
Full citation: MacDonell, S.G., & Gray, A.R. (2005) The viability of fuzzy logic modeling in
software development effort estimation: opinions and expectations of project managers,
International Journal of Software Engineering and Knowledge Engineering 15(5), pp.893-918.
http://dx.doi.org/10.1142/S0218194005002555

The viability of fuzzy logic modeling in software development effort estimation:

opinions and expectations of project managers1

Stephen G. MacDonell
SERL, School of Computing and Mathematical Sciences, Auckland University of Technology,

Private Bag 92006, Auckland 1142, New Zealand
stephen.macdonell@aut.ac.nz (corresponding author)

Andrew R. Gray

Department of Preventive and Social Medicine
University of Otago, New Zealand

1 An earlier version of part of this paper appeared in the Proceedings of the ICONIP/ANZIIS/ANNES’99 International
Workshop on Future Directions for Intelligent Systems and Information Sciences.

Abstract

There is a growing body of evidence to suggest that
significant benefits may be gained from augmenting
current approaches to software development effort
estimation, and indeed other project management
activities, with models developed using fuzzy logic and
other soft computing methods. The tasks undertaken by
project managers early in a development process would
appear to be particularly amenable to such a strategy,
particularly if fuzzy logic models are used in a
complementary manner with other algorithmic
approaches, thus providing a range of predictions as
opposed to a single point value. As well as providing a
more intuitively acceptable set of estimates, this would
help to reduce or remove the unwarranted level of
certainty associated with a point estimate. Furthermore,
such an approach would enable organizations to ‘store’
their project management knowledge, making them less
susceptible to employee resignations and the like. If
fuzzy logic modeling is to be implemented in industry,
however, managers must first believe it to be a realistic
and workable option. This issue is addressed here by
considering two related questions: one, what
expectations do project managers have in relation to
effort estimation? and two, what is their opinion of the
methods that might be useful in this regard? This is
followed by a discussion of the results of two surveys of
project managers aimed at deriving membership
functions using polling methods, the first using an
interval declaration approach and the second using

votes on fixed points. It is concluded that there is indeed
support in the software engineering practitioner
community for the use of methods based on the principles
of fuzzy logic modeling.

1. INTRODUCTION

The vexed issue of accurate prediction of software
development effort continues to challenge software
engineering researchers. Several factors make this
problem a very difficult one to solve – for instance,
accurate and consistent data collection is problematic,
meaning that records are often noisy or incomplete; a
sound underlying cause and effect model of software
development – one that takes into account all the
variables and their impact – does not exist, but there is
evidence to suggest that both quantitative and qualitative
factors are influential in this regard; there are also
conflicting demands in terms of what is needed from a
predictive model – while accuracy is naturally a crucial
requirement, model interpretability and the facility to
incorporate existing knowledge are also desirable, as well
as general applicability across a range of predictions. In
considering the factors just described, it is no surprise
that modeling methods falling into the soft computing
domain have attracted increasing attention. After all,
these methods are promoted as being especially
appropriate for noisy or incomplete data, for relationships
where there is significant uncertainty, or where the
incorporation of knowledge as well as data is seen as

http://dx.doi.org/10.1142/S0218194005002555�
mailto:stephen.macdonell@aut.ac.nz�

important. On the surface, then, the match between need
and solution would seem to be a good one.

What is less clear, however, is the degree to which these
avenues are thought to be worth pursuing from the
perspective of industry based project managers [41].
That is to say, most of the work on these modeling
methods, including studies undertaken by the authors
[13,14,33,34], has been carried out by researchers rather
than practitioners, much of it without any definitive sense
of the likely acceptability of such methods in an
industrial software development setting [11]. For
instance, while the alternative of using qualitative
labeling for variables as utilised in fuzzy logic methods
has been suggested in research (e.g. [18,53]), the stability
and consistency of such labels in practice has not been
established, and optimal elicitation techniques for
deriving appropriate membership functions have not been
determined or tested. When it is also considered that
informal estimation methods based on experience, expert
opinion or personally moderated analogies remain
commonly used [6], it would seem sensible to consider
the issue of industry acceptability before advancing too
much further. (Note: this is not to say that all research
should be determined purely on the basis of existing
practitioner needs, but rather that those involved in
practice-oriented research should be sufficiently well
informed to have a sense of the likely relevance and
applicability of their work in industry.) This paper
therefore addresses three related issues – what
expectations do project managers have in terms of effort
estimation methods; what attitudes do project managers
have in regard to existing and proposed methods; and
how effectively and consistently can project managers
specify ranges of values for a selection of relevant
variables, or consistent labels for a selection of values,
such that might be used in a fuzzy prediction system.

1.1 Project management challenges
As in other disciplines the management of software
development projects makes significant use of measures
to characterize the processes employed, the resources
utilised and the artifacts consumed in or produced by
those processes. Models are built and calibrated using
these measures to assist the project manager to classify,
predict, monitor, control or evaluate aspects of their
development projects. One of the most common uses of
such models in software engineering has been in the
prediction of software development effort. For the
developer, manager and user of any software product,
project effort estimation is a very important activity. The
estimate is frequently an input to contract negotiations,
resource and personnel costing and charging for the
project (although there is some very sound rationale for
treating cost and price separately, particularly at the
bidding stage of a competitive contract [23]). It provides

a basis for the project manager to plan and control
subsequent development activities. It may have run-on
effects for the user, in that their operations may be
planned around the delivery of a software product.
Clearly then an accurate and robust estimation model is
desirable from all perspectives. The inputs to such
models of development effort commonly include some
measure of system size, system complexity, the
development tools employed and developer experience
(among many other factors). The output can be any
measure of effort, such as person-days, and may be
specified at the system, sub-system or module level.

A common aim of effort prediction research is to build
and validate models that deliver estimates within 25% of
the actual effort at least 75% of the time [8].
Unfortunately, even this modest goal is seldom achieved
in a holdout sample (that is, on data that was not used in
model parameter calibration). Obtaining such a model is
difficult for a number of reasons. If there existed a
complete underlying theoretical foundation for software
development then incorporating all the influential factors
and their impact in a model to predict development effort
would be a challenging but ultimately achievable goal.
This is, however, clearly not the case – there is much
about the software development process that remains
‘uncontrollable’, from the highly variable influence of
project personnel to the unknown impact of new
technologies. Under these circumstances obtaining a
comprehensive, widely applicable and highly accurate
predictive model of software development effort would
appear to be highly unlikely. In such circumstances one
might expect that locally calibrated useful, if
unspectacular, models would be developed, accepted and
used by all involved with an awareness of their inherent
limitations. However, in many respects the contrary
occurred – the desire for high precision in what are
clearly acknowledged as estimates created an almost
fanatical search for the ultimate estimation method. In
the last five years, however, it does appear that there has
been a change in attitude, and a greater acceptance of the
notion that estimates are just that – values that have a
degree of uncertainty associated with them. Indeed,
given the lack of a formal model of the software process,
the drive for a single one-fits-all model is fundamentally
flawed and should be tempered by more pragmatic aims.

