
Asynchronous Early Output Dual-Bit Full Adders Based on

Homogeneous and Heterogeneous Delay-Insensitive Data Encoding

P. BALASUBRAMANIAN1*, K. PRASAD2
1 School of Electrical and Electronic Engineering

Nanyang Technological University

50 Nanyang Avenue

Singapore 639798

balasubramanian@ntu.edu.sg
2 Department of Electrical and Electronic Engineering

Auckland University of Technology

Auckland 1142

New Zealand

krishnamachar.prasad@aut.ac.nz

Abstract: - This paper presents the designs of asynchronous early output dual-bit full adders without and with

redundant logic (implicit) corresponding to homogeneous and heterogeneous delay-insensitive data encoding.

For homogeneous delay-insensitive data encoding only dual-rail i.e. 1-of-2 code is used, and for heterogeneous

delay-insensitive data encoding 1-of-2 and 1-of-4 codes are used. The 4-phase return-to-zero protocol is used for

handshaking. To demonstrate the merits of the proposed dual-bit full adder designs, 32-bit ripple carry adders

(RCAs) are constructed comprising dual-bit full adders. The proposed dual-bit full adders based 32-bit RCAs

incorporating redundant logic feature reduced latency and area compared to their non-redundant counterparts

with no accompanying power penalty. In comparison with the weakly indicating 32-bit RCA constructed using

homogeneously encoded dual-bit full adders containing redundant logic, the early output 32-bit RCA comprising

the proposed homogeneously encoded dual-bit full adders with redundant logic reports corresponding reductions

in latency and area by 22.2% and 15.1% with no associated power penalty. On the other hand, the early output

32-bit RCA constructed using the proposed heterogeneously encoded dual-bit full adder which incorporates

redundant logic reports respective decreases in latency and area than the weakly indicating 32-bit RCA that

consists of heterogeneously encoded dual-bit full adders with redundant logic by 21.5% and 21.3% with nil power

overhead. The simulation results obtained are based on a 32/28nm CMOS process technology.

Key-Words: - Asynchronous design, Digital circuits, Full adder, Ripple carry adder, Indication, Early output,

Standard cells, CMOS

1 Introduction
The full adder forms the fundamental component of

arithmetic circuits used in various microprocessor,

microcontroller and digital signal processor based

applications. The full adder is basically used to add

two binary inputs along with a carry input from a

preceding stage and produces two binary outputs viz.

sum and carry output (also called as carry overflow).

The full adder can be realized in either synchronous

[1] – [4] or asynchronous design style [5] – [15]. As

an alternative to the conventional single-bit full adder

(SBFA) the concept of a dual-bit full adder (DBFA)

was proposed in [16] – [18] based on the synchronous

* This research was performed when the author was affiliated with the School of Computer Science and Engineering, Nanyang Technological University,

50 Nanyang Avenue, Singapore 639798.

and asynchronous design paradigms. The DBFA

adds two augend and addend binary inputs along with

any carry input and produces two sum outputs along

with the carry overflow. It was shown in [16] – [18]

that regardless of whether the circuit designs are

synchronous or asynchronous, the DBFA when

cascaded to form a ripple carry adder (RCA) would

help to substantially reduce the latency (i.e. critical

path delay) of a RCA constructed using SBFAs albeit

at the expense of some area and power overheads.

Nevertheless, the power-delay and/or energy-delay

products tend to remain optimized. Moreover, it was

pointed out that a hybrid design involving DBFAs

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 64 Volume 16, 2017

and SBFAs could be beneficial in terms of further

optimizing power, delay and area although this may

be a peephole optimization strategy.

 In this work, we present the novel designs of two

asynchronous early output DBFAs based on

homogeneous and heterogeneous delay-insensitive

data encoding without and with redundant logic. We

show that the proposed designs report considerably

less latency, area and power dissipation than the

previously proposed asynchronous DBFAs when

incorporated into a RCA architecture. This inference

is based on simulations performed using a 32/28nm

CMOS process. When comparing the latency, area

and power metrics of SBFA based RCA counterparts

with the design metrics of DBFA based RCAs for a

32-bit addition operation, we infer that the proposed

asynchronous early output DBFAs based RCAs

which incorporate redundant logic report the least

latency amongst all. Nonetheless, the latencies of

DBFAs based asynchronous RCAs can be further

reduced through hybrid designs which involve both

asynchronous DBFAs and SBFAs.

