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Abstract 
 
There is a growing body of evidence to suggest that 
significant benefits may be gained from augmenting 
current approaches to software development effort 
estimation, and indeed other project management 
activities, with models developed using fuzzy logic and 
other soft computing methods.  The tasks undertaken by 
project managers early in a development process would 
appear to be particularly amenable to such a strategy, 
particularly if fuzzy logic models are used in a 
complementary manner with other algorithmic 
approaches, thus providing a range of predictions as 
opposed to a single point value.  As well as providing a 
more intuitively acceptable set of estimates, this would 
help to reduce or remove the unwarranted level of 
certainty associated with a point estimate.  Furthermore, 
such an approach would enable organizations to ‘store’ 
their project management knowledge, making them less 
susceptible to employee resignations and the like.  If 
fuzzy logic modeling is to be implemented in industry, 
however, managers must first believe it to be a realistic 
and workable option.  This issue is addressed here by 
considering two related questions: one, what 
expectations do project managers have in relation to 
effort estimation? and two, what is their opinion of  the 
methods that might be useful in this regard?  This is 
followed by a discussion of the results of two surveys of 
project managers aimed at deriving membership 
functions using polling methods, the first using an 
interval declaration approach and the second using 

votes on fixed points.  It is concluded that there is indeed 
support in the software engineering practitioner 
community for the use of methods based on the principles 
of fuzzy logic modeling. 
 
1. INTRODUCTION 
 
The vexed issue of accurate prediction of software 
development effort continues to challenge software 
engineering researchers.  Several factors make this 
problem a very difficult one to solve – for instance, 
accurate and consistent data collection is problematic, 
meaning that records are often noisy or incomplete; a 
sound underlying cause and effect model of software 
development – one that takes into account all the 
variables and their impact – does not exist, but there is 
evidence to suggest that both quantitative and qualitative 
factors are influential in this regard; there are also 
conflicting demands in terms of what is needed from a 
predictive model – while accuracy is naturally a crucial 
requirement, model interpretability and the facility to 
incorporate existing knowledge are also desirable, as well 
as general applicability across a range of predictions.  In 
considering the factors just described, it is no surprise 
that modeling methods falling into the soft computing 
domain have attracted increasing attention.  After all, 
these methods are promoted as being especially 
appropriate for noisy or incomplete data, for relationships 
where there is significant uncertainty, or where the 
incorporation of knowledge as well as data is seen as 
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important.  On the surface, then, the match between need 
and solution would seem to be a good one. 
 

What is less clear, however, is the degree to which these 
avenues are thought to be worth pursuing from the 
perspective of industry based project managers [41].  
That is to say, most of the work on these modeling 
methods, including studies undertaken by the authors 
[13,14,33,34], has been carried out by researchers rather 
than practitioners, much of it without any definitive sense 
of the likely acceptability of such methods in an 
industrial software development setting [11]. For 
instance, while the alternative of using qualitative 
labeling for variables as utilised in fuzzy logic methods 
has been suggested in research (e.g. [18,53]), the stability 
and consistency of such labels in practice has not been 
established, and optimal elicitation techniques for 
deriving appropriate membership functions have not been 
determined or tested.  When it is also considered that 
informal estimation methods based on experience, expert 
opinion or personally moderated analogies remain 
commonly used [6], it would seem sensible to consider 
the issue of industry acceptability before advancing too 
much further.  (Note: this is not to say that all research 
should be determined purely on the basis of existing 
practitioner needs, but rather that those involved in 
practice-oriented research should be sufficiently well 
informed to have a sense of the likely relevance and 
applicability of their work in industry.)  This paper 
therefore addresses three related issues – what 
expectations do project managers have in terms of effort 
estimation methods; what attitudes do project managers 
have in regard to existing and proposed methods; and 
how effectively and consistently can project managers 
specify ranges of values for a selection of relevant 
variables, or consistent labels for a selection of values, 
such that might be used in a fuzzy prediction system. 

 
1.1 Project management challenges 
As in other disciplines the management of software 
development projects makes significant use of measures 
to characterize the processes employed, the resources 
utilised and the artifacts consumed in or produced by 
those processes.  Models are built and calibrated using 
these measures to assist the project manager to classify, 
predict, monitor, control or evaluate aspects of their 
development projects.  One of the most common uses of 
such models in software engineering has been in the 
prediction of software development effort.  For the 
developer, manager and user of any software product, 
project effort estimation is a very important activity.  The 
estimate is frequently an input to contract negotiations, 
resource and personnel costing and charging for the 
project (although there is some very sound rationale for 
treating cost and price separately, particularly at the 
bidding stage of a competitive contract [23]).  It provides 

a basis for the project manager to plan and control 
subsequent development activities.  It may have run-on 
effects for the user, in that their operations may be 
planned around the delivery of a software product.  
Clearly then an accurate and robust estimation model is 
desirable from all perspectives.  The inputs to such 
models of development effort commonly include some 
measure of system size, system complexity, the 
development tools employed and developer experience 
(among many other factors).  The output can be any 
measure of effort, such as person-days, and may be 
specified at the system, sub-system or module level. 
   
A common aim of effort prediction research is to build 
and validate models that deliver estimates within 25% of 
the actual effort at least 75% of the time [8].  
Unfortunately, even this modest goal is seldom achieved 
in a holdout sample (that is, on data that was not used in 
model parameter calibration).  Obtaining such a model is 
difficult for a number of reasons.  If there existed a 
complete underlying theoretical foundation for software 
development then incorporating all the influential factors 
and their impact in a model to predict development effort 
would be a challenging but ultimately achievable goal.  
This is, however, clearly not the case – there is much 
about the software development process that remains 
‘uncontrollable’, from the highly variable influence of 
project personnel to the unknown impact of new 
technologies.  Under these circumstances obtaining a 
comprehensive, widely applicable and highly accurate 
predictive model of software development effort would 
appear to be highly unlikely.  In such circumstances one 
might expect that locally calibrated useful, if 
unspectacular, models would be developed, accepted and 
used by all involved with an awareness of their inherent 
limitations.  However, in many respects the contrary 
occurred – the desire for high precision in what are 
clearly acknowledged as estimates created an almost 
fanatical search for the ultimate estimation method.  In 
the last five years, however, it does appear that there has 
been a change in attitude, and a greater acceptance of the 
notion that estimates are just that – values that have a 
degree of uncertainty associated with them.  Indeed, 
given the lack of a formal model of the software process, 
the drive for a single one-fits-all model is fundamentally 
flawed and should be tempered by more pragmatic aims. 
 
Underlying this challenge is an inherent trade-off in the 
development and use of effort estimation models – is it 
better to be approximately correct most of the time or 
precisely inaccurate all of the time?  It is an acceptance 
of this trade-off that provides some of the rationale for 
introducing fuzzy sets and fuzzy logic into the estimation 
process.  In extreme cases, managers are expected to 
predict to within a person-day the effort requirements for 
a project about which they know relatively little, perhaps 
at the preliminary specification stage.  Their estimate is 



likely to be based on best-guess figures for, among other 
things, system size and developer productivity, both of 
which are subject to significant variation.  Moreover, if 
the project is open to competitive tender, significant 
pressure may fall on the manager to provide an even 
earlier estimate, so that a bid may be submitted in order 
to win the project contract.  Unfortunately, these 
estimates tend to be set in stone and they take on 
significant meaning in the context of the client’s 
expenditure and their subsequent operational planning.  It 
is little wonder, then, that the software industry is 
frequently criticized by its clients for recurring cost and 
schedule over-runs – the fact is that in at least some cases 
the estimates provided were simply unrealistic.  Use of 
estimation methods that take uncertainty into account and 
produce similarly qualified estimates has the potential to 
partially alleviate some of these difficulties. 
 