Underlying this challenge is an inherent trade-off in the
development and use of effort estimation models – is it
better to be approximately correct most of the time or
precisely inaccurate all of the time? It is an acceptance
of this trade-off that provides some of the rationale for
introducing fuzzy sets and fuzzy logic into the estimation
process. In extreme cases, managers are expected to
predict to within a person-day the effort requirements for
a project about which they know relatively little, perhaps
at the preliminary specification stage. Their estimate is

likely to be based on best-guess figures for, among other
things, system size and developer productivity, both of
which are subject to significant variation. Moreover, if
the project is open to competitive tender, significant
pressure may fall on the manager to provide an even
earlier estimate, so that a bid may be submitted in order
to win the project contract. Unfortunately, these
estimates tend to be set in stone and they take on
significant meaning in the context of the client’s
expenditure and their subsequent operational planning. It
is little wonder, then, that the software industry is
frequently criticized by its clients for recurring cost and
schedule over-runs – the fact is that in at least some cases
the estimates provided were simply unrealistic. Use of
estimation methods that take uncertainty into account and
produce similarly qualified estimates has the potential to
partially alleviate some of these difficulties.

1.2 Fuzzy logic for software development project
management
In response to the problems and challenges just
described, fuzzy logic has been proposed as a potential
solution. This is founded on the fact that fuzzy logic
allows for qualitative specification of input values and
can generate qualitative outputs for the effort estimate
using a stored fuzzy rule base. Furthermore, linguistic
outputs can later be replaced by ranges, fuzzy numbers or
crisp numeric values as more accurate input information
becomes available. In other words, the precision of the
input data can suitably reflect the amount of knowledge
that is available at the time the estimate is made and the
precision of the output(s) can usefully reflect and
reinforce the appropriate degree of certainty in planning.
For instance, initially the size of a system may be said to
be “above average”, later it becomes “about 100”
components, and later still it is exactly 105 components.
In terms of the model outputs, initially the project may be
expected to require a “very high” amount of effort, later
“about 300 developer months”, and finally 360 developer
months. All of these levels of detail can be managed in a
single fuzzy system of membership functions and rules,
making the process consistent and efficient over the life
of a project. The use of such an approach is particularly
suited to software measurement models early in the
software process before even approximate counts of
functions and their complexities are available.

In recent years, then, research investigating the
application of fuzzy logic methods in software project
management has begun to gain some momentum [16].
Kumar et al. [25] provide an excellent introduction to the
potential of fuzzy logic and neural network modeling in
the software engineering domain. A rule-based expert
system to assist personnel in software project risk
management is described by Madachy [35]. The system
in question used a taxonomy of crisp set risk factors
derived from the well-known COCOMO research

projects [5,56]. Relationships between these factors were
formed into rule sets based on knowledge and heuristics
elicited from domain experts (emphasizing the need for
methods to capture and codify personal expertise and
local organizational knowledge, as well as more
generically understood relationships). Similar use of the
COCOMO factors in effort estimation, but in this case
using fuzzy sets and rules, has been extensively reported
[18,19,36,17,46,55]. Similar fuzzy extensions to
function point analysis (FPA) [2] have also been
proposed (and in some cases evaluated using artificial or
industry data) in order to enable managers to avoid the
crisp evaluations of function scale and complexity
[29,44,46]. Idri and Abran further suggest that fuzzy
logic could also be employed to describe the degree of
similarity between projects or project attributes, a
characteristic that would be especially useful in the
growing field of research and practice in analogy-based
prediction [18,20].

Rather than adapting and augmenting existing project
management methods such as COCOMO and FPA, other
research has resulted in the development of independent
fuzzy systems, complete with fuzzy sets, rule bases and
inference engines, in order to provide robust predictions
of project size and effort [1,32,59]. The challenge of
effective project scheduling has also been addressed by
research employing fuzzy sets to represent uncertainty in
start and finish times, activity durations, resource
availability and resource capabilities [28,16,39,40,48].
This has been extended to then enable more robust risk
identification i.e. noting activities that are subject to high
uncertainty [15,31].

Other methods that fall within the wider domain of soft
computing have also received attention in the last ten
years. In particular, the evaluation of machine learning
techniques in software engineering applications has been
extensive. Multi-layer perceptron (MLP) neural
networks trained using back propagation have been
among the methods most commonly assessed (e.g. see
[12,27]) although other structures, including radial basis
functions [52] and Albus perceptrons [47], have also
been considered, as have fuzzy neural networks [45]. In
some cases these methods have indeed enabled the
construction of accurate models (e.g. [22,27,58]). These
methods are also relatively ‘data-hungry’, however, a
requirement that cannot always be easily satisfied in
software engineering practice. Furthermore, such
methods do not lend themselves to being readily
understood by project managers. While methods do exist
to enable meaning or ‘knowledge’ to be extracted from
neural networks, they are still generally perceived to be
black box in nature. This has a detrimental effect on their
acceptability in industry [21]. A sense of belief and trust
in any model is a necessary precursor to its effective use

– a lack of transparency in neural network models does
little to encourage such trust.

In many respects this need for trust and model credibility
has led directly to increased activity concerning
estimation on the basis of analogous observations (e.g.
see [3,51,54,57]). Such methods reinforce the perception
that local project histories are indeed valuable in this
regard, particularly where their use is augmented by
expert knowledge [54]. Both Myrtveit and Stensrud [37]
and Walkerden and Jeffery [57] found that a combination
of expert judgment and estimation tools (in their cases
regression analysis and analogy-based prediction) proved
to be the most effective approach, although the project
managers’ perceptions of tool performance tended to
undervalue the contribution of the tools. Sauter [49, page
109] similarly supports the notion of decision support
systems that “…blend analytical tools with intuitive
heuristics to improve managers’ insights about factors too
complex to build into models”, particularly under
circumstances in which the data required for fully
informed analysis is simply not available. While Lederer
and Prasad [26] found evidence to suggest that estimation
accuracy was more likely to be improved if guessing,
intuition and personal memory were not used, they also
found that the use of algorithmic modeling methods did
not facilitate more accurate estimates. Again a
combination of methods may instead prove to be the
optimal approach [42]. Moreover, accuracy is just one
(albeit important) characteristic of a useful estimation
method – interpretability of models, for instance, is also a
beneficial and therefore desirable trait.

