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The continuous growth of malware presents a problem for internet computing due to increasingly sophisticated techniques for
disguising malicious code through mutation and the time required to identify signatures for use by antiviral software systems
(AVS). Malware modelling has focused primarily on semantics due to the intended actions and behaviours of viral and worm code.
The aim of this paper is to evaluate a static structure approach tomalwaremodelling using the growingmalware signature databases
now available. We show that, if malware signatures are represented as artificial protein sequences, it is possible to apply standard
sequence alignment techniques in bioinformatics to improve accuracy of distinguishing between worm and virus signatures.
Moreover, aligned signature sequences can be mined through traditional data mining techniques to extract metasignatures that
help to distinguish between viral and worm signatures. All bioinformatics and data mining analysis were performed on publicly
available tools and Weka.

1. Introduction

If users do not have confidence that their machines will not
be attacked when connected to the internet, major areas
of computing will be constrained due to fear of denial of
service and massive data fraud [1]. Symantec reported over
5 billion attacks in 2011, an 81% increase over 2010 [2]. Over
400 million new malware variants were identified that year
alone. From a theoretical perspective, while virus detection
is undecidable [3–5], it is still not known whether there
exist algorithms that will take an arbitrary program or code
and decide correctly whether it contains specific forms of
malware [6]. This is not just because malware is behavioural
(actions performed at run time) and hence characterized
semantically [7], usually in the form of execution traces
[8], control flow [9], and process calculi [10]. Rather, an
essential aspect of viruses and worms is obfuscation through
polymorphic and metamorphic mutation [11–13], that is, the
ability to replicate with modification. While polymorphic
mutation (payload algorithm is kept constant, but viral code

is mutated) has led to computable detection in some cases [6,
14, 15], metamorphic mutation involves generating logically
equivalent code with changes in program length and flow as
well as data structures [16]. Because of increasing complexity
of obfuscation as well as discovery of new types of malware
(e.g., spyware, botnets), human experts are still required
to implement the variety of polymorphic and metamorphic
malware detection techniques currently known to exist [17–
20]. This manual process leads to the use of “signatures” by
antiviral software systems when scanning network packets or
memory block hashes for contiguous appearance of key parts
of malware code. This in turn leads to the situation where
malware infections must occur first before solutions can be
found and hence the threat to user confidence.

Research has continued in static structure checking algo-
rithms [21–24] despite current emphasis on semantic-based
approaches. Static structure analysis can reveal deep struc-
tural similarities between superficially dissimilar sequences
irrespective of control flow. Static checkers have faced prob-
lems in identifying complex obfuscation, however [25]. We
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have recently demonstrated a potential breakthrough in static
approaches by using the ever-expanding base of already avail-
able hexadecimal signatures [26] for polymorphic and meta-
morphic malware. The key was to represent these signatures
under an interpretation derived from biology: amino acids
forming polypeptide sequences. After signature alignment
using bioinformatics sequence alignment techniques involv-
ing substitution matrices derived from the large number of
biosequence databases now available, static metasignatures
for distinguishing between worms and viruses were extracted
with high accuracy [27, 28]. However, there are some limita-
tions to this work.

Antiviral signatures can be calculated from a pattern
of operations in the malware code or can represent the
encryption algorithm used to hide the virus or worm.
Signatures were originally and continue to be identified and
calculated by human experts and are typically a sequence of
hexadecimal numbers intended to uniquely identify viruses
and worms. Automatic generation of signatures for new
malware continues to be a difficult problem [29]. Such
signatures can also be consistent for a “family” of viruses
or worms that share parts of the code or have similar
function and are essentially variants of each other. For
instance, “Virus.Acad.Bursted.a” is a typical computer virus
name that indicates the platform (Autocad, or “Acad”), the
family (Bursted), and the variant “a”. Achieving consistency
of signatures for members of the same family is especially
important when dealing with polymorphic (the functional
parts of the code are the same but hidden differently) and
metamorphic (the function remains the same, but the code
is altered with every replication) malware designed to avoid
such signature detection [30, 31]. Due to the security dangers
inherent in making the original malware code available
for public dissemination, only signatures are made publicly
available.

