphic hardware simulation of the NeuCube. In this section,

we discuss some performance profiling and behaviour of these implementations.

The same execution time profiling technique used in the identification of JIT compil-
ation’s performance benefits (cf. Section 6.4.3.2) is used here, with the addition of
some memory use metrics. To profile the memory dynamics, the memory_profiler

library?® is used, which queries the OS kernel to determine memory requests at each

method call or line operation.

The actual operation profiled is the generation and single simulation of a number
of otherwise identical networks which vary in scale. These networks are a series
of arbitrarily shaped (cuboid) networks at a roughly linear scale with regard to the
network ‘sides’ were generated. These networks were then run three times each in

the available versions of the NeuCube, on both the Brian and SpiNNaker simulation

8https://github.com/fabianp/memory_profiler

https://github.com/fabianp/memory_profiler

7.5 ExecuTtioN SPEED DYNAMICS 188

platforms. Each network has 14 inputs structured based on the Emotiv EEG device
electrode locations. Here, to simplify matters, these inputs are not real data, but
Poisson trains. In this case, we would consider the step in question to be the initial
‘training’ of a network on a single sample. Data transfer time is incorporated into

these metrics, although it is also possible to stream it on-line in the SpiNNaker device.

Some interesting dynamics are revealed through this profiling. See Figure 7.12 for
execution time dynamics, and Figure 7.13 for examples of memory consumption
dynamics. In the following sections, some specific features of these dynamics are
discussed, including the apparent (and somewhat counter-intuitive) illusion that soft-

ware simulation is actually more efficient than neuromorphic hardware simulation.

The results in this section should be treated as illustrative rather than definitive; there
are simply too many variables to account for in experiments of this type. Different
network shapes, neuron parameter selections, connection schemes, and so on will
affect the dynamics of the network simulation, particularly as the network complexity

and scale increases.

7.5.1 ExecuTioN SPEED DYNAMICS

Perhaps the most obvious conclusion to draw from this first set of plots in Figure 7.12,
is that the premise of this section - i.e., that neuromorphic hardware implementations
are more efficient than software implementations of the same network - is incorrect.
While this may in fact be true under certain conditions, the traces in this figure do
not tell the whole story. Most significantly, the apparent lower performance of the
SpiNNaker implementations is an artifact of the long IO times presently encountered

on that platform and discussed here in Section 7.4.2.2 and Section 7.4.3.2.

As mentioned previously, the IO available to the SpiNNaker devices is presently based
on a 100 Mbps Ethernet connection. For this device’s original intended purpose of
long computational neuroscience simulations, this limitation is acceptable at present,
as model loading is a very minor time consideration compared to the length of the
actual simulation. However, in our case, as we are required to load and download
models frequently (cf Section 7.4.3.2), the very significant performance increases in
simulation time are being masked by this IO time. With the assumption that these IO
issues are resolved, the execution time plot should look more like Figure 7.12c, where
the execution of a simulation on the SpiNNaker device is more-or-less constant with
some minor IO variablity based on the network scale, and of course — proportional

to the simulation run time selected. In fact, some evidence of this variability can

7.5 ExecuTioN SPEED DYNAMICS 189

Time of Execution in Seconds

Time of Execution in Seconds

Execution time for Varying Scales of Neural Network with JIT

—}— Brian
—}— SpiNNaker 3
600 —— SpiNNaker 5

700

500

400

300

200

100

0 2000 4000 6000 8000 10000
Network Size in Neurons

(a) Execution time for the NeuCube reservoir on different computational
platforms.

Execution time for Varying Scales of Neural Network with JIT

—4— Brian
—— SpiNNaker 3
60 —t— SpiNNaker5

70

50 /

40

30

20

0 500 1000 1500 2000 2500
Network Size in Neurons

(B) Detail of execution time for the NeuCube reservoir on different
computational platforms.

be seen in the error bars of these figures. Otherwise identical simulations run in

Brian are much more variable in their run times. This is likely to be an artifact of the

host device. Since Brian runs in Python system running locally on the host device, a

number of issues may have affected the variability of these results: thermal throttling

on the device, garbage collection overheads in the Python environment, ‘warmup’

7.5 ExecuTioN SPEED DYNAMICS 190

Execution time for Simulation Run Method

140 —— Brian

— = Theoretical SpiNNaker Execution Time

Time of Execution in Seconds

0 2000 4000 6000 8000 10000
Network Size in Neurons

(c) Execution time for the actual simulation step of the NeuCube reser-
Voir.

FIGURE 7.12: Overall execution time for a single simulation of the NeuCube reservoir

on a software simulation and the two available SpiNNaker devices (Figures 7.13a

and 7.13b). Here the general indication is that software simulation is faster for these

networks. The actual simulation time minus the current IO constraint is shown in

7.12c. Here, the execution time for a network is constant regardless of the network
scale. This phenomemon is explained in text.

of the just-in-time compiler, and so on. It is a theoretical benefit of the hardware
approach to SNN simulation that run times and performance are more predictable,
as they are not subject to the vagaries of a general-purpose computing device like a

laptop.

In terms of other neuromorphic systems such as the cxQuad discussed in Section 7.3,
we would see much the same computational time; these, too, operate in biological
time (i.e. there is a 1:1 mapping of simulation time to real-world time), which is
independent of the scale or complexity of the network it simulates. Again, then, we
would likely see that the software simulation is likely faster for very (trivially) small
networks, while for larger or more complex networks these systems would likely be
faster. It is reasonable to assume that the total time required for the same simulation
will be lower for the cxQuad than for SpiNNaker, as it is a simpler interface and the
network upload process is more straightforward. This is of course, with the obvious
caveat that the SpiNNaker can simulate a larger number of neurons at present, and

is more easily configured.

7.5 ExecuTtioN SPEED DYNAMICS 191

This is, of course, an idealised case; however, the operation of the SpiNNaker ensures
constant time execution of networks, with no slowdown based on the network scale.
The actual operation of the simulation in all of the cases presented in Figure 7.12 on
the SpiNNaker device was on the order of 1.5 seconds (i.e., that shown in Figure 7.12c).
By comparison, the trace shown there for the Brian simulation is the actual time for
the execution of the simulation, as there is no issue of IO. In this way, as the network
size increases, the execution time for software simulation will increase proportionally
until it is untenable, while for neuromorphic hardware it will stay constant (with

considerations for I10).

Presently, we can represent the observed values by a quadratic function, as:
6.31627 X 10~°x% + 0.00050115x + 6.19627 (7.4)

which has an agreement of R? = 0.999986. As a result, if we are to look towards
truly large scale networks such as the 2,500,000 neuron set representing 1 mm? of
brain volume per neuron in the MNI data set, the runtime soon becomes daunting.
This particular case indicates a runtime of around 3,947,681,284 seconds, or around
125 calendar years on the particular host computer. However, as mentioned, this
is a property of the O(n?) complexity for the network generation step discussed
in Section 6.4.3.1. Additionally, this is in the single-threaded case. It is relatively
trivial in a theoretical sense to optimise this network generation step, through the
use of vector operations and multi-core (or possibly GPU) processing, as this is a
highly-parallel task. At the point we begin to look at networks of this size and

complexity, we should consider optimisation of the network generation code here.

It is also valuable to emphasise that a neuromorphic hardware solution is not ideal
for all networks. Indeed, in the case of small scale networks, it is faster to implement
these in software simulation. This principle is illustrated in Figure 7.12c, where the
software simulation is faster for networks of under around 1,200 neurons for this

particular network.

An interesting dynamic of the SpiNNaker devices is exposed by Figure 7.12. For
smaller networks — i.e., those small enough that they can be simulated on the SpiNN-
3, around 16,000 neurons — it is faster to simulate on the smaller 4-node SpiNN-3
board than the larger 48-node SpiNN-5 board. This may be a property of the less
complex board control mechanisms of the smaller device; model IO for the SpiNN-5
is mediated by a system of FPGA. This control system is necessary to manage the

complexity of simulation of larger networks, but may induce additional delays for

7.5 MEMoORY Use DYNAMICS 192

smaller networks. This indicates that for smaller networks, we should first consider
a software platform, followed by the use of the smallest neuromorphic device which
supports the network scale we wish to simluate. This of course, will also serve to
encourage lower power consumption where possible, as the smaller devices typically

consume less power.

This idealised case is not yet the reality. 10 speeds on the SpiNNaker device are
presently improving, in line with the discussion in Section 7.4.2.2. Once this issue
is resolved, the constant-time simulation advantages of this platform will be more

apparent for large networks.

Additionally, we should note here that the IO issue on the SpiNNaker will soon be a
one-time cost per simulation; with the added ability to reset the network dynamics
without reloading the network descriptor onto the device, subsequent samples or
input patterns can be presented to the device online, with constant-time processing
as in Figure 7.12c. This feature is discussed in Section 7.4.3.2, where it was mentioned
that an upstream change to the sPyNNaker code will make this reinitialisation process
considerably faster. In this case, we will still have some time-cost in intialising the
network, but more or less constant time execution of the actual repeated simulations.
Contrast this with the time dynamics of a software simulation, which will grow
proportionally with the network complexity. In this way, a network simulated on the
SpiNNaker device will still be faster than an equivalent software simulation, even
with the present IO limitations. This is a significant advantage of the neuromorphic

approach, and one which motivates the work in this thesis.

7.5.2 MEMORY Use DYNAMICS

A subsequent concern to the execution time of the system, is the memory consumed
by the system on the host computer. While this is generally not a significant con-
cern, due to the branching factor exhibited by SNN at large scales it may become
challenging to manage this demand. To quantify the extent of this issue and identify
whether it is a concern for us, the experiment of Section 6.4.3.2 has been repeated
with memory consumption as a focus, rather than computational time. Here, we
show the ‘operation’ number as the time factor. This operation number generally

corresponds to the operation or line number of the NeuCubeReservoir.py file.

An example of the memory consumption history generated by the memory_profiler

tool is too long to include here, but a representative example is available online.’

*https://gist.github.com/nmscott/164ab24ee110fce856ad

https://gist.github.com/nmscott/164ab24ee110fce856ad

7.5 MEeEMoRry Use DYNAMICS

193

180 Memory Consumption Comparison for 1728 Neuron Network

—— Brian, Numba
%+ Brian, standard loop
—4— SpiNNaker 3, Numba

160 ... SpiNNaker 3, standard loop

[N
N
o

Memory Consumption in MB
)
o

s * 1L * I (e
= =
ook
X
100 : L -
f Y1t Kok
Fookok e kkk hk xRk X
¥ A A AkAAAAS
80 .: '. -. " ‘. ..
ok sk ek ok ok e ek ok g ke ok o de ok IR R A | J
\AAAAAAAAAAAAAAAAAAARAAAARA AA AAAAdAAAAAAAA
60
0 10 20 30 40 50

Operation Number

(a) Memory consumption for a 1728 neuron NeuCube reservoir on
different computational platforms.

1600 Memory Consumption Comparison for 10648 Neuron Network

—*— Brian, Numba
- Brian, standard loop
1400 —a— SpiNNaker 3, Numba
--A- SpiNNaker 3, standard loop

1200

1000

800

600

A A AAnkA A
AAAAAAAA AA AkAAAAAAAAREL

Memory Consumption in MB

200

0 10 20 30 40 50
Operation Number

(B) Memory consumption for a 10648 neuron NeuCube reservoir on
different computational platforms.

FIGURE 7.13: Memory consumption on the host computer over the progression of
the application. Operation numbers represent method calls or line operations in the
NeuCubeReservoir.py file. Memory consumption is generally lower overall when
using a neuromorphic computing platform. Shading represents the 95% confidence

interval for that value.

7.5 MEMoORY Use DYNAMICS 194

In Figure 7.13 two representative plots of the memory consumption of a NeuCube
reservoir per operation are presented. A more comprehensive list of memory con-
sumption dynamics graphs is given in Appendix E. It is important to note here the
stochastic nature of these measurements. As they are queried from the kernel, they
are subject to some varability based on background processes and the vagaries of
memory management induced by the Python interpreter. In this case, a 95% confid-
ence interval indicated by shading has been included in these plots. Additionally,
these results are illustrative for these particular networks simulated; a network with
a larger or smaller number of synapses would occupy a proportionally larger or

smaller amount of memory.

As a general rule, memory consumption is lower when using a neuromorphic hard-
ware platform for network simulation, as compared to software simulation. This
can be reasonably expected given the lower computational demand on the host
computer in this case, as processing and memory requirements are offloaded to the
hardware device instead of being solely addressed by the host device. The actual
total memory consumption (across both the host device and hardware simulator)
tracks with the scale of the networks and will vary depending on the simulation
device used; in general, large networks require more memory, and smaller networks
require less. Again, this is not an unexpected dynamic, as the networks need to
be stored somewhere when they are generated. Memory variablility across runs is
reduced, although this may be an artifact of the fact that the background fluctuations

are proportionally less significant to larger networks.

The first significant rise in memory consumption is encountered when generating the
network structure (neuron locations and connectome). This baseline would fluctuate
with the size of the networks and the complexity of its connections. Subsequent
peaks are seen when entering the control loops, which preallocate space for the
files needed when performing multiple runs of the same network (i.e., learning).
These are then freed when the interpreter predicts that they will not be used. The
next significant rise is seen when actually running the simulation; in this case, we
would naturally expect to see a more significant rise in the memory consumption of
Brian. However, this is not the case, as the setup process has already prepared the
requisite memory for these steps. Similarly, we see no significant rise in the memory
consumption of the SpiNNaker version, as at this point the model is copied to the
device. The final significant increase is exhibited when reading back the synaptic

matrix and spike times.

7.6 IDEAL NEUROMORPHIC HARDWARE FOR THE NEUCUBE 195

Interestingly, memory consumption is generally lower when employing standard
Python loops, rather than the optimised form provided with the JIT compiled loops.
This is likely due to the numba library trading processing time for a larger memory
footprint, although it is not possible to say for sure. We should make the decision here
whether this increased memory consumption is worth the improved calculation times
afforded by this system; in almost every case it would be appropriate, as processing

time is the key metric here.

In general, memory consumption for most networks will not be a concern. In the
case that we are dealing with large (15,000+) neuron networks, we would likely be
performing these calculations on a relatively high performance host computer, and
it is unlikely that we would encounter a situation where the memory consumption
was a halting issue. In that case, a more optimised solution for the calculation of the

network structure would be appropriate.

7.6 IDEAL HARDWARE CHARACTERISTICS FOR NEUROMORPHIC

IMPLEMENTATIONS OF THE NEUCUBE

From the discussions in this chapter, it is possible to identify some idealised charac-
teristics for a neuromorphic hardware platform on which to implement the NeuCube.
Here, we introduce a short discussion of the key features desired for the NeuCube

specifically, rather than a generalised neuromorphic platform.
1. Digital platform implementation

The choice between digital and analog (or alternative implementations such as FPGA)
is a highly contextual one. However, given the general features of the NeuCube and
its inital areas of application, it is apparent that a digital neuromorphic platform such
as the SpiNNaker is a more appropriate choice at present. This is primarily due to
the ease and flexibility of network changes on such a platform; as noted, this type of
implementation emphasises flexibility over power efficiency. This is appropriate in
the inital stages of developing a NeuCube model, which can then in theory be ported
to an analog or alternative platform once the bulk of the network exploration has
been performed. Additionally, a digital platform currently has some advantages in

terms of neural and synaptic model selection and volume.
2. High maximum number of synapses per neuron

A relatively high possible number of synapses per neuron is advantageous at present,

as the behaviour of the NeuCube when limited to low numbers of synapses has not

7.6 IDEAL NEUROMORPHIC HARDWARE FOR THE NEUCUBE 196

yet been established or analysed in any depth. NeuCube models established in the
literature presently have a higher number of synapses per neuron than is possible on
devices such as the cxQuad or Zhejiang FPGA. This is not to say that the NeuCube
cannot operate under this constraint; merely that its behaviour under this constraint

is not yet studied.
3. Macroscopic neuron models supported, particularly the LIF neuron

All exploration of the NeuCube has at present been performed utilising the LIF model
neuron. It is therefore logical that we should expect a simulation platform to support
this model type, until such time as the optimal neuronal model has been established
for a given use case in the literature. Here, we can make use of most of the major
neuromorphic hardware devices, with some exceptions. Additionally, it is preferable
that this neuron type is interchangeable, in order to establish these optimal neuronal

model selections.
4. Faster-than-clock-time model evaluation

Ideally, models should be able to be simulated and evaluated in faster than real-time
for simulation purposes. Real-time operation is beneficial when we are address-
ing real-world stimuli, but is not optimal for the initial simulation, training, and
evaluation of NeuCube models. At present, during the process of establishing the
NeuCube’s properties, faster than real-time simulation is optimal. The option to
transition the model to a real-time device or device mode is beneficial should imple-

mentation in a real-world scenario be required.
5. Configurable synaptic delays or other method of axonal distance representation

The importance of configurable synaptic delays have been addressed in Section 6.4.4.3,
where it was established that without some method of managing axonal delays, 3-
dimensional networks could not effectively be represented in a simulation. Therefore,
some mechanism for representing distance should be implemented. In the case of
the SpiNNaker and similar devices, this is typically implemented as some form of

input buffer between neurons.
6. Preferably, the ability to run multiple simulations at once on the same device

We effectively compose a NeuCube model of two or three primary neural simulations:
a) Optionally, the encoding of input data into spike trains, which may take the form
of a small neural network in the case of population encoding; b) The simulation of the

3-dimensional reservoir network; and c¢) The output classifier, which will typically be

7.7 CHAPTER SUMMARY & CONCLUSION 197

SNN based. Here, we typically need to simulate these systems separately. This may
mean that we simulate them sequentially (i.e. encoding, reservoir, output), but it is
also entirely correct to simulate them simultaneously; they are, after all, operating
on the same data in the same time scale. This is advantageous when addressing
real-world stimuli, where as near to instantaneous responses are required. As a
result, it would be useful if the neuromorphic device we select has the capacity to
run these multiple simulations simultaneously. Here, it would be especially useful
if these simulations could communicate with each other asynchronously, without
the need for a mediating host device. As a secondary benefit, this would potentially
allow us to run parameter space searches or network ensembles in a more efficient

way.

Power consumption has been omitted from this list. Despite this being a major
motivating factor in implementing the NeuCube on a neuromorphic hardware device,
it is not at present a significant concern. More emphasis should presently be ap-
plied to the identification of system dynamics and optimal network design, before

improvement in power consumption is considered in depth.

Obviously, this is a non-exhaustive list of the features considered beneficial for
neuromorphic simulation of the NeuCube. However, this should go some way towards
providing a framework to make neuromorphic device selections in the future. If we
are to apply these considerations to the presently available neuromorphic hardware
devices, the assessment is that the SpiNNaker device is the most appropriate currently,
primarily due to its flexibility in representing large-scale neural network models. This,
however, is subject to change as the behaviour of the NeuCube is better understood.
It is entirely feasible that in short order, neuromorphic VLSI systems such as the

cxQuad will be advantageous due to their low power operation.

7.7 CHAPTER SUMMARY AND CONCLUSION

In this chapter, we have presented a treatement of the current state-of-the-art in
neuromorphic hardware systems, which are dedicated hardware devices for the
simulation of SNN. These devices have a number of benefits, most particularly
low power consumption and asynchronous real-time processing. They are also
generally limited in the number and type of neuron and synapse models which can
be implemented, which imposes some constraints on development of applications
for them. Particular concerns are the small resolution of synapse weights and the

limited number of synapses generally available on such systems.

7.7 CONTRIBUTIONS 198

A preliminary implementation of the NeuCube on an FPGA-based neuromorphic
hardware device is introduced. This system presently has a number of constraints
including the fact that it contains no facility for on-line learning or STDP, which

must be rectified before the NeuCube can be effectively implemented here.

A more theoretical discussion of a NeuCube implementation on a subthreshold
analog-digital hybrid neuromorphic ASIC was also introduced. This device, the
cxQuad, provides up to 9,000 neurons at extremely low power. At present, the
support software is not complete enough to justify the development time it would
take to develop a concrete version of the NeuCube. However, once it is complete, it is
our intention to explore this computational platform thoroughly. This system offers
a number of new applications for the NeuCube, including in an embedded context,

due to its low power.

A complete version of the NeuCube for the SpiNNaker device has been introduced
here. A review of this system and its advantages for the NeuCube is given. This
implementation is written in the sPyNNaker port of the PyNN library, which is
unfortunately still incomplete. A number of considerations, including physical
limitations like the speed of the Ethernet-based IO of this system and its fixed point
hardware, are discussed here, and contextualised in how they affect the behaviour of
the NeuCube.

This chapter is one of the most significant in this thesis, particularly as it pertains to
the future of the NeuCube. It is completely infeasible for us to look to more complex
datasets without a functional and comprehensive implementation of the NeuCube
for neuromorphic systems. These systems provide the capacity for almost arbitrary
scaling of NeuCube networks, at much lower power consumption than a software
simulation on standard commodity computing hardware. The considerations in
this chapter for these devices are also generalisable; they are not specific to the
NeuCube, but can be used for any large scale SNN architecture which seeks to exploit

neuromorphic hardware.

1. A review of contemporary and emerging neuromorphic hardware systems.

2. The introduction of an implementation of the NeuCube architecture for
generic neuromorphic hardware.

3. A preliminary implementation of the NeuCube for the Zhejiang FPGA-based
neuromorphic hardware system.

7.7

CONTRIBUTIONS 199

. A preliminary treatment of the considerations for implementing the NeuC-

ube on the cxQuad and ROLLS neuromorphic VLSI ASIC hardware systems.

. A treatement of the considerations for implementing the NeuCube on the

SpiNNaker neuromorphic hardware device, including:
(a) Theoretical constraints and advantages
(b) Code and ecosystem maturity challenges

. Empirical evidence of the behaviours of both neuromorphic and software

simulations of the NeuCube.

. A concrete implementation of the NeuCube written in the sPyNNaker port

of PyNN for the SpiNNaker neuromorphic hardware device.

. Identification of an open area of research in minimising memory footprints

for axonal delay simulation using length-adaptive ring buffers.

. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,

Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I.,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

. Scott, N. M., and Kasabov, N. (2015). Feasibility of Implementing NeuCube

on the SpiNNaker Neuromorphic Hardware Device. In 13th International
Conference on Neuro-Computing and Evolving Intelligence. February 19-20,
Auckland, New Zealand.

. Scott, N. M., Kasabov, N., and Indiveri, G. (2013). NeuCube Neuromorphic

Framework for Spatio-Temporal Brain Data and Its Python Implementation.
In Proceedings of the 20th International Conference on Neural Information
Processing, 3—7 November 2013, Daegu, Korea. Springer. doi:10.1007/978-3-
642-42051-1_11

http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://dx.doi.org/10.1007/978-3-642-42051-1_11
http://dx.doi.org/10.1007/978-3-642-42051-1_11

CHAPTER

CONCLUSIONS

Emergent behavior is that which cannot be predicted through analysis
at any level simpler than that of the system as a whole... It, by definition,
is what’s left after everything else has been explained.

— George B. Dyson
(Darwin Among the Machines: The Evolution of Global Intelligence, 1997)

This thesis has addressed a number of different areas of both theory and practice in
SNN, and advanced the current state-of-the-art in a number of ways. In this final
chapter, we firstly discuss the primary contributions it has made to the literature.
Subsequently, we address the research questions posed in Section 1.1, and how these
have been resolved in the thesis. The key caveats and limitations of this work are
then examined, along with a review of the future works and open questions identified.
Finally, this thesis closes with some thoughts on the nature of this study and its

overall contributions.

8.1 NoVvEL CONTRIBUTIONS

At the end of each chapter in this thesis, the specific contributions of that chapter
have been enumerated. Similarly, a list of peer-reviewed publications containing
contributions from that chapter have been summarised in the same way. Therefore,
here we briefly summarise the key contributions, those which have made the greatest
contribution to the state-of-the-art. The interested reader is directed to those sum-
mary sections for a more comprehensive list. The primary novel contributions of

this work follow.

200

8.1 NoveEL CONTRIBUTIONS 201

PRIMARY CONTRIBUTIONS

1. A general design methodology for NeuCube based SNN systems.

By this, we mean the work of Chapter 5, wherein a methodology for the design of
a NeuCube based SNN system is developed. A step-by-step methodology for the
decision making process behind the generation of encoding schemes, structured

reservoirs, and output devices, has been provided in a generalised sense.

As the development of NeuCube systems — and indeed, SNN systems in general
— is a largely heuristic process, it is desirable to impose as much rigor as possible.
This methodology should go some way towards providing a systematic method of
designing NeuCube based SNN (and indeed, any reservoir SNN) in a meaningful,

informed, and reproducable way.
2. A general implementation framework for the NeuCube.

A software design and implementation framework is one of the most significant
contributions in this thesis (cf. Chapter 6). This contribution should ensure that future
development of the NeuCube framework is implemented in a modular, extensible,

and most importantly - theoretically accurate fashion.

Here we have provided the requisite software architecture for an object-oriented
version of the NeuCube, including class diagrams and a list of necessary methods.
Additionally, development guidelines following the Unix design philosophy have

been introduced.

3. A generalised NeuCube realised in Python using the PyNN simulator interface
library.

A concrete implementation of the framework established in the previous contribution
has been developed. This concrete implementation (cf. Section 6.4) is developed for
cross-platform use in manner which is modular and accurately reflects the theory
inspiring it. This cross-platform computational ability will be extremely useful in
future development of the NeuCube, as it allows the system to be applied in a number
of different contexts (commodity PC or laptop, cluster, supercomputer, etc.) without
significant changes to the code, and with the knowledge that the system behaviour

is predictable and traceable .

In the future, this software implementation should serve as a template for future de-

velopment of NeuCube systems. A number of interesting challenges were addressed

8.1 NoveEL CONTRIBUTIONS 202

in this development, including the adaptive mapping of network structure and input

locations.

4. Preliminary exploration of a NeuCube realisation for the Zhejiang FPGA neur-

omorphic hardware system.

The preliminary steps have now been taken to implement the NeuCube on a ded-
icated FPGA-based based neuromorphic hardware system (cf. Section 7.2). This
implementation will allow the NeuCube to be applied in relatively low power envir-

onments.

Additionally, it is the first meaningful model developed for the Zhejiang FPGA, which
is a system still very much in its infancy. While a complete application has not yet
been demonstrated on this computational platform, the preliminary work has been
completed. With some further development of the FPGA itself to address the issues
raised in Section 7.2, this collaboration promises to be a significant contribution to
the state-of-the-art.

5. Preliminary exploration of a NeuCube realisation for the cxQuad and ROLLS

VLSI ASIC neuromorphic hardware devices.

Another contribution in the field of neuromorphic hardware systems — and, arguably
a more significant one than the FPGA system discussed above — is the preliminary
work for an implementation on the INI neuromorphic ASIC devices. A discussion
of the considerations for a NeuCube implementation on such a device is given in
Section 7.3. In short order, the system support software of these devices should reach

a sufficient maturity to be released to external (non-expert) users.

An implementation of the NeuCube on this particular computational platform would
be revolutionary in the types of applications which will then be available to us. The
extremely low power, real-time computation of such neuromorphic hardware is an
ideal fit for robotics and BCI applications. The NeuCube is shown to be effective
in a neuroinformatics context; in conjunction with a computational platform like
the cxQuad, it is ideally applicable for robotics control in rehabilitation and assistive

technologies.
6. A NeuCube realisation for the SpiNNaker neuromorphic hardware device.

One of the largest contributions of this thesis is implementation of a NeuCube
architecture for the SpiNNaker neuromorphic hardware device; one of the first such

meaningful applications of this computational platform. Here (Section 7.4), we have

8.1 NoveEL CONTRIBUTIONS 203

discussed the considerations for developing a NeuCube on this platform, particularly
with regard to the constraints of the hardware and modifications to the existing

systems.

This implementation is advantageous as it allows for the NeuCube framework to
scale to arbitrarily large network sizes. This is a necessary feature as we begin
looking to more complex datasets, as larger networks provide better non-linear
pattern separation and longer memories. Additionally, it is the first time such a
model has been implemented on this hardware, which was initially developed for

computational neuroscience purposes.

SECONDARY CONTRIBUTIONS

The contributions introduced here are preliminary in nature, and are not compre-

hensively explored.

1. Design considerations and architectures for NeuCube systems for Spatio-

Temporal data, with particular applications in neuroinformatics.

In Appendix A, design rules for the application of SNN architectures (specifically,
NeuCube architectures) to spatio-temporal data were introduced here. In particular,
specific reservoir design rules for neuroinformatics data, including EEG and fMRI
have been introduced. These methods are novel in SNN, and have been applied
successfully in a number of studies. These studies are listed in Section A.1, and
include the works by Chen et al. (2013), J. Hu et al. (2014), Kasabov, Hu et al. (2013)
and Kasabov and Capecci (2015).