A significant number of related papers have also
described the various difficulties encountered by
researchers and practitioners in software project
management modeling. For instance, Ohlsson et al. [38]
report the results of an experiment involving the iterative
development of an experience base to enhance effort
estimation over time, reinforcing the need for ongoing
model refinement. Shepperd and Cartwright [50]
investigate the use of analytic hierarchy processing
(AHP) as a means of prediction given only a minimal
amount of data, a situation that is particularly prevalent in
smaller organizations [10]. Both discussions emphasize
the value and importance of expert judgment in the
estimation process. The need for managers and clients to
accept and deal with the inherent uncertainty in software
development projects is emphasized by, among others,
Fenton and Neil [11], Kitchenham [23], Lin and Chen
[30] and Putnam and Myers [43]. The latter authors
suggest that such an approach would naturally lead to the
provision of a range estimate (a strategy also
recommended by Peeters and Dewey [42]), rather than a
single point value, although they acknowledge that this
may not be acceptable to higher-level management. In
this case they recommend the use of probabilities, or the

acceptance of a project portfolio approach (also
supported by Kitchenham [23] and Bilalis et al. 2002
[4]), whereby a loss on one project is accepted on the
understanding that there is likely to be a corresponding
gain on another. In any case there is a need for all
involved to moderate their expectations regarding the
accuracy of any models developed.

These related discussions provide further rationale for the
use of methods such as fuzzy logic in effort estimation
and similar activities, although such methods are not
mentioned specifically. They also reflect more generally
the continued desire of researchers to enhance the
performance of effort estimation activities. The potential
of soft computing seems evident, but it remains to be
seen whether such approaches are applicable or
acceptable in industry settings [7], in part motivating the
work presented here.

2. ATTITUDES TO EFFORT ESTIMATION

The improvement of software development effort
estimation has thus been a long-time goal of software
engineering researchers, driven by the apparent needs of
industry project managers. Published evidence in
support of these needs is not extensive, however. In fact,
some authors have found that in spite of significant
research efforts in the last twenty years project managers
continue to both prefer and use ad hoc estimation
methods based on personal experience, expert opinion
and local analogies [6,42,57]. It is possible to speculate
on why this might be – perhaps it is a matter of managers
preferring to use the ‘tried and true’ over the innovative;
there may be an assumption that in fact few advances
have been made; or there may be a belief that such
methods require excessive amounts of data to be
effective. In order to directly address this scarcity of
explicit information on project managers’ needs and
expectations, this work utilized a range of data collection
exercises incorporating interviews, document analyses
and the application of structured questionnaires, as
follows.

2.1 Interviews and document analyses
The first phase of this research was a series of semi-
structured interviews with project managers from five
groups responsible for software development, to gain
high-level insights into their requirements in terms of
support for project effort estimation. The excerpts
presented in this section are taken directly from those
interviews and from the examination of the same
organizations’ internal documents. Two of the
organizations are based in New Zealand, three in the
United Kingdom. Three are software development
organizations, one is a banking and insurance institution
and the other is a national utility provider. The
organizations were chosen to cover a range of sectors,

organization types and sizes. They had previously
indicated an interest in effort estimation issues in
response to a general mail-out request for participation.
In this respect they self-selected with a declared
awareness of the subject. Given the exploratory nature of
this phase of the study, however, their responses can and
should be treated as illustrative rather than definitive.
(Names of both the individuals and their organizations
are not given here for the obvious reason that many are
quite critical of their own practices. An indication of the
source of each comment/quote [Organization 1-5] is
provided. The candor shown by the project personnel
was appreciated.)

The interviews were all conducted in person by one of
the authors with between one and three project managers
from each organization. In each case, six topic areas
were addressed: expectations regarding estimation,
requirements for an effective estimation method, the role
and impact of personal experience, the need for early
estimation, availability of historical data, and the use of
contingency in estimation. The interviews were semi-
structured in the sense that the same topics were traversed
– there were no pre-determined sets of questions for each,
however. Rather, the interviews took the form of a free-
ranging interactive discussion over the topics at hand.
While this could be considered as compromising the
interview process, on the positive side such an approach
enabled a richer picture to be formed regarding attitudes
and practices with respect to estimation.

What follows is a selection of indicative comments
relating to each topic. As the interviews were discussion
oriented, and formed only the initial part of this study, it
is neither feasible nor appropriate to present the
managers’ views in a more structured manner. The
comments shown are typical of those made. It should be
acknowledged that the information is incomplete and
anecdotal. In terms of the overall study, however, it
served to highlight the issues that needed to be followed
up in the subsequent stages of the work.

2.1.1 Expectations regarding estimates

“The risks inherent in the project, and the
uncertainties in the estimate, should be clearly identified
to provide assurance to the customer, especially about
delivery dates and cost.” [O2]

“Although software project estimation will never be
an exact science, it can be transformed from a black art
into a series of systematic steps that provide estimates
with an acceptable degree of risk.” [O3]

 “An estimate is not an exact measure, but an
approximation based on judgment. In the computing
world this is usually bundled up in the term ‘experience’.
Is experience enough? We still get it wrong. We under
estimate constantly. Maybe not so much on the small
projects, but quite significantly on the larger ones.” [O4]

These comments suggest that project managers are
acutely aware of the uncertainty inherent in the
estimation process. As a result it appears that at least
some would prefer to see estimates provided with an
associated confidence factor, along with an assessment of
the source and level of risk associated with the likelihood
of an estimate being incorrect.

2.1.2 Requirements for estimation methods

“[An effective estimation method needs to be] simple,
thorough, realistic, inexpensive... practical, cost-
effective, and versatile. It should not add to overheads.”
[O2]

“The current methodology... is far too complex and
difficult to use. This is demonstrated by the fact that it is
not used.” [O4]
Although many estimation models exist, their complexity
in use is inhibiting their adoption, at least as reflected in
these quotes. An ideal modeling method should strike a
balance between effectiveness, in terms of accuracy and
consistency, and simplicity in calculation and application.

2.1.3 The role of personal experience in
estimation

“Each person undertaking estimation tends to utilize
their own heuristic approach.” [O1]

 “The Project Manager’s own experience and other
Project Managers’ experience either within [the
company] or in other organizations can provide a
valuable range of reasonableness for a given
development.” [O3]

“The company’s next project takes on board very few
of the lessons that we should be learning from the past.
The lessons are generally only transferred if the players
are the same. That is, we are only learning as
individuals not as a company.” [O4]

“Current estimates are based on personal experience.
Everyone’s experience is different and thus different
people produce different estimates for the same function.
People are inclined to introduce their own expertise into
the estimation process.” [O4]

“A great deal of experience is required to produce
accurate and reliable estimates… Software estimating
tools cannot replace real experience in the real world of
project work, but they can supplement such experience.”
[O5]
These remarks indicate the degree of influence that
individual project managers have on the estimation
process and its outcomes. While it could be said that
individual influence should be removed entirely this is
unlikely to be feasible in practice. Moreover, this may
result in a significant loss of local knowledge that might
be crucial to the production of useful estimates. A
modeling and estimation method that sensibly
incorporates the views of experienced personnel would
therefore seem to be a potentially more useful approach.

