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Abstract 

Increasing legislative and societal pressures are requiring manufacturers to operate more sustainably and to take responsibility for the fate of their 
goods after they have been used by consumers. A hybrid remanufacturing system, in which newly produced and remanufactured used goods are 
sold on separate markets but also act substitutes for each other, is described and modelled using a semi-Markov decision process. The model 
provides an optimal policy, which specifies production, remanufacturing and substitution decisions.  The model is used to explore the properties 
of this hybrid remanufacturing system, and in particular, the managerial implications associated with upward and downward substitution. 
 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of Assembly Technology and Factory Management/Technische Universität Berlin. 

 Keywords: Substitution, Product Recovery, Supply Chain Management, Production, Remanufacturing, Markov Decision Processes 

1. Introduction 

Remanufacturing is the process by which products are 
restored to an “as-new” condition [1]. Remanufacturing and 
more broadly, product recovery, have received an increasing 
amount of attention recently as governments [2,3], businesses 
[4,5,6] and consumers become more aware of the importance 
of sustainability and reducing the impact on the environment. 
In some industries, consumers may not differentiate between 
new and remanufactured products. However, this is not always 
the case as despite the fact that remanufactured products are 
typically sold with a warranty equivalent to that of a new 
product [1,7], consumers still have concerns about the quality 
of remanufactured products [1] so view them as inferior. The 
paper considers substitution strategies for a company selling 
new and remanufactured products to its customers.  The model 
developed considers customers' preferences for new and 
remanufactured products and their willingness to accept a 
substitute.  The model is used to explore the conditions under 
which it is optimal for the company to offer substitution. 

Following the literature we define downward substitution as 
when a superior product is used to satisfy demand for an 
inferior product, and upward substitution as when an inferior 
products is used to satisfy demand for a superior product [8,9, 

10]. Much of the research in the field of product recovery 
with separate markets for newly produced goods and 
recovered (or remanufactured) goods stems from the work 
of Inderfurth [9], who investigates a stochastic single period 
model with downward substitution. It was found that 
offering substitution leads to lower levels of recovered 
inventory. Single-period problems with two-way substitution 
have been studied by Bayindir et al. [11] and Kaya [12], who 
assume that the proportion of customers who accept a 
substitution is known and constant. The quality of returned 
used goods is addressed by Kaya [12] by way of an incentive 
paid to the consumer in exchange for returning used goods. 

Previous research has considered models over more than 
one time period. Aras et al. [13] study a finite horizon, 
periodic review system in which new products are leased, 
and then returned, recovered and then sold; substitution is not 
offered. Ahiska and Kurtul [14] consider an infinite horizon 
Markov decision process model for a manufacturing/ 
remanufacturing system in which downward substitution is 
offered. They found that the relative cost of 
remanufacturing compared with manufacturing was a key 
factor in determining profitability. 

Deterministic models have also been used to study 
product recovery models with separate markets and 
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substitution [15,16,17,18]. The relationship between 
acceptance of substitution and the level of compensation 
paid to the consumer is also investigated [17]. 

The current paper extends the literature, in particular by 
including stochastic demand for new and remanufactured 
goods and return of used goods, allowing two-way 
substitution with uncertain consumer acceptance, including 
two quality dependent recovery channels, and utilizing an 
infinite horizon model. 

2. Problem description and model formulation 

The hybrid production and remanufacturing system 
modelled in this paper is presented in Figure 1. Newly 
produced goods and the lower priced remanufactured goods are 
sold on separate markets. Both types of goods are functionally 
identical, therefore they can act as substitutes for each other 
through upward and downward substitution if a stock-out 
occurs. Decisions about offering substitution are made at a 
strategic level, as well as an operational level. At a strategic 
level a decision is made about whether or not substitution will 
ever be offered, then at an operational level a decision is made 
about whether or not substitution will be offered to a particular 
customer given certain inventory levels.  

