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Abstract

This thesis presents a vulnerability prediction and risk assessment process of the Xen

hypervisor. The process predicts the number of unknown Xen vulnerabilities that may

appear in the future. It also determines the risk severity levels a specific Xen version

provides. The hypervisor is a key component of virtualisation to offer an Infrastructure-

as-a-Service delivery model. Thus, the hypervisor is an attractive target of attackers to

compromise critical assets that usually belong to different tenants. When such a critical

component is compromised, the assets of service customers are consequently at risk.

Cloud computing has matured with time, but many organisations have security

concerns due to new risks compared to conventional IT environment. The types of

risk also vary from one service delivery model to another. Much research has been

conducted to assess the risk of cloud computing, but it has viewed and assessed risk

from a broader perspective instead of focusing on the hypervisor which provides the

base for Infrastructure-as-a-Service. Moreover, cloud service providers are responsible

for managing the security of the hypervisors which makes service customers utterly

unaware of the security of their data if they move to cloud virtualised infrastructure.

Therefore, to encourage customers to adopt Infrastructure-as-a-Service free of security

concerns, a new assessment platform specific to the hypervisor is required. However, the

following questions arise: How can the unknown vulnerabilities be predicted in large

software applications such as the Xen hypervisor to mitigate exploitation scenarios?

How can the determination of the risk of unknown Xen vulnerabilities be presented such

2



that it aids cloud infrastructure service consumers?

This research targets the Infrastructure-as-a-Service delivery model and presents

a Xen vulnerability prediction and risk assessment process. Different analysis and

research methods are used in this research. The Time Series Holt-Winters method is

used to predict unknown vulnerabilities. The regression analysis method is used to

predict unknown vulnerabilities with regard to the impact levels (High, Medium, and

Low). ENISA risk framework is considered to adopt XEN vulnerability impact ratings.

A structured analysis approach using attack trees is used to determine threat likelihood

levels. A risk estimation matrix is used to map the vulnerability impact ratings and

threat likelihood levels to determine qualitative risk severity levels.

The vulnerability prediction and risk assessment process allows customers to use

results of vulnerabilities and risk of Xen to make informed security decisions. The

process is very effective for the small organisations that do not have security profes-

sionals or experts to assess the security risks they could face after moving their critical

services to cloud virtualised infrastructure. Nine technical risks to the Xen hypervisor

are identified and security recommendations are made for customers regarding each of

the risk categories. However, customers are encouraged to identify and add new risks

in the assessment process that may be specific to their services, data, and information.

The customers can then consider the security recommendations made in this research to

select a cloud service provider after analysing the security controls which are in place

to mitigate these risks.

The vulnerability prediction and risk assessment process is developed on the Xen

hypervisor and tested on the two other popular open source, infrastructure level software

packages. Vulnerability prediction and risk assessment of Apache HTTP and Squid

Proxy servers is performed to evaluate the process to ensure its generalisability and

applicability. In each case, the results of vulnerability prediction and risk assessment

are good to fair.
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Chapter 1

Introduction

1.1 Introduction

This research provides a vulnerability prediction and risk assessment process for the

Xen hypervisor. Potential cloud customers can use this process to predict unknown

vulnerabilities to the Xen hypervisor. The results of the risk assessment process can

be used by customers to understand the risk of moving their data and information to

a virtualised infrastructure. This process is quite useful for the organisations without

enough knowledge and security experts to assess vulnerabilities and risk before selecting

an appropriate cloud service provider (CSP) and moving their services and data to a

cloud virtualised infrastructure.

Cloud computing (CC) offers organisations the use of outsourced services through

the Internet and typically through a pay-per-use model, as opposed to buying and

setting up resources in-house (Srinivasan, Sarukesi, Rodrigues, Manoj & Revathy, 2012;

Vaquero, Rodero-Merino & Morán, 2011). Besides providing a cost-effective solution,

CC has added benefits such as elasticity, scalability, and multi-tenancy (Khorshed, Ali &

Wasimi, 2012; Tianfield, 2012; Hashizume, Rosado, Fernández-Medina & Fernandez,

2013). CC offers three different service delivery models: Software-as-a-Service (SaaS),

17
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Platform-as-a-Service (PaaS), and Infrastructure-as- a-Service (IaaS).

This chapter is organised as follows: an overview of the hypervisor and common

types of hypervisors is provided in Section 1.2. Section 1.3 details the cloud service

delivery models. Security responsibilities for each of these models are provided in

Section 1.3.1. Section 1.3.2 highlights virtualisation security concerns. The hypervisor

security is covered in Section 1.3.3. Section 1.4 provides the problem statement and

Section 1.5 provides research objectives. In Section 1.6, the structure of the thesis is

provided. The conclusion of this chapter is provided in Section 1.7.

1.2 Hypervisor or Virtual Machine Monitor

This section provides details of the hypervisor and its types. The hypervisor is a core

component which provides the platform for virtualization. Multiple Virtual Machines

(VMs) can be created on a physical server using the hypervisor. The hypervisor provides

a software layer between hardware and OS of the host server (You, Peng, Liu & Xue,

2012). The hypervisor controls the flow of instructions between the guest VM OS and

the hardware, involving elements such as Processor core, CPU Cache, RAM, hard disk

drives, and Network Interface Cards (NICs) (Ayala, Vega & Vargas-Lombardo, 2013).

The hypervisor provides the isolation between multiple VMs running on the shared

hardware and ensures these VMs are separate entities (You et al., 2012).

1.2.1 Categories of Common Hypervisors

Native or bare-metal virtualization hypervisors run directly on the underlying hardware

without the need of a Host OS. The XenServer, VMware ESXi, and Microsoft Hyper-

V are common bare-metal hypervisors. These hypervisors have direct access to the

hardware of the physical server, resulting in efficient and high levels of performance.
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VMware Workstation/Player, Oracle VirtualBox, and Kernel based VM (KVM)

(Pék, Buttyán & Bencsáth, 2013) are the common hosted hypervisors. These hypervisors

require a Host OS to be installed and managed. These hypervisors provide hardware

resources to the VMs through the Host OS. Such hypervisors are not as efficient as

bare-metal hypervisors.

The virtualization market is dominated by VMware, Hyper-V, XEN, and KVM

hypervisors. According to Perez-Botero, Szefer and Lee (2013), 93 % of the hypervisor

market is covered by these four hypervisors. In 2012, Nexenta conducted a survey

and highlighted that the current market is highly dominated by these hypervisors. The

survey involved around 4,000 users and took over two months to complete. The survey

results show that 16 % of users use Hyper-V, 13 % use either KVM or XEN Server,

and 58% use VMware as their primary hypervisors. Moreover, 56 % of users selected

VMware, 17 % selected Hyper-V, 14 % selected KVM, and 13 % selected XEN Server

as their preferred hypervisor for the next 12 months.

1.3 Cloud Service Delivery Models

This section provides an overview of cloud service delivery models. Different CSPs

offer any of these services individually or all three services together (Modi, Patel,

Borisaniya, Patel & Rajarajan, 2013; Hashizume et al., 2013; Chhabra & Dixit, 2015).

IaaS is the delivery of virtualised infrastructure that mainly includes servers, storage,

and networking. Customers can use the virtualised infrastructure through the internet

service. Amazon Web Services (AWS) is the popular CSP that offers IaaS cloud

(Amazon EC2). Customers use their Application Program Interfaces (APIs) to configure

and manage virtual servers, storage, and networks.

Through PaaS, customers access different online tools required for development.

Through PaaS, CSPs provide development tools which customers can access even in
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collaboration with others. CSPs use APIs, gateway software, or portals that are installed

on the customer’s premises. The most common example of PaaS is GoogleApps.

SaaS is a type of cloud offering where CSPs deliver centrally hosted applications

through the internet. SaaS offerings are often referred to as web-based or hosted

software, and all the software runs on the CSPs’ servers. Customers can access software

via the internet instead of installing and managing it locally. All the SaaS applications

are usually accessed by customers through web browsers. Figure 1.1 provides examples

of popular CSPs which offer these service delivery models.
2 Security and Communication Networks

Figure 1: Cloud deliverymodels with respect to the services (source:
ADDI Summit Dec, 2009).

environment; this could be an operating system, storage,
or both. Some consider this as a development environment
for the consumer, as it allows for application development
without worrying about the underlying infrastructure [5].
However, this is a bit restrictive and there is nothing stopping
this environment being used to develop, test, and deploy
custom applications [7].

1.1.3. Software as a Service (SaaS). SaaS is the top-level service
in the NIST cloud delivery model [1, 2]. You could consider
this a fully outsourced service where the consumer buys an
application as a pay-as-you-go service and does not expect to
perform any support or maintenance for this application [5].
Example applications are Gmail and Dropbox [7].

1.2. Cloud Deployment Models. Based on the requirements
and the services provided by the companies to the sub-
scribers, cloud computing can be deployed in an organization
through several deployment models. The following are the
most common types of cloud deployments: public cloud,
private cloud, community cloud, and hybrid cloud. They can
be summarized as in Figure 2.

1.2.1. Private Cloud. A private cloud model is where a single
consumer wants to take advantage of the clouds convenient
on demand services, offered by the cloud providers. This
may be for cost savings or just to take advantage of the
ubiquitous and elasticity of the cloud [8, 9]. Customers who
adopt a private cloud setup will feel they have more control
over the security within this cloud and could force the cloud
provider to implement specific custom requirements [9], a
configuration which could be an ideal fit for a bank or
government agency.

1.2.2. Public Cloud. As the name suggests, this is a model
where the cloud provider offers public services on a pay-
as-you-go basis [9]. These resources are shared with all
consumers and because of this security is more challenging
compared to the private cloud [6, 8]. However, this model
does offer some advantages over the private cloud due to the

Figure 2: Cloud deployment models with respect to the services.
[Opex: operational expenditure is an ongoing cost for running a
product, business, or system; Capex: capital expenditure is the cost
of developing or providing nonconsumable parts for the product or
system.] (source: NIST).

economies of scale and its ability to offer short-term usage
[9].

1.2.3. Community Cloud. Community Cloud is an infras-
tructure employed by several organizations and supports a
specific community that shares common requirements, such
as security or legal compliance policies. The community
cloudmodel can provide greater cost savings than the private
cloud while offering some of its security features. It may be
managed by the organizations or a third party and may exist
on premise or off premise [6].

1.2.4. Hybrid Cloud. Ahybrid cloud is amixture of public and
private, a consumer reluctant to trust the public cloud model
due to its general nature might feel more comfortable sharing
a cloud with a group of similar organizations [8]. By grouping
similar like-minded organizations custom security and data
standards could be applied across the cloud [1, 7–9]

1.3. Virtualization. One of the main technologies enabling
cloud computing to thrive is virtualization. A fundamental
part of the virtualized environment is the hypervisor or
virtual machine monitor (VMM) [5]. This reduced footprint
operating system manages the physical platform and local
resources and is responsible for the separation of resources
for the guest systems running on this physical platform [10–
12]; The hypervisor or VMM (virtual machine monitor) is
the software which is responsible for managing the physical
server resources (CPU, memory, and storage) [10, 12]; it is
the management layer between the physical hardware and
the virtual machines running above. The hypervisor controls
the resource allocation to the virtual machines (VMs); these
physical machines can be grouped together to form a large
visualized infrastructure, expanding their capability to load
balance or moving VMs between physical servers without
any service downtime [11, 12]. It is this ability to share

Figure 1.1: Cloud Service Delivery Models (Barrowclough & Asif, 2018)

1.3.1 Security Responsibilities

In a traditional data centre environment, organisations manage infrastructure and secur-

ity by themselves. However, security management processes in cloud service delivery

models are different. Figure 1.2 provides a summary of the security responsibilities of

customers and CSPs in each of the delivery models.
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 Figure 1.2: Security Responsibilities (Chou, 2010)

In PaaS, customers do not manage the security of physical servers, network, data

storage equipment, operating systems (OS) and platform software packages. Customers

only ensure the security of their applications by applying service packs and patches.

However, CSPs are responsible for managing the security of almost everything else

(Albakri, Shanmugam, Samy, Idris & Ahmed, 2014).

In SaaS, managing security is mostly the responsibility of CSPs. CSPs manage

infrastructure, the platform, and installed software packages (Albakri et al., 2014).

Customers are only responsible for ensuring the security of their applications. For

example, SaaS customers must implement a policy to setup strong credentials and the

protection of these credentials. The username and password should not be shared with

others. Weak, shared, and lost credentials can result in unauthorised access by attackers.

IaaS, which is the focus of this research, provides infrastructure services such as

VMs, storage equipment, network, and database services to customers. Customers’
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involvement in managing the security in IaaS is more as compared to PaaS and SaaS

(Albakri et al., 2014). Usually, the customers manage OS, software packages, ap-

plications and data access permissions. However, managing the security of a core

IaaS component, the hypervisor and its virtual assets, physical servers, storage, and

networking is the sole responsibility of the CSPs.

1.3.2 Virtualisation Security Concerns

Virtualisation is a core aspect of the IaaS delivery model (Shoaib & Das, 2014). Vir-

tualisation allows the creation of VMs on a single physical server. Different software

and applications can run concurrently on these VMs by sharing the same hardware re-

sources. In other words, virtualisation allows the sharing of hardware resources between

different VMs that emulate the physical server (Chhabra & Dixit, 2015). Despite the

many benefits of using virtualisation, the biggest concern to virtualisation is the security

of the cloud infrastructure. Schulze (2015) presented a survey where approximately

1000 security professionals were consulted for their views and concerns about the

security of the cloud. The survey highlights that around 90 % of the respondents are

concerned about the security of public cloud virtual infrastructures. Around 45 % of the

respondents mentioned that the security concerns are the main barriers to customers’

adopting cloud-based services. 41 % respondents mentioned that data loss and leakage

is their bigger concern. Many respondents also mentioned that unauthorised access to

resources, account hijacking, and malicious insiders are the biggest risk to public cloud

services. However, despite these security concerns, cloud adoption rate is on the rise.

Cost saving is the biggest attraction for the organisations which motivates them to adopt

cloud services and neglect the fact of understanding the risk to the cloud.

Along with existing threats to the traditional IT environment, virtualisation leverages

new types of risk. In a typical IaaS scenario, customers are responsible for managing
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the security of all the applications running on VMs which are provided by the CSP.

However, customers are unaware of the security of VMs on which their applications are

running. The customers manage the OS, programs and applications in the IaaS delivery

model which gives them more control and satisfaction as compared to PaaS and SaaS

models (Section 1.3.1). However, customers are concerned about the risk of storing

their sensitive data and information on cloud virtualised infrastructure if they adopt the

IaaS model.

1.3.3 Hypervisor Security

Moving from a conventional IT environment to the cloud virtual infrastructure raises

security concerns. However, these security concerns are not completely different from

the IT environment. For example, a vulnerability that exists in the physical server can

also exist in a virtual cloud server. A common understanding is that the hypervisor

provides a virtualisation layer between the hardware and software of the server that

might reduce the impact of vulnerability exploitation. However, vulnerabilities in

hypervisors may provide new Attack Vectors (AVs) that may result in more sophisticated

attacks.

Resource Isolation

The hypervisor provides VM isolation and manages guest VM’s access to shared hard-

ware. It ensures isolation by partitioning hardware resources for each VM individually.

It does not allow a VM to access the hardware resources used by other VMs. This

guest VM isolation prevents unauthorised access to hardware resources and increases

the protection against malware injection by malicious VMs such as injecting malicious

code into other VM’s memory. This isolation helps in minimising the chances of Denial

of Service (DoS) by preventing malicious VMs exceeding resource consumption in
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other VMs OSs running on the same hypervisor.

Resource isolation provided by the hypervisor can be physical or logical. In the case

of physical isolation, the hypervisor allows a separate portion of hardware resources to

the VMs. Through logical isolation, the hypervisor divides resources of a shared server

between different VMs as in a pool of resources with the same security impact level

categorisation. In this case, the hypervisor allows multiple guest VMs to share the same

CPU, RAM, and disk drive. Physical resource isolation provides better security and

performance as compared to the case where logical isolation is considered.

Resource isolation offers security benefits and enhances the hardware server’s

reliability by preventing the actions of one VM affecting other VMs. For example, if

one VM is attacked or infected, all other VMs will not be affected by this VM. Isolating

VMs from one another and allowing each VM to access dedicated hardware resources,

is called sandboxing.

Despite the fact that the hypervisor ensures the isolation of resources between

VMs, the hypervisors are however vulnerable to side-channel attacks (Lawson, 2009).

Through a side-channel attack, an attacker exploits the physical hardware to extract

useful information such as cryptographic keys by monitoring the access patterns or

behaviour of guest VMs for Cache memory and CPU (Y. Zhang, Juels, Reiter &

Ristenpart, 2012).

Introspection

The hypervisor monitors each guest VM running on top of it using introspection. In-

trospection provides complete auditing capabilities that may otherwise be unavailable.

Monitoring through hypervisor introspection capabilities covers memory access, pro-

cessor access, network access, and different other features of a VM. The hypervisor can

provide information to the additional security controls that are learned from introspec-

tion. These security controls can be used by different virtualisation products to allow
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the security policies to be enforced and also to be moved when a VM is moved from

one physical server to another.

However, the virtual network traffic between guest VMs or between guest VMs

and the host OS should be monitored. The optimised host-based security controls are

required to monitor the virtual network traffic because of standard network security

controls and are ineffective due to the fact that traffic does not pass through these

physical network controls.

Security of VM Images

Vulnerabilities in guest OS, applications, and services are not affected by creating VM

images and snapshots; however, security of images and snapshots is critical because

these images and snapshots contain sensitive customer data that can affect their reputa-

tion. Though VM images and snapshots are easy to manage, the security of the data

in these images and snapshots is very critical. The data stored in snapshots is even

more sensitive because this data also contains the contents of memory. Moreover, there

are chances that snapshots might include information that was accessed from another

network server or storage and not from the local virtual disk drive.

1.4 Problem Statement

An overview of cloud service delivery models and the security responsibilities of

customers and CSPs was provided in Section 1.1. It also highlighted virtualisation and

hypervisor security concerns. This section provides the problem area and how it is

addressed through this research. The hypervisor is a critical asset for CSPs and is often a

target of attackers. If the hypervisor is compromised, it can damage critical virtual assets

that belong to different customers. It provides a point of possible attack for hackers

to gain access to virtual assets. An attacker can take control of all guest VMs and the
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data stored on those VMs after successfully exploiting the hypervisor. Hypervisors are

considered to be secure and robust. However, like other software packages, they contain

vulnerabilities. Exploitation of hypervisor vulnerabilities (Kortchinsky, 2009; Wojtczuk,

2008; Elhage, 2011; Rutkowska & Wojtczuk, 2008) provides opportunities for attackers

to launch further attacks to compromise virtual assets. Also, the vulnerabilities in the

hypervisors can lead to the destruction of virtual infrastructure which is running on top

of it. Though CSPs are improving the security of the cloud and ensure resource isolation,

a few cases have been reported in the near past where hypervisor vulnerabilities are

patched by the CSPs. Some possible attack scenarios to the hypervisors are as follows:

1.4.1 Breach of Isolation

Hypervisor escape is an attack type where an attacker uses a malicious VM to acquire

root level access by breaking or escaping the barrier provided by the hypervisor. The

hypervisor escape attack can be realised by exploiting a hypervisor design vulnerability

or vulnerability in the device driver modules of the Dom0. Through a successful attack,

a malicious VM can access the portion of the Cache memory which belongs to other

VMs or the hypervisor itself during a particular time slot. Moreover, a malicious VM

can access the storage devices where virtual machine images or snapshots are stored.

Moreover, a compromised hypervisor provides a single point of failure for all the guest

VMs where single vulnerability exploitation can put all the guest VMs and their data at

risk (Modi et al., 2013; Pék et al., 2013; Shoaib & Das, 2014; Pearce, Zeadally & Hunt,

2013; Luo, Lin, Chen, Yang & Chen, 2011).

1.4.2 Denial of Service

An attacker can execute a DoS attack by unnecessarily consuming hardware resources

of the hypervisor host server. Such an action by a malicious VM would result in DoS to
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all the legitimate VMs and the host server. In another scenario, a DoS attack is possible

when an attacker can control a host OS or the hypervisor and create a large number of

unnecessary VMs to consume the hardware resources of the server (Kazim, Masood,

Shibli & Abbasi, 2013).

1.4.3 Breach of Network Isolation

An attacker can use a malicious VM to break network isolation by spoofing the Internet

Protocol (IP) or Media Access Control (MAC) address. It would allow an attacker to

intercept the network traffic of legitimate VMs running on the same hypervisor and

using the same virtual network. Such a breach would result in the loss of confidentiality

because a malicious VM can access the information which belongs to other VMs.

1.5 Research Objectives

In Section 1.4, the problem area was highlighted. This section details the objectives of

this research to address the problem. In general, the hypervisor appears to be secure

and robust. However, hypervisor functionalities have broad security complications.

Therefore, a hypervisor vulnerability and risk assessment platform is presented to ensure

the security of infrastructure services provided by the target hypervisor. However,

performing vulnerabilities, threat, and risk assessment of a large software such as the

hypervisor is a complex task.

1.5.1 Xen Hypervisor

Xen is an open source hypervisor developed by The University of Cambridge Computer

Laboratory in 2003. It is a bare-metal hypervisor and runs directly on hardware without

the need for a host OS to manage hardware resources for all the VMs (Figure 1.3).
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It creates a privileged Dom0 which is aware of the Xen. Dom0 performs all the VM

management functions for Xen. All the VMs usually called DomUs, are not aware

of the virtualisation layer when runs in full virtualisation mode. In addition to basic

administrative tasks, Dom0 connects an instance of a device emulator, QEMU, to each

DomU resulting in exposing the emulated devices (Perez-Botero et al., 2013).

                                                                                     Hardware

  Control Domain
  (Dom0)

I/O Devices CPU Memory

Xen Hypervisor

Paravirtualized (PV) 
Guest VM

Fully Virtualized (HVM) 
Guest VM

Toolstack

Device Model (Qemu)

Hardware Drivers Netback Netfront

Figure 1.3: Xen Hypervisor

According to NVD search, Xen is more vulnerable than other conventional hyper-

visors as 62 vulnerabilities were reported in Xen during 2017. However, this is not a

definitive explanation; it is probable that Hyper-V’s owner (Microsoft) would prefer not

to have vulnerabilities known publicly, to protect its reputation and reduce the chances

of mass attacks against its OSs that use Hyper-V internally. This view is supported by

Arora, Nandkumar and Telang (2006) that not publishing known vulnerabilities and

publishing unpatched vulnerabilities (those that have not yet exploited) attracts fewer

attacks than the publication of known and already patched vulnerabilities. On the other

hand, all Xen vulnerabilities are reported, and the information is available because it

is an open source hypervisor. With the number of exploits reported to NVD there is a

good reason for concern. Therefore, an optimised risk assessment process for Xen is

desirable. Such a process can guide customers to assess the risk to their virtual assets
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provided by the Xen hypervisor. This research presents a qualitative risk assessment

process for the Xen hypervisor. The process used for Xen vulnerability prediction and

risk assessment is as follows:

1.5.2 Vulnerability Prediction

Vulnerability exploitations in common hypervisors result in compromise of CIA of the

critical cloud assets. One of the most common reported vulnerabilities in the hypervisors

is a DoS vulnerability. However, it is not evident what factors lead to the exploitation

of these DoS vulnerabilities. It appears that there is a link between the number of

vulnerabilities found, and knowledge of the type of vulnerability in the population. It is

hypothesised that, as the knowledge of a type of vulnerability grows (the triggers, what

code, software behaviours and so on), then more of that type of vulnerability are found

in software.

The prediction of vulnerabilities can help minimise the damage which can be caused

by the exploitation of unknown vulnerabilities when found. Therefore, it is desirable

to identify the vulnerabilities earlier in software systems to help reduce the cost of

damage and also the loss of reputation which can be caused by a successful exploitation.

The existing research presents some techniques and tools for the identification of

vulnerabilities using component characteristics such as code complexity and code churn

(Shin, Meneely, Williams & Osborne, 2011). However, the existing techniques seem

ineffective and lack applicability. This research presents a Xen vulnerability prediction

model which is based on a Holt-Winters time series prediction method. The Holt-

Winters method is a very simple prediction model and leverages the Xen reported

vulnerability data set to make the prediction. The reported vulnerability data set is

collected from the National Vulnerability Database (NVD). The number of reported

vulnerabilities in Xen version 4.x is extracted from the database and used as input to
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the prediction model. The vulnerability dataset contains Xen vulnerabilities which

have been reported during the past five years. The prediction results seem to be very

promising as the prediction model achieves an average accuracy on the whole of 4.x

series of the Xen hypervisor.

1.5.3 Risk Assessment

Risk assessment is a process of risk management (Cayirci, 2015; Albakri et al., 2014).

Risk assessment allows organisations or individuals to determine the impact of vulner-

abilities, the likelihood of threats, and the levels of overall risk to the assets to make

informed security decisions. Risk assessment can be quantitative (numeric value such

as probability or proportion) or qualitative (non-numeric or descriptive). It can also

be inductive or deductive (Cayirci, 2015). Inductive risk assessment induces all the

possible AVs and consequences of an exploitation scenario. An attack tree is an example

of inductive risk assessment. On the other hand, deductive risk assessment starts with

reasons and deduces from reasons until the attacker’s goal is determined.

The hypervisor vulnerability exploitations by sophisticated threats pose different

risks to cloud virtualised infrastructure. The hypervisor is a large and complex software.