2.1.4 Early estimation
“A ‘simple’ form of Function Point Analysis may be

used to size development projects in their early stages…
and may be used as a basis for producing project
estimates.” [O2]

 “Quite often we do not know enough about the
project to be confident in the estimates that we produce.
This is consistent with the more you know and the better
it is defined, the greater the accuracy of the estimation.
However, we are usually asked to estimate design and
development together, which is obviously a more risky
situation.” [O4]

“People tend to remember these earliest estimates of
the cost or duration of a project, so it is important that
these estimates should err on the side of caution, and be
properly qualified.” [O5]
Early estimates are demanded by clients, irrespective of
the fact that a project manager may have very little
information at that time on which to base their
predictions. Modeling methods that therefore allow early
‘ball park’ estimates to be developed, but which deliver
them to both manager and client with appropriate
qualification, would appear to be an acceptable
compromise.

2.1.5 Data availability

“Many firms do not have adequate records about the
performance of the project team on similar projects.”
[O1]

“We operate solely on guess work and rules of thumb,
not on any empirical data.” [O4]

 “We do not keep an adequate history of how well
actuals meet estimates. This means that we lack
indications of where our estimation is good; where it is
bad; and what areas we did not estimate at all.” [O5]
To some extent a lack of historical data could reflect a
low level of maturity in an organization’s software
process. That said, it is imperative that even under such
circumstances an organization is able to produce
reasonably accurate estimates of effort for potential
clients. Modeling methods that do not necessarily
require large stores of data, but that can dynamically
adapt as data becomes available, would be useful in this
respect.

2.1.6 Estimation contingencies

“We use a standard formula to come up with our
estimates and then we apply a ‘fudge factor’ as a
contingency, based on our own experiences.” [O1]

“Early in the project the effort contingency will be
large due to the uncertainty of the detailed requirements,
system design, likely problem areas etc. As the project
progresses, the contingency should be reduced.” [O3]

“Software estimates are frequently based on
guesswork rather than fact.” [O5]
The comments above would suggest that estimation
methods that are not so ‘locked down’ as to prevent the

incorporation of sensible contingencies based on
organizational knowledge would be preferred. With this
latter point in mind, some means of storing that
knowledge needs to be implemented.

The excerpts above provide some valuable insights into
the views and desires of project managers in relation to
effort estimation. On the basis of their remarks it seems
clear that managers would value modeling and estimation
methods that addressed these desires. The characteristics
of fuzzy logic modeling – being able to incorporate both
data and expert knowledge, robustness, variable
granularity in inputs and outputs, and transparency
through the intuitive nature of fuzzy rules – make it a
potentially effective approach in this domain.

2.2 Questionnaires
Having established some high-level anecdotal evidence
supporting the need for alternative or complementary
modeling methods, the study then considered the state of
practice. This section reports the results of two postal
surveys of project managers carried out in New Zealand
software organizations. The focus of the surveys was on
contemporary practices in software development and
acquisition, addressing in particular any model-building
methods used in effort estimation.

The first, one-page survey was distributed as part of a
much larger data collection exercise investigating
systems development and acquisition practices. The total
sample size was just under 850 organizations – only 160
of these, however, were understood to conduct software
development as opposed to acquisition through
outsourcing and/or integration services. Of the 160,
thirty-eight provided usable responses. Seventeen of
these indicated the use of measurement/metrics in their
project management activities, so the following
information pertains to this set of respondents. These
were all small organizations – most employed between 1
and 10 full-time equivalent (FTE) development personnel
(see Table 1), an expected profile given the relative
dominance of small organizations in New Zealand. The
majority of these organizations (13 of 17, or 77%) used
expert opinion to produce estimates of development
effort, significantly more prevalent than any other method
(reported in Table 2).

FTEs Frequency Percentage
1-10 10 59%
11-50 4 23%
51+ 3 18%
Total 17 100%

Table 1. First survey: breakdown of organization size
in terms of full-time equivalent development personnel

Method used Frequency Percentage
Expert opinion 13 77%
Function point analysis 5 29%
COCOMO 1 6%
Regression-based
models

 0 0%

Other techniques 3 18%
Table 2. First survey: breakdown of effort estimation
methods used

A second more detailed survey was developed and sent
out six months later to a smaller sample (330
organizations from a range of industry sectors, including
150 sites understood to undertake software development)
to more fully address issues related to effort estimation.
Forty-four usable responses were received. The
distribution of organization size is shown in Table 3.
While the organizations are again typically small, a wider
range of sizes was represented in the respondents to this
survey. Table 4 shows the nature of business of the forty-
four organizations.

FTEs Frequency Percentage
0-4 10 23%
5-9 4 9%
10-14 5 11%
15-24 5 11%
25-49 7 16%
50+ 5 11%
Not given 8 18%
Total 44 ~100%

Table 3. Second survey: breakdown of organization
size in terms of full-time equivalent development
personnel

Organization type Frequency Percentage
Commercial organization 18 41%
Government 4 9%
Commercial software
house

14 32%

Not given 8 18%
Total 44 100%
Table 4. Second survey: breakdown of respondents by
type of organization

Thirty-six of the forty-four organizations replied to the
questions concerning development effort prediction, with
thirty-two of these stating that they employed one or
more methods to estimate effort. Of the four who said
that they did not predict effort, one commented that they
“…did not know how to go about making such
predictions”, two said that there was no need for such
predictions, and one remarked that their development
environment was too unstable to allow such management.
In terms of the modeling methods actually employed by
those respondents who performed estimation, expert

opinion again totally dominated those others considered
(as shown in Table 5). Given that this sample included a
significant proportion of software houses the relative lack
of infiltration of the function point analysis (FPA) [2] and
COCOMO [5] techniques was unexpected.

Technique A

lw
ays

M
ostly

O
ccasional

N
ever

N
ot heard

of

M
issing

Expert opinion 22 9 2 0 1 10
Function point
analysis

 1 2 14 10 4 13

COCOMO 0 0 3 3 18 20
Regression-based
models

 2 5 12 5 5 15

Other techniques
(SLIM)

0 0 1 0 0 -

Table 5. Second survey: breakdown of effort estimation
methods used

The next question was concerned with the stage at which
estimates were actually produced – as expected the need
for predictive capability at the analysis phase is most
evident (see Table 6). Estimation at the development
task level for individual components was also undertaken
by most of the respondents (see Table 7). The
importance of estimation during the early stages of the
process further supports the use of qualitative estimation
techniques, since it is often difficult to accurately
estimate some of the factors used in effort estimation
models at these stages.

Stage of process Frequency Percentage
Analysis 30 94%
Design 19 59%
Prototyping 11 34%
Programming 11 34%
Testing 4 13%
Maintenance 6 19%

Table 6. Second survey: stages of process in which
effort estimates are made

Level at which
predictions are made

Frequency Percentage

System 8 25%
Component 10 31%
Task 14 44%
Both task and component
combined

 10 31%

Table 7. Second survey: levels of prediction for
organizations performing effort estimation

The next section of the survey investigated problems or
difficulties encountered by the organizations in using the

specified estimation methods. (Note that only expert
opinion, function point analysis and regression-based
methods were considered as they each had a reasonable
number of users able to comment on their effectiveness.)
Problems cited in relation to expert opinion are shown in
Table 8. It is interesting to note that, even though it is by
far the most widely used method (Table 5), nineteen of
the thirty-two respondents acknowledged that the
technique was not sufficiently accurate. While this is
clearly the view held by the respondents, it could reflect
the assertion that expectations of accuracy are indeed
very high. Other issues revealed in response to this
question included a lack of appropriate experts in one
organization, leading to an assertion that the technique
should not be used as the sole or final approach. Another
respondent noted the problems caused by inconsistencies
in the opinions given by various staff. One respondent
suggested that this method was reasonably accurate for
small to medium sized projects, which for them was up to
three months duration, but was less effective for larger
projects.