Additionally, in this section, some empirical evidence of the previously introduced
design and implementation methodologies was given. This study showed that a
NeuCube architecture developed using the concepts introduced in this thesis was
effective at classifying a neuroinformatics or BCI type task. This task, the classific-
ation of EEG recordings of human motor imagery, has meaningful application in

rehabilitation and medical contexts, and in general BCL

2. Design considerations and architectures for NeuCube systems for Spectro-

Temporal data, with particular applications in radioastronomy.

Some general concepts for the design of NeuCube architectures for use on spectro-
temporal data are introduced here. A conceptual mapping of spectral data into

a spatial format, which can then be represented in the NeuCube reservoir, was

8.2 RESEARCH QUESTIONS 204

established. This mapping retains the implicit structure of a spectro-temporal signal,

which other machine learning technologies are not capable of.

Also in this section was a proof-of-concept study of a NeuCube-based SNN system’s
effectiveness on complex radioastronomy data, in the context of the SKA radiotele-
scope project. This application alone has the potential to be a significant contribution
to the current state-of-the-art in both signal processing and radioastronomy itself, if

the preliminary studies are any indication.

8.2 RESEARCH QUESTIONS

Considering the above contributions, and the others established in their respective

chapters, we now identify if the key aims of this thesis have been met.

With regards to the Research Questions established in Section 1.1, given the contri-
butions of this thesis we can reasonably conclude that those questions which initally
motivated this work have been satisfied in their entirety. The following section will
briefly discuss each of these inital questions and how they have been resolved herein.
Further questions and new opportunities raised by this work have been detailed in
Section 8.4.

1. Can a specific SNN framework known as the NeuCube be used to model and
interpret the dynamics of a system consisting of tightly coupled spatial, spectral,

and temporal data components?

This thesis has confirmed that we can indeed use the NeuCube framework — with
meaningful design choices informed by the methodologies introduced here - to
model and analyse systems with complex SSTD dynamics. The introduction of the
design and implementation methdologies here will enforce rigour and repeatability

in the developement of architectures for SNN based systems such as this.

2. Is there a design methodology we can use to inform the development of NeuC-

ube models?

Such a design methodology has been introduced in Chapter 5, and empirical evidence
of its efficacy has been shown in the case studies in this thesis. Additionally, external
verification of this methodology has been shown in the studies published by other

users of the NeuCube, as identified earlier in this thesis.

As those questions defined above were satisfied, the following supplementary ques-

tions were asked:

8.3 CAVEATS AND LIMITATIONS 205

3. What considerations are there for an implementation of this system on:
(a) Commodity computers,
(b) Large scale clusters, or

(c) Dedicated neuromorphic hardware?

A discussion of the considerations for these computational platforms has been given
for both software, and neuromorphic hardware implementations in Chapters 6 and
7 respectively. Integrated implementations of NeuCube systems based on these

considerations have been introduced for all of the named platforms.

4. Can we show some empirical evidence of a NeuCube model’s effectiveness,
when implemented on the above systems and designed utilising the newly
established methodology, in the context of:

(a) Spatio-Temporal data, and
(b) Spectro-Temporal data?

Empirical evidence of NeuCube systems applied to SSTD, and developed using the
methodologies and implementations developed in this thesis have been introduced.
Appendix A provides evidence of this system’s efficacy on spatio-temporal data
in the context of a neuroinformatics or BCI task, and identifies a number of other
publications showing the NeuCube’s effectiveness when developed using the meth-
odologies introduced here. Appendix B provides empirical evidence of the NeuCube’s
effectiveness on spectro-temporal data in the context of complex radioastronomy

data, and identifies further research pathways in this area.

With these responses in mind, this thesis has satisfied its goals, and addressed those
questions which initially motivated the study. These contributions go some way
to establishing more rigour and repeatability in the development of SNN systems,
which is typically considered to be a heuristic process with little in the way of
defined methodologies. It has also introduced an effective tool for the classification
and analysis of SSTD, a significant and contemporary challenge in the field of machine

learning.

8.3 CAVEATS AND LIMITATIONS OF THIS STUDY

In general, the caveats and limitations of the various works in this thesis have been
introduced and discussed in context, in their respective sections. Here then, we

introduce only the key limitations of this study.

8.4 OPEN QUESTIONS & FURTHER WORK 206

In a number of sections, it is identified that the decisions made are heuristically based,
rather than analytically based. This is a present limitation of the existing literature,
in that there is not yet a robust information theory for SNN. Here, these heuristic
considerations have been made as explicit as possible, and some methodologies
introduced to assist in the decision making process. However, the fact remains that
the network designs we develop here are contextual. This issue is further addressed

in Section 8.4.

The empirical studies introduced here are proofs-of-concept, rather than comprehens-
ive studies. These studies provide some empirical support for the systems introduced
herein. It was never the intent of this thesis to perfom large-scale, comprehensive
experiments. Instead, it was intended to provide the systems and methodologies to
support those empirical studies, which are in turn explored in external literature.
Sufficient evidence of the efficacy of these methodologies has been established in
the the contemporary literature employing them; here, we consider the publications
of Capecci et al. (2015), Chen et al. (2013), Doborjeh et al. (2014a, 2014b), J. Hu et al.
(2014), Kasabov and Capecci (2015), Kasabov, Hu et al. (2013), Kasabov et al. (2015),
Schliebs et al. (2013), Scott et al. (2013, 2015), D. Taylor et al. (2015) and D. Taylor

et al. (2014) to be evidence of their real-world application.

8.4 OPEN QUESTIONS & FURTHER WORK

A number of open questions have been identified in this thesis. As with the limitations
of this study, these future works have primarily been identified in context, but key

areas will be reintroduced here for completeness.

1. Automated optimisation of the parameters for the Threshold-Based Temporal
Difference (TD) encoding scheme, using properties of the input signal; some
property of the statistical variance to set the encoding threshold, and some
property of the average frequency of the data (perhaps using the Shannon-
Nyquist sampling theorem) to set the timestep (cf. Section 5.1).

2. Adoption of the Strategy design pattern for software implementation of the
NeuCube (cf. Section 6.3.1). This would support the automated optimisation of
encoding schemes and output devices.

3. The implementation of an Address-Event Representation (AER)-based com-
munication stream to facilitate on-line applications of the NeuCube (cf. Sec-
tion 6.3.3.1).

8.4 OPEN QUESTIONS & FURTHER WORK 207

4. Implementation and exploration of the NeuCube Core architecture. This
system is intended to address the issues of reuse and parallel development in
the NeuCube, by centralising development in a modular and extensible way
(cf Section 6.6).

5. Further development and exploration of a NeuCube system on the Zhejiang
FPGA-based neuromorphic hardware. Here we can show the NeuCube’s ap-
plicability to this type of platform, which is applicable for robotics and other
low-power applications (cf. Section 7.2).

6. An implementation of the NeuCube on INI neuromorphic VLSI devices like the
cxQuad and ROLLS digital-analog ASICs. This implementation will provide a
very low power consumption NeuCube model, which runs in real time. We
can use such a device in a number of contexts, including neurorehabilitation,
and prosthetics and robotics control. Here, we must show that the NeuCube
can operate effectively with the synaptic and neuronal constraints imposed by
this hardware (cf. Section 7.3).

7. Implementation of the streaming IO system (cf. Section 7.4.2.7) and subsequent
adaptation of the SATA links (cf. Section 7.4.2.2) for high-speed streaming 10
on the SpiNNaker device, for on-line applications.

8. Potential memory use reduction in the SpiNNaker device for axonal delay
representation, through the development of adaptive-length ring buffers (cf.
Section 7.4.3.1). A lower memory footprint for each synapse means that a
higher number of synapses can be implemented on the device, at a lower
computational cost. This would allow us to implement larger networks on
the same hardware. This principle would also extend to the NeuCube CORE
architecture.

9. Further research on the issue of SNN systems for applications in high-speed
pulsar and dispersed transient detection in radioastronomy data (cf. Sec-
tion B.2).

Clearly, this research has identified a number of valuable areas for further work.
This is, of course, outside of the main area of further work identified here - that of
a robust theory for SNN systems. To this end, we intend to begin a study on the
sensistivity of such systems (initially using the Latin Hypercube method) to their
structure and parameters, to provide further empirical support to the methodologies
introduced in this thesis. Additionally, we intend to approch the behaviour of these
networks from an information theory perspective. Interesting studies using a similar
method have been performed on biological neurons in Rolls and Treves (2011) and

Quian Quiroga and Panzeri (2009), and these methods can logically be applied to

8.5 CLOSING THOUGHTS 208

artifical neurons. This concept has not been discussed in this thesis, but there is
some overlap between the two; with a better understanding of the properties of such
networks, we can make more informed design decisions — and, perhaps even replace

the heuristics with analytically optimal solutions.

8.5 CLOSING THOUGHTS

I began this thesis with a quote from the late J.Z. Young, wherein he predicts that “...the
principles now being discovered in the brain may provide, in the future, machines
even more powerful than those we can at present forsee.’ It is an innocuous quote,

perhaps obvious with hindsight, though I feel it is no less meaningful for its simplicity.

We now find ourselves five and a half decades into that brave future; more than a
half-century on from the birth of neural network modelling in the seminal works of
McCulloch, Minsky, Pitts, Rosenblatt, and Werbos; more than twenty years since the
start of the modern neural network revolution driven by Izhikevich, Mead, Maass,
and Thorpe; in the midst of an unprecedented interest in biologically-inspired and
biomimetic computation; at a moment in time where the massive computational
demand of such systems can finally begin to be satiated; perhaps at the start of another
renaissance in neurally inspired computing; certainly in a window of immense
opportunity. It is this future in which we see the ‘powerful machines’ envisioned

generations ago rapidly becoming a reality.

In my opinion, it is inevitable that computational intelligence will eventually converge
on brain-like methods of adaptation and learning. The human brain is too powerful
a draw — with its adapation, capacity for depth and breadth of learning, and extreme
energy efficiency, it is the ideal blueprint from which to draw inspiration for the
computational systems intended to demonstrate these same properties. In this, I do
not imply that our systems will reproduce the specific dynamics of human brain in a
biologically accurate manner. Personally, I do not believe this to the be the optimal
solution. The abstraction of these dynamics have remarkable emergent properties of
their own. In conjunction with the immensely powerful computational platforms
currently in development, they may even show better results than our biological

< b
computers'.

The NeuCube, and its derivatives, are one such ‘powerful machine’. Herein, I have
demonstrated its efficacy on disparate platforms and datasets, and indeed, it has
shown excellent promise. Is this system a step on the road towards something

greater? Almost certainly, if we look to a long enough time scale. Regardless, in the

8.5 CLOSING THOUGHTS 209

here and now, I contend that the NeuCube and the systems introduced in this thesis
currently provide one of the most effective techniques for addressing complex and
challenging SSTD.

REFERENCES

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain Research Bulletin, 50(5-6), 303—-304. doi:10.1016/S0361-9230(99)
00161-6

Adrian, E. D. (1926). The impulses produced by sensory nerve-endings. Journal of
Physiology, 61(1), 49-72.

Aggarwal, V., Acharya, S., Tenore, F., Hyun-Chool, S., Etienne-Cummings, R., Schieber,
M. & Thankor, N. (2008). Asynchronous Decoding of Dexterous Finger Move-
ments Using M1 Neurons. IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering, 16(1), 3-14.

Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. (2007, July). Diffusion Tensor
Imaging of the Brain. Neurotherapeutics, 4(3), 316-329. d0i:10.1016/j.nurt.2007.
05.011

Allen, C., Celikel, T. & Feldman, D. (2003, March). Long-term depression induced by
sensory deprivation during cortical map plasticity in vivo. Nature Neuroscience,
6(3), 291-9. d0i:10.1038/nn1012

Allen, C. & Stevens, C. F. (1994, October). An evaluation of causes for unreliability of
synaptic transmission. Proceedings of the National Academy of Sciences of the
United States of America, 91(22), 10380-3.

Amit, D. J. & Fusi, S. (1994, September). Learning in Neural Networks with Material
Synapses. Neural Computation, 6(5), 957-982. d0i:10.1162/neco0.1994.6.5.957

Andrienko, G., Malerba, D., May, M. & Teisseire, M. (2006, November). Mining spatio-
temporal data. Journal of Intelligent Information Systems, 27(3), 187-190. doi:10.
1007/s10844-006-9949-3

Angélil, R., Saha, P. & Merritt, D. (2010, September). Toward Relativistic Orbit Fitting
of Galactic Center Stars and Pulsars. The Astrophysical Journal, 720(2), 1303—
1310. doi:10.1088/0004-637X/720/2/1303

Antoni, J. (2006, February). The spectral kurtosis: a useful tool for characterising non-
stationary signals. Mechanical Systems and Signal Processing, 20(2), 282-307.
do0i:10.1016/j.ymssp.2004.09.001

Arvaneh, M., Guan, C., Ang, K. K. & Quek, C. (2011). Optimizing the channel selection
and classification accuracy in EEG-based BCI. IEEE Transactions on Biomedical
Engineering, 58(6), 1865-1873. doi:10.1109/TBME.2011.2131142

Aurlien, H., Gjerde, 1. O., Aarseth, J. H., Eldeen, G., Karlsen, B., Skeidsvoll, H. &
Gilhus, N. E. (2004, March). EEG background activity described by a large
computerized database. Clinical Neurophysiology, 115(3), 665-673. d0i:10.1016/
j.clinph.2003.10.019

210

http://dx.doi.org/10.1016/S0361-9230(99)00161-6
http://dx.doi.org/10.1016/S0361-9230(99)00161-6
http://dx.doi.org/10.1016/j.nurt.2007.05.011
http://dx.doi.org/10.1016/j.nurt.2007.05.011
http://dx.doi.org/10.1038/nn1012
http://dx.doi.org/10.1162/neco.1994.6.5.957
http://dx.doi.org/10.1007/s10844-006-9949-3
http://dx.doi.org/10.1007/s10844-006-9949-3
http://dx.doi.org/10.1088/0004-637X/720/2/1303
http://dx.doi.org/10.1016/j.ymssp.2004.09.001
http://dx.doi.org/10.1109/TBME.2011.2131142
http://dx.doi.org/10.1016/j.clinph.2003.10.019
http://dx.doi.org/10.1016/j.clinph.2003.10.019

REFERENCES 211

Azadmehr, M., Abrahamsen, J. P. & Héfliger, P. (2005). A foveated AER imager chip. In
2005 ieee international symposium on circuits and systems (Vol. 1, pp. 2751-2754).
Kobe, Japan: IEEE. doi:10.1109/ISCAS.2005.1465196

Azghadi, M. R,, Iannella, N., Al-Sarawi, S. F., Indiveri, G. & Abbott, D. (2014, May).
Spike-Based Synaptic Plasticity in Silicon: Design, Implementation, Application,
and Challenges. Proceedings of the IEEE, 102(5), 717-737. doi:10.1109/JPROC.
2014.2314454

Backer, D. C. & Hellings, R. W. (1986, September). Pulsar Timing and General Relativ-
ity. Annual Review of Astronomy and Astrophysics, 24(1), 537-575. doi:10.1146/
annurev.aa.24.090186.002541

Backer, D. C., Kulkarni, S. R, Heiles, C., Davis, M. M. & Goss, W. M. (1982, December).
A Millisecond Pulsar. Nature, 300(5893), 615-618. d0i:10.1038/300615a0

Badoni, D., Giulioni, M., Dante, V. & Del Giudice, P. (2006). An aVLSI recurrent
network of spiking neurons with reconfigurable and plastic synapses. In Pro-
ceedings of the ieee international symposium on circuits and systems (p. 4). Island
of Kos, Greece: IEEE. doi:10.1109/ISCAS.2006.1692813

Bear, M., Connors, B. & Paradiso, M. (2007). Neuroscience: Exploring the Brain (3rd).
Phildelphia, PA, USA: Lippincott Williams & Wilkins.

Belatreche, A., Maguire, L. P. & McGinnity, M. (2006, March). Advances in Design
and Application of Spiking Neural Networks. Soft Computing, 11(3), 239-248.
doi:10.1007/s00500-006-0065-7

Bengio, Y. & LeCun, Y. (2007). Scaling Learning Algorithms towards Al Large Scale
Kernel Machines, (1), 321-360.

Bentley, J. L. (1975, September). Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9), 509-517. doi:10.1145/
361002.361007

Benuskova, L. & Kasabov, N. (2008, December). Modeling brain dynamics using
computational neurogenetic approach. Cognitive Neurodynamics, 2(4), 319-34.
doi:10.1007/s11571-008-9061-1

Bi, G.-Q. & Poo, M.-M. (1998). Synaptic Modifications in Cultured Hippocampal
Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic
Cell Type. The Journal of Neuroscience, 18(24), 10464—-10472.

Bi, G.-Q. & Poo, M.-M. (2001, January). Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139—-66. doi:10.
1146/annurev.neuro.24.1.139

Bogorny, V. & Shekhar, S. (2010, December). Spatial and Spatio-temporal Data Mining.
In 2010 ieee international conference on data mining (pp. 1217-1217). IEEE.
doi:10.1109/ICDM.2010.166

Bohte, S. (2004). The evidence for neural information processing with precise spike-
times: A survey. Natural Computing, 3(2), 195-206. doi:10.1023/B:NACO.
0000027755.02868.60

Bohte, S., Kok, J. & Poutre, J. (2002, October). Error-Backpropagation in Temporally
Encoded Networks of Spiking Neurons. Neurocomputing, 48(1-4), 17-37. doi:10.
1016/50925-2312(01)00658-0

http://dx.doi.org/10.1109/ISCAS.2005.1465196
http://dx.doi.org/10.1109/JPROC.2014.2314454
http://dx.doi.org/10.1109/JPROC.2014.2314454
http://dx.doi.org/10.1146/annurev.aa.24.090186.002541
http://dx.doi.org/10.1146/annurev.aa.24.090186.002541
http://dx.doi.org/10.1038/300615a0
http://dx.doi.org/10.1109/ISCAS.2006.1692813
http://dx.doi.org/10.1007/s00500-006-0065-7
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1007/s11571-008-9061-1
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.1109/ICDM.2010.166
http://dx.doi.org/10.1023/B:NACO.0000027755.02868.60
http://dx.doi.org/10.1023/B:NACO.0000027755.02868.60
http://dx.doi.org/10.1016/S0925-2312(01)00658-0
http://dx.doi.org/10.1016/S0925-2312(01)00658-0

REFERENCES 212

Brader, J. M., Senn, W. & Fusi, S. (2007, November). Learning real-world stimuli in
a neural network with spike-driven synaptic dynamics. Neural Computation,
19(11), 2881-912. d0i:10.1162/neco0.2007.19.11.2881

Brette, R. & Gerstner, W. (2005). Adaptive Exponential Integrate-and-Fire Model as an
Effective Description of Neuronal Activity. Journal of Neurophysiology, 94(5),
3637-3642. d0i:10.1152/jn.00686.2005.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., ... Destexhe,
A. (2007, December). Simulation of networks of spiking neurons: a review
of tools and strategies. Journal of Computational Neuroscience, 23(3), 349-98.
doi:10.1007/s10827-007-0038-6

Bruckner, S., Solteszova, V., Groller, E., Hladuvka, J., Buhler, K, Yu, J. Y., ... Dickson,
B. J. (2009, November). BrainGazer - Visual Queries for Neurobiology Research.
IEEE Transactions on Visualization and Computer Graphics, 15(6), 1497-1504.
doi:10.1109/TVCG.2009.121

Brunel, N. & Van Rossum, M. (2007, December). Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biological Cybernetics, 97(5-6), 337-339. doi:10.1007/s00422-
007-0190-0

Buteneers, P., Schrauwen, B., Verstraeten, D. & Stroobandt, D. (2008). Real-time
epileptic seizure detection on intra-cranial rat data using reservoir computing.
In Proceedings of the international conference on neural information processing
(pp. 56-63). Auckland, New Zealand: Springer. doi:10.1007/978-3-642-02490-
0_7

Butts, D. A., Weng, C., Jin, J., Yeh, C.-I,, Lesica, N. A., Alonso, J.-M. & Stanley, G. B.
(2007, September). Temporal precision in the neural code and the timescales of
natural vision. Nature, 449(7158), 92—-5. doi:10.1038/nature06105

Capecci, E., Kasabov, N. & Wang, G. (2015, August). Analysis of connectivity in
NeuCube spiking neural network models trained on EEG data for the under-
standing of functional changes in the brain: A case study on opiate dependence
treatment. Neural Networks, 68, 62—77. do0i:10.1016/j.neunet.2015.03.009

Cassidy, A., Denham, S., Kanold, P. & Andreou, A. (2007, November). FPGA Based
Silicon Spiking Neural Array. In Proceedings of the ieee biomedical circuits and
systems conference (pp. 75-78). Montreal, Quebec, Canada: IEEE. d0i:10.1109/
BIOCAS.2007.4463312

Chang, S. H., Zhou, P., Rymer, W. Z. & Li, S. (2013). Spasticity, weakness, force
variability, and sustained spontaneous motor unit discharges of resting spas-
tic—paretic biceps brachii muscles in chronic stroke. Muscle & Nerve, 48(1),
85-92. d0i:10.1002/mus.23699

Chechik, G. (2003, July). Spike-timing-dependent plasticity and relevant mutual
information maximization. Neural Computation, 15(7), 1481-510. doi:10.1162/
089976603321891774

Chen, Y., Hu, J., Kasabov, N., Hou, Z.-G. & Cheng, L. (2013). NeuCubeRehab: A Pilot
Study for EEG Classification in Rehabilitation Practice Based on Spiking Neural
Networks. In Proceedings of the international conference on neural information
processing (pp. 70-77). Springer. doi:10.1007/978-3-642-42051-1_10

Chestek, C. & Shenoy, K. (2012). Neural Prosthetics. Scholarpedia, 7(3), 11854. doi:10.
4249/scholarpedia.11854

http://dx.doi.org/10.1162/neco.2007.19.11.2881
http://dx.doi.org/10.1152/jn.00686.2005.
http://dx.doi.org/10.1007/s10827-007-0038-6
http://dx.doi.org/10.1109/TVCG.2009.121
http://dx.doi.org/10.1007/s00422-007-0190-0
http://dx.doi.org/10.1007/s00422-007-0190-0
http://dx.doi.org/10.1007/978-3-642-02490-0_7
http://dx.doi.org/10.1007/978-3-642-02490-0_7
http://dx.doi.org/10.1038/nature06105
http://dx.doi.org/10.1016/j.neunet.2015.03.009
http://dx.doi.org/10.1109/BIOCAS.2007.4463312
http://dx.doi.org/10.1109/BIOCAS.2007.4463312
http://dx.doi.org/10.1002/mus.23699
http://dx.doi.org/10.1162/089976603321891774
http://dx.doi.org/10.1162/089976603321891774
http://dx.doi.org/10.1007/978-3-642-42051-1_10
http://dx.doi.org/10.4249/scholarpedia.11854
http://dx.doi.org/10.4249/scholarpedia.11854

REFERENCES 213

Chua, L. (1971). Memristor-The missing circuit element. IEEE Transactions on Circuit
Theory, 18(5), 507-519. d0i:10.1109/TCT.1971.1083337

Chua, L. (2011, March). Resistance switching memories are memristors. Applied
Physics A, 102(4), 765-783. d0i:10.1007/s00339-011-6264-9

Cortes, C. & Vapnik, V. N. (1995). Support Vector Networks. Machine Learning, 20,
273-297.

Cox, D. D. & Savoy, R. L. (2003, June). Functional magnetic resonance imaging
(fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI
activity in human visual cortex. Neurolmage, 19(2), 261-270. doi:10.1016/S1053-
8119(03)00049-1

Davies, S., Galluppi, F., Rast, A. & Furber, S. (2012, August). A forecast-based STDP
rule suitable for neuromorphic implementation. Neural Networks, 32, 3—14.
doi:10.1016/j.neunet.2012.02.018

Davison, A. P., Briiderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D, ... Yger, P.
(2008, January). PyNN: A Common Interface for Neuronal Network Simulators.
Frontiers in Neuroinformatics, 2, 11. doi:10.3389/neuro.11.011.2008

Dayan, P. & Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Math-
ematical Modeling of Neural Systems. Cambridge, MA, USA: MIT Press.

de Garis, H., Korkin, M. & Fehr, G. (2001). The CAM-Brain Machine (CBM): An
FPGA Based Tool for Evolving a 75 Million Neuron Artificial Brain to Control
a Lifesized Kitten Robot. Autonomous Robots, 10(3), 235-249. do0i:10.1023/A:
1011286308522

Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. (2011). Axon
Physiology. Physiological Reviews, 91(2), 555-602. doi:10.1152/physrev.00048.
2009

Deep, K., Singh, K. P., Kansal, M. L. & Mohan, C. (2009). A real coded genetic al-
gorithm for solving integer and mixed integer optimization problems. Applied
Mathematics and Computation, 212(2), 505-518. doi:10.1016/j.amc.2009.02.044

Defoin-Platel, M., Schliebs, S. & Kasabov, N. (2009). Quantum-inspired Evolutionary
Algorithm: A multi-model EDA. IEEE Trans. Evolutionary Computation, 13(6),
1218-32.

Delbruck, T. & Lichtsteiner, P. (2007, May). Fast sensory motor control based on
event-based hybrid neuromorphic-procedural system. In 2007 ieee international
symposium on circuits and systems (pp. 845-848). New Orleans, LA, USA: IEEE.
doi:10.1109/ISCAS.2007.378038

Deneva, J. S., Cordes, J. M. & Lazio, T. J. W. (2009, September). Discovery of Three
Pulsars from a Galactic Center Pulsar Population. The Astrophysical Journal,
702(2), L177-L181. doi:10.1088/0004-637X/702/2/L177

Desbordes, G., Jin, J., Alonso,]J.-M. & Stanley, G. B. (2010, January). Modulation of
temporal precision in thalamic population responses to natural visual stimuli.
Frontiers in Systems Neuroscience, 4, 151. doi:10.3389/fnsys.2010.00151

Desbordes, G., Jin, J., Weng, C., Lesica, N. A., Stanley, G. B. & Alonso, J.-M. (2008,
December). Timing precision in population coding of natural scenes in the
early visual system. PLoS Biology, 6(12), e324. d0i:10.1371/journal.pbio.0060324

http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1007/s00339-011-6264-9
http://dx.doi.org/10.1016/S1053-8119(03)00049-1
http://dx.doi.org/10.1016/S1053-8119(03)00049-1
http://dx.doi.org/10.1016/j.neunet.2012.02.018
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.1023/A:1011286308522
http://dx.doi.org/10.1023/A:1011286308522
http://dx.doi.org/10.1152/physrev.00048.2009
http://dx.doi.org/10.1152/physrev.00048.2009
http://dx.doi.org/10.1016/j.amc.2009.02.044
http://dx.doi.org/10.1109/ISCAS.2007.378038
http://dx.doi.org/10.1088/0004-637X/702/2/L177
http://dx.doi.org/10.3389/fnsys.2010.00151
http://dx.doi.org/10.1371/journal.pbio.0060324

REFERENCES 214

Dewdney, P., Turner, W., Braun, R., Juande, S.-V. & Tan, G. H. (2015). SKA1 System
Baseline V2 Description. Square Kilometre Array. Manchester, UK. Retrieved
from https://www.skatelescope.org/key-documents/

Dhoble, K., Nuntalid, N., Indiveri, G. & Kasabov, N. (2012, June). Online spatio-
temporal pattern recognition with evolving spiking neural networks utilising
address event representation, rank order, and temporal spike learning. In Pro-
ceedings of the 2012 international joint conference on neural networks (pp. 1-7).
Brisbane, Australia: IEEE. do0i:10.1109/IJCNN.2012.6252439

Diehl, P. U. & Cook, M. (2014, July). Efficient implementation of STDP rules on
SpiNNaker neuromorphic hardware. In 2014 international joint conference on
neural networks (ijcnn) (pp. 4288-4295). Beijing, China: IEEE. doi:10.1109/
IJCNN.2014.6889876

Diesmann, M. & Gewaltig, M.-O. (2001). NEST: An environment for neural systems
simulation. Forschung und wisschenschaftliches Rechnen, Beitrdge zum Heinz-
Billing-Preis, 58, 43-70.