The recovery process primarily remanufactures used goods 
to be “as new”. However, if the used goods are of poor quality, 
then remanufacturing may not be cost-efficient. In these cases 
components can be salvaged from used goods and then used in 
the production process. We refer to the process resulting in 
remanufactured goods as “high-quality recovery” and the 
process resulting in components as “low-quality recovery”. 
Additional components are bought on an ‘as-needed’ basis. It 
is assumed that the fixed cost for buying components is 
negligible and that there is a short lead time, meaning there is 
no need to buy and store these additional components in 
advance. 
There are four inventories in this model: used, produced, 
remanufactured and component. At each decision epoch the 
inventory levels are assessed and decisions are made about 
whether to produce new goods, recover used goods or order 
components. Furthermore, a substitution decision is made 
which specifies whether or not substitution should be offered if 
there is a stock-out during the time between the current and the 
next decision epochs. Demand that is not met (either through 
the supply of the requested product or substitution) is lost. 
There are no backorders. Production and recovery occur in 
batches and we assume that only one batch can be outstanding 
at any given time. We assume that customers arrive one at a 
time and each demand one item. The objective is to maximum 
the long run average reward. This continuous-time product 
recovery problem is modelled using a semi-Markov decision 
process. 

2.1. Decision Epochs 

The system is reviewed and decisions are made after the (1) 
arrival of a production order, (2) arrival of a recovery order, (3) 
demand for produced goods, (4) demand for remanufactured 
goods, or (5) arrival of used goods. 

 

 

Fig. 1. Product recovery model with separate markets and substitution. 

2.2. States 

The state of the system is characterized by six state 
variables, including four inventory levels and two outstanding-
order variables. The inventory state variables represent the 
levels of produced, remanufactured, used and component 
inventories and are denoted by ip, ir, iu and ic respectively. The 
inventory levels are bounded as follows: Ip

min ≤ ip ≤ Ip
max, Ir

min 
≤ ir ≤ Ir

max, Iu
min ≤ iu ≤ Iu

max, and Ic
min ≤ ic ≤ Ic

max. Since 
there are no backorders, the minimum inventory levels are 0. 
The numbers of goods in outstanding production and recovery 
orders are denoted iop and ior respectively. These variables are 
bounded as follows: 0 ≤ iop ≤ Ap

max and 0 ≤ ior ≤Ar
max where 

Ap
max and Ar

max are the maximum order sizes for production and 
recovery respectively. 

2.3. Actions, costs and transition probabilities 

At each decision epoch the state of the system is reviewed 
and decisions are made regarding replenishment and 
substitution. 

2.3.1. Replenishment actions.  
It is assumed that a production (recovery) order can only be 

placed if there is not already an outstanding production 
(recovery) order. At each decision epoch the firm may choose 
to either produce or recover, or to do neither. The size of the 
production and recovery orders are denoted by ap and ar 
respectively. For a given state i, the possible order sizes are 
determined by number of used goods in stock and the available 
capacity in the relevant inventories. The number of components 
r a production order is calculated at the completion (i.e. the 
arrival) of the order. The action space for production and 
recovery orders can be defined as follows: 
  
 

ܽ௣ ∈ ቊ
ሼ0,… ,minሼܫ௣௠௔௫ െ ݅௣	, ݅௢௣	if	௣௠௔௫ሽሽ,ܣ ൌ ܽ௥ ൌ 0		

ሼ0ሽ,																																																													otherwise
 

 

ܽ௥ ∈ ቊ
ሼ0,…	minሼ݅௨	, ݅௢௥	if			௥௠௔௫ሽሽ,ܣ ൌ ܽ௣ ൌ 0	

ሼ0ሽ,																																																otherwise
 

 
The number of used items which become remanufactured 

items and components through the recovery process depends 
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on the quality of the used items, and also on the capacities of 
the remanufactured and component inventories. Figure 2 shows 
the recovery process. In a recovery order of ar used items, there 
are xq items of sufficient quality to undergo high quality 
recovery. The number which do become remanufactured goods 
(through high quality recovery) is ah(xq) = min{Ir

max− ir, xq}; 
the number which are used for components (low quality 
recovery) is al(xq) = min{Ic

ma – ic, ar – ah(xq)}; and the number 
which are disposed of is: ad(xq) = ar – ah(xq) – al(xq). 
 

 

Fig. 2. Recovery of low quality and high quality used goods. 