The degree to which organisations had experienced
various difficulties in using function point analysis is
reported in Table 9. Relatively speaking, accuracy
seemed to be less of a problem when compared to other
difficulties. In particular, it appears that there is too
much certainty required in the input information, and that
this information is not available at the stage when the
predictions need to be provided. An additional problem
cited in regard to FPA was that productivity rates
fluctuated too much from project to project to enable
consistent predictions to be produced. Another
respondent mentioned that there was resistance to FPA
from personnel given its “seemingly weird basis”. One
of the respondents who checked the box to indicate that
FPA was too complex felt sufficiently strongly about this
to use five ticks! This may be interpreted as supporting
the need for simple-to-understand modeling techniques in
this domain.

Problem Frequency
Technique is not accurate enough 19
Do not collect necessary information
accurately enough

 12

Need predictions too early in
development

 13

Information is too costly or difficult to
collect

 1

Data requirements for calibration cannot
be met

 4

Technique is too complex 0
Table 8. Second survey: problems with expert opinion
as an estimation method

Most prominent among the difficulties cited in regard to
regression-based modeling was the need for precision in

the information collected, and to a lesser extent the costs
incurred or obstacles encountered in the collection
process. It may be that this method is used most often to
provide an alternative estimate to compare against that
obtained through expert opinion or function point
analysis (given that it tends to be used only ‘occasionally’
(Table 5)).

Problem Frequency
Technique is not accurate enough 3
Do not collect necessary information
accurately enough

 7

Need predictions too early in
development

 9

Information is too costly or difficult to
collect

 4

Data requirements for calibration cannot
be met

 2

Technique is too complex 4
Table 9. Second survey: problems with function point
analysis as an estimation method

Problem Frequency
Technique is not accurate enough 1
Do not collect necessary information
accurately enough

 6

Need predictions too early in
development

 1

Information is too costly or difficult to
collect

 3

Data requirements for calibration cannot
be met

 0

Technique is too complex 2
Table 10. Second survey: problems with regression-
based models as an estimation method

Project managers were then asked to indicate the degree
to which they believed that certain factors ought to be
included in a predictive model for development effort,
reported in Table 11. (Note that these factors were
specified in the survey – others suggested by the
managers themselves are mentioned below.)

Measurement Not
important

Could be
included

Should be
included

Must be
included

System size 0 4 6 25
System
complexity

 0 2 7 26

Developer
experience

2 3 18 12

Developer tools 1 6 11 17
Developers’
methodology

1 7 16 11

Team size 1 6 15 11
Table 11. Second survey: variables to be considered in
a predictive model of effort

Several other factors were suggested by the project
managers as being important in such models, ranging
from the number of tables in the system and data
conversion requirements through to the degree of
interaction between developers and users and specific
system performance needs. The most frequently
mentioned factor, however, was the existence of a user-
imposed timeline – this was suggested as being an
essential component in a predictive model by six
different project managers.

3. ATTITUDES TO FUZZY LOGIC
MODELING

The information presented in the previous sections
provides indirect support for the view that fuzzy logic
modeling would have appeal to at least some project
managers. The final component of the second survey
addressed this issue directly, in order to assess the
possible acceptability of fuzzy logic modeling in effort
estimation (see also [34]). Thirty-one of the thirty-six
respondents actively involved in managing development
projects had heard of fuzzy logic (see Table 12). Eleven
stated that they were interested in using fuzzy logic
techniques, twenty-three stated that they would need to
know more about the technique before making a decision,
and two considered that fuzzy logic techniques would not
be useful to them (see Table 13). Whilst the high
awareness of fuzzy logic was not entirely unexpected,
given that it has received a reasonable amount of
coverage in the popular press in recent years, finding
eleven organizations overtly interested in using fuzzy
logic modeling was not anticipated, and is an
encouraging result in terms of the likely acceptability of
such an approach in industry.

Response Number Percentage
Heard of fuzzy logic 31 86%
Have used fuzzy logic 2 6%
Using fuzzy logic 1 3%
Table 12. Second survey: awareness of fuzzy logic

Response Number Percentage
Interested in using fuzzy
logic

11 31%

Interested, but need to
know more before using
fuzzy logic

23 64%

Not interested in using
fuzzy logic

2 5%

Table 13. Second survey: interest in using fuzzy logic in
effort estimation

Some of the advantages of fuzzy logic in regard to
development effort estimation have already been
described. Three of these advantages – the opportunity

to use expert knowledge in model development, the
possibility of using linguistic (non-numeric) inputs, and
the ability to generate linguistic or range outputs – were
put to survey respondents, with a request that they
indicate their degree of interest in each (reported in Table
14). Those respondents expressing some interest in using
fuzzy logic (in answer to the previous question) found
each of the three advantages equally appealing. Of the
three, that receiving strongest support was the
opportunity to produce linguistic or range outputs rather
than a crisp point value. These results provide direct
support for the comments reported above suggesting that
managers are indeed aware that they often cannot (or at
least should not) realistically provide exact numbers as
inputs to models, and do not necessarily want to get exact
numbers back out either, given the uncertainty inherent in
their measurement and estimation processes.

Response Number Percentage
Using expert knowledge for
model development

19 56%

Linguistic inputs in place of
numeric values

19 56%

Linguistic outputs in place
of numeric values

21 62%

Table 14. Second survey: interest in perceived
advantages of fuzzy logic

Overall these results suggest that the challenges faced by
project managers in using existing modeling techniques
could be partially alleviated through the use of fuzzy
logic modeling. Given the apparently high level of
interest in the method, one might ask why there is such a
low level of actual use. This disparity could be due to a
low level of fuzzy logic software availability for non-
specialists, a lack of accessible guidelines (function point
analysis, by comparison, has an internationally developed
education and certification framework), and an absence
of published successful case studies (something of a
‘catch-22’ situation). Alternatively there may be
uncertainty regarding more fundamental issues, such as
the likely stability of managers’ perceptions in relation to
fuzzy membership or effective means of elicitation for
rules and membership functions. This latter issue is now
addressed, as the determination of appropriate fuzzy sets
is clearly a necessary precursor to building useful fuzzy
logic estimation models.