 The remainder of this research paper is organized

as follows. Some relevant background about robust

asynchronous design based on delay-insensitive data

codes, homogeneous and heterogeneous delay-

insensitive data encoding, and the 4-phase return-to-

zero handshake protocol is provided in Section 2. The

proposed designs of the asynchronous early output

DBFAs corresponding to homogeneous and

heterogeneous delay-insensitive data encoding are

presented in Section 3. Next, the simulation results of

various 32-bit asynchronous RCAs utilizing diverse

DBFAs are given in Section 4. Lastly, Section 5

draws the conclusions.

2 Asynchronous Design – Background
An asynchronous function block is the equivalent of

the synchronous combinational logic [19]. When an

asynchronous function block is constructed using

delay-insensitive codes [20] and utilizes a 4-phase

handshaking, it is generally robust provided it is free

of gate and wire orphans [21] – [23]. Orphans are

unacknowledged signal transitions which may occur

on gate outputs (i.e. gate orphans) or wires (i.e. wire

orphans). Wire orphans are usually eliminated by

imposing the isochronicity assumption [24], which is

the weakest compromise to delay-insensitivity. An

isochronic fork implies that a signal transition on a

wire junction (i.e. node) is concurrently transmitted

on all the wire branches. However, gate orphans may

become problematic and hence their possibility of

occurrence should be neutralized to guarantee that an

asynchronous design remains robust.

 The dual-rail code (also called 1-of-2 code) is the

simplest member of the family of delay-insensitive

m-of-n data codes [20]. Among the family of m-of-n

codes, 1-of-n codes represent a subset and are called

one-hot codes. In a 1-of-n code, only 1 out of n wires

is asserted high (i.e. binary 1) to represent a binary

data. In fact, the 1-of-n coding scheme is said to be

unordered [25] since none of the code words forms a

subset of another code word. Also, the 1-of-n coding

scheme is said to be complete [26] if all the n unique

code words, as per definition, are utilized to encode

the specified binary data. Table 1 shows an example

binary data representation according to the 1-of-2 and

1-of-4 data encoding schemes.

Table 1. Example 2-bit binary data representation in

1-of-2 and 1-of-4 data encoding schemes

Binary

data

1-of-2 encoded

data

1-of-4 encoded

data

X Y (X1,X0) (Y1,Y0) E0 E1 E2 E3

0 0 (0,1) (0,1) 1 0 0 0

0 1 (0,1) (1,0) 0 1 0 0

1 0 (1,0) (0,1) 0 0 1 0

1 1 (1,0) (1,0) 0 0 0 1

 As per the 1-of-2 code, a single-rail binary input,

say D, is encoded using two wires, say D1 and D0,

where the data D = 1 is represented by D1 = 1 and D0

= 0, and the data D = 0 is represented by D1 = 0 and

D0 = 1. Note that both D1 and D0 cannot assume 1

simultaneously as it is illegal and invalid because the

coding scheme will no more be unordered. However,

both D1 and D0 can assume 0 simultaneously and is

referred to as the spacer. Hence as per the 1-of-2 code

a valid data is specified by either D1 or D0 assuming

binary 0 and the other assuming binary 1, and the

condition of both D1 and D0 assuming binary 0 is

labelled as the spacer or null (i.e. empty data). On the

other hand, the 1-of-4 code is used to represent two

bits of binary information at a time. Referring to

Table 1, it can be seen that the two binary inputs

specified by X and Y are encoded into E0, E1, E2 and

E3 as per the 1-of-4 code for an illustration.

 When just one delay-insensitive code (say, 1-of-2

code) is alone used to encode the given binary data,

it is called homogeneous data encoding, and when

more than one delay-insensitive code (for example,

1-of-2 and 1-of-4 codes) is used to encode the given

binary data, it is called heterogeneous data encoding.

 A typical asynchronous system stage that employs

delay-insensitive codes for data encoding and data

processing and the 4-phase return-to-zero handshake

protocol for data communication is shown in Fig 1.

As the name suggests, the 4-phase return-to-zero

handshake protocol consists of 4 phases. This will be

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 65 Volume 16, 2017

explained with reference to Fig 1 based on the

assumption that the 1-of-2 code is used for data

representation. Nevertheless, the explanation would

be applicable for data representation using any delay-

insensitive 1-of-n code.

 In the first phase, the dual-rail data bus shown in

Fig 1 is in the spacer state and ACKIN is high i.e.

binary 1. The transmitter now transmits a code word

i.e. valid data and this results in upgoing signal

transitions on any one of the corresponding dual rails

of the entire dual-rail data bus. In the second phase,

the receiver receives the code word sent, and it drives

ACKOUT high. In the next phase viz. third phase, the

transmitter waits for ACKIN to go low i.e. binary 0

and then resets the entire dual-rail data bus to spacer

state. Subsequently, in the fourth phase, after an

unbounded time duration, which is finite and positive

though, the receiver drives ACKOUT low i.e.