Djurfeldt, M. (2012). The connection-set algebra-a novel formalism for the represent-
ation of connectivity structure in neuronal network models. Neuroinformatics,
10(3), 287-304. d0i:10.1007/s12021-012-9146-1

Doborjeh, M. G., Capecci, E. & Kasabov, N. (2014a, December). Classification and seg-
mentation of fMRI Spatio-Temporal Brain Data with a NeuCube evolving Spik-
ing Neural Network model. In 2014 ieee symposium on evolving and autonomous
learning systems (eals) (pp. 73-80). Orlando, FL, USA: IEEE. doi:10.1109/EALS.
2014.7009506

Doborjeh, M. G., Capecci, E. & Kasabov, N. (2014b). Temporal Brain Data with a
NeuCube Evolving Spiking Neural Network Model, 73-80.

Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K. & Burger, D. (2011,
July). Dark silicon and the end of multicore scaling. ACM SIGARCH Computer
Architecture News, 39(3), 365. doi:10.1145/2024723.2000108

Esser, S. K., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D., Amir, A, ...
Modha, D. S. (2013, August). Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores. In Proceedings of the 2013
international joint conference on neural networks (pp. 1-10). Dallas, TX, USA:
IEEE. doi:10.1109/]JCNN.2013.6706746

Evarts, E. V. (1968, January). Relation of pyramidal tract activity to force exerted
during voluntary movement. Journal of Neurophysiology, 31(1), 14-27. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/4966614

Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. (1995, June). Motor facilitation during
action observation: a magnetic stimulation study. Journal of Neurophysiology,
73(6), 2608-2611. Retrieved from http://jn.physiology.org/content/73/6/2608

Fagg, A., Hatsopoulos, N. G., de Lafuente, V., Moxon, K., Nemati, S., Rebesco, J.,
... Miller, L. (2007). Biomimetic Brain Machine Interfaces for the Control of
Movement. The Journal of Neuroscience, 27(44), 11842-11846. doi:10.1523/
JNEUROSCI.3516-07.2007

Feng, W.-C. (2003, October). Making a Case for Efficient Supercomputing. Queue,
1(7), 54. doi:10.1145/957717.957772

https://www.skatelescope.org/key-documents/
http://dx.doi.org/10.1109/IJCNN.2012.6252439
http://dx.doi.org/10.1109/IJCNN.2014.6889876
http://dx.doi.org/10.1109/IJCNN.2014.6889876
http://dx.doi.org/10.1007/s12021-012-9146-1
http://dx.doi.org/10.1109/EALS.2014.7009506
http://dx.doi.org/10.1109/EALS.2014.7009506
http://dx.doi.org/10.1145/2024723.2000108
http://dx.doi.org/10.1109/IJCNN.2013.6706746
http://www.ncbi.nlm.nih.gov/pubmed/4966614
http://jn.physiology.org/content/73/6/2608
http://dx.doi.org/10.1523/JNEUROSCI.3516-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.3516-07.2007
http://dx.doi.org/10.1145/957717.957772

REFERENCES 215

Florian, R. V. (2008). Tempotron-like learning with ReSuMe. In V. Kurkova, R. Neruda
& J. Koutnik (Eds.), Proceedings of the 18th international conference on artificial
neural networks (Vol. 5164, pp. 368—-375). Lecture Notes in Computer Science.
Prague, Czech Republic: Springer Berlin Heidelberg. doi:10.1007/978-3-540-
87559-8_38

Florian, R. V. (2010). The Chronotron : a neuron that learns to fire temporally-precise
spike patterns. Nature Preceedings. doi:10.1038/npre.2010.5190.3

Florian, R. V. (2012, August). The Chronotron: A Neuron That Learns to Fire Tempor-
ally Precise Spike Patterns. PLoS ONE, 7(8), e40233. doi:10.1371/journal.pone.
0040233

Foottit, J., Brown, D., Marks, S. & Connor, A. M. (2014). An Intuitive Tangible Game
Controller. In Proceedings of the 2014 conference on interactive entertainment -
ie2014 (pp. 1-7). New York, New York, USA: ACM Press. doi:10.1145/2677758.
2677774

Formisano, E., de Martino, F. & Valente, G. (2008, September). Multivariate analysis of
fMRI time series: classification and regression of brain responses using machine
learning. Magnetic Resonance Imaging, 26(7), 921-34. doi:10.1016/j.mri.2008.01.
052

Fox, K. (2009). Experience-dependent plasticity mechanisms for neural rehabilitation
in somatosensory cortex. Philosophical Transactions of the Royal Society of
London. Series B, Biological sciences, 364(1515), 369-381. doi:10.1098/rstb.2008.
0252

Fransson, P., Kriiger, G., Merboldt, K. D. & Frahm, J. (1999). MRI of functional deactiv-
ation: temporal and spatial characteristics of oxygenation-sensitive responses in
human visual cortex. doi:10.1006/nimg.1999.0438

Freeman, D. K., Rizzo, J. F. & Fried, S. I. (2011, June). Encoding visual information in
retinal ganglion cells with prosthetic stimulation. Journal of Neural Engineering,
8(3), 035005. d0i:10.1088/1741-2560/8/3/035005

Frégnac, Y., Pananceau, M., René, A., Huguet, N., Marre, O., Levy, M. & Shulz, D.
(2010, January). A Re-Examination of Hebbian-Covariance Rules and Spike
Timing-Dependent Plasticity in Cat Visual Cortex in vivo. Frontiers in Synaptic
Neuroscience, 2, 147. d0i:10.3389/fnsyn.2010.00147

Furber, S. (2012, August). To Build a Brain. IEEE Spectrum, 49(8), 44—49. doi:10.1109/
MSPEC.2012.6247562

Furber, S. (2016). Large-scale neuromorphic computing systems. Journal of Neural
Engineering, 13(5), 051001. doi:10.1088/1741-2560/13/5/051001

Furber, S., Lester, D., Plana, L. A., Garside, J. D., Painkras, E., Temple, S. & Brown,
A.D. (2013, December). Overview of the SpiNNaker System Architecture. I[EEE
Transactions on Computers, 62(12), 2454-2467. doi:10.1109/TC.2012.142

Fusi, S. (2000). Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implement-
ation. Neural Computation, 12, 2227-2258.

Fusi, S. (2003, January). Spike-driven synaptic plasticity for learning correlated pat-
terns of mean firing rates. Reviews in the Neurosciences, 14(1-2), 73-84.

Fusi, S., Drew, P. J. & Abbott, L. F. (2005, February). Cascade models of synaptically
stored memories. Neuron, 45(4), 599-611. doi:10.1016/j.neuron.2005.02.001

http://dx.doi.org/10.1007/978-3-540-87559-8_38
http://dx.doi.org/10.1007/978-3-540-87559-8_38
http://dx.doi.org/10.1038/npre.2010.5190.3
http://dx.doi.org/10.1371/journal.pone.0040233
http://dx.doi.org/10.1371/journal.pone.0040233
http://dx.doi.org/10.1145/2677758.2677774
http://dx.doi.org/10.1145/2677758.2677774
http://dx.doi.org/10.1016/j.mri.2008.01.052
http://dx.doi.org/10.1016/j.mri.2008.01.052
http://dx.doi.org/10.1098/rstb.2008.0252
http://dx.doi.org/10.1098/rstb.2008.0252
http://dx.doi.org/10.1006/nimg.1999.0438
http://dx.doi.org/10.1088/1741-2560/8/3/035005
http://dx.doi.org/10.3389/fnsyn.2010.00147
http://dx.doi.org/10.1109/MSPEC.2012.6247562
http://dx.doi.org/10.1109/MSPEC.2012.6247562
http://dx.doi.org/10.1088/1741-2560/13/5/051001
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1016/j.neuron.2005.02.001

REFERENCES 216

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. & Benos-
man, R. B. (2015, January). A framework for plasticity implementation on the
SpiNNaker neural architecture. Frontiers in Neuroscience, 8. doi:10.3389/fnins.
2014.00429

Galluppi, F., Rast, A, Davies, S. & Furber, S. (2010). A general-purpose model trans-
lation system for a universal neural chip. In Proceedings of the international
conference on neural information processing (pp. 58—65). Sydney, Australia.

Gamma, E., Helm, R., Johnson, R. E. & Vlissides, J. (1995). Design patterns: elements of
reusable object-oriented software. doi:10.1093/carcin/bgs084

Garcia, G. N., Ebrahimi, T. & Vesin, J. M. (2003). Support vector EEG classification in
the Fourier and time-frequency correlation domains. In First international ieee
embs conference on neural engineering (pp. 591-594). IEEE. d0i:10.1109/CNE.
2003.1196897

Gelencsér, A., Prodromakis, T., Toumazou, C. & Roska, T. (2012, April). Biomimetic
model of the outer plexiform layer by incorporating memristive devices. Phys-
ical Review E, 85(4), 041918. doi:10.1103/PhysRevE.85.041918

Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. (1982, November).
On the relations between the direction of two-dimensional arm movements
and cell discharge in primate motor cortex. The Journal of Neuroscience, 2(11),
1527-37.

Gerstner, W. (2010, January). From Hebb Rules to Spike-Timing-Dependent Plasticity:
A Personal Account. Frontiers in Synaptic Neuroscience, 2, 151. doi:10.3389/
fnsyn.2010.00151

Gerstner, W. & Brette, R. (2009). Adaptive exponential integrate-and-fire model.
Scholarpedia, 4(6), 8427. doi:10.4249/scholarpedia.8427

Gerstner, W. & Kistler, W. (2002). Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge, MA, USA: Cambridge University Press.

Gerstner, W,, Kistler, W., Naud, R. & Paninski, L. (2014). Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition (1st). Cambridge, UK:
Cambridge University Press.

Gewaltig, M.-O. & Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia,
2(4), 1430. doi:10.4249/scholarpedia.1430

Ghosh-Dastidar, S. & Adeli, H. (2007). Improved spiking neural networks for EEG
classification and epilepsy and seizure detection. Integrated Computer-Aided
Engineering, 14, 187-212.

Ghosh-Dastidar, S. & Adeli, H. (2009, December). A new supervised learning algorithm
for multiple spiking neural networks with application in epilepsy and seizure
detection. Neural Networks, 22(10), 1419-31. d0i:10.1016/j.neunet.2009.04.003

Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI.
Neurolmage, 9(4), 416-429. doi:10.1006/nimg.1998.0419

Goodman, D. & Brette, R. (2008, January). Brian: a simulator for spiking neural
networks in Python. Frontiers in Neuroinformatics, 2, 5. doi:10.3389/neuro.11.
005.2008

Goudarzi, A., Banda, P., Lakin, M. R,, Teuscher, C. & Stefanovic, D. (2014, January).
A Comparative Study of Reservoir Computing for Temporal Signal Processing.
arXiv: 1401.2224. Retrieved from http://arxiv.org/abs/1401.2224

http://dx.doi.org/10.3389/fnins.2014.00429
http://dx.doi.org/10.3389/fnins.2014.00429
http://dx.doi.org/10.1093/carcin/bgs084
http://dx.doi.org/10.1109/CNE.2003.1196897
http://dx.doi.org/10.1109/CNE.2003.1196897
http://dx.doi.org/10.1103/PhysRevE.85.041918
http://dx.doi.org/10.3389/fnsyn.2010.00151
http://dx.doi.org/10.3389/fnsyn.2010.00151
http://dx.doi.org/10.4249/scholarpedia.8427
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1016/j.neunet.2009.04.003
http://dx.doi.org/10.1006/nimg.1998.0419
http://dx.doi.org/10.3389/neuro.11.005.2008
http://dx.doi.org/10.3389/neuro.11.005.2008
http://arxiv.org/abs/1401.2224
http://arxiv.org/abs/1401.2224

REFERENCES 217

Graas, E. L., Brown, E. A. & Lee, R. H. (2004). An FPGA-Based Approach to High-
Speed Simulation of Conductance-Based Neuron Models. Neuroinformatics,
2(4), 417-435.

Gray, V., Rice, C. L. & Garland, S. J. (2012). Factors that influence muscle weakness
following stroke and their clinical implications: a critical review. Physiotherapy
Canada, 64(4), 415-426. doi:10.3138/ptc.2011-03

Grush, R. (2004, June). The emulation theory of representation: motor control, im-
agery, and perception. The Behavioral and Brain Sciences, 27(3), 377-96. Re-
trieved from http://www.ncbi.nlm.nih.gov/pubmed/15736871

Giitig, R., Aharonov, R., Rotter, S. & Sompolinsky, H. (2003). Learning input correla-
tions through nonlinear temporally asymmetric Hebbian plasticity. The Journal
of Neuroscience, 23, 3697-3714.

Giitig, R. & Sompolinsky, H. (2006, March). The tempotron: a neuron that learns spike
timing-based decisions. Nature Neuroscience, 9(3), 420-8. doi:10.1038/nn1643

Hardingham, N. R. & Larkman, A. U. (1998, February). Rapid report: the reliability
of excitatory synaptic transmission in slices of rat visual cortex in vitro is
temperature dependent. The Journal of Physiology, 507, 249—-56.

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., ... Jones, A. R. (2012, September). An anatomically comprehensive atlas
of the adult human brain transcriptome. Nature, 489(7416), 391-9. d0i:10.1038/
nature11405

Hazan, H. & Manevitz, L. M. (2012, February). Topological constraints and robustness
in liquid state machines. Expert Systems with Applications, 39(2), 1597-1606.
doi:10.1016/j.eswa.2011.06.052

Hebb, D. (1949). The Organization of Behavior. New York, NY, USA: Wiley.

Heeger, D. J. & Ress, D. (2002, February). What does fMRI tell us about Neuronal
Activity? Nature Reviews Neuroscience, 3(2), 142-151. doi:10.1038/nrn730
Herbert, J. H. (1958, May). Report of the committee on methods of clinical examin-
ation in electroencephalography. Electroencephalography and Clinical Neuro-

physiology, 10(2), 370-375. doi:10.1016/0013-4694(58)90053-1

Hines, M. & Carnevale, T. (2001, April). NEURON: a tool for neuroscientists. The
Neuroscientist, 7(2), 123-35.

Hinton, G. E., Osindero, S. & Teh, Y.-W. (2006, July). A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7), 1527-1554. doi:10.1162/neco.2006.
18.7.1527

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.H., ...
Donoghue, J. P. (2006, July). Neuronal ensemble control of prosthetic devices by
a human with tetraplegia. Nature, 442(7099), 164-71. doi:10.1038/nature04970

Hodgkin, A. & Huxley, A. (1952). A quantitative description of membrane current
and its application to conduction and excitation in nerve. Journal of Physiology,
117(4), 500-544.

Holper, L. & Wolf, M. (2011). Single-trial classification of motor imagery differing
in task complexity: a functional near-infrared spectroscopy study. Journal of
Neuroengineering and Rehabilitation, 8, 34. doi:10.1186/1743-0003-8-34

http://dx.doi.org/10.3138/ptc.2011-03
http://www.ncbi.nlm.nih.gov/pubmed/15736871
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1038/nature11405
http://dx.doi.org/10.1038/nature11405
http://dx.doi.org/10.1016/j.eswa.2011.06.052
http://dx.doi.org/10.1038/nrn730
http://dx.doi.org/10.1016/0013-4694(58)90053-1
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1038/nature04970
http://dx.doi.org/10.1186/1743-0003-8-34

REFERENCES 218

Hopkins, M. & Furber, S. (2015, October). Accuracy and Efficiency in Fixed-Point
Neural ODE Solvers. Neural Computation, 27(10), 2148-2182. doi:10.1162/
NECO a_ 00772

Hough, M., de Garis, H., Korkin, M., Gers, F. & Nawa, N. E. (1999). SPIKER Analog
waveform to digital spiketrain conversion in ATR’s artificial brain (CAM-Brain)
project. In International conference on robotics and artificial life.

Hu, J., Hou, Z.-G., Chen, Y., Kasabov, N. & Scott, N. M. (2014, August). EEG-based clas-
sification of upper-limb ADL using SNN for active robotic rehabilitation. In 5th
ieee ras/embs international conference on biomedical robotics and biomechatronics
(pp. 409-414). IEEE. doi:10.1109/BIOROB.2014.6913811

Hu, M,, Li, H., Chen, Y., Wang, X. & Pino, R. E. (2011, January). Geometry vari-
ations analysis of TiO<inf>2</inf> thin-film and spintronic memristors. In 16th
asia and south pacific design automation conference (asp-dac 2011) (pp. 25-30).
Yokohama, Japan: IEEE. d0i:10.1109/ASPDAC.2011.5722193

Iakymchuk, T., Rosado, A., Serrano-Gotarredona, T., Linares-Barranco, B., Jimenez-
Fernandez, A., Linares-Barranco, A. & Jimenez-Moreno, G. (2014, June). An AER
handshake-less modular infrastructure PCB with x8 2.5Gbps LVDS serial links.
In 2014 ieee international symposium on circuits and systems (iscas) (pp. 1556—
1559). Melboure, Australia: IEEE. doi:10.1109/ISCAS.2014.6865445

Indiveri, G. (2003). A low-power adaptive integrate-and-fire neuron circuit. In Pro-
ceedings of the 2003 international symposium on circuits and systems (Vol. 4,
pp- IV-820-1V-823). Bangkok, Thailand: IEEE. doi:10.1109/ISCAS.2003.1206342

Indiveri, G., Corradi, F. & Qiao, N. (2015). Neuromorphic Architectures for Spiking
Deep Neural Networks. In Proceedings of the international electron devices
meeting (pp. 1-4). Washington DC, USA: IEEE.

Indiveri, G. & Horiuchi, T. K. (2011, January). Frontiers in neuromorphic engineering.
Frontiers in Neuroscience, 5, 118. do0i:10.3389/fnins.2011.00118

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-Cummings,
R., Delbruck, T, ... Boahen, K. (2011, January). Neuromorphic silicon neuron
circuits. Frontiers in Neuroscience, 5, 73. d0i:10.3389/fnins.2011.00073

Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G. & Prodromakis,
T. (2013, September). Integration of nanoscale memristor synapses in neur-
omorphic computing architectures. Nanotechnology, 24(38), 384010. doi:10.
1088/0957-4484/24/38/384010

Indiveri, G., Stefanini, F. & Chicca, E. (2010, May). Spike-based learning with a
generalized integrate and fire silicon neuron. In Proceedings of 2010 ieee inter-
national symposium on circuits and systems (pp. 1951-1954). Paris, France: IEEE.
doi:10.1109/ISCAS.2010.5536980

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural
Networks, 14(6), 1569-1572. doi:10.1109/TNN.2003.820440

Izhikevich, E. M. (2004). Which Model to Use for Cortical Spiking Neurons? IEEE
Transactions on Neural Networks, 15(5), 1063—1070. doi:10.1109/TNN.2004.
832719

http://dx.doi.org/10.1162/NECO_a_00772
http://dx.doi.org/10.1162/NECO_a_00772
http://dx.doi.org/10.1109/BIOROB.2014.6913811
http://dx.doi.org/10.1109/ASPDAC.2011.5722193
http://dx.doi.org/10.1109/ISCAS.2014.6865445
http://dx.doi.org/10.1109/ISCAS.2003.1206342
http://dx.doi.org/10.3389/fnins.2011.00118
http://dx.doi.org/10.3389/fnins.2011.00073
http://dx.doi.org/10.1088/0957-4484/24/38/384010
http://dx.doi.org/10.1088/0957-4484/24/38/384010
http://dx.doi.org/10.1109/ISCAS.2010.5536980
http://dx.doi.org/10.1109/TNN.2003.820440
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/TNN.2004.832719

REFERENCES 219

Jaeger, H. (2001). The "echo state"approach to analysing and training recurrent neural
networks, Fraunhofer Institute for Autonomous Intelligent Systems. St. Au-
gustin. Retrieved from http://minds.jacobs-university.de/sites/default/files/
uploads/papers/EchoStatesTechRep.pdf

Jaeger, H. (2002). Short term memory in echo state networks, Fraunhofer Institute for
Autonomous Intelligent Systems. St. Augustin. Retrieved from http://minds.
jacobs-university.de/sites/default/files/uploads/papers/STMEchoStatesTechRep.
pdf

Jaeger, H. (2007). Echo state network. Scholarpedia, 2(9), 2330. doi:10.4249/scholarpedia.
2330

Jeannerod, M. (1994). The representing brain: Neural correlates of motor inten-
tion and imagery. Behavioral and Brain Sciences, 17(02), 187. do0i:10.1017/
S0140525X00034026

Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor
cognition. Neurolmage, 14, S103-5109. doi:10.1006/nimg.2001.0832

Jin, X., Furber, S. & Woods, J. V. (2008, June). Efficient modelling of spiking neural
networks on a scalable chip multiprocessor. In 2008 ieee international joint
conference on neural networks (pp. 2812-2819). Hong Kong, China: IEEE. doi:10.
1109/]JCNN.2008.4634194

Jin, X., Rast, A., Galluppi, F., Davies, S. & Furber, S. (2010, July). Implementing
spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware. In
Proceedings of the international joint conference on neural networks (pp. 1-8).
Barcelona, Spain: Ieee. doi:10.1109/IJCNN.2010.5596372

Jo, S. H,, Chang, T., Ebong, L., Bhadviya, B. B., Mazumder, P. & Lu, W. (2010, April).
Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano
Letters, 10(4), 1297-1301. doi:10.1021/n1904092h

Jolivet, R., Lewis, T. J. & Gerstner, W. (2003). The Spike Response Model: A Framework
to Predict Neuronal Spike Trains. In R. Jolivet, J. Timothy & W. Gerstner (Eds.),
Proceedings of the 2003 joint international conference icann/iconip (pp. 846-853).
Istanbul, Turkey: Springer Berlin Heidelberg. doi:10.1007/3-540-44989-2_101

Kandel, E. & Schwartz, J. (Eds.). (2000). Principles of Neural Science (4th). New York,
NY, USA: McGraw-Hill.

Kasabov, N. (1998). Evolving Fuzzy Neural Networks - Algorithms, Applications and
Biological Motivation. In T. Yamakawa & G. Matsumoto (Eds.), World scientific.

Kasabov, N. (2007). Evolving Connectionist Systems: The Knowledge Engineering Ap-
proach. Springer.

Kasabov, N. (2010, January). To Spike or not to Spike: A Probabilistic Spiking Neuron
Model. Neural Networks, 23(1), 16-9. doi:10.1016/j.neunet.2009.08.010

Kasabov, N. (2012a). Evolving, Probabilistic Spiking Neural Networks and Neuro-
genetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern
Recognition. Natural Intelligence. Lecture Notes in Computer Science, 1(2),
234-260. doi:10.1007/978-3-642-30687-7_12

Kasabov, N. (2012b). NeuCube EvoSpike Architecture for Spatio-temporal Modelling
and Pattern Recognition of Brain Signals. In A. Mana, F. Schwenker & E. Trentin
(Eds.), Lncs 7477 (pp. 225-243). Trento, Italy: Springer. doi:10.1007/978-3-642-
33212-8_21

http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/STMEchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/STMEchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/STMEchoStatesTechRep.pdf
http://dx.doi.org/10.4249/scholarpedia.2330
http://dx.doi.org/10.4249/scholarpedia.2330
http://dx.doi.org/10.1017/S0140525X00034026
http://dx.doi.org/10.1017/S0140525X00034026
http://dx.doi.org/10.1006/nimg.2001.0832
http://dx.doi.org/10.1109/IJCNN.2008.4634194
http://dx.doi.org/10.1109/IJCNN.2008.4634194
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://dx.doi.org/10.1021/nl904092h
http://dx.doi.org/10.1007/3-540-44989-2_101
http://dx.doi.org/10.1016/j.neunet.2009.08.010
http://dx.doi.org/10.1007/978-3-642-30687-7_12
http://dx.doi.org/10.1007/978-3-642-33212-8_21
http://dx.doi.org/10.1007/978-3-642-33212-8_21

REFERENCES 220

Kasabov, N. (2014, April). NeuCube: A spiking neural network architecture for map-
ping, learning and understanding of spatio-temporal brain data. Neural Net-
works, 52, 62—76. d0i:10.1016/j.neunet.2014.01.006

Kasabov, N. (2015, May). Evolving connectionist systems for adaptive learning and
knowledge discovery: Trends and directions. Knowledge-Based Systems, 80,
24-33. d0i:10.1016/j.knosys.2014.12.032

Kasabov, N., Benuskova, L. & Wysoski, S. G. (2005a). A computational neurogenetic
model of a spiking neuron. Proceedings of the IEEE International Joint Conference
on Neural Networks, 2, 446-451. doi:10.1109/IJCNN.2005.1555872

Kasabov, N., Benuskova, L. & Wysoski, S. G. (2005b, December). Biologically Plaus-
ible Computational Neurogenetic Models: Modeling the Interaction Between
Genes, Neurons and Neural Networks. Journal of Computational and Theoretical
Nanoscience, 2(4), 569-573. d0i:10.1166/jctn.2005.012

Kasabov, N., Benuskova, L. & Wysoski, S. G. (2005c, December). Computational
Neurogenetic Modeling: Integration of Spiking Neural Networks, Gene Net-
works, and Signal Processing Techniques. In Proceedings of the international
conference on artificial neural networks (pp. 509-514). Warsaw, Poland: Springer.
do0i:10.1007/11550907_80

Kasabov, N. & Capecci, E. (2015, February). Spiking neural network methodology
for modelling, classification and understanding of EEG spatio-temporal data
measuring cognitive processes. Information Sciences, 294, 565-575. doi:10.1016/
j.ins.2014.06.028

Kasabov, N., Dhoble, K., Nuntalid, N. & Indiveri, G. (2013). Dynamic evolving spiking
neural networks for on-line spatio- and spectro-temporal pattern recognition.
Neural Networks, 41(1995), 188-201. d0i:10.1016/j.neunet.2012.11.014

Kasabov, N., Hu, J., Chen, Y., Scott, N. M. & Turkova, Y. (2013). Spatio-temporal EEG
Data Classification in the NeuCube 3D SNN Environment: Methodology and
Examples. In 20th international conference on neural information processing
(pp. 63-69). Daegu, Korea: Springer. doi:10.1007/978-3-642-42051-1_9

Kasabov, N., Schliebs, R. & Kojima, H. (2011, December). Probabilistic Computational
Neurogenetic Modeling: From Cognitive Systems to Alzheimer’s Disease. IEEE
Transactions on Autonomous Mental Development, 3(4), 300-311. d0i:10.1109/
TAMD.2011.2159839

Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E., ... Yang, J. (2015).
Evolving spatio-temporal data machines based on the NeuCube neuromorphic
framework: design methodology and selected applications. Neural Networks.
doi:10.1016/j.neunet.2015.09.011

Kasinski, A. & Ponulak, F. (2006a). Comparison of supervised learning methods for
spike time coding in spiking neural networks. International Journal of Applied
Mathematics and Computer Science, 16(1), 101-113. doi:10.2417/1200703.0045

Kasinski, A. & Ponulak, F. (2006b). ReSuMe learning method for Spiking Neural Net-
works dedicated to neuroprostheses control. Institute of Control and Information
Engineering, Poznan University of Technology. Poznan, Poland. d0i:10.1.1.104.
7329

Kennedy, P. R. & Bakay, R. A. (1998, June). Restoration of neural output from a
paralyzed patient by a direct brain connection. Neuroreport, 9(8), 1707-11.

http://dx.doi.org/10.1016/j.neunet.2014.01.006
http://dx.doi.org/10.1016/j.knosys.2014.12.032
http://dx.doi.org/10.1109/IJCNN.2005.1555872
http://dx.doi.org/10.1166/jctn.2005.012
http://dx.doi.org/10.1007/11550907_80
http://dx.doi.org/10.1016/j.ins.2014.06.028
http://dx.doi.org/10.1016/j.ins.2014.06.028
http://dx.doi.org/10.1016/j.neunet.2012.11.014
http://dx.doi.org/10.1007/978-3-642-42051-1_9
http://dx.doi.org/10.1109/TAMD.2011.2159839
http://dx.doi.org/10.1109/TAMD.2011.2159839
http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://dx.doi.org/10.2417/1200703.0045
http://dx.doi.org/10.1.1.104.7329
http://dx.doi.org/10.1.1.104.7329

REFERENCES 221

Kepecs, A., van Rossum, M., Song, S. & Tegner, J. (2002, December). Spike-timing-
dependent plasticity: common themes and divergent vistas. Biological Cyber-
netics, 87(5-6), 446—58. d0i:10.1007/s00422-002-0358-6

Kernighan, B. & Pike, R. (1984). The UNLX Programming Environment (1st). Englewood
Cliffs, NJ, USA: Prentice Hall.