AVS scanners use a dictionary or library of signatures in
a variety of different ways. For instance, for simple polymor-
phic malware detection, the hexadecimal representation of
a signature can be used to match against incoming network
packets containing bytes also represented in hexadecimal.
This allows the AVS to check for contiguous similarities
between parts of the signature and packet contents. Formeta-
morphic andmore complex polymorphic malware detection,
increasingly sophisticated techniquesmust be used that allow
for contiguous parts of the signature to be detected noncon-
tiguously across different packets [32]. Signature detection
through pattern matching is usually supported by other
techniques, such as stateful monitoring, to minimize false
positives and false negatives [33]. Malware writers adopt a
variety of sophisticated techniques for avoiding detection. By
the time a new variant is identified and signatures released,
the infectionmay already have reached epidemic proportions
[34]. One of the problems in applying automatic data mining
techniques to static malware code directly, even if it is
available, is the variable length of the code [35], since most
data mining and other machine learning techniques assume
fixed length sequences with a column representing mea-
surements of the same variable across many samples. There
is surprisingly little work reporting on the application of

machine learning techniques to malware signature detection,
mainly due to the problem of obtaining malware source code
as well as the need to deal with variable length code to
identify the critical parts of the code from which to derive
signatures. Also, mining the signatures directly can lead to
results that are difficult to interpret, since the hexadecimal
signatures cannot always be mapped back to meaningful
and individual operations in the source code (op code). The
variable length of the malware code, the difficulty of legally
obtaining source malware code for detailed analysis, and the
lack of interpretability of results if hexadecimal signatures
are used and the partially sequential aspects of the data all
obstruct the use of machine learning techniques, thereby
limiting their use in the urgent problem of finding automatic
ways of generating static signatures.

Sequence analysis is used in biology to understand
the relationship between two or more sequences (multiple
sequence alignment) of genetic information, such as DNA
or amino acids. There are databases of genetic information
which are processed by string alignment algorithms to better
understand the relationship between species and also deter-
mine the location of specific genes. In particular, sequence
analysis and alignment can be used to identify conserved
regions or motifs (regions of similarity) in biological data
that identify common genes and shared ancestry as well as
common structure and function of amino acid sequences
[36]. One advantageous side effect of alignment methods is
that variable length biological sequences can be converted
into fixed length sequences through appropriate insertion
and deletion techniques. Powerful data mining algorithms
that assume fixed length sequences or patterns can then be
applied to identify critical features that help to determine
whether a sequence is malware or not.

Sequence alignment techniques are not confined to bio-
logical sequences, however, and there have been applications
of sequence alignment in linguistics [37] and marketing [38].
The first demonstration of multiple sequence alignment to
malware signatures to identifymotifs [39], ormetasignatures,
for families of computer viruses and worms demonstrated
the feasibility of the approach. The signatures of 30 worms
and 30 viruses were converted into amino acid residue
representation using a random mapping (hex 1 became “A”,
hex 2 “C”..). Since there are 20 amino acid residue characters,
that left four spare amino acid residues. The amino acid
W was used to represent gaps in the alignment of worms
and viruses separately and the amino acid Y to represent
gaps in the alignment when the aligned worms and viruses
were jointly aligned to produce a common fixed length
set of sequences. ClustalW [40] was used as the multiple
alignment tool. The advantage of alignment was that initially
fixed length signatures can be expanded to find common
or conserved regions across families of viruses and worms
separately.The length of expansionwill vary between families
so that the length of the aligned signatures of worms will
almost certainly be different from aligned virus signatures.
These separately alignedwormand virus signatureswere then
multiply aligned together into fixed length (but significantly
longer) sequences that were annotated with a class value (“1”
for worm, “0” for virus) for supervised learning. The doubly
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aligned sequences were in turn converted into decimal ASCII
code (“A” became 66, “C” 67 . . . “Z” 90) for input to a
two-layer perceptron for checking accuracy of classification.
This conversion to numeric code was necessary because of
the input requirements of ANNs. Comparison between the
classification of nonaligned sequences and doubly aligned
sequences showed improvement (80% average accuracy for
unaligned, 91% average accuracy for doubly aligned), thereby
demonstrating the feasibility of the approach [39].