2.3.2. Substitution actions 
At each decision epoch an operational decision is made 

about whether substitution will be offered should a customer 
demand an out-of-stock item between the current and next 
decision epoch. If no such customer arrives between the 
decision epochs then substitution will not take place. 
Furthermore, substitution can only take place if a customer 
demands a produced (remanufactured) item when there are 
none in stock and there is at least one remanufactured 
(produced) item in stock and if upward (downward) 
substitution is permitted at both a strategic and operational 
level. The strategic decision is made outwith the model. The 
operational decisions regarding upward and downward 
substitution are denoted by aU and aD respectively where: 

ܽ௞ ൌ 	 ቄ
1	if	substitution	is	offered
0																												otherwise

		for	݇ ൌ  .ܦ,ܷ

Since it is assumed that each customer demands only one 
item, the variables aU, aD also denote the number of goods 
offered for substitution (either 1 or 0). If offered a substitution, 
then the customer can choose to accept or reject the substitute 
item. 

2.3.3. Transition probabilities, costs and revenues 
The objective of this semi-Markov decision process is to 

maximize the long-run average reward (revenues less costs). 
Revenues are received for the sale of produced and 
remanufactured goods, and costs are incurred for: holding 
inventory, placing orders, lost sales, substitution and disposal 
of items. The reward evaluated at each decision epoch is the 
expected reward that will be received until the next decision 
epoch. To assist with presentation of this section, we define an 
indicator function δ as follows: 

ሻݔሺߜ ൌ 	 ቄ1									if	ݔ ൐ 0
0				otherwise

		 

2.3.4. Time until next decision epoch 
The lead times of production and recovery orders are 

modelled as independent exponential random variables with 

means 1/µp and 1/µr respectively. However, the next event can 
only be the arrival of a production or recovery order if there is 
already an order outstanding (iop = 1 or ior = 1) or if a 
replenishment order is placed (ap > 0 or ar > 0). After 
replenishment decisions have been made, the number of 
outstanding produced items is iop + ap and the number of 
outstanding recovered items is ior + ar. Demands for produced 
and remanufactured goods are modelled as independent 
Poisson processes with rates λp and λr respectively. The arrival 
of used goods is modelled by a marked Poisson process with 
rate λu. The number of used goods returned with each “arrival” 
is governed by the random variable Xu with a known 
distribution. It follows that the time until the next decision 
epoch is an exponential random variable. The expected time 
until the next decision epoch, denoted by τi(a), can be defined 
as: 

߬௜ሺܽሻ ൌ
1

,ሺ݅ߣ ܽሻ
,	 

where,  
,ሺ݅ߣ ܽሻ ൌ 	 ௨ߣ ൅	ߣ௣ ൅ ௥ߣ ൅ ൫݅௢௣ߜ	 ൅ ܽ௣൯ߤ௣ ൅ ሺ݅௢௥ߜ ൅ ܽ௥ሻߤ௥. 

2.3.5. Other uncertain variables 
The acceptance of upward and downward substitution is 

modelled by Bernoulli random variables with parameters αU 
and αD respectively. The number of high quality used items in 
a recovery order of size ar items is modelled by a Binomial 
random variable, Xq ∼ Bin(ar, α). 

2.3.6. State and action dependent costs and revenues 
Holding costs of hu, hp, hr and hc are incurred per unit, for 

used, produced, remanufactured and component inventory 
respectively. The expected cost of holding inventory until the 
next decision epoch is presented in (1). Set-up costs of kp and 
kr are incurred each time a production or recovery order is 
placed, respectively. The set-up costs incurred until the next 
decision epoch are not subject to uncertainty and are presented 
in (2). 

2.3.7. Transition probabilities and event dependent costs 
and revenues 
The transition probabilities and other costs and revenues 

depend on the event that occurs at the next decision epoch. For 
clarity, let us define jop = (iop + ap) as number of produced items 
outstanding and jor = (ior + ar) as the number of remanufactured 
items outstanding at the end of the current decision epoch. 