It provides a very dynamic environment which makes risk assessment more difficult.

However, the attackers often want to exploit the hypervisors to get unauthorised access

to the virtual assets provided by them. Therefore, undertaking a risk assessment of the

hypervisor and its virtualised infrastructure is necessary. Protecting the hypervisors

from attacks is challenging as the number of unknown vulnerability exploits increases.

Furthermore, as compared to a conventional IT environment, the deployment of security

applications and solutions for the cloud environment is complicated. Therefore, risk

assessment of the cloud and effective management is a challenging research problem.

To minimise the security concerns of customers and to convince them to adopt IaaS,
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risks and their severity levels must be known to make informed security decisions.

This research targets IaaS and proposes a Xen risk assessment process for customers.

The Xen risk assessment process provides the risks and their severity levels to customers’

data and information when they move to cloud virtualised infrastructure. In other words,

it offers a platform for customers to use the outcomes of risk assessment to make

informed security decisions to select an appropriate CSP which is in compliance with

security controls and reduces the concerns of customers. The risk assessment process

consists of the following key steps:

• Identification of hypervisor vulnerabilities and determination of impact ratings.

The process compliments ENISA’s risk framework (Catteddu & Hogben, 2009)

to adopt impact ratings of the hypervisor vulnerabilities.

• Identification of threats and determination of likelihood levels using a structured

analysis approach by developing attack trees. Threat likelihood assessment is

performed using two different threat actors (TAs).

• Nine main risk categories to the Xen hypervisor are identified. The mapping of

vulnerability impact ratings and threat likelihood levels is performed using a risk

estimation matrix to determine risk severity levels.

Different organisations who are planning to move to cloud infrastructure can adopt

the Xen risk assessment process. This can enable customers to make informed security

decisions to select an appropriate CSP. Nine different technical and generic hypervisor

risks are identified, and their severity levels are determined. However, organisations are

encouraged to identify and add a new type of risk in the assessment process that may be

specific to their services and data type.
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1.6 Thesis Structure

In this section, the structure of the thesis is presented.

Vulnerability Prediction and Risk 
Assessment Process of the Xen 

Hypervisor

5. Xen Risk Assessment

5.1 Introduction

5.2 Xen Risk Assessment

5.3 Conclusion

6. Process Evaluation

6.1 Introduction

6.2 Vulnerability prediction 
of Apache HTTP Server

6.3 Risk Assessment of 
Apache HTTP Server

6.4 Vulnerability prediction 
of Squid Server

6.5 Risk Assessment of Squid Server

6.6 Conclusion

7. Discussion

7.1 Introduction

7.2 Discussion - Xen 
Vulnerability Prediction 

7.3 Discussion - Xen Risk Assessment

7.4 Security Considerations for 
IaaS Customers before the Risk 
Assessment

7.5 Security Recommendations for 
IaaS Customers after the Risk 
Assessment

7.6 Conclusion

8. Conclusion

8.1 Introduction

8.2 Problem Restatement

8.3 Contributions

8.4 Limitations

8.5 Future Directions

8.6 Conclusion

4. Xen Vulnerability Prediction

4.1 Introduction

4.2 Xen Vulnerability Prediction

4.3 Validity and Reliability of the Prediction Model

4.4 Measuring Prediction Accuracy

4.5 Prediction of  Unknown Xen 
Vulnerabilities with regard to 
Impact Levels

4.6 Conclusion

3. Methodology

3.1 Introduction

3.2 Research Methodology

3.3 Design Science Research Process

3.4 Analysis and 
Research Methods

3.5 Methods and Hypotheses Testing

3.6 Conclusion

2. Literature Review

2.1 Introduction

2.2 Data Gathering

2.3 Analysis of the Literature

2.4 Research Questions

2.5 Conclusion

1. Introduction

1.1 Introduction

1.2 Hypervisor or Virtual Machine Manager

1.3 Cloud Service Delivery Models

1.4 Problem Statement

1.5 Research Objectives

1.6 Thesis Structure

1.7 Conclusion

Chapter 2 presents a systematic literature review (SLR). The SLR directs this

research to identify, evaluate, and integrate the findings of existing research to address

the initial research questions. The problem is investigated by establishing the context of

existing research, relationships, possible areas of research, and inconsistencies in the

literature. It further leads to evaluating, developing and extending a theory to address

the research gaps.

Chapter 3 provides the methodology to conduct this research. It details the research

questions and hypotheses. It also provides the research methods selected to test these

hypotheses. A vulnerability prediction and risk assessment process for Xen is in

Chapter 3.

For Chapter 4, Xen vulnerability prediction is covered. Unknown Xen vulnerabilities
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are predicted for 2018. Unknown Xen vulnerabilities are also predicted with regard to

the impact levels to extend the scope of the vulnerability prediction process.

Chapter 5 provides the Xen risk assessment process. Risk assessment is performed

to determine vulnerability impact ratings, threat likelihood levels, and severity levels

of risk to Xen. The research methods are applied, and all the hypotheses are tested to

address the research questions.

For Chapter 6, vulnerability prediction and risk assessment of the Apache HTTP

and Squid Proxy servers is performed to evaluate the process to ensure its generalisab-

ility and applicability. The evaluation process shows accurate results by successfully

predicting unknown vulnerabilities and determining the risk severity levels to Apache

and Squid.

Chapter 7 provides a discussion of analysis of the results. It also details how results

support the answers to the research questions and address the research gaps.

Chapter 8 provides the conclusion of the thesis. It restates the problem and highlights

the research contribution made to the body of knowledge through this research. It also

highlights the limitations and future research directions.

1.7 Conclusion

The hypervisors are key components for the CSPs to offer IaaS. However, the new

types of risk to hypervisors raises security concerns and results in lack of IaaS adoption

by many organisations. The existing research focuses risk assessment from a broader

perspective. However, risk varies between cloud service delivery models thus making

a generic risk assessment framework ineffective. Moreover, in IaaS, customers are

unaware of the new risks to their data and information once they move to cloud virtu-

alised infrastructure. Therefore, this research presents a Xen vulnerability prediction

and risk assessment process. Through this process, customers can predict unknown
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vulnerabilities, understand threats and their likelihood, and determine risk and their

severity levels to the Xen hypervisor. It enables organisations to select an appropriate

CSP by comparing the risk assessment results with the security controls and proced-

ures implemented by a proposed CSP. The intended audience for this research is the

organisations that are planning to move to cloud virtualised infrastructure but do not

have enough security professionals and resources to assess the risk to their data and

information after they move to IaaS. The next chapter provides an SLR which highlights

the problem area by identifying the possible research areas from the literature. It also

provides a theory to address these research gaps.



Chapter 2

Literature Review

Vulnerability Prediction and 
Risk Assessment Process of the 

Xen Hypervisor

5. Xen Risk Assessment

6. Process Evaluation

7. Discussion

8. Conclusion

4. Xen Vulnerability Prediction

3. Methodology

2. Literature Review

2.1 Introduction

2.2 Data Gathering

2.3 Analysis of the Literature

2.4 Research Questions

2.5 Conclusion

1. Introduction

2.1 Introduction

In Chapter 1, an introduction, problem area, research objectives, and structure of the

thesis are presented. This chapter presents an SLR conducted to review the existing

research and identify possible areas of research. According to Wooley (2011), a

“literature review provides a meaningful context of a project within the universe of

already existing research” (p. 27).

An SLR is a process or method to review the literature by utilising the standard and

35
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pre-specified techniques. For the SLR, the research bias is minimised before conducting

the review by preparing the rationale, research hypotheses and research methods. The

hypotheses and research methods guide one to perform the literature review process.

The outcome of the SLR is to identify, analyse, and summarise the existing research and

evidence concerning a research problem. Furthermore, an SLR allows one to identify

themes that require further exploration. Moreover, an SLR is considered as one of the

best methods to synthesise an evidence specific research question.

2.1.1 Why SLR?

An SLR is slightly different from traditional literature review techniques. It allows

researchers to search and select all the articles related to a specific research question

(RQ). It uses a methodology that is developed to minimise the effect of selection,

publication, and extracting information bias (Nightingale, 2009). It aims to identify the

relevant material which addresses a specific RQ to give a fair and unbiased summary

of the literature. The SLR is conducted by following the method by Kitchenham et al.

(2009). The method describes a process to analyse the literature search results, identify

research gaps, formulate RQs, and propose a solution to address the apparent gaps.

Initial search questions are developed along with the inclusion/exclusion criteria to

collect data.

This chapter is organised as follows: Section 2.2 covers the data gathering process

along with the initial search questions to perform a literature search. It also provides

literature search criteria to select the research articles. A literature review analysis in

Section 2.3 includes the details of threats, vulnerabilities, and risks to hypervisors. It

also covers details of the vulnerability and the risk assessment process. Section 2.4

provides the RQs. The conclusion of this chapter is provided in Section 2.5.
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2.2 Data Gathering

This section provides the literature review search questions, literature search criteria,

and inclusion and exclusion criteria. The process of data collection and extraction is

also discussed in this section.

2.2.1 Initial Search Questions

The literature search is based on two initial questions.

SLRQ1 Do hypervisors make cloud computing secure or vulnerable?

SLRQ2 Is using hypervisor software putting cloud assets at risk?

Peer-reviewed journals, conference papers, book chapters and published theses

since 2009 define the scope of the literature search. The literature search criteria in

Section 2.2.2 is used to select research articles for SLRQ1. For SLRQ2, articles are

considered from 2010 onwards, as articles published prior to 2010 lack the focus of CC

risk assessment.

2.2.2 Literature Search Criteria

In this section, a literature search criterion to select the research articles is provided. An

extensive manual search process is performed using the keywords extracted from the

initial RQs. Academic and peer-reviewed articles are selected which cover hypervisor

security, threats and vulnerabilities to hypervisors, and risk assessment and risk man-

agement of CC. The articles which cover risk assessment in general instead of CC are

not included in the review. The selected research articles, book chapters, and theses are

in English and published after 2009.

Some popular databases such as Science Direct, Elsevier, Springer Link, IEEE,

and ACM were searched to select the research articles. These databases were selected
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because the information systems focus encompasses risk assessment and management

in CC. The literature search produced a good number of articles; however, only 47

research articles were found relevant after applying the search criteria. The rejection

decisions were made due to their lack of relevance to SLR questions after reviewing the

abstract and introduction sections of these articles.

Out of these 47 articles, nine more articles were rejected due to low methodological

quality. The distribution of these 38 articles which were selected for SLR is: 19 articles

were from conferences and book chapters, 18 from journals, and one dissertation.

Furthermore, 21 articles were relevant to SLRQ1 and 17 articles were relevant to

SLRQ2. Figure 2.1 shows the number of research articles relevant to each literature

search question.

21
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SLRQ1 SLRQ2

Figure 2.1: Articles in Relation to SLRQs

Figure 2.2 depicts the distribution of selected articles per year. It is notable that a

fair number of research articles were published from 2010 onwards, which makes the

research problem worthy of interest.
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Figure 2.2: Selected Articles Per Year

Nine articles were not selected for the review. The main reason for rejection was

low methodological quality and relevance to the SLR questions. Table 2.1 provides

a summary of the articles and also the reasons for not including these articles for the

review.

Table 2.1: Summary of the Articles Not Selected for Review

Author Year Article Title Reason for rejection
Joh et al. 2008 Vulnerability Discov-

ery Modelling using
Weibull Distribution

Uses Weibull distribution which has
not been used for modelling vulner-
ability discovery so far. Thus, the
accuracy of the results is question-
able

Novak et al. 2010 Taxonomy of Static
Code Analysis Tools

Provides taxonomy of static code
analysis tools but does not provide
the uses of static tools to discover
vulnerabilities

Sommestad
et al.

2012 Efforts estimate for
vulnerability discov-
ery projects

Estimates only the efforts required
for a tester to find zero-day vulner-
abilities, instead of discovering vul-
nerabilities themselves

continued . . .
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Summary of the Articles Not Selected for Review . . . continued
Author Year Article Title Reason for rejection

Johnson et
al.

2016 Time between
vulnerability disclos-
ures: A measure of
software product
vulnerability

Only provides a measure to capture
the time between vulnerability dis-
closure instead of the number of vul-
nerabilities

Sgandurra
and Lupu

2016 Evolution of Attacks,
Threat Models, and
Solutions for Virtual-
ized Systems

Categorises threat models and at-
tacks for virtualised systems but not
the risk

Chhabra
and Taneja

2011 Cloud Comput-
ing: Towards Risk
Assessment

Provides only an overview of differ-
ent risk that exists at different layers
of CC instead of a risk assessment
model

Kholidy et
al.

2016 A Risk Mitiga-
tion Approach for
Autonomous Cloud
Intrusion Response
System

Focuses on detection of network-
based attacks to provide risk as-
sessment and mitigation capabilities.
The paper lacks CC focus.

Chatzipoulidis
et al.

2015 Information In-
frastructure Risk
Prediction through
Platform Vulnerabil-
ity Analysis

Measures zero-day risk using risk
prediction methodology for informa-
tion infrastructure. This paper lacks
focus on cloud-based infrastructure

Anand et al. 2016 Threat Assessment
in the Cloud Environ-
ment – A Quantitat-
ive Approach for Se-
curity Pattern Selec-
tion

Provides only threat assessment and
does not cover risk assessment of
CC

2.3 Analysis of the Literature

This section covers a detailed review of hypervisor security to determine whether or not

hypervisors make CC secure (SLRQ1). It also provides an assessment to find out how

the hypervisors put cloud virtual assets at risk (SLRQ2).

Guest OS isolation and resource sharing between multiple VMs are the main func-

tionalities which a hypervisor provides. Hypervisors offer these functionalities like
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a standard OS which provides isolation between different programs and applications

running on the server. Similarly, the hypervisor provides isolation between multiple

VMs running on the same host server. The hypervisor also leverages access to hardware

for different VMs similar to an OS to ensure the process isolation. It also manages the

mediation of access to devices by calling modules either from the host OS kernel or

running in dedicated VMs such as Dom0 (in the case of Xen).

2.3.1 Hypervisor Threat Sources

The hypervisor allows VMs to access hardware resources of the server and ensures the

isolation between all VMs. VMs access hardware resources such as CPU and memory

controlled by the hypervisor. However, VMs access to network and storage devices are

managed through driver modules that are available in the host OS kernel module or in

Dom0 (a privileged VM). The network isolation between different VMs is provided by

assigning a unique MAC or IP address to each VM. The VLANs can be defined which

enables each VM to have an appropriate network ID.

A Xen hypervisor runs on top of hardware of the host server which is connected to

an enterprise network. It also allows the execution of multiple VMs that are generally

connected through a virtual network inside a hardware server. However, in some cases,

VMs can be part of an isolated network or share the host server’s network. Three

different threat sources are identified for a Xen based virtualised infrastructure:

Threat Source 1 Threats from or through the enterprise network where the hypervisor

host server is located.

Threat Source 2 Threats from malicious VMs running on a hypervisor through chan-

nels such as shared Cache memory and virtual network inside the host server.
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Threat Source 3 Threats from hypervisor management interfaces and VM manage-

ment daemon.

Threat source 1 is common to all types of hypervisors; however, threat sources 2 and

3 are unique to a virtualised environment defined by a respective hypervisor. Therefore,

threats from sources 2 and 3 are considered in this SLR.

2.3.2 Threats and Vulnerabilities to the Hypervisors

In this section, an overview of vulnerabilities and threats to hypervisors is presented.

Hypervisors seem vulnerable to sophisticated threats (Brohi, Bamiah, Brohi & Kamran,

2012; Bazargan, Yeun & Zemerly, 2012; Sabahi, 2011) as the vulnerability reporting

and exploitation rate is increasing (Litchfield & Shahzad, 2017). By exploiting vul-

nerabilities, an attacker can gain unauthorised access to a hypervisor to control and

exploit other customers’ VMs (Khorshed et al., 2012; Modi et al., 2013). Infrastructure

sharing is a core cloud service but because of hardware sharing as its limitation, lacks

basic mechanisms to protect customer network traffic, data and other applications. This

limitation provides an attacker with a chance to hijack user credentials and eavesdrop on

information to control other users’ VMs. So, a hypervisor can leverage different threats

that result in compromise of CIA of the information (Dawoud, Takouna & Meinel,

2010). The threats and vulnerabilities to hypervisors are as follows.

Authentication, Authorisation and Accounting Vulnerabilities

An attacker can gain unauthorised access to a shared hardware resource if weak au-

thentication, authorization, and accounting (AAA) policies are in place (Modi et al.,

2013). An attacker can get access to resources by using customers’ weak or insecure

credentials, and credentials stored on a guest machine. Furthermore, password-based

authentication attacks are not new. However, their impact on a cloud environment is
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higher due to the fact that organisations are running cloud-based corporate applications

which are exposed to the internet. Therefore, stronger or multi-factor authentication to

assess cloud services is needed.

Lack of Resource Isolation

The hypervisor allows sharing of physical hardware re- sources among different VMs

that usually belong to different IaaS customers. However, vulnerabilities in hypervisors

can lead to unauthorised access to the shared hardware resources used by other VMs. A

hypervisor in IaaS allows CSPs to develop and share a proprietary VM management

interface among customers. However, vulnerabilities in the management interfaces

can result in unauthorised access to information of other customers. Furthermore, it

may allow an attacker to manipulate hypervisor functionality and cause a DoS. DoS

vulnerability allows an attacker to make the cloud services unavailable to customers by

occupying the computational resources of the host server (Djenna & Batouche, 2014;

Luo et al., 2011; Khorshed et al., 2012; Ayala et al., 2013). For example, through DoS,

an attacker can create a large number of malicious VMs to occupy server resources

required by legitimate VMs (Kazim et al., 2013). It may also lead to a data breach or

theft through a hypervisor escape vulnerability where an attacker can use a malicious

VM to acquire root level access by breaking or escaping the barrier provided by the

hypervisor. The VM escapes the isolation layer when an attacker injects an undetectable

malware code by using a malicious VM which seems like a legitimate VM to the

hypervisor (Modi et al., 2013; Pék et al., 2013; Shoaib & Das, 2014; Pearce et al., 2013;

Luo et al., 2011). Once the attacker has control over the hypervisor, all other VMs and

their data can be accessed. Lack of security controls in the cloud to check co-residence

makes it is possible to map the cloud infrastructure to find out where a particular target

VM resides (Ristenpart, Tromer, Shacham & Savage, 2009). Afterwards, two VMs are

co-located on the shared hardware, so the extraction of keystroke timing information
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(since the cache is shared) is possible using an access-driven side channel attack.

Network Probing

IaaS customers that are part of the same subnet can perform net- work mapping and

port scanning to locate a target VM. The primary function of the hypervisor is to

provide isolation and prevent one VM monitoring other VMs’ access to shared hardware

resources (Dawoud et al., 2010). However, a vulnerability in the hypervisor allows a

malicious user to compromise the virtual switch configuration, VLANs configuration,

and ARP tables to monitor the network traffic of other VMs (Ibrahim, Hamlyn-harris

& Grundy, 2010). Once the target VM is compromised, all other VMs running on the

same hypervisor are also vulnerable to the same attack due to sharing the same virtual

switch (Wooley, 2011).

Side-channel Vulnerabilities

Side channel vulnerabilities allow an attacker to exploit the information obtained

through the use of shared hardware resources (Vaquero et al., 2011). This may include

the CPU cores and high-level cache memory. In a typical Cross-VM side channel attack

scenario, an attacker can monitor the cache access behaviour of the victim’s VM. For

example, cache timing information is obtained by measuring the execution of different

operations of the victim’s VM (T. Zhang & Lee, 2014). Once the actions of the victim’s

VM are identified, useful information such as cryptographic keys can be extracted

(Y. Zhang et al., 2012).

Eavesdropping Communication between VMs and Host

A hypervisor acts as a middleware between the guest VM and hardware resources of the

system, for example, disk I/O and NIC. All the communication from a VM to another
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VM and from a VM to the Host (Dom0) passes through the hypervisor (Dawoud et

al., 2010). All the traffic commuting through the hypervisor can be monitored by an

attacker by injecting malicious code to eavesdrop the communication and gain control

of the VMs (Wooley, 2011).

Physical Attacks

Physical attacks on the server systems are difficult to execute as compared to the software

attacks. However, the consequence of a successful physical attack is greater because

it can allow an attacker to gain full control of the secure server. Therefore, physical

attacks should be given consideration like other sophisticated attacks such as DoS. The

CSPs implement state-of-the-art physical access controls and surveillance mechanisms

to mitigate physical attacks. However, these security controls and mechanisms may only

prevent unauthorised access to the servers and seems ineffective to mitigate physical

attacks launched by a malicious insider (Szefer, Jamkhedkar, Perez-Botero & Lee,

2014).

Malicious insider attack on the cloud enviornment is not given a careful attention. In

CC, physical attacks by the malicious insiders to compromise the CSPs’ infrastructure

is a prime target by many criminal organisations. Moreover, most of the physical attacks

are carried out by the malicious insiders who are authorised to access the servers, thus

makes these attacks very difficult to detect and prevent. The CSPs can use different

techniques such as, migrate the data away from the local storage of the servers, encrypt

the data that is stored on the servers, and backup the data from the servers to avoid

unauthorised access to mitigate a physical attack (Szefer et al., 2014). However, more

efforts are required to mitigate malicious insider attacks instead of just implementing

physical security solutions. These technological solutions seem ineffective to detect

malicious insiders. Therefore, there is need of proactive actions by the CSPs to mitigate

malicious insider attacks. For example, the CSPs needs to perform the background
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checks before hiring an IT employee, educate IT staff, use proper termination practices,

and use of monitoring solutions to mitigate the risk of physical attack by a malicious

insider.

Inadequate Physical Security Procedures at CSPs End

Security in the cloud is not virtual (Rackspace, 2017). There are a host of physical

controls that must be in place to ensure the security of the cloud. Though the cloud is

virtual, data and information are still placed on hardware servers in different locations.

The data centres must be highly secured by placing some security measures to ensure the

security of the data. Also, multi-factor authentication should be used to ensure that only

authorised personnel have access to the data centres. Furthermore, sensitive equipment

such as cloud servers and storage equipment should be secured in a sub-area within a

secure perimeter with additional security controls. Physical break-ins to data centres

are not new. Matis (2017) highlights some of the break-in cases. These break-ins could

have been avoided by implementing better security controls. For example, hard disk

drives were stolen from an insurance agency’s data centre due to weak physical security

which resulted in a breach of around two million member’s personal information.

Remote Access to Management Interfaces

The hypervisor management interfaces present danger. Through management interfaces,

the administrators can start, stop, suspend, and migrate VMs running on a hypervisor. If

an attacker can gain unauthorised access to the management interface, the VMs can be

stopped, deleted or the data stored on these VM can be stolen. This type of vulnerability

results in a high impact of the virtual asset (Catteddu & Hogben, 2009).

In a nutshell, the above threats and vulnerabilities raise concerns about the security

of hypervisors. The literature review results show that vulnerable hypervisors put cloud

virtual assets at risk.
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2.3.3 Vulnerability Assessment

This section provides an overview of the vulnerability assessment process. Protecting

large software packages from exploitation is an ongoing process, where software

vendors protect their software by patching them. On the other hand, an attacker tries

to exploit loopholes in these software packages. Unknown software vulnerabilities

are the main reason for security concerns. Ignoring these unknown vulnerabilities

results in more sophisticated threats to the software packages. By considering the

increased number of exploitation scenarios and the ever-growing threat of breaches,

the importance of software security has dramatically increased over time (Roumani,

Nwankpa & Roumani, 2015). Like other software packages, hypervisors are also

vulnerable and contain vulnerabilities (Catteddu & Hogben, 2009).

Xen is a standard open source hypervisor with thousands of lines of code (Perez-

Botero et al., 2013). This makes it very difficult to analyse the Xen code to discover

unknown vulnerabilities using different techniques such as static code analysis, and

Vulnerability Discovery Models (VDMs). Static code analysis, also called static code

inspection, is a manual process to evaluate the software code to find out vulnerabilities.

It is a traditional approach to go through the code to find coding errors which can result

from vulnerability exploitation (Liu, Shi, Cai & Li, 2012). It analyses the code without

executing the software code which takes less time but requires expertise from the tester

(Khan, 2014). Different static code analysis tools are now available to help testers to

find the data and control flow. However, static code analysis techniques are not feasible

for large software applications due to false positives and false negatives. Moreover,

static code analysis looks for patterns which can lead to vulnerability. If there are no

patterns, then static code analysis will not be able to find the vulnerability (Shah &

Mehtre, 2015). Furthermore, static analysis mostly depends on the source code and

does not identify design bugs.
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VDMs are based on Software Reliability Models (SRMs). VDMs are quantitative

methods to predict vulnerabilities that may exist in a software system (Alhazmi &

Malaiya, 2005b). VDMs are also used to determine the resources that are required to

assess a particular software. According to Alhazmi and Malaiya (2005a), VDMs can

describe the rate of vulnerability discovery or the cumulative number of vulnerabilities

discovered in time. The output of VDMs is an estimate of the total number of vulnerab-

ilities and the mean time to the next vulnerability (Liu et al., 2012). Some VDMs are

based on assumptions and need to be validated. Furthermore, one VDM can specifically

be used only for one software. Also, some VDMs lack acceptance from the testing

community.