ACKIN becomes high. One data transaction is now

said to be completed and the asynchronous system

stage is ready to commence the next data transaction.

 The completion detector [19] shown in Fig 1

ensures the complete arrival of all the primary inputs

into an asynchronous system stage whether they are

valid data or spacer. It consists of an array of 2-input

OR gates in the first logic level with each 2-input OR

gate used to combine the respective dual-rails of an

encoded primary input. The outputs of all the 2-input

OR gates are synchronized using a C-element† tree,

whose granularity depends on the composition of the

digital cell library used for physical implementation.

Fig 1 A robust asynchronous system stage operation

correlated with the transmitter-receiver analogy

 Asynchronous function blocks are generally

classified as strongly indicating, weakly indicating

and early output types. Indication basically means

† The C-element is basically a rendezvous element. If all its inputs are

binary 1 or 0, it outputs binary 1 or 0 respectively. However, if its inputs

are different, the C-element retains its existing output.

acknowledging the arrival of the inputs to a circuit or

system through corresponding monotonic transitions

on the intermediate and primary outputs, where the

transitions should be either monotonically increasing

or decreasing uniformly throughout the entire circuit

or system [27]. The generalized input-output timing

characteristics of strong-indication, weak-indication

and early output type asynchronous function blocks

are captured through Fig 2.

Fig 2 Depicting inputs-outputs timing correlation of

strong-indication, weak-indication and early output

asynchronous function blocks

 A strong-indication function block [5] [28] starts

data processing only after receiving all the primary

inputs, and the requisite outputs are then produced. A

weak-indication function block [5] [29] is able to

commence data processing after receiving just a

subset of the primary inputs and can also produce

some primary outputs. However, only after receiving

the last primary input, the last corresponding primary

output is produced by the weak-indication function

block. With respect to indication, the mechanism

may be either local or global [30]: local, if the

asynchronous function block is internally indicating,

and global, if the asynchronous system stage provides

indication externally. It was shown in [30] that local

indication is preferable over global indication for

robust asynchronous circuit designs.

 An early output function block [31] [32] is in fact

the most relaxed compared to strong-indication or

weak-indication function blocks as it can commence

data processing after receiving just a subset of the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 66 Volume 16, 2017

primary inputs and subsequently can produce all the

primary outputs without waiting for the arrival of all

the primary inputs. In this context, the early output

function block could exhibit early set or early reset

behavior as highlighted in Fig 2. Early set implies

that upon receiving a subset of the valid data

(primary) inputs, the early output function block

produces all the valid data (primary) outputs. The

early set property is highlighted through the blue oval

in Fig 2. On the other hand, early reset implies that

upon receiving a subset of spacer data (primary)

inputs, the early output function block processes

them and drives all the primary outputs to the spacer

state. The early reset property is highlighted through

the pink oval in Fig 2.

3 Proposed Asynchronous DBFAs
Novel asynchronous DBFAs based on homogeneous

and heterogeneous delay-insensitive data encoding

were designed without and with redundant logic

(which is implicit), and they are described next. For

homogeneous data encoding, 1-of-2 code is used and

for heterogeneous data encoding, 1-of-2 and 1-of-4

codes are used.

3.1 Homogeneously Encoded Early Output

Asynchronous DBFAs

In the case of the homogeneously encoded DBFAs,

only the 1-of-2 code is used for encoding the augend

and addend inputs, the carry input, the carry output,

and the sum outputs. Let (A11, A10) and (A01, A00)

COUT1 = A10A00B11B01CIN1+ A11A00B10B01CIN1 + A10A01B11B00CIN1
 + A11A01B10B00CIN1 + A10A01B11B01 + A11A01B10B01 + A11B11 (1)

COUT0 = A11A01B10B00CIN0 + A10A01B11B00CIN0 + A11A00B10B01CIN0
 + A10A00B11B01CIN0 + A11A00B10B00 + A10A00B11B00 + A10B10 (2)

SUM11 = A11A01B10B00CIN0 + A10A01B11B00CIN0 + A11A00B10B01CIN0
 + A10A00B11B01CIN0 + A11A00B11B01CIN1 + A11A01B11B00CIN1
 + A10A00B10B01CIN1 + A10A01B10B00CIN1 + A10A01B10B01
 + A11A00B10B00 + A10A00B11B00 + A11A01B11B01 (3)

SUM10 = A11A01B10B00CIN1 + A10A01B11B00CIN1 + A11A00B10B01CIN1
 + A10A00B11B01CIN1 + A10A01B10B00CIN0 + A10A00B10B01CIN0
 + A11A01B11B00CIN0 + A11A00B11B01CIN0 + A11A00B11B00
 + A11A01B10B01 + A10A01B11B01 + A10A00B10B00 (4)