The probability that the next event is the arrival of a 
production order is δ(jop)µp/λ(i,a). Costs of cp and cb are 
incurred on a per unit basis for each item that is produced and 
each component bought, respectively. The number of 
components required for the production order is defined as: ab 
= max{0, jop − ic}.  The arrival of a production order results in 
a cost (see (3)) and transition to state: 

݆ ൌ 	 ൫݅௨	, ݅௣ 	൅	݆௢௣, ݅௥	, ݅௖ 	൅ 	ܽ௕ 	െ	 ݆௢௣	, 0, ݆௢௥൯ 
 
The probability that the next event is the arrival of a 

recovery order is δ(jor)µr/λ(i, a). A cost of cr is incurred per unit 
recovered. In addition there are unit costs of ch, cl and cd per 
unit for high quality recovery, low quality recovery and 
disposal. When this event occurs, the cost incurred and the state 
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transition depend on the yield of high quality used items. The 
expected cost until the next decision epoch is presented in (4) 
and the next state j is: 

݆ ൌ 	 ሺ݅௨	, ݅௣	, ݅௥ 	൅	ܽ௛ሺܺ௤ሻ, ݅௖ ൅ ܽ௟ሺܺ௤ሻ, ݆௢௣	,0ሻ	 

The probability that the next event is the demand for a 
produced or remanufactured item is given λp/λ(i, a) and λr/λ(i, 
a) respectively. Revenues of pp and pr per item are received for 
the sale of newly produced and remanufactured goods, 
respectively, (pp > pr). If substitution occurs (in either 
direction) the customer is charged pr, the cost of the cheaper of 
the two goods. If there is insufficient produced 
(remanufactured) inventory in stock and upward (downward) 
substitution is not offered then the sale is lost and a lost sales 
cost of lp (lr) is incurred. The next state j when the next event is 
the arrival of demand for a produced good is shown in Table 1. 
Upward substitution is rejected with probability 1 − αU and 
accepted with probability αU. The expected cost until the next 
decision epoch is presented in (5).  

Table 1. Next state when after demand for a produced item. 

Next state j Condition 

(iu, ip − 1, ir , ic , jop, jor) ip > 0 

(iu, ip, ir, ic, jop, jor) ip = aU = 0 

(iu, ip, ir, ic, jop, jor) ip = 0, aU = 1 and substitution is rejected 

(iu, ip, ir - 1, ic, jop, jor) ip = 0, aU = 1 and substitution is accepted 

 
The next state j when the next event is demand for a 

remanufactured item is shown in Table 2. Downward 
substitution is rejected with probability 1 − αD and accepted 
with probability αD . The expected cost until the next decision 
epoch is presented in (6). 

Table 2. Next state when after demand for a remanufactured item. 

Next state j Condition 

(iu, ip, ir− 1 , ic , jop, jor) ir > 0 

(iu, ip, ir, ic, jop, jor) ir = aD = 0 

(iu, ip, ir, ic, jop, jor) ir = 0, aD = 1 and substitution is rejected 

(iu, ip- 1, ir, ic, jop, jor) ir = 0, aD = 1 and substitution is accepted 

 
The probability that the next event is the arrival of used 

items is λu/λ(i, a). A unit cost of ca is incurred for acquiring 
used goods and a unit cost of lu is incurred for disposing of any 
used goods that do not fit within the used goods inventory. If 
there are Xr used goods, then the expected cost until the next 
decision epoch is (7) and the next state j is: 

݆ ൌ 	 ሺ݅௨ 	൅ 	minሼܺ௥	, ௥௠௔௫ܫ െ ݅௨ሽ, ݅௣, ݅௥, ݅௖, ݆௢௣, ݆௢௥ሻ	 

The expected total reward, for a given state i and action a, is: 