1.2 Fuzzy logic for software development project 
management  
In response to the problems and challenges just 
described, fuzzy logic has been proposed as a potential 
solution.  This is founded on the fact that fuzzy logic 
allows for qualitative specification of input values and 
can generate qualitative outputs for the effort estimate 
using a stored fuzzy rule base.  Furthermore, linguistic 
outputs can later be replaced by ranges, fuzzy numbers or 
crisp numeric values as more accurate input information 
becomes available.  In other words, the precision of the 
input data can suitably reflect the amount of knowledge 
that is available at the time the estimate is made and the 
precision of the output(s) can usefully reflect and 
reinforce the appropriate degree of certainty in planning.  
For instance, initially the size of a system may be said to 
be “above average”, later it becomes “about 100” 
components, and later still it is exactly 105 components.  
In terms of the model outputs, initially the project may be 
expected to require a “very high” amount of effort, later 
“about 300 developer months”, and finally 360 developer 
months.  All of these levels of detail can be managed in a 
single fuzzy system of membership functions and rules, 
making the process consistent and efficient over the life 
of a project.  The use of such an approach is particularly 
suited to software measurement models early in the 
software process before even approximate counts of 
functions and their complexities are available. 
 
In recent years, then, research investigating the 
application of fuzzy logic methods in software project 
management has begun to gain some momentum [16].  
Kumar et al. [25] provide an excellent introduction to the 
potential of fuzzy logic and neural network modeling in 
the software engineering domain.  A rule-based expert 
system to assist personnel in software project risk 
management is described by Madachy [35].  The system 
in question used a taxonomy of crisp set risk factors 
derived from the well-known COCOMO research 

projects [5,56].  Relationships between these factors were 
formed into rule sets based on knowledge and heuristics 
elicited from domain experts (emphasizing the need for 
methods to capture and codify personal expertise and 
local organizational knowledge, as well as more 
generically understood relationships).  Similar use of the 
COCOMO factors in effort estimation, but in this case 
using fuzzy sets and rules, has been extensively reported 
[18,19,36,17,46,55].  Similar fuzzy extensions to 
function point analysis (FPA) [2] have also been 
proposed (and in some cases evaluated using artificial or 
industry data) in order to enable managers to avoid the 
crisp evaluations of function scale and complexity 
[29,44,46].  Idri and Abran further suggest that fuzzy 
logic could also be employed to describe the degree of 
similarity between projects or project attributes, a 
characteristic that would be especially useful in the 
growing field of research and practice in analogy-based 
prediction [18,20]. 
 
Rather than adapting and augmenting existing project 
management methods such as COCOMO and FPA, other 
research has resulted in the development of independent 
fuzzy systems, complete with fuzzy sets, rule bases and 
inference engines, in order to provide robust predictions 
of project size and effort [1,32,59].  The challenge of 
effective project scheduling has also been addressed by 
research employing fuzzy sets to represent uncertainty in 
start and finish times, activity durations, resource 
availability and resource capabilities [28,16,39,40,48].  
This has been extended to then enable more robust risk 
identification i.e. noting activities that are subject to high 
uncertainty [15,31]. 
 
Other methods that fall within the wider domain of soft 
computing have also received attention in the last ten 
years.  In particular, the evaluation of machine learning 
techniques in software engineering applications has been 
extensive.  Multi-layer perceptron (MLP) neural 
networks trained using back propagation have been 
among the methods most commonly assessed (e.g. see 
[12,27]) although other structures, including radial basis 
functions [52] and Albus perceptrons [47], have also 
been considered, as have fuzzy neural networks [45].  In 
some cases these methods have indeed enabled the 
construction of accurate models (e.g. [22,27,58]).  These 
methods are also relatively ‘data-hungry’, however, a 
requirement that cannot always be easily satisfied in 
software engineering practice.  Furthermore, such 
methods do not lend themselves to being readily 
understood by project managers.  While methods do exist 
to enable meaning or ‘knowledge’ to be extracted from 
neural networks, they are still generally perceived to be 
black box in nature.  This has a detrimental effect on their 
acceptability in industry [21].  A sense of belief and trust 
in any model is a necessary precursor to its effective use 



– a lack of transparency in neural network models does 
little to encourage such trust. 
 
In many respects this need for trust and model credibility 
has led directly to increased activity concerning 
estimation on the basis of analogous observations (e.g. 
see [3,51,54,57]).  Such methods reinforce the perception 
that local project histories are indeed valuable in this 
regard, particularly where their use is augmented by 
expert knowledge [54].  Both Myrtveit and Stensrud [37] 
and Walkerden and Jeffery [57] found that a combination 
of expert judgment and estimation tools (in their cases 
regression analysis and analogy-based prediction) proved 
to be the most effective approach, although the project 
managers’ perceptions of tool performance tended to 
undervalue the contribution of the tools. Sauter [49, page 
109] similarly supports the notion of decision support 
systems that “…blend analytical tools with intuitive 
heuristics to improve managers’ insights about factors too 
complex to build into models”, particularly under 
circumstances in which the data required for fully 
informed analysis is simply not available.  While Lederer 
and Prasad [26] found evidence to suggest that estimation 
accuracy was more likely to be improved if guessing, 
intuition and personal memory were not used, they also 
found that the use of algorithmic modeling methods did 
not facilitate more accurate estimates.  Again a 
combination of methods may instead prove to be the 
optimal approach [42].  Moreover, accuracy is just one 
(albeit important) characteristic of a useful estimation 
method – interpretability of models, for instance, is also a 
beneficial and therefore desirable trait. 
 
A significant number of related papers have also 
described the various difficulties encountered by 
researchers and practitioners in software project 
management modeling.  For instance, Ohlsson et al. [38] 
report the results of an experiment involving the iterative 
development of an experience base to enhance effort 
estimation over time, reinforcing the need for ongoing 
model refinement.  Shepperd and Cartwright [50] 
investigate the use of analytic hierarchy processing 
(AHP) as a means of prediction given only a minimal 
amount of data, a situation that is particularly prevalent in 
smaller organizations [10].  Both discussions emphasize 
the value and importance of expert judgment in the 
estimation process.  The need for managers and clients to 
accept and deal with the inherent uncertainty in software 
development projects is emphasized by, among others, 
Fenton and Neil [11], Kitchenham [23], Lin and Chen 
[30] and Putnam and Myers [43].  The latter authors 
suggest that such an approach would naturally lead to the 
provision of a range estimate (a strategy also 
recommended by Peeters and Dewey [42]), rather than a 
single point value, although they acknowledge that this 
may not be acceptable to higher-level management.  In 
this case they recommend the use of probabilities, or the 

acceptance of a project portfolio approach (also 
supported by Kitchenham [23] and Bilalis et al. 2002 
[4]), whereby a loss on one project is accepted on the 
understanding that there is likely to be a corresponding 
gain on another.  In any case there is a need for all 
involved to moderate their expectations regarding the 
accuracy of any models developed. 
 