SUM01 = A01B00CIN0 + A00B01CIN0 + A00B00CIN1 + A01B01CIN1 (5)

SUM00 = A01B01CIN0 + A01B00CIN1 + A00B01CIN1 + A00B00CIN0 (6)

COUT1 = A0B3CIN1 + A1B2CIN1 + A2B1CIN1 + A3B0CIN1 + A1B3 + A2B2
 + A3B1 + A2B3 + A3B2 + A3B3 (7)

COUT0 = A0B3CIN0 + A1B2CIN0 + A2B1CIN0 + A3B0CIN0 + A0B0 + A0B1
 + A0B2 + A1B0 + A1B1 + A2B0 (8)

SUM3 = A0B3CIN0 + A1B2CIN0 + A2B1CIN0 + A3B0CIN0 + A0B2CIN1
 + A1B1CIN1 + A2B0CIN1 + A3B3CIN1 (9)

SUM2 = A0B2CIN0 + A1B1CIN0 + A2B0CIN0 + A3B3CIN0 + A0B1CIN1
 + A1B0CIN1 + A2B3CIN1 + A3B2CIN1 (10)

SUM1 = A0B1CIN0 + A1B0CIN0 + A2B3CIN0 + A3B2CIN0 + A0B0CIN1
 + A1B3CIN1 + A2B2CIN1 + A3B1CIN1 (11)

SUM0 = A0B0CIN0 + A1B3CIN0 + A2B2CIN0 + A3B1CIN0 + A0B3CIN1
 + A1B2CIN1 + A2B1CIN1 + A3B0CIN1 (12)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 67 Volume 16, 2017

represent the dual-rail augend inputs, and let (B11,

B10) and (B01, B00) represent the dual-rail addend

inputs. Also, let (CIN1, CIN0) represent the dual-rail

carry input. The most significant and least significant

dual-rail sum outputs are specified by (SUM11,

SUM10) and (SUM01, SUM00) respectively.

(COUT1, COUT0) represents the dual-rail carry

output. The logic equations corresponding to the

homogeneously encoded DBFA are given by (1) to

(6). It may be noticed that all the DBFA outputs are

expressed in the disjoint sum-of-products form [33].

In a disjoint sum-of-products form, the logical

conjunction of any two products results in null [34]

since the product terms are mutually orthogonal [35].

 Fig 3 shows the synthesized early output

asynchronous DBFA based on homogeneous data

encoding, which is technology mapped to the

32/28nm CMOS cell library [36]. Fig 3 contains a

mix of discrete gates, complex gates and custom-

designed 2-input C-elements, which are symbolized

through the circle with the marking ‘C’ on them.

Since input-incomplete gates [23] are used in the

proposed homogeneously encoded DBFA designs to

process the primary data inputs in the first logic level,

they correspond to early output i.e. early reset type.

 If the two complex gates viz. AO21 gates shown

within the red and blue rectangles in dotted lines in

Fig 3 are removed, and if the two 2-input OR gates

depicted in red and blue in dotted lines in Fig 3 are

retained to synthesize COUT1 and COUT0

respectively, then the homogeneously encoded

asynchronous DBFA portrayed by Fig 3 does not

have logic redundancy [37], especially with respect

to the carry output logic. Alternatively, if the two 2-

input OR gates shown in dotted lines in red and blue

are removed, and if the two complex gates shown

within the red and blue rectangles in dotted lines in

Fig 3 are retained, then the homogeneously encoded

asynchronous DBFA is said to contain redundant

logic [37]. However, logic redundancy is implicit in

the design.

 For the asynchronous DBFA shown in Fig 3 when

positioned in an intermediate position in a RCA

architecture, the elements present in the critical path

of the non-redundant design would be a 2-input C-

element and a 2-input OR gate. On the contrary, the

element found in the critical path of the redundant

design would be just the AO21 gate. Hence, it

becomes evident that the latency of the RCA

embedding the proposed homogeneously encoded

DBFA with redundant logic would be less than the

latency of the RCA containing the homogeneously

encoded DBFA with no redundant logic. But logic

redundancy may cause a slight increase in area in the

case of the former compared to the latter.