Subsequent work [41] reported on a variation to the neu-
ral network representation of the doubly aligned sequences.
Instead of using ASCII, residues were converted into numer-
ical values for an ANN through real numbers 0.1 to 0.95 in
steps of 0.05. This allowed the use of a single layer percep-
tron, with the ANN returning on average 72% accuracy on
nonaligned sequences and 83% on average on doubly aligned
sequences. These results demonstrated the sensitivity of the
results to ANN architecture (one layer rather than two layers)
as well as coding representations. Further work [42] showed
the effects of applying different three different amino acid
representation methods to virus and worm signatures. The
first method was the same as originally used [39, 40], the
second method reversed the order of representation, and
third shifted the representation by one letter but kept the first
letter constant [42] (more details below). Also, the number of
signatures was doubled to 60 worm and 60 viral signatures.
Accuracy figures showed significant improvement, irrespec-
tive of representation method adopted, providing evidence
that applying multiple sequencing techniques to malware
signatures enhanced predictive capability.

The aim of this paper is to significantly extend the work
started in [42] and to explore the implications of adopting five
different residue representations when forming alignments
of signatures and extracting motifs. Also, it is important to
know whether motifs/metasignatures reported earlier [39,
41, 42] are an accidental by-product of the representations
used or evidence of a deeper and unpredicted aspect of
applying biosequence techniques to artificial virus and worm
signatures.

2. Representations and Methods

There are several tools for alignment and many algorithms
used in the study of biosequence analysis. In general, an
alignment is an adjustment of a sequence in relation to other
sequences. The aim is to arrange two (pairwise alignment) or
more (multiple sequence alignment) possibly variable length
sequences of DNA or protein in such a way that regions
of similarity across sequences (rows of a matrix) fall in the
same successive columns of the matrix, where such similarity
signifies functional, structural, or evolutionary commonality.
Global alignment tries to align every item in every sequence
and tends to work best when the sequences are of roughly
similar length, such as the Needleman-Wunsch technique
[43]. Local alignment, on the other hand, tries to align regions
of the sequences even if the sequences are not similar overall,
such as the Smith-Waterman technique [44]. ClustalW is

a global alignment tool available from the EBI [45] and is the
global alignment tool used below.

Malware is a generic term given to any program or code
intended to cause disruption or gain access to unauthorised
information and resources. Viruses can be written in any
programming language before being compiled. Viral source
code signatures are provided on the internet for experimental
use and viral source code as such will not be used in this
paper. Instead, in line with viral signature detection, the
virus signatures, expressed in hexadecimal, are used here.
Signature detection is usually effective for new viruses of a
known family, where code and functionality are shared and
therefore there is some consistency among the signatures to
allow or detection of new variants of the same family.The first
part of the virus.1C.Tanga.a computer virus signature has the
hexadecimal coding 8e5ef1aec91259d70c5e62 and the worm
Bat.Agent.bo, the hexadecimal coding fb56373bde3881741.
The hexadecimal code for 60 viruses belonging to 12 families
and 60 worms belonging to 13 families were downloaded
from VX Heavens [46] for use in the experiments below.

Five different representations of the signatures were tried
for alignment purposes (Table 1).The first representation (R1)
uses the same order of hexadecimal to amino acid residues.
The second (R2) reverses this order and the third (R3) uses
a shift of one amino acid residue after the initial residue.
R4 essentially swaps the two halves of R1 and R5 reverses
the two halves of R1. In previous work, gaps introduced
by alignment were coded differently. Here, we use “W”
to represent all gaps introduced during the first stage of
alignment and “Y” to represent all gaps introduced during
the second alignment stage (details below). Given that there
are 18! ways to undertake the conversion from hexadecimal
plus two gaps into amino acid characters, there is clearly
much more work required to assess the effects of different
representations. The five chosen here are pseudorandom
selections, with no attempt made to ensure lack of random
duplication. For instance, hex 5 is represented twice by F (R1
and R5). The use of these five representations results in five
files, each of 120 instances.The experimentalmethod adopted
is as follows.

(a) Download 60 virus and 60 worm signatures in
hexadecimal format from VX Heavens and calculate
unaligned benchmarks prior to alignment as follows.

(i) Convert the 120 hexadecimal sequences into
their five different representation files using
Table 1 (R1–R5), resulting in five files of artificial
protein sequences (AP1–AP5).

(ii) Convert these artificial protein sequence repre-
sentation files (AP1–AP5) into their numeric
versions (NR1–NR5) using Table 2 (details be-
low).