Kerr, A. L., Cheng, S. Y. & Jones, T. A. (2011). Experience-dependent neural plasticity
in the adult damaged brain. Journal of Communication Disorders, 44(5), 538-548.
d0i:10.1016/j.jcomdis.2011.04.011

Khan, M. M, Lester, D., Plana, L. A, Rast, A., Jin, X., Painkras, E. & Furber, S. (2008,
June). SpiNNaker: Mapping neural networks onto a massively-parallel chip
multiprocessor. In 2008 ieee international joint conference on neural networks
(ieee world congress on computational intelligence) (pp. 2849-2856). Hong Kong,
China: IEEE. doi:10.1109/IJCNN.2008.4634199

Kim, K. & Rieke, F. (2001). Temporal Contrast Adaptation in the Input and Output
Signals of Salamander Retinal Ganglion Cells. The Journal of Neuroscience, 21(1),
287-299. Retrieved from http://www.jneurosci.org/content/21/1/287.full

Kim, S.-P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P. & Black, M. J. (2008, Decem-
ber). Neural control of computer cursor velocity by decoding motor cortical
spiking activity in humans with tetraplegia. Journal of Neural Engineering, 5(4),
455-76. doi:10.1088/1741-2560/5/4/010

Kleim, J. A. & Jones, T. A. (2008). Principles of experience-dependent neural plasticity:
implications for rehabilitation after brain damage. Journal of Speech, Language,
and Hearing Research, 51(1), S225-39. doi:10.1044/1092-4388(2008/018)

Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H. &
Braun, M. (2009, May). Automated cortical projection of EEG sensors: anatom-
ical correlation via the international 10-10 system. Neurolmage, 46(1), 64-72.
do0i:10.1016/j.neuroimage.2009.02.006

Kong, K. H., Chua, K. S. G. & Lee, J. (2011). Recovery of upper limb dexterity in patients
more than 1 year after stroke: Frequency, clinical correlates and predictors.
NeuroRehabilitation, 28(2), 105-111. doi:10.3233/NRE-2011-0639

Konorski, J. (1948). Conditioned Reflexes and Neuron Organisation. Cambridge, UK:
Cambridge University Press.

Ku, S.-p., Gretton, A., Macke, J. & Logothetis, N. K. (2008, September). Comparison
of pattern recognition methods in classifying high-resolution BOLD signals
obtained at high magnetic field in monkeys. Magnetic Resonance Imaging, 26(7),
1007-14. d0i:10.1016/j.mri.2008.02.016

Kuang, X., Poletti, M., Victor, J. D. & Rucci, M. (2012, March). Temporal Encoding
of Spatial Information during Active Visual Fixation. Current Biology, 22(6),
510-514. doi:10.1016/j.cub.2012.01.050

Kudela, P., Franaszczuk, P. J. & Bergey, G. K. (2003, April). Changing excitation and
inhibition in simulated neural networks: effects on induced bursting behavior.
Biological Cybernetics, 88(4), 276-85. doi:10.1007/s00422-002-0381-7

Kuon, I. & Rose, J. (2006). Measuring the gap between FPGAs and ASICs. In Proceedings
of the 2006 acm-sigda international symposium on field programmable gate
arrays - fpga’06 (pp. 21-30). New York, New York, USA: ACM Press. doi:10.
1145/1117201.1117205

http://dx.doi.org/10.1007/s00422-002-0358-6
http://dx.doi.org/10.1016/j.jcomdis.2011.04.011
http://dx.doi.org/10.1109/IJCNN.2008.4634199
http://www.jneurosci.org/content/21/1/287.full
http://dx.doi.org/10.1088/1741-2560/5/4/010
http://dx.doi.org/10.1044/1092-4388(2008/018)
http://dx.doi.org/10.1016/j.neuroimage.2009.02.006
http://dx.doi.org/10.3233/NRE-2011-0639
http://dx.doi.org/10.1016/j.mri.2008.02.016
http://dx.doi.org/10.1016/j.cub.2012.01.050
http://dx.doi.org/10.1007/s00422-002-0381-7
http://dx.doi.org/10.1145/1117201.1117205
http://dx.doi.org/10.1145/1117201.1117205

REFERENCES 222

LaConte, S., Strother, S., Cherkassky, V., Anderson, J. & Hu, X. (2005, June). Sup-
port vector machines for temporal classification of block design fMRI data.
Neurolmage, 26(2), 317-29. doi:10.1016/j.neuroimage.2005.01.048

Lapicque, L. (1907). Recherches quantitatives sur I'excitation électrique des nerfs
traitée comme un polarisation. Journal de Physiologie et de Pathologie Générale,
9, 620-635.

Lauterbur, P. (1973, March). Image Formation by Induced Local Interactions: Examples
Employing Nuclear Magnetic Resonance. Nature, 242(5394), 190-191. doi:10.
1038/242190a0

LeCun, Y., Kavukcuoglu, K. & Farabet, C. (2010, May). Convolutional networks and
applications in vision. In Proceedings of 2010 ieee international symposium on
circuits and systems (pp. 253—256). Paris, France: IEEE. doi:10.1109/ISCAS.2010.
5537907

Lee, H., Kim, Y.-D., Cichocki, A. & Choi, S. (2007, August). Nonnegative tensor
factorization for continuous EEG classification. International Journal of Neural
Systems, 17(4), 305-17. doi:10.1142/S0129065707001159

Lemm, S., Blankertz, B., Dickhaus, T. & Miiller, K.-R. (2011, May). Introduction to
machine learning for brain imaging. Neurolmage, 56(2), 387-99. doi:10.1016/j.
neuroimage.2010.11.004

Lestienne, R. (1996, January). Determination of the precision of spike timing in
the visual cortex of anaesthetised cats. Biological Cybernetics, 74(1), 55-61.
do0i:10.1007/BF00199137

Leuthardt, E. C., Schalk, G., Wolpaw,]J. R., Ojemann, J. G. & Moran, D. W. (2004, June).
A brain-computer interface using electrocorticographic signals in humans.
Journal of Neural Engineering, 1(2), 63-71. doi:10.1088/1741-2560/1/2/001

Lichtsteiner, P., Posch, C. & Delbruck, T. (2006). A 128 X 128 120db 30mw asyn-
chronous vision sensor that responds to relative intensity change. In 2006 ieee
international solid state circuits conference - digest of technical papers (pp. 2060
2069). San Francisco, CA, USA: IEEE. doi:10.1109/ISSCC.2006.1696265

Lichtsteiner, P., Posch, C. & Delbruck, T. (2008). A 128x128 120 dB 15 us Latency
Asynchronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State
Circuits, 43(2), 566—576. doi:10.1109/JSSC.2007.914337

Lin, C.-Y., Tsai, K.-L., Wang, S.-C., Hsieh, C.-H., Chang, H.-M. & Chiang, A.-S. (2011,
March). The Neuron Navigator: Exploring the information pathway through
the neural maze. In 2011 ieee pacific visualization symposium (pp. 35-42). IEEE.
doi:10.1109/PACIFICVIS.2011.5742370

Lisman, J. & Spruston, N. (2010, January). Questions about STDP as a General Model
of Synaptic Plasticity. Frontiers in Synaptic Neuroscience, 2, 140. doi:10.3389/
fnsyn.2010.00140

Litzenberger, M., Kohn, B., Belbachir, A. N., Donath, N., Gritsch, G., Garn, H., ...
Schraml, S. (2006). Estimation of Vehicle Speed Based on Asynchronous Data
from a Silicon Retina Optical Sensor. In 2006 ieee intelligent transportation
systems conference (pp. 653-658). Toronto, Ontario, Canada: IEEE. doi:10.1109/
ITSC.2006.1706816

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., ... Scott, M. P.
(2012). Molecular Cell Biology (7th). New York, NY, USA: W. H. Freeman.

http://dx.doi.org/10.1016/j.neuroimage.2005.01.048
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1109/ISCAS.2010.5537907
http://dx.doi.org/10.1109/ISCAS.2010.5537907
http://dx.doi.org/10.1142/S0129065707001159
http://dx.doi.org/10.1016/j.neuroimage.2010.11.004
http://dx.doi.org/10.1016/j.neuroimage.2010.11.004
http://dx.doi.org/10.1007/BF00199137
http://dx.doi.org/10.1088/1741-2560/1/2/001
http://dx.doi.org/10.1109/ISSCC.2006.1696265
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742370
http://dx.doi.org/10.3389/fnsyn.2010.00140
http://dx.doi.org/10.3389/fnsyn.2010.00140
http://dx.doi.org/10.1109/ITSC.2006.1706816
http://dx.doi.org/10.1109/ITSC.2006.1706816

REFERENCES 223

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. & Darnell, J. (2000).
Molecular Cell Biology (4th). New York, NY, USA: W. H. Freeman.

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. (2001, July).
Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843),
150-7. doi:10.1038/35084005

Lukosevicius, M. (2012). A Practical Guide to Applying Echo State Networks. In G.
Montavon, G. B. Orr & K.-R. Miiller (Eds.), Neural networks: tricks of the trade
(2nd, pp. 659-686). Springer Berlin Heidelberg. doi:10.1007/978-3-642-35289-
8 36

Lukosevicius, M. & Jaeger, H. (2009, August). Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3), 127-149.
d0i:10.1016/j.cosrev.2009.03.005

Lyne, A. G., Burgay, M., Kramer, M., Possenti, A., Manchester, R. N., Camilo, F., ...
Freire, P. C. C. (2004, February). A Double-Pulsar System: A Rare Laboratory
for Relativistic Gravity and Plasma Physics. Science, 303(5661), 1153-1157.
doi:10.1126/science.1094645

Maass, W. (1997). Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9), 1659-1671. doi:10.1016/S0893-6080(97)
00011-7

Maass, W. & Markram, H. (2004, December). On the computational power of circuits
of spiking neurons. Journal of Computer and System Sciences, 69(4), 593-616.
doi:10.1016/j.jcss.2004.04.001

Maass, W., Markram, H. & Natschlager, T. (2002). The "liquid computer": A novel
strategy for real-time computing on time series. Special Issue on Foundations
of Information Processing of TELEMATIK, 8, 39-43. Retrieved from http://
infoscience.epfl.ch/record/117806

Maass, W., Natschlager, T. & Markram, H. (2002, November). Real-time computing
without stable states: a new framework for neural computation based on per-
turbations. Neural Computation, 14(11), 2531-60. d0i:10.1162/089976602760407955

Maneewongvatana, S. & Mount, D. (2001). On the Efficiency of Nearest Neighbor
Searching with Data Clustered in Lower Dimensions. In International conference
on computational sciences (pp. 842-851). Stanford, CA, USA: Springer-Verlag.
Retrieved from http://dl.acm.org/citation.cfm?id=757618

Markram, H., Gerstner, W. & Sjostrom, P. J. (2012, January). Spike-timing-dependent
plasticity: a comprehensive overview. Frontiers in Synaptic Neuroscience, 4(July),
1-3. d0i:10.3389/fnsyn.2012.00002

Markram, H., Liibke, J., Frotscher, M. & Sakmann, B. (1997, January). Regulation
of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,
275(5297), 213-5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
8985014

Marks, S., Estevez, J. E. & Connor, A. M. (2014). Towards the Holodeck. In Proceedings
of the 29th international conference on image and vision computing new zealand
(pp. 42-47). New York, New York, USA: ACM Press. doi:10.1145/2683405.
2683424

http://dx.doi.org/10.1038/35084005
http://dx.doi.org/10.1007/978-3-642-35289-8_36
http://dx.doi.org/10.1007/978-3-642-35289-8_36
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1126/science.1094645
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/j.jcss.2004.04.001
http://infoscience.epfl.ch/record/117806
http://infoscience.epfl.ch/record/117806
http://dx.doi.org/10.1162/089976602760407955
http://dl.acm.org/citation.cfm?id=757618
http://dx.doi.org/10.3389/fnsyn.2012.00002
http://www.ncbi.nlm.nih.gov/pubmed/8985014
http://www.ncbi.nlm.nih.gov/pubmed/8985014
http://dx.doi.org/10.1145/2683405.2683424
http://dx.doi.org/10.1145/2683405.2683424

REFERENCES 224

Marks, S., Estevez, J. E. & Scott, N. M. (2015). Immersive Visualisation of 3-Dimensional
Neural Network Structures. In Proceedings of the 13th international conference
on neuro-computing and evolving intelligence. Auckland, New Zealand: AUT.

Marks, S., Scott, N. M. & Estevez, J. E. (n.d.). Immersive Visualisation of 3-Dimensional
Spiking Neural Networks. Evolving Systems, (Under Review).

Marnellos, G. & Schreiber, S. (2003). Gene Network Models and Neural Development.
In Modeling neural development (pp. 27-48). Cambridge, MA, USA: MIT Press.

Marre, O., Yger, P., Davison, A. P. & Frégnac, Y. (2009, November). Reliable recall of
spontaneous activity patterns in cortical networks. The Journal of Neuroscience,
29(46), 14596-606. doi:10.1523/JNEUROSCI.0753-09.2009

McConnell, S. (2004). Code Complete: A Practical Handbook of Software Construction.
Microsoft Press. doi:10.1039/c10b90002a

Mead, C. (1989). Analog VLSI and Neural Systems. Addison-Wesley.

Meier, K., Millner, S., Gr, A., Schemmel, J. & Schwartz, M.-O. (2010). A VLSI Imple-
mentation of the Adaptive Exponential Integrate-and-Fire Neuron Model. In
Advances in neural information processing systems (pp. 1-9). Vancouver, BC,
Canada.

Merolla, P., Arthur, J., Alvarez-Icaza, R., Cassidy, A., Sawada, J., Akopyan, F,, ...
Modha, D. S. (2014, August). A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science, 345(6197), 668—673.
doi:10.1126/science.1254642

Michel, F. C. (1982, January). Theory of Pulsar Magnetospheres. Reviews of Modern
Physics, 54(1), 1-66. d0i:10.1103/RevModPhys.54.1

Misaki, M., Kim, Y., Bandettini, P. & Kriegeskorte, N. (2010, October). Comparison of
multivariate classifiers and response normalizations for pattern-information
fMRI. Neurolmage, 53(1), 103—18. d0i:10.1016/j.neuroimage.2010.05.051

Mitchell, T., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M. & Newman,
S. (2004). Learning to Decode Cognitive States from Brain Images. Machine
Learning, 57(1-2), 145-175.

Mitra, S., Fusi, S. & Indiveri, G. (2009, February). Real-Time Classification of Complex
Patterns Using Spike-Based Learning in Neuromorphic VLSI. IEEE Transactions
on Biomedical Circuits and Systems, 3(1), 32-42. doi:10.1109/ TBCAS.2008.
2005781

Mjolsness, E., Sharp, D. H. & Reinitz, J. (1991, October). A connectionist model of
development. Journal of Theoretical Biology, 152(4), 429-453. doi:10.1016/50022-
5193(05)80391-1

Mohemmed, A. & Kasabov, N. (2012). Incremental Learning Algorithm for Spatio-
Temporal Spike Pattern Classification. In Ieee world congress on computational
intelligence (pp. 1227-1232). Brisbane, Australia.

Mohemmed, A., Schliebs, S. & Kasabov, N. (2011). SPAN: A neuron for precise-time
spike pattern association. In International conference on neural information
processing. Shanghai, China: Springer.

Mohemmed, A., Schliebs, S., Kasabov, N. & Matsuda, S. (2011). Method for training a
spiking neuron to associate input-output spike trains. In Engineering applica-
tions of neural networks (pp. 219-228). Corfu, Greece: Springer. doi:10.1007/978-
3-642-23957-1_25

http://dx.doi.org/10.1523/JNEUROSCI.0753-09.2009
http://dx.doi.org/10.1039/c1ob90002a
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1103/RevModPhys.54.1
http://dx.doi.org/10.1016/j.neuroimage.2010.05.051
http://dx.doi.org/10.1109/TBCAS.2008.2005781
http://dx.doi.org/10.1109/TBCAS.2008.2005781
http://dx.doi.org/10.1016/S0022-5193(05)80391-1
http://dx.doi.org/10.1016/S0022-5193(05)80391-1
http://dx.doi.org/10.1007/978-3-642-23957-1_25
http://dx.doi.org/10.1007/978-3-642-23957-1_25

REFERENCES 225

Mohemmed, A., Schliebs, S., Matsuda, S., Dhoble, K. & Kasabov, N. (2011). SPAN:
Spike Pattern Association Neuron for Learning Spatio-Temporal Sequences.
International Journal on Neural Systems, 22, 17. doi:10.1142/S0129065712500128

Mohemmed, A., Schliebs, S., Matsuda, S. & Kasabov, N. (2013, May). Training spiking
neural networks to associate spatio-temporal input—output spike patterns.
Neurocomputing, 107, 3—10. doi:10.1016/j.neucom.2012.08.034

Moradi, S. & Indiveri, G. (2013). An Event-Based Neural Network Architecture With
an Asynchronous Programmable Synaptic Memory. In leee transactions on
biomedical circuits and systems. doi:10.1109/TBCAS.2013.2255873

Mori, S. & Zhang, J. (2006, September). Principles of Diffusion Tensor Imaging and
Its Applications to Basic Neuroscience Research. Neuron, 51(5), 527-539. doi:10.
1016/j.neuron.2006.08.012

Miiller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G. & Blankertz, B.
(2008, January). Machine learning for real-time single-trial EEG-analysis: from
brain-computer interfacing to mental state monitoring. Journal of Neuroscience
methods, 167(1), 82-90. doi:10.1016/j.jneumeth.2007.09.022

Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M. & Gallant, J. L. (2009, September).
Bayesian reconstruction of natural images from human brain activity. Neuron,
63(6), 902-15. d0i:10.1016/j.neuron.2009.09.006

Naud, R., Marcille, N., Clopath, C. & Gerstner, W. (2008, November). Firing patterns
in the adaptive exponential integrate-and-fire model. Biological Cybernetics,
99(4-5), 335-47. d0i:10.1007/s00422-008-0264-7

Nawrot, M. P., Schnepel, P., Aertsen, A. & Boucsein, C. (2009, January). Precisely timed
signal transmission in neocortical networks with reliable intermediate-range
projections. Frontiers in Neural Circuits, 3, 1. d0i:10.3389/neuro.04.001.2009

Niedermeyer, E. & Da Silva, F. (2005). Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields. Phildelphia, PA, USA: Lippincott Williams &
Wilkins.

Nita, G. M. & Gary, D. E. (2010, June). The generalized spectral kurtosis estimator.
Monthly Notices of the Royal Astronomical Society: Letters, no-no. doi:10.1111/j.
1745-3933.2010.00882.x

Nuntalid, N., Dhoble, K. & Kasabov, N. (2011). EEG classification with BSA spike
encoding algorithm and evolving probabilistic spiking neural network. In
Proceedings of the international conference on neural information processing
(pp- 451-460). Shanghai, China: Springer Berlin Heidelberg. doi:10.1007/978-3-
642-24955-6_54

Oesch, N. W. & Diamond, J. S. (2011, October). Ribbon synapses compute temporal
contrast and encode luminance in retinal rod bipolar cells. Nature Neuroscience,
14(12), 1555-1561. d0i:10.1038/nn.2945

Olsson, J. A. M. & Hafliger, P. (2008). Mismatch reduction with relative reset in
integrate-and-fire photo-pixel array. In 2008 ieee biomedical circuits and systems
conference (pp. 277-280). Baltimore, MD, USA: IEEE. doi:10.1109/BIOCAS.2008.
4696928

Oostenveld, R. & Praamstra, P. (2001, April). The five percent electrode system for
high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4),
713-719. doi:10.1016/S1388-2457(00)00527-7

http://dx.doi.org/10.1142/S0129065712500128
http://dx.doi.org/10.1016/j.neucom.2012.08.034
http://dx.doi.org/10.1109/TBCAS.2013.2255873
http://dx.doi.org/10.1016/j.neuron.2006.08.012
http://dx.doi.org/10.1016/j.neuron.2006.08.012
http://dx.doi.org/10.1016/j.jneumeth.2007.09.022
http://dx.doi.org/10.1016/j.neuron.2009.09.006
http://dx.doi.org/10.1007/s00422-008-0264-7
http://dx.doi.org/10.3389/neuro.04.001.2009
http://dx.doi.org/10.1111/j.1745-3933.2010.00882.x
http://dx.doi.org/10.1111/j.1745-3933.2010.00882.x
http://dx.doi.org/10.1007/978-3-642-24955-6_54
http://dx.doi.org/10.1007/978-3-642-24955-6_54
http://dx.doi.org/10.1038/nn.2945
http://dx.doi.org/10.1109/BIOCAS.2008.4696928
http://dx.doi.org/10.1109/BIOCAS.2008.4696928
http://dx.doi.org/10.1016/S1388-2457(00)00527-7

REFERENCES 226

Ozturk, M. C., Xu, D. & Principe, J. C. (2007, January). Analysis and Design of Echo
State Networks. Neural Computation, 19(1), 111-138. doi:10.1162/neco0.2007.19.
1.111

Page, S.]J., Levine, P., Sisto, S. & Johnston, M. V. (2001). A randomized efficacy and
feasibility study of imagery in acute stroke. Clinical Rehabilitation, 15(3), 233—
240. doi:10.1191/026921501672063235

Pawlak, V., Wickens, J. R., Kirkwood, A. & Kerr, J. N. D. (2010, January). Timing is
not Everything: Neuromodulation Opens the STDP Gate. Frontiers in Synaptic
Neuroscience, 2, 146. doi:10.3389/fnsyn.2010.00146

Pearson, M., Gilhespy, 1., Gurney, K., Melhuish, C., Mitchinson, B., Nibouche, M.
& Pipe, A. (2005). A Real-Time, FPGA Based, Biologically Plausible Neural
Network Processor. In W. Duch, J. Kacprzyk, E. Oja & S. Zadrozny (Eds.),
Artificial neural networks: formal models and their applications — {icann 2005}
(Vol. 3697, pp. 755-756). Lecture Notes in Computer Science. Springer Berlin /
Heidelberg. doi:10.1007/11550907_161

Perrin, D. (2011, January). Complexity and high-end computing in biology and medi-
cine. Advances in Experimental Medicine and Biology, 696, 377-84. doi:10.1007/
978-1-4419-7046-6_38

Pfeil, T., Potjans, T. C., Schrader, S., Potjans, W., Schemmel,]J., Diesmann, M. & Meier,
K. (2012, January). Is a 4-bit synaptic weight resolution enough? - constraints
on enabling spike-timing dependent plasticity in neuromorphic hardware.
Frontiers in Neuroscience, 6, 90. d0i:10.3389/fnins.2012.00090. arXiv: arXiv:
1201.6255v5

Pohlmeyer, E., Solla, S., Perreault, E. & Miller, L. (2007, December). Prediction of upper
limb muscle activity from motor cortical discharge during reaching. Journal of
Neural Engineering, 4(4), 369-79. doi:10.1088/1741-2560/4/4/003

Ponulak, F. (2005). ReSuMe - New supervised learning method for Spiking Neural
Networks. Institute of Control and Information Engineering, Poznan University
of Technology. Poznan, Poland: Citeseer. doi:10.1.1.60.6325

Ponulak, F. & Kasinski, A. (2006). Generalization Properties of Spiking Neurons
trained with ReSuMe method. In 14th european symposium on artificial neural
networks (pp. 629-634). Bruges, Belgium.

Popovi¢, D. B. & Sinkjaer, T. (2000). Control of Movement for the Physically Disabled.
London: Springer. doi:10.1007/978-1-4471-0433-9

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D. & Indiv-
eri, G. (2015, April). A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses. Frontiers in Neuroscience,
9. d0i:10.3389/fnins.2015.00141

Quian Quiroga, R. & Panzeri, S. (2009). Extracting information from neuronal popu-
lations: information theory and decoding approaches. Nature Reviews Neuros-
cience, 10(3), 173-185. d0i:10.1038/nrn2578

Ramakrishnan, S., Hasler, P. & Gordon, C. (2010, May). Floating gate synapses with
spike time dependent plasticity. In Proceedings of the ieee international sym-
posium on circuits and systems (pp. 369-372). Paris, France: IEEE. d0i:10.1109/
ISCAS.2010.5537768

http://dx.doi.org/10.1162/neco.2007.19.1.111
http://dx.doi.org/10.1162/neco.2007.19.1.111
http://dx.doi.org/10.1191/026921501672063235
http://dx.doi.org/10.3389/fnsyn.2010.00146
http://dx.doi.org/10.1007/11550907_161
http://dx.doi.org/10.1007/978-1-4419-7046-6_38
http://dx.doi.org/10.1007/978-1-4419-7046-6_38
http://dx.doi.org/10.3389/fnins.2012.00090
http://arxiv.org/abs/arXiv:1201.6255v5
http://arxiv.org/abs/arXiv:1201.6255v5
http://dx.doi.org/10.1088/1741-2560/4/4/003
http://dx.doi.org/10.1.1.60.6325
http://dx.doi.org/10.1007/978-1-4471-0433-9
http://dx.doi.org/10.3389/fnins.2015.00141
http://dx.doi.org/10.1038/nrn2578
http://dx.doi.org/10.1109/ISCAS.2010.5537768
http://dx.doi.org/10.1109/ISCAS.2010.5537768

REFERENCES 227

Rast, A., Galluppi, F., Davies, S., Plana, L. A., Patterson, C., Sharp, T., ... Furber, S.
(2011, November). Concurrent heterogeneous neural model simulation on real-
time neuromimetic hardware. Neural Networks, 24(9), 961-978. d0i:10.1016/j.
neunet.2011.06.014

Rast, A., Jin, X., Galluppi, F., Plana, L. A., Patterson, C. & Furber, S. (2010). Scalable
event-driven native parallel processing. In Proceedings of the 7th acm inter-
national conference on computing frontiers (p. 21). New York, New York, USA:
ACM Press. doi:10.1145/1787275.1787279

Rast, A., Stokes, A. B., Rowley, A. G., Davies, S., Lester, D., Furber, S., ... Djurfeldt, M.
(2015). AERIE-P: AER Intersystem Exchange Protocol. Capo Caccia, Sardinia,
Italy: Universal AER Communications over Ethernet for Multi-System Applica-
tions Workgroup, 2015 CSN Cognitive Neuromorphic Engineering Workshop.

Raymond, E. (2003). The Art of Unix Programming (1st). Addison-Wesley.

Rieke, F. (2001). Temporal Contrast Adaptation in Salamander Bipolar Cells. The
Journal of Neuroscience, 21(23), 9445-9454. Retrieved from http://www.jneurosci.
org/content/21/23/9445.full

Rizzolatti, G., Fogassi, L. & Gallese, V. (2001). Neurophysiological mechanisms under-
lying the understanding and imitation of action. Nature reviews. Neuroscience,
2(9), 661-670. doi:10.1038/35090060

Rolls, E. T. & Treves, A. (2011). The neuronal encoding of information in the brain.
Progress in Neurobiology, 95(3), 448—490. doi:10.1016/j.pneurobio.2011.08.002

Sastre-Garriga, J., Galan-Cartaia, I., Montalban, X. & Thompson, A. (2005, June).
Neurorehabilitation in multiple sclerosis. Neurologia, 20(5), 245-54. Retrieved
from http://www.ncbinlm.nih.gov/pubmed/15954034

Schiller, U. D. & Steil, J. J. (2005, January). Analyzing the weight dynamics of recurrent
learning algorithms. Neurocomputing, 63, 5-23. d0i:10.1016/j.neucom.2004.04.
006

Schliebs, S. (2010). Heterogeneous Probabilistic Models for Optimisation and Modelling
of Evolving Spiking Neural Networks (Doctoral Thesis, Auckland University of
Technology).