These related discussions provide further rationale for the 
use of methods such as fuzzy logic in effort estimation 
and similar activities, although such methods are not 
mentioned specifically.  They also reflect more generally 
the continued desire of researchers to enhance the 
performance of effort estimation activities.  The potential 
of soft computing seems evident, but it remains to be 
seen whether such approaches are applicable or 
acceptable in industry settings [7], in part motivating the 
work presented here. 

 
2. ATTITUDES TO EFFORT ESTIMATION 
 
The improvement of software development effort 
estimation has thus been a long-time goal of software 
engineering researchers, driven by the apparent needs of 
industry project managers.  Published evidence in 
support of these needs is not extensive, however.  In fact, 
some authors have found that in spite of significant 
research efforts in the last twenty years project managers 
continue to both prefer and use ad hoc estimation 
methods based on personal experience, expert opinion 
and local analogies [6,42,57].  It is possible to speculate 
on why this might be – perhaps it is a matter of managers 
preferring to use the ‘tried and true’ over the innovative; 
there may be an assumption that in fact few advances 
have been made; or there may be a belief that such 
methods require excessive amounts of data to be 
effective.  In order to directly address this scarcity of 
explicit information on project managers’ needs and 
expectations, this work utilized a range of data collection 
exercises incorporating interviews, document analyses 
and the application of structured questionnaires, as 
follows. 
 
2.1 Interviews and document analyses 
The first phase of this research was a series of semi-
structured interviews with project managers from five 
groups responsible for software development, to gain 
high-level insights into their requirements in terms of 
support for project effort estimation.  The excerpts 
presented in this section are taken directly from those 
interviews and from the examination of the same 
organizations’ internal documents.  Two of the 
organizations are based in New Zealand, three in the 
United Kingdom.  Three are software development 
organizations, one is a banking and insurance institution 
and the other is a national utility provider.  The 
organizations were chosen to cover a range of sectors, 



organization types and sizes.  They had previously 
indicated an interest in effort estimation issues in 
response to a general mail-out request for participation.  
In this respect they self-selected with a declared 
awareness of the subject.  Given the exploratory nature of 
this phase of the study, however, their responses can and 
should be treated as illustrative rather than definitive.  
(Names of both the individuals and their organizations 
are not given here for the obvious reason that many are 
quite critical of their own practices.  An indication of the 
source of each comment/quote [Organization 1-5] is 
provided.  The candor shown by the project personnel 
was appreciated.) 
 
The interviews were all conducted in person by one of 
the authors with between one and three project managers 
from each organization.  In each case, six topic areas 
were addressed: expectations regarding estimation, 
requirements for an effective estimation method, the role 
and impact of personal experience, the need for early 
estimation, availability of historical data, and the use of 
contingency in estimation.  The interviews were semi-
structured in the sense that the same topics were traversed 
– there were no pre-determined sets of questions for each, 
however.  Rather, the interviews took the form of a free-
ranging interactive discussion over the topics at hand.  
While this could be considered as compromising the 
interview process, on the positive side such an approach 
enabled a richer picture to be formed regarding attitudes 
and practices with respect to estimation. 
 
What follows is a selection of indicative comments 
relating to each topic.  As the interviews were discussion 
oriented, and formed only the initial part of this study, it 
is neither feasible nor appropriate to present the 
managers’ views in a more structured manner.  The 
comments shown are typical of those made.  It should be 
acknowledged that the information is incomplete and 
anecdotal.  In terms of the overall study, however, it 
served to highlight the issues that needed to be followed 
up in the subsequent stages of the work. 
 
2.1.1 Expectations regarding estimates 

“The risks inherent in the project, and the 
uncertainties in the estimate, should be clearly identified 
to provide assurance to the customer, especially about 
delivery dates and cost.” [O2] 

“Although software project estimation will never be 
an exact science, it can be transformed from a black art 
into a series of systematic steps that provide estimates 
with an acceptable degree of risk.” [O3] 

 “An estimate is not an exact measure, but an 
approximation based on judgment.  In the computing 
world this is usually bundled up in the term ‘experience’.  
Is experience enough?  We still get it wrong.  We under 
estimate constantly.  Maybe not so much on the small 
projects, but quite significantly on the larger ones.” [O4] 

These comments suggest that project managers are 
acutely aware of the uncertainty inherent in the 
estimation process.  As a result it appears that at least 
some would prefer to see estimates provided with an 
associated confidence factor, along with an assessment of 
the source and level of risk associated with the likelihood 
of an estimate being incorrect. 
 
2.1.2 Requirements for estimation methods 

“[An effective estimation method needs to be] simple, 
thorough, realistic, inexpensive... practical, cost-
effective, and versatile.  It should not add to overheads.” 
[O2] 

“The current methodology... is far too complex and 
difficult to use.  This is demonstrated by the fact that it is 
not used.” [O4] 
Although many estimation models exist, their complexity 
in use is inhibiting their adoption, at least as reflected in 
these quotes.  An ideal modeling method should strike a 
balance between effectiveness, in terms of accuracy and 
consistency, and simplicity in calculation and application. 
 
2.1.3 The role of personal experience in 
estimation 

“Each person undertaking estimation tends to utilize 
their own heuristic approach.” [O1] 

 “The Project Manager’s own experience and other 
Project Managers’ experience either within [the 
company] or in other organizations can provide a 
valuable range of reasonableness for a given 
development.” [O3] 

“The company’s next project takes on board very few 
of the lessons that we should be learning from the past.  
The lessons are generally only transferred if the players 
are the same.  That is, we are only learning as 
individuals not as a company.” [O4] 

“Current estimates are based on personal experience.  
Everyone’s experience is different and thus different 
people produce different estimates for the same function.  
People are inclined to introduce their own expertise into 
the estimation process.” [O4] 

“A great deal of experience is required to produce 
accurate and reliable estimates… Software estimating 
tools cannot replace real experience in the real world of 
project work, but they can supplement such experience.” 
[O5] 
These remarks indicate the degree of influence that 
individual project managers have on the estimation 
process and its outcomes.  While it could be said that 
individual influence should be removed entirely this is 
unlikely to be feasible in practice.  Moreover, this may 
result in a significant loss of local knowledge that might 
be crucial to the production of useful estimates.  A 
modeling and estimation method that sensibly 
incorporates the views of experienced personnel would 
therefore seem to be a potentially more useful approach. 
 



2.1.4 Early estimation 
“A ‘simple’ form of Function Point Analysis may be 

used to size development projects in their early stages… 
and may be used as a basis for producing project 
estimates.” [O2] 

 “Quite often we do not know enough about the 
project to be confident in the estimates that we produce.  
This is consistent with the more you know and the better 
it is defined, the greater the accuracy of the estimation.  
However, we are usually asked to estimate design and 
development together, which is obviously a more risky 
situation.” [O4] 

“People tend to remember these earliest estimates of 
the cost or duration of a project, so it is important that 
these estimates should err on the side of caution, and be 
properly qualified.” [O5] 
Early estimates are demanded by clients, irrespective of 
the fact that a project manager may have very little 
information at that time on which to base their 
predictions.  Modeling methods that therefore allow early 
‘ball park’ estimates to be developed, but which deliver 
them to both manager and client with appropriate 
qualification, would appear to be an acceptable 
compromise. 
 