Vulnerability Prediction

Finding vulnerabilities using static code analysis and VDMs for a large software such

as a hypervisor is difficult and time-consuming. This raises the question that How can

the unknown vulnerabilities be predicted in large software applications such as the Xen

hypervisor to mitigate exploitation scenarios? 1

This research presents a vulnerability prediction process to address this RQ. Un-

known vulnerability prediction is a better approach compared to discovering vulnerabil-

ities (Last, 2015). The prediction models reduce the time and effort required to mitigate

vulnerabilities (Walden, Stuckman & Scandariato, 2014). Much research has been

produced in the last decade, and different prediction models are proposed. However,

the existing vulnerability prediction models are not mature and need improvements.

Overall, the field of vulnerability prediction needs to evolve along a similar trajectory

(Walden et al., 2014). There are few studies that also compare different prediction

models using a different data type for the prediction; however, there are no standard

data sets to be used for prediction by the existing prediction models.

1The first RQ which is addressed through this research.
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2.3.4 Risk to Hypervisors

In this section, risk to hypervisors are presented. The risks to hypervisors vary between

the cloud service delivery models. The risks are different due to the type of hyper-

visor, security controls and procedures, and risk management methods implemented

to protect these hypervisors. The new and unknown risk to hypervisors discourages

customers from adopting cloud virtualised infrastructure. Some of the technical risks

that vulnerable hypervisors pose to virtualised infrastructure are discussed as follows.

Loss of Business Reputation Due to Co-Tenant Activities

Resource sharing provides a platform for malicious tenants to carry out unauthorised

activities to affect the reputation of other tenants (Wang, Liu & Liu, 2012; Cayirci,

2015). Examples are port scanning by exploiting a virtual switch of the hypervisor,

spamming, and serving of malicious content from cloud infrastructure. It can lead an

attacker to block IP addresses range that affects all other tenants, and also seizure of

resources due to neighbour activities. These malicious actions can impact the delivery

of cloud service, data loss, and loss of an organisation’s reputation.

Isolation Failure

Hypervisors allow CSPs to create a multi-tenanted architecture to generate more revenue

by using the infrastructure effectively (Shoaib & Das, 2014). However, there is a risk

of resource isolation failure (Saripalli & Walters, 2010; Wang et al., 2012) when a

malicious tenant manipulates the hypervisor (using VM escape, SQL Injection and

Cross VM Side Channel) to break the isolation layer. Moreover, the likelihood of

resource isolation failure depends on the cloud model and its level increases from a

private to a public cloud type.
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Malicious Insider

A malicious insider can be a rogue employee (an IT administrator in this case), an IT

contractor, or an IT business partner of the CSP who can misuse physical access to the

servers to compromise the CIA security objectives (Samani, Reavis & Honan, 2014).

In some cases, a malicious insider attack can be realised by a former employee who

is still able to maintain access to the servers. A case has been reported by Schwartz

(2011) where a Virtual Private Network (VPN) token is maintained by an ex-employee

who was accused of using a VPN to access the former employer’s network and deleting

virtual servers, taking a storage area network offline, and deleting mailboxes from the

corporate email server (Samani et al., 2014).

A malicious insider poses a high risk to CSP’s infrastructure (Alva et al., 2013).

The severity level of a malicious insider risk is high for the cloud infrastructure because

the data, information, and services that can be compromised by the malicious insider

normally belongs to cloud service consumers. Furthermore, a physical attack executed

by a malicious insider can affect the CSP’s reputation that could result in loss of

customers’ trust.

Intercepting Data in Transit

As compared to a traditional data centre environment, CC implies more data in transit

due to synchronising the images of multiple distributed machines between the cloud and

web clients. Data transit scenarios are vulnerable to side channel, sniffing, spoofing, and

man-in-the-middle attacks in a cloud environment. Also, the lack of clarity of security

controls and procedures implemented by CSPs raises concerns about the circulation of

confidential information within the cloud (Cayirci, 2015; Saripalli & Walters, 2010;

Wang et al., 2012).
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Data Leakage within the Cloud

Data communication between a CSP and a cloud customer is continuously at risk.

Overall, the characteristics of this risk are the same as the risk of intercepting data in

transit (previous risk) (Sinanc & Sagiroglu, 2013; Khan, Oriol, Kiran, Jiang & Djemame,

2012; Wang et al., 2012).

Undertaking Malicious Probes or Scans

This risk is related to malicious probes, and network mapping (Khan et al., 2012; Wang

et al., 2012). However, it is not a direct threat to cloud assets, but these threats can be

used to gather information to realise further attacks such as hacking. This type of risk

could result in loss of CIA of the cloud data.

Compromise Hypervisor

A hypervisor sits on top of hardware and provides various levels of abstraction. It

manages the customers’ resources provided by the CSP through IaaS. A hypervisor

is an application with a large code base and has vulnerabilities like other software

packages. An attacker can use a malicious VM to exploit a hypervisor vulnerability and

obtain high-level privileges to access data and information that belongs to other tenants

(Kazim et al., 2013; Pék et al., 2013).

Privilege Escalation

This risk refers to gaining high-level privileges by evading an authentication process

(Pearce et al., 2013; Wang et al., 2012). An attacker can gain unauthorised access

to the system by exploiting a hypervisor’s vulnerability to execute operations like an

authenticated user. Also, an attacker can use these privileges to monitor and modify

data in a transparent way. An attacker can also allocate more hardware resources to a
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malicious VM to cause a DoS for all other VMs running on top of the compromised

hypervisor.

Management Interface Compromise

CSPs provide customer management interfaces access to their administrators through

the internet. Usually, administrators are able to access a large set of resources and

thus pose an increased risk. The severity level of risk even increases when combined

with remote access and browser vulnerabilities. Therefore, the management interfaces

should be secured from network and web attacks.

2.3.5 Risk Assessment

This section details the risk assessment process in CC. Risk assessment can be performed

to prevent and mitigate threats, adverse actions, and attacks to quantify the risk that

poses severity levels above the acceptable threshold. Customers as owners of data

and information are responsible for security once they move to cloud-based services.

However, the level of customer control varies in each cloud service delivery model. For

example, in IaaS, customers only have control over the OS, programs, and applications,

whereas, the management of virtualised infrastructure is the responsibility of the CSP

(Albakri et al., 2014). Usually, CSPs ensure the security of the cloud virtualised

infrastructure to meet the needs of all the customers and require fewer changes or

customisation. A CSP’s selection and acceptance of its security controls and procedures

considers their efficiency, effectiveness, and limitations based on the policies, standards,

laws, and rules and regulations, with which a CSP must comply. However, CSPs do

not consider the security requirements of individual customers and project security

requirements as a generic core set for a large number of customers. Customers are

happier to accept the risk when they have more control over the data and infrastructure.
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A higher level of control allows customers to weigh alternatives, set priorities and make

informed security decisions when dealing with risk. For the successful adoption of

cloud infrastructure services, the most important thing for customers is to understand the

characteristics of these services. Customers should also have knowledge of architectural

components, type, and actors of each service to have a secure cloud environment.

Therefore, customers should have the ability to identify the risk and all the required

security controls. Customers should also have the knowledge to request CSPs about the

implementation of security controls and procedures (Cayirci, 2015).

The existing research focuses on risk assessment from a broad perspective instead

of risk assessment of virtualised infrastructure or the hypervisor. Moreover, the existing

research assesses the risk from a CSP’s perspective and lacks a customer’s perspective.

Saripalli and Walters (2010) present a quantitative impact and risk assessment frame-

work for CC based on six key categories. The categories are confidentiality, integrity,

availability, trust, mutual audit ability, and usability. Similar work is presented by Fitó

and Guitart (2014) on the basis of impact on business objectives. However, both cases

focus on the business objectives of CSPs and not customers. Leitold and Hadarics

(2012) present a mathematical assessment model (a directed graph and a matrix to

discover risk) for threats. It considers the communication of risk for separate entities

and calculates risk for the target infrastructure. However, the model does not specify

the cloud TAs. Also, justification is not provided for the adaptability of the assessment

model and how the model can collaborate in a real environment. This raises the second

question: How can the determination of the risk of unknown Xen vulnerabilities be

presented such that it aids cloud infrastructure service consumers?2

2The second RQ which is addressed through this research.
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Risk Assessment of Cloud Infrastructure from a Customer’s Perspective

In IaaS, security of virtualised infrastructure falls outside of the control of customers.

Customers are unaware of the security of their data and information if they move to

cloud infrastructure. Customers’ understanding of different cloud service delivery

models and the risks associated with each service model is essential. Risk type varies

between service delivery models which make it challenging for customers to assess the

risk. Also, a generic risk assessment framework cannot fit all service delivery models.

Therefore, customers need to perform a thorough risk assessment for the service delivery

model they have adopted to accurately identify the risk and required security controls

and procedures as part of the risk mitigation strategy.

It is vital for customers to identify the risk and security controls required to mitigate

these risks. A customer’s decision to move to cloud virtualised infrastructure depends on

their accurate identification of security requirements, risk, analysis of each perspective of

CSPs’ security controls and procedures, and clarity about the Service Level Agreement

(SLA) to build trust with the CSP. An accurate and thorough risk assessment platform

would help customers to understand the security of cloud infrastructure services along

with adequate guidance on SLAs to make informed security decisions to adopt these

infrastructure services.

This research addresses these questions and presents a vulnerability prediction and

risk assessment process for customers to help them make IaaS adoption decisions. This

research targets the Xen hypervisor, a standard open source hypervisor which is in use

by many large CSPs such as Amazon Web Services (AWS) and Rackspace.

Almost all the existing work views the risk from a broader perspective instead

of targeting hypervisors which provides the basis for IaaS. We fail to see a concise

framework to perform the risk assessment IaaS service delivery model. A generic risk

assessment is unsuitable due to different risk and security controls in each of the service
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delivery models. Therefore, an adequate risk assessment platform is necessary to assist

customers to review the risks and their severity levels.

2.4 Research Questions

In this chapter, SLR develops an understanding of the vulnerability prediction and risk

assessment. Almost all the existing work views the risk from a broader perspective

instead of targeting the hypervisor which provides the basis for IaaS. Therefore, a need

for an effective vulnerability prediction and risk assessment platform is necessary to

assist IaaS customers to make informed security decisions. So, to realise a vulnerability

prediction and risk assessment process for IaaS, the questions below must be answered.

RQ1 How can the unknown vulnerabilities be predicted in large software applications

such as the Xen hypervisor to mitigate the exploitation scenarios?

RQ2 How can the determination of the risk of unknown Xen vulnerabilities be presen-

ted such that it aids cloud infrastructure service consumers?

2.5 Conclusion

Despite a lot of encouraging existing research and different risk methodologies and

frameworks, we fail to see a concise method or framework for analysing and assessing

security risk to IaaS and specifically the hypervisors. The scope of the existing research

is broad and also lacks focus on IaaS. Therefore, to realise a risk assessment process

for IaaS, the review led to RQs. It is evident that risk to virtualised infrastructure raises

more concerns from customers which affect the cloud adoption rate. Therefore, to allow

customers to make informed security decisions, a need for a hypervisor risk assessment

process arises.
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Chapter 3 covers the research methodology adopted for this thesis. It also details

the different research methods used to test the hypotheses to answer the RQs. Time

Series Holt-Winters and Regression Analysis methods are used to predict the unknown

Xen vulnerabilities. For risk assessment, the Common Vulnerability Scoring System

(CVSS) is used to score the vulnerabilities to determine the impact ratings. ENISA’s

risk assessment framework is also considered to adopt the impact ratings of hypervisor

related vulnerabilities to realise a complete risk assessment process. A structured

analysis approach is used to identify threats and their likelihood levels. Risks and their

severity levels are determined using a risk estimation matrix.
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1. Introduction

3.1 Introduction

In Chapter 2, an SLR was presented which highlights that common hypervisors are

vulnerable to sophisticated threats and pose a risk to assets. The literature review also

shows that hypervisors bring new risk to CC compared to the traditional IT environment.

Therefore, it is necessary to assess hypervisors for vulnerabilities and risk to assist

customers to make informed security decisions.

This chapter presents DSR methodology as the main methodology to conduct this
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research. DSR as a methodology is concerned with the design, development, and im-

provement of the solution artefact. DSR provides the best fit where a model is supported

by research methods that guide the implementation of the model. This research provides

a solution artefact (a process) which is analysed, justified, and evaluated. Therefore,

DSR is considered as the main methodology because the focus of this research is the

construction of the solution artefact and not an intervention.

This chapter is organised as follows: Section 3.2 provides the rationale of the DSR

methodology. Section 3.3 presents the DSR process. Section 3.4 covers the research

methods. Section 3.5 provides the testing of hypotheses and a conclusion of this chapter

is provided in Section 3.6.

3.2 Research Methodology

This section provides the detail of the research methodology used for this research.

DSR gained momentum as a research methodology to be used for IS research in 2004

(Hevner, March, Park & Ram, 2004). It addresses a research problem in more efficient

ways and focuses on constructing and evaluating solution artefacts to that research

problem. In DSR, a design is referred to as a process (a set of activities) and a product

(artefact).

DSR guides to construct artefacts to offer utility. DSR creates and evaluates IT

artefacts to solve identified problems (Hevner et al., 2004). It provides effective pro-

cesses to identify a research problem, and design an artefact as a solution. It also allows

researchers to contribute and evaluate the solution designs, summarise, and present

the results. It is a solution-oriented methodology which contains a rational decision

cycle applied to answer knowledge questions. Initially, there was an argument about

whether DSR is an effective methodology to research an IS discipline. However, recent

research suggests that DSR is an accepted methodology and an IS research paradigm by
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integrating solution design as a key process of the overall research (Offermann, Levina,

Schönherr & Bub, 2009).

The DSR process makes sure that the developed artefact should address a research

problem and must be developed through a search process based on existing research. It

should also highlight the contribution of the artefact developer. Later, artefacts should be

evaluated to ensure the utility, quality, and efficiency of the designed solution. Also, the

research contributions should be highlighted and communicated to the target audience

(Hevner et al., 2004). This research also constructs an artefact which is evaluated,

refined, and justified to address the research problem. This research is rigorous as it

provides a vulnerability prediction and risk assessment process for organisations who

are concerned about the security of the cloud virtualised infrastructure. DSR in IS

disciplines is now an accepted research paradigm and approach. Henver and Chatterjee

(2010) provides the following guidelines (Table 3.1) for the DSR.

Table 3.1: Guidelines for DSR

Guideline Description
Problem Identification A problem area must be identified to provide a

solution artefact.
Artefact Design A viable artefact must be produced by the re-

search conducted.
The relevance of the
Artefact to the Problem

The objective of the research is to develop an
artefact as a solution to address the identified
problem.

Evaluation of the Arte-
fact

The solution artefact must be assessed, tested,
and justified. The solution should provide the
utility.

Research Contributions The research must provide a clear contribution
to the body of knowledge.

Research Rigour Rigorous methods should be applied for the de-
velopment and evaluation of the solution arte-
fact.

Communication of the
Research

DSR should be presented effectively to both tech-
nology and business-oriented audiences.
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3.2.1 Motivation for considering DSR as a Methodology

This research involves the development of a vulnerability prediction and risk assessment

process to address the research problem. The DSR methodology is adopted because

the outcome of this research is aligned with what DSR offers. So, firstly literature

is searched, and the problem area is identified. Hypotheses are then developed to

be tested to address the problem. The research approach leads to data collection

and analysis to test hypotheses and eventually address the research questions. This

research is more closely suited to the DSR process because it focuses on solving a

research problem by developing a solution artefact as an output. Three phases of

DSR have helped this research and development of the vulnerability prediction and

risk assessment process. The iterations between phases have guided this research to

evolve the vulnerability prediction and risk assessment process until all the elements are

clearly defined. Moreover, DSR has provided a good structure for this research and to

complete a thesis write-up. Table 3.2 provides how the DSR is applied to this research

by executing the DSR activities.

Table 3.2: Application of DSR in this Research

DSR
Guideline

Activity Performed Knowledge Base

Problem Iden-
tification and
motivation

The existing research focuses on
risk assessment of CC from a
broader perspective and provides
generic risk assessment frame-
works. These frameworks can
not be applied to each of the
cloud service delivery models as
risk varies between these delivery
models.

An SLR is conducted that
provides vulnerabilities and
threats to data and information
that belongs to customers once
they move to cloud virtualised
infrastructure.

continued . . .
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Application of DSR in this Research . . . continued
Guideline Activity Performed Knowledge Base
Objectives of
the solution

Design of a vulnerability predic-
tion and risk assessment process
that is specific to IaaS.

Knowledge of unknown vulner-
ability prediction and risk assess-
ment which can be used by the
customers as a platform to make
informed security decisions.

Solution
Design

Design of the vulnerability pre-
diction and risk assessment
which can be used to predict un-
known vulnerabilities that may
appear in large software applica-
tions such as the Xen hypervisor.
The determination of risks and
their severity levels to analyse the
security controls and procedures
required to mitigate these risks to
the customers’ assets.

Knowledge of unknown vulner-
ability prediction, determination
of vulnerability impact ratings,
threat likelihood levels, and risk
severity levels.

Evaluation of
the process

Analysis of the process and how
well the problem is addressed by
comparing the research object-
ives with the obtained results.

Knowledge of two other open
source packages to test the pro-
cess. Research methods are ap-
plied and process is evaluated
to determine the generalisability.
The research methods did not
show any significant limitation
when applied to Apache HTTP
and Squid Proxy servers.

Communication The research articles are pub-
lished in three different confer-
ences (A Rank) and a Doctoral
Consortium.

The last article is published in
the 24th Americas Conference on
Information Systems (AMCIS)
2018 that provides a vulnerabil-
ity and risk assessment process
of Xen hypervisor.

Types of Artefacts

Artefacts are defined as end-goals of the DSR projects (Kotzé, van der Merwe & Gerber,

2015). Artefacts are actually the output of the IS research and can be broadly categorised

as:

Instantiations A prototype system which is developed as an artefact in IS research.



Chapter 3. Methodology 62

Methods Methods refers to the type of artefact where research produces algorithms

and practices to address the problem.

Models Artefact type when statements or propositions are considered explaining a set

of constructs to address the research problem.

Constructs Concepts, syntax, and symbols are used in a specified context to present a

problem and produce an artefact to address the problem.

Framework This type of artefact represents both a model and an interrelated method

to the relevant model.

Contributions of DSR to this Research

The contributions which DSR provides to this research are as follows:

• DSR guides this research to identify a problem. It also provides a clear description

of a problem area.

• It demonstrates that existing research does not provide a clear solution to the

problem identified.

• It provides guidelines to design and develop a solution artefact by developing a

vulnerability prediction and risk assessment process.

• Once the solution is developed, it enables us to perform a rigorous evaluation of

the process and assess its utility.

• It also enables us to express the practical and theoretical values which the process

adds to the body of knowledge.
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3.3 Design Science Research Process

The DSR process by Offermann et al. (2009) in Figure 3.1 is used as the general basis for

this research to construct a vulnerability prediction and risk assessment process. How-

ever, this research combines the basic research approach with the research guidelines

provided by Hevner et al. (2004). The DSR process used in this research (Offermann

et al., 2009) combines qualitative and quantitative research methods. The process

consists of seven guidelines to conduct research. These guidelines are categorised into

three phases: problem identification, solution artefact, and evaluation of the solution

designed. The most critical phase of DSR is designing an artefact as a solution to

address a research problem (Peffers, Tuunanen, Rothenberger & Chatterjee, 2007). All

three phases can interact with each other within the research process. The steps are not

always sequential; they can be referred back to each other. The execution of all three

phases of the research produces DSR results.

3.3.1 Problem Identification Phase

The first phase of the DSR is the identification of a problem and definition of what is

required to be achieved. The problem area should have practical relevance or might be

relevant after the problem is addressed. The problem identification phase is comprised

of three steps: identify the problem, formulate RQs, and develop hypotheses.

Two SLRQs are specified, and the practical relevance is determined during this

problem identification phase. Two RQs are sought through SLR to address the problem

area. Five hypotheses are also developed to answer these RQs. Thus, this phase provides

an important foundation for the rest of the research process.
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Figure 3.1: DSR Process adapted from Offermann et al. (2009)

Problem Area

A research problem is identified and refined during this phase to ensure the relevance

and understanding to construct a solution artefact as the outcome of this research. The

vulnerability prediction and risk assessment process (solution artefact) is not specific to

one type of audience or organisation. The solution is generalisable as it can be used by

different organisations to predict unknown vulnerabilities and understand the risk to the

Xen hypervisor. The solution can also be applied to an open source software package to

predict unknown vulnerabilities and determine the risk severity levels.

An SLR was conducted in Chapter 2 to identify the problem and possible research

directions. Much research has been conducted which presents vulnerability prediction
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models. However, these models lack accurate results and require improvements. Fur-

thermore, these models do not use standard data sets for the prediction and they produce

inaccurate results. Much research is also conducted that presents risk assessments of

CC, but it does not focus on the risk assessment of IaaS and more specifically hyper-

visors. Also, the existing research assesses the risk from a CSP perspective, and cloud

customers are not involved effectively in the risk assessment process. Peer-reviewed

articles are reviewed to understand whether the possible solution artefact as the existing

framework is effective to be fit for each of the cloud service delivery models. The risk

varies between these service delivery models. Thus, it is difficult to consider a generic

risk assessment process for all the service delivery models.

Research Questions

The RQs were formulated through the SLR conducted in Chapter 2. The research

problem raised two RQs which are addressed through this research.

RQ1 How can the unknown vulnerabilities be assessed in large software applications
such as the Xen hypervisor to mitigate exploitation scenarios?

RQ2 How can the determination of the risk of unknown Xen vulnerabilities be presen-
ted such that it aids cloud infrastructure service consumers?

Hypotheses

Five hypotheses were constructed to address the RQs and set the base for the solution.
Five research methods are selected to test these hypotheses:

H1 Unknown vulnerabilities in the software applications can be predicted to mitigate
the exploitation scenarios.

H2 Unknown vulnerabilities can also be predicted with regard to the impact levels to
prioritise the mitigation of exploitation scenarios.

H3 By identifying and scoring the Xen vulnerabilities, the impact ratings can be
determined to facilitate the risk assessment process.

H4 Threats to the Xen can be modelled to determine the likelihood of threats exploit-
ing a Xen vulnerability.
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H5 The results of vulnerability impact ratings and threat likelihood levels can be
mapped to determine the severity levels of risks to the Xen.

Relationship between RQs, Hypotheses, and Methods

An outline of the relationship between RQs, hypotheses and research methods is

provided in this section to develop an understanding. Figure 3.2 provides the relationship

between RQs, hypotheses and research methods.

Research 
Questions 

(RQs)
Hypotheses Methods Methodology

RQ1

RQ2

H1 (Prediction of 
Unknown 

Vulnerabilities)

H3 (Determination 
of Vulnerability 
Impact Ratings)

H4 (Determination 
of Threat 

Likelihood Levels)

H5 (Determination 
of Risk Severity 

Levels)

M1

M2

M3

M4

M5

Design Science Research 
Process

Time Series - Holt 
Winters Method

Regression Analysis

ENISA's Risk 
Framework/

Common 
Vulnerability 

Scoring System 
(CVSS)

Structured Analysis 
using Attack Trees

Risk Estimation 
Matrix

H2 (Prediction of 
vulnerability Impact 

Ratings)

Figure 3.2: Relationship Between RQs, Hypotheses, and Methods

H1 and H2 are developed to address RQ1. H1 refers to the prediction of unknown

vulnerabilities using the Time Series Holt-Winters Method (Kalekar, 2004; Tirkes,

Guray & Celebi, 2017). H2 refers to the prediction of unknown vulnerabilities with

regard to the impact levels using Regression Analysis (Palmer & O’connell, 2009).

RQ2 is addressed by testing H3, H4, and H5. Three Xen vulnerability exploitation
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scenarios are developed and scored using CVSS to determine the impact ratings (Mell,

Scarfone & Romanosky, 2006; Mell, Kent & Romanosky, 2007). However, it is not

practicable to cover all the Xen vulnerability scenarios to determine the impact ratings.

Therefore, ENISA’s risk framework (Catteddu & Hogben, 2009) is used to test H3. The

Xen vulnerability details and their impact ratings are adopted from ENISA to realise

a complete risk assessment process. However, the CVSS is used only to determine

impact ratings of Apache HTTP and Squid Proxy servers’ vulnerabilities in Chapter

6. H4 is tested through Structured Analysis approach using Attack Trees (Saini, Duan

& Paruchuri, 2008; K. Edge et al., 2007; Haque, Keffeler & Atkison, 2017). Threats

are identified, and their likelihood levels are determined by developing attack trees.

Initial threat levels are calculated using capabilities, and motivation characteristics of

two different TAs. These threat levels are assigned to the source nodes of the attack tree.

The threat levels are propagated through the attack tree to determine likelihood levels

to exploit Physical, Local, Adjacent Network, and Network AVs. The overall threat

likelihood levels to Xen hypervisor are also determined by propagating threat levels

from child nodes to the root node of the attack tree. H5 is tested using a Risk Estimation

Matrix (Catteddu & Hogben, 2009). Vulnerability impact ratings and threat likelihood

levels are mapped through this risk estimation matrix to determine the severity levels of

risk.

A detailed explanation and rationale of using these research methods are provided

in Section 3.4.

3.3.2 Solution Design Phase

A solution artefact is constructed in this phase. After the problem is identified and its

relevance is determined in phase one, a vulnerability prediction and risk assessment

process is constructed as a solution artefact. Existing literature is reviewed extensively
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to ensure the research rigour. The existing frameworks and state of the art are considered

to come up with a solution to address the research problem. During the development

and evaluation of the solution artefact, the problem is restated multiple times to maintain

the relevance between problem and solution artefact. The Xen vulnerability prediction

and risk assessment process is provided in Figure 3.3.