(iii) Input files AP1–AP5 into J48 and Naive Bayes to
provide benchmarks for unaligned sequences.
Input NR1–NR5 into perceptrons to provide a
benchmark for unaligned sequences.

(b) Input all 60 R1 worm signatures from AP1 (but not
virus signatures) into ClustalW to form an initial set



4 The Scientific World Journal

Table 1: Five different representations R1–R5 of malware hexadeci-
mal signatures.

Hex 1 2 3 4 5 6 7 8 9
R1 A C D E F G H I K
R2 S R Q P N M L K I
R3 A D E F G H I K L
R4 I K L M N P Q R S
R5 K I H G F E D C A
Hex 0 a b c d e f — —
R1 L M N P Q R S Y W
R2 H G F E D C A Y W
R3 M N P Q R S C Y W
R4 A C D E F G H Y W
R5 S R Q P N M L Y W

of aligned worm sequences. Code gaps as “W.” Repeat
for R2–R5 worm signatures. Call these sequences
WAR1-WAR5 (“W” for worm, “A” for aligned using
ClustalW).

(c) Input all 60 R1 virus signatures into ClustalW to form
an initial set of aligned virus sequences. Code gaps
as “W.” Repeat for R2–R5 virus signatures. Call these
sequences VAR1–VAR5 (“V” for virus, “A” for aligned
using ClustalW).

(d) Recombine the two aligned sets (WAR1 worm and
VAR1 virus) into one dataset (120 sequences of two
different lengths) and input into ClustalW to form
a second, combined set of aligned sequences, DAR1
(“D” for doubly aligned, “R1” for representation 1).
Code all gaps introduced at this (double alignment)
stage as “Y.” Repeat for WAR2–WAR5 worm and
VAR2–VAR5. This results in five doubly aligned
datasets DAR1–DAR5, with each consisting of doubly
aligned worm and virus signatures using the same
representation.

(e) Input DAR1–DAR5 to J48 and Naive Bayes. Convert
DAR1–DAR5 using Table 2 into their numeric ver-
sions (DANR1–DANR5, where “N” is numeric) and
input to perceptrons. Compare the results against the
benchmarks produced in (a)(iii) above.

(f) Input DAR1–DAR5 to the rule extractor PRISM to
identify virus and worm motifs, or metasignatures.

Whereas previously J48 (a rule extractor with pruning)
had been used [39, 41], this paper reports on the application of
PRISM (amodular rule extractor [47]) to extract motifs from
the signatures. J48 is now used here to provide benchmarks
and comparative measures against perceptrons and Naive
Bayes because of earlier confidence that J48 works effectively
with doubly aligned sequences. J48 andNaive Bayes interpret
the input as categorical. However, neural networks require
numerical input, hence the conversion to numeric form in
Table 2.

Previous work [41] had shown that a single layer per-
ceptron was sufficient but, to take into account the arbitrary
nature of the conversion of amino acid residues to numerical

values (Table 2), a hidden layer of 72 units was introduced.
The hidden layer is intended to collect summed activations
from the input layer irrespective of the mode of representa-
tion R1–R5 as well as deal with any aspects of nonlinearity
due to numerical representation. The hypothesis is that the
different representations R1–R5 would make no difference to
the training and test results due to the hidden layer acting
as a “buffer” between input and output layers. Previous work
[41, 43] had shown that a 72 node hidden layer, in comparison
to other architectures, was effective. This architecture is used
for both benchmarking and comparative purposes on the
double aligned sequences. The numeric conversion was used
successfully previously [41, 43] and so there is confidence in
its effectiveness.The same numeric conversion is used so that
any differences in the results can be due only to the mode
of representation R1–R5. Class information for supervised
learning is attached to the end of each sample as before, with
“0” denoting virus and “1” denoting worm.