2.1.5 Data availability 

“Many firms do not have adequate records about the 
performance of the project team on similar projects.” 
[O1] 

“We operate solely on guess work and rules of thumb, 
not on any empirical data.” [O4] 

 “We do not keep an adequate history of how well 
actuals meet estimates.  This means that we lack 
indications of where our estimation is good; where it is 
bad; and what areas we did not estimate at all.” [O5] 
To some extent a lack of historical data could reflect a 
low level of maturity in an organization’s software 
process.  That said, it is imperative that even under such 
circumstances an organization is able to produce 
reasonably accurate estimates of effort for potential 
clients.  Modeling methods that do not necessarily 
require large stores of data, but that can dynamically 
adapt as data becomes available, would be useful in this 
respect. 
 
2.1.6 Estimation contingencies 

“We use a standard formula to come up with our 
estimates and then we apply a ‘fudge factor’ as a 
contingency, based on our own experiences.” [O1] 

“Early in the project the effort contingency will be 
large due to the uncertainty of the detailed requirements, 
system design, likely problem areas etc. As the project 
progresses, the contingency should be reduced.” [O3] 

“Software estimates are frequently based on 
guesswork rather than fact.” [O5] 
The comments above would suggest that estimation 
methods that are not so ‘locked down’ as to prevent the 

incorporation of sensible contingencies based on 
organizational knowledge would be preferred.  With this 
latter point in mind, some means of storing that 
knowledge needs to be implemented. 
 
The excerpts above provide some valuable insights into 
the views and desires of project managers in relation to 
effort estimation.  On the basis of their remarks it seems 
clear that managers would value modeling and estimation 
methods that addressed these desires.  The characteristics 
of fuzzy logic modeling – being able to incorporate both 
data and expert knowledge, robustness, variable 
granularity in inputs and outputs, and transparency 
through the intuitive nature of fuzzy rules – make it a 
potentially effective approach in this domain. 
 
2.2 Questionnaires 
Having established some high-level anecdotal evidence 
supporting the need for alternative or complementary 
modeling methods, the study then considered the state of 
practice.  This section reports the results of two postal 
surveys of project managers carried out in New Zealand 
software organizations.  The focus of the surveys was on 
contemporary practices in software development and 
acquisition, addressing in particular any model-building 
methods used in effort estimation. 
 
The first, one-page survey was distributed as part of a 
much larger data collection exercise investigating 
systems development and acquisition practices.  The total 
sample size was just under 850 organizations – only 160 
of these, however, were understood to conduct software 
development as opposed to acquisition through 
outsourcing and/or integration services.  Of the 160, 
thirty-eight provided usable responses.  Seventeen of 
these indicated the use of measurement/metrics in their 
project management activities, so the following 
information pertains to this set of respondents.  These 
were all small organizations – most employed between 1 
and 10 full-time equivalent (FTE) development personnel 
(see Table 1), an expected profile given the relative 
dominance of small organizations in New Zealand.  The 
majority of these organizations (13 of 17, or 77%) used 
expert opinion to produce estimates of development 
effort, significantly more prevalent than any other method 
(reported in Table 2). 
 

FTEs Frequency Percentage 
1-10   10 59% 
11-50   4  23% 
51+   3   18% 
Total   17  100% 

Table 1.  First survey: breakdown of organization size 
in terms of full-time equivalent development personnel 
 
 



Method used Frequency Percentage 
Expert opinion   13   77% 
Function point analysis   5   29% 
COCOMO   1   6% 
Regression-based 
models  

 0   0% 

Other techniques   3   18% 
Table 2. First survey: breakdown of effort estimation 
methods used 
 
A second more detailed survey was developed and sent 
out six months later to a smaller sample (330 
organizations from a range of industry sectors, including 
150 sites understood to undertake software development) 
to more fully address issues related to effort estimation.  
Forty-four usable responses were received.  The 
distribution of organization size is shown in Table 3.  
While the organizations are again typically small, a wider 
range of sizes was represented in the respondents to this 
survey.  Table 4 shows the nature of business of the forty-
four organizations. 
 

FTEs Frequency Percentage 
0-4   10  23% 
5-9   4  9% 
10-14   5  11% 
15-24   5  11% 
25-49   7  16% 
50+   5  11% 
Not given   8  18% 
Total   44  ~100% 

Table 3.  Second survey: breakdown of organization 
size in terms of full-time equivalent development 
personnel 
 
Organization type Frequency Percentage 
Commercial organization 18  41% 
Government 4  9% 
Commercial software 
house 

14  32% 

Not given 8  18% 
Total 44  100% 
Table 4.  Second survey: breakdown of respondents by 
type of organization 
 
Thirty-six of the forty-four organizations replied to the 
questions concerning development effort prediction, with 
thirty-two of these stating that they employed one or 
more methods to estimate effort.  Of the four who said 
that they did not predict effort, one commented that they 
“…did not know how to go about making such 
predictions”, two said that there was no need for such 
predictions, and one remarked that their development 
environment was too unstable to allow such management.  
In terms of the modeling methods actually employed by 
those respondents who performed estimation, expert 

opinion again totally dominated those others considered 
(as shown in Table 5).  Given that this sample included a 
significant proportion of software houses the relative lack 
of infiltration of the function point analysis (FPA) [2] and 
COCOMO [5] techniques was unexpected. 
 
Technique  A

lw
ays  

M
ostly  

O
ccasional  

N
ever 

N
ot  heard 

of  

M
issing 

Expert opinion 22   9   2  0   1   10 
Function point 
analysis 

 1   2   14  10   4   13 

COCOMO 0 0  3   3   18   20 
Regression-based 
models 

 2   5   12   5   5   15 

Other techniques 
(SLIM) 

0 0  1  0 0 - 

Table 5.  Second survey: breakdown of effort estimation 
methods used 
 
The next question was concerned with the stage at which 
estimates were actually produced – as expected the need 
for predictive capability at the analysis phase is most 
evident (see Table 6).  Estimation at the development 
task level for individual components was also undertaken 
by most of the respondents (see Table 7).  The 
importance of estimation during the early stages of the 
process further supports the use of qualitative estimation 
techniques, since it is often difficult to accurately 
estimate some of the factors used in effort estimation 
models at these stages. 
 

Stage of process   Frequency   Percentage 
Analysis   30  94% 
Design   19  59% 
Prototyping   11  34% 
Programming   11  34% 
Testing   4  13% 
Maintenance   6  19% 

Table 6.  Second survey: stages of process in which 
effort estimates are made 
 
Level at which 
predictions are made 

Frequency  Percentage 

System   8  25% 
Component   10  31% 
Task   14  44% 
Both task and component 
combined  

 10  31% 

Table 7.  Second survey: levels of prediction for 
organizations performing effort estimation 
 
The next section of the survey investigated problems or 
difficulties encountered by the organizations in using the 



specified estimation methods.  (Note that only expert 
opinion, function point analysis and regression-based 
methods were considered as they each had a reasonable 
number of users able to comment on their effectiveness.) 
Problems cited in relation to expert opinion are shown in 
Table 8.  It is interesting to note that, even though it is by 
far the most widely used method (Table 5), nineteen of 
the thirty-two respondents acknowledged that the 
technique was not sufficiently accurate.  While this is 
clearly the view held by the respondents, it could reflect 
the assertion that expectations of accuracy are indeed 
very high.  Other issues revealed in response to this 
question included a lack of appropriate experts in one 
organization, leading to an assertion that the technique 
should not be used as the sole or final approach. Another 
respondent noted the problems caused by inconsistencies 
in the opinions given by various staff. One respondent 
suggested that this method was reasonably accurate for 
small to medium sized projects, which for them was up to 
three months duration, but was less effective for larger 
projects. 
 