Risk Assessment

Xen Hypervisor 4.x
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Figure 3.3: Xen Vulnerability Prediction and Risk Assessment Process

In this research, five analysis methods are used to test all hypotheses and realise the

solution artefact. The details of these research methods are provided in Section 3.4.
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3.3.3 Evaluation Phase

Hevner et al. (2004) presents five different evaluation methods deployed in DSR:

observational, experimental, analytical, testing, and descriptive methods. This research

uses an observational method (evaluating the process by applying it to two other open

source software packages).

Once the solution artefact is developed and reaches an acceptable level, the evalu-

ation process is started. The evaluation phase of the DSR process analyses and evaluates

the solution. This phase is also iterated back to the solution design and to the problem

identification phase (Offermann et al., 2009). Evaluation is achieved by applying the

solution to another two open source packages: Apache HTTP and Squid Proxy servers.

Similar to Xen, vulnerability prediction and risk assessment of both of these software

packages is performed and covered in Chapter 6.

Refining Hypotheses

It is always difficult to evaluate a general hypothesis as a whole. Therefore, DSR

recommends developing smaller hypotheses to have a more precise scope. In this

research, the hypothesis is divided into smaller hypotheses which are evaluated using

five different research methods. The results of this research are analysed, summarised,

and discussed.

3.4 Analysis and Research Methods

In this section, the detail of data analysis and research methods is provided. The data

analysis methods include literature review, vulnerability database search, statistical

analysis, structured analysis, and estimation matrix.
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3.4.1 Research Method 1: Time Series Holt-Winters Method

The Time Series Holt-Winters method is used to test H1, that is to predict unknown

vulnerabilities. Roumani et al. (2015) uses time series analysis to predict the number

of vulnerabilities for five common browsers. Different time series models such as a

simple seasonal, Holt-Winters additive, and Autoregressive Integrated Moving Average

(ARIMA) are considered to make the prediction. The Holt-Winters’ additive model is

used to predict Chrome website browser vulnerabilities. Symmetric Mean Absolute

Percent Error (SMAPE) is used to measure the accuracy of the predicted results.

This research also uses the Holt-Winters method to predict unknown vulnerabilities

(Kalekar, 2004; Tirkes et al., 2017). The Holt-Winters method was proposed in the early

1960s and extends exponential smoothing. It is prevalent, simple to use, and fits well in

practical applications. It depends on the patterns of data variables in past movements,

with the most weight given to the most recent values. It uses all previous data patterns

to predict future movements. It is applicable to a dataset when it has trend and seasonal

components. In other words, the Holt-Winters method is an expansion of an exponential

smoothing method where exponential smoothing revises a prediction by assigning more

weight to the recent data values and less weight to the older data values from the distant

past. An intuitive set of weights is the set that decreases each time by a constant ratio,

and all the weights lie on an exponential curve. However, exponential smoothing is not

appropriate for the data that includes seasonal and trend components.

Justification for Using the Holt-Winters Method

The Holt-Winters method is a simple model which gives precise prediction results com-

pared to other complex techniques such as Trend Analysis and Decomposition (Tirkes et

al., 2017). Trend analysis is a simple prediction method, but it is not always applicable

for lengthy time series. In case of lengthy time series, there have been several trends, and
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the dataset should not be applicable to cyclic and seasonal data patterns. On the other

hand, the decomposition prediction model can examine the dataset in trend, seasonal,

cyclic, and random components. However, the decomposition model faces difficulties

when it decomposes trend and seasonal components where a few seasonal cycles exist

in the dataset. Therefore, this research uses the Holt-Winters method because the size

of the reported vulnerability data is very small. On the other hand, both Trend Analysis,

and the Decomposition model provide good prediction when the size of the dataset is

large.

Application of the Method

In this research, the time series is developed by collecting Xen reported vulnerability

data (2013 to 2017). The consecutive points of the data are linked. The evolution

of the time series is observed, and conclusions are drawn from past patterns of Xen

reported vulnerability data to predict the unknown Xen vulnerabilities. This provides

information about future patterns and predicts the unknown vulnerabilities for 2018. To

the best of our knowledge, only one other research focuses on predicting the impact

levels of unknown vulnerabilities (S. Zhang, Caragea & Ou, 2011). Mostly, researchers

have focused on discovering the unknown vulnerabilities.

The Holt-Winters multiplicative method is used in this research because the Sea-

sonal variations are changing proportionally to the Level of the time series. The additive

method can be considered when the time series data contains constant seasonal fluc-

tuations, regardless of the overall level of the time series; therefore, the multiplicative

method is used because the number of seasonal fluctuations varies, depending on the

level of the time series. In the multiplicative method, the time series is represented by:

Systematic Component = (Level + Trend) × Seasonal Factor (3.1)



Chapter 3. Methodology 72

The Holt-Winters method uses a modified form of exponential smoothing and

applies three exponential smoothing formulae to the time series (Kalekar, 2004). The

Level component is smoothed to give a local average value of the time series. Trend

component, and Seasonal component values (from S5 onwards) are smoothed to give a

seasonal estimate of each period. The exponential smoothing formula is applied to a

time series as it contains Trend and Seasonal components.

Smoothing is done using three smoothing equations along with the initial values

which are used for the parameters. The current deseasonalised Level component at the

end of the Time (t) is represented by Lt. Tt is the estimate of the Trend component and

St is the estimate of the seasonal component.

Level (Lt) component is the random variation of the data in Time (t). Lt is calculated

using Equation 3.2.

Lt = α ×
Dt

St

+ (1 − α) × (Lt−1 + Tt−1) (3.2)

where 0 < α < 1 is a smoothing constant. The number of reported vulnerability data

value Dt is divided by St to deseasonalise the data to enter the Trend component and

the prior value of the permanent component into the updating process for Lt.

The Trend (Tt) component exists in the data and is calculated using Equation 3.3.

Tt = β × (Lt −Lt−1) + (1 − β) × Tt−1 (3.3)

where 0 < β < 1 is the second smoothing constant. The Trend component is

calculated by estimating the smoothed difference between the two successive estimates

of the deseasonalised level.

Equation 3.4 is used to smooth Seasonal component, where 0 < γ < 1 is the third

smoothing constant
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St+p = γ ×
Dt

Lt

+ (1 − γ) × (St) (3.4)

The seasonal component of the data is calculated as the behaviour of the time series

data that repeats itself at Time (t) periods. The Seasonal component is calculated

by combining the most recently observed Seasonal component given by the reported

vulnerability data value Dt divided by the deseasonalised Level Lt and the previous best

Seasonal component estimate for this Time (t). Since Seasonal components represent

deviations above and below the average, the average of any consecutive seasonal

components should always be 1.

After calculating the values for Lt, Tt, and St the prediction for the first Time (t)

period can be calculated using Equation 3.5.

Ft = (Lt−1 + Tt−1) × St (3.5)

Accuracy and Validity of the Prediction

It is important to measure the accuracy of the results to evaluate the validity of the

time series prediction. There are different measures of prediction errors where the

scale depends on the scale of the actual data. The commonly used scale dependent

measures are based on the absolute error, or squared errors (Hyndman & Koehler, 2006;

Adhikari & Agrawal, 2013). Mean Square Error (MSE) and Root Mean Square Error

(RMSE) can be considered to determine the accuracy of the prediction, but they are

more sensitive to outliers (Hyndman & Koehler, 2006). MSE is a measure of how close

a prediction is to the actual data points. For all the data points, one gets the distance

vertically from the data point to the relevant Y value on the data curve fit (error) and

squares the value. Afterwards, all the values are added that correspond to all data points.

Squaring ensures that negative data values do not cancel positive data values. On the
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other hand, RMSE is the square root of the MSE. RMSE is, therefore, the distance on

average, of a data point from the fitted line measured along a vertical line.

However, in this research Mean Absolute Deviation (MAD) and Mean Absolute

Percentage Error (MAPE) are used to measure the accuracy and validity of the prediction

respectively. MAD is the average of the absolute deviations (Equation 3.6). It is suitable

to use when analysing the error of a single item. It is also used because the accuracy is

expressed in the same units as the actual data. Moreover, MAD concludes whether or

not the time series has generated an accurate prediction through Tracking Signal (TS)

using a control chart.

MADn =
1

n

n

∑
t=1
At (3.6)

The validity of the Holt-Winters prediction is determined by using MAPE and

comparing the MAPE value of each calibration of the prediction model. MAPE is the

average of absolute errors divided by actual observation values. It is also known as the

Mean Absolute Percentage Deviation (MAPD). It allows one to measure the accuracy

of the prediction model for constructing fitted time series data (Kim & Kim, 2016).

MAPE is one of the most common measures of prediction accuracy as it provides

scale-in-dependency and interpret-ability (Kim & Kim, 2016). However, it gives

problems when calculating the average MAPE. For example, the time series with a

high MAPE might distort a comparison between the average MAPE with one method

compared to the average MAPE when using another method. Another measure such

as Symmetric MAPE (SMAPE) can be considered to avoid problems of infinite or

undefined values for zero actual values. The MAPE is defined as follows:

MAPE = 100

N
×

N

∑
i=1

∣ActualData − Prediction
ActualData

∣ (3.7)
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Geng, Ye and Luo (2015) applied the Grey Model (GM)(1,1) to construct a forecast-

ing model. However, the authors predict the vulnerability Impact Score for Xpdf and

Lynx software applications. RMSE (Equation 3.8) is used to measure the accuracy of

the forecasting results. RMSE is the standard deviation of the prediction results from

the actual data where prediction errors are a measure of the data points far from the

regression line. Equation 3.8 is used to measure the prediction accuracy vulnerability

impact scores for Xpdf and Lynx.

RMSE =
¿
ÁÁÀ 1

N

n

∑
i=1

(xi − x̂i) (3.8)

Where xi is the actual data value, x̂i is the predicted value, and N is the number of

the predicted data. So, Geng et al. (2015) uses RMSE and calculates RMSE = 2.51 for

Xpdf and RMSE = 2.70 for Lynx. Therefore, Xpdf and Lynx prediction errors are 2.51

and 2.70 points away from the actual data, respectively. However, in this research, the

regression analysis method is considered to predict unknown vulnerabilities with regard

to impact levels. Regression analysis is a commonly used analysis method to determine

relationships, and the strength of relationships between independent variables. The

accuracy of the predicted results is calculated as RMSE = 1.81, that is less than the

RMSE values determined by Geng et al. (2015). Therefore, regression analysis provides

a more accurate prediction than the GM(1,1) model.

Usually, prediction models do not predict accurate results due to less smooth and

inconsistent historical data. NVD data is also incomplete which results in less accurate

predictions (S. Zhang et al., 2011). The reported Xen vulnerability dataset is also less

smooth and does not have a constant trend. For example, five vulnerabilities are reported

in the second quarter, and 22 vulnerabilities are reported in the third quarter of 2017.

Another limitation of the vulnerability dataset is that it relies on the reporting time of

vulnerabilities to NVD instead of the time of discovery (Last, 2015).
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3.4.2 Research Method 2: Regression Analysis

Regression Analysis is used to predict unknown Xen vulnerabilities with regard to the

impact levels. S. Zhang et al. (2011) uses regression models to predict Time to Next

Vulnerability (TTNV) in Linux and Microsoft Windows OSs. The TTNV is referred

to as the number which represents the days between the occurrences of vulnerabilities.

The results were obtained using the epoch time scheme, and the month and day scheme,

in terms of correlation coefficient, for regression models. Bibi, Tsoumakas, Stamelos

and Vlahavas (2006) present a software defect prediction approach using regression via

classification (RvC). RvC is applied as a machine learning approach to the problem of

predicting the number of defects in a software system.

Regression analysis is a statistical method to determine the relationship between one

dependent and one or more independent variables. The analysis results in a prediction

for the dependent variable from a linear combination of the independent variables.

Regression analysis can be used to predict, that includes classification and explanation

(Palmer & O’connell, 2009). It selects an appropriate analysis model, realised by the

method of test squares, with a view to exploiting the relationship between variables.

This helps to determine the expected outcome for a given value of the independent

variable.

Application of the Method

Regression analysis is used in this research to test Hypothesis (H2), that is to predict

unknown vulnerabilities with regard to the impact levels. The number of vulnerabilities

exploited through Local, Adjacent Network, and Network AVs are considered as

independant vulnerabilities. The reason for this is that NVD (NIST, 2017) categorises

the reported vulnerabilities as either Physical, Local, Adjacent Network, or Network

vulnerabilities and then scores these vulnerabilities to determine High, Medium, and



Chapter 3. Methodology 77

Low impact vulnerabilities. Therefore, the Local, Adjacent Network, and Network

vulnerabilities are considered as independent variables and their impact ratings (High,

Medium, and Low) are considered as dependent variables for the prediction process.

The physical vulnerabilities are not considered due to lower numbers of vulnerabilities

reported to NVD for this category.

For the regression analysis, the first step is to calculate the correlation coefficients

between the independent variables X1, X2, X3, and dependent variables Yn. Where,

Yn can be Y1, Y2, and Y3. correlation coefficients are calculated initially to see the

strength of the relationship between independent variables used to predict the future

values. Correlation coefficient R determines the strength of the relationship between the

variables. R value ranges from -1.0 to 1.0. If it is greater than 0, then it shows a positive

linear relationship. The linear relationship is negative if it is less than 0. The R value

1.0 shows a strong relationship, and a value of 0 means there is no relationship between

the independent variables.

• Correlation between Local AV and Adjacent Network AV (RX1,X2)

• Correlation between Local AV and Network AV (RX1,X3)

• Correlation between Local AV and impact ratings of Vulnerabilities (RX1,Yn)

• Correlation between Adjacent Network AV and Network AV (RX2,X3)

• Correlation between Adjacent Network AV and impact ratings of Vulnerabilities

(RX2,Yn)

• Correlation between Network AV and impact ratings of Vulnerabilities (RX3,Yn)

Equation 3.9 is used to predict unknown Xen vulnerabilities with regard to the

impact levels.

Ȳn = a + b1(X1) + b2(X2) + b3(X3) (3.9)

where,
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Ȳn The predicted value of dependent variable Yn.

a Is the ‘Y’ Intercept.

b1 The change in the value of ‘Y’ for each one increment change in the value of X1

that is, Local AV in this case.

b2 The change in the value of ‘Y’ for each one increment change in the value of X2

that is, Adjacent Network AV in this case.

b3 The change in the value of ‘Y’ for each one increment change in the value of X3

that is, Network AV in this case.

X A value of ‘X’ that is, the independent variable for which the value of Yn can be
predicted.

3.4.3 Research Method 3: Common Vulnerability Scoring System

The CVSS (Mell et al., 2006, 2007) provides a framework for researchers to perform

statistical analysis on vulnerabilities and vulnerability properties (Mell et al., 2007). The

CVSS uses a numeric scoring system to determine the impact rating of a vulnerability

exploitation scenario (Gallon & Bascou, 2011). Elahi, Yu and Zannone (2010) presents

a framework for security requirements elicitation and analysis centred on vulnerabilities.

The authors argued that CVSS is very useful to evaluate the impact of vulnerabilities.

Another work presented by Gallon and Bascou (2011) uses CVSS to create attack

graphs to assess the impact of successful exploitation scenarios, taking into account

correlation between successive atomic exploitation scenarios.

The CVSS labels vulnerability impact ratings as, Critical, High, Medium, and Low.

It uses three different metric groups such as Base, Temporal, and Environmental. Each

metric group further consists of a set of metrics. Figure 3.4 provides an overall CVSS

metrics’ view where the Base metric group provides the fundamental properties of

vulnerability (Mell et al., 2007). The Base metric group further consists of two metrics:

Exploitability and Impact Metrics. The Base metric group produces a CVSS Base score

from 0 to 10 using a Base equation derived from the Exploitability, and the Impact
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sub score equation. Later, the Base score can be modified by scoring the Temporal

and Environmental metrics to reflect the risk to user’s assets. However, scoring the

Temporal and Environmental metrics is not considered by CVSS.

 

Figure 3.4: CVSS Metric Groups (Mell et al., 2007)

Justification of Using Common Vulnerability Scoring System

There are other vulnerability scoring systems available such as the SANS vulnerability

analysis system. The SANS system considers whether the vulnerability exists in the

default configurations or systems. Another scoring system offered by Microsoft tries

to reflect the difficulty of exploitation and the impact of the vulnerability exploitation

scenario. Both these vulnerability scoring systems are useful but provide a one-size-

fits-all approach by considering that the impact vulnerability exploitation is the same

for individuals or organisations. However, CVSS is designed to allow users to verify

a vendor’s calculations when desired (Mell et al., 2007). The CVSS uses Base score

equations, scoring rubrics, and metrics to score and determine the impact ratings of

vulnerabilities1. The CVSS calculator version 3.0 is used to score vulnerabilities using

1Appendix B and Section B.1 for details about CVSS Base score equations, scoring rubrics, and
metrics.
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a scale of 0 to 10 and determines qualitative impact ratings as Critical, High, Medium,

and Low.

Critical impact level is assigned to a vulnerability if it has a CVSS base score of
9.0-10.0.

High impact level is assigned to a vulnerability if it has a CVSS base score of 7.0-8.9.

Medium impact level is assigned to a vulnerability if it has a CVSS base score of
4.0-6.9.

Low impact level is assigned to a vulnerability if it has a CVSS base score of 0.0-3.9.

Application of the Method

The CVSS is used to test Hypothesis (H3), that is to determine the vulnerability impact

ratings. Three Xen vulnerability exploitation scenarios are scored to show CVSS

application to determine impact ratings. However, it is not practicable to cover all the

vulnerability scenarios to determine impact ratings of large software such as the Xen

hypervisor. Therefore, vulnerability impact ratings are adopted for Xen risk assessment.

However, in the case of Apache HTTP and Squid server, the CVSS is used completely

to determine the vulnerability impact ratings in Chapter 6 (Process Evaluation).

ENISA’s Risk Framework

It is not practicable to develop and score all the Xen vulnerability exploitation scenarios

to determine impact ratings. Three example scenarios are presented to highlight the

application of the CVSS to determine the impact ratings. Therefore, to realise a

complete risk assessment process for the Xen, the impact ratings of the hypervisor

related vulnerabilities are adopted from ENISA’s framework (Catteddu & Hogben,

2009). However, CVSS is used to determine the impact ratings of Apache and Squid

servers (Process Evaluation, Chapter 6).
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ENISA’s risk framework provides a list of 53 vulnerabilities that are combined

with assets in a subset. Also, 35 risk scenarios and assets are mapped to the relevant

vulnerabilities. ENISA determines vulnerability impact ratings by consulting a group of

industry experts and professionals. Therefore, the hypervisor related vulnerabilities and

their impact ratings are adopted from ENISA. ENISA labels and determines qualitative

vulnerability impact ratings as Very High, High, Medium, Low, and Very Low.

3.4.4 Research Method 4: Structured Analysis Approach

A structured analysis approach using attack trees is used to test Hypothesis (H4), that

is to identify threats and determine their likelihood levels. Saini et al. (2008) presents

how attack trees could be used to analyse the security of MyProxy system, which

is an important subsystem of the Globus toolkit. The authors argue that attack trees

are an effective and convenient approach to evaluate possible security threats and to

propose a mitigation strategy against those threats. K. S. Edge, Dalton, Raines and

Mills (2006) developed attack and protection trees to identify the possible threats to

Homeland Security. The authors categorise the protection tree and attack tree as two

separate entities. The protection tree is built using the data as output from the attack

tree. In this research, the Xen is also evaluated through a sequential and explorative

process by creating attack trees to identify AVs which can be used by TAs to exploit

Xen (Hutle, Hansch & Fitzgerald, 2015).

Justification of Using Attack Trees

Attack trees provide a simple and effective way to structure different threats that pose

a risk to the target system (Schneier, 1999). Attack trees identify and analyse the

consequences of a successful attack. Attack trees also make it possible to determine

the most vulnerable path through Physical, Local, and Network AVs. Furthermore,
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attack trees provide a top-down approach to how, why, and who (TAs) can exploit the

target system. Attack trees use a tree structure to represent threats against the system,

with the main goal as the root node and the different ways an attacker can choose to

achieve that goal. Source nodes of the tree represent sub-subgoals of the attacker. Child

nodes connected to source nodes are the ways to achieve the subgoals. It is a top-down

approach where the child nodes are actually considered as a specification of the higher

level nodes and can be either conjunctive (aggregation or AND nodes) or disjunctive

(choice or OR nodes) (Haque et al., 2017). For AND nodes, all the immediate nodes

will need to be in effect to achieve the goal. However, for OR nodes, any node will

be sufficient to fulfil the goal. In other words, an OR logical path between the nodes

represents alternatives whereas an AND logical path represents different steps toward

achieving the same goal (Saini et al., 2008).

Attack trees are useful for threat modelling by analysing threats and identifying

weak entry points which an attacker can use to exploit the system (Haque et al., 2017;

Ingoldsby, 2010). The threat model is required to determine threat likelihood levels

to the target system. To determine the threat likelihood and levels of Xen, HMG

Information Assurance Standard No.1 (HMG IS1) (CESG, 2009) is used. First the Xen

attack tree is developed, and initial threat values are assigned to the source nodes using

the capability and motivation properties of the attacker (Hutle et al., 2015). Threat levels

are then propagated to determine the threat levels to the root node which is the attacker’s

main goal. In this case, the child nodes refer to the exploitation of vulnerability through

Physical, Local, and Network AVs, whereas the root node refers to manipulation of

the Xen. Xen threat likelihood assessment is performed by considering two TAs; A

Privileged User (PU) and a Normal User (NU).
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Threat Actor Types

A brief description of PU and NU TAs is provided in this section. The description also

includes Service Consumer (SC) Indirectly Connected (IC) as TAs. SC and IC TAs are

used for threat likelihood determination for Apache and Squid server, respectively. The

description of all the TAs is as follows:

Privileged User (PU) A PU is an authorised and registered user who is responsible

to manage the software applications and services these servers are providing to

users.

Normal User (NU) An NU is also an authorised and registered user who uses the

servers, software applications, and the services offered by these servers. An

NU is normally provided with standard access and system privileges as per the

organisation’s policies.

Service Consumer (SC) An SC is the one who only uses the services provided by

the server. The server may also require that an SC should be a registered user to

access the services. However, an SC is different from an NU. For example, an SC

can only view the website, but cannot access the web server directly.

Indirectly Connected (IC) An IC is not an authorised user of the system. However,

an IC may be able to access the server and its services because of onward

connections from business partners, or through network connections to which the

server has a direct connection such as the Internet. An IC TA refers to all internet

users who can attack the system.

Capabilities and Motivation Properties of TAs

Capability and motivation properties of TAs are used to determine the initial threat levels

which are assigned to the attack trees. (Table 3.3). The HMG IS1 standard outlines

capability as a characteristic of TA and a component of threat. Capability defines a level
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which indicates the type and technical sophistication of the threat. However, motivation

is a measure of TA’s desire to attack and compromise an asset or group of assets.

Table 3.3: Threat Actor Capabilities

Capability Description
Formidable TA has expert level knowledge about

computers and security.
Significant TA has professional level knowledge

about computers and security.
Limited TA is a trained computer or network

user.
Little TA is an average computer or net-

work user.
Very Little TA has very little knowledge about

computers and security.

See Appendix A, Section A.1.1 for a detailed description of TA capability levels to

exploit a vulnerability.

Table 3.4 provides motivation properties of a TA.

Table 3.4: Threat Actor Motivation Levels

Motivation Description
Very High (Focused) TA with such a motivation level will try to

exploit the system by all means necessary.
High (Committed) TA will try to exploit the target system on

a frequent or constant basis.
Medium (Interested) TA will try to exploit the target system if

an opportunity exists.
Low (Curious) TA will investigate the target system casu-

ally and attack if there is any weakness.
Very Low (Indifferent) A TA with indifferent motivation level

does not pose any risk.

See Appendix A, Section A.1.2 for a detailed description of TA motivation level to

exploit a vulnerability.
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Application of the Method

Structured asset-driven threat analysis allows a holistic analysis of threats (Hutle et

al., 2015). Attack trees for different attack vectors are combined to generate a single

attack tree for all the attacker’s goals. An approach to creating individual attack trees

for CIA is not considered due to limitations (Hutle et al., 2015). The Xen attack tree is

a directed tree (V, E), where every node (n) in (V) is labelled with either a logical AND

or OR. The process of developing the Xen attack tree is as follows:

Definition of Attacker’s Main Goal Manipulation of the Xen hypervisor and its as-

sets is defined as the main goal of the attacker.

Breakdown of Overall Goal into Subgoals The attacker’s main goal is broken down

into subgoals: the exploitation of Physical, Local and Network AVs.

Decomposition of Sub-subgoals Attacker’s subgoals are further broken down into

sub-subgoals. All the source nodes of the Xen attack tree (nodes incoming edges)

are the attacker’s sub-subgoals.

Assigning Initial Threat Levels Initial threat levels are assigned to all source nodes

using the capability and motivation properties of TAs.