Aligning the 60 viruses and 60 worms separately (steps
(b) and (c) above) allows the conserved regions of viruses and
worms to be independently extracted by ClustalW. ClustalW
alignments are based on the frequency of residue occurrence
in the 120 input sequences and default weighting parameters
based on similarity and dissimilarity of sequences. Without
a substitution matrix, ClustalW default parameters use gap
insertion and gap extension penalties (e.g., gaps at the ends
of sequences are penalised less than gaps in the middle of
sequences) as well as protein weight matrices that use sim-
ilarity of amino acids to each other when calculating where
to insert gaps. For the experiments below, it was decided to
try the Gonnet substitution matrix [46] with ClustalW. Very
generally, Gonnet matrices represent evolutionary substitu-
tion information gained from pairwise analysing all protein
sequences known in 1992. Current substitution matrices
based on exhaustive pairwise alignment tend to focus on
specific families of organisms because of the large number of
protein sequences now available in public databases. Gonnet
matrices have been subsequently refined to take into account
growing knowledge ofmutations between amino acids. Given
that many worm and virus signature sequences are mutated
variants of each other, it would be interesting to see how a
substitution method based on evolutionary distance would
handle the sequences. After the first alignment (steps (b)
and (c) above), the length of the virus set alignment will be
different from the length of the worm set alignment. This is
because there is no guarantee that ClustalWwith Gonnet will
make the same number of insertions (gaps) for each set of
sequences. A second and joint alignment is required to ensure
that all 120 sequences are of the same length for machine
learning purposes (step (d) above).

For instance, after alignment by ClustalW, we have (for
the first parts of three viral signature sequences only using
R1):

FIIDIDNGLFDSRPLEEFKGALEGEI. . .

GE-----SQMPSIDMPQF---PGLPS. . .

---------ILHSPMHQFRF-PRSQR. . .

: :∗
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Table 2: Conversion of the 16-amino acid alphabet to numeric form between 0 to 1 for input to perceptrons. Y andW (two extra characters)
represent the gaps introduced during alignment (see main text).

A C D E F G H I K L M N P Q R S Y W
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

which shows that only F is aligned across all three sequences
(∗) and M and Q across two sequences (:). The gaps (-)
introduced at this stage are coded “W.” The 60 aligned
sequences for the virus set and the 60 aligned sequences
for the worm set were then combined into a composite 120
sequence set for a second alignment. Gaps introduced at this
stage are Y gaps. Y and W gaps have their own numeric
representation (Table 2). Weka perceptrons were used to
implement the neural networks, which has as many input
nodes as residues in the fixed length, nonaligned and doubly

aligned sequences. (Waikato Environment for Knowledge
Analysis: http://www.cs.waikato.ac.nz/ml/weka/). For Weka,
each residue position was given its own attribute and the
class information was either “virus” or “worm.” J48 and
Naive Bayes within Weka were also used for all experiments
in this paper. The machine learning task was therefore to
determine whether using different representations at the
initial stage of encoding worm and virus signatures affected
the performance of the perceptrons, J48 and Naive Bayes.
For reporting the test results, the following formulae are used
(virus is negative; worm is positive):

Accuracy =
Number of true positives + number of true negatives

Number of true positives + false positives + false negatives + true negatives
,

Sensitivity = Number of true positives
Number of true positives + number of false negatives

,

Specificity =
Number of true negatives

Number of true negatives + number of false positives
.

(1)

3. Experimental Results

The downloaded 60 virus and 60 worm signatures of fixed
length 72 hexadecimal characters were first converted into
five representation files using R1–R5 (Table 1) and input to
Weka perceptrons for benchmark purposes (i.e., without
alignment). Previous work had shown that a 72 × 72 × 1
perceptron, with learning rate 0.1 andmomentumof 0.25, was
sufficient to reduce the root mean squared error to below 0.1
within 150 epochs. A severe training to test ratio of 50 : 50 was
used to fully evaluate the generalizability of the three different
representations using 10-fold cross-validation as well as test
for possible overfitting due to the large number of hidden
units.The overall accuracy result for the unaligned sequences
was 0.531 (Table 1), which is not much better than tossing a
coin. This confirms the problematic nature of the dataset in
its raw form.

The double alignments of worm and virus signatures
(steps (b), (c), and (d) above) resulted in fixed length
sequences of 140, 123, 128, 133, and 109 for DAR1–DAR5,
respectively. These five datasets were converted into numer-
ical input using the coding in Table 2 and input to five
perceptrons with architectures 140 × 72 × 1, 123 × 72 × 1, 128
× 72 × 1, 133 × 72 × 1, and 109 × 72 × 1, respectively (step (d)
above).The ANN experiment was repeated for 10-folds using
the same 50% training, 50% testing regime, and learning
parameters as for the benchmark results, leading to the figures
displayed in Table 3. Also, DAR1–DAR5 were input to J48
and Naive Bayes in Weka using the same train-test ratios

and numbers of folds. The results of the benchmarking (no
alignment) and all doubly aligned analysis are provided in
Table 3.