The degree to which organisations had experienced 
various difficulties in using function point analysis is 
reported in Table 9.  Relatively speaking, accuracy 
seemed to be less of a problem when compared to other 
difficulties.  In particular, it appears that there is too 
much certainty required in the input information, and that 
this information is not available at the stage when the 
predictions need to be provided.  An additional problem 
cited in regard to FPA was that productivity rates 
fluctuated too much from project to project to enable 
consistent predictions to be produced.  Another 
respondent mentioned that there was resistance to FPA 
from personnel given its “seemingly weird basis”.  One 
of the respondents who checked the box to indicate that 
FPA was too complex felt sufficiently strongly about this 
to use five ticks!  This may be interpreted as supporting 
the need for simple-to-understand modeling techniques in 
this domain. 
 
Problem  Frequency 
Technique is not accurate enough   19 
Do not collect necessary information 
accurately enough  

 12 

Need predictions too early in 
development  

 13 

Information is too costly or difficult to 
collect  

 1 

Data requirements for calibration cannot 
be met  

 4 

Technique is too complex   0 
Table 8.  Second survey: problems with expert opinion 
as an estimation method 
 
Most prominent among the difficulties cited in regard to 
regression-based modeling was the need for precision in 

the information collected, and to a lesser extent the costs 
incurred or obstacles encountered in the collection 
process. It may be that this method is used most often to 
provide an alternative estimate to compare against that 
obtained through expert opinion or function point 
analysis (given that it tends to be used only ‘occasionally’ 
(Table 5)). 
 
Problem  Frequency 
Technique is not accurate enough   3 
Do not collect necessary information 
accurately enough  

 7 

Need predictions too early in 
development  

 9 

Information is too costly or difficult to 
collect  

 4 

Data requirements for calibration cannot 
be met  

 2 

Technique is too complex   4 
Table 9.  Second survey: problems with function point 
analysis as an estimation method 
 
Problem  Frequency 
Technique is not accurate enough   1 
Do not collect necessary information 
accurately enough  

 6 

Need predictions too early in 
development  

 1 

Information is too costly or difficult to 
collect  

 3 

Data requirements for calibration cannot 
be met  

 0 

Technique is too complex   2 
Table 10.  Second survey: problems with regression-
based models as an estimation method 
 
Project managers were then asked to indicate the degree 
to which they believed that certain factors ought to be 
included in a predictive model for development effort, 
reported in Table 11.  (Note that these factors were 
specified in the survey – others suggested by the 
managers themselves are mentioned below.) 
 

Measurement Not 
important 

Could be 
included 

Should be 
included 

Must be 
included 

System size  0 4 6 25 
System 
complexity 

 0 2 7 26 

Developer 
experience 

2 3 18 12 

Developer tools 1 6 11 17 
Developers’ 
methodology 

1 7 16 11 

Team size 1 6 15 11 
Table 11.  Second survey: variables to be considered in 
a predictive model of effort 
 



Several other factors were suggested by the project 
managers as being important in such models, ranging 
from the number of tables in the system and data 
conversion requirements through to the degree of 
interaction between developers and users and specific 
system performance needs.  The most frequently 
mentioned factor, however, was the existence of a user-
imposed timeline – this was suggested as being an 
essential component in a predictive model by six 
different project managers. 

 
3. ATTITUDES TO FUZZY LOGIC 
MODELING 
 
The information presented in the previous sections 
provides indirect support for the view that fuzzy logic 
modeling would have appeal to at least some project 
managers.  The final component of the second survey 
addressed this issue directly, in order to assess the 
possible acceptability of fuzzy logic modeling in effort 
estimation (see also [34]).  Thirty-one of the thirty-six 
respondents actively involved in managing development 
projects had heard of fuzzy logic (see Table 12).  Eleven 
stated that they were interested in using fuzzy logic 
techniques, twenty-three stated that they would need to 
know more about the technique before making a decision, 
and two considered that fuzzy logic techniques would not 
be useful to them (see Table 13).  Whilst the high 
awareness of fuzzy logic was not entirely unexpected, 
given that it has received a reasonable amount of 
coverage in the popular press in recent years, finding 
eleven organizations overtly interested in using fuzzy 
logic modeling was not anticipated, and is an 
encouraging result in terms of the likely acceptability of 
such an approach in industry. 
 

Response Number Percentage 
Heard of fuzzy logic 31 86% 
Have used fuzzy logic 2 6% 
Using fuzzy logic 1 3% 
Table 12. Second survey: awareness of fuzzy logic 

 
Response Number Percentage 
Interested in using fuzzy 
logic 

11 31% 

Interested, but need to 
know more before using 
fuzzy logic 

23 64% 

Not interested in using 
fuzzy logic 

2 5% 

Table 13. Second survey: interest in using fuzzy logic in 
effort estimation 
 
Some of the advantages of fuzzy logic in regard to 
development effort estimation have already been 
described.  Three of these advantages – the opportunity 

to use expert knowledge in model development, the 
possibility of using linguistic (non-numeric) inputs, and 
the ability to generate linguistic or range outputs – were 
put to survey respondents, with a request that they 
indicate their degree of interest in each (reported in Table 
14).  Those respondents expressing some interest in using 
fuzzy logic (in answer to the previous question) found 
each of the three advantages equally appealing.  Of the 
three, that receiving strongest support was the 
opportunity to produce linguistic or range outputs rather 
than a crisp point value.  These results provide direct 
support for the comments reported above suggesting that 
managers are indeed aware that they often cannot (or at 
least should not) realistically provide exact numbers as 
inputs to models, and do not necessarily want to get exact 
numbers back out either, given the uncertainty inherent in 
their measurement and estimation processes. 
 
Response Number Percentage 
Using expert knowledge for 
model development 

19 56% 

Linguistic inputs in place of 
numeric values 

19 56% 

Linguistic outputs in place 
of numeric values 

21 62% 

Table 14. Second survey: interest in perceived 
advantages of fuzzy logic 
 
Overall these results suggest that the challenges faced by 
project managers in using existing modeling techniques 
could be partially alleviated through the use of fuzzy 
logic modeling.  Given the apparently high level of 
interest in the method, one might ask why there is such a 
low level of actual use.  This disparity could be due to a 
low level of fuzzy logic software availability for non-
specialists, a lack of accessible guidelines (function point 
analysis, by comparison, has an internationally developed 
education and certification framework), and an absence 
of published successful case studies (something of a 
‘catch-22’ situation).  Alternatively there may be 
uncertainty regarding more fundamental issues, such as 
the likely stability of managers’ perceptions in relation to 
fuzzy membership or effective means of elicitation for 
rules and membership functions.  This latter issue is now 
addressed, as the determination of appropriate fuzzy sets 
is clearly a necessary precursor to building useful fuzzy 
logic estimation models. 
 