Propagation of Threat Levels After assigning initial threat levels to all source nodes,

threat levels are propagated to the root node to determine the overall threat

likelihood level to the Xen. Threat levels for all the child nodes are adjusted to

achieve the min/max condition. Attack trees use the commonly done min/max

function. A Logical AND relationship means that all the source nodes are required

to exploit to achieve the attacker’s primary goal. The sub-goal with the lowest

threat level would determine the difficulty level of the attack scenario. So,

for every logical AND node, the minimum threat level of the source nodes is
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propagated to the respective child node. A logical OR relationship means that

one sub-goal is required to be exploited to achieve the attacker’s goal. Therefore,

the sub-goal with the highest threat level determines the difficulty level of the

attack scenario. So, for every logical OR node, the maximum threat level of the

source nodes is assigned the respective child node. OR nodes (child or source)

have the value of their cheapest node. On the other hand, AND nodes (child or

source) have the value of the sum of their nodes.

Threat Likelihood Levels Once all the nodes of the attack tree are computed, the

threat likelihood to the overall Xen can be determined. Likelihood levels to

Physical, Local and Network AVs are also determined.

Qualitative threat likelihood levels are determined and recorded as Severe, Substan-

tial, Moderate, Low, and Negligible. Table 3.5 provides TA group characteristics and

threat likelihood levels which these characteristics derive.

Table 3.5: Threat Likelihood Levels

Threat Level Threat Actor Group Characteristics
Severe This threat level can be observed when a

TA behaves very severely and ignores all
the security policies.

Substantial This threat level can be observed when a
TA does not behave well and sometimes
ignores all the security policies and pro-
cedures.

Moderate TA poses this threat level if one is a reli-
able and trustworthy person and behaves
well.

Low This threat level will be low if a TA be-
haves exceptionally well and is a trust-
worthy person.

Negligible This threat level can be ignored by the
organisations.
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See Appendix A, Section A.2 for a description of qualitative threat levels.

3.4.5 Research Method 5: Risk Estimation Matrix

Risk assessment of CC is difficult due to its dynamic nature and different stakeholders.

Also, a generic risk assessment process cannot be applied to all the service delivery

models (Cayirci, 2015). Governmental and non-governmental organisations in Europe,

such as ENISA (Catteddu & Hogben, 2009) and CNIL (Daskala & Le Metayer, 2012)

provides risk assessment studies for the cloud. However, ENISA and CNIL provide

generic frameworks for CC and do not differentiate between risk assessments of service

delivery models. For example, ENISA provides 32 risks to CC and classifies these risks

into three categories: organisational, technical, and legal risk. Organisational risk refers

to the risk that affects the reputation of organisations and their businesses. Technical

risk affects the CIA security objectives of cloud services and supporting systems. Legal

risks are related to the compliance of security and privacy mandates by regulatory

organisations (Alruwaili & Gulliver, 2014). However, ENISA does not provide risk

scenarios for service delivery models. CNIL provides a risk management scheme to

assess risk level management. CNIL generically determines threats against the privacy

of CC from internal users; external users such as the service provider, competitors; and

non-human sources such as malware, natural disasters, and so forth. However, it does

not focus on a particular service delivery model as risks are different for each model.

Justification for Risk Assessment

The existing research (Hussain & Abdulsalam, 2011; Saripalli & Walters, 2010; Fitó &

Guitart, 2014; Leitold & Hadarics, 2012; Tanimoto, Hiramoto, Iwashita, Sato & Kanai,

2011) has limitations in terms of its scope and applicability in the real cloud environ-

ment. The existing research views the risk to CC from a broader perspective, instead of
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targeting specifically the hypervisor which provides the base for IaaS. These studies

assess the risk from the CSPs point of view and do not include customers in the risk as-

sessment process (Saripalli & Walters, 2010; Fitó & Guitart, 2014; X. Zhang, Wuwong,

Li & Zhang, 2010). The existing research also lacks focus on the risk assessment of

service delivery models. The generic risk assessment of the CC environment does not fit

all the models and provides inaccurate results. Customers should be included in the risk

assessment process or should have an independent platform to analyse risks and their

severity levels. Therefore, this research presents a qualitative inductive risk assessment

process that complements ENISA. The risk assessment process only considers technical

risks and targets IaaS.

Application of the Method

A 5 × 5 risk estimation matrix (Catteddu & Hogben, 2009) is used to test Hypothesis

(H5); that is to determine the severity levels of risk. Cayirci, Garaga, De Oliveira and

Roudier (2016) presents a Cloud Adoption Risk Assessment Model (CARAM) which

also complements ENISA to compute risk levels. The authors consider the qualitative

risk estimation matrix used by ENISA as probability and impact values. CARAM maps

these values to a quantitative scale to determine risk levels.

In this research, risk severity levels are determined by mapping the vulnerability

impact ratings and threat likelihood levels using ENISA’s risk estimation matrix. Nine

risk types are listed, and their qualitative severity levels are determined as High, Medium,

and Low if the risk scale is from 7-9, 4-6, and 1-3, respectively.

3.5 Methods and Hypotheses Testing

This section provides the rationale between RQs, hypotheses, research methods, and

how each research method tests the relevant hypothesis.
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3.5.1 Testing of Hypothesis 1

Table 3.6 provides that how the Time Series Holt-Winters method is used to test H1.

Table 3.6: Testing of Hypothesis 1

Method 1 Time Series Holt-Winters Method
Research
Question

How can the unknown vulnerabilities be assessed in large software
applications such as the Xen hypervisor to mitigate exploitation
scenarios?

Hypothesis Unknown vulnerabilities in the software applications can be pre-
dicted to mitigate the exploitation scenarios.

Analysis Unknown Vulnerability Prediction.
Constant: Xen vulnerabilities.
Independent Variable: The number of reported Xen vulnerabilit-
ies.
Dependent variable: The number of unknown Xen vulnerabilit-
ies.
Experiment: Unknown Xen vulnerabilities are predicted for 2018
using reported vulnerabilities of the last five years.
The vulnerability prediction results show that the hypothesis is
correct as 41.85 unknown vulnerabilities are predicted using the
Holt-Winters Model (very close to 43.80 reported vulnerabilities
in each of the last five years).

Output
Data

Quantitative: The number of unknown vulnerabilities are pre-
dicted for 2018.

Analysis of
Results

MAD and MAPE are used to measure the accuracy and validity of
the prediction results, respectively.
The control charts are also used to track the prediction results
against a UCL and LCL.

Evaluation The Holt-Winters model is also applied to Squid and Apache soft-
ware packages to determine its applicability and generalisability
by predicting unknown vulnerabilities of these software packages.
The model resulted in good prediction results.
Different prediction modes such as the Holt-Winters Additive,
ARIMA, and decomposition can also be used for the prediction.
However, the Holt-Winters Multiplicative model produced good
results (for three different software packages) using the reported
vulnerability datasets retrieved from the NVD .
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3.5.2 Testing of Hypothesis 2

Table 3.7 provides that how regression analysis is used to test H2 and address RQ1.

Table 3.7: Testing of Hypothesis 2

Method 2 Regression Analysis
Research
Question

How can the unknown vulnerabilities be assessed in large software
applications such as the Xen hypervisor to mitigate exploitation
scenarios?

Hypothesis Unknown vulnerabilities can also be predicted with regard to the
impact levels to prioritise the mitigation of exploitation scenarios.

Analysis Prediction of unknown vulnerabilities with regard to the impact
levels.
Constant: Xen vulnerabilities.
Independent Variable: The number of reported Xen vulnerabil-
ities exploited through Local (X1), Network (X2), and Adjacent
Network (X3) AVs.
Dependent Variable: Prediction of High (Y1), Medium (Y2), and
Low (Y3) impact unknown vulnerabilities.
Experiment: High, Medium, and Low impact unknown Xen vul-
nerabilities are predicted for 2018. The prediction results show that
10.43 unknown vulnerabilities will be of High impact. Similarly,
27.47 Medium and 9.91 Low impact unknown vulnerabilities are
predicted.

Output
Data

Quantitative: The number of High, Medium, and Low Impact
unknown vulnerabilities that may appear in the Xen.

Analysis of
Results

The predicted results are compared with the average number High,
Medium, and Low impact vulnerabilities reported during the last
five years.
10.43 High impact unknown vulnerabilities are predicted. This
result is an accurate prediction as it is very close to the average
10 High impact vulnerabilities reported each year in the last five
years.
Both Medium and Low impact unknown vulnerabilities are pre-
dicted accurately. The prediction results are close to the average
24.40 Medium and 9.40 Low impact reported vulnerabilities.

continued . . .
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Testing of Hypothesis 2 . . . continued
Evaluation Regression analysis is also used to predict High, Medium, and Low

impact unknown vulnerabilities of Squid and Apache software
packages.
Regression analysis produced accurate results (close to average
High, Medium, and Low reported vulnerabilities). This makes it
a reasonable model to be used for the prediction when more than
one independent variables are used for the predictions (three in
this case).

3.5.3 Testing of Hypothesis 3

CVSS is used to test H3 and address RQ2. Table 3.8 provides the summary of testing

H3.

Table 3.8: Testing of Hypothesis 3

Method 3 Common Vulnerability Scoring System
Research
Question

How can the determination of the risk of unknown Xen vulnerab-
ilities be presented such that it aids cloud infrastructure service
consumers?

Hypothesis By identifying and scoring the Xen vulnerabilities, the impact
ratings can be determined to facilitate the risk assessment process.

Analysis Determination of Impact Ratings of Xen vulnerabilities.
Constant: Impact ratings of Xen vulnerabilities.
Independent Variable: The Base Score Metrics (Exploitability
Metrics and Impact Metrics).
Dependent Variable: The impact ratings of Xen vulnerabilities.
Experiment: The vulnerability exploitation scenarios are scored
using CVSS to determine the impact ratings of Xen vulnerabilities
to facilitate the risk assessment process. CVSS uses a scale of
0 to 10 to determine qualitative impact ratings as Critical, High,
Medium, and Low.

Output
Data

Qualitative: The impact ratings of Xen vulnerability exploitation
scenarios.

continued . . .
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Testing of Hypothesis 3 . . . continued
Analysis of
Results

Three Xen vulnerability exploitation scenarios (Physical, Local,
and Network) are developed to score vulnerabilities from two
different threat actors.
A Medium impact rating is determined when a PU exploits a
physical vulnerability.
High impact ratings are determined for two scenarios when an NU
exploits a local and a network vulnerability.

Evaluation CVSS is also used to score Apache and Squid vulnerabilities to
determine impact ratings.
The CVSS is a generic framework and was very suitable to per-
form the qualitative analysis of different vulnerability scenarios to
determine the impact ratings using Exploitability and Impact Base
metrics.
The SANS and Microsoft also offer scoring systems. However,
these scoring systems provide a one-size-fits-all approach for indi-
viduals or organisations.

3.5.4 Testing of Hypothesis 4

Table 3.9 provides that how a structured analysis approach is used to test H4 and address

RQ2.

Table 3.9: Testing of Hypothesis 4

Method 4 Structured Analysis Approach
Research
Question

How can the determination of the risk of unknown Xen vulnerab-
ilities be presented such that it aids cloud infrastructure service
consumers?

Hypothesis Threats to the Xen can be modelled to determine the likelihood of
these threats exploiting a Xen vulnerability.

continued . . .
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Testing of Hypothesis 4 . . . continued
Analysis Determination of threat likelihood levels.

Constant: Threats to the Xen.
Independent Variable: Capability and motivation properties of
threat actors to exploit a Xen vulnerability.
Dependent Variable: Threat likelihood levels.
Experiment: Xen attack trees for a PU and an NU threat actor are
developed to determine threat likelihood levels to Xen.
The capabilities and motivation properties of these threat actors are
used to determine initial threat levels. Afterwards, threat levels are
propagated through the attack tree to determine the overall threat
likelihood level to Xen from these threat actors.

Output
Data

Qualitative: Severe, Substantial, Moderate, Low, and Negligible
threat likelihood levels to Xen from two different threat actors.

Analysis of
Results

A separate attack tree is developed for each of the threat actors. A
Moderate threat likelihood level is determined from a PU. On the
other hand, a Severe threat likelihood level is determined from an
NU.
The results show that an NU is most likely going to realise a net-
work attack by exploiting a vulnerability that exists in the network
stack of the Xen host (Dom0).

Evaluation Attack trees are also developed to determine the threat likelihood
levels to Apache and Squid software packages.
Attack trees provided an easy way to model threats to Apache and
Squid to determine threat likelihood levels.
A different threat modelling technique such as STRIDE could
have been used for threat modelling. However, it cannot be used
in isolation. The understanding about other techniques such as
Microsoft security life cycle development process, use cases and
architectures was required. Therefore, attack trees are used and
provided a simple structure to determine threat likelihood levels
by presenting the AVs which can be used to exploit vulnerabilities.

3.5.5 Testing of Hypothesis 5

Table 3.10 provides that how risk estimation matrix is used to test H5 and address RQ2.
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Table 3.10: Testing of Hypothesis 5

Method 5 Risk Estimation Matrix
Research
Question

How can the determination of the risk of unknown Xen vulnerab-
ilities be presented such that it aids cloud infrastructure service
consumers?

Hypothesis The results of vulnerability impact ratings and threat likelihood
levels can be mapped to determine the severity levels of risks to
the Xen.

Analysis Determination of severity levels of risks to the Xen.
Constant: Risk to the Xen.
Independent Variable: Vulnerability impact ratings and threat
likelihood levels.
Dependent Variable: Risk severity levels.
Experiment: The Xen vulnerability impact ratings and threat like-
lihood levels are mapped using risk estimation matrix to determine
severity levels of nine technical risks to Xen.
Nine risk types are listed, and their qualitative severity levels are
determined as High, Medium, and Low if the risk scale is from
7-9, 4-6, and 1-3 respectively.

Output
Data

Qualitative: High, Medium, and Low risk severity levels to Xen
from a PU and an NU threat actor.

Analysis of
Results

High risk severity levels are determined for two risk types: Mali-
cious Insider and Compromise Hypervisor from a PU threat actor.
An NU poses High risk severity levels for four risks: Isolation Fail-
ure, Intercepting Data in Transit, Undertaking Malicious Probes or
Scans, and Compromise of Hypervisor.

Evaluation Risk severity levels to Apache HTTP and Squid servers are also
determined using risk estimation matrix.
The results of Apache and Squid risk assessment supported the
hypothesis. The risk estimation matrix provided the risk sever-
ity levels which can be used by organisations to make informed
security decisions. The risk matrix was effective because vulner-
ability impact ratings and threat likelihood levels were estimated
accurately to determine the severity levels of risks.

3.6 Conclusion

In this chapter, an overview of DSR methodology and a rationale of the adopted DSR

process was covered. Five hypotheses were constructed to address the RQs. Five
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research methods, time series Holt-Winters, regression analysis, CVSS, structured

analysis approach, and risk estimation matrix, were discussed to test these hypotheses.

All research methods were applied within the context of the DSR process. Chapter 4

next provides an analysis of the Xen vulnerability prediction process and how the Holt-

Winters and regression analysis methods are used to predict unknown vulnerabilities

for the future.
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3. Methodology

2. Literature Review

1. Introduction

4.1 Introduction

In Chapter 3, DSR methodology was covered including research questions, hypotheses,

and research methods. This chapter provides vulnerability prediction of the Xen hyper-

visor. Through the vulnerability prediction process, unknown Xen vulnerabilities are

predicted for 2018. The Time series Holt-Winters method is used for the prediction. The

reliability of the prediction model is determined using the Mean Absolute Percentage

Error (MAPE). MAD is also used to measure the accuracy of the prediction model.

To extend the scope of the prediction process, unknown vulnerabilities are also

96
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predicted with regard to the impact levels. However, regression analysis is used for

predicting the impact ratings as more than one independent data variable is used as

input for the prediction. High, Medium, and Low impact unknown vulnerabilities are

predicted for 2018.

This chapter is organised as follows: Section 4.2 covers the Xen vulnerability predic-

tion process. Section 4.3 provides details of the validity and reliability of the prediction

model. Section 4.4 provides details of measuring the accuracy of the prediction model.

Prediction of unknown vulnerabilities with regard to the impact levels is covered in

Section 4.5. Section 4.6 provides the conclusion of this chapter.

4.2 Xen Vulnerability Prediction

In this section, the unknown Xen vulnerabilities are predicted using reported vulner-

ability data from NVD (NIST, 2017). NVD is a reliable vulnerability database and it

is publicly available. It helps researchers and organisations research the automation

of vulnerability management. It also provides different security and compliance goals.

Users can search it for reported vulnerabilities, checklists, impact metrics and different

statistics. This research targets to predict the number of unknown Xen vulnerabilities

using the reported vulnerability data set.

4.2.1 Data Source

The Xen reported vulnerability data were gathered from NVD from 2013 to 2017.

According to the NVD search, 219 vulnerabilities were reported in Xen from 2013

to 2017. The largest number of Xen vulnerabilities were DoS related, indicating a

potential weakness in this area. This problem may reflect the type of hypervisor (bare

metal), whereas KVM (hosted) would benefit from the underlying OS which provides a
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degree of protection through resource and memory management. Table 4.1 provides a

summary of Xen reported vulnerabilities per year from 2013 to 2017.

Table 4.1: Xen Vulnerabilities

Year Vulnerabilities
2013 43
2014 45
2015 41
2016 28
2017 62

Table 4.1 shows that from 2013, an alarming number of vulnerabilities were reported

in the Xen. This may be a result of increased awareness of the types of vulnerabilities.

62 vulnerabilities were reported in 2017 which is the highest number compared to

other years. It is assumed that the number of vulnerabilities may be more than 62.

This assumption leads to a hypothesis that there is a relationship between the size and

complexity of a software package, and the number of potential vulnerabilities reported.

It may be that there still exist vulnerabilities being open source and given the large

size of the Xen hypervisor code. Therefore, the Xen is thought to be suitable for the

prediction of unknown vulnerabilities.

4.2.2 Prediction of Unknown Xen Vulnerabilities

The Holt-Winters method (Kalekar, 2004; Tirkes et al., 2017) is used to predict the

number of unknown vulnerabilities. It predicts the systematic component of the actual

data (reported vulnerabilities) to predict the random component. The systematic com-

ponent usually contains Level (L), Trend (T) and Seasonal Factors (S). A multiplicative

Holt-Winters method (Equation 3.1) is used to calculate the systematic component of

the actual data. The prediction in time (t) for actual data in time (t + l) is calculated

using Equation 4.1.
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Ft+1 = (Lt−1 + Tt−1) × St+1 (4.1)

Xen version 4.x is targeted for vulnerability prediction. The first version of 4.x

series was released in April 2010. However, it is observed that data before 2013 is not

complete, or this series was not efficiently used between 2010 and 2012. Therefore,

the number of Xen reported vulnerabilities from 2013 to 2017 is used to make the

prediction. Table 4.2 provides Xen reported vulnerabilities which are distributed per

quarter for each year.

Table 4.2: Xen Reported Vulnerabilities

Time (t) Year Quarter Reported
Vulnerabilities

1 2013 1 7
2 2 7
3 3 13
4 4 16
5 2014 1 9
6 2 20
7 3 4
8 4 12
9 2015 1 9

10 2 12
11 3 5
12 4 15
13 2016 1 5
14 2 16
15 3 6
16 4 1
17 2017 1 17
18 2 5
19 3 22
20 4 18
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Deseasonalising Actual Data

The first step is to deseasonalise the actual data (Dt) to start the prediction process.

Deseasonalising Dt results in deseasonalised data which would be available without

seasonal fluctuations. P denotes the number of periods, and the Dt cycle repeats after

every four periods (quarters). Therefore, the value of p = 4.

To deseasonalise the data, equal weight is given to each season as required. The

average of p consecutive periods of the Dt is taken. The average of Dt from (l +

1) to (l + p) provides the deseasonalised data for [l + (p+1
2 )]. As p is even in this

case, deseasonalised data at a point between [l + (p
2)] and [l + 1 + (p

2)] is calculated.

Deseasonalised data for [l + 1 + (p
2)] is calculated by averaging the Dt values (l + 1)

to (l + p) and (l + 2) to (l + p + 1). Equation 4.2 is used to calculate D̄t, for the time t,

where p is even.

D̄t =
Dt−( p2 )+Dt+( p2 )+∑

i=t−1+( p2 )
i=t+1−( p2 )

2Di

2p
(4.2)

By using the Equation 4.2, deseasonalised data values from t3 to t18 are calculated.

Table 4.3 provides the deseasonalised data for these time periods.

Table 4.3: Deseasonalised Data

Time (t) Year Quarter Reported
Vulnerabilities

(Dt)

Deseasonalised
Data

1 2013 1 7 -
2 2 7 -
3 3 13 11.00
4 4 16 12.88
5 2014 1 9 13.38
6 2 20 11.75
7 3 4 11.25
8 4 12 10.25
9 2015 1 9 9.38

continued . . .
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Deseasonalised Data . . . continued
Time (t) Year Quarter Reported

Vulnerabilities
(Dt)

Deseasonalised
Data

10 2 12 9.88
11 3 5 9.75
12 4 15 9.75
13 2016 1 5 10.38
14 2 16 8.75
15 3 6 8.50
16 4 1 8.63
17 2017 1 17 9.25
18 2 5 13.38
19 3 22 -
20 4 18 -

The next step is to perform a linear regression using the relationship between

deseasonalised data and Time (t) based on the change in Dt over time (Equation 4.3).

D̄t = L + T × t (4.3)

In Equation 4.3, D̄t is the deseasonalised data in time (t). L is the Level value and T

is the rate of growth of data at t0. The L and T values at t0 are calculated using linear

regression. Deseasonalised data values are considered as dependent variables, and

time (t) values as independent variables. Using Table 4.3, initial Level L0 is calculated

as 12.18 (intercept coefficient), and initial Trend T0 is calculated as -0.16 (X variable

or slope). Therefore, for any time (t), the deseasonalised data D̄t is calculated using

Equation 4.4.

D̄t = 12.18 + (−0.16) × t (4.4)

Table 4.4 provides D̄t values (after linear regression) for all the time periods from t1

to t20.
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Table 4.4: Deseasonalised Data After Regression

Time (t) Year Quarter Reported
Vulnerabil-

ities

Deseasonalised
Data

D̄t

1 2013 1 7 - 12.03
2 2 7 - 11.87
3 3 13 11.00 11.71
4 4 16 12.88 11.55
5 2014 1 9 13.38 11.39
6 2 20 11.75 11.23
7 3 4 11.25 11.07
8 4 12 10.25 10.91
9 2015 1 9 9.38 10.75

10 2 12 9.88 10.59
11 3 5 9.75 10.43
12 4 15 9.75 10.27
13 2016 1 5 10.38 10.11
14 2 16 8.75 9.95
15 3 6 8.50 9.79
16 4 1 8.63 9.63
17 2017 1 17 9.25 9.47
18 2 5 13.38 9.31
19 3 22 - 9.15
20 4 18 - 8.99

Determination of Initial Seasonal Factors

The next step in the prediction process is to calculate S̄t values for initialisation. The S̄t

values for time (t) is the ratio of Dt to D̄t. Equation 4.5 is used to calculate S̄t.

S̄t =
Dt

D̄t

(4.5)

Table 4.5 provides S̄t for the time period S1 to S20.
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Table 4.5: Initial Seasonal Factor Values

Time (t) Year Quarter Dt Deseasonalised
Data

D̄t S̄t

1 2013 1 7 - 12.03 0.58
2 2 7 - 11.87 0.59
3 3 13 11.00 11.71 1.11
4 4 16 12.88 11.55 1.39
5 2014 1 9 13.38 11.39 0.79
6 2 20 11.75 11.23 1.78
7 3 4 11.25 11.07 0.36
8 4 12 10.25 10.91 1.10
9 2015 1 9 9.38 10.75 0.84

10 2 12 9.88 10.59 1.13
11 3 5 9.75 10.43 0.48
12 4 15 9.75 10.27 1.46
13 2016 1 5 10.38 10.11 0.49
14 2 16 8.75 9.95 1.61
15 3 6 8.50 9.79 0.61
16 4 1 8.63 9.63 0.10
17 2017 1 17 9.25 9.47 1.80
18 2 5 13.38 9.31 0.54
19 3 22 - 9.15 2.41
20 4 18 - 8.99 2.00

After calculating S̄t values for initialisation, St for a given time period is obtained

by averaging S̄t values that correspond to similar time periods. For example, as the

value of p = 4, S̄t are similar at the time periods t1, t5, t9, t13, and t17. Therefore,

seasonal factors of these time periods are calculated as the average of five seasonal

factors. The St is obtained using Equation 4.6 for all the time periods of Table 4.5,

(pt + i), (1 ≤ i ≤ p), for given data cycles r. Recall that L0 and T0 are already calculated

as 12.18 and -0.16, respectively.

S̄i =
∑r=1

j=0 Sjp+i

r
(4.6)

As p = 4, t = 20, and seasonal cycle r = 5, St values are calculated using Equation 4.6.
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S1 = 0.90

S2 = 1.13

S3 = 0.99

S4 = 1.21

Table 4.6 provides initial S1 to S4 values for the first four time periods.

Table 4.6: Initial St Values

Time (t) Year Quarter Dt Deseasonalised
Data

D̄t S̄t Initial St

Values
1 2013 1 7 - 12.03 0.58 0.90
2 2 7 - 11.87 0.59 1.13
3 3 13 11.00 11.71 1.11 0.99
4 4 16 12.88 11.55 1.39 1.21
5 2014 1 9 13.38 11.39 0.79 -
6 2 20 11.75 11.23 1.78 -
7 3 4 11.25 11.07 0.36 -
8 4 12 10.25 10.91 1.10 -
9 2015 1 9 9.38 10.75 0.84 -

10 2 12 9.88 10.59 1.13 -
11 3 5 9.75 10.43 0.48 -
12 4 15 9.75 10.27 1.46 -
13 2016 1 5 10.38 10.11 0.49 -
14 2 16 8.75 9.95 1.61 -
15 3 6 8.50 9.79 0.61 -
16 4 1 8.63 9.63 0.10 -
17 2017 1 17 9.25 9.47 1.80 -
18 2 5 13.38 9.31 0.54 -
19 3 22 - 9.15 2.41 -
20 4 18 - 8.99 2.00 -

Prediction Using Smoothing Parameter 0.10

Level Lt, Trend Tt, and S5 to S20 are calculated to make the prediction for 2018.