3.2 Heterogeneously Encoded Early Output

Asynchronous DBFAs

In the case of the heterogeneously encoded DBFAs,

the 1-of-2 code is used to encode the carry input and

the carry output, while the 1-of-4 code is used to

encode the augend and addend inputs, and the sum

outputs based on Table 1. The 1-of-4 encoded augend

and addend inputs are denoted by A0, A1, A2, A3

and B0, B1, B2, B3 respectively. The 1-of-4 encoded

sum outputs are denoted by SUM0, SUM1, SUM2

and SUM3. As mentioned earlier, (CIN0, CIN1) and

(COUT0, COUT1) represent the dual-rail carry input

and carry output respectively. The logical equations

corresponding to the heterogeneously encoded

asynchronous DBFA are specified by (7) to (12).

Again, (7) and (12) are expressed in disjoint sum-of-

products form, whose respective product terms are all

mutually orthogonal. Fig 4 shows the proposed

asynchronous early output DBFA corresponding to

heterogeneous data encoding, which is synthesized

using discrete, complex and custom-designed 2-input

C-gates which are eventually technology mapped to

the 32/28nm cell library [36].

 In Fig 4, if the complex gates viz. AO21 gates

shown within the pink and green rectangles in dotted

lines are removed and if the two 2-input OR gates

highlighted in pink and green in dotted lines are

retained to produce COUT1 and COUT0 respectively

then the asynchronous DBFA is said to have no

redundant logic, especially with respect to the carry

output logic. Alternatively, if the two 2-input OR

gates highlighted in pink and green in dotted lines in

Fig 4 are removed, and if the two AO21 gates shown

within the pink and green rectangles in dotted lines

are retained the asynchronous DBFA shown in Fig 4

is said to contain redundant logic. The critical data

path of the heterogeneously encoded DBFA which

has no redundant logic when present in an

intermediate position in a RCA architecture consists

of a 2-input C-element and a 2-input OR gate, while

the critical data path of the heterogeneously encoded

DBFA with redundant logic when present in a similar

position in the RCA architecture comprises just a

single AO21 gate. Hence the latency would be less in

the case of the RCA constructed by cascading the

proposed heterogeneously encoded DBFA with

redundant logic than the latency of the RCA

constructed by cascading the heterogeneously

encoded DBFA with no redundant logic although the

former may occupy slightly more area compared to

the latter due to extra logic. Note that the proposed

heterogeneously encoded asynchronous DBFAs use

input-incomplete gates to process the primary data

inputs in the first logic level in Fig 4 and hence they

would exhibit early output i.e. early reset behavior.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 68 Volume 16, 2017

A10

A00

B11

B01

A11

A00

B10

B01

A10

A01

B11

B00

A11

A01

B10

B00

A11

A00

B11

B01

A11

A01

B11

B00

A10

A00

B10

B01

A10

A01

B10

B00

A10

A01

B11

B01

A11

A01

B10

B01

A10

A01

B10

B01

A11

A01

B11

B01

A11

A00

B11

B00

A10

A00

B10

B00

A11

A00

B10

B00

A10

A00

B11

B00

CIN1

CIN0

COUT1

COUT0

C

C

CIN1

CIN0

SUM10

C

C

CIN0

CIN1

SUM11

A11

B11

A10

B10

A00

B01

A01

B00

A00

B00

A01

B01

C

C

CIN0

CIN1

C

C

CIN0

CIN1

SUM00

SUM01

COUT1

COUT0

Fig 3 Proposed asynchronous early output DBFA(s) based on homogeneous delay-insensitive data

encoding employing the 1-of-2 code

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 69 Volume 16, 2017

A0

B2

A2

B0

A1

B1

A3

B3

A0

B1

A1

B0

A2

B3

A3

B2

A1

B3

A3

B1

A0

B0

A2

B2

A0

B3

A3

B0

A1

B2

A2

B1

C

C

CIN0

CIN1

C

C

CIN0

CIN1

C

C

CIN0

CIN1

C

C

CIN0

CIN1

CIN1

CIN0

COUT0

COUT1

SUM0

SUM1

SUM2

SUM3

COUT1

COUT0

Fig 4 Proposed asynchronous early output DBFA(s) based on heterogeneous delay-insensitive data

encoding employing 1-of-2 and 1-of-4 codes

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 70 Volume 16, 2017

4 Physical Realization and Results
Many 32-bit asynchronous RCAs were physically

implemented by cascading homogeneously encoded

and heterogeneously encoded asynchronous DBFAs

corresponding to weak-indication and the proposed

early output types separately. The generic

architectures of the homogeneously encoded and

heterogeneously encoded asynchronous RCAs are

given in [37] and the reader is referred to the same for

details. The RCAs were realized using the standard

library cells of a 32/28nm CMOS process [36]. The

2-input C-element was alone manually realized using

12 transistors and it was made available to physically

implement the various asynchronous RCAs. High

fan-in C-element functionality wherever imminent

was safely decomposed into a logic tree of 2-input C-

elements using the quasi-delay-insensitive logic

decomposition method presented in [38] which

guarantees gate-orphan freedom.