4. DERIVING MEMBERSHIP FUNCTIONS

The work described in this section is principally
concerned with the task of determining appropriate
membership sets for software development effort
estimation. In order to further assess the feasibility of
fuzzy logic modeling in this domain the two surveys
discussed above were also used to examine project

managers’ perceptions of three potentially relevant
variables – data model size, functionality size and
developer experience.

One method of eliciting membership functions is that of
polling, as discussed by Yager and Filev [60]. This
involves interviewing a number of experts and asking
them to categorize values as belonging to two or more
labels. The values of the membership functions at each
point are determined from the proportion of experts who
use those labels to describe the point. This provides a
simple method for deriving membership functions
without demanding high levels of understanding of fuzzy
logic from the domain experts – software project
managers in this case. It is also an effective technique
when faced with a large number of experts and reaching
consensus is unlikely or impractical. Furthermore, it
enables opinions to be weighted based on the level of
expertise of the manager providing the data. Other
alternatives to membership function determination that
involve managers drawing the functions require those
managers to have an understanding of fuzzy logic that to
some extent defeats its ease of use as a modeling
technique. Further expert-based methods include
exemplification, where memberships are ascribed to
values at a set number of levels of belief [60] or directly
as membership functions [9]. Many methods are
available for deriving membership functions from
numerical data using statistical or machine-learning
techniques [9,24,60], but these obviously assume the
existence of sufficiently large volumes of data, something
that is not always the case in software engineering
practice. In this study the use of such data-driven
approaches was not feasible. The surveys therefore used
two different polling methods, the first employing an
interval declaration approach and the second using votes
on fixed points.

The first survey elicited the views of 38 project
managers, with each indicating the range within which
three labels, small, medium, and large, were most
appropriate for three variables, namely data model size
(as measured by the number of entities in an entity
relationship diagram), functionality size (as measured by
the number of distinct system modules, defined as
screens, reports, and batch processing modules), and
developer experience (measured in years). The second
survey involved 34 managers indicating the most
appropriate label from a range of three (low, medium and
high) for pre-specified values of the same three variables.
The proportion of managers ascribing a label to a
particular value is plotted as the membership function. In
the graphs below (Figures 1 to 3) the set of sub-graphs
for the first survey were determined using equally spaced
intervals, while the second set of sub-graphs resulted
from the use of predetermined points. Each figure
includes graphs of the raw membership functions along

with the same membership functions smoothed using
Bezier curves to produce typically more continuous
representations. It can be noted that some unusual values
were returned in the first survey that, if correct, would
reflect very unusual development practices or a lack of
understanding as to what constituted an entity or a system
module, even though these were explained in the survey.
These observations have not been edited out since they
presumably reflect at least some uncertainty in the
membership functions. The results presented here are
therefore from the entire data sets collected from both
surveys.

Figure 1 provides depictions of the membership functions
for data model size for the labels small, medium and
large. While some insights can be drawn from these
graphs, the results are confounded by the inclusion of
some surprisingly high values in the category of small
data model size in the first survey and medium size in the
second, resulting in long right-hand tails. (In fact, this is
a common occurrence for all three factors in both surveys
with the exception of developer experience in the first
survey.) Generally, however, the relative shapes of the
membership functions are as expected, with, for instance,
low numbers of entities being labeled as small to a high
degree.

Functionality size was measured in this study using a
count of the number of screen and report modules in a
system. In examining graphs (a) and (b) of Figure 2 it is
clear that range-based classification of the number of
modules between approximately 30 and 60 is
problematic, with the labels of small, medium and large
all being applicable to a degree of between 0.15 and 0.5.
The membership functions obtained for the same factor
in the second survey, which employed the strategy of
point-labeling, are of the form more commonly expected.

Fig. 1. Size of data model.

(a) First survey: Raw

(b) First survey: Smoothed

(c) Second survey: Raw

(d) Second survey: Smoothed

Fig. 2. Number of modules.

(a) First survey: Raw

(b) First survey: Smoothed

 (c) Second survey: Raw

(d) Second survey: Smoothed

Fig. 3. Experience.

(a) First survey: Raw

(b) First survey: Smoothed

(c) Second survey: Raw

(d) Second survey: Smoothed

In terms of obtaining what might be considered to be
‘typical’ membership function profiles, those determined
from polling for developer experience provide the closest
approximation (as shown in Figure 3). There appears to
be, for this variable at least, general agreement as to what
constitutes a low, medium or high amount of developer
experience, implying that the perception of developer
experience is more consistent among project managers.

In comparing the two polling approaches it appears that
using the ‘classify pre-specified values’ approach (as
adopted in the second survey) resulted in more useful
membership functions than that requiring managers to
‘give a range of values that fits the label’ (as used in
survey one). The membership functions show more
consistent definition under the second survey approach,
especially for the medium size functions. That said, no
difference was observed for the developer experience
factor, which suggests that this is a much less variable
concept for managers. The two surveys involved similar

(in some cases the same) project managers, reinforcing
the view that the differences are due to the elicitation
method rather than the vagaries of the samples.

It would appear from the above analysis that the use of
standardized fuzzy logic models for software project
management is unlikely, given the significant individual
variation in perceptions of membership categories. Since
in some cases the membership functions for the medium
categories are not even strictly convex there is evidence
of considerable disagreement in terms of perceptions.
While it is disappointing that the size-based measures
were assessed so inconsistently by the managers, this
does not in itself invalidate any of the managers using
such membership functions. Merely, it would appear
unwise for them to share such functions or to use
linguistic labels for inter-organization communication
without first ensuring that they shared common
perceptions. Organizations with managers who were not
‘typical’ in their perceptions would need to ascertain
what they personally defined as suitable membership
functions. Furthermore, given that the managers who
took part in the survey were able to specify membership
functions for developer experience with some
consistency, it may be that the difficulties related more to
the concepts of data model and functionality size rather
than to the approach itself. As a result, it appears that
fuzzy logic modeling using membership function
derivation from knowledgeable personnel remains a
potentially effective complementary approach for
prediction in software project management.

It is acknowledged here that research into the underlying
structure and computation of fuzzy logic modeling has
advanced significantly even in the last five years, and that
the methods and techniques discussed here are not
anywhere near that level of sophistication. That said, this
study was intended to be an assessment of the viability of
fuzzy logic-type approaches in the software management
domain, a domain that is relatively immature in its use of
non-statistical analysis methods. If project managers
could see no appeal in even simple models that
incorporate uncertainty and vagueness, then significantly
more complicated approaches in terms of their
algorithmic form and content would almost certainly be
rejected even more readily, reinforcing the need for
balance in respect to sophistication and understandability
of any method.

 5. CONCLUSIONS

On the basis of the evidence presented in the previous
sections it is clear that at least some project managers
among the survey respondents:

1. would like to have the opportunity to use estimation
methods that are able to incorporate both data and

knowledge and that also take uncertainty into
account

2. continue to employ expert opinion extensively in
project management – in fact it may still be the
dominant technique

3. are aware of the limitations of existing estimation
methods

4. are aware of fuzzy logic modeling and of what it
could offer in terms of software project management,
with some of these managers interested in using such
an approach

5. are able to specify membership functions via polling
methods, but are able to do so more consistently
using fixed point voting rather than interval
declaration.