,ሾܴሺ݅ܧ ܽሻሿ ൌ 	െܧሾܥ௛ሺ݅, ܽሻሿ െ	ܥ௞ሺ݅, ܽሻ െ	
௣ߤ൫݆௢௣൯ߜ
,ሺ݅ߣ ܽሻ

,௢௣ሺ݅ܥ ܽሻ

െ
௥ߤሺ݆௢௥ሻߜ
,ሺ݅ߣ ܽሻ

,௢௥ሺ݅ܥሾܧ ܽሻሿ

൅	
௣ߣ

,ሺ݅ߣ ܽሻ
,ሾܴ௣ሺ݅ܧ ܽሻሿ 	൅	

௥ߣ
,ሺ݅ߣ ܽሻ

,ሾܴ௥ሺ݅ܧ ܽሻሿ

െ	
௨ߣ

,ሺ݅ߣ ܽሻ
,ሺ݅	௨ܥሾܧ ܽሻሿ	 

where the individual terms are: 

,௛ሺ݅ܥሾܧ ܽሻሿ ൌ ൫݄௨݅௨ ൅ ݄௣݅௣ ൅ ݄௥݅௥ ൅ ݄௖݅௖൯߬௜ሺܽሻ          (1) 

,௞ሺ݅ܥ ܽሻ ൌ ݇௣ߜ൫ܽ௣൯ ൅ ݇௥ߜሺܽ௥ሻ                                       (2) 

,௢௣ሺ݅ܥ ܽሻ ൌ ݆௢௣ܿ௣ ൅ ܽ௕ܿ௕                                       (3) 

,௢௥ሺ݅ܥሾܧ ܽሻሿ ൌ ܽ௥ܿ௥ ൅ ௛൫ܺ௤൯൧ܿ௛ܽൣܧ ൅ ௟൫ܺ௤൯൧ܿ௟ܽൣܧ ൅

 ௗ൫ܺ௤൯൧ܿௗ                                       (4)ܽൣܧ																																		

,௣ሺܴ݅ൣܧ ܽሻ൧ ൌ ௣݌൫݅௣൯ߜ ൅ ቀ1 െ ൫݅௣൯ቁߜ ሼሺ1 െ ܽ௎ሻ൫െ݈௣൯ ൅

																																			ܽ௎ൣߙ௎݌௥ െ ሺ1 െ  ௎ሻ൫െ݈௣൯൧ሽ          (5)ߙ

,ሾܴ௥ሺ݅ܧ ܽሻሿ ൌ ௥݌ሺ݅௥ሻߜ ൅ ൫1 െ ሺ݅௥ሻ൯ሼሺ1ߜ െ ܽ஽ሻሺെ݈௥ሻ ൅
																																			ܽ஽ሾߙ஽݌௥ െ ሺ1 െ  ஽ሻሺെ݈௥ሻሿሽ          (6)ߙ
,௨ሺ݅ܥሾܧ ܽሻሿ ൌ ሾܺ௨ሿܿ௨ܧ ൅ ,ሼ0	ሾmaxܧ ܺ௨ െ ௨௠௔௫ܫ ൅ ݅௨ሽሿ	݈௨    

                                                                                  (7) 

3. Computational Study 

The behaviour of the model and the implications of the four 
substitution strategies have been investigated through a 
computational study. This semi-Markov decision problem has 
six state variables and four action variables, therefore there is a 
significant computational burden associated with obtaining an 
optimal policy for this model. To aid with the computational 
investigations a simplification is proposed; it involves the 
introduction of fixed order sizes of Qp for production and of Qr 
for recovery. The action space for production and recovery then 
become: 

ܽ௣ ∈ ቊ
ሼ0,minሼܫ௣௠௔௫ െ ݅௣	, ܳ௣ሽሽ,	if	݅௢௣ ൌ ܽ௥ ൌ 0		

ሼ0ሽ,																																																otherwise
 

ܽ௥ ∈ ൜
ሼ0, ܳ௥ሽ,			if	݅௢௥ ൌ ܽ௣ ൌ 0	and	݅௨ ൒ ܳ௥
ሼ0ሽ,																																												otherwise

 

The parameter values for the problems are presented in 
Table 3. For all problems, the inventory levels can take discrete 
values from 0 to 20. For each of the 20 problems, three different 
order sizes for production Qp and recovery Qr are used to give 
three problem sets P1, P2, and P3. The order sizes are based on 
the mean and variance of demand: 