Schliebs, S., Capecci, E. & Kasabov, N. (2013). Spiking Neural Network for On-line
Cognitive Activity Classification Based on EEG Data. In Proceedings of the
international conference on neural information processing (pp. 55-62). Daegu,
Korea. doi:10.1007/978-3-642-42051-1_8

Schliebs, S. & Kasabov, N. (2013, June). Evolving spiking neural network - a survey.
Evolving Systems, 4(2), 87-98. doi:10.1007/s12530-013-9074-9

Schliebs, S., Nuntalid, N. & Kasabov, N. (2010). Towards spatio-temporal pattern
recognition using evolving spiking neural networks. In Proceedings of the
international conference on neural information processing (pp. 163-170). Sydney,
Australia: Springer. doi:10.1007/978-3-642-17537-4_21

Schrauwen, B. & van Campenhout, I. (2003). BSA, a fast and accurate spike train
encoding scheme. In Proceedings of the international joint conference on neural
networks (pp. 2825-2830). Portland, Oregon, US: IEEE. doi:10.1109/IJCNN.2003.
1224019

Schulz, J. M. (2010, January). Synaptic Plasticity in vivo: More than Just Spike-Timing?
Frontiers in Synaptic Neuroscience, 2, 150. d0i:10.3389/fnsyn.2010.00150

http://dx.doi.org/10.1016/j.neunet.2011.06.014
http://dx.doi.org/10.1016/j.neunet.2011.06.014
http://dx.doi.org/10.1145/1787275.1787279
http://www.jneurosci.org/content/21/23/9445.full
http://www.jneurosci.org/content/21/23/9445.full
http://dx.doi.org/10.1038/35090060
http://dx.doi.org/10.1016/j.pneurobio.2011.08.002
http://www.ncbi.nlm.nih.gov/pubmed/15954034
http://dx.doi.org/10.1016/j.neucom.2004.04.006
http://dx.doi.org/10.1016/j.neucom.2004.04.006
http://dx.doi.org/10.1007/978-3-642-42051-1_8
http://dx.doi.org/10.1007/s12530-013-9074-9
http://dx.doi.org/10.1007/978-3-642-17537-4_21
http://dx.doi.org/10.1109/IJCNN.2003.1224019
http://dx.doi.org/10.1109/IJCNN.2003.1224019
http://dx.doi.org/10.3389/fnsyn.2010.00150

REFERENCES 228

Scott, N. M. (2012). A Study of the Behaviour of Incremental ‘Spike Pattern Association
Neuron’ Learning Algorithm for Spiking Neural Networks (Honours Dissertation,
Auckland University of Technology).

Scott, N. M. & Kasabov, N. (2015). Feasibility of Implementing NeuCube on the
SpiNNaker Neuromorphic Hardware Device. In Proceedings of the 13th interna-
tional conference on neuro-computing and evolving intelligence. Auckland, New
Zealand: AUT.

Scott, N. M., Kasabov, N. & Indiveri, G. (2013). NeuCube Neuromorphic Framework
for Spatio-Temporal Brain Data and Its Python Implementation. In Proceedings
of the international conference on neural information processing (pp. 78—84).
Daegu, Korea: Springer. doi:10.1007/978-3-642-42051-1_11

Scott, N. M., Mahmoud, M., Hartono, R. N., Gulyaev, S. & Kasabov, N. (2015). Feasibil-
ity analysis of using the NeuCube Spiking Neural Network Architecture for
Dispersed Transients and Pulsar Detection. In Proceedings of the 13th interna-
tional conference on neuro-computing and evolving intelligence. Auckland, New
Zealand: AUT.

Sengupta, N., Scott, N. M. & Kasabov, N. (2015). Framework For Knowledge Driven
Data Encoding For Brain Data Modelling Using Spiking Neural Network Archi-
tecture. In Proceedings of the 5th international conference on fuzzy and neural
computing. Hyderabad, India: Springer.

Serafino, N. & Zaghloul, M. (2013, August). Review of nanoscale memristor devices
as synapses in neuromorphic systems. In 2013 ieee 56th international midwest
symposium on circuits and systems (mwscas) (pp. 602-603). IEEE. doi:10.1109/
MWSCAS.2013.6674720

Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L. A. & Furber, S.
(2015, May). ConvNets experiments on SpiNNaker. In 2015 ieee international
symposium on circuits and systems (iscas) (pp. 2405-2408). IEEE. doi:10.1109/
ISCAS.2015.7169169

Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P.
(2002, March). Instant neural control of a movement signal. Nature, 416(6877),
141-2. doi:10.1038/416141a

Sharp, T., Galluppi, F., Rast, A. & Furber, S. (2012, September). Power-efficient simula-
tion of detailed cortical microcircuits on SpiNNaker. Journal of Neuroscience
Methods, 210(1), 110-118. d0i:10.1016/j.jneumeth.2012.03.001

Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. (2001, December). Rate, Timing, and
Cooperativity Jointly Determine Cortical Synaptic Plasticity. Neuron, 32(6),
1149-1164. doi:10.1016/S0896-6273(01)00542-6

Soltic, S. & Kasabov, N. (2010). Knowledge extraction from evolving spiking neural
networks with rank order population coding. International Journal of Neural
Systems, 20(6), 437-445.

Song, Q. & Kasabov, N. (2001). EC:, A Novel On-line, Evolving Clustering Method
and its Applications. In Proceedings of the fifth biannual conference on artificial
neural networks and expert systems (pp. 97-92). Dunedin, New Zealand.

Song, S., Miller, K. D. & Abbott, L. F. (2000, September). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9),
919-26. doi:10.1038/78829

http://dx.doi.org/10.1007/978-3-642-42051-1_11
http://dx.doi.org/10.1109/MWSCAS.2013.6674720
http://dx.doi.org/10.1109/MWSCAS.2013.6674720
http://dx.doi.org/10.1109/ISCAS.2015.7169169
http://dx.doi.org/10.1109/ISCAS.2015.7169169
http://dx.doi.org/10.1038/416141a
http://dx.doi.org/10.1016/j.jneumeth.2012.03.001
http://dx.doi.org/10.1016/S0896-6273(01)00542-6
http://dx.doi.org/10.1038/78829

REFERENCES 229

Stam, C. J. (2004, January). Functional connectivity patterns of human magneto-
encephalographic recordings: a ’small-world’ network? Neuroscience Letters,
355(1-2), 25-8.

Stefanini, F., Neftci, E. O., Sheik, S. & Indiveri, G. (2014, August). PyNCS: a microkernel
for high-level definition and configuration of neuromorphic electronic systems.
Frontiers in Neuroinformatics, 8(73). doi:10.3389/fninf.2014.00073

Stein, R. B., Gossen, E. R. & Jones, K. E. (2005, May). Neuronal variability: noise or
part of the signal? Nature Neuroscience, 6(5), 389-97. d0i:10.1038/nrn1668

Storjohann, R. & Marcus, G. F. (2005). NeuroGene: integrated simulation of gene
regulation, neural activity and neurodevelopment. In Proceedings of the ieece
international joint conference on neural networks (Vol. 2, pp. 428-433). Montreal,
Quebec, Canada: IEEE. doi:10.1109/IJCNN.2005.1555869

Storlie, C., Sexton, J., Pakin, S., Lang, M., Reich, B. & Rust, W. (2014, December).
Modeling and Predicting Power Consumption of High Performance Computing
Jobs. arXiv: 1412.5247

Strukov, D. B, Snider, G. S., Stewart, D. R. & Williams, R. S. (2008, May). The missing
memristor found. Nature, 453(7191), 80—83. doi:10.1038/nature06932

Svirskis, G. & Rinzel, J. (2000, August). Influence of temporal correlation of synaptic
input on the rate and variability of firing in neurons. Biophysical Journal, 79(2),
629-37. doi:10.1016/S0006-3495(00)76321-1

Talairach, J. & Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain:
3-Dimensional Proportional System. New York, NY, USA: Theirne Medical Pub-
lishers.

Taylor, D. M., Tillery, S. I. H. & Schwartz, A. B. (2002, June). Direct cortical control of
3D neuroprosthetic devices. Science, 296(5574), 1829-32. doi:10.1126/science.
1070291

Taylor, D., Chamberlain, J., Signal, N., Scott, N. M., Kasabov, N., Capecci, E., ... Hou,
Z.-G. (2015). Brain-Computer Interfaces for Neuro Rehabilitation. In Proceedings
of the 13th international conference on neuro-computing and evolving intelligence.
Auckland, New Zealand: AUT.

Taylor, D., Scott, N. M., Kasabov, N., Capecci, E., Tu, E., Saywell, N, ... Hou, Z.-G.
(2014, July). Feasibility of NeuCube SNN architecture for detecting motor
execution and motor intention for use in BCI applications. In 2014 international
joint conference on neural networks (ijcnn) (pp. 3221-3225). IEEE. doi:10.1109/
IJCNN.2014.6889936

Taylor, J. H. (1991, July). Millisecond pulsars: nature’s most stable clocks. Proceedings
of the IEEE, 79(7), 1054-1062. d0i:10.1109/5.84982

Taylor, J. H. & Weisberg, J. M. (1989, October). Further experimental tests of relativistic
gravity using the binary pulsar PSR 1913 + 16. The Astrophysical Journal, 345,
434, doi:10.1086/167917

Thompson, S. E. & Parthasarathy, S. (2006). Moore’s Law: the Future of SI Microelec-
trics. Materials Today, 9(6), 20-25.

Thorpe, S. (2001). Spike-based strategies for rapid processing. Neural Networks, 14(6-7),
715-25.

Thorpe, S., Fize, D. & Marlot, C. (1996, June). Speed of processing in the human visual
system. Nature, 381(6582), 520-2. doi:10.1038/381520a0

http://dx.doi.org/10.3389/fninf.2014.00073
http://dx.doi.org/10.1038/nrn1668
http://dx.doi.org/10.1109/IJCNN.2005.1555869
http://arxiv.org/abs/1412.5247
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1016/S0006-3495(00)76321-1
http://dx.doi.org/10.1126/science.1070291
http://dx.doi.org/10.1126/science.1070291
http://dx.doi.org/10.1109/IJCNN.2014.6889936
http://dx.doi.org/10.1109/IJCNN.2014.6889936
http://dx.doi.org/10.1109/5.84982
http://dx.doi.org/10.1086/167917
http://dx.doi.org/10.1038/381520a0

REFERENCES 230

Thorpe, S. & Gautrais, J. (1998). Rank order coding. In Proceedings of the 6th annual
conference on computational neuroscience (pp. 113-118). New York, NY, USA:
Plenum Press.

Thorpe, S., Guyonneau, R., Guilbaud, N., Allegraud, J.-M. & van Rullen, R. (2004,
June). SpikeNet: real-time visual processing with one spike per neuron. Neuro-
computing, 58-60, 857-864. doi:10.1016/j.neucom.2004.01.138

Thulborn, K. R., Waterton, J. C., Matthews, P. M. & Radda, G. K. (1982, February).
Oxygenation dependence of the transverse relaxation time of water protons
in whole blood at high field. Biochimica et Biophysica Acta (BBA) - General
Subjects, 714(2), 265-270. doi:10.1016/0304-4165(82)90333-6

Tomioka, R. & Dornhege, G. (2006). Spectrally weighted common spatial pattern
algorithm for single trial EEG classification (tech. rep. No. July). Department
of Mathematical Informatics, Graduate School of Information Science and
Technology, University of Tokyo. Tokyo, Japan. Retrieved from http://www.
ibis.t.u-tokyo.ac.jp/ryotat/metrCSP-SPEC.pdf

Tuckwell, H. C. (1988). Nonlinear and Stochastic Theories. In Introduction to theoretical
neurobiology. Cambridge University Press.

van Rossum, M. (2001, April). A Novel Spike Distance. Neural Computation, 13(4),
751-763. doi:10.1162/089976601300014321

Venkateswara, K. R., Govardhan, A. & Chalapati, K. V. R. (2012, February). Spatiotem-
poral Data Mining: Issues, Tasks And Applications. International Journal of
Computer Science & Engineering Survey, 3(1), 39-52. doi:10.5121/ijcses.2012.3104

Verstraeten, D., Schrauwen, B., D'Haene, M. & Stroobandt, D. (2007). An experimental
unification of reservoir computing methods. Neural Networks, 20(3), 391-403.

Victor, J. D. & Purpura, K. (1997). Metric-space analysis of spike trains: Theory,
algorithms, and application. Network: Computation in Neural Systems, 8(2),
127-164.

Villa, A. E., Tetko, I. V., Hyland, B. & Najem, A. (1999, February). Spatiotemporal
activity patterns of rat cortical neurons predict responses in a conditioned task.
Proceedings of the National Academy of Sciences of the United States of America,
96(3), 1106-11.

Vogels, T. P. & Abbott, L. F. (2005, November). Signal propagation and logic gating
in networks of integrate-and-fire neurons. The Journal of Neuroscience, 25(46),
10786-95. d0i:10.1523/JNEUROSCI.3508-05.2005

Vogelstein, R. J., Mallik, U., Culurciello, E., Cauwenberghs, G. & Etienne-Cummings,
R. (2007, September). A multichip neuromorphic system for spike-based visual
information processing. Neural Computation, 19(9), 2281-300. doi:10.1162/neco.
2007.19.9.2281

von Kapri, A., Rick, T, Potjans, T. C., Diesmann, M. & Kuhlen, T. (2011). Towards the
visualization of spiking neurons in virtual reality. Studies in Health Technology
and Informatics, 163, 685-7.

Watts, M. (2009, May). A Decade of Kasabov’s Evolving Connectionist Systems: A
Review. IEEE Transactions on Systems, Man, and Cybernetics, 39(3), 253-269.
doi:10.1109/TSMCC.2008.2012254

http://dx.doi.org/10.1016/j.neucom.2004.01.138
http://dx.doi.org/10.1016/0304-4165(82)90333-6
http://www.ibis.t.u-tokyo.ac.jp/ryotat/metrCSP-SPEC.pdf
http://www.ibis.t.u-tokyo.ac.jp/ryotat/metrCSP-SPEC.pdf
http://dx.doi.org/10.1162/089976601300014321
http://dx.doi.org/10.5121/ijcses.2012.3104
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005
http://dx.doi.org/10.1162/neco.2007.19.9.2281
http://dx.doi.org/10.1162/neco.2007.19.9.2281
http://dx.doi.org/10.1109/TSMCC.2008.2012254

REFERENCES 231

Watts, M. & Kasabov, N. (1999). Neuro-Genetic Information Processing for Optim-
isation and Adaptation in Intelligent Systems. In Studies in fuzziness and soft
computing (Chap. 6, Vol. 30, pp. 97-110).

Wendling, F., Bartolomei, F., Bellanger,]J. J. & Chauvel, P. (2002, May). Epileptic
fast activity can be explained by a model of impaired GABAergic dendritic
inhibition. The European Journal of Neuroscience, 15(9), 1499-508.

Wysoski, S. G., Benuskova, L. & Kasabov, N. (2010). Evolving spiking neural networks
for audiovisual information processing. Neural Networks, 23(7), 819-35.

Yang, M., Liu, S.-C. & Delbruck, T. (2015, September). A Dynamic Vision Sensor With
1% Temporal Contrast Sensitivity and In-Pixel Asynchronous Delta Modulator
for Event Encoding. IEEE Journal of Solid-State Circuits, 50(9), 2149-2160. doi:10.
1109/JSSC.2015.2425886

Yu, T. & Cauwenberghs, G. (2010, June). Analog VLSI Biophysical Neurons and
Synapses With Programmable Membrane Channel Kinetics. IEEE Transactions
on Biomedical Circuits and Systems, 4(3), 139-148. doi:10.1109/TBCAS.2010.
2048566

Zamarrefio-Ramos, C., Camufias-Mesa, L. A., Pérez-Carrasco, J. A., Masquelier, T.,
Serrano-Gotarredona, T. & Linares-Barranco, B. (2011). On Spike-Timing-
Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual
Cortex. Frontiers in Neuroscience, 5. doi:10.3389/fnins.2011.00026

Zhang, C. & Budgen, D. (2012). What do we know about the effectiveness of software
design patterns? IEEE Transactions on Software Engineering, 38(5), 1-19. doi:10.
1109/TSE.2011.79

Zimmermann, R., Marchal-Crespo, L., Edelmann, J., Lambercy, O., Fluet, M.-C., Riener,
R., ... Gassert, R. (2013). Detection of motor execution using a hybrid fNIRS-
biosignal BCI: a feasibility study. Journal of Neuroengineering and Rehabilitation,
10(1), 4. doi:10.1186/1743-0003-10-4

http://dx.doi.org/10.1109/JSSC.2015.2425886
http://dx.doi.org/10.1109/JSSC.2015.2425886
http://dx.doi.org/10.1109/TBCAS.2010.2048566
http://dx.doi.org/10.1109/TBCAS.2010.2048566
http://dx.doi.org/10.3389/fnins.2011.00026
http://dx.doi.org/10.1109/TSE.2011.79
http://dx.doi.org/10.1109/TSE.2011.79
http://dx.doi.org/10.1186/1743-0003-10-4

AdEx
AER
AMPA

ANN
ASIC

BCI

BOLD
BSA

CMOS
CNGM

Csv

deSNN

DTI
DVS

eCoS
EEG

ETH Ziirich
ESN

eSNN

fMRI

FPGA

ABBREVIATIONS

Adaptive Exponential Integrate-And-Fire . 35, 36, 86, 90, 149, 150,
157, 158, 161, 162, 167

Address-Event Representation 39, 40, 103, 116-118, 141, 152, 153,
158, 159, 162, 174, 206
a-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid . . . 62
Artificial Neural Network 21
Application-Specific Integrated Circuit 48, 86, 90,
97, 104, 117, 118, 144, 145, 147-149, 151, 156, 159, 160, 163, 164, 167,
198, 199, 202, 207

Brain Computer Interface 1, 4, 9, 11, 69, 112, 149, 154, 161, 162, 178,
202, 203, 205, 240, 241, 244, 246-248

Blood Oxygenation Level Dependent 13, 14
Ben’s Spiker Algorithm 11, 38, 40-42, 72, 86, 87
Complementary Metal-Oxide Semiconductor 153, 157

Computational Neuro-Genetic Model 25, 48, 60, 61, 75, 94-96, 98,
99, 111, 127, 139, 177, 246
Comma-Separated Value 103, 109, 126

Dynamic Evolving Spiking Neural Network Classifier 22, 32, 45, 56,
58,59, 72, 75, 94, 107, 114, 115, 125, 158, 175, 243, 245, 253

Diffusion Tensor Imaging . . 12,15, 74, 92, 93, 111-113, 238, 247
Dynamic Vision Sensor 39,116, 117, 152, 153, 168, 173

Evolving Connectionist System 56, 57
Electroencephalography 1, 9-12, 19, 22, 38, 42, 43, 87, 88, 91, 116,
132, 188, 203, 235-238, 240-242, 244, 245, 247, 248

Eidgendssische Technische Hochschule Ziirich 156
Echo State Network 62-64
Evolving Spiking Neural Network 56-59

‘Functional’ Magnetic Resonance Imaging 12-14, 19, 43, 87, 89, 90,
92, 203, 236-238, 247

Field Programmable Gate Array . 144, 147-149, 155, 156, 161, 163,
173, 174, 191, 195, 196, 198, 202, 207

232

ABBREVIATIONS 233
GA Genetic Algorithm L 44
GABA y-Aminobutyric Acid L oL 25, 62, 95
GRN Gene Regulatory Network 60-62, 95
HDL Hardware Description Language 147, 157, 159
HH Hodgkin-Huxely 26, 89
HMD Head Mounted Display 78-82
HMM Hidden MarkovModel 240
INI Institute for Neuroinformatics 117, 118, 153, 156, 159, 167, 202, 207
10 Input-Output . 103, 110, 111, 116, 118, 122, 148, 168, 170, 173, 174,

178, 184-186, 188, 191, 192, 198, 207
JSON JavaScript Object Notation 103, 116, 118, 119, 155, 187
kNN k-Nearest-Neighbour 14, 132
LIF Leaky Integrate-And-Fire 30, 32, 33, 35, 74, 89, 105, 167, 168, 176,
196, 243, 253
LSM Liquid State Machine 63, 64, 70, 73, 74, 89, 99, 137
LTD Long-Term Depression 46, 49, 175
LTP Long-Term Potentiation 46, 49, 175
LUT Lookup Table 48
MI MotorImagery 239-241
MLP Multi-Layer Perceptron 1, 19, 21, 107, 235
MNI Montreal Neurological Institute 91, 93, 112, 191, 236, 247
MNP Motor Neuron Prosthetic 112, 154
MPI Message-Passing Interface 67
MRI Magnetic Resonance Imaging 12, 13, 15, 88
NMDA N-Methyl-p-Aspartic Acid 62, 158
pLIF Probabilistic Leaky Integrate-And-Fire 35, 74, 86, 89, 90, 176, 177
PSP Post-Synaptic Potential, .. 61, 62
ReSuMe Remote Supervised Method 45, 50, 53, 54
RFI Radio Frequency Interference 18
RMSE Root Mean Squared Error 43
RNG Random Number Generation 90, 176
RNN Recurrent Neural Network 19, 62—-64, 70
RO Rank-Order Learning 57-59
ROLLS Reconfigurable On-Line Learning Spiking 156-158, 160, 199, 202,

207

ABBREVIATIONS

234

SDSP

SKA
SNN

SNR
SPAN

SRM
SSTD

STDP

STFT
SVM

TC
TD

VLSI

Spike Dependent Synaptic Plasticity 45-47, 49, 50, 58, 59, 151, 155,
158

Square Kilometre Array 17, 18, 204, 254, 255
Spiking Neural Network 2,4, 11, 14, 20, 21,
24, 25, 28, 37, 44—-46, 50, 57, 63, 66, 68, 70, 76, 83, 85, 90, 94-96, 98,
99, 101, 107, 108, 121, 135, 136, 143, 162, 164, 167, 179, 182, 184, 192,
197, 198, 200, 201, 203-207, 235, 245, 247, 255

Signal-to-Noise Ratio 40, 252-254
Spike Pattern Association Neuron 22, 45, 46, 50, 51, 53-56, 75, 94,
161

Spike Response Model L. 30
Spatio- and Spectro-Temporal Data 1-3, 6-9, 15, 18-20, 22, 69-72,
74, 76, 83, 98, 138, 204, 205, 209

Spike Time Dependent Plasticity . 45-51, 58, 59, 74, 123, 133, 134,
137, 151, 155, 156, 165, 168, 174, 175, 186, 198, 253

Short-Term Fourier Transform 18, 19
Support Vector Machine . . . 1, 12, 14, 19, 63, 75, 94, 107, 114, 235

Threshold-Based Temporal Contrast 39
Threshold-Based Temporal Difference 38, 39, 87, 99, 116, 121, 206,
243, 252, 253

Very Large Scale Integration 48, 86, 90, 97, 117, 140, 145, 148-151,
153, 156, 197, 199, 202, 207

APPENDIX

CASE STUDY IN NEUROINFORMATICS

The NeuCube framework was initially introduced for the classification and inter-
pretation of neuroinformatics data — that is, information about the brain and its
dynamics. Neuroinformatics data is a difficult challenge in machine learning, primar-
ily due to its inherent spatial and temporal dynamics. Classical machine learning
algorithms (e.g. SVM or MLP) also struggle to effectively represent its non-linearity

and non-stationary nature.

The NeuCube explicitly incorporates these aspects through the use of a meaningfully-
structured SNN reservoir. This reservoir captures the spatial links within the data
through its 3D representation of neurons, along with a representation of the data’s

temporal dynamics through those neurons’ spiking behaviour.

In Section 2.1.1, some of the most common sources of neuroinformatics data were
discussed. Here, we will introduce how we can use these to develop effective NeuCube
architectures. Additionally, we establish a case study on the classification of brain
signals generating complex natural hand movements, captured through EEG. This
case study provides evidence that the NeuCube can adequately deal with complex

spatio-temporal data.

A1 NEUCUBE ARCHITECTURES FOR NEUROINFORMATICS

As the nature and structure of the brain is relatively well known - at least, with
regards to the data collection devices we have discussed - it is entirely possible for
us to generate meaningful reservoir structures which capture both the spatial, and
the temporal, dynamics of the data. Please, refer to Section 2.1.1 for a review of these

technologies.

235

APP. A ARCHITECTURES FOR NEUROINFORMATICS: ELECTROENCEPHALOGRAPHY 236

Here, we briefly discuss the basic architectures for the design of NeuCube reservoirs
for EEG and fMRI, our most significant neuroinformatics data sources. These are the
starting point for the generation of our actual reservoir architecture; they should be

read in the context of the design methodology given in Chapter 5.

A.1.1 ELECTROENCEPHALOGRAPHY

When structuring a reservoir to represent EEG data, we have some a-priori informa-
tion about the nature and source of the data. It is, clearly, generated by the brain,
and recorded in known locations on the scalp. The issue then, is to reconcile these
two sources of location information — the brain structure and the electrode locations

— with each other into one cohesive structure.

Recall that EEG can be associated with a known brain atlas. In this case, we have
either the Talairach or MNI systems, which each represent the brain as a cloud of 3D
points. These two systems are largely interchangeable; the Talairach altlas is more
commonly used, but the MNI system is quickly supplanting it as it is more accurate.
In any case, we can associate an EEG collection location with a known brain location.
Effectively, we take a selection of points in one of these spaces, and associate the
input locations with the neuron in the reservoir that as closely as possible represents

their real location.

The reservoir, then, is structured using our knowledge of the Talairach or MNI atlases.
The network size is heuristically chosen, based on the complexity of the data; more
complex or longer data will require a larger network, as memory and computational
capacity of such reservoirs is closely correlated with network size. See Section 5.2

for further details on the selection of reservoir parameters.

To provide the locations of the EEG electrodes, the EEG to cortical location mapping
given in Koessler et al. (2009) (cf: Table A.1) has been used. This is a comprehensive
listing of 10-10 system electrode locations in Talairach space, generated through
colocation of EEG electrodes with fMRI. Due to this, we can be sure that the input

locations given are representative of the actual cortical locations of the electrodes.

Therefore, from this, it is a trivial matter to reconcile these two sets of points. In

order to implement this effectively, we utilise the technique given in Section 6.4.3.3.

To date, of the papers published applying the NeuCube to EEG data all have used

some variation of this mapping. These papers include Capecci et al. (2015), Chen

APP. A ARCHITECTURES FOR NEUROINFORMATICS: TMRI 237

10-10 Talairach Coordinates Gyri BA
Label x y z
F7 -52.1+3.0 28.6+64 38+£5.6 LFL Inferior Frontal G 45

T7 -65.8 £33 17.8+6.8 -29+61 LTL Middle Temporal G 21
PO4 352+64 -826+64 26.1+97 ROL Superior Occipital G 19

Cz 0.8 +49 -219+94 774+67 MFL Precentral G 4
02 25.0+5.7 -952+58 6.2+114 ROL Middle Occipital G 18

TaBLE A.1: Example locations of EEG collection positions in the International 10-

10 System mapped to cortical positions in Talairach space (Koessler et al., 2009).

These locations are used to select the closest neuron in the reservoir to act as an

input location for the data from that channel. ‘BA’ represents the Broadmann Area
number.

et al. (2013), J. Hu et al. (2014), Kasabov and Capecci (2015), Kasabov, Hu et al. (2013),
Kasabov et al. (2015), Scott et al. (2013) and D. Taylor et al. (2014).

This mapping and network structure were introduced in Scott et al. (2013). Simultan-
eously, it was used in Kasabov, Hu et al. (2013), and by Schliebs et al. (2013). This
mapping is a contribution of this thesis. The simultaneous publication is due to those

three papers being published in the same conference.

A.1.2 FuNcTIONAL MAGNETIC RESONANCE IMAGING

The generation of a network structure for fMRI is a more straightforward process
than for EEG. In effect, as a part of the fMRI itself we have the structure of the
network. This is given in the positions of the voxels. Each voxel is associated with
a 3D location in the brain, and also contains the temporal information of the data.
It is therefore a trivial matter to structure a network using these voxel locations to

represent both the reservoir neurons, and the input locations.

The only issue with this technique is that of scale. A high-resolution fMRI scan can
contain upwards of 100,000 voxels per time slice. Unfortunately it is not always
feasible — or, indeed, even possible in the case of some neuromorphic systems — to
implement this scale of network. To resolve this, we must perform some dimension-
ality reduction. This is chiefly implemented using simple neighbourhood averaging.
In essence, we average some neighbourhood of voxels togther into one super-voxel.

This reduces the dimensionality of the data, but along with it, the resolution. A more

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 238

sophisticated technique such as Principle Component Analysis or similar may be
equally appropriate here, but as we are trying to keep as much of the data intact as
possible, we should try to avoid this type of dimensionality reduction. This decision
must be made heuristically, in the context of the design methodology discussed in
Chapter 5. In fact, a much better approach is to select a computational platform
which can handle the dimensionality. Issues such as this support the development of

the neuromorphic systems version of the NeuCube introduced in Chapter 7.

An example of this base architecture applied to fMRI is given in the recent papers of
Doborjeh et al. (2014a) and Doborjeh et al. (2014b), where this concept was extended
and applied to the classification and segmentation of resting state and language task
data.

A.1.3 DIFFusION TENSOR IMAGING

Diffusion Tensor Imaging (DTI) is not an appropriate source of information for
reservoir structure in and of itself; instead, it must be paired with some temporal
source of brain data such as those discussed above. Why, then, is DTI useful in this

context?

DTI is useful in that it can assist us in generating an informed design for the general
connectome of a reservoir. Instead of using the small-world connectivity discussed
in Section 6.4.3.1, we can instead use an approximation of the actual subject’s real
connectome in place. This, along with a meaningfully shaped reservoir, is intended
to retain the spatio-temporal links within the data with more accuracy than a general

connectome.