As the above analyses were based on the views of small
samples of project managers it is not possible to say how
generally the conclusions of this study might apply.
Furthermore, some of the evidence, particularly the
quotes derived from the interviews, is anecdotal, and in
itself does not provide direct support for the use of fuzzy
logic modeling in software project management.
However, the overall outcomes are consistent with those
of previous studies, and they do support the notion that
such an approach could be readily accepted in an
industrial software development setting, thus providing
sufficient motivation for further research to be
undertaken. Ongoing work to investigate the
effectiveness of fuzzy logic modeling in comparison to
other estimation methods is occurring with an industrial
partner. An exploration of the stability and consistency
of various rule extraction methods is also under way.
While the analysis is not yet complete, results to date
suggest that fuzzy logic models, when employed in an
organizational learning framework, can perform at least
as well as and often better than more commonly
employed statistical models. It is also clear that decisions
regarding sampling and rule set size can have a
considerable impact on the resulting models and their
effectiveness in effort estimation. When combined, these
results indicate that fuzzy modeling approaches are
certainly worth considering further in aspects of software
project management, but that care must be taken to
ensure that outcomes are not achieved simply as a result
of a particular data sample or collection of rules.

6. REFERENCES

1. M.A. Ahmed, M. Omolade Saliu and J. AlGhamdi,

Adaptive fuzzy logic-based framework for software
development effort prediction, Information and
Software Technology 47 (2005) 31-48.

2. A.J. Albrecht and J.E. Gaffney Jr., Software function,
source lines of code, and development effort
prediction: a software science validation, IEEE

Transactions on Software Engineering 9(6) (1983)
639-648.

3. L. Angelis and I. Stamelos, A simulation tool for
efficient analogy based cost estimation, Empirical
Software Engineering 5 (2000) 35-68.

4. N. Bilalis, D. Lolos, A. Antoniadis and D. Emiris, A
fuzzy sets approach to new product portfolio
management, in: Proceedings of the 2002
International Engineering Management Conference,
IEEE, 2002, 485-490.

5. B.W. Boehm, Software Engineering Economics,
Prentice Hall, Englewood Cliffs NJ, USA, 1981.

6. B.W. Boehm and K. Sullivan, Software economics:
status and prospects, Information and Software
Technology 41 (1999) 937-946.

7. L.C. Briand, On the many ways software engineering
can benefit from knowledge engineering, in:
Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering,
Ischia, Italy, ACM, 2002, 3-6.

8. S.D. Conte, H.E. Dunsmore and V.Y. Shen, Software
Engineering Metrics and Models,
Benjamin/Cummings, Menlo Park CA, USA, 1986.

9. D. Dubois and H. Prade, Fuzzy Sets and Systems:
Theory and Applications, Academic Press, London,
1980.

10. M.E. Fayad, M. Laitinen and Robert P. Ward,
Software engineering in the small, Communications
of the ACM 43(3) (2000) 115-118.

11. N.E. Fenton and M. Neil, Software metrics:
successes, failures and new directions, Journal of
Systems and Software 47 (1999) 149-157.

12. G.R. Finnie, G. E. Wittig and J-M. Desharnais, A
comparison of software effort estimation techniques:
using function points with neural networks, case-
based reasoning and regression models, Journal of
Systems and Software 39 (1997) 281-289.

13. A.R. Gray and S.G. MacDonell, Applications of
fuzzy logic to software metric models for
development effort estimation, in: Proceedings of the
1997 Annual Meeting of the North American Fuzzy
Information Processing Society, IEEE Computer
Society Press, 1997, 394-399.

14. A.R. Gray and S.G. MacDonell, Fuzzy logic for
software metric models throughout the development
life-cycle, in: Proceedings of the 1999 Annual
Meeting of the North American Fuzzy Information
Processing Society. IEEE Computer Society Press,
1999, 258-262.

15. M. Hapke, A. Jaszkiewicz and R. Slowinski, Fuzzy
project scheduling system for software development,
Fuzzy Sets and Systems 67 (1994) 101-117.

16. W. Herroelen and R. Leus, Project scheduling under
uncertainty: Survey and research potentials, European
Journal of Operational Research (In Press).

17. X. Huang, L.F. Capretz, J. Ren and D. Ho, A neuro-
fuzzy model for software cost estimation, in:
Proceedings of the Third International Conference on
Quality Software, IEEE Computer Society Press,
2003, 126-133.

18. A. Idri and A. Abran, A fuzzy logic based set of
measures for software project similarity: validation
and possible improvements, in: Proceedings of the 7th
International Symposium on Software Metrics,
London, IEEE Computer Society Press, 2001, 85-96.

19. A. Idri, A. Abran and L. Kjiri, COCOMO cost
model using fuzzy logic, in: Proceedings of the 7th
International Conference on Fuzzy Theory and
Technology, Atlantic City NJ, 2000, 1-4.

20. A. Idri, A. Abran and T.M. Khoshgoftaar,
Estimating software project effort by analogy based
on linguistic values, in: Proceedings of the 8th
International Symposium on Software Metrics,
Ottawa ON, Canada, IEEE Computer Society Press,
2002, 21-30.

21. A. Idri, T.M. Khoshgoftaar and A. Abran, Can
neural networks be easily interpreted in software cost
estimation? in: Proceedings of the 2002 World
Congress on Computational Intelligence, Honolulu,
Hawaii, 2002, 1162-1167.

22. T.M. Khoshgoftaar and E. B. Allen, Neural networks
for software quality prediction, in: W. Pedrycz and
J.F. Peters (eds), Computational Intelligence in
Software Engineering, Singapore, World Scientific,
1998, 33-64.

23. B. Kitchenham, The certainty of uncertainty, in:
Proceedings of the European Software Measurement
Conference FESMA’98, Antwerp, Belgium, 1998,
17-25.

24. G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic:
Theory and Applications, Prentice Hall, Englewood
Cliffs NJ, USA 1995.

25. S. Kumar, B.A. Krishna and P.S. Satsangi, Fuzzy
systems and neural networks in software engineering
project management, Journal of Applied Intelligence
4 (1994) 31-52.

26. A.L. Lederer and J. Prasad, Software management
and cost estimating error, Journal of Systems and
Software 50 (2000) 33-42.

27. A. Lee, C.H. Cheng and J. Balakrishnan, Software
development cost estimation: integrating neural
network with cluster analysis, Information &
Management 34 (1998) 1-9.

28. J-Q. Li and Y-S. Fan, Coordination scheduling based
on fuzzy concepts, in: Proceedings of the 1st
International Conference on Machine Learning and
Cybernetics, Beijing, China, IEEE, 2002, 1489-1492.

29. O. de S. Lima Jr, P.P.M. Farias and A.D. Belchior,
Fuzzy modelling for function point analysis, Software
Quality Journal 11 (2003) 149-166.