Therefore, to perform these calculations, three smoothing parameters α, β, and γ are

considered. The predicted values are compared with the values of the data set. Table 4.7

provides Holt-Winters smoothing parameters.
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Table 4.7: Smoothing Parameters

Smoothing Parameters Value
Level (α), Trend (β), Seasonal (γ) 0.10

α is used to calculate Lt values (Equation 4.7), and Tt values (Equation 4.8) are

calculated using β. Smoothing parameter γ is used to calculate remaining St values

(Equation 4.9) from (S5 to S20). Equation 4.7, Equation 4.8, and Equation 4.9 are used

to calculate these values.

Lt = α ×
Dt

St

+ (1 − α) × (Lt−1 + Tt−1) (4.7)

Tt = β × (Lt −Lt−1) + (1 − β) × Tt−1 (4.8)

St+p = γ ×
Dt

Lt

+ (1 − γ) × (St) (4.9)

Earlier, initial Level (L0) and Trend (T0) are calculated as 12.18 and -0.16 respect-

ively. S1, S2, S3, and S4 are also calculated. Thus, unknown vulnerabilities for the first

quarter of 2013 are predicted using Equation 4.10.

Ft+1 = (Lt−1 + Tt−1) × St+1 (4.10)

F1 = (L0 + T0) × S1

= (12.18 + (−0.16)) × 0.90

= 10.83

(4.11)

After the first prediction is made, it is assumed that time moves forward as 10.83

vulnerabilities were predicted for the first quarter of 2013. As a high value is predicted
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for the first quarter, Lt, Tt, and St can be updated using Equations 4.12, 4.13, and 4.14.

Therefore, Level (L1) is updated with an assumption that α = 0.10.

L1 = α ×
D1

S1

+ (1 − α) × (L0 + T0)

= 0.10 × 7

0.90
+ (1 − 0.10) × (12.18 + (−0.16))

= 11.60

(4.12)

Also, the Trend (T1) is updated with an assumption that β = 0.10.

T1 = β × (L1 −L0) + (1 − β) × T0

= 0.10 × (11.60 − 12.18) + (1 − 0.10) × (−0.16)

= −0.20

(4.13)

After updating Level and Trend components using α and β, S5 is also updated with

an assumption that γ = 0.10.

S5 = γ ×
D1

L1

+ (1 − γ) × (S1)

= 0.10 × 7

11.60
+ (1 − 0.10) × (0.90)

= 0.87

(4.14)

After calculating Lt, Tt, and St values for all 20 time periods, the predictions for

the four quarters of 2018 are made.

F21 = [L20 + (T20 × 1)] × S17

= [10.13 + (0.03 × 1)] × 0.84

= 8.54

(4.15)
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F22 = [L20 + (T20 × 2)] × S18

= [10.13 + (0.03 × 2)] × 1.22

= 12.41

(4.16)

F23 = [L20 + (T20 × 3)] × S19

= [10.13 + (0.03 × 3)] × 0.89

= 9.07

(4.17)

F24 = [L20 + (T20 × 4)] × S20

= [10.13 + (0.03 × 4)] × 1.16

= 11.83

(4.18)

Table 4.8 provides all the Lt, Tt, St and predicted values. The model predicts 41.85

Xen vulnerabilities for 2018 when all three smoothing parameters are assigned a 0.10

value.

Table 4.8: Prediction of Unknown Xen Vulnerabilities using 20 Periods

Time
(t)

Dt Seasonal
Factors for

Initialisation

St

Values
Lt

Values
Tt

Values
Prediction

0 - - - 12.18 -0.16 -
1 7 0.58 0.90 11.60 -0.20 10.83
2 7 0.59 1.13 10.88 -0.25 12.88
3 13 1.11 0.99 10.87 -0.23 10.56
4 16 1.39 1.21 10.90 -0.20 12.88
5 9 0.79 0.87 10.66 -0.21 9.31
6 20 1.78 1.08 11.26 -0.13 11.30
7 4 0.36 1.01 10.41 -0.20 11.28
8 12 1.10 1.24 10.16 -0.20 12.62
9 9 0.84 0.87 10.00 -0.20 8.64

10 12 1.13 1.15 9.86 -0.19 12.28
11 5 0.48 0.95 9.23 -0.24 9.19
12 15 1.46 1.23 9.31 -0.21 11.06
13 5 0.49 0.87 8.77 -0.24 7.93

continued . . .
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Prediction of Unknown Xen Vulnerabilities using 20 Periods . . . continued
Time

(t)
Dt Seasonal

Factors for
Initialisation

St

Values
Lt

Values
Tt

Values
Prediction

14 16 1.61 1.16 9.06 -0.19 9.87
15 6 0.61 0.91 8.64 -0.21 8.07
16 1 0.10 1.27 7.67 -0.29 10.70
17 17 1.80 0.84 8.66 -0.16 6.21
18 5 0.54 1.22 8.07 -0.20 10.37
19 22 2.41 0.89 9.55 -0.03 6.99
20 18 2.00 1.66 10.13 0.03 11.00
21 Prediction - - - - 8.54
22 Prediction - - - - 12.41
23 Prediction - - - - 9.07
24 Prediction - - - - 11.83

Figure 4.1 provides the prediction of Xen unknown vulnerabilities using smoothing

parameters = 0.10 and 20 periods.
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Figure 4.1: Prediction Graph Using 0.10 Smoothing Parameters

Prediction with Smoothing Parameters 0.20 and 0.30

Now the predictions are made using smoothing parameters values, 0.20 and 0.30.

Figure 4.2 provides the prediction of Xen unknown vulnerabilities using smoothing

parameters = 0.20 and 20 periods.
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Figure 4.2: Prediction Graph Using 0.20 Smoothing Parameters

Figure 4.3 provides the prediction of Xen unknown vulnerabilities using smoothing

parameters = 0.30 and 20 periods.
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Figure 4.3: Prediction Graph Using 0.30 Smoothing Parameters

It is observed that the prediction model predicted 41.85 unknown vulnerabilities

when 0.10 value is assigned to all three smoothing parameters. The result is accurate as

it is very close to the average reported vulnerabilities (43.80 vulnerabilities per year).

The prediction model predicted 61.63 and 84.64 vulnerabilities when 0.20 and 0.30

values are assigned to smoothing parameters respectively.
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4.3 Validity and Reliability of the Prediction Model

In this section, the validity and reliability of the prediction model is performed. The

validity of the Holt-Winters prediction is determined by measuring the percentage that

the prediction model is a good fit for predicting unknown Xen vulnerabilities. This is

done by using MAPE (Equation 4.19).

MAPE = 100

N
×

N

∑
i=1

∣ActualData − Prediction
ActualData

∣ (4.19)

Whereas, actual data is the data-set used for prediction. Prediction is the estimated

or predicted time series observations. N is the number of non-missing data points.

Table 4.9 provide Holt-Winters smoothing parameters and MAPE value.

Table 4.9: Smoothing Parameters and MAPE

Smoothing Parameters MAPE Value
Level (α) 0.10, Trend (β) 0.10, Seasonal
(γ) 0.10

95.53

Level (α) 0.20, Trend (β) 0.20, Seasonal
(γ) 0.20

101.73

Level (α) 0.30, Trend (β) 0.30, Seasonal
(γ) 0.30

111.29

4.3.1 Prediction for periods 23, 24, 25 and 26

The lower MAPE value is observed when the 0.10 smoothing parameter is assigned

to Level, Trend, and Seasonal components when evaluated with 20 quarters of actual

data. The reported vulnerability data values for quarter 21 and 22 are then added to the

sample data set. The 0.10 smoothing parameter calibration is applied to 22 periods. The

final prediction is made for periods 23, 24, 25 and 26.
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Table 4.10: Prediction of Unknown Xen Vulnerabilities using 22 Periods

Time
(t)

Dt Seasonal
Factors for

Initialisation

St

Values
Lt

Values
Tt

Values
Prediction

0 - - - 11.13 -0.02 -
1 7 0.63 0.87 10.80 -0.06 9.64
2 7 0.63 1.11 10.30 -0.10 11.88
3 13 1.18 0.93 10.57 -0.07 9.48
4 16 1.45 1.15 10.85 -0.03 12.08
5 9 0.82 0.85 10.80 -0.03 9.16
6 20 1.83 1.06 11.57 0.05 11.44
7 4 0.37 0.96 10.87 -0.03 11.15
8 12 1.10 1.18 10.77 -0.03 12.82
9 9 0.83 0.85 10.73 -0.04 9.08

10 12 1.11 1.13 10.69 -0.04 12.08
11 5 0.46 0.90 10.14 -0.09 9.59
12 15 1.39 1.18 10.32 -0.06 11.81
13 5 0.47 0.84 9.83 -0.10 8.67
14 16 1.49 1.13 10.17 -0.06 10.98
15 6 0.56 0.86 9.80 -0.09 8.69
16 1 0.09 1.20 8.82 -0.18 11.68
17 17 1.60 0.81 9.87 -0.06 7.01
18 5 0.47 1.17 9.26 -0.11 11.52
19 22 2.08 0.84 10.87 0.06 7.64
20 18 1.71 1.09 11.48 0.12 11.96
21 4 0.38 0.90 10.88 0.04 10.46
22 5 0.48 1.11 10.28 -0.02 12.13
23 Prediction - - - - 8.57
24 Prediction - - - - 11.20
25 Prediction - - - - 9.22
26 Prediction - - - - 11.32

Figure 4.4 provides Holt-Winters prediction with smoothing parameters = 0.10 and

22 periods.
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Figure 4.4: Prediction with Smoothing Parameters 0.10 and 22 Periods

The in-sample MAPE is determined as 105.13 with smoothing parameter 0.10. This

MAPE value is larger than the MAPE value (95.53) which was observed earlier with

original 20 periods and smoothing parameter 0.10. However, the difference between

both MAPE values is not significant which indicates the reliability of the prediction

model. Therefore, the Holt-Winters model can be used as a simple prediction model

to predict software vulnerabilities to address the research problem or conduct short-

term planning. However, the utility of the Holt-Winters prediction model is extensive,

and it can be used for prediction in different other domains such as healthcare, sales,

marketing, and production. It is also observed that the Holt-Winters method provides a

good fit when the sample data set has Level, Trend, and Seasonal components.

4.4 Measuring Prediction Accuracy

In Section 4.3, the reliability of the prediction results was measured using MAPE.

However, to have more clarity about the accuracy of the prediction model, MAD is

also used to measure the accuracy of the prediction model. A good prediction model

should include a Mean, an Estimate, and how the predicted values vary from the Mean

value. MAD is used to calculate prediction errors because the accuracy is measured in
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the same units as the actual data. The first step is to calculate the prediction error to

measure the accuracy of the prediction. The prediction error is the difference between

the actual data and the predicted values for time (t). Prediction errors for all quarters

(2013-2017) are measured using Equation 4.20.

Et = Actual − Prediction

=Dt − Ft

(4.20)

Prediction errors are then summed to determine Bias (B) to check whether the

prediction is biased or not. Equation 4.21 is used to determine B.

Bn =
n

∑
t=1
Et (4.21)

The next step is to calculate Absolute Deviation (At) which is the absolute value of

the prediction error (|Et|). At is calculated using Equation 4.22.

At = ∣Et∣ (4.22)

Once At is calculated, MAD is determined by averaging the At values of all (t)

periods.

4.4.1 Tracking Signal (TS)

Tracking Signal (TS) evaluates the model and determines whether or not the prediction

needs revision for accurate results. TS is calculated by taking the ratio of Bias and

MAD. A common rule of thumb is that TS should be between -3 and 3 where the Mean

value is 0. If TS is out of range, the prediction model should be investigated. TS is

calculated using Equation 4.23.
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TSt =
biast
MADt

(4.23)

Table 4.11 provides a summary of prediction error and TS for all quarters. Ac-

cumulative MAD for all quarters is 5.02 when smoothing parameters value used is

0.10.

Table 4.11: Prediction Error Tracking Signal

Time (t) Prediction Error
Et

Bias At = |Et| MAD TS

1 10.83 -3.83 -3.83 3.83 3.83 -1.00
2 12.88 -5.88 -9.71 9.71 4.86 -2.00
3 10.56 2.44 -7.27 12.15 4.05 -1.80
4 12.88 3.12 -4.15 15.27 3.82 -1.09
5 9.31 -0.31 -4.46 15.58 3.12 -1.43
6 11.3 8.70 4.24 24.28 4.05 1.05
7 11.28 -7.28 -3.04 31.56 4.51 -0.67
8 12.62 -0.62 -3.66 32.18 4.02 -0.91
9 8.64 0.36 -3.30 32.54 3.62 -0.91

10 11.28 0.72 -2.58 33.26 3.33 -0.78
11 9.19 -4.19 -6.77 37.45 3.40 -1.99
12 11.06 3.94 -2.83 41.39 3.45 -0.82
13 7.93 -2.93 -5.76 44.32 3.41 -1.69
14 9.87 6.13 0.37 50.45 3.60 0.10
15 8.07 -2.07 -1.70 52.52 3.50 -0.49
16 10.7 -9.70 -11.40 62.22 3.89 -2.93
17 6.21 10.79 -0.61 73.01 4.29 -0.14
18 10.37 -5.37 -5.98 78.38 4.35 -1.37
19 6.99 15.01 9.03 93.39 4.92 1.84
20 11 7.00 16.03 100.39 5.02 3.19

4.4.2 Control Chart

A control chart is used to track the prediction errors for all quarters. A control chart

consists of three elements: a control chart starts with a period graph, a Mean of

prediction error samples as a central line to show shifts or trends, and Upper and Lower
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Control Limits (UCL and LCL) placed equidistant from the Mean. UCL and LCL are

calculated by estimating the Standard Deviation (σ) of prediction errors sample. σ is

multiplied by 3 and added (3σ to Mean) to calculate UCL and subtracted (3σ from the

Mean) to calculate LCL. Equation 4.24 is used to determine CLs.

CL =X ± 3σ (4.24)

Usually, Mean ± 3σ should account for 99.7% of the distribution of observations.

Only 0.3% observations (3.75 MAD or 3σ) should be out of the range. A control chart

measures TS and compares Bias with UCL and LCL to see whether the predicted values

are on the positive or the negative side of the threshold. If the prediction model is under-

predicting, then the TS will be on the positive side of the Mean. If it is over-predicting,

then TS will be on the negative side of the Mean. However, if the prediction model

is out of control, or net-cumulative error is beyond 3σ from the Mean then TS is over

3.75 MAD. This shows that the prediction process requires evaluation. The prediction

errors are distributed with a Mean of 0.80. A 3σ deviation from the Mean is equal to a

control chart with the UCL and LCL set at 20.01 and -18.41, respectively from Mean

0.85. Table 4.12 provides the Mean values, UCL, and LCL for all the quarters.

Table 4.12: Control Limits to Measure Prediction Accuracy

Time
(t)

Prediction Error
Et

MAD TS Mean UCL LCL

1 10.83 -3.83 3.83 -1.00 0.80 20.01 -18.41
2 12.88 -5.88 4.86 -2.00 0.80 20.01 -18.41
3 10.56 2.44 4.05 -1.80 0.80 20.01 -18.41
4 12.88 3.12 3.82 -1.09 0.80 20.01 -18.41
5 9.31 -0.31 3.12 -1.43 0.80 20.01 -18.41
6 11.3 8.70 4.05 1.05 0.80 20.01 -18.41
7 11.28 -7.28 4.51 -0.67 0.80 20.01 -18.41
8 12.62 -0.62 4.02 -0.91 0.80 20.01 -18.41
9 8.64 0.36 3.62 -0.91 0.80 20.01 -18.41

continued . . .
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Control Limits to Measure Prediction Accuracy . . . continued
Time

(t)
Prediction Error

Et

MAD TS Mean UCL LCL

10 11.28 0.72 3.33 -0.78 0.80 20.01 -18.41
11 9.19 -4.19 3.40 -1.99 0.80 20.01 -18.41
12 11.06 3.94 3.45 -0.82 0.80 20.01 -18.41
13 7.93 -2.93 3.41 -1.69 0.80 20.01 -18.41
14 9.87 6.13 3.60 0.10 0.80 20.01 -18.41
15 8.07 -2.07 3.50 -0.49 0.80 20.01 -18.41
16 10.7 -9.70 3.89 -2.93 0.80 20.01 -18.41
17 6.21 10.79 4.29 -0.14 0.80 20.01 -18.41
18 10.37 -5.37 4.35 -1.37 0.80 20.01 -18.41
19 6.99 15.01 4.92 1.84 0.80 20.01 -18.41
20 11 7.00 5.02 3.19 0.80 20.01 -18.41

Figure 4.5 provides TS of Xen vulnerability prediction. It shows that the model

is over-predicting for most of the quarters. However, the prediction model does not

exceed threshold levels (UCL or LCL). Thus, the prediction is acceptable.
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Figure 4.5: Tracking Prediction Accuracy



Chapter 4. Xen Vulnerability Prediction 117

4.5 Prediction of Unknown Xen Vulnerabilities with re-

gard to the Impact Levels

In Section 4.2.2, the prediction of Xen unknown vulnerabilities was performed. This

section covers the prediction of unknown vulnerabilities with regard to the impact

levels. The purpose of predicting vulnerabilities with regard to the impact levels

is to expand the scope of the vulnerability prediction process. Regression analysis

is used for the prediction. The number of reported vulnerabilities exploited using

Local Access, Adjacent Network, and Remote Network AVs are considered as the

independent variables (X1, X2, and X3). High, Medium and Low impact ratings of

reported vulnerabilities are used as dependent variables (Y1, Y2, and Y3). The predicted

values are calculated as Ȳ1, Ȳ2, and Ȳ3 for High, Medium, and Low impact levels of

unknown vulnerabilities, respectively.

Table 4.13 provides the data variables used for prediction.

Table 4.13: Independent and Dependent Variables

X1 X2 X3 Y1 Y2 Y3

Year Quarter Local Adjacent
Network

Network High Medium Low

2013 1 4 3 0 0 6 1
2 7 0 0 0 4 3
3 6 7 0 3 9 1
4 9 7 0 1 11 4

2014 1 3 6 0 2 6 1
2 6 14 0 1 14 5
3 2 2 0 0 3 1
4 6 4 2 2 3 4

2015 1 8 0 1 2 8 2
2 7 2 3 4 6 2
3 4 0 1 2 2 1
4 14 0 1 3 8 4

2016 1 1 4 0 0 3 2
continued . . .
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Independent and Dependent Variables . . . continued
X1 X2 X3 Y1 Y2 Y3

2 15 0 1 3 6 7
3 6 0 0 3 2 1
4 1 0 0 0 0 1

2017 1 17 0 0 1 11 5
2 5 0 0 2 2 1
3 10 0 12 10 11 1
4 17 0 1 11 7 0

Table 4.13 provides the Mean values in independent and dependent variables used

for the prediction.

Table 4.14: Mean Values of Data Variables

Local Adjacent
Network

Network High Medium Low

Mean value
per year

29.60 9.80 4.40 10.00 24.40 9.40

4.5.1 Prediction of High Impact Unknown Vulnerabilities

Table 4.15 provides X1, X2, and X3 as independent variables and Y1 (High Impact) as

dependent variable. Ȳ1 is the predicted value of Y1.

Table 4.15: Data Variables to Predict High Impact Vulnerabilities

X1 X2 X3 Y1

Year Quarter Local Adjacent
Network

Network High Impact
Vulnerabilities

2013 1 4 3 0 0
2 7 0 0 0
3 6 7 0 3
4 9 7 0 1

2014 1 3 6 0 2
2 6 14 0 1
3 2 2 0 0
4 6 4 2 2

continued . . .
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Data Variables to Predict High Impact Vulnerabilities . . . continued
X1 X2 X3 Y1

2015 1 8 0 1 2
2 7 2 3 4
3 4 0 1 2
4 14 0 1 3

2016 1 1 4 0 0
2 15 0 1 3
3 6 0 0 3
4 1 0 0 0

2017 1 17 0 0 1
2 5 0 0 2
3 10 0 12 10
4 17 0 1 11

The first step of the prediction process is to calculate correlation coefficients.

Table 4.16 provides the correlation coefficients.

Table 4.16: Correlation Coefficients to Predict High Impact Vulnerabilities

Local Adjacent
Network

Network High
Impact

Local AV 1
Adj Network AV -0.28 1
Network AV 0.19 -0.21 1
High Impact 0.54 -0.24 0.66 1

R value is calculated which is the combined correlation between Local, Adjacent

Network, and Network AVs with High Impact vulnerabilities. The computed value of R

is 0.78 which is relatively close to 1.00. This shows that the independent and dependent

variables have a strong relationship. Multiple regression analysis (Equation 4.25) is

used to make the prediction.

Ȳ1 = a + b1(X1) + b2(X2) + b3(X3) (4.25)

where,
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• Ȳ = The predicted value of dependent variable Y.

• a = Is the Y-Intercept.

• b1 = The change in the value of Y for each one increment change in the value of

X1 that is, Local AV.

• b2 = The change in the value of Y for each one increment change in the value of

X2 that is, Adjacent Network AV.

• b3 = The change in the value of Y for each one increment change in the value of

X3 that is, Network AV.

• X = A value of X that is, the independent variable for which the value of Y is

predicted.

Through regression analysis, the below regression coefficients are calculated.

• Y Intercept (a) = -0.12

• Local AV (b1) = 0.26

• Adjacent Network AV (b2) = 0.00

• Network AV (b3) = 0.65

The P-value of AV Local is 0.02, Adjacent Network is 0.97, and Network is 0.00. It

is observed that the P-value of Adjacent Network is higher than 0.15. Therefore, it is

not considered for the prediction.

Equation 4.26 is used to predict High Impact unknown vulnerabilities for 2018. For

example, 29.60 vulnerabilities would appear that exploit Local AV and 4.40 Network

AV (see Mean values provided in Table 4.14). Prediction result shows that out of those

34 vulnerabilities, at least 10.43 vulnerabilities will be of High impact rating. This is an

excellent prediction as it is almost the same as the per year mean value of High impact

reported vulnerabilities of 10.00.
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Ȳ1 = a + b1(X1) + b3(X3)

= −0.12 + 0.26(29.60) + 0.65(4.40)

= 10.43

(4.26)

4.5.2 Prediction of Medium Impact Unknown Vulnerabilities

Table 4.17 provides the X1, X2, and X3 as independent variables and Y2 (Medium

Impact) as dependent variable to predict unknown vulnerabilities of Medium Impact.

Ȳ2 is the predicted value of Y2. Table 4.18 provides the correlation coefficients.

Table 4.17: Data Variables to Predict Medium Impact Vulnerabilities

X1 X2 X3 Y2

Year Quarter Local Adjacent
Network

Network Medium Impact
Vulnerabilities

2012 1 0 0 0 0
2 1 0 0 0
3 0 0 0 0
4 33 1 0 22

2013 1 4 3 0 6
2 7 0 0 4
3 6 7 0 9
4 9 7 0 11

2014 1 3 6 0 6
2 6 14 0 14
3 2 2 0 3
4 6 4 2 8

2015 1 8 0 1 3
2 7 2 3 6
3 4 0 1 2
4 14 0 1 8

2016 1 1 4 0 3
2 15 0 1 6
3 6 0 0 2
4 1 0 0 0

2017 1 17 0 0 11
2 5 0 0 2

continued . . .
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Data Variables to Predict Medium Impact Vulnerabilities . . . continued
X1 X2 X3 Y2

3 10 0 12 11
4 17 0 1 7

Table 4.18: Correlation Coefficients to Predict Medium Impact Vulnerabilities

Local Adjacent
Network

Network Medium
Impact

Local AV 1
Adj Network AV -0.15 1
Network AV 0.08 -0.14 1
Medium Impact 0.80 0.39 0.18 1

R value is calculated as 0.97 using the correlation coefficients and is almost equal to

1.00, which shows the independent and dependent variables have a solid relationship.

So, to proceed with the prediction, regression coefficients are calculated.

• Y Intercept (a) = -0.75

• Local AV (b1) = 0.61

• Adjacent Network AV (b2) = 0.85

• Network AV (b3) = 0.42

P-values of all the AVs is 0.00. Therefore, all the coefficients are considered for the

prediction. So, to make the prediction using Equation 4.27, 29.60 vulnerabilities would

appear that exploit Local AV, 9.80 Adjacent Network AV, and 4.40 Network AV (see

Mean values provided in Table 4.14). So, the prediction result shows that out of those

41.85 vulnerabilities, at least 27.47 vulnerabilities will be of Medium Impact rating

during 2018. This result is a fair prediction as it is close to the per year mean value of

Medium Impact reported vulnerabilities of 24.40.
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Ȳ2 = a + b1(X1) + b2(X2) + b3(X3)

= −0.75 + 0.61(29.60) + 0.85(9.80) + 0.42(4.40)

= 27.47

(4.27)

4.5.3 Prediction of Low Impact Unknown Vulnerabilities

Table 4.19 provides theX1,X2, andX3 as independent variables and Y3 (Low Impact) as

dependent variable. Ȳ3 is the predicted value of Y3. Table 4.20 provides the correlation

coefficients.