While this concept has yet to be applied in an empirical study;, it is supported by the
general trend exhibited by these architectures. That is, the more a-priori information
we have about the nature and source of the data, the better the reservoir can represent

it in both spatial and temporal dynamics.

A.2 CLASSIFICATION OF COMPLEX NATURAL HAND MOVEMENTS

UTILISING ELECTROENCEPHALOGRAPHY

We performed an experiment to gauge the NeuCube’s ability to classify complex
neuroinformatics data, in an attempt to provide empirical evidence to the claims
in this thesis. Here, an experiment that established the NeuCube was effective

at classifying complex natural hand movements as captured through EEG data is

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 239

introduced. Additionally, we established that in this case, the NeuCube framework
was more effective than a number of contemporary machine learning techniques

when applied to the same task.

N.B.: This study was originally published as D. Taylor et al. (2014) and discussed
further in D. Taylor et al. (2015). It has been adapted from there, but is largely as it
was originally published.

A.2.1 MoTIVATION & RESEARCH QUESTIONS

A focal neurological insult that causes changes to cerebral blood flow, such as in a
stroke, can result in mild to severe motor dysfunctions on the contralateral side of the
body. Although some spontaneous recovery usually occurs in the first 6 months after
stroke only about 14% of people with stroke recover normal use of the upper limb
(Kong, Chua & Lee, 2011). The driver of functional recovery after stroke is neural
plasticity, the propensity of synapses and neuronal circuits to change in response to
experience and demand (Fox, 2009; Kerr, Cheng & Jones, 2011; Kleim & Jones, 2008).
Whilst it is known that frequency and intensity of intervention following stroke
is important high intensity rehabilitation is resource-limited. In order to deliver
interventions at a high enough intensity and frequency for neural plasticity we need
to develop devices that can assist with rehabilitation without the concentrated input

of rehabilitation professionals.

Motor Imagery (MI), or the mental rehearsal of a movement, is an approach used by
rehabilitation professionals to encourage motor practice in the absence of sufficient
muscle activity (Jeannerod, 1994, 2001; Rizzolatti, Fogassi & Gallese, 2001). MI
is thought to activate similar cortical networks as activated in a real movement,
including activation of the primary motor cortex, premotor cortex, supplementary
motor area and parietal cortices (Fadiga, Fogassi, Pavesi & Rizzolatti, 1995; Grush,
2004). Recent evidence suggests that although there are common cortical networks in
real and imagined movement (frontal and parietal sensorimotor cortices) there are also
important differences, with ventral areas being activated in imagined movement, but
not in real movement. These specific additional activations in the extreme/external

capsule may represent an additional cognitive demand of imagery based tasks.

Recovery of movement control is greater after motor execution training than after
MI training alone. Interestingly the combination of MI training with even passive

movement generates greater recovery than MI alone (Page, Levine, Sisto & Johnston,

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 240

2001). Combining motor imagery with functional electrical muscle stimulation,
via BCI devices, may result in greater neural plasticity and recovery than motor
imagery alone, or motor imagery combined with passive movement. The additional
feedback to the brain provided by executing a movement may enhance plasticity
and reduce the cognitive demand of motor imagery. Many people following stroke
or other neurological disorder have some residual muscle activity but fail to recruit
enough motor units at an appropriate speed and pattern, to generate sufficient force
to complete the desired movement (Chang, Zhou, Rymer & Li, 2013; Gray, Rice
& Garland, 2012). A BCI device in which motor imagery triggers an appropriate
signal to a functional electrical stimulation system would facilitate the practice of
real movements and potentially result in greater neural plasticity and functional

recovery.

EEG records brain signals through electrodes on the scalp and is the most widely
used method for recording brain data used in BCI devices. EEG is non-invasive
and has good temporal and spatial resolution. However, EEG systems have been
criticized because of the time consuming and complex training period for the potential
user (Zimmermann et al., 2013). One advantage of the NeuCube framework is that
intensive training of the user is not required. This is due to the fact that the NeuCube
classifies naturally elicited cortical activity, rather than a specific component of the
EEG signal such as the P300 wave, the production of which has to be learned by the
user. In addition, the NeuCube is capable of learning in an on-line fashion, training

as it is used.

Here, we are investigating the feasibility of using NeuCube with EEG data to develop
a functional electrical stimulation BCI system that is able to assist in the rehabilitation
of complex upper limb movements. Two methods of use are under consideration,
firstly for people who have no voluntary activity in a limb who would drive the device
using MI, and secondly for people who have some residual activity in their muscles
that, in addition to using MI, may augment the device with their own muscle activity.
To do this it is important to establish a high degree of accuracy of classification
of movement intention and movement execution to ensure that the appropriate
electrical stimulation output is then provided. One of the challenges to any BCI

system is the extent to which it accurately classifies the input signal.

In Zimmermann et al. (2013) real movement, consisting of a pinch grip to a specified
force level, compared to a resting state, was used. Data were collected using functional
Near Infrared Spectrometry (fNIRS) combined with other physiological data, such as
blood pressure and respiratory information. Using a Hidden Markov Model (HMM)

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 241

as the classifier framework accuracies ranging between 79.6% and 98.8% over 2 classes
were achieved. Using fNIRS in a trial of MI, Zimmermann et al. (2013) investigated
the classification accuracy of a simple imagined tap of the thumb on a keyboard
versus a complex multi-digit tapping sequence. Linear discriminant analysis (LDA)
was used in combination with careful selection of the best performing data channel
(out of 3 possible channels) and best 4 features for each participant. The study in
Holper and Wolf (2011) reported classification accuracies in a 2-class model (simple
imagined movement or complex imagined movement) of between 70.8% and 91.7%. A
Sparse Common Spatial Pattern optimization technique that reduced EEG channels
by disregarding noisy channels and channels thought to be irrelevant was reported
in Arvaneh, Guan, Ang and Quek (2011); however, this approach results in a loss of

data that could be informative.

We were interested in determining if it was feasible to use the NeuCube framework
as a driver of BCI devices. As a first step we wanted to determine if the NeuCube was
at least equivalent in classifying movement tasks as other commonly used methods.
As proof-of concept we designed a study that required NeuCube to classify imagined
and real movements in two different directions and at rest (wrist flexion, extension
or rest). The general hypothesis is that NeuCube using EEG data can correctly
identify brain patterns corresponding to specific movements. Previous work from
our lab in association with research collaborators has indicated the potential of
NeuCube to identify different EEG patterns relating to different imagined movements
from a commercially available 14 channel EEG headset. In this trial imagined wrist
extension, rest and wrist flexion achieved accuracy in 1 individual of 88%, 83% and
71% respectively (Chen et al., 2013).

The specific hypothesis for this study was that the NeuCube would accurately classify
both single joint real and imagined movements of the hand into one of three classes:
flexion, extension, or rest. This paradigm built on the earlier work in Chen et al. (2013)
by increasing the complexity of the task in requiring the NeuCube to distinguish three
conditions, two different muscle contraction patterns (flexion or extensor muscle
activity) or rest. A secondary hypothesis was that the NeuCube would perform
better than other classification methods, including Multiple Linear Regression (MLR),
Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Evolving Clustering
Method (ECM) (Q. Song & Kasabov, 2001), along with offering other advantages such

as adaptability to new data on-line and interpretability of results.

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 242

A.2.2 EXPERIMENTAL DESIGN

PARTICIPANTS

Three healthy volunteers from our laboratory group participated in the study. None

had any history of neurological disorders and all were right handed.
ProTocoL

All measures were taken in a quiet room with participants seated in a dining chair.
The task consisted of either performing the specified movements or imagining the
movements, or remaining at rest. All tasks were completed with eyes closed to
reduce visual and blink related artifacts. The movement execution task involved the
participant resting, flexing the wrist or extending the wrist. The starting position
was from mid-pronation with the forearm resting on the person’s lap. The movement
intention task involved the participant imagining or performing the movements as
described above. Participants were required to imagine or perform each movement

in 2 seconds and to repeat that 10 times.
DATA ACQUISITION

A low-cost commercially available wireless Emotiv Epoc! EEG Neuroheadset was
used to record EEG data. The Epoc records from 14 channels based on International
10-20 locations (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FCé, F4, F8, AF4). Two
additional electrodes (P3, P4) were used as reference. These electrodes are marked
with a red dotted ring in Figure 2.1. The electrode data was digitized at 128 Hz
sampling rate and sent to the computer via Bluetooth. An important factor was that
other than the Emotiv’s 1000 Hz high-pass filter, no filtering was applied to the data,
either online or offline. This filter was only applied as it is not possible to disable it

in this device.
DATA PROCESSING

The data was separated into classes denoting each task. Each set of ten samples
was then evenly divided into a training (seen) and a testing (unseen) set. The data

was then converted into trains of spikes (one train per channel, 14 in total) with

https://emotiv.com/epoc.php

https://emotiv.com/epoc.php

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 243

the Threshold-Based Temporal Difference (TD) algorithm, ¢ = 6. No other data

preprocessing was applied.
CLASSIFICATION

Each training sample was presented to the NeuCube once, entered as 14 input streams
of continuous data collected at 128 Hz, encoded using TD with a step size of 6. The
spiking activity of every neuron was recorded over the time of the sample, and these
presented to the deSNN classifier. The deSNN was initialized with a Mod of 0.9 and
drift factor of 0.25 (empirically established values for this dataset). The synaptic
weights for both the NeuCube and the deSNN were then fixed at their final (learned)
values for the validation phase. The unseen data samples were presented in the same
way, and the predicted classes recorded. The predicted classes were then compared

to the actual classes of those samples.
COMPARATIVE STUDY

The NeuCube described above was compared to some of the classical machine
learning methods mentioned in Chapter 2: MLR, SVM, MLP and ECM. The SVM
method uses a Polynomial kernel with a rank 1; the MLP uses 30 hidden nodes with
1000 iterations for training. The ECM uses m = 3; Rpax = 1; and Ry, = 0.1. Data for
these methods is averaged at 8 ms intervals and a single input vector is formed for

each session, as is general practice.
NEUCUBE ARCHITECTURE

The NeuCube architecture designed for this task followed the principles established
in Chapter 5, and in particular, Section A.1.1 of this chapter. The reservoir was
comprised of 1471 LIF neurons, each representing around 1 cm?® arranged equidistant
from each other within the volume of the Talairach space. Data input locations were
selected based on the mapping discussed in Section A.1.1. Small world connectivity

(i.e. distance-dependent probabilistic connectivity) was used.

A.2.3 REsuLTS

Classification accuracy for the the NeuCube averaged 76%, with individual accuracies
ranging between 70-85%. There was a consistent rate of recognition between the
real and the imagined movement. In terms of the comparison with other classifica-

tion approaches, it is clear from the results shown in Table A.2 that the NeuCube

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 244

Subject/Session MLR SVM MLP ECM NeuCube

1-Real 55 69 62 76 80
1-Imagined 63 68 58 58 80
2-Real 55 55 45 52 67
2-Imagined 42 63 63 79 85
3-Real 41 65 41 45 73
3-Imagined 53 53 63 53 70
Average (appr.) 52 62 55 61 76

TABLE A.2: Results of the comparative study for imagined limb movement captured
with EEG. Accuracy is expressed as percentage correctly classified for real and
imagined movements.

performed significantly better than the other machine learning techniques with the
highest average accuracy over all subjects and samples, whilst the closest competitor
was SVM with the second highest average accuracy of 62%. MLR was the poorest

performing, with an average accuracy of 50.5%, or just over the chance threshold.

A.2.4 DiscussION

This was a feasibility study to investigate the potential of using NeuCube in BCI based
rehabilitation devices. In considering the classification accuracies, which ranged
from 70-85%, it is important to consider three factors. Firstly, the data were collected
in an unshielded room using a commercially available gaming EEG headset, resulting
in an EEG signal with relatively high signal to noise ratio. Secondly, as there was no
processing or feature extraction performed on the data prior to classification, the
raw, noisy, EEG data was used as the input. Thirdly, all comparative methods in this
study, excepting NeuCube, were validated using Leave-One-Out (all but one sample
used for training), while the NeuCube was validated with a more disadvantageous
50/50 (half used for training, half for testing) split. The accuracy of the NeuCube
was still significantly higher than the other techniques and would likely rise when

trained with leave-one-out paradigms.

Bearing these three factors in mind the classification accuracies obtained using
NeuCube are in a similar range to those reported in other research. These results
demonstrate that NeuCube is capable of accurately classifying noisy and relatively

low-quality data. In addition, unlike many other approaches NeuCube does not

APP. A CurassIFICATION OF CoMPLEX NATURAL HAND MOVEMENTS viA EEG 245

FIGURE A.1: Example visualisation of the connectome of the trained NeuCube. Blue
lines show strong excitatory connections between two neurons, and red strong
inhibitory.

require a lengthy feature extraction process, instead using all the raw data for clas-
sification, thus utilizing a rich data set that does not lose any potentially useful

data.

We chose to use a relatively cheap and accessible EEG headset because two major
factors that prevent the adoption of high technology interventions into rehabilitation
practice are cost and complexity. EEG systems commonly used in research and
clinical situations are expensive and unlikely to be widely available to rehabilitation
specialists. The Emotiv neuroheadset has a limited number of channels with a
fixed electrode placement, which may serve to improve usability as it reduces the

preparation time and is easy for subjects to use without assistance.

An advantage of the NeuCube is that it allows for interpretation of results and
understanding of the data and the brain processes that generated it. This is illustrated
in Figure A.1 where the connectivity of a trained reservoir is shown for further
analysis. The SNN reservoir and the deSNN classifier have evolvable structures, i.e. a
NeuCube model can be trained further on more data and recalled on new data, which
may not necessarily be of the same size or feature dimensionality. In theory, this
allows for a NeuCube to be partially trained on highly accurate data captured in a
controlled manner with medical-grade devices, and then further trained and adapted

to the particular subject with a cheaper, less accurate consumer-grade device such as

APP. A APPLICATION OF NEUROMORPHIC SYSTEMS 246

the Emotiv. This increases the system’s potential uses in clinical and rehabilitation

applications.

The large number of parameters requiring optimisation limits the current NeuCube.
The results presented in this study are obtained through manual parameter optimiza-
tion. To mitigate this, adaptive and evolutionary techniques (including the CNGM
discussed prior and quantum-inspired optimization) are being developed for this

system, so that parameter selection is automated in a desirable way.

A.3 APPLICATION OF NEUROMORPHIC SYSTEMS

As briefly discussed earlier, this particular case study is an appropriate starting
point for a BCI or neurorehabilitation device. In that case, the software simulation
of such a system may be a limiting factor, in terms of power consumption and
real-time operation. Here, we could instead consider the use of a neuromorphic
hardware implementation, such as that introduced in Section 7.4. A neuromorphic
implementation of this system has the potential to open up a number of applications
which would otherwise be infeasible due to power or space constraints. Here, we
could directly embed a low-power, real-time version of the NeuCube system into
devices such as prostheses or rehabilitation exoskeletons, electric wheelchairs, etc..
The advantages of using a neuromorphic solution in this space are well covered in
Chapter 7. The advantages of a NeuCube-based system implemented in neuromorphic

hardware in such a context are primarily:

1. Significantly lowered power allows for much longer operation time in battery-
powered or otherwise power constrained applications;

2. Guaranteed real time operation allows for systems to interact naturally with the
user or the real world, without latency. In cases of neurorehabilitation, latency
can actually inhibit neuroplasticity as the physical stimuli is then uncoupled
from the mental stimuli; and, perhaps most significantly,

3. The ability for the system to continuously learn from the changing signals of
the user allows for the system to continue operating successfully as the user
rehabilitates or otherwise shows task-specific adaptation, where traditional

methods are unable to adapt further from their initial training.

This is, of course, a non-exhaustive list of beneficial characteristics neuromorphic
systems may have in this context. It is therefore suggested that future explorations

of neurorehabilitation and BCI tasks in the NeuCube context should incorporate a

ApPP. A CONTRIBUTIONS 247

neuromorphic solution as early as possible, so as to ensure that these advantages are

introduced as early as possible in the process.

A.4 APPENDIX SUMMARY AND CONCLUSION

In Chapter 2, we introduced some basic concepts of neuroinformatics and neuroima-
ging, including the most popular forms of these — EEG and fMRI. Here, we have
drawn on this knowledge in order to inform our NeuCube system design. In de-
veloping a NeuCube architecture to process such data, we can draw inspiration
from its implicit internal structure, to inform the 3D structure of our reservoir. This
information contains spatial information which can be extracted and mapped into the
space of the reservoir, by associating the data source with an existing brain structure
atlas. Here, we have used the Talairach atlas, but we could as easily have used the
MNI system. Once we have our reservoir structure, we can utilise our knowledge
of the data collection context — e.g. in the case of EEG, which input locations in the
International 10-20 system were used — and map these into the Talairach space. This
reconciles our inputs with their respective physical locations in the model, retaining
the implicit spatio-temporal links within the data. Basic templates for EEG, fMRI,
and DTI data have been established here. The latter, while not a temporal source of
data, can be used to inform the connectome structure of models for other types of

brain data.

Additionally, in this chapter we have provided some empirical evidence for the
efficacy of this approach, and the methodologies introduced in earlier chapters. Here,
it is shown that a NeuCube-based SNN can effectively classify complex motor imagery
data collected from a consumer-grade EEG headset. This may lead to meaningful

outcomes in BCI or neurorehabilitation, among other applications.

1. An introductory review of the most common forms of neuroinformatics
and neuroimaging data.
2. The introduction of specific NeuCube design considerations for applications
in general spatio-temporal data, and particularly in neuroinformatics data.
3. Base architectures for the classification of neuroinformatics data using the
Talairach and Montreal Neurological Institute atlases for
(a) EEG,
(b) fMRI, and
(c) DTI for connectome data.

ApPP. A CONTRIBUTIONS 248

4. Empirical evidence of this system’s ability to effectively classify complex
spatio-temporal data — in this case, motor imagery data collected with EEG.

1. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,
Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I.,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

2. Taylor, D., Chamberlain, J., Signal, N., Scott, N. M., Kasabov, N., Capecci,
E., Tu, E., Saywell, N., Chen2013, Y., Hu, J., and Hou, Z.-G. (2015). Brain-
Computer Interfaces for Neuro Rehabilitation. In 13th International Confer-
ence on Neuro-Computing and Evolving Intelligence. February 19-20, Auck-
land, New Zealand.

3. Hu,]J., Hou, Z.-G., Chen, Y., Kasabov, N., and Scott, N. M. (2014). EEG Based
Classification of Upper-Limb ADL Using SNN for Active Robotic Rehab-
ilitation. In 5th IEEE RAS/EMBS International Conference on Biomedical
Robotics and Biomechatronics. August 12-15, Sdo Paulo, Brazil. IEEE.
doi:10.1109/BIOROB.2014.6913811

4. Taylor, D., Scott, N. M., Kasabov, N., Tu, E., Capecci, E., Saywell, N.,
Chen2013, Y., Hu, J., and Hou, Z.-G. (2014). Feasibility of the NeuCube
SNN architecture for detecting motor execution and motor intention for use
in BCI applications. In Proceedings of the IEEE International Joint Conference
on Neural Networks. Beijing, China. IEEE. d0i:10.1109/IJCNN.2014.6889936

5. Kasabov, N., Hu, J., Chen2013, Y., Scott, N. M., and Turkova, Y. (2013).
Spatio-temporal EEG data classification in the NeuCube 3D SNN Environ-
ment: Methodology and Examples. In Proceedings of the 20th International
Conference on Neural Information Processing, 3—7 November 2013, Daegu,
Korea. Springer. doi:10.1007/978-3-642-42051-1_9

6. Scott, N. M., Kasabov, N., and Indiveri, G. (2013). NeuCube Neuromorphic
Framework for Spatio-Temporal Brain Data and Its Python Implementation.
In Proceedings of the 20th International Conference on Neural Information
Processing, 3-7 November 2013, Daegu, Korea. Springer. doi:10.1007/978-3-
642-42051-1_11

http://dx.doi.org/10.1016/j.neunet.2015.09.011
http://dx.doi.org/10.1109/BIOROB.2014.6913811
http://dx.doi.org/10.1109/IJCNN.2014.6889936
http://dx.doi.org/10.1007/978-3-642-42051-1_9
http://dx.doi.org/10.1007/978-3-642-42051-1_11
http://dx.doi.org/10.1007/978-3-642-42051-1_11

APPENDIX

CASE STUuDY IN RADIOASTRONOMY

The previous chapter introduced a case study showing the NeuCube’s effectiveness
on spatio-temporal data. Here, its application to spectro-temporal data will be
introduced. In particular, we introduce it in the (very preliminary) context of high-

speed streaming radioastronomy data.

We are interested in spectro-temporal data as it, like spatio-temporal data, contains
an intrinsic relationship between its temporal dynamics and its structure. In the sense
of structure, we mean its spectral makeup, not its spatial distribution. Interestingly,
in the NeuCube, we can map the spectral structure to a physical structure, in order

to represent it effectively in the reservoir.

Here, we will take the example of a radioastronomical signal - i.e., one that has
been recorded by a radiotelescope. Recall from Section 2.2 the general context of a
radioastromonical signal. In particular, we are primarily interested in addressing the

issue of identifying pulsars in radiotelescope data.

B.1 NEUCUBE ARCHITECTURE FOR SPECTRO-TEMPORAL DATA

Developing a reservoir architecture for spectro-temporal data is somewhat more
complex than developing one to represent spatio-temporal data. Primarily this is
due to the obvious fact that there is generally no inherent spatial structure to the
data, and therefore, no obvious way to represent that in the positions of the reservoir

neurons.

However, it is possible to represent some spectral characteristics of the data as spatial

characteristics. In a general sense, we use our a-priori knowledge of the data source

249

APP. B DisPERSED TRANSIENT & PULSAR SEARCH 250

to create a conceptual model of the spectral properties. This is a heuristic process,

and is heavily dependent on the actual data source.

Here, we take the example of a radioastronomical signal. As the data does not
represent a spatial structure, it is not directly possible to create a meaningful reservoir
shape informed by it. In a case such as this, we generate an arbitrary shaped reservoir

— in this case, a cuboid.

Recall from our earlier discussion that a radioastronomical signal such as that received
from a pulsar has a characteristic relationship between the relative time signal’s
component frequencies arrival at the sensor, and the distance that signal travelled. In
general, this can be modelled as an inverse-quadratic. That is, the lower frequencies

arrive at the sensor later, due to their dispersal through interstellar media.

This inverse quadratic shape is an intrinsic characteristic of the relationship between
the spectral components and the temporal components of this data. Therefore, it
makes sense for us to represent this shape in the NeuCube reservoir as best we can.
The most efficient representation in terms of space in a 3D reservoir is to associate
each spectral channel with a single input neuron, aligned diagonally across x and
y axes the reservoir and (viewed as a horizontal slice in the z-axis) proportionally

representing the inverse quadratic shape.

In this way, we can — to some extent — represent the spectral nature of the data in a
spatial manner. Obviously, this type of mapping will always be an approximation,
but it does still adhere to the key principle of a NeuCube reservoir’s structure; a
representation of the data that retains the implicit spatio-temporal links within a

data source.

This principle extends to sources other than radiostronomy data. The identification
of the most meaningful structure in the data based on our a-priori knowledge of
what the data represents is key in designing a meaningful reservoir structure. In the
unlikely case that no inherent structure can be identified in the data, we can instead
use some arbitrary shaped reservoir in place, with the proviso that the design process
follows that identified in Chapter 5.

B.2 DisPERSED TRANSIENT AND PULSAR SEARCH

Here, we introduce a proof-of-concept case study which sought to identify whether
the NeuCube was appropriate for application on general spectro-temporal data, in

the context of radioastronomy data.

APP. B DisPERSED TRANSIENT & PULSAR SEARCH 251

The study in this section was first introduced in Scott et al. (2015).

B.2.1 MoTIVvATION & RESEARCH QUESTIONS

With the introduction of the Square Kilometre Array Project, a revolution in the data
available to radioastronomers is occurring. Of particular interest is the identification
of distinctive spectral patterns known as dispersed transients (single, bright pulses
of unknown extraterrestrial origin) or dispersed pulsars (characteristic signals given
off by the rotation of pulsar stars). These signals, if identified and analysed correctly,
can have major implications towards our understanding of relativistic physics, and
therefore, our understanding of the fundamental forces at work in our universe.
However, these signals are highly infrequent (class imbalance of 1:10,000-12,000
pulsar to noise), highly unpredictable in terms of signal characteristics, and buried
in noise. The current state of the art approach requires a brute force search in terms
and is untenable in the face of the volume of data the SKA will produce - a data

stream rate of 1.5-2.5 TBps.

An alternative approach using neuromorphic principles (the NeuCube evolving
spatio-temporal data machine) as a first line candidate selection system is therefore
proposed here. This is appropriate as NeuCube eSTDM provides compact represent-
ation of spatial, spectral, and temporal characteristics, evolving learning, non-linear
pattern recognition, and low computation cost comparative to alternative techniques,

particularly when implemented on neuromorphic hardware.

B.2.2 EXPERIMENTAL DESIGN

A synthetic dataset was generated, containing 30 positive (pulsar + noise) and 30
negative (solely noise) samples. The code used to generate this simulated data is
given in Appendix G. The generated noise is a zero-mean Gaussian with o = 1, in
accordance with the type of noise found in real observations. The strength, periodicity,
and dispersion of this pulsar signal is varied randomly between samples, representing
25 distinct pulsar candidates. The dispersion follows the standard inverse quadratic
shape. Signal-to-noise ratio (‘strength’) of these candidates varied randomly in the
range beween 3:1-40:1. Periodicity was randomly selected in the range between
200-500 milliseconds. The offset of the first pulse from the start of the observation
was selected randomly in the range between 15-40 milliseconds. Additionally, the

width of the pulse itself was selected in the range between 2-5 milliseconds.

APP. B DiSPERSED TRANSIENT & PULSAR SEARCH

252

40 60

a0

100 120

140

(a) Strong synthetic pulsar

160 180

120

(B) Strong real pulsar

] I:llll*l II f:..l..

A ';'suw n"r"

mmEan I.1 II II

i 'pt

il ™

| “I i \ HI \H

50 100

=
=
H|‘ -

SDD

(c) Weak simulated pulsar

(D) Weak real pulsar

F1Gure B.1: Example of the synthetic radioastronomy data compared with the real
data. The y-axis represents the frequency band, and the x-axis is time. On the left
we can see the synthetic (generated) data, which is similar to the real plots shown
on the right hand side. The difference in dispersion of the plots is due to fact that
the real data was plotted after dedispersion. The raw data is, however, similar.

A visualisation of this synthetic data compared to the real data is given in Figure B.1.
The top two figures show a ‘strong’ synthetic (Figure B.1a) and real (Figure B.1b)
pulsar, with a SNR of ~ 40. The bottom two figures show a ‘weak’ synthetic (Fig-
ure B.1c) and real (Figure B.1d) pulsar, with a SNR of ~ 3. Both are viable pulsar
candidates that should be identified by our system. As is clear from these plots, it
can be difficult for a human observer to identify a pulsar in such data, particularly at

the rates we have previously discussed.

This dataset was separated randomly using the holdout method (2-fold cross valida-
tion), i.e. that it is divided into two equal datasets (here named A and B) for training
and testing. The NeuCube was trained on one of these divisions (A) and validated
on the other (B). The second fold inverted the order (train on B and validate on A).

Each sample was presented once to the network.

A grid search was utilised to find the optimal network design. The parameters

optimised for were the threshold for the encoding scheme (TD), the reservoir neurons’

APP. B DisPERSED TRANSIENT & PULSAR SEARCH 253

spiking thresholds, the small-world connection probability, the A (magnitude) of the
STDP implementation, and the deSNN parameters.

NEUCUBE ARCHITECTURE

The NeuCube architecture used was a 10 X 10 X 10 cube of LIF neurons, connected
with the small-world method described in Section 6.4.3.1. The input locations were
designed using the principles established in Chapter 5 and Section B.1. The data was
encoded using the Threshold-Based Temporal Difference (TD) algorithm, with its
parameters established by the grid search process. A deSNN classifier was used as

the output device.

B.2.3 RESULTS

Positive classification accuracies were reported in a range of 84-92%, depending on
the random split of training/testing data taken and the parameter selected in the grid
search. Sensitivity/specificity tables indicate a bias towards classifying positive low

SNR samples as noise.