ܲ1:ܳ௣ ൌ 	 ඄ߣ௣ ൅ ටߣ௣ඈ,			ܳ௥ ൌ 	 ඃߣ௥ ൅ ඥߣ௥ඇ 

ܲ2:ܳ௣ ൌ 	 ඄ߣ௣ ൅ 2ටߣ௣ඈ,			ܳ௥ ൌ 	 ඃߣ௥ ൅ ඥߣ௥ඇ 

ܲ3:ܳ௣ ൌ 	 ඄ߣ௣ ൅ ටߣ௣ඈ,			ܳ௥ ൌ 	 ඃߣ௥ ൅ 2ඥߣ௥ඇ 

where the function ڿxۀ rounds x up to the nearest integer. The 
behaviour of the optimal policy under these conditions is 
analyzed by examining the average reward under the four 
substitution strategies: no substitution, upward substitution, 
downward substitution, two-way substitution. The value 
iteration algorithm is used to obtain the optimal policy. 

The average rewards for the three problems sets, under the 
four substitution strategies were investigated. The average 
rewards for problem set P1 are presented in Figure 3. The value 
of the average reward varies across the problems as well as 
between the substitution strategies. This is not surprising given 
the large variations in parameter values across the 20 problems. 
What is of more interest is the difference between the 
substitution strategies across the 20 problems. As confirmed by 
Figure 3, the reward associated with the two-way substitution 
is the highest. Note, however, that for some problems the  



 Author name / Procedia CIRP 00 (2014) 000–000  5 

 Table 3. Problem parameters. 

# λu λp λr µp µr Xu~U α αU αD cp cr

1 5 6 5 30 18 (2,7) 0.8 0.68 0.44 106.5 13.5

2 3 6 1 24 15 (0,5) 0.2 0.65 0.75 66 34

3 3 8 8 16 12 (0,5) 0.3 0.57 0.9 88 42

4 3 6 5 24 12 (0,5) 0.3 1 0.62 131 89

5 6 7 6 21 14 (3,8) 0.5 1 0.81 161 29

6 6 7 2 21 14 (3,8) 0.7 0.55 0.53 107 13

7 6 7 7 18 13 (3,8) 0.8 0.5 0.5 66 44

8 6 6 4 30 15 (3,8) 0.8 0.4 0.72 75 15

9 3 6 1 24 18 (0,5) 0.2 0.75 0.74 212.5 27.5

10 6 7 4 21 14 (3,8) 0.5 0.94 0.87 188.5 141.5

11 5 9 6 13 11 (2,7) 0.5 0.92 0.87 23.5 6.5

12 5 9 2 13 11 (2,7) 0.5 0.8 0.76 76 24

13 5 9 5 11 10 (2,7) 0.5 0.63 0.93 78.5 21.5

14 4 6 2 30 18 (1,6) 0.5 0.93 0.92 106.5 13.5

15 5 6 4 24 15 (2,7) 0.4 0.5 0.7 65.5 34.5

16 1 6 6 24 36 (1,1) 0.1 0.52 0.48 110 0

17 4 6 5 24 32 (1,6) 0.6 0.86 0.48 107 13

18 2 5 2 50 10 (2,2) 0.2 0.65 0.56 75 15

19 6 6 2 24 48 (3,8) 0.2 0.98 0.89 212.5 27.5

20 2 4 2 80 20 (2,2) 0.5 0.56 0.67 160 10

# cb ch cl cd lp lr pp pr kp kr

1 30 50 9 6.5 13 5.7 209 147 20 5

2 60 30 18 6 12 5.8 169 133 10 5

3 80 40 24 8 16 7.4 269 202 10 10

4 100 60 30 11 22 13.8 316 161 20 12

5 70 75 21 11 22 9.3 434 391 20 8

6 40 50 12 7 14 5.6 269 253 20 20

7 60 30 18 6 12 6.8 242 202 30 20

8 30 35 9 5 10 4.5 112 84 30 25

9 50 100 15 12.5 25 11.5 378 361 50 30

10 200 85 60 18.5 37 20.8 563 529 28 8

11 50 10 15 3.5 7 1.3 146 83 12 2

12 50 35 15 6 12 5.3 214 119 12 2

13 100 35 30 8.5 17 4.8 277 259 120 10

14 30 50 9 6.5 13 5.7 231 221 20 5

15 50 30 15 5.5 11 5.9 186 111 100 50

16 100 50 30 10 20 4 330 236 1000 100

17 40 50 12 7 14 5.6 212 113 400 400

18 30 35 9 5 10 4.5 140 115 30 5

19 50 100 15 12.5 25 11.5 263 150 50 10

20 50 75 15 10 20 7.5 279 162 28 8

 
reward from the two-way substitution strategy is equaled by 
other substitution strategies. 