Table 4.19: Data Variables to Predict Low Impact Vulnerabilities

X1 X2 X3 Y3

Year Quarter Local Adjacent
Network

Network Low Impact
Vulnerabilities

2012 1 0 0 0 0
2 1 0 0 0
3 0 0 0 0
4 33 1 0 10

2013 1 4 3 0 1
2 7 0 0 3
3 6 7 0 1
4 9 7 0 4

2014 1 3 6 0 1
2 6 14 0 5
3 2 2 0 1
4 6 4 2 2

2015 1 8 0 1 4
2 7 2 3 2
3 4 0 1 1
4 14 0 1 4

2016 1 1 4 0 2
2 15 0 1 7
3 6 0 0 1
4 1 0 0 1

2017 1 17 0 0 5
2 5 0 0 1

continued . . .
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Data Variables to Predict Low Impact Vulnerabilities . . . continued
X1 X2 X3 Y3

3 10 0 12 1
4 17 0 1 0

Table 4.20: Correlation Coefficients to Predict Low Impact Vulnerabilities

Local Adjacent
Network

Network Low
Impact

Local AV 1
Adj Network AV -0.13 1
Network AV 0.10 -0.16 1
Medium Impact 0.78 0.13 -0.10 1

R value is calculated as 0.83 using the correlation coefficients and is close to 1.00,

that shows the independent and dependent variables have a solid relationship. So, to

proceed with the prediction, regression coefficients are calculated.

• Y Intercept (a) = 0.07

• Local AV (b1) = 0.28

• Adjacent Network AV (b2) = 0.16

• Network AV (b3) = -0.15

P-value of the Local AV is 0.00, Adjacent Network AV is 0.09, and Network AV

is 0.24. The P-value of Network AV is more than 0.15; it is not considered for the

prediction. So, to make the prediction using Equation 4.28, 29.60 vulnerabilities would

appear that exploit Local AV and 9.80 Adjacent Network AV (see Mean values provided

in Table 4.14). So, the prediction result shows that out of those 39.40 vulnerabilities,

at least 9.91 vulnerabilities will be of Low Impact rating during 2018. This result is

a sound prediction as it is close to the per year mean value of Low Impact reported

vulnerabilities of 9.40.
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Ȳ3 = a + b1(X1) + b2(X2)

= 0.07 + 0.28(29.60) + 0.16(9.80)

= 9.91

(4.28)

It is imperative to predict unknown vulnerabilities with regard to the impact levels.

High, Medium, and Low impact unknown vulnerabilities are predicted for 2018. Pre-

diction results show that out of 41 unknown vulnerabilities predicted, at least 10.43

unknown vulnerabilities will be of High impact. This result is an accurate prediction as

it is very close to the average 10 High impact vulnerabilities reported each year in the

last five years. Similarly, 27.47 Medium and 9.91 Low impact unknown vulnerabilities

are predicted. Both these predictions are also accurate as results are close to the average

24.40 Medium, and 9.40 Low impact vulnerabilities reported each year in the last five

years. Table 4.21 provides a summary of prediction results.

Table 4.21: Summary of Xen Vulnerability Prediction

Vulnerability
Impact Level

Average Impact
Levels from
2013-2017

Prediction for 2018 Prediction
Error

High 10.00 10.43 -0.43
Medium 24.40 27.47 -3.07

Low 9.40 9.91 -0.51

4.6 Conclusion

In this chapter, unknown Xen vulnerabilities were predicted for 2018 using the Holt-

Winters method. The prediction model predicted 41.85 unknown vulnerabilities when a

lower value (0.10) is assigned to the α, β, and γ smoothing parameters. The prediction

result (41.85 unknown vulnerabilities) is very close to the average 43.80 reported

Xen vulnerabilities during the last five years (2013 to 2017). However, the model
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predicted inaccurate results when 0.20 and 0.30 values were assigned to these smoothing

parameters. The validity of the prediction model is determined using MAPE. A lower

MAPE value (95.53) is observed with 0.10 smoothing parameters. The accuracy of

the prediction model is also determined using MAD. The control chart shows that the

prediction tracking signal is well between the upper and lower control limits of the chart.

To extend the scope of the vulnerability prediction process, unknown vulnerabilities are

also predicted with regard to the impact levels using regression analysis. The prediction

model predicted accurate results which are very close to the average values of the High,

Medium, and Low impact reported vulnerabilities during the last five years.

The prediction shows that 41.85 unknown vulnerabilities may appear in 2018.

These unknown vulnerability exploitation scenarios can lead to compromise of the Xen

hypervisor based virtualised infrastructure. Therefore, it is desirable to identify the risk

these vulnerability exploitations can pose to Xen and determine the risk severity levels.

Chapter 5 next covers the risk assessment of Xen. ENISA’s risk framework, structured

analysis approach, and risk estimation matrix are used to determine the Xen risk and

their qualitative severity levels.
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1. Introduction

5.1 Introduction

In Chapter 4, Xen vulnerability prediction was performed. This chapter provides a risk

assessment of the Xen hypervisor. Through risk assessment, the Xen vulnerabilities

scenarios are developed and scored to determine the impact ratings. However, the

hypervisor related vulnerabilities and their impact ratings are adopted from ENISA

to realise a complete risk assessment process as it is not practicable to cover all the

Xen exploitation scenarios. Through a structured analysis approach using attack trees,

threats are identified and their likelihood levels are determined. Severity levels of risk

are then determined by combining the vulnerability impact ratings and threat likelihood

127



Chapter 5. Xen Risk Assessment 128

levels. Nine risk categories are listed, and their qualitative severity levels are determined

as High, Medium, and Low.

This chapter is organised as follows. Section 5.2 presents a qualitative risk analysis

process. Section 5.3 provides the conclusion of this chapter.

5.2 Xen Risk Assessment

This section provides a risk assessment process for the Xen hypervisor which is used

as a case in this research. An architecture of Xen and the details of it’s selection as

a case are covered in Section 1.5.1. A qualitative inductive risk assessment of Xen

is performed in this section (Section 1.5.3 provides the description about qualitative

vs quantitative, and inductive vs deductive risk assessment). To perform Xen risk

assessment, vulnerabilities, assets, and risk types are summarised in Table 5.1. Each

risk is correlated with the different types of vulnerabilities and related assets.

Table 5.1: Correlation of Xen Risk, Vulnerabilities, and Assets

Risk
No.

Risk Type Vulnerabilities Assets

R1 Loss of Business
Reputation Due
To Co-Tenant
Activities

Lack of resource isolation
(V1)
Hypervisor code vulnerab-
ilities (V2)

Company reputation (A1)
Personal sensitive data
(A2)
Personal data (A3)
Service delivery (A4)

R2 Isolation Failure Lack of resource isolation
(V1)
Hypervisor code vulnerab-
ilities (V2)
Possibility of internal
(cloud) network probing
(V3)
Possibility of co-residence
checks (V4)

Company reputation (A1)
Personal sensitive data
(A2)
Personal data (A3)
Service delivery (A4)
Customer trust (A5)

continued . . .
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Correlation of Xen Risk, Vulnerabilities, and Assets . . . continued
Risk
No.

Risk Type Vulnerabilities Assets Affected

R3 Malicious Insider AAA Vulnerabilities (V5)
Inadequate physical secur-
ity procedures (V6)

Company reputation (A1)
Personal sensitive data
(A2)
Personal data (A3)
Service delivery (A4)
Customer trust (A5)
Employee loyalty and
experience (A6)
Intellectual property (A7)

R4 Intercepting Data
In Transit

Possibility of internal
(cloud) network probing
(V3)
Possibility of co-residence
checks (V4)
AAA Vulnerabilities (V5)

Company reputation (A1)
Personal sensitive data
(A2)
Personal data (A3)
Customer trust (A5)
Intellectual property (A7)
Backup or archive data
(A8)

R5 Data Leakage Possibility of internal
(cloud) network probing
(V3)
Possibility of co-residence
checks (V4)
AAA Vulnerabilities (V5)

Company reputation (A1)
Personal sensitive data
(A2)
Personal data (A3)
Customer trust (A5)
Employee loyalty and
experience (A6)
Intellectual property (A7)
Credentials (A9)
Cloud service management
interface (A10)

R6 Undertaking Ma-
licious Probes Or
Scans

Possibility of internal
(cloud) network probing
(V3)
Possibility of co-residence
checks (V4)

Company reputation (A1)
Service delivery (A4)
Customer trust (A5)

R7 Compromise Hy-
pervisor

Lack of resource isolation
(V1)
Hypervisor code vulnerab-
ilities (V2)

Personal sensitive data
(A2)
Personal data (A3)
Service delivery (A4)

continued . . .
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Correlation of Xen Risk, Vulnerabilities, and Assets . . . continued
Risk
No.

Risk Type Vulnerabilities Assets Affected

R8 Privilege Escala-
tion

Hypervisor code vulnerab-
ilities (V2)
AAA Vulnerabilities (V5)

Personal sensitive data
(A2)
Personal data (A3)
Access control (A11)
User directory - data (A12)

R9 Management In-
terface Comprom-
ise

AAA Vulnerabilities (V5)
Remote access to manage-
ment interface (V7)

Company reputation (A1)
Personal sensitive data
(A2)
Personal data (A3)
Service delivery (A4)
Cloud service management
interface

5.2.1 Examples of Xen Vulnerability Exploitation Scenarios

This section provides the vulnerability exploitation scenarios. Three vulnerability

exploitation scenarios are considered from PU and NU TAs. The Xen vulnerabilities are

scored using CVSS to determine vulnerability impact ratings from 0 to 10. Vulnerability

impact rating is labelled as Low if the Base score is between 0 to 3.9, Medium if the

Base score is between 4.0 to 6.9, High if the Base score is between 7.0 to 8.9, and

critical if the Base score is between 9.0 to 10.0.

Base Scoring Metric Values

The CVSS uses different metrics and numerical values to determine the vulnerability

impact ratings. Table 5.2 provides the metrics, metrics values, and relevant numerical

values.
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Table 5.2: Metric and Numerical Values of Base Metrics

Metric Metric
Value

Numerical
Value

Attack Vector Network .85
Adjacent
Network

.62

Local .55
Attack Complexity Low .77

High .44
Required Privileges None .85

Low .62 (.68 if the
scope is changed)

High .27 (.50 if the
scope is changed)

User Interaction None .85
Required .62

CIA Impact High .56
Low .22
None 0

Example Scenario 1

Figure 5.1 provides the impact rating of a Physical vulnerability exploited by a PU with

physical access to the Xen host server. A PU can exploit a physical vulnerability by

misusing physical access, for example, shutting down the server by unplugging the

power, or network cable. A PU can also steal the customer’s’ data by copying it to

a removable drive and use it for financial benefits. Such an exploitation scenario is

categorised as:

• Attack vector is PHYSICAL

• Attack complexity is low

• Physical Access privileges are required by the attacker to exploit the vulnerability

• End user’s interaction is not required to realise the exploitation

• Scope would change (exploitation would affect other components)
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• Vulnerability exploitation would impact the confidentiality and availability secur-

ity objectives

6.8 is the base score calculated using the above scenario, and the vulnerability

impact rating is labelled as Medium.

6.8
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Base Impact Exploitability

Figure 5.1: Xen Vulnerability Exploited through Physical AV

Example Scenario 2

This section covers the impact rating of a Local vulnerability that can be exploited by

an NU. An NU can misuse PV or HVM guest VM user space. So, an NU having a PV

guest VM can exploit hypercalls to see another PV guest VMs’ requests made to Xen

for hardware access. Furthermore, an NU with access to HVM guest VM can exploit

a vulnerability that exists in Instruction emulation (MMIO, shadow page tables, and

so forth), and emulated platform devices (APIC, HPET, PIT, and so forth). Such an

exploitation scenario is categorised as:

• Attack vector is LOCAL

• Attack complexity is low

• Low access privileges are required by the attacker to exploit the vulnerability

• End user’s interaction is not required to realise the exploitation

• Scope would not change (exploitation would not affect other components)
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• Vulnerability exploitation would impact the confidentiality and integrity security

objectives

Figure 5.2 provides the impact rating of a Local vulnerability exploited by a mali-

cious NU. 7.1 is the base score calculated, and the vulnerability impact rating is labelled

as High.
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Figure 5.2: Xen Vulnerability Exploited through Local AV

Example Scenario 3

An NU can attack network path by exploiting a Network vulnerability that may exist

in hardware driver, bridging and filtering, and netback (netback in case of PV mode).

The exploitation allows the attacker to take control of Dom0 kernel, which could lead

the attacker to take control of the Xen eventually. An NU with malicious intent can

also attack Pygrub that resides within tool-stack of Dom0 by compromising a PV guest

VM’s disk. This attack is possible due to vulnerabilities that may exist in file system

parser, menu parser, domain builder. Furthermore, an NU using HVM guest VM can

attack Qemu Device Model by exploiting a vulnerability that may exist in NIC emulator

parsing packets, and emulation of virtual devices. Such an exploitation scenario can be

categorised as:

• Attack vector is a NETWORK
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• Attack complexity is high

• Low access privileges are required by the attacker to exploit the vulnerability

• End user’s interaction is not required to realise the exploitation

• Scope would change (exploitation would affect other components)

• Vulnerability exploitation would impact the confidentiality, integrity and availab-

ility security objectives

Figure 5.3 provides the impact rating of this type of exploitation scenario. 8.5 is the

base score calculated, and the vulnerability impact rating is labelled as High.
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Figure 5.3: Xen Vulnerability Exploited through Network AV

5.2.2 Xen Vulnerability Impact Ratings

This section covers the Xen vulnerability impact ratings. The impact ratings of Xen

related vulnerabilities are adopted from ENISA. The vulnerabilities are not scored to

determine the impact ratings because it is difficult to determine the impact ratings of all

hypervisor vulnerability scenarios due to its complexity and the involvement of more

than one stakeholders. Therefore, to realise a complete risk assessment process for Xen,

vulnerability impact ratings are adopted from ENISA.

The ENISA determined the impact ratings in terms of loss of confidentiality, in-

tegrity, and availability of security objectives. Impact ratings are rated as Very High,
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High, Medium, Low, and Very Low. Usually, all vulnerabilities have corresponding

threats that may exploit these vulnerabilities (Albakri et al., 2014). Otherwise, these

vulnerabilities pose no risk. In CC, it is essential to analyse the vulnerabilities of

hypervisors and determine the overall risk to their virtual assets. According to Catteddu

and Hogben (2009), vulnerability impact ratings are determined by consulting expert

groups. In this Section, Xen vulnerabilities, related assets that can be affected, and risk

types are mapped. Table 5.3 provides the mapping of vulnerabilities, related assets, and

risk types.

Table 5.3: Xen Vulnerability Impact Ratings

Risk
No.

Risk Type Vuls Impact
Rating

Reasoning

R1 Loss of Business
Reputation Due
To Co-Tenant
Activities

V1
V2

High The impact of V1 and V2 ex-
ploitation can affect IaaS de-
livery and data loss. It can also
affect the reputation of cloud
customers’ businesses.

R2 Isolation Failure V1
V2
V3
V4

Very
High

The impact of these vulner-
abilities can result in loss of
sensitive data that belongs to
customers. Also, can cause
reputation and service damage
between customers and CSPs.

R3 Malicious Insider V5
V6

Very
High

This type of exploitation scen-
ario would impact the confid-
entiality, and availability se-
curity objectives. It could also
impact the Intellectual Prop-
erty (IP) and damage the repu-
tation of the customers that
would result in a business loss.

continued . . .
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Xen Vulnerability Impact Ratings . . . continued
Risk
No.

Risk Type Vuls Impact
Rating

Reasoning

R4 Intercepting Data
In Transit

V3
V4
V5

High The impact of these vulnerab-
ilities results in loss of con-
fidentiality of data in transit.
This could also result in loss
of IP and customers’ trust on
CSP because CSPs usually
do not offer non-disclosure
clauses, or these clauses are
not sufficient to ensure the
confidentiality of data.

R5 Data Leakage V3
V4
V5

High This impact results in loss
of confidentiality of data that
travels between the CSP and
customers. The exploitation
impact is high as there are
many possible threat sources
to exploit these vulnerabilit-
ies such as spoofing, sniffing,
man-in-the-middle, side chan-
nel, and replay attacks.

R6 Undertaking Ma-
licious Probes Or
Scans

V3
V4

Medium The impact of these exploita-
tion scenarios results in loss
of confidentiality, availability,
and integrity security object-
ives of data.

R7 Compromise Hy-
pervisor

V1
V2

Very
High

These vulnerabilities leverage
attacker to compromise hyper-
visor and result in very high
impact. Successful exploita-
tion can lead to the destruc-
tion of all the assets managed
by the vulnerable hypervisor.
The impact could be a severe
loss of data and delivery of ser-
vices.

continued . . .



Chapter 5. Xen Risk Assessment 137

Xen Vulnerability Impact Ratings . . . continued
Risk
No.

Risk Type Vuls Impact
Rating

Reasoning

R8 Privilege Escala-
tion

V2
V5

High These vulnerabilities allow an
attacker to gain high priv-
ileges. Later, the attacker can
use these privileges to com-
promise the data and assets.
The impact could be a loss of
credentials and sensitive data.

R9 Management In-
terface Comprom-
ise

V5
V7

Very
High

The impact could be very high
when an attacker can get ac-
cess to a large number of
cloud resources by comprom-
ising the hypervisor manage-
ment interface.

V1 = Lack of resource isolation, V2 = Hypervisor code vulnerabilities
V3 = Possibility of internal network probing, V4 = Possibility of co-residence checks
V5 = AAA Vulnerabilities, V6 = Inadequate physical security procedures
V7 = Remote access to management interface

5.2.3 Threat Identification and Likelihood Assessment

The next step for Xen risk assessment is to identify threats and determine their likelihood

levels. PU and NU TAs are considered for threat likelihood assessment of Xen. A PU is

considered as an employee of a CSP, and an NU is a customer who owns a VM (See

Appendix A, Section 3.4.4 for a description of these TAs). The potential attacker’s goal

is identified through threat likelihood assessment. An attacker manipulates the Xen

hypervisor and impacts the CIA security objectives of virtual assets.

Capability and motivation properties of PU and NU are assigned a value from 1 to 5

(CESG, 2009). These values are then combined using Table 5.4 to calculate initial threat

levels (Negligible considered as level 1, Low as level 2, Moderate as level 3, Substantial

as level 4, and Severe as level 5). These threat levels are assigned to the source nodes

of the Xen attack tree. Capability and motivation properties are defined on the basis

of significant professional judgment as there is no firm rule to define them. However,
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assuming the worst-case scenario to define capability and motivation properties can

overestimate threat levels. Therefore, judgements are optimistic. Table 5.4 provides the

capability and motivation properties and their qualitative values.

Table 5.4: Threat Likelihood Matrix

Capability Level
Motivation Very

Little
Little Limited Significant Formidable

Indifferent Negligible Negligible Low Low Moderate
Curious Negligible Negligible Low Moderate Substantial
Interested Negligible Low Moderate Substantial Severe
Committed Low Low Moderate Severe Severe
Focused Low Moderate Substantial Severe Severe

Figure 5.4 provides a Xen attack tree that consists of a set of attack trees combined

to build a cyclic attack tree.

A 1 Manipulate Xen Hypervisor

A 1.1 Physical 
AV A 1.2 Local AV A 1.3 Network 

AV

A 1.2.1 Manipulate
 PV Guest

A 1.2.2 Manipulate 
HVM Guest

A 1.2.1.1    
Exploit 

Vulnerability

A 1.2.1.2 
Manipulate 
PV Hypercalls

A 1.2.2.1 
Manipulate 
Instruction 
Emulation

A 1.2.2.2 
Manipulate 
Emulated  
Devices

A 1.1.1 Exploit 
Vulnerability

A 1.1.2 
Misuse Physical 

Access

A 1.3.1 
Manipulate 
Network Path

A 1.3.2 
Manipulate 
PyGrub

A 1.3.3 
Manipulate 
Qemu Device 

Model

      = Source Nodes

      = Child/Root Nodes

Figure 5.4: Xen Attack Tree
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Threat Levels to A 1.1 Attack Step

In this section, threat likelihood levels are assigned to source nodes A 1.1.1 and A 1.1.2.

Figure 5.5 provides tree branch connected to the A 1.1 child node.

A 1 Manipulate Xen Hypervisor
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AV A 1.2 Local AV A 1.3 Network 
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A 1.2.2.2 
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A 1.1.1 Exploit 
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A 1.1.2 
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Physical 
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A 1.3.1 
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Network Path

A 1.3.2 
Manipulate 
PyGrub

A 1.3.3 
Manipulate 
Qemu Device 

Model

      = Source Nodes

      = Child/Root Nodes

Figure 5.5: Threat Levels to A 1.1

A 1.1.1 Exploit Physical Vulnerability Threat level assignment starts with the source

nodes connected to A 1.1 (Physical Attack). So, the threat levels are assigned to

A 1.1.1 and A 1.1.2 source nodes. For the attack step A 1.1.1 (Exploit Physical

Vulnerability) minimum technical knowledge is required to exploit a physical

vulnerability through access by unplugging the power or network cable. Therefore,

both the TAs are assumed capable enough to exploit the physical vulnerability.

However, the motivation value of NU is less because NUs normally do not have

physical access to CSP’s location. Table 5.5 provides the threat levels of A 1.1.1

attack step.

Table 5.5: Exploit Physical Xen Vulnerability

A 1.1.1 Capability Motivation Likelihood

PU 4 2 3

NU 4 2 3
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A 1.1.2 Misuse Physical Access Threat levels are assigned to the second source node

of A 1.1 attack step that is, A 1.1.2 (Physical Access). Physical security of cloud

infrastructure is the sole responsibility of the CSP. So, usually the Xen host server

is provided with adequate physical access protection, such as a locked data centre,

video surveillance, and a scanning system. However, the cloud administrator (PU)

usually has physical access to manage Xen. If the administrator is influenced

by a malicious party to exploit the server, it can lead to physical damage or data

theft by using a removable disk drive. The administrator is the only TA who is

physically present on the premises where the host server is installed. Therefore,

both the capability and motivation (if influenced) values are considered as high

for PU. On the other hand, an NU with malicious intent is motivated to exploit

a physical vulnerability to steal the data if he gets a chance. However, in most

of the cases, NUs do not even know the location of the CSP data centre and thus

cannot access it. Table 5.6 provides threat levels assigned to the A 1.1.2 attack

step.

Table 5.6: Misuse Physical Xen Access

A 1.1.2 Capability Motivation Likelihood

PU 4 3 4

NU 1 2 1

Threat levels of this tree branch are not propagated to A 1.1 child nodes as shown in

Figure 5.5.

A 1.1 Physical Attack Threat level from the source nodes A 1.1.1 and A 1.1.2 are

propagated to the A 1.1 child node. As shown in Figure 5.5, this tree branch

does not contain a loop. Thus, the threat propagation is very simple. Both the

source nodes A 1.1.1 and A 1.1.2 connected with A 1.1 by a logical AND operator.
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Therefore, the minimal threat level of these two source nodes is propagated.

Table 5.7 provides the threat levels propagated to A 1.1 attack step.

Table 5.7: Threat Likelihood Level at Physical AV

Type:AND Likelihood for

A 1.1.1

Likelihood for

A 1.1.2

Likelihood for

A 1.1

PU 3 4 3

NU 3 1 1

Threat Levels to A 1.2 Attack Step

In this section, threat likelihood levels are assigned to source nodes A 1.2.1.1, A 1.2.1.1,

A 1.2.2.1, and A 1.2.2.2. Figure 5.6 provides the tree branch connected to A 1.2 attack

step.
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A 1.2.2.2 
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Devices

A 1.1.1 Exploit 
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A 1.3.2 
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PyGrub

A 1.3.3 
Manipulate 
Qemu Device 

Model

      = Source Nodes

      = Child/Root Nodes Figure 5.6: Threat Levels to A 1.2
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A 1.2.1.1 Exploit Vulnerability An NU is considered as an authorised user of Xen

based PV guest VM. So, an NU user with malicious intent can attack hypercall

functionality by exploiting a vulnerability, for example, Xen’s mishandling of

page tables and sub-operations in the FLASK (security module). Therefore, an

NU is more capable when compared to a PU seeking to exploit a vulnerability by

misusing privileged VM space. Table 5.8 provides threat levels assigned to the

A 1.2.1.1 source node of the attack step A 1.2.1.

Table 5.8: Exploit Local Vulnerability

A 1.2.1.1 Capability Motivation Likelihood

PU 2 2 1

NU 3 2 2

A 1.2.1.2 Manipulate PV Hypercalls An NU, if motivated by an internal or external

malicious party, poses a serious threat to Xen. An NU can misuse privileged

PV guest user space to exploit a vulnerability that may exist in a Xen function

that handles PV hypercalls. The successful exploitation allows an NU to see

another PV guest VMs’ requests made to Xen for hardware access. Table 5.9

provides threat levels assigned to the second A 1.2.1.2 source node of the attack

step A 1.2.1.

Table 5.9: Manipulate PV Hypercalls

A 1.2.1.2 Capability Motivation Likelihood

PU 1 2 1

NU 3 5 4

A 1.2.2.1 Manipulate Instruction Emulation The next attack step A 1.2.2, has two
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source nodes: A 1.2.2.1 and A 1.2.2.2. Here, threat levels are assigned to A 1.2.2.1.