For rule extraction purposes, DAR1–DAR5 were input to
PRISM (all samples used for maximum knowledge extrac-
tion) to produce the following metasignatures for each
representation (where “pos” stands for position in the doubly
aligned sequence):

R1: Virus signature if pos5 = A, pos20 = N, pos32 = G or
A, pos33 = N or C, pos34 = N, pos60 = C. pos5 = A,
pos20 = N, pos21 = D, pos28 = E, pos30 = L, pos32 =
A, pos36 = P, pos53 = A.

R1: Worm signature if pos16 = G, pos37 = M, pos93 = I,
pos94 = I, pos96 = A, pos100 = C or M, pos104 = D,
pos149 = C. pos10 = L, pos41 = C, pos44 = I, pos45 =
D or L, pos46 = R, pos51 = H, pos54 = L, pos59 = S,
pos70 = G or R, pos71 = S, pos72 = L or M, pos73 = D
or P.

R2: Virus signature. No rules found except involving gaps
W and Y. pos4 = Q or R, pos43 = K, pos69 = F or Q,
pos84 = K.

R2: Worm signature if pos5 = C, pos8 = H, pos11 = C or L,
pos27 = G or N, pos28 = D or E, pos43 = A, pos45 =
R, pos67 = S. pos5 = C, pos7 = P, pos27 = I, pos28 =
D or G, pos29 = C, pos31 = K, pos83 = F.

R3: Virus signature if pos12 = A, post13 = A, pos65 = F.

http://www.cs.waikato.ac.nz/ml/weka/
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Table 3: Results of 50 : 50 train-test ratio, 10-fold cross-validation on all five representations, non-aligned and aligned, using perceptrons, J48
and Naive Bayes.

Unaligned Aligned Unaligned
summary

Aligned
summaryR1 R2 R3 R4 R5 R1 R2 R3 R4 R5

Perceptrons
Accuracy 0.517 0.533 0.533 0.608 0.617 0.967 0.967 0.975 1 0.983 0.562 0.978
Sensitivity 0.516 0.54 0.542 0.607 0.613 0.983 0.967 0.967 1 0.968 0.564 0.977
Specificity 0.517 0.529 0.528 0.617 0.633 0.95 0.967 0.983 1 1 0.565 0.980

J48

Accuracy 0.483 0.508 0.558 0.542 0.542 0.825 0.883 0.958 0.883 0.975 0.527 0.905
Sensitivity 0.483 0.508 0.554 0.541 0.541 0.783 0.871 0.982 0.848 0.967 0.525 0.890
Specificity 0.483 0.509 0.564 0.55 0.55 0.9 0.9 0.933 0.933 0.983 0.531 0.930

Naive Bayes

Accuracy 0.425 0.475 0.533 0.542 0.542 0.975 0.967 0.992 1 0.983 0.503 0.983
Sensitivity 0.426 0.476 0.537 0.545 0.545 0.983 0.967 0.984 1 0.968 0.506 0.980
Specificity 0.424 0.474 0.53 0.5 0.5 0.967 0.967 1 1 1 0.486 0.987

Summary

Accuracy 0.475 0.506 0.542 0.564 0.567 0.922 0.939 0.975 0.961 0.98 0.531 0.955
Sensitivity 0.475 0.508 0.544 0.564 0.566 0.916 0.935 0.978 0.949 0.968 0.531 0.949
Specificity 0.475 0.504 0.541 0.556 0.561 0.939 0.945 0.972 0.978 0.994 0.527 0.966

R3: Worm signature if pos11 = A, pos33 = I, pos55 = L or
M, pos88 =M, pos119 = N, pos122 = A, pos124 = H or
M.

R4: Virus signature if pos9 = K, pos18 = I, pos21 = K.
No rules found for virus or worm signatures except
those involving W and Y.

R5: Virus signature if pos51 = E or M, pos52 = C, pos53 =
P, pos54 = F, pos57 = D, pos58 = F, pos59 = D.

R5: Worm signature if pos13 = H then 1.

Converting these metasignatures back into hexadecimal
patterns produces (where “..” means any number of hexadec-
imal characters and “[ ]” gives alternatives):

R1: Virus signature if “..2..[df]..[61][b2]b..2..” “..1..b3..4..
0..1..c..1..”; Worm signature if “..6..a..88..1..[2a]..3..2..”
“..0..2..8[30]e..7..0..f..[6e]f[0a][3c]..”