Figure 3 was typical of the average rewards for problem sets 
P2 and P3. It was found that the average reward was relatively 
robust across the three problems sets, with exception of 
problems with a very large set-up cost (e.g. #16 and #17) where  

 

Fig. 3. Average reward of the optimal policy for all substitution strategies for 
problem set P1. 

 

Fig. 4. Average reward of the optimal policy for all problem sets under a two-
way substitution strategy. 

 

Fig. 5. Relative reward increase for substitution strategies for problem set P1.  

an increase in the production order size (from P1 to P2) 
resulted in a large increase in the average reward. This was 
similar across all substitution strategies. For example under the 
two-way substitution strategy and the P1 order sizes, #17 had 
an average reward of 1.08 units, whereas with the P2 order 
sizes the average reward was 39.47 units. This is visible in 
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Figure 4, which shows the variation between the three problem 
sets for the two-way substitution strategy. Further analysis is 
required to examine the influence of other parameter values. 

To investigate the additional reward achievable through 
each of the substitution strategies, the relative reward increase 
(RRI) from substitution is compared with not allowing 
substitution: RRI = {[Reward(substitution) − Reward(no 
substitution)]/ Reward(no substitution) × 100%}. Figure 5 
which shows the relative reward increase for problem set P1 
reveals that the additional reward available by allowing two-
way substitution varies considerably between the 20 problems. 
The RRI attainable by allowing substitution varies from 0 (no 
benefit from substitution) to approximately 60% (substantial 
benefit from substitution). For some problems (e.g. #08) the 
increase in reward available by allowing upward substitution is 
greater than for downward substitution, however for some 
problems (e.g. #03) the reverse can be observed. This variation 
suggests that the benefit available from allowing substitution 
depends heavily on the problem parameters. In general, the 
greatest increase in reward is attained by allowing a 
substitution strategy which includes upward substitution. These 
numerical results highlight some interesting properties of the 
model, however further work, including a sensitive analysis, is 
also required to obtain deeper insight into benefits attainable 
through substitution. 

4. Managerial Implications and Conclusion 

This paper has proposed and analysed a continuous-time 
product recovery model with separate markets and substitution. 
Four substitution strategies were investigated. The key finding 
of this research is that offering substitution between produced 
and remanufactured goods provides an increase in the long-run 
average reward. The size of this increase is dependent on the 
costs and other parameters values. By offering substitution the 
firm is able gain some revenue rather than losing sales and 
goodwill of consumers. However, there are some trade-offs 
associated with substitution. In offering downward (upward) 
substitution the firm faces the risk that the produced 
(recovered) inventory may also run out before the next 
replenishment arrives. However, these risks are not symmetric. 
With regard to downward substitution the firm must therefore 
consider the following trade-off: not offering substitution and 
losing sales of remanufactured goods; or offering substitution, 
selling produced goods for a lower price and potentially losing 
future sales of produced goods. Upward substitution, on the 
other hand, involves a trade-off only with respect to potential 
for future lost sales, not with respect to the revenue received. 
Upward substitution could be seen to carry less risk than 
downward substitution. 

The findings of this paper also highlight the need for a more 
comprehensive computational study and sensitivity analysis to 
explore in more detail the situations in which substitution can 
provide benefits to a hybrid producer/remanufacturer. This is 
an area for future research. This study revealed that the optimal 
policy has a very complicated structure, which would be 

impractical to implement in industry. Therefore future research 
could also investigate the structure of the optimal policy in 
order to gain insights which could be used to inform the 
development of simple, yet effective, policies for use by 
managers in charge of such systems. 
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