 An asynchronous system stage, as shown in Fig 1,

consists of the asynchronous function block, the input

registers and the completion detector. However for

asynchronous function blocks realized on the basis of

heterogeneous encoding, dual-rail to 1-of-4 encoders

are introduced before the function block and 1-of-4

to dual-rail decoders are introduced after the function

block as shown in [37]. In general, the input registers

and the completion detector are identical and only the

function blocks would in fact differ in their physical

composition. Hence any differences between the

simulation results of the various asynchronous RCAs

can be attributed to the physical differences in their

function block constituents. This paves the way for a

straightforward comparison of the design metrics viz.

latency, area and power of the different asynchronous

RCAs post physical synthesis.

 More than 1000 random input vectors were

identically supplied to the various asynchronous

RCAs at time intervals of 20ns through test benches

to verify their functionalities and to capture their

respective switching activities. The value change

dump files generated were used for average power

estimation using Synopsys tool. Since the EDA tool,

by default, estimates the critical path timing, the

worst-case forward latency was alone estimated for a

typical case PVT specification viz. 1.05V and 25ºC

of the standard cell library [36]. Default wire loads

were automatically inserted while performing the

simulations. A virtual clock was used to constrain the

input and output ports of the asynchronous RCAs and

it did not contribute to the actual power dissipation.

Table 1 presents the simulation results obtained viz.

critical path delay (also called forward latency), area

occupancy, and average power dissipation for the

different 32-bit asynchronous RCAs.

Table 1 Simulation results of various 32-bit

asynchronous RCAs corresponding to weak-

indication or early output incorporating diverse

homogeneously or heterogeneously encoded DBFAs

Asynchronous

DBFA and Type

Latency

(ns)

Area

(µm2)

Power

(µW)

References [17,37];

No redundancy;

Homogeneous

encoding;

Weak-indication

4.12

2866.49

2200

References [17,37];

Logic redundancy;

Homogeneous

encoding;

Weak-indication

2.84

2931.55

2202

This work;

No redundancy;

Homogeneous

encoding;

Early output

4.01

2472.06

2174

This work;

Logic redundancy;

Homogeneous

encoding;

Early output

2.21

2488.32

2173

References [18,37];

No redundancy;

Heterogeneous

encoding;

Weak-indication

4.36

3301.58

2191

References [18,37];

Logic redundancy;

Heterogeneous

encoding;

Weak-indication

3.03

3366.65

2192

This work;

No redundancy;

Heterogeneous

encoding;

Early output

4.22

2634.71

2182

This work;

Logic redundancy;

Heterogeneous

encoding;

Early output

2.38

2650.98

2182

 In general, it can be inferred from Table 1 that the

RCAs constituting homogeneously/heterogeneously

encoded DBFAs with redundant logic facilitate good

reductions in latency over their counterpart RCAs

incorporating DBFAs with no redundant logic.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 71 Volume 16, 2017

 From Table 1, it is observed that compared to the

weakly indicating 32-bit RCA incorporating the

homogeneously encoded dual-bit full adder with

redundant logic, the early output 32-bit RCA

comprising the proposed dual-bit full adder with

redundant logic that is based on homogeneous data

encoding reports respective reductions in latency and

area by 22.2% and 15.1% with no associated power

penalty (in fact, a 1.3% power reduction results for

the latter). Further, in comparison with the recently

proposed early output 32-bit asynchronous carry

select adder [39] that corresponds to the uniform

input partition 8-8-8-8 and which is based on

homogeneous dual-rail data encoding, the 32-bit

asynchronous RCA incorporating the proposed early

output dual-bit full adder with redundant logic

reports 10.2% less latency, occupies 17.1% less area,

and dissipates 5.2% less power.

 On the other hand, the early output 32-bit RCA

incorporating the proposed heterogeneously encoded

dual-bit full adder with redundant logic reports

corresponding decreases in latency and area than the

weakly indicating 32-bit RCA that incorporates the

heterogeneously encoded dual-bit full adder with

redundant logic by 21.5% and 21.3% with nil power

overhead (in fact, a 0.5% power reduction results for

the former). Hence, overall, the early output 32-bit

asynchronous RCA incorporating the proposed dual-

bit full adder with redundant logic that is based on

homogeneous data encoding is preferable.