4. DERIVING MEMBERSHIP FUNCTIONS 
 
The work described in this section is principally 
concerned with the task of determining appropriate 
membership sets for software development effort 
estimation.  In order to further assess the feasibility of 
fuzzy logic modeling in this domain the two surveys 
discussed above were also used to examine project 



managers’ perceptions of three potentially relevant 
variables – data model size, functionality size and 
developer experience. 
 
One method of eliciting membership functions is that of 
polling, as discussed by Yager and Filev [60].  This 
involves interviewing a number of experts and asking 
them to categorize values as belonging to two or more 
labels.  The values of the membership functions at each 
point are determined from the proportion of experts who 
use those labels to describe the point.  This provides a 
simple method for deriving membership functions 
without demanding high levels of understanding of fuzzy 
logic from the domain experts – software project 
managers in this case.  It is also an effective technique 
when faced with a large number of experts and reaching 
consensus is unlikely or impractical.  Furthermore, it 
enables opinions to be weighted based on the level of 
expertise of the manager providing the data.  Other 
alternatives to membership function determination that 
involve managers drawing the functions require those 
managers to have an understanding of fuzzy logic that to 
some extent defeats its ease of use as a modeling 
technique.  Further expert-based methods include 
exemplification, where memberships are ascribed to 
values at a set number of levels of belief [60] or directly 
as membership functions [9].  Many methods are 
available for deriving membership functions from 
numerical data using statistical or machine-learning 
techniques [9,24,60], but these obviously assume the 
existence of sufficiently large volumes of data, something 
that is not always the case in software engineering 
practice.  In this study the use of such data-driven 
approaches was not feasible.  The surveys therefore used 
two different polling methods, the first employing an 
interval declaration approach and the second using votes 
on fixed points. 
 
The first survey elicited the views of 38 project 
managers, with each indicating the range within which 
three labels, small, medium, and large, were most 
appropriate for three variables, namely data model size 
(as measured by the number of entities in an entity 
relationship diagram), functionality size (as measured by 
the number of distinct system modules, defined as 
screens, reports, and batch processing modules), and 
developer experience (measured in years).  The second 
survey involved 34 managers indicating the most 
appropriate label from a range of three (low, medium and 
high) for pre-specified values of the same three variables.   
The proportion of managers ascribing a label to a 
particular value is plotted as the membership function.  In 
the graphs below (Figures 1 to 3) the set of sub-graphs 
for the first survey were determined using equally spaced 
intervals, while the second set of sub-graphs resulted 
from the use of predetermined points.  Each figure 
includes graphs of the raw membership functions along 

with the same membership functions smoothed using 
Bezier curves to produce typically more continuous 
representations.  It can be noted that some unusual values 
were returned in the first survey that, if correct, would 
reflect very unusual development practices or a lack of 
understanding as to what constituted an entity or a system 
module, even though these were explained in the survey. 
These observations have not been edited out since they 
presumably reflect at least some uncertainty in the 
membership functions.  The results presented here are 
therefore from the entire data sets collected from both 
surveys. 
 
Figure 1 provides depictions of the membership functions 
for data model size for the labels small, medium and 
large.  While some insights can be drawn from these 
graphs, the results are confounded by the inclusion of 
some surprisingly high values in the category of small 
data model size in the first survey and medium size in the 
second, resulting in long right-hand tails.  (In fact, this is 
a common occurrence for all three factors in both surveys 
with the exception of developer experience in the first 
survey.)  Generally, however, the relative shapes of the 
membership functions are as expected, with, for instance, 
low numbers of entities being labeled as small to a high 
degree.   
 
Functionality size was measured in this study using a 
count of the number of screen and report modules in a 
system.  In examining graphs (a) and (b) of Figure 2 it is 
clear that range-based classification of the number of 
modules between approximately 30 and 60 is 
problematic, with the labels of small, medium and large 
all being applicable to a degree of between 0.15 and 0.5.  
The membership functions obtained for the same factor 
in the second survey, which employed the strategy of 
point-labeling, are of the form more commonly expected. 

 
Fig. 1. Size of data model. 
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Fig. 2. Number of modules. 
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Fig. 3. Experience. 
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In terms of obtaining what might be considered to be 
‘typical’ membership function profiles, those determined 
from polling for developer experience provide the closest 
approximation (as shown in Figure 3). There appears to 
be, for this variable at least, general agreement as to what 
constitutes a low, medium or high amount of developer 
experience, implying that the perception of developer 
experience is more consistent among project managers. 
 
In comparing the two polling approaches it appears that 
using the ‘classify pre-specified values’ approach (as 
adopted in the second survey) resulted in more useful 
membership functions than that requiring managers to 
‘give a range of values that fits the label’ (as used in 
survey one).  The membership functions show more 
consistent definition under the second survey approach, 
especially for the medium size functions.  That said, no 
difference was observed for the developer experience 
factor, which suggests that this is a much less variable 
concept for managers.  The two surveys involved similar 



(in some cases the same) project managers, reinforcing 
the view that the differences are due to the elicitation 
method rather than the vagaries of the samples. 
 
It would appear from the above analysis that the use of 
standardized fuzzy logic models for software project 
management is unlikely, given the significant individual 
variation in perceptions of membership categories.  Since 
in some cases the membership functions for the medium 
categories are not even strictly convex there is evidence 
of considerable disagreement in terms of perceptions.  
While it is disappointing that the size-based measures 
were assessed so inconsistently by the managers, this 
does not in itself invalidate any of the managers using 
such membership functions.  Merely, it would appear 
unwise for them to share such functions or to use 
linguistic labels for inter-organization communication 
without first ensuring that they shared common 
perceptions.  Organizations with managers who were not 
‘typical’ in their perceptions would need to ascertain 
what they personally defined as suitable membership 
functions.  Furthermore, given that the managers who 
took part in the survey were able to specify membership 
functions for developer experience with some 
consistency, it may be that the difficulties related more to 
the concepts of data model and functionality size rather 
than to the approach itself.  As a result, it appears that 
fuzzy logic modeling using membership function 
derivation from knowledgeable personnel remains a 
potentially effective complementary approach for 
prediction in software project management. 
 
It is acknowledged here that research into the underlying 
structure and computation of fuzzy logic modeling has 
advanced significantly even in the last five years, and that 
the methods and techniques discussed here are not 
anywhere near that level of sophistication.  That said, this 
study was intended to be an assessment of the viability of 
fuzzy logic-type approaches in the software management 
domain, a domain that is relatively immature in its use of 
non-statistical analysis methods.  If project managers 
could see no appeal in even simple models that 
incorporate uncertainty and vagueness, then significantly 
more complicated approaches in terms of their 
algorithmic form and content would almost certainly be 
rejected even more readily, reinforcing the need for 
balance in respect to sophistication and understandability 
of any method. 
 

   5. CONCLUSIONS 
 
On the basis of the evidence presented in the previous 
sections it is clear that at least some project managers 
among the survey respondents: 
 

1. would like to have the opportunity to use estimation 
methods that are able to incorporate both data and 

knowledge and that also take uncertainty into 
account 

2. continue to employ expert opinion extensively in 
project management – in fact it may still be the 
dominant technique 

3. are aware of the limitations of existing estimation 
methods 

4. are aware of fuzzy logic modeling and of what it 
could offer in terms of software project management, 
with some of these managers interested in using such 
an approach 

5. are able to specify membership functions via polling 
methods, but are able to do so more consistently 
using fixed point voting rather than interval 
declaration. 