B.2.4 DiscussIiON

While any meaningful conclusions cannot be drawn from such a preliminary ex-
periment, there is certainly enough evidence here for the justification of further
experiments. Future experiments must improve the classification accuracy, and in
particular, emphasise a bias towards False Positives (noise classified as pulsar/tran-
sient candidate) rather than False Negatives, in order to maximise the potential
information gained by this system. Considerations must be paid to processing speed,
the speed of the palimpsest dynamic in the model, and computational cost — particu-

larly power consumption, as these systems will be installed in a remote location.

The real dataset will be considerably more unbalanced than this synthetic set (=
1:10,000 P:N ratio), which introduces some issues. However, it is expected that the
NeuCube will be able to handle this imbalance, as it should not learn the ‘noise’
patterns in the same way as a classical ML algorithm might — these should be

integrated away through the spike encoding and internal learning processes.

At present, the simulations have been performed in MATLAB. This is inappropriate
for a production system as it is incapable of dealing with the data throughput, and

requires a commodity computing platform. In the future, we will apply the SpiNNaker

APP. B ApPPLICATION OF NEUROMORPHIC SYSTEMS 254

version of the NeuCube in this domain. This dedicated hardware will ensure the
scaling capacity and constant time for computation regardless of NeuCube network

size, at much lower power consumption than a software emulation.

These very preliminary experiments suggest that further work is warranted, as the
results (particularly with respect to the low SNR samples) suggest that this approach
may prove to be an effective approach to the challenge of automated pulsar candidate

search.

Experiments are planned to iteratively add complexity. We intend to beginn with
strong transients, over a limited number of channels, then progress to strong tran-
sients with the full SKA channels, increasing class disparity and reducing SNR to
real levels, weak transients with limited channels, and so on. The same order will be
repeated for pulsar search. Due to the scale of the data and the models used, these

will be applied on the SpiNNaker neuromorphic computation system.

Additionally, we will be collaborating with W. van Straten of Swinburne University
of Technology. His group will be providing us with access to 900 TB of radioastro-
nomical survey data, which we will be utilising for a real-world study of this system’s
efficacy. This is, of course, subsequent to us proving its efficacy on data more complex

than this proof-of-concept.

B.3 APPLICATION OF NEUROMORPHIC SYSTEMS

Application of such a NeuCube system in a neuromorphic context is ideal for the case
of radioastronomy data. A particular constraint of the SKA programme discussed
in Section 2.2 is that the systems will be deployed in remote geographical locations;
as a result, their local power supply is limited. Power conservation is therefore a
consideration for systems incorporated in the SKA. To this end, a neuromorphic
implementation of the NeuCube for first-line event detection is advantageous over
a commodity computing solution, as the power consumption can be limited and
managed more precisely. In this case, we could use the NeuCube to identify events of
interest which are worth further analysis on the more costly conventional systems

which will be the primary computing devices in the SKA.

The nature of the NeuCube reservoir is such that it theoretically integrates away
random noise, and emphasises temporally correlated signals; in this way;, it is likely

an efficient option for the implementation of a learning system in the context of

ApPpP. B CONTRIBUTIONS 255

radioastronomy signals, which are necessarily temporally correlated signals buried

in random noise.

Additionally, the real-time performance guarantees of a neuromorphic solution are
advantageous in this context. Here, we can be sure that the information streamed
in will be processed in real time; a necessary feature in developing systems for the
SKA, as no sensor data will be recorded long-term. Instead, key areas of interest
are broadly highlighted in real time during an initial survey, to be revisited in more

depth in later studies. Here, a real-time solution is implicitly necessary.

A NeuCube implementation in neuromorphic hardware is therefore a natural progres-
sion of this study. It is theoretically advantageous in terms of power consumption,
processing time, and learning ability over conventional methods, and should therefore

be explored further in later works.

B.4 APPENDIX SUMMARY AND CONCLUSION

Application of the NeuCube framework to a spectro-temporal task — in this case,
the classification of complex radioastronomy data — has been introduced. Firstly,
we reviewed the basic precepts of radioastronomy data collection, particularly in
the context of the current SKA project. One of the major aims of this project is
the automated identification of a specific class of pulsar, which can be used to infer
some characteristics of relativistic physics. The challenge here, is that this data is
highly complex, noisy, slowly shifting, and is extremely rare in a massive data stream.
The NeuCube is a theoretical match for this data source. Herein, we established a
proof-of-concept case study for a simplified form of this data source, which shows

good promise.

Also introduced were some concepts for the design of NeuCube architectures in a
spectro-temporal context. We can represent the inherent structure of the spectral
component of the data spatially, by taking some characteristic of the data signal and
mapping this to an SNN reservoir. In the case study, we take the most significant
spectral structure — the dispersion of the frequency bands due to interstellar media -
and map this to the spatial structure of the reservoir. This method is generalisable to

other forms of spectro-temporal data.

ApPpP. B CONTRIBUTIONS 256

1. The introduction of a general methdology for the development of NeuCube
architectures for spectro-temporal data
2. The introduction of a novel NeuCube architecture for radioastronomical
data
3. A novel approach to radioastronomy radio-frequency interference identific-
ation, with advantages in:
(a) Speed
(b) Computational cost
(c) Power consumption
(d) Adaptiveness
4. Empirical evidence of the effectiveness of this novel NeuCube architecture
applied to general spectro-temporal data, in the specific case of radioastro-
nomical data
5. A future direction of research for pulsar and RFI identification using neur-
omorphic principles

1. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E.,
Othman, M., Doborjeh, M., Murli, N., Hartono, R., Espinosa-Ramos, J.I,
Zhou, L., Alvi, F., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M.,
Hou, Z.-G. and Yang, J. (2016). Evolving Spatio-Temporal Data Machines
Based on the NeuCube Neuromorphic Framework: Design Methodology
and Selected Applications. Neural Networks. Special Issue on Learning in
Big Data. Elsevier. doi:10.1016/j.neunet.2015.09.011

2. Scott, N. M., Mahmoud, M., Hartono, R., Gulyaev, S., and Kasabov, N. (2015).
Feasibility analysis of using the NeuCube Spiking Neural Network Archi-
tecture for Dispersed Transients and Pulsar Detection. In 13th International
Conference on Neuro-Computing and Evolving Intelligence. February 19-20,
Auckland, New Zealand.

http://dx.doi.org/10.1016/j.neunet.2015.09.011

—_ =
= O 0 00NNV W N -

= e e e
AN U1 W N

17
18
19
20

APPENDIX

LISTING OF SIGNIFICANT CLASSES FOR A NEUCUBE
IMPLEMENTATION IN PYNN

The code listings here are current at the time of publication. A version of the code
has been frozen at this time and has been made available at https://github.com/
KEDRI-AUT/NeuCube_PyNN/releases/tag/thesis_freeze. Up-to-date versions are
available in a Git repository found at https://github.com/KEDRI-AUT/NeuCube_
PyNN. For access, please contact the author via email (nathan.scott@aut.ac.nz) or
see Appendix D for details. No warranty as to the operation of this code on your
system is made; please, contact the author if you have issues or check the Github
link for an updated version.

CA1 MAIN

import JSONLoader
import argparse

%

from NeuCubeReservoir import

from spike_encoders.TemporalContrastEncoder import
from classifiers.DynamicEvolvingSNNClassifier import *

parser = argparse.ArgumentParser ()
parser.add_argument ("json_file", help="The input file")
args = parser.parse_args ()
configuration_loader = JSONLoader
configuration_data = None
if args.json_file is not None:
configuration_data = configuration_loader.load_JSON(args.json_file)
else:
raise LookupError ("Configuration file not found. Please call main.py
filename with a JSON formatted file.")

file_prefix = ’model_data/’

encoder = TemporalContrast ()

257

https://github.com/KEDRI-AUT/NeuCube_PyNN/releases/tag/thesis_freeze
https://github.com/KEDRI-AUT/NeuCube_PyNN/releases/tag/thesis_freeze
https://github.com/KEDRI-AUT/NeuCube_PyNN
https://github.com/KEDRI-AUT/NeuCube_PyNN
nathan.scott@aut.ac.nz

21

22
23

24

25
26
27
28

O 0 1 O\ U W N =

10
11
12
13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

APp. C LisTING: NEUCUBERESERVOIR IN PYNN

258

input_spikes = encoder.encode_spikes(configuration_data["data"]["
input_directory"])

ncr = NeuCubeReservoir (configuration_data["reservoir"],
configuration_data["location_prefix"])

spike_times, class_labels = ncr.run_sim(input_spikes,
configuration_data["data"], configuration_data["run"])

classifier_data = dict(zip(class_labels, spike_times))
classifier = DynamicEvolvingSNNClassifier ()
classifier.classify(classifier_data, split=0.8)

LisTiNG C.1: Implementation of the main control loop of the application

C.2 NEUCUBERESERVOIR

import pyNN.spiNNaker as p

import random as rand

from NetworkStructure import NetworkStructure
from time import strftime

from Plot import Plot

class NeuCubeReservoir:
def __init__(self, configuration_dict=None, location_prefix="
model_data/"):
self.configuration_dict = configuration_dict
self.location_prefix = location_prefix
if self.configuration_dict is not None:
self.structure_file_name = self.location_prefix + self.
configuration_dict["model_data_location"]

self.input_location_file_name = self.location_prefix + self.

configuration_dict["input_data_location"]

self.connection_probability_factor = self.configuration_dict["

p_connection"]
self.spike_times = []
self.class_labels = {}

def run_sim(self, data, data_dict=None, run_dict=None):
Sets up and runs the simulation
:param data_dict:
:param run_dict:
num_runs = int(run_dict["times_to_run"])
self.class_labels = data_dict["class_labels"]

num_samples = data_dict["n_samples"] # number of samples to learn

sim_time = run_dict["sim_time"] # time to run sim for
inhibitory_split = 0.2

plot_spikes = run_dict["plot_spikes"]

save_figures = False

show_figures = run_dict["show_plots"]

sim_start_time = strftime("%Y-%m-%d_%H:%M")

36
37
38

39
40
41

42
43
44
45
46

47
48
49

50
51

52

53
54

55

56

57
58
59
60
61
62
63
64

65
66
67
68
69
70

71

72

73
74

75
76

APp. C LisTING: NEUCUBERESERVOIR IN PYNN 259

cell_params_lif = self.configuration_dict["cell _parameters"]

Create the 3d structure of the NeuCube based on the user’s given

structure file

network_structure = NetworkStructure ()

if self.structure_file_name is not None:
network_structure.load_structure_file(filename=self.

structure_file_name)

else:
network_structure.load_structure_file()
num_neurons = len(network_structure.get_positions())

if self.input_location_file_name is not None:
network_structure.load_input_location_file(filename=self.
input_location_file_name)
else:
network_structure.load_input_location_file ()
Calculate the inter-neuron distance to be used in the small world
connections
network_structure.calculate_distances ()
Generate two connection matrices for excitatory and inhibitory
neurons based on your defined split
network_structure.calculate_connection_matrix(inhibitory_split,
self.connection_probability_factor)
Get these lists to be used when connecting the neurons later

excitatory_connection_list = network_structure.
get_excitatory_connection_list ()
inhibitory_connection_list = network_structure.

get_inhibitory_connection_list ()
Choose the correct neurons to connect them to, based on your a-

priori knowledge of the data source -- eg, EEG

to 10-20 locations, fMRI to voxel locations, etc.
input_neuron_indexes = network_structure.find_input_neurons ()
num_inputs = len(input_neuron_indexes)

Make the input connections based on this new list

input_weight = 4.0

input_connection_list = []

for index, input_neuron_index in enumerate (input_neuron_indexes):
input_connection_list.append((index, input_neuron_index,

input_weight, 0))

for run_number in xrange (num_runs) :
excitatory_weights = []
inhibitory_weights [1]
for sample_number in xrange (num_samples):
At the moment with the limitations of the SpiNNaker hardware
we have to reinstantiate EVERYTHING
each run. In the future there will be some form of repetition

added, where the structure stays in memory
on the SpiNNaker and only the input spikes need to be updated

" "

data_prefix = sim_start_time + "_r" + str(run_number + 1) +

" "

-s" + str(sample_number + 1)

Set up the hardware - min_delay should never be less than the
timestep.

77
78
79
80
81
82

83
84
85
86

87

88
89

90

91

92
93

94

95
96

97
98
99
100

101
102

103

104
105
106

107
108

109
110
111
112

113

114
115

APp. C LisTING: NEUCUBERESERVOIR IN PYNN 260

Timestep should = 1.0 (ms) for normal realtime applications
p.setup(timestep=1.0, min_delay=1.0)
p.set_number_of_neurons_per_core("IF_curr_exp", 100)

Create a population of neurons for the reservoir
neurons = p.Population(num_neurons, p.IF_curr_exp,
cell_params_1lif, label="Reservoir")

Setup excitatory STDP

timing_rule_ex = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)

weight_rule_ex = p.AdditiveWeightDependence(w_min=0.1, w_max
=1.0, A_plus=0.02, A_minus=0.02)

stdp_model_ex = p.STDPMechanism(timing_dependence=
timing_rule_ex, weight_dependence=weight_rule_ex)

Setup inhibitory STDP
timing_rule_inh = p.SpikePairRule(tau_plus=20.0, tau_minus
=20.0)

weight_rule_inh = p.AdditiveWeightDependence(w_min=0.0, w_max
=0.6, A_plus=0.02, A_minus=0.02)

stdp_model_inh = p.STDPMechanism(timing_dependence=
timing_rule_inh, weight_dependence=weight_rule_inh)

Generate a population of SpikeSourceArrays containing the
encoded input spike data

spike_sources = p.Population(num_inputs, p.SpikeSourceArray, {’
spike_times’: data[sample_number]})

or you can use poisson trains for examples

spike_sources = p.Population(num_inputs, p.SpikeSourcePoisson
, {’rate’: rand.randint (20, 60)},

label="Poisson_pop_E")

Connect the input spike sources with the "input" neurons
connected_inputs = p.Projection(spike_sources, neurons, p.
FromListConnector (input_connection_list))

If we have weights saved/recorded from a previous run of this
network, load them into the structure
population.set(weights=weights_list) and population.
setlWeights (weight_list) are not supported in
SpiNNaker at the moment so we have to do this manually.
if excitatory_weights and inhibitory_weights:
for index, ex_connection in enumerate(
excitatory_connection_list):
ex_connection[2] = excitatory_weights[index]
for index, in_connection in enumerate (
inhibitory_connection_list):
in_connection[2] = inhibitory_weights[index]

Setup the connectors

excitatory_connector = p.FromListConnector (
excitatory_connection_list)

inhibitory_connector = p.FromListConnector (
inhibitory_connection_list)

Connect the excitatory and inhibitory neuron populations

APp. C LisTING: NEUCUBERESERVOIR IN PYNN 261

116 connected_excitatory_neurons = p.Projection(neurons, neurons,
excitatory_connector,

117 synapse_dynamics=p.SynapseDynamics (slow=
stdp_model_ex),

118 target="excitatory")

119 connected_inhibitory_neurons = p.Projection(neurons, neurons,
inhibitory_connector,

120 synapse_dynamics=p.SynapseDynamics (slow=
stdp_model_inh),

121 target="inhibitory")

122

123 # Set up recording the spike trains of all the neurons

124 neurons.record ()

125 spike_sources.record()

126

127 # Run the actual simulation

128 p.run(sim_time)

129

130 # Save the output spikes

131 spikes_out = neurons.getSpikes(compatible_output=True)

132 self.spike_times.append(spikes_out)

133 input_spikes_out = spike_sources.getSpikes(compatible_output=
True)

134 # Get the synaptic weights of all the neurons

135 excitatory_weights = connected_excitatory_neurons.getWeights ()

136 inhibitory_weights = connected_inhibitory_neurons.getWeights ()

137

138 # when we’re all done, clean up

139 p.end ()

140

141 # Make some plots, save them if required. Check if you need to
either save or show them, because if not,

142 # there’s no point wasting time plotting things nobody will
ever see.

143 if plot_spikes and (save_figures or show_figures):

144 plot = Plot(save_figures, data_prefix)

145 # Plot the 3D structure of the network

146 plot.plot_structure(network_structure.get_positions(),
figure_number=0)

147 # Plot the spikes

148 plot.plot_spike_raster(spikes_out, sim_time, num_neurons,
figure_number=1)

149 # Plot the weights

150 plot.plot_both_weights(excitatory_weights, inhibitory_weights
, figure_number=2)

151 # If we want to show the figures, show them now, otherwise
ignore and move on

152 if show_figures:

153 # Show them all at once

154 plot.show_plots ()

155 plot.clear_figures ()

156 plot = None

157 return self.spike_times, self.class_labels

158

159 if __name__ == "__main__":

160 ncr = NeuCubeReservoir ()

161

— =
_ O O 00 NN U R WD

DN NN DNDNDN = o e e e e e
Ul WD NN = O 000U W

26

27
28
29

30
31

32
33
34
35
36

37
38

39
40
41
42
43

Arpr. C

LisTING: NETWORKSTRUCTURE IN PYTHON 262

ncr.run_sim()

C.3

import
import
import
import
import

LisTiNG C.2: Implementation of a generic NeuCube 3D reservoir

NETWORKSTRUCTURE

csv

random as rand

scipy.spatial as scipy_spatial
numpy as np

numba

def _structure_file_load(filename):

mon

Does

the actual file loading/reading logic for an position file.

:param filename: the file to be loaded and read
:return: a list of 3D tuples of x,y,z locations

mon

csv_file = open(filename, ’'r’)

reader = csv.reader(csv_file, delimiter=’,’)
Read neuron positions from file

positions = []

for line in reader:

p

(float(line[0]), float(line[1]), float(line[2]))

positions.append(p)
return positions

class NetworkStructure(object):

mon

This class contains methods to load a 3D neuron structure, calculate
inter-neuron distances and generate connectomes
based on these distances. It will eventually be extended to

incorporate other connectome generation methods.

mon

def load_structure_file(self, filename='model_data/neuron_positions.
txt’):

mon

Load and read the file containing the 3D structure of a NeuCube

reservoir
:param filename: the filename of the structure

mon

self.positions_list = _structure_file_load(filename)

def load_input_location_file(self, filename=’model_data/
input_positions.txt’):

mon

Load and read the file containing the desired 3D locations of the

input neurons.
:param filename: the filename of the structure

mon

self.input_positions = _structure_file_load(filename)

def calculate_distances(self):

44
45
46

47

48
49

50
51
52

53
54
55
56

57
58

59

60
61
62
63
64
65
66
67
68

69

70

71
72

73
74
75
76

77
78

79
80
81
82
83

84
85

APP. C LisTING: NETWORKSTRUCTURE IN PYTHON 263

mon

Calculate the distances from the loaded 3D locations file.

This method should check if a saved version of the distances for
the given dataset already exists, and only

calculate these if it does not. It should then save a file
containing them. This saves time on large datasets.

mon

if not self.positions_list: # if the file hasn’t already been
loaded
self.load_structure_file() # load it!
pos_list = np.array(self.positions_list)
self.distances = scipy_spatial.distance.pdist(pos_list, metric="’

euclidean’)
self.max_distance = np.amax(self.distances)

@numba. jit

def calculate_connection_matrix(self, inhibitory_split=0.2,
connection_probability=0.025):
Calculate the connection matrices based on distance dependent
probability and a given inhibitory split.
:param inhibitory_split: the proportion of inhibitory:excitatory
neurons in the population

mn

for i, presynaptic_pos in enumerate(self.positions_list):

inhibitory_neuron = False
if rand.random() < inhibitory_split:
inhibitory_neuron = True

for j, postsynaptic_pos in enumerate(self.positions_list):
if i is not j:
curr_idx = i + 2 * j
normalised_distance = self.distances[curr_idx] / self.
max_distance
Distance dependence from Neuronal Dynamics by Gerstner,
Kistler, et. al.
conn_prob = connection_probability * np.e ** (-
normalised_distance)
if rand.random() < conn_prob:
This ensures the the synaptic delay scales linearly with
distance and also will never go above
the 16ms max delay normally implemented in SpiNNaker
delay = normalised_distance * self.delay_factor
if inhibitory_neuron:
self.inhibitory_connection_list.append([i, j, rand.gauss
(0.4, 0.2), delayl)
else:
self.excitatory_connection_list.append([i, j, rand.gauss
(0.5, 0.3), delayl)

def get_excitatory_connection_list(self):
Returns a list of connections for excitatory neurons.
:return: n-length list of [presynaptic index, postsynaptic index,
weight, distance dependent delay]

mon

return self.excitatory_connection_list

APP. C LisTING: NETWORKSTRUCTURE IN PYTHON 264

86

87 def get_inhibitory_connection_list(self):

88 e

89 Returns a list of connections for inhibitory neurons.

90 :return: n-length list of [presynaptic index, postsynaptic index,
weight, distance dependent delay]

91 e

92 return self.inhibitory_connection_list

93

94 def get_positions(self):

95 e

96 Returns the list of 3D positions of the neurons in the network

97 :return: n-length list of (x,y,z) locations

98 e

99 return self.positions_list

100

101 def get_delays(self):

102 raise NotImplementedError ("Delay lookup is not implemented")

103 # return self.delays

104

105 def get_weights(self):

106 raise NotImplementedError ("Weight lookup is not implemented")

107 # return self.weights

108

109 def find_input_neurons(self, query_list=None, input_neighbourhood=1):
110 7 6 00

111 Find the nearest neurons from a list of 3D points and a search
neigbourhood, to define which neurons in the 3D
112 NeuCube reservoir should be connected to the spike sources based on
our a-priori knowledge
113 of the data.
114 :param query_list: an n length list of [x,y,z] positions
115 :param input_neighbourhood: the number of closest neurons to return

for each point, default = 1
116 :return: a list of lists (possibly of lists, if input_neighbourhood
> 1) of neuron indexes in query list

117 e

118 locations = []

119 if not query_list:

120 query_list = self.input_positions

121 for location in query_list:

122 locations.append(self.find_closest_neuron(location,
input_neighbourhood))

123 return locations

124

125 def find_closest_neuron(self, query_position, search_neigbourhood=1):
126 Do @

127 Find the nearest neuron from a given 3D point in a given
neighbourhood. This is used to connect the input

128 neurons to their closest location in the 3D structure.

129 :param query_position: list [x,y,z] positions to query from

130 :param search_neigbourhood: the number of neighbours query for,
default = 1

131 :return: a single list [x,y,z] of the nearest neuron positon, or a

list of lists of the same
132 7 5 1

133
134

135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154

1
2
3
4
5
6
7

APpP. C LisTING: DYNAMICEVOLVINGSNNCLASSIFIER IN PYNN

265

positions_tree = scipy_spatial.cKDTree(self.positions_list)

closest_neuron_index = positions_tree.query(query_position,

search_neigbourhood)
return closest_neuron_index[1]

def __init__(self):

self.positions_list = []
self.input_positions = []
self.inhibitory_connection_list = []

self.excitatory_connection_list []
self.delays = []
self.weights = []

self.distances = None

self.delay_factor = 16.0 # 16 ms is the max delay supported

normally in SpiNNaker

self.max_distance = 0
if __name__ == "__main__":
net_structure = NetworkStructure ()

net_structure.load_structure_file ()
net_structure.calculate_distances ()
net_structure.calculate_connection_matrix ()

print len(net_structure.excitatory_connection_list)
print len(net_structure.inhibitory_connection_list)

LisTiNG C.3: Manual implementation of structure and distance for the reservoir,

implemented in standard Python

C4 GENERICCLASSIFIER

class GenericClassifier():

def __init__(self):
pass

def modify_classifier(self, **kwargs):

raise NotImplementedError ("Do not use GenericClassifier.

specific classifier defined.")

def classify(self, **kwargs):

raise NotImplementedError ("Do not use GenericClassifier.

specific classifier defined.")

LisTiNG C.4: Superclass of any Classifiers implemented
C.5 DyYNAMICEVOLVINGSNNCLASSIFIER
import GenericClassifier
import pyNN.spiNNaker as p

import random as rand
import scipy.spatial.distance as distance_calc

Implementation based on the algorithm defined in:

No

No

k=

APpP. C LisTING: DYNAMICEVOLVINGSNNCLASSIFIER IN PYNN 266

8 # Dhoble, K., Nuntalid, N., Indiveri, G., and Kasabov, N. (2012).

Online Spatio-Temporal Pattern Recognition with

9 # Evolving Spiking Neural Networks utilising Address Event

Representation, Rank Order, and Temporal Spike Learning

10 # In Proc. WCCI 2012 IJCNN. Brisbane, Australia. IEEE.