R2: Virus signature if “..[32]..8..[b3]..8..” Worm signature
if “..6..1..[67]..[25][5c]..f..2..1..” “..e..4..9[ad]e..8..b..”

R3: Virus signature if “..11..4..”; Worm signature if “..1..7
..[90]..0..a..1..[60]..”

R4: Virus signature if “..2..1..2..”
R5: Virus signature if “..[6e]8c5..757..”; Worm signature if

“..3..”

4. Discussion of Results

Table 3 indicates that the mode of representation affects
both unaligned and doubly aligned sequences. The two-layer

perceptron performs best on the unaligned sequences (0.562)
and Naive Bayes on aligned sequences (0.983) in terms of
accuracy. There are major improvements in the results for
double aligned sequences, irrespective of representation.The
perfect accuracy returned by perceptrons andNaive Bayes on
R4 indicates that the insertion of gaps (coded as W and Y)
has allowed these two techniques, which use the information
present in all attributes including gaps, to distinguish between
doubly aligned worm and virus signatures. That is, these two
techniques found sufficient information in combinations of
attributes (weighted in the case of perceptrons, frequency of
occurrence in the case of Naive Bayes) to classify perfectly.
J48, however, looks for minimal and selective attributes
that distinguish between the two classes. Its performance
across all five representations (0.905 average accuracy) is still
a major improvement in comparison to unaligned perfor-
mance (0.527).

Across the three machine learning algorithms, R5 was
best for accuracy and specificity (0.98 and 0.994, resp.), and
R3 for sensitivity (0.978). When R1 was used with 60 virus
and 60 worm signatures, the metasignatures “..1..b3..4..0..1..
1(/c)..1..” for virus and “..0..2..83(/0)e.. 7..0..f..6(/c)fa(/0)3(/c)..”
were reported [42]. The results above indicate that the choice
of alignment method and use of substation matrix can
affect the metasignatures extracted. R1 appears to be best for
extracting metasignatures for both virus and worms in terms
of information contained in the patterns, followed by R2 and
R4 for wormmetasignatures only and R5 for virus signatures
only. The metasignature for virus using R5 (“..[6e]8c5..757..”)
in particular contains a number of contiguous hexadecimal
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characters (no gaps) that could be useful for future AVS to
help distinguish viral malware from nonmalware.

5. Conclusions

The results indicate that aligning computer virus and
worm signatures using multiple alignment techniques leads
to improved classification accuracy using the techniques
described in this paper. While the differences in represen-
tation are reflected to some extent in classification accu-
racy after alignment, there is a difference when PRISM
is used, with R1 producing more informative metasigna-
tures for both virus and worm. The method of converting
malware hexadecimal signatures to residue representation
has been clearly demonstrated to affect learning and the
motifs extracted. More work is required to determine the
tradeoff between representations and richness or usefulness
of motifs extracted. Converting the hexadecimal signatures
of viruses and worms to amino acids and then rational
numbers between 0 to 1 has also been shown to be effective
for perceptron learning. Naive Bayes for separating worm
from virus signatures after alignment has also been shown
to be the most accurate. However, extracting the knowledge
contained in Naive Bayes is not easy and symbolic rule
extraction techniques are to be preferred when trying to
generate malware signatures for scanning files and network
packets directly. The derivation of metasignatures provides
a new way to look at viral and worm signatures at a
“motif ” level. These motifs represent common subpatterns
among the signatures after initial alignment of virus and
worm signatures separately (to allow commonalities among
variants of virus and worm signatures to be formed) and
then together (to allow differences between virus and worm
signatures to be separated).Themachine learning task was to
separate worm signatures from virus signatures using their
hexadecimal form and different amino acid representations,
rather than distinguish malware from nonmalware. To test
for malware versus nonmalware classification will require
mapping the metasignatures back to malware op code, and
this is not possible for the signatures used in this research.
Nevertheless, we have shown how the growing databanks of
malware signatures can be mined for interesting signature
information, even if the relationship back to op code is lost or
not available. More work is required, however, to identify the
most effective alignment algorithms, substitution matrices,
and representations for rich and informative metasignatures
extraction.
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