 
As the above analyses were based on the views of small 
samples of project managers it is not possible to say how 
generally the conclusions of this study might apply.  
Furthermore, some of the evidence, particularly the 
quotes derived from the interviews, is anecdotal, and in 
itself does not provide direct support for the use of fuzzy 
logic modeling in software project management.  
However, the overall outcomes are consistent with those 
of previous studies, and they do support the notion that 
such an approach could be readily accepted in an 
industrial software development setting, thus providing 
sufficient motivation for further research to be 
undertaken.  Ongoing work to investigate the 
effectiveness of fuzzy logic modeling in comparison to 
other estimation methods is occurring with an industrial 
partner.  An exploration of the stability and consistency 
of various rule extraction methods is also under way.  
While the analysis is not yet complete, results to date 
suggest that fuzzy logic models, when employed in an 
organizational learning framework, can perform at least 
as well as and often better than more commonly 
employed statistical models.  It is also clear that decisions 
regarding sampling and rule set size can have a 
considerable impact on the resulting models and their 
effectiveness in effort estimation.  When combined, these 
results indicate that fuzzy modeling approaches are 
certainly worth considering further in aspects of software 
project management, but that care must be taken to 
ensure that outcomes are not achieved simply as a result 
of a particular data sample or collection of rules.  
 
6. REFERENCES 
 
1. M.A. Ahmed, M. Omolade Saliu and J. AlGhamdi, 

Adaptive fuzzy logic-based framework for software 
development effort prediction, Information and 
Software Technology 47 (2005) 31-48. 

2. A.J. Albrecht and J.E. Gaffney Jr., Software function, 
source lines of code, and development effort 
prediction: a software science validation, IEEE 



Transactions on Software Engineering 9(6) (1983) 
639-648. 

3. L. Angelis and I. Stamelos, A simulation tool for 
efficient analogy based cost estimation, Empirical 
Software Engineering 5 (2000) 35-68.   

4. N. Bilalis, D. Lolos, A. Antoniadis and D. Emiris, A 
fuzzy sets approach to new product portfolio 
management, in:  Proceedings of the 2002 
International Engineering Management Conference, 
IEEE, 2002, 485-490. 

5. B.W. Boehm, Software Engineering Economics, 
Prentice Hall, Englewood Cliffs NJ, USA, 1981. 

6. B.W. Boehm and K. Sullivan, Software economics: 
status and prospects, Information and Software 
Technology 41 (1999) 937-946. 

7. L.C. Briand, On the many ways software engineering 
can benefit from knowledge engineering, in: 
Proceedings of the 14th International Conference on 
Software Engineering and Knowledge Engineering, 
Ischia, Italy, ACM, 2002, 3-6. 

8. S.D. Conte, H.E. Dunsmore and V.Y. Shen, Software 
Engineering Metrics and Models, 
Benjamin/Cummings, Menlo Park CA, USA, 1986. 

9. D. Dubois and H. Prade, Fuzzy Sets and Systems: 
Theory and Applications, Academic Press, London, 
1980. 

10. M.E. Fayad, M. Laitinen and Robert P. Ward, 
Software engineering in the small, Communications 
of the ACM 43(3) (2000) 115-118. 

11. N.E. Fenton and M. Neil, Software metrics: 
successes, failures and new directions, Journal of 
Systems and Software 47 (1999) 149-157. 

12. G.R. Finnie, G. E. Wittig and J-M. Desharnais, A 
comparison of software effort estimation techniques: 
using function points with neural networks, case-
based reasoning and regression models, Journal of 
Systems and Software 39 (1997) 281-289. 

13. A.R. Gray and S.G. MacDonell, Applications of 
fuzzy logic to software metric models for 
development effort estimation, in: Proceedings of the 
1997 Annual Meeting of the North American Fuzzy 
Information Processing Society, IEEE Computer 
Society Press, 1997, 394-399. 

14. A.R. Gray and S.G. MacDonell, Fuzzy logic for 
software metric models throughout the development 
life-cycle, in: Proceedings of the 1999 Annual 
Meeting of the North American Fuzzy Information 
Processing Society. IEEE Computer Society Press, 
1999, 258-262. 

15. M. Hapke, A. Jaszkiewicz and R. Slowinski, Fuzzy 
project scheduling system for software development, 
Fuzzy Sets and Systems 67 (1994) 101-117. 

16. W. Herroelen and R. Leus, Project scheduling under 
uncertainty: Survey and research potentials, European 
Journal of Operational Research (In Press).  

17. X. Huang, L.F. Capretz, J. Ren and D. Ho, A neuro-
fuzzy model for software cost estimation, in: 
Proceedings of the Third International Conference on 
Quality Software, IEEE Computer Society Press, 
2003, 126-133. 

18. A. Idri and A. Abran, A fuzzy logic based set of 
measures for software project similarity: validation 
and possible improvements, in: Proceedings of the 7th 
International Symposium on Software Metrics, 
London, IEEE Computer Society Press, 2001, 85-96. 

19. A. Idri, A. Abran and L. Kjiri, COCOMO cost 
model using fuzzy logic, in: Proceedings of the 7th 
International Conference on Fuzzy Theory and 
Technology, Atlantic City NJ, 2000, 1-4. 

20. A. Idri, A. Abran and T.M. Khoshgoftaar, 
Estimating software project effort by analogy based 
on linguistic values, in: Proceedings of the 8th 
International Symposium on Software Metrics, 
Ottawa ON, Canada, IEEE Computer Society Press, 
2002, 21-30. 

21. A. Idri, T.M. Khoshgoftaar and A. Abran, Can 
neural networks be easily interpreted in software cost 
estimation? in: Proceedings of the 2002 World 
Congress on Computational Intelligence, Honolulu, 
Hawaii, 2002, 1162-1167. 

22. T.M. Khoshgoftaar and E. B. Allen, Neural networks 
for software quality prediction, in: W. Pedrycz and 
J.F. Peters (eds), Computational Intelligence in 
Software Engineering, Singapore, World Scientific, 
1998, 33-64. 

23. B. Kitchenham, The certainty of uncertainty, in: 
Proceedings of the European Software Measurement 
Conference FESMA’98, Antwerp, Belgium, 1998, 
17-25. 

24. G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: 
Theory and Applications, Prentice Hall, Englewood 
Cliffs NJ, USA 1995. 

25. S. Kumar, B.A. Krishna and P.S. Satsangi, Fuzzy 
systems and neural networks in software engineering 
project management, Journal of Applied Intelligence 
4 (1994) 31-52. 

26. A.L. Lederer and J. Prasad, Software management 
and cost estimating error, Journal of Systems and 
Software 50 (2000) 33-42. 



27. A. Lee, C.H. Cheng and J. Balakrishnan, Software 
development cost estimation: integrating neural 
network with cluster analysis, Information & 
Management 34 (1998) 1-9. 

28. J-Q. Li and Y-S. Fan, Coordination scheduling based 
on fuzzy concepts, in: Proceedings of the 1st 
International Conference on Machine Learning and 
Cybernetics, Beijing, China, IEEE, 2002, 1489-1492. 