5 Conclusion
This paper has presented new asynchronous early

output DBFA designs based on homogeneous and

heterogeneous delay-insensitive data encodings

which when used to construct robust early output

asynchronous RCAs lead to optimized design metrics

compared to the weak-indication RCA counterparts

constructed using weakly indicating asynchronous

DBFAs. Overall, the simulation results show that the

early output asynchronous RCAs constructed using

homogeneously encoded DBFAs which have logic

redundancy facilitate simultaneous optimizations in

latency, area and power dissipation. Future work may

consider evaluating the benefits of the proposed early

output DBFAs incorporating redundant logic for

asynchronous multi-operand additions [40].

References:

[1] S. Goel, A. Kumar, M.A. Bayoumi, “Design of

robust, energy-efficient full adders for deep

submicrometer design using hybrid-CMOS logic

style,” IEEE Trans. on VLSI Systems, vol. 14, no.

12, pp. 1309-1321, 2006.

[2] P. Balasubramanian, N.E. Mastorakis, “High

speed gate level synchronous full adder designs,”

WSEAS Trans. on Circuits and Systems, vol. 8, no.

2, pp. 290-300, 2009.

[3] P. Balasubramanian, N.E. Mastorakis, “A delay

improved gate level full adder design,” Proc. 3rd

European Computing Conf., pp. 97-102, 2009.

[4] P. Balasubramanian, N.E. Mastorakis, “A low

power gate level full adder module,” Proc. 3rd Intl.

Conf. on Circuits, Systems and Signals, Invited

Paper, pp. 246-248, 2009.

[5] C.L. Seitz, “System Timing,” in Introduction to

VLSI Systems, C. Mead and L. Conway (Editors),

pp. 218-262, Addison-Wesley, Reading,

Massachusetts, USA, 1980.

[6] A.J. Martin, “Asynchronous datapaths and the

design of an asynchronous adder,” Formal

Methods in System Design, vol. 1, no. 1, pp. 117-

137, 1992.

[7] W.B. Toms, D.A. Edwards, “Efficient synthesis

of speed independent combinational logic

circuits,” Proc. 10th Asia and South Pacific

Design Automation Conf., pp. 1022-1026, 2005.

[8] B. Folco, V. Bregier, L. Fesquet, M. Renaudin,

“Technology mapping for area optimized quasi

delay insensitive circuits,” Proc. Intl. Conf. on

VLSI-SoC, pp. 146-151, 2005.

[9] P. Balasubramanian, D.A. Edwards, “A delay

efficient robust self-timed full adder,” Proc. 3rd

IEEE Intl. Design and Test Workshop, pp. 129-

134, 2008.

[10] P. Balasubramanian, D.A. Edwards, “Self-timed

full adder designs based on hybrid input

encoding,” Proc. 12th IEEE Symp. on Design and

Diagnostics of Electronic Circuits and Systems,

pp. 56-61, 2009.

[11] P. Balasubramanian, “A robust asynchronous

early output full adder,” WSEAS Trans. on

Circuits and Systems, vol. 10, no. 7, pp. 221-230,

2011.

[12] P. Balasubramanian, “A latency optimized

biased implementation style weak-indication self-

timed full adder,” Facta Universitatis, Series:

Electronics and Energetics, vol. 28, no. 4, pp.

657-671, 2015.

[13] P. Balasubramanian, “An asynchronous early

output full adder and a relative-timed ripple carry

adder,” WSEAS Trans. on Circuits and Systems,

vol. 15, pp. 91-101, 2016.

[14] P. Balasubramanian, S. Yamashita,

“Area/latency optimized early output

asynchronous full adders and relative-timed ripple

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 72 Volume 16, 2017

carry adders,” SpringerPlus, vol. 5:440, pages 26,

2016.

[15] P. Balasubramanian, K. Prasad, “Early output

hybrid input encoded asynchronous full adder and

relative-timed ripple carry adder,” Proc. 14th Intl.

Conf. on Embedded Systems, Cyber-physical

Systems, and Applications, pp. 62-65, 2016.

[16] P. Balasubramanian, K. Prasad, N.E.

Mastorakis, “A standard cell based synchronous

dual-bit adder with embedded carry look-ahead,”

WSEAS Trans. on Circuits and Systems, vol. 9, no.

12, pp. 736-745, 2010.

[17] P. Balasubramanian, D.A. Edwards, “Dual-sum

single-carry self-timed adder designs,” Proc.

IEEE Computer Society Annual Symp. on VLSI,

pp. 121-126, 2009.

[18] P. Balasubramanian, D.A. Edwards,

“Heterogeneously encoded dual-bit self-timed

adder,” Proc. IEEE Ph.D. Research in

Microelectronics and Electronics Conf., pp. 120-

123, 2009.

[19] J. Sparsø, S. Furber, Principles of Asynchronous

Circuit Design: A Systems Perspective, Kluwer

Academic Publishers, Boston, MA, USA, 2001.