30. C-T. Lin and Y-T. Chen, Bid/no-bid decision-
making – a fuzzy linguistic approach, International
Journal of Project Management 22 (2004) 585-593.

31. X. Liu, G. Kane and M. Bambroo, An intelligent
early warning system for software quality
improvement and project management, in:
Proceedings of the 15th IEEE International
Conference on Tools with Artificial Intelligence,
IEEE Computer Society, 2003, 32-38.

32. S.G. MacDonell, Software source code sizing using
fuzzy logic modeling, Information and Software
Technology 45(7) (2004) 389-404.

33. S.G. MacDonell, A.R. Gray and J.M. Calvert,
FULSOME: A fuzzy logic modeling tool for software
metricians, in: Proceedings of the 1999 Annual
Meeting of the North American Fuzzy Information
Processing Society. IEEE Computer Society Press,
1999, 263-267.

34. S.G. MacDonell, A.R. Gray and J.M. Calvert,
FULSOME: Fuzzy logic for software metric
practitioners and researchers. In Proceedings of the
6th International Conference on Neural Information
Processing ICONIP'99, ANZIIS'99, ANNES'99, and
ACNN'99. Perth, Western Australia, IEEE Computer
Society Press, 1999, 308-313.

35. R.J. Madachy, Heuristic risk assessment using cost
factors, IEEE Software (May/June 1997) 51-59.

36. P. Musílek, W. Pedrycz, G. Succi and M. Reformat,
Software cost estimation with fuzzy models, ACM
SIGAPP Applied Computing Review 8(2) (2000) 24-
29.

37. I. Myrtveit and E. Stensrud, A controlled experiment
to assess the benefits of estimating with analogy and
regression models, IEEE Transactions on Software
Engineering 25(4) (1999) 510-525.

38. M.C. Ohlsson, C. Wohlin and B. Regnell, A project
effort estimation study, Information and Software
Technology 40 (1998) 831-839.

39. L. Özdamar and E. Alanya, Uncertainty modeling in
software development projects (with case study),
Annals of Operations Research 102 (2001), 157-178.

40. H. Pan, C-H. Yeh and R.J. Willis, Computer-aided
system to solve uncertainty in project management,
in: Proceedings of the IEEE International Fuzzy
Systems Conference, IEEE Computer Society Press,
2001, 1376-1379.

41. M.J. Pazzani, Knowledge discovery from data?
IEEE Intelligent Systems (March/April 2000) 10-13.

42. G. Peeters and G. Dewey, Reducing bias in software
project estimates, CrossTalk – The Journal of
Defense Software Engineering (April 2000) 20-24.

43. L.H. Putnam and W. Myers, How solved is the cost
estimation problem? IEEE Software (Nov/Dec 1997)
105-107.

44. A. Raman and A. Noore, Software metrics for real-
time systems using fuzzy sets, in: Proceedings of the
35th Southeastern Symposium on System Theory,
IEEE, 2003, 74-78.

45. M. Reformat, W. Pedrycz and N. Pizzi, Building a
software experience factory using granular-based
models, Fuzzy Sets and Systems 145 (2004) 111-139.

46. J. Ryder, Fuzzy modeling of software effort
prediction, in: Proceedings of the IEEE Information
Technology Conference, IEEE, 1998, 53-56.

47. B. Samson, D. Ellison and P. Dugard, Software cost
estimation using an Albus perceptron (CMAC),
Information and Software Technology 39 (1997) 55-
60.

48. U.Z. Sanal, A decision support system for fuzzy
scheduling of software projects, in: Proceedings of
IEEE AUTOTESTCON, IEEE, 2000, 263-272.

49. V.L. Sauter, Intuitive decision-making,
Communications of the ACM 42(6) (1999) 109-115.

50. M. Shepperd and M. Cartwright, Predicting with
sparse data, IEEE Transactions on Software
Engineering 27(11) (2001) 987-998.

51. M. Shepperd and C. Schofield, Estimating software
project effort using analogies, IEEE Transactions on
Software Engineering 23(12) (1997) 736-743.

52. M. Shin and A.L. Goel, Empirical data modeling in
software engineering using radial basis functions,
IEEE Transactions on Software Engineering 26(6)
(2000) 567-576.

53. M.F. Shipley, A. de Korvin and K. Omer, BIFPET
methodology versus PERT in project management:
fuzzy probability instead of the beta distribution,
Journal of Engineering and Technology Management
14 (1997) 49-65.

54. E. Stensrud and I. Myrtveit, Human performance
estimating with analogy and regression models: an
empirical validation, in: Proceedings of the 5th
International Symposium on Software Metrics,
Bethesda ML, USA, IEEE Computer Society Press
(1998) 205-213.

55. L. Tian and A. Noore, Multistage software
estimation, in: Proceedings of the 35th Southeastern
Symposium on System Theory, IEEE, 2003, 232-236.

56. USC COCOMO II Model Definition Manual,
version 1.4, University of Southern California, 1997.

57. F. Walkerden and R. Jeffery, An empirical study of
analogy-based software effort estimation, Empirical
Software Engineering 4 (1999) 135-158.

58. G.E. Wittig and G.R. Finnie, Using artificial neural
networks and function points to estimate 4GL
software development effort, Australian Journal of
Information Systems 1(2) (1994) 87-94.

59. Z. Xu and T.M. Khoshgoftaar, Identification of
fuzzy models of software cost estimation, Fuzzy Sets
and Systems 145 (2004) 141-163.

60. R.R. Yager and D.P. Filev, Essentials of Fuzzy
Modeling and Control, Wiley, New York, 1994.

	1. Introduction
	1.1 Project management challenges
	1.2 Fuzzy logic for software development project management

	2. Attitudes to Effort Estimation
	2.1 Interviews and document analyses
	2.1.1 Expectations regarding estimates
	2.1.2 Requirements for estimation methods
	2.1.3 The role of personal experience in estimation
	2.1.4 Early estimation
	2.1.5 Data availability
	2.1.6 Estimation contingencies

	2.2 Questionnaires
	Table 1. First survey: breakdown of organization size in terms of full-time equivalent development personnel
	Table 2. First survey: breakdown of effort estimation methods used
	Table 4. Second survey: breakdown of respondents by type of organization
	Table 5. Second survey: breakdown of effort estimation methods used
	Table 6. Second survey: stages of process in which effort estimates are made
	Table 7. Second survey: levels of prediction for organizations performing effort estimation
	Table 8. Second survey: problems with expert opinion as an estimation method
	Table 9. Second survey: problems with function point analysis as an estimation method
	Table 10. Second survey: problems with regression-based models as an estimation method
	Table 11. Second survey: variables to be considered in a predictive model of effort

	Total
	Percentage
	Percentage

	3. Attitudes to fuzzy logic modeling
	4. Deriving membership functions
	(b) First survey: Smoothed
	(a) First survey: Raw
	5. Conclusions