11
12

13 class DynamicEvolvingSNNClassifier (GenericClassifier.GenericClassifier)

14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35

36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55

mon

mon

def __init__(self):
GenericClassifier.__init__ (self)
self.n_inputs = 1471 # number of input neurons to calculate weights
for, from NeuCubeReservoir
self.n_classes = 2 # number of classes
self.n_samples = 10 # number of samples per class
self.t_sample = 1000 # time in ms for each sample
self.t_simulation = self.t_sample
self.deSNN_C = 0.8 # "C" variable for threshold calculations
self.deSNN_mod 0.8 # "Mod" var for for PSP calculations
self.deSNN_sim = 10. # Similarity measure for the neuron merging
self.weight_list = []
self.psp_thresholds = []
self.class_labels = []
there is never a leak rate in these models

spiking threshold voltage has not yet been set as this needs to
be calculated after the simulation

self.cell_params_out = {’cm’: 0.25, ’i_offset’: 0.0, ’tau_refrac’:
2.0, ’tau_syn_E’: 3.0,
"tau_syn_I’: 3.0, ’'v_reset’: -65.0, ’v_rest’: -65.0}

self.class_labels = {}
all of the above variables should be taken from the config file
or the respective feeder classes

def modify_classifier(self):

mon

:return:

raise NotImplementedError ("The ability to change classifier
parameters online has not yet been implemented")

capacity to change params on demand

def classify(self, data, split=0.5):

mon

:param data:

:param split:

:return:

rand.shuffle(data)

split_num = int(len(data) / split)
train_data = datal[:split_num]
self.train(train_data)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

77
78
79

80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100

101
102

APpP. C LisTING: DYNAMICEVOLVINGSNNCLASSIFIER IN PYNN 267

test_data = data[split_num:]
self.verify(test_data)

def train(self, data, class_labels):

mon

Basic algorithm for deSNN.
See the paper by Dhoble, et.al. (2012) in file header for details.
@param data:

@return:

current_outputs = 0

self.psp_thresholds = []

previous_merges = []

self.weight_list = [] # make sure it’s empty

for sample in data:
current_outputs += 1
previous_merges.append (0)
p.setup() # needed for PyNN

the neurons providing the input signals are always the same,
only their activity changes

input_neurons = p.Population(self.n_inputs, p.SpikeSourceArray, {
’spike_times’: sample})

setup the output neuron population
output_neurons = p.Population(current_outputs, p.IF_curr_exp,
cellparams=self.cell_params_out)
for i, neuron in enumerate (output_neurons):
if self.psp_thresholds[i] is not None:
neuron.set(v_thresh=self.psp_thresholds[i])

weight list is based on the order of the incoming spikes
need to go through the input spike trains and rank them
new_weights = []

self.weight_list.append(new_weights)

setup the connections
self.input_connection_list = [[[from_neuron, output_neuron, self.
weight_list[from_neuron], 1.0]
for from_neuron in xrange (0, self.n_inputs)]
for output_neuron in xrange (0, current_outputs)]

setup drift - here using STDP instead of SDSP because sPyNNaker
does not support SDSP

timing_rule_drift = p.SpikePairRule(tau_plus=20.0, tau_minus
=20.0)

weight_rule_drift = p.AdditiveWeightDependence(w_min=0.1, w_max
=1.0, A_plus=0.02, A_minus=0.02)

drift_model = p.STDPMechanism(timing_dependence=timing_rule_drift
, weight_dependence=weight_rule_drift)

network = p.Projection(input_neurons, output_neurons, p.
FromListConnector(self.input_connection_list),

synapse_dynamics=drift_model)

add recorder for the spike times and membrane potentials
output_neurons.record([’v’, ’spikes’])

APpP. C LisTING: DYNAMICEVOLVINGSNNCLASSIFIER IN PYNN 268

103

104 # run simulation

105 p- (self.t_sample)

106

107 # save output weights and traces

108 # traces & spike times first:

109 data_out = output_neurons.get_data().segments[0]

110 output_neurons.get_data(clear=True)

111

112 # find max psp for each neuron

113 newest_neuron_data = data_out.filter (name="v")[0]

114 newest_neuron_data = newest_neuron_data[-self.n_inputs:]

115 max_psp = find_max(newest_neuron_data)

116

117 # calculate psp_th

118 psp_th = max_psp * self.deSNN_C

119

120 # sort out the weights - similarity comparison and potential
merging

121 trained_weights = network.getWeights ()

122 current_sample_weights = trained_weights[-self.n_inputs:] # gets
the most recent weights

123 offset = 0

124 merged = False

125 # do merge comparison

126 for neuron_index in xrange (0, current_outputs):

127 comparing_weights = trained_weights[offset:self.n_inputs]

128 distance = distance_calc.euclidean(comparing_weights,
current_sample_weights)

129 if distance <= self.deSNN_sim:

130 # merge the neurons, generate a new weight_list and updated
psp_thresholds

131 self.weight_list, self.psp_thresholds[neuron_index] =
merge_neurons (comparing_weights,

132 current_sample_weights,

133 previous_merges[neuron_index
1

134 self.psp_thresholds[
neuron_index],

135 psp_th)

136 merged = True

137 break

138 offset += self.n_inputs

139

140 if not merged:

141 # now we know we need all of them, we save the parameters:

142 self.weight_list = trained_weights

143 self.psp_thresholds.append(psp_th)

144

145 self.class_labels["{0}".format(current_outputs)] = class_labels[
current_outputs]

146

147 p.end() # needed for PyNN

148

149 def verify(self, data):
150 e

APpP. C LisTING: DYNAMICEVOLVINGSNNCLASSIFIER IN PYNN 269

151

152 :param data:

153 rreturn:

154 e

155 first_spike_list = []

156 for sample in data:

157 p.setup() # needed for PyNN

158

159 # the neurons providing the input signals are always the same,
only their activity changes

160 input_neurons = p.Population(self.n_inputs, p.SpikeSourceArray, {
’spike_times’: sample})

161

162 # setup the output neuron population

163 output_neurons = p.Population(len(self.psp_thresholds), p.
IF_curr_exp, cellparams=self.cell_params_out)

164 for i, neuron in enumerate (output_neurons):

165 if self.psp_thresholds[i] is not None:

166 neuron.set (v_thresh=self.psp_thresholds[i])

167

168 # weight list is based on the order of the incoming spikes

169 # need to go through the input spike trains and rank them

170 new_weights = []

171 self.weight_list.append(new_weights)

172

173 # setup the connections

174

175 # setup drift - here using STDP instead of SDSP because sPyNNaker
does not support SDSP

176 timing_rule_drift = p.SpikePairRule(tau_plus=20.0, tau_minus
=20.0)

177 weight_rule_drift = p.AdditiveWeightDependence(w_min=0.1, w_max
=1.0, A_plus=0.02, A_minus=0.02)

178 drift_model = p.STDPMechanism(timing_dependence=timing_rule_drift
, weight_dependence=weight_rule_drift)

179 network = p.Projection(input_neurons, output_neurons, p.
FromListConnector(self.input_connection_list),

180 synapse_dynamics=drift_model)

181

182 # add recorder for the spike times and membrane potentials

183 output_neurons.record ([’ spikes’])

184

185 # run simulation

186 p.run(self.t_sample)

187

188 # save output weights and traces

189 # traces & spike times first:

190 data_out = output_neurons.get_data().segments[0]

191 output_neurons.get_data(clear=True)

192

193 p.end() # needed for PyNN

194

195 first_spike_time = self.t_sample

196 first_spike_index = None

197 for i, time in enumerate(data_out):

198 if time <= first_spike_time:

199
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236

APP. C LisTING: GENERICENCODER IN PYNN

270

first_spike_time = time
first_spike_index = i
first_spike_list.append(first_spike_index)

output = []
for spike_time in first_spike_list:

output.append(self.class_labels["{0}".format(spike_time)])

return output

def merge_neurons (comparing_weights, current_sample_weights,

n_previous_merges, previous_psp_threshold,
current_psp_threshold):

mon

:param comparing_weights:
:param current_sample_weights:
:param n_previous_merges:
:param previous_psp_threshold:
:param current_psp_threshold:
return:

mon

new_weights = (current_sample_weights + comparing_weights

n_previous_merges) / n_previous_merges + 1

o

new_threshold = (current_psp_threshold + previous_psp_threshold *

n_previous_merges) / n_previous_merges + 1
return new_weights, new_threshold

def find_max(data):

mon

:param data:
:return:
max_psp = -100.
for point in data:
if point < max_psp:
max_psp = point
return max_psp

ListinG C.5: Implementation of the Dynamic Evolving SNN Classifier

C.6 GENERICENCODER

class GenericEncoder ():

def __init__(self):
pass

def modify_encoder(self, **kwargs):
raise NotImplementedError ("Do not use GenericEncoder.
encoder defined.")

No specific

9
10

0 N U W

10
11

12
13

14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

APP. C LISTING: TEMPORALDIFFERENCEENCODER IN PYNN 271

def encode_spikes(self, **kwargs):
raise NotImplementedError ("Do not use GenericEncoder. No specific
encoder defined.")

LisTinG C.6: Superclass of any Encoders implemented

C.7 TEMPORALDIFFERENCEENCODER

import GenericEncoder # not really used at the moment but will be
important when I introduce other encoders

from Utilities import load_csv_emotiv

import os

import re

def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018. html"""
return [int(s) if s.isdigit() else s for s in re.split(r’ (\d+)’,
string_)]

class TemporalContrast (GenericEncoder.GenericEncoder):
def __init__(self, threshold=6., timestep=7.8125, encode_inhibitory=
False):
Setup an Address Event Representation-style threshold based spike
encoder.
@param threshold: float threshold to spike at
@param timestep: float time step between data points (1000/data
collection rate per second)
@param encode_inhibitory: boolean whether we want to encode
inhibitory spikes as well as excitatory
default is same default used in MATLAB version
self.threshold = threshold
default is 128 Hz for Emotiv device

self.timestep = timestep
do we encode inhibitory spikes?
self.inhibitory = encode_inhibitory

def modify_encoder(self, **kwargs):
pass

def encode_spikes(self, data_directory):

Wrapper to encode all data files in the given directory

:param data_directory:

:return:

spikes = []

folder_list = next(os.walk(data_directory))[1]

folder_list.sort(key=natural_key)

for file_name in folder_list:
data = load_csv_emotiv(data_directory + file_name)
spikes.append(self._encode_spikes(data))

return spikes

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

58

59
60

O 0 N1 O\ U b W=

DO DD DD DN DN DN DN DN = = b= = e e el e
O 0 1 N UT b WO N = O N0 00N ONUJ WD = O

Arpr. C

LisTING: DEPRECATED: NEUCUBESTRUCTURE

272

def _encode_spikes(self, data):

mon

Actual method to encode spikes

:param data:
:return:

mon

cols = len(data)

curr_time = 0.0

spiketimes = [[] for i in cols

for col in data:
previous_value = 0

for row in col:

]

if row >= previous_value + self.threshold:
spiketimes[col]. append(curr_time)
elif self.inhibitory: # we only need to check this if the prev

is false

raise NotImplementedError ("Inhibitory input spikes are not

yet implemented.")
previous_value = row
curr_time += self.timestep
return spiketimes

ListinG C.7: Implementation of a simplified Temporal Difference Encoder

C.8 DePRECATED: NEUCUBESTRUCTURE

from pyNN.space import BaseStructure

import random as rand
import numpy as np
import csv

class NeuCubeStructure (BaseStructure) :

def __init__(self, filename='model_data/neuron_positions.txt’,

inhibitory_probability = 0.2):

self.filename = filename
self.inhibitory_probability =
self.excitatory_locations = []
self.inhibitory_locations = []
self.all_locations = T[]

def load_locations(self):
csv_file = open(self.filename,
reader = csv.reader(csv_file,

inhibitory_probability

srs)

delimiter=",")

Read neuron positions from file

excitatory_list = []
inhibitory_list = []
for line in reader:

p = (float(line[0])/10., float(line[1])/10.,

float(line[2])

/10.)

if rand.random() < self.inhibitory_probability:

inhibitory_list.append(p)
else:

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

APP. C LisTING: DEPRECATED: NEUCUBESTRUCTURE 273

excitatory_list.append(p)

convert to numpy array
self.excitatory_locations = np.array(excitatory_list)
self.inhibitory_locations = np.array(inhibitory_list)
needs to be 3xn for the Population creation, is currently
nx3 so transpose
self.excitatory_locations
self.inhibitory_locations

self.excitatory_locations.T
self.excitatory_locations.T

return self.excitatory_locations, self.inhibitory_locations

def get_inhibitory_locations(self):

return self.inhibitory_locations

def get_excitatory_locations(self):

return self.excitatory_locations

def generate_positions(self, num_neurons):

mon

Generates positions for neuron population of num_neurons
based on the Talairach atlas.

Read in positions from file here and return positions_1list
@param num_neurons:

@return:
csv_file = open(self.filename, ’'r’)
reader = csv.reader(csv_file, delimiter=",")

Read neuron positions from file
position_list = []
for line in reader:
p = (float(line[0])/10., float(line[1])/10.,
float(line[2])/10.)
position_list.append(p)

convert to numpy array

positions = np.array(position_list)

needs to be 3xn for the Population creation, 1is currently
nx3 so transpose

positions = positions.T

return positions

LisTiNG C.8: Deprecated method of implementing structure and distance for the
reservoir, implemented with PyNN

APPENDIX

SoURCE AND VERSION CONTROL

As is best practice in software development, source and version control was imple-
mented for all of the software development through the duration of this thesis. In
this case, the distributed version control system Git was used, and mirrored in a
private GitHub repository.!

As a part of the previously defined attempts to bring the development of the NeuCube
framework as a whole under control, and to impose the design principles established
in Chapter 6, version control systems and rules for all of the other modules of
NeuCube have been implemented. This development is now handled through a set
of private, centralised repositories? for each NeuCube module. These repositories
provide a number of useful features for collaborative development, including:

1. Source control and histories (audit log);

This allows us to see what has changed and why, and provides a facility for code
rollbacks should a bug or incorrect code be introduced. This also allows us to ensure
accountability for the code that is introduced, and impose some requirements such
as regression testing or linting checks before code is added to the public repository.

2. Centralised source storage;

The code is now centrally available to all approved users, at its current stage of devel-
opment. This should help to mitigate the issue where a number of different people
are working concurrently on the same version of the code in isolation, then futher
building off that code, diverging what should be a collaborative project. Since the
introduction of these centralised repositories, developers are able to collaboratively
develop the same codebase and share their advances more easily, mitigating the
aforementioned code divergence.

3. Release management tools;

'https://github.com/nmscott/NeuCube_PyNN
Zhttps://github.com/KEDRI-AUT

274

https://github.com/nmscott/NeuCube_PyNN
https://github.com/KEDRI-AUT

Aprp. D Source CoNTROL 275

Code can now be frozen as ‘releases’ at any stage, and released as a stable download
which can be made publically available. In addition, the ability to create persistent
Digital Object Identifier (DOI) archival numbers (identical to those used in journal
papers) for these releases directly from the release management system has been
incorporated.

4. Access control;

These repositories are private by default, and are only made accessible to selected
users.® In addition, different access privileges can be issued to those users (read-
only, write-with-permission, etc.) on an as-needed basis. Repositories can be made
public (open access) if open source release of any of this code occurs in the future.
Repositories can have their own access privileges applied. For example, users wishing
to contribute to the PyNN repository are not able to do so at will — they must first
develop their code in a ‘fork’ and then submit this changed code in a ‘pull request’,
which the administrator of that repository must then review before combining
the code. This process can be automated, and can incorporate minimum levels of
regression testing or code formatting requirements.

5. Bug and Feature tracking;

Each repository now incorporates a comprehensive integrated bug reporting and
feature request system. This allows users to report bugs or request new features, and
have these assigned to developers and automatically tracked for progress.

6. User-editable Wikis;

A wiki editable by all approved users of the repository is now linked to each pro-
ject. We can use these to centralise important documents such as development or
user manuals, or related publications in a readily updatable and easily distributable
manner.

Unfortunately as this larger scale repository system was not implemented until late
in this thesis, empirical measures to prove the efficacy of such systems on collab-
orative development in the NeuCube environment are not available. Heuristically,
a distributed version control system has improved the development of the PyNN
NeuCube version, particularly the ability to branch and merge code. Branching was
used when developing for the early quirks of the SpiNNaker PyNN implementation,
as this had some inconsistencies with the reference implementation of PyNN.

3Due to this access control restriction, the reader will likely find that they are unable to view the
repositories linked here. Access can be requested from the author or KEDRI.

APPENDIX

Memory Consumption in MB

Memory Consumption in MB

MEMORY PROFILES OF NEUCUBE IMPLEMENTATION

130 Memory Consumption Comparison for 216 Neuron Network

—+— Brian, Numba

<% Brian, standard loop
—— SpiNNaker 3, Numba
120 ..a. SpiNNaker 3, standard loop

110

100

@ AhAdky

80

S ST
e e S i Aok ek !

LAk AAARAAAARAAAAAAAARAAAARA Ad AdAAkAAARAAAL

70
0 10 20 30 40 50
Operation Number
(A) Memory consumption for a 216
neuron NeuCube reservoir.
140 Memory Consumption Comparison for 1000 Neuron Network

=+ Brian, Numba
“ Brian, standard loop

130 —&— SpiNNaker 3, Numba
<A SpiNNaker 3, standard loop
120

110
100 3
A*ﬁ‘h‘u
90 ke sk ke
X 1
L Tk A :
e e kok ok ek PR & Salalol * akAh
80

FahkAhAhAA AA RAAAAkAAA
o ek e ko ek o
\AAAAARAAAAAAAAR AL
70
0 10 20 30 40 50

Operation Number

(c) Memory consumption for a 1,000
neuron NeuCube reservoir.

276

Memory Consumption in M8

Memory Consumption in MB

IN PYNN

130 Memory Consumption Comparison for 512 Neuron Network

—+— Brian, Numba

-~ Brian, standard loop
—&— SpiNNaker 3, Numba
120 ..a. SpiNNaker 3, standard loop

akkady,

]
- {

kA kA {
e kek ahAd

oakx
CHRIATAAKKAIIATHEN | g akhhhh Ak hAhkAAARA
LAk AAAKAAAAKAAAR KA
70
0 10 20 30 40 50
Operation Number

(B) Memory consumption for a 512
neuron NeuCube reservoir.

180 Memory Consumption Comparison for 1728 Neuron Network

—+— Brian, Numba
<k Brian, standard loop
—&— SpiNNaker 3, Numba

160 ..a- SpiNNaker 3, standard loop

SRS
>

120

100

£ ackohdk
o R
AhhhkAhA

0 10 20 30 40 50
Operation Number

(D) Memory consumption for a 1,728
neuron NeuCube reservoir.

APP. E MEMORY PrOFILES OF NEUCUBE IMPLEMENTATION IN PYNN

277

300

250
@
=
<
§ 200
a
E
5
3
2
S
o
> 150
5
£
5
=

100

700

IS
8] 3
8 8 8

Memory Consumption in MB

n
3
3

10

0
kA kkAd Rk AAd hAKE R

Memory Consumption Comparison for 2744 Neuron Network

—+— Brian, Numba

++ Brian, standard loop

—&— SpiNNaker 3, Numba

--A+ SpiNNaker 3, standard loop

Soteaed
P

1]
SITCTIIEET T SO

0 10 20 30 40 50

Operation Number

(E) Memory consumption for a 2,744
neuron NeuCube reservoir.

Memory Consumption Comparison for 5832 Neuron Network

—*— Brian, Numba

<% Brian, standard loop

—&— SpiNNaker 3, Numba

--A+ SpiNNaker 3, standard loop

A A *A.‘A.A.AA‘A‘A
AhkAddhd A AAdAddddak

10 20 30 40 50
Operation Number

(G) Memory consumption for a 5,832
neuron NeuCube reservoir.

1600
—+— Brian, Numba
<+ Brian, standard loop

1400 —a— SpiNNaker 3, Numba
--A* SpiNNaker 3, standard loop

1200

1000

Memory Consumption in M8

400

0 10 20

Memory Consumption in M8

Memory Consumption in MB

A A
AAAkAAAA AA AkAdAddkkd,

Memory Consumption Comparison for 4096 Neuron Network

—— Brian, Numba
<+ Brian, standard loop
400 —a— SpiNNaker 3, Numba
--A: SpiNNaker 3, standard loop

350

300

250

200

11 e
¢ ik kxAREEXad
150

100 4
K@ kA R KRS RAAE R L

50
0 10 20 30 40 50
Operation Number
(F) Memory consumption for a 4,096
neuron NeuCube reservoir.
1000 Memory Consumption Comparison for 8000 Neuron Network
—— Brian, Numba
+%: Brian, standard loop
—— SpiNNaker 3, Numba
oo A" SpiNNaker3, standard loop
600
400
A A dokaAAAd
AAAAAKAL AK AddkAddhadAAA

200

0 10 20 30 40 50
Operation Number

(2) Memory consumption for a 8,000
neuron NeuCube reservoir.

Memory Consumption Comparison for 10648 Neuron Network

ahkakAA AL

30 40 50

Operation Number

(1) Memory consumption for a 10,648
neuron NeuCube reservoir.

F1Gure E.1: Overall memory consumption for a simulation of the NeuCube reservoir

on software and SpiNNaker simulation systems. Operation numbers represent

method calls or line operations in the NeuCubeReservoir.py file. Memory consump-

tion is generally lower overall when using a neuromorphic computing platform.
Shading represents the 95% confidence interval for that value.

APPENDIX

O 0 I QN U W W DN =
-~

e e T ey
Gl W DN = O

16

17
18
19
20
21
22
23
24
25 }

BAsic CONFIGURATION FILE IN JSON

"location_prefix" : "model_data/",

"data":

{
"data_directory" : "data/example_experiment/",
"n_samples" : 30,
"training_proportion" : 80.0

B

"reservoir":

{
"model_data_location" : "exp_1000.csv",
"input_data_location" : "input_positions.txt",
"excitatory_proportion" : 80.0,
"p_connection" : 0.02,
"cell_parameters": {"cm": 0.25, "i_offset": 0.0, "tau_m": 10.0, "
tau_refrac": 2.0, "tau_syn_E": 3.0,

"tau_syn_I": 3.0, "v_reset": -65.0, "v_rest": -65.0, "

v_thresh": -50.0}

P

"run":

{
"sim_time" : 1000,
"times_to_run" : 1,
"plot_spikes" : true,
"show_plots" : true

LisTiNG F.1: Example NeuCube configuration file in JSON format

278

O 00 N1 QN U W DN

W W W W NN DNDNDNDDNDDNDNDDNDDN M= = = =L e e =l e s
W N = O OO0 UT e WNRER OV NJ WD = O

34
35

APPENDIX

LISTING OF METHOD FOR THE GENERATION OF
SIMULATED RADIOASTROMONY EVENTS

duration =
freq_n = 10;
instance = 1

180; % This is the length of the observation
% Number of frequency bands you want to produce

; % number of instances you want to have for each class.
max_sigma = 5; % number of maximum deviation of the pulse

r = 0 + 1.*randn(duration, freq_n,instance);
p = 0 + 1.*randn(duration, freq_n, instance);

for i=1:instance
%For every instance generate a random number as the strength of the

% pulse
m = 1+ max_sigma*rand(1l,1);

%For every instance generate a random number as the width of the
% pulse
width = randi([2 5],1,1);

%For every instance generate a random number as the interval between
%the pulses
interval = randi([200 500],1,1);

%initialise a random value as a starting point of the signal for
%that particular instance
offset = randi ([15 40],1,1);

%iterate through all the frequency bands
for j=1:freq_n
offset = offset+round((j*j)/10);
for k=offset:interval:duration-width
for 1=1:width
pCk+1l,j,i) = p(k+1l,j,i) + m;
end
end
end
end

279

36
37
38
39
40
41
42
43
44
45
46
47

APP. G LiSTING: GENERATESIMULATEDEVENTS.M 280

%display the greymap of the first positive instance just to verify
imagesc(p(:,:,1)’);

colormap (gray) ;1

eeg_data = cat(3, r, p);

class_label = [ones(l,instance) ones(l,instance)+1];
flat = reshape(eeg_data, [duration*freq_n instance®*2]);
flat = flat’;

flat = [1:(duration*freq_n)+1 ; flat];
csvwrite(’ska-flat.csv’,flat);

LisTING G.1: Method for the generation of simulated radioastromony events.
Implemented in MATLAB by R. Hartono and the author.

	Attestation of Authorship
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Publications
	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Structure of this Thesis

	2 Spatio- and Spectro-Temporal Data: Challenges and Opportunities
	2.1 Examples of Spatio- and Spectro-Temporal Data
	2.1.1 Neuroimaging
	2.1.1.1 Electroencephalography
	2.1.1.2 Magnetic Resonance Imaging

	2.2 Pulsars, Radiotelescope Transients, & Astrophysics
	2.2.1 The Square Kilometre Array Project
	2.2.2 Radio Frequency Interference Mitigation

	2.3 STFT and Alternate Representations of SSTD
	2.4 Traditional Techniques
	2.5 Addressing These Challenges

	3 Review of Spiking Neural Networks
	3.1 Why Spiking Neural Networks?
	3.2 Biological Inspiration
	3.3 Models of Spiking Neurons
	3.3.1 Hodgkin-Huxley
	3.3.2 Izhikevich
	3.3.3 Spike Response
	3.3.4 Thorpe
	3.3.5 Leaky Integrate-and-Fire
	3.3.6 Probabilistic Leaky Integrate-and-Fire
	3.3.7 Adaptive Exponential IAF

	3.4 Spike Information Coding
	3.4.1 Rate Coding
	3.4.2 Temporal Coding

	3.5 Methods of Encoding Data into Spike Trains
	3.5.1 Temporal Difference (Threshold-Based)
	3.5.2 Population Encoding
	3.5.3 Ben's Spiker Algorithm
	3.5.4 Knowledge Driven Data Encoding Method

	3.6 Learning & Evolution
	3.6.1 Unsupervised Learning
	3.6.1.1 Spike-Time Dependent Plasticity
	3.6.1.2 Spike Dependent Synaptic Plasticity

	3.6.2 Supervised Learning
	3.6.2.1 Remote Supervised Method
	3.6.2.2 Tempotron
	3.6.2.3 Chronotron
	3.6.2.4 Spike Pattern Association Neuron

	3.6.3 Evolutionary Methods
	3.6.3.1 Evolving Spiking Neural Network
	3.6.3.2 Dynamic Evolving Spiking Neural Network
	3.6.3.3 Neuro-Genetic Regulatory Network
	3.6.3.4 Quantum-Inspired Optimisation

	3.7 Reservoir Computing
	3.7.1 Echo State Networks
	3.7.2 Liquid State Machine

	3.8 Simulation Platforms
	3.8.1 Software Simulators
	3.8.2 Neuromorphic Hardware Simulators
	3.8.3 PyNN

	3.9 The NeuCube: A New Spiking Neural Network Framework

	4 The NeuCube Framework
	4.1 Input Encoding
	4.2 NeuCube Reservoir
	4.3 Output Classifiers
	4.4 Neuro-Genetic Optimisation Network
	4.5 Visualisation Technologies
	4.5.1 Standard Visualisation of the NeuCube
	4.5.2 Immersive Visualisation of the NeuCube

	4.6 The NeuCube Framework in Practice: Design, Implementation, and Applications

	5 Design Methodology of SNN based on the NeuCube Framework
	5.1 Encoding Systems Design
	5.2 Reservoir Design
	5.2.1 Reservoir Topology Design
	5.2.2 Input Topology Design
	5.2.3 Connectome Design

	5.3 Output Classifier Design
	5.4 Gene Regulatory Network Design
	5.5 Influence of Computational Platform on Design
	5.5.1 Software Based Simulations
	5.5.2 Hardware Based Simulations
	5.5.3 Heterogeneous Computational Platforms

	5.6 Design Methodology Overview
	5.7 Chapter Summary and Conclusion

	6 Software Design Methodology and Implementations
	6.1 A General Framework for Implementation of the NeuCube
	6.1.1 Design Philosophy

	6.2 Overall Software Architecture
	6.3 A Reference Object-Oriented NeuCube Design
	6.3.1 Software Design Pattern
	6.3.2 List of Classes
	6.3.2.1 Control Class
	6.3.2.2 NeuCube Reservoirs
	6.3.2.3 Network Structure
	6.3.2.4 Classifiers
	6.3.2.5 Encoders

	6.3.3 Inter-Module Communication
	6.3.3.1 Address-Event Representation
	6.3.3.2 File-Based IO with JSON

	6.4 Implementation of this Framework Using PyNN
	6.4.1 Why PyNN?
	6.4.2 Program Overview
	6.4.3 Key Code Sections Explained
	6.4.3.1 Manual 3D Structure Generation
	6.4.3.2 Just-In-Time Compilation of Large Loops
	6.4.3.3 Input Location Mapping

	6.4.4 Inconsistencies Between PyNN and MATLAB Versions
	6.4.4.1 STDP Implementation of MATLAB Version
	6.4.4.2 Excitatory and Inhibitory Populations
	6.4.4.3 3D Structure and Conceptual Distances of MATLAB Version

	6.5 Position & Future of NeuCube M1 Module
	6.6 NeuCube Core Architecture
	6.7 Chapter Summary and Conclusion

	7 Neuromorphic Hardware Implementations
	7.1 A Review of Neuromorphic Hardware Systems
	7.1.1 Field-Programmable Gate Arrays
	7.1.2 Application-Specific Integrated Circuits
	7.1.3 TrueNorth
	7.1.4 Memristor-Based Systems
	7.1.5 Applied Neuromorphic Hardware Systems
	7.1.5.1 Dynamic Vision Sensor
	7.1.5.2 Neural Prosthetics

	7.2 NeuCube on the Zhejiang FPGA
	7.3 NeuCube on the INI Neuromorphic VLSI
	7.3.1 Chip Architecture
	7.3.1.1 ROLLS Architecture
	7.3.1.2 cxQuad Architecture

	7.3.2 PyNCS
	7.3.3 Considerations for the NeuCube on INI Neuromorphic VLSI

	7.4 NeuCube on the SpiNNaker
	7.4.1 The SpiNNaker Device
	7.4.2 Significant Development Considerations
	7.4.2.1 Code and Ecosystem Maturity of SpiNNaker
	7.4.2.2 IO Limitations
	7.4.2.3 STDP Implementation
	7.4.2.4 Random Number Generation
	7.4.2.5 Fixed Point Hardware
	7.4.2.6 Stochastic Spike Transmission
	7.4.2.7 Streaming IO with AER

	7.4.3 Modifications to the PyNN Implementation of the NeuCube
	7.4.3.1 3D Structures and Distance in SpiNNaker
	7.4.3.2 Simulation Repetition in SpiNNaker
	7.4.3.3 Summary of Important Minor Changes

	7.4.4 Operation of the NeuCube on SpiNNaker

	7.5 Empirical Comparison of SNN Simulation in Software and Hardware
	7.5.1 Execution Speed Dynamics
	7.5.2 Memory Use Dynamics

	7.6 Ideal Neuromorphic Hardware for the NeuCube
	7.7 Chapter Summary and Conclusion

	8 Conclusions
	8.1 Novel Contributions
	8.2 Research Questions
	8.3 Caveats and Limitations of this Study
	8.4 Open Questions & Further Work
	8.5 Closing Thoughts

	References
	Abbreviations
	A Case Study in Neuroinformatics
	A.1 NeuCube Architectures for Neuroinformatics
	A.1.1 Electroencephalography
	A.1.2 Functional Magnetic Resonance Imaging
	A.1.3 Diffusion Tensor Imaging

	A.2 Classification of Complex Natural Hand Movements via EEG
	A.2.1 Motivation & Research Questions
	A.2.2 Experimental Design
	A.2.3 Results
	A.2.4 Discussion

	A.3 Application of Neuromorphic Systems
	A.4 Appendix Summary and Conclusion

	B Case Study in Radioastronomy
	B.1 NeuCube Architecture for Spectro-Temporal Data
	B.2 Dispersed Transient and Pulsar Search
	B.2.1 Motivation & Research Questions
	B.2.2 Experimental Design
	B.2.3 Results
	B.2.4 Discussion

	B.3 Application of Neuromorphic Systems
	B.4 Appendix Summary and Conclusion

	C Listing of Significant Classes for a NeuCube Implementation in PyNN
	C.1 Main
	C.2 NeuCubeReservoir
	C.3 NetworkStructure
	C.4 GenericClassifier
	C.5 DynamicEvolvingSNNClassifier
	C.6 GenericEncoder
	C.7 TemporalDifferenceEncoder
	C.8 Deprecated: NeuCubeStructure

	D Source and Version Control
	E Memory Profiles of NeuCube Implementation in PyNN
	F Basic Configuration file in JSON
	G Listing of Method for the Generation of Simulated Radioastromony Events