[20] T. Verhoeff, “Delay-insensitive codes – an

overview,” Distributed Computing, vol. 3, no. 1,

pp. 1-8, 1988.

[21] C. Jeong, S.M. Nowick, “Optimization of robust

asynchronous circuits by local input completeness

relaxation,” Proc. Asia and South Pacific Design

Automation Conf., pp. 622-627, 2007.

[22] P. Balasubramanian, K. Prasad, N.E.

Mastorakis, “Robust asynchronous

implementation of Boolean functions on the basis

of duality,” Proc. 14th WSEAS Intl. Conf. on

Circuits, pp. 37-43, 2010.

[23] P. Balasubramanian, Self-Timed Logic and the

Design of Self-Timed Adders, PhD thesis, The

University of Manchester, 2010.

[24] A.J. Martin, “The limitation to delay-

insensitivity in asynchronous circuits,” Proc. 6th

MIT Conf. on Advanced Research in VLSI, pp.

263-278, 1990.

[25] B. Bose, “On unordered codes,” IEEE Trans. on

Computers, vol. 40, no. 2, pp. 125-131, 1991.

[26] S.J. Piestrak, T. Nanya, “Towards totally self-

checking delay-insensitive systems,” Proc. 25th

Intl. Symp. on Fault-Tolerant Computing, pp.

228-237, 1995.

[27] V.I. Varshavsky (Ed.), Self-Timed Control of

Concurrent Processes: The Design of Aperiodic

Logical Circuits in Computers and Discrete

Systems, Chapter 4: Aperiodic Circuits, pp. 77-85,

(Translated from the Russian by A.V. Yakovlev),

Kluwer Academic Publishers, 1990.

[28] P. Balasubramanian, D.A. Edwards, “Efficient

realization of strongly indicating function

blocks,” Proc. IEEE Computer Society Annual

Symp. on VLSI, pp. 429-432, 2008.

[29] P. Balasubramanian, D.A. Edwards, “A new

design technique for weakly indicating function

blocks,” Proc. 11th IEEE Workshop on Design

and Diagnostics of Electronic Circuits and

Systems, pp. 116-121, 2008.

[30] P. Balasubramanian, N.E. Mastorakis, “Global

versus local weak-indication self-timed function

blocks – a comparative analysis,” Proc. 10th Intl.

Conf. on Circuits, Systems, Signal and

Telecommunications, pp. 86-97, 2016.

[31] C.F. Brej, J.D. Garside, “Early output logic

using anti-tokens,” Proc. 12th Intl. Workshop on

Logic and Synthesis, pp. 302-309, 2003.

[32] P. Balasubramanian, “Comments on “Dual-rail

asynchronous logic multi-level

implementation”,” Integration, the VLSI Journal,

vol. 52, no. 1, pp. 34-40, 2016.

[33] P. Balasubramanian, R. Arisaka, H.R. Arabnia,

“RB_DSOP: A rule based disjoint sum of

products synthesis method,” Proc. 12th Intl. Conf.

on Computer Design, pp. 39-43, 2012.

[34] P. Balasubramanian, N.E. Mastorakis, “A set

theory based method to derive network reliability

expressions of complex system topologies,” Proc.

Applied Computing Conf., pp. 108-114, 2010.

[35] P. Balasubramanian, D.A. Edwards, “Self-timed

realization of combinational logic,” Proc. 19th

Intl. Workshop on Logic and Synthesis, pp. 55-62,

2010.

[36] Synopsys SAED_EDK32/28_CORE Databook,

Revision 1.0.0, 2012.

[37] P. Balasubramanian, D.A. Edwards, W.B.

Toms, “Redundant logic insertion and latency

reduction in self-timed adders,” VLSI Design, vol.

2012, Article ID 575389, pages 13, 2012.

[38] P. Balasubramanian, N.E. Mastorakis, “QDI

decomposed DIMS method featuring

homogeneous/heterogeneous data encoding,”

Proc. Intl. Conf. on Computers, Digital

Communications and Computing, pp. 93-101,

2011.

[39] P. Balasubramanian, “Asynchronous carry

select adders,” Engineering Science and

Technology, an Intl. Journal, 2017, DOI:

http://dx/doi.org/10.1016/j.jestch.2017.02.003

[40] P. Balasubramanian, D.A. Edwards, W.B.

Toms, “Self-timed multi-operand addition,” Intl.

Jour. of Circuits, Systems and Signal Processing,

vol. 6, no. 1, pp. 1-11, 2012.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian, K. Prasad

E-ISSN: 2224-266X 73 Volume 16, 2017