29. O. de S. Lima Jr, P.P.M. Farias and A.D. Belchior, 
Fuzzy modelling for function point analysis, Software 
Quality Journal 11 (2003) 149-166. 

30. C-T. Lin and Y-T. Chen, Bid/no-bid decision-
making – a fuzzy linguistic approach, International 
Journal of Project Management 22 (2004) 585-593. 

31. X. Liu, G. Kane and M. Bambroo, An intelligent 
early warning system for software quality 
improvement and project management, in: 
Proceedings of the 15th IEEE International 
Conference on Tools with Artificial Intelligence, 
IEEE Computer Society, 2003, 32-38. 

32. S.G. MacDonell, Software source code sizing using 
fuzzy logic modeling, Information and Software 
Technology 45(7) (2004) 389-404. 

33. S.G. MacDonell, A.R. Gray and J.M. Calvert, 
FULSOME: A fuzzy logic modeling tool for software 
metricians, in: Proceedings of the 1999 Annual 
Meeting of the North American Fuzzy Information 
Processing Society. IEEE Computer Society Press, 
1999, 263-267. 

34. S.G. MacDonell, A.R. Gray and J.M. Calvert, 
FULSOME: Fuzzy logic for software metric 
practitioners and researchers.  In Proceedings of the 
6th International Conference on Neural Information 
Processing ICONIP'99, ANZIIS'99, ANNES'99, and 
ACNN'99. Perth, Western Australia, IEEE Computer 
Society Press, 1999, 308-313. 

35. R.J. Madachy, Heuristic risk assessment using cost 
factors, IEEE Software (May/June 1997) 51-59. 

36. P. Musílek, W. Pedrycz, G. Succi and M. Reformat, 
Software cost estimation with fuzzy models, ACM 
SIGAPP Applied Computing Review 8(2) (2000) 24-
29. 

37. I. Myrtveit and E. Stensrud, A controlled experiment 
to assess the benefits of estimating with analogy and 
regression models, IEEE Transactions on Software 
Engineering 25(4) (1999) 510-525. 

38. M.C. Ohlsson, C. Wohlin and B. Regnell, A project 
effort estimation study, Information and Software 
Technology 40 (1998) 831-839. 

39. L. Özdamar and E. Alanya, Uncertainty modeling in 
software development projects (with case study), 
Annals of Operations Research 102 (2001), 157-178. 

40. H. Pan, C-H. Yeh and R.J. Willis, Computer-aided 
system to solve uncertainty in project management, 
in: Proceedings of the IEEE International Fuzzy 
Systems Conference, IEEE Computer Society Press, 
2001, 1376-1379. 

41. M.J. Pazzani, Knowledge discovery from data? 
IEEE Intelligent Systems (March/April 2000) 10-13. 

42. G. Peeters and G. Dewey, Reducing bias in software 
project estimates, CrossTalk – The Journal of 
Defense Software Engineering (April 2000) 20-24. 

43. L.H. Putnam and W. Myers, How solved is the cost 
estimation problem? IEEE Software (Nov/Dec 1997) 
105-107. 

44. A. Raman and A. Noore, Software metrics for real-
time systems using fuzzy sets, in: Proceedings of the 
35th Southeastern Symposium on System Theory, 
IEEE, 2003, 74-78. 

45. M. Reformat, W. Pedrycz and N. Pizzi, Building a 
software experience factory using granular-based 
models, Fuzzy Sets and Systems 145 (2004) 111-139. 

46. J. Ryder, Fuzzy modeling of software effort 
prediction, in: Proceedings of the IEEE Information 
Technology Conference, IEEE, 1998, 53-56. 

47. B. Samson, D. Ellison and P. Dugard, Software cost 
estimation using an Albus perceptron (CMAC), 
Information and Software Technology 39 (1997) 55-
60. 

48. U.Z. Sanal, A decision support system for fuzzy 
scheduling of software projects, in: Proceedings of 
IEEE AUTOTESTCON, IEEE, 2000, 263-272. 

49. V.L. Sauter, Intuitive decision-making, 
Communications of the ACM 42(6) (1999) 109-115. 

50. M. Shepperd and M. Cartwright, Predicting with 
sparse data, IEEE Transactions on Software 
Engineering 27(11) (2001) 987-998. 

51. M. Shepperd and C. Schofield, Estimating software 
project effort using analogies, IEEE Transactions on 
Software Engineering 23(12) (1997) 736-743. 

52. M. Shin and A.L. Goel, Empirical data modeling in 
software engineering using radial basis functions, 
IEEE Transactions on Software Engineering 26(6) 
(2000) 567-576. 

53. M.F. Shipley, A. de Korvin and K. Omer, BIFPET 
methodology versus PERT in project management: 
fuzzy probability instead of the beta distribution, 
Journal of Engineering and Technology Management 
14 (1997) 49-65. 



54. E. Stensrud and I. Myrtveit, Human performance 
estimating with analogy and regression models: an 
empirical validation, in: Proceedings of the 5th 
International Symposium on Software Metrics, 
Bethesda ML, USA, IEEE Computer Society Press 
(1998) 205-213. 

55. L. Tian and A. Noore, Multistage software 
estimation, in: Proceedings of the 35th Southeastern 
Symposium on System Theory, IEEE, 2003, 232-236. 

56. USC COCOMO II Model Definition Manual, 
version 1.4, University of Southern California, 1997. 

57. F. Walkerden and R. Jeffery, An empirical study of 
analogy-based software effort estimation, Empirical 
Software Engineering 4 (1999) 135-158. 

58. G.E. Wittig and G.R. Finnie, Using artificial neural 
networks and function points to estimate 4GL 
software development effort, Australian Journal of 
Information Systems 1(2) (1994) 87-94. 

59. Z. Xu and T.M. Khoshgoftaar, Identification of 
fuzzy models of software cost estimation, Fuzzy Sets 
and Systems 145 (2004) 141-163. 

60. R.R. Yager and D.P. Filev, Essentials of Fuzzy 
Modeling and Control, Wiley, New York, 1994. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	1. Introduction
	1.1 Project management challenges
	1.2 Fuzzy logic for software development project management

	2. Attitudes to Effort Estimation
	2.1 Interviews and document analyses
	2.1.1 Expectations regarding estimates
	2.1.2 Requirements for estimation methods
	2.1.3 The role of personal experience in estimation
	2.1.4 Early estimation
	2.1.5 Data availability
	2.1.6 Estimation contingencies

	2.2 Questionnaires
	Table 1.  First survey: breakdown of organization size in terms of full-time equivalent development personnel
	Table 2. First survey: breakdown of effort estimation methods used
	Table 4.  Second survey: breakdown of respondents by type of organization
	Table 5.  Second survey: breakdown of effort estimation methods used
	Table 6.  Second survey: stages of process in which effort estimates are made
	Table 7.  Second survey: levels of prediction for organizations performing effort estimation
	Table 8.  Second survey: problems with expert opinion as an estimation method
	Table 9.  Second survey: problems with function point analysis as an estimation method
	Table 10.  Second survey: problems with regression-based models as an estimation method
	Table 11.  Second survey: variables to be considered in a predictive model of effort



	Total 
	Percentage
	Percentage

	3. Attitudes to fuzzy logic modeling
	4. Deriving membership functions
	(b) First survey: Smoothed
	(a) First survey: Raw
	5. Conclusions