A motivated NU with access to the HVM guest VM can exploit a vulnerability

that may exist in Instruction emulation (MMIO, shadow page tables, and so forth)

to cause a DoS (host crash) or obtain sensitive information. Table 5.10 provides

threat levels assigned to the A 1.2.2.1 source node of A 1.2.2 attack step.

Table 5.10: Manipulate Instruction Emulation

A 1.2.2.1 Capability Motivation Likelihood

PU 1 3 1

NU 3 4 3

A 1.2.2.2 Manipulate Emulated Platform Devices The second source node of A 1.2.2

attack step is assigned with the threat levels. A motivated NU with access to HVM

guest VM can exploit a vulnerability that exists in emulated platform devices

(APIC, HPET, PIT, and so forth) to cause a DoS (host crash) or gain high-level

privileges. Table 5.11 provides threat levels for the A 1.2.2.2 source node.

Table 5.11: Manipulate Emulated Platform Devices

A 1.2.2.2 Capability Motivation Likelihood

PU 1 3 1

NU 3 4 3

Threat levels are now propagated to A 1.2.1, A 1.2.2. Threat levels are also propag-

ated to an A 1.2 child node of this tree branch as shown in Figure 5.6.

A 1.2.1 Manipulate Host Server Hardware As shown in Figure 5.6, the child node

A 1.2.1 has two source nodes, A 1.2.1.1 and A 1.2.1.2, which are connected by a

logical AND operator. Therefore, the attacker must complete both A 1.2.1.1 and
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A 1.2.1.2 source nodes to realise this attack step. So, the minimal threat level

from these two source nodes is propagated to A 1.2.1. Table 5.12 provides the

threat levels to A 1.2.1 attack step.

Table 5.12: Manipulate Host Server Hardware

Type:AND Likelihood for

A 1.2.1.1

Likelihood for

A 1.2.1.2

Likelihood for

A 1.2.1

PU 1 1 1

NU 2 4 2

A 1.2.2 Manipulate HVM Guest Threat levels are now propagated to child node

A 1.2.2. Both the source nodes A 1.2.2.1 and A 1.2.2.2 are connected to the

A 1.2.2 child node with a logical OR operator. Therefore, the maximal level of

threat from these two source nodes is propagated. Table 5.13 provides the threat

levels to A 1.2.2 attack step.

Table 5.13: Manipulate HVM Guest

Type:OR Likelihood for

A 1.2.2.1

Likelihood for

A 1.2.2.2

Likelihood for

A 1.2.2

PU 1 1 1

NU 3 3 3

A 1.2 Local Attack Child nodes A 1.2.1 and A 1.2.2 are connected to A 1.2 by a

logical OR. The attacker can compromise either A 1.2.1 or A 1.2.2 to achieve the

target. Therefore, the maximal threat level from these source nodes is propagated

to A 1.2. Table 5.14 provides the threat levels for A 1.2 attack step.
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Table 5.14: Threat Likelihood Level at Local AV

Type:OR Likelihood for

A 1.2.1

Likelihood for

A 1.2.2

Likelihood for

A 1.2

PU 1 1 1

NU 2 3 3

Threat Levels to A 1.3 Attack Step

In this section, threat likelihood levels are assigned to source nodes A 1.3.1, A 1.3.2,

and A 1.3.3. Figure 5.7 provides a tree branch connected to A 1.3 attack step.
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Figure 5.7: Threat Levels to A 1.3

A 1.3.1 Manipulate Network Path Source node A 1.3.1 which is connected to A 1.3

attack step is considered. An NU with malicious intent could attack a network

stack and exploit a vulnerability that may exist in the hardware driver, bridging

and filtering, and netback (netback in case of PV mode) to get control of a guest

VM’s NIC. The successful exploitation would allow NU taking control of Dom0
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kernel. The exploitation could eventually lead an NU to take control of Xen.

Table 5.15 provides threat levels to the A 1.3.1 source node.

Table 5.15: Manipulate Network Path

A 1.3.1 Capability Motivation Likelihood

PU 1 2 1

NU 4 5 5

A 1.3.2 Manipulate PyGrub Threat levels are assigned to source node A 1.3.2. An

NU with malicious intent can attack Pygrub that resides within the toolstack

of Dom0 by compromising a PV guest VM’s disk due to vulnerabilities that

may exist in the file system parser, menu parser, and domain builder. Table 5.16

provides threat levels to 1.3.2 source node of the attack step A 1.3.

Table 5.16: Manipulate PyGrub

A 1.3.2 Capability Motivation Likelihood

PU 1 2 1

NU 3 4 3

A 1.3.3 Manipulate Qemu Device Model An NU using HVM guest VM can attack

Qemu Device Model by exploiting a vulnerability that may exist in a NIC emulator

that is parsing packets and emulating virtual devices. The exploitation would

allow the attacker to get access to Dom0 privileged user space. The exploitation

could result in the compromise of Xen. Table 5.17 provides threat levels to 1.3.3

source node.
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Table 5.17: Manipulate Qemu Device Model

A 1.3.3 Capability Motivation Likelihood

PU 1 2 1

NU 3 4 3

Threat levels are now propagated to the A 1.3 child node of this tree branch,

Figure 5.7.

A 1.3 Network Attack The source nodes, A 1.3.1, A 1.3.2, and A 1.3.3 are connected

to A 1.3 child node by a logical OR. The maximal level of threat from child nodes

is propagated to A 1.3. Table 5.18 provides the threat levels to A 1.3 attack step.

Table 5.18: Threat Likelihood Level at Network AV

Type:OR Likelihood

for A 1.3.1

Likelihood

for A 1.3.2

Likelihood

for A 1.3.3

Likelihood

for A 1.3

PU 1 1 1 1

NU 5 3 3 5

Propagating Threat Levels to A 1 Root Node

Threat levels from Physical, Local, and Network child nodes are now propagated to A 1

(attacker’ main goal) as shown in Figure 5.8.
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Figure 5.8: Threat Levels to A 1

A 1 Manipulate Xen Hypervisor Finally, the threat levels are propagated to the root

node A 1. All three child nodes A 1.1, A 1.2, and A 1.3 are connected to the root

node by a logical OR. Therefore, the maximal level of threat from these child

nodes is propagated. Table 5.19 provides the threat levels to A 1 attack step by

considering the threat levels provided in Table 5.7, Table 5.14, and Table 5.18.

Table 5.19: Threat Likelihood Level to Xen

Type:OR Likelihood

for A 1.1

(Physical AV)

Likelihood

for A 1.2

(Local AV)

Likelihood

for A 1.3

(Network AV)

Likelihood

for A 1

(Overall)

PU 3 1 1 3

NU 1 3 5 5

Threat Likelihood Levels from PU and NU

Table 5.19 provides the overall threat likelihood levels to Xen from both PU and NU.

A Moderate (3) threat likelihood level is determined from a PU. On the other hand, a

Severe (5) threat likelihood level is determined from an NU. Figure 5.10 shows that an

NU is most likely going to realise a network attack by exploiting a vulnerability that

exists in the network stack of Dom0. The threat likelihood levels are coloured red for

Severe, orange for Substantial, dark yellow for Moderate, yellow for Low, and green
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for Negligible.

Threat Likelihood Levels from PU Figure 5.9 presents a combined threat likelihood

level determined at A 1 root node a PU. The overall threat likelihood level to

Xen is Moderate. It also presents likelihood levels of threats exploiting Physical,

Local, and Network AVs determined at child nodes A 1.1, A 1.2, and A 1.3.

A Moderate threat likelihood level is determined at child node A 1.1. A PU

exploiting a Local AV results in Negligible threat likelihood level determined at

child node A 1.2. At child node A 1.3, also a Negligible threat likelihood level

determined if a PU exploits Network AV.
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Figure 5.9: Threat Likelihood Levels from PU

Threat Likelihood Levels from an NU Figure 5.10 presents a combined threat likeli-

hood level determined at A 1 root node from an NU. The overall threat likelihood

level is determined as Severe. Negligible, Moderate, and Severe threat like-

lihood levels are determined at child nodes A 1.1, A 1.2, and A 1.3 if an NU
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exploits a vulnerability through Physical, Local, and Network AVs respectively.
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Figure 5.10: Threat Likelihood Levels from NU

5.2.4 Determination of Risk Severity Levels

In this section, risk severity levels are determined using the ENISA’s risk estimation

matrix provided in Table 5.20. Nine different risks are listed to determine their severity

levels. AVs are identified from where these risk can be realised by the attacker. Cor-

responding vulnerability impact ratings and threat likelihood levels for each of the risk

are mapped through the matrix to determine the severity levels of each risk to Xen.

Qualitative severity levels are determined as High, Medium, and Low if the risk scale is

from 7-9, 4-6, and 1-3, respectively.
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Table 5.20: Risk Estimation Matrix

Vulnerability
Impact

Threat Likelihood

Negligible Low Moderate Substantial Severe
Very Low 1 2 3 4 5

Low 2 3 4 5 6
Medium 3 4 5 6 7

High 4 5 6 7 8
Very High 5 6 7 8 9

Risk Severity Levels from a PU

Table 5.21 provides the severity levels of risk to Xen from a PU. High risk severity

levels are determined for R3 (Malicious Insider) and R7 (Compromise Hypervisor). An

administrator of the Xen host server, if influenced by a malicious threat source can steal

data and information that is stored on VMs running on the installed hypervisor. This

would lead to the compromise of CIA security objectives. Therefore, customers must

ensure that CSPs follow fair hiring procedures. CSPs must perform proper background

and security checks for new hires, and staff profiles should not be public to prevent

targeted approaches. Conversely, R6 (Undertaking Malicious Probes or Scans) poses

a Low severity level from a PU. All another risk; R1, R2, R4, R5, R8, and R9 pose

Medium severity levels. These six risk types should be managed after addressing the

risk with High severity levels.

Table 5.21: Risk Severity Levels from PU

Risk Type Xen
Attack
Vector

Vul
Impact
Rating

Threat
Likelihood

Level

Level of
Risk

Loss of Business
Reputation Due to
Malicious Co-Tenant

Local High Negligible Medium

Isolation Failure Local Very High Negligible Medium
Malicious Insider Physical Very High Moderate High

continued . . .
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Risk Severity Levels from PU . . . continued
Risk Type Xen

Attack
Vector

Vul
Impact
Rating

Threat
Likelihood

Level

Level of
Risk

Intercepting Data in
Transit

Network High Negligible Medium

Data Leakage Local High Negligible Medium
Undertaking Ma-
licious Probes or
Scans

Network Medium Negligible Low

Compromise Hyper-
visor

Physical Very High Moderate High

Privilege Escalation Local High Negligible Medium
Management Inter-
face Compromise

Network Very High Negligible Medium

Risk Levels from an NU

Table 5.22 provides the severity levels of risk to Xen from an NU. Results show that an

NU with malicious intent poses a High risk severity levels for R2 (Isolation Failure),

R4 (Intercepting Data in Transit), R6 (Undertaking Malicious Probes or Scans), R7

(Compromise of Hypervisor), and R9 (Management Interface Compromise) by misusing

privileged guest VM space to exploit the host OS or Xen. The high severity level for R2

is determined when a malicious VM user exploits a local AV through access to shared

hardware resources such as cache memory and hard disk. R4, R6, R7, and R9 pose High

severity levels where a malicious user can exploit a network vulnerability to manipulate

virtual network shared between the VM and the hypervisor. Therefore, CSPs need

to ensure that the hypervisor is hardened and configured properly to mitigate R2. To

mitigate R4, R6, R7, and R9, CSPs must configure and implement adequate network

security controls. Conversely, R1, R3, R5, and R8 poses Medium severity levels from

an NU TA and can be managed when the risk with High severity are mitigated.
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Table 5.22: Risk Severity Levels from an NU

Risk Type Xen
Attack
Vector

Vul
Impact
Rating

Threat
Likelihood

Level

Level of
Risk

Loss of Business
Reputation Due to
Malicious Co-Tenant

Local High Moderate Medium

Isolation Failure Local Very High Moderate High
Malicious Insider Physical Very High Negligible Medium
Intercepting Data in
Transit

Network High Severe High

Data Leakage Local High Moderate Medium
Undertaking Ma-
licious Probes or
Scans

Network Medium Severe High

Compromise Hyper-
visor

Network Very High Severe High

Privilege Escalation Local High Moderate Medium
Management Inter-
face Compromise

Network Very High Severe High

5.3 Conclusion

In this chapter, risk assessment of the Xen hypervisor was performed. Vulnerability im-

pact ratings were adopted from ENISA’s risk framework. Threat likelihood assessment

was performed through a structured analysis approach using attack trees. Capability

and motivation properties of a PU and NU were used to determine initial threat levels

and assigned to all the source nodes of the Xen attack tree. Later, these threat levels

were propagated to determine threat likelihood levels for Physical, Local, Network AVs,

and Xen. Vulnerability impact ratings and threat likelihood levels were then combined

using ENISA’s risk estimation matrix to determine the severity levels of the risk to Xen.

Chapter 6 next covers the evaluation of the process by applying it to Apache and Squid

servers.
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1. Introduction

6.1 Introduction

Chapter 5 covered vulnerability prediction and risk assessment of the Xen hypervisor. In

this chapter, the process is evaluated by applying it to two other open source infrastruc-

ture level software packages. Apache HTTP and Squid Proxy servers are selected to

demonstrate the generalisability and applicability of the process to open source software

packages. Moreover, Apache and Squid are targeted because of their wide use as a web

cache and proxy servers respectively. Moreover, these software packages are selected

154
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because their reported vulnerability data is completely available through vulnerability

databases.

Apache has 92% of its copies run on Linux platforms. It is a reliable and efficient

web server that covers approximately 67% of the market (Space, 2017). It is in use

by some large companies such as Cisco, IBM, Salesforce, General Electric, Adobe,

VMware, Xerox, Hewlett-Packard, Siemens, eBay, and many more (Kinsta, 2018).

Organisations can customise Apache to meet their requirements by adding extensions

and modules. However, Apache is often the target of attacks such as DoS, Buffer

Overflow, Cross Site Scripting (XSS), Information Leakage, Input Validation, SQL

Injection, Session Hijacking, and Phishing. These attacks exploit Apache vulnerabilities

and present risk (Acunetix, 2017). A successful attack enables an attacker to gain

access to Apache and compromise the data. On the other hand, Squid is in use by

many organisations using GNU’s General Public License (GPL) of the Free Software

Foundation. Squid server is a popular HTTP proxy implementation to provide forward

and reverse proxy scenarios (Squid-cache, 2009). Many Internet Service Providers

(ISPs) are using Squid as a proxy server since 1990. Therefore, these software packages

are worth looking into for their security and also to evaluate the process.

To perfrom the vulnerability prediction and risk assessment of Apache and Squid

servers, the Holt-Winters method, Regression Analysis, CVSS, Structure Analysis, and

Risk Estimation Matrix methods are used. However, reported vulnerability data from

2008 to 2017 is used for prediction instead of data from 2013 to 2017 (which is the

case in Xen). Apache and Squid reported vulnerability data from 2013 to 2017 did not

result in accurate prediction. Figure 6.1 provides the Apache and Squid vulnerability

prediction process. The only difference is the size of the reported vulnerability data

(marked yellow) as compared to the Xen vulnerability prediction process provided in

Section 3.3.2 and Figure 3.3.
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Figure 6.1: Apache and Squid Vulnerability Prediction

For Apache and Squid risk assessment, vulnerability impact ratings are determined

using CVSS. Vulnerability impact ratings are not adopted like Xen. However, the

same research methods are used to determine threat likelihood and risk severity levels.

Figure 6.2 provides the Apache and Squid risk assessment process.
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Figure 6.2: Apache and Squid Risk Assessment

This chapter is organised as follows. Sections 6.2 and 6.3 provide the vulnerability

prediction and risk assessment process of the Apache HTTP server. The vulnerability

prediction process of the Squid proxy server is provided in Section 6.4 followed by the

risk assessment process in Section 6.5. The conclusion of this chapter is provided in

Section 6.6.
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6.2 Vulnerability Prediction of Apache HTTP Server

The process is applied to Apache to perform the vulnerability prediction. The main

purpose of the vulnerability prediction of Apache HTTP server is to ensure the generalis-

ability of the process. The vulnerability prediction process would provide organisations

a platform to determine the effectiveness of the configuration and security of Apache

within the organisation’s computing environment. However, the security of Apache

HTTP Server depends on the security of the host OS. If the host is not secure and

have vulnerabilities, then the Apache running on the same OS is vulnerable. Therefore,

security of the host OS should be ensured first to realise the security of the Apache.

6.2.1 Prediction of Unknown Apache Vulnerabilities

In this section, unknown Apache vulnerabilities are predicted for 2018 using the Holt-

Winters method. Reported Apache vulnerability data from 2008 to 2017 is used for

prediction. According to the NVD search, 100 vulnerabilities were reported in Apache

from 2008 to 2017. Table 6.1 provides the reported Apache vulnerabilities from 2008

to 2017.

Table 6.1: Reported Apache Vulnerabilities

Time(t) Year Quarter Vulnerabilities
1 2008 1 8
2 2 2
3 3 2
4 4 0
5 2009 1 1
6 2 3
7 3 5
8 4 2
9 2010 1 6

10 2 3
11 3 2
12 4 0

continued . . .
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Reported Apache Vulnerabilities . . . continued
Time(t) Year Quarter Vulnerabilities

13 2011 1 1
14 2 4
15 3 3
16 4 6
17 2012 1 4
18 2 1
19 3 5
20 4 1
21 2013 1 2
22 2 3
23 3 4
24 4 1
25 2014 1 2
26 2 1
27 3 6
28 4 2
29 2015 1 1
30 2 0
31 3 4
32 4 0
33 2016 1 0
34 2 0
35 3 3
36 4 1
37 2017 1 0
38 2 4
39 3 7
40 4 0

Table 6.2 provides S̄t for all the time periods, from t1 to t40.

Table 6.2: Initial Seasonal Factor Values

Time(t) Year Quarter Dt Deseasonalised
Data

D̄t S̄t

1 2008 1 8 - 3.07 2.61
2 2 2 - 3.03 0.66
3 3 2 2.13 2.99 0.67
4 4 0 1.38 2.96 0.00
5 2009 1 1 1.88 2.92 0.34

continued . . .
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Initial Seasonal Factor Values . . . continued
Time(t) Year Quarter Dt Deseasonalised

Data
D̄t S̄t

6 2 3 2.50 2.89 1.04
7 3 5 3.38 2.85 1.75
8 4 2 4.00 2.81 0.71
9 2010 1 6 3.63 2.78 2.16

10 2 3 3.00 2.74 1.09
11 3 2 2.13 2.71 0.74
12 4 0 1.63 2.67 0.00
13 2011 1 1 1.88 2.63 0.38
14 2 4 2.75 2.60 1.54
15 3 3 3.88 2.56 1.17
16 4 6 3.88 2.53 2.37
17 2012 1 4 3.75 2.49 1.61
18 2 1 3.38 2.45 0.41
19 3 5 2.50 2.42 2.07
20 4 1 2.50 2.38 0.42
21 2013 1 2 2.63 2.35 0.85
22 2 3 2.50 2.31 1.30
23 3 4 2.50 2.27 1.76
24 4 1 2.25 2.24 0.45
25 2014 1 2 2.25 2.20 0.91
26 2 1 2.63 2.17 0.46
27 3 6 2.63 2.13 2.82
28 4 2 2.38 2.09 0.95
29 2015 1 1 2.00 2.06 0.49
30 2 0 1.50 2.02 0.00
31 3 4 1.13 1.99 2.01
32 4 0 1.00 1.95 0.00
33 2016 1 0 0.88 1.91 0.00
34 2 0 0.88 1.88 0.00
35 3 3 1.00 1.84 1.63
36 4 1 1.50 1.81 0.55
37 2017 1 0 2.50 1.77 0.00
38 2 4 2.88 1.73 2.31
39 3 7 - 1.70 4.12
40 4 0 - 1.66 0.00

After obtaining S̄t, Seasonal Factor for a given t is obtained by averaging S̄t values

that correspond to similar t periods. As p = 4, Time (t) = 40 and seasonal cycles (r)
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= 10, initial S1, S2, S3 and S4 are calculated in Equation 6.1. L0 and T0 are already

calculated as 3.10 and -0.04, respectively.

S̄i =
∑r=1

j=0 Sjp+i

r
(6.1)

S1 = 0.93

S2 = 0.88

S3 = 1.87

S4 = 0.55

Table 6.3: Initial St Values of Apache Data

Time(t)Year Quarter Dt Deseasona
lised Data

D̄t S̄t Initial St

Values
1 2008 1 8 - 3.07 2.61 0.93
2 2 2 - 3.03 0.66 0.88
3 3 2 2.13 2.99 0.67 1.87
4 4 0 1.38 2.96 0.00 0.55
5 2009 1 1 1.88 2.92 0.34 -
6 2 3 2.50 2.89 1.04 -
7 3 5 3.38 2.85 1.75 -
8 4 2 4.00 2.81 0.71 -
9 2010 1 6 3.63 2.78 2.16 -

10 2 3 3.00 2.74 1.09 -
11 3 2 2.13 2.71 0.74 -
12 4 0 1.63 2.67 0.00 -
13 2011 1 1 1.88 2.63 0.38 -
14 2 4 2.75 2.60 1.54 -
15 3 3 3.88 2.56 1.17 -
16 4 6 3.88 2.53 2.37 -
17 2012 1 4 3.75 2.49 1.61 -
18 2 1 3.38 2.45 0.41 -
19 3 5 2.50 2.42 2.07 -
20 4 1 2.50 2.38 0.42 -
21 2013 1 2 2.63 2.35 0.85 -
22 2 3 2.50 2.31 1.30 -
23 3 4 2.50 2.27 1.76 -

continued . . .
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Initial St Values of Apache Data . . . continued
Time(t)Year Quarter Dt Deseasona

lised Data
D̄t S̄t Initial St

Values
24 4 1 2.25 2.24 0.45 -
25 2014 1 2 2.25 2.20 0.91 -
26 2 1 2.63 2.17 0.46 -
27 3 6 2.63 2.13 2.82 -
28 4 2 2.38 2.09 0.95 -
29 2015 1 1 2.00 2.06 0.49 -
30 2 0 1.50 2.02 0.00 -
31 3 4 1.13 1.99 2.01 -
32 4 0 1.00 1.95 0.00 -
33 2016 1 0 0.88 1.91 0.00 -
34 2 0 0.88 1.88 0.00 -
35 3 3 1.00 1.84 1.63 -
36 4 1 1.50 1.81 0.55 -
37 2017 1 0 2.50 1.77 0.00 -
38 2 4 2.88 1.73 2.31 -
39 3 7 - 1.70 4.12 -
40 4 0 - 1.66 0.00 -

The Holt-Winters method is used to predict unknown Apache vulnerabilities that

may appear in 2018. The prediction for the first quarter of 2008 is calculated using

Equation 6.2.

F1 = (L0 + T0) × S1

= (3.10 + (−0.04)) × 0.93

= 2.87

(6.2)

Now that a value is predicted for the first quarter, Lt, Tt, and St are updated to

predict vulnerabilities for 2018. Three smoothing parameters α (Equation 6.3), β

(Equation 6.4), and γ (Equation 6.5) are used. α value 0.00 is used to calculate Lt

values. Tt values are calculated using β value 0.05. γ value 0.00 is used to calculate

remaining St (S5 to S40).
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L1 = α ×
D1

S1

+ (1 − α) × (L0 + T0)

= 0.00 × 8

0.93
+ (1 − 0.00) × (3.10 − 0.04)

= 3.07

(6.3)

T1 = β × (L1 −L0) + (1 − β) × T0

= 0.05 × (3.07 − 3.10) + (1 − 0.05) × (−0.04)

= −0.04

(6.4)

S5 = γ ×
D1

L1

+ (1 − γ) × (S1)

= 0.00 × 8

3.07
+ (1 − 0.00) × (0.93)

= 0.93

(6.5)

After calculating Lt, Tt, and St values for all 40 periods, the vulnerabilities are

predicted for 2018 (Table 6.4).

F41 = [L40 + (T40 × 1)] × S37

= [1.66 + ((−0.04) × 1)] × 0.93

= 1.52

(6.6)

F42 = [L40 + (T40 × 2)] × S38

= [1.66 + ((−0.04) × 2)] × 0.88

= 1.40

(6.7)

F43 = [L40 + (T40 × 3)] × S39

= [1.66 + ((−0.04) × 3)] × 1.87

= 2.91

(6.8)
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F44 = [L40 + (T40 × 4)] × S40

= [1.66 + ((−0.04) × 4)] × 0.55

= 0.83

(6.9)

Table 6.4: Prediction of Unknown Apache Vulnerabilities

Time(t) Dt S̄t St

Values
Lt

Values
Tt

Values
Prediction

0 - - 3.10 -0.04 - -
1 8 2.61 0.93 3.07 -0.04 2.87
2 2 0.66 0.88 3.03 -0.04 2.67
3 2 0.67 1.87 2.99 -0.04 5.61
4 0 0.00 0.55 2.96 -0.04 1.62
5 1 0.34 0.93 2.92 -0.04 2.73
6 3 1.04 0.88 2.89 -0.04 2.54
7 5 1.75 1.87 2.85 -0.04 5.34
8 2 0.71 0.55 2.81 -0.04 1.54
9 6 2.16 0.93 2.78 -0.04 2.60

10 3 1.09 0.88 2.74 -0.04 2.42
11 2 0.74 1.87 2.71 -0.04 5.07
12 0 0.00 0.55 2.67 -0.04 1.46
13 1 0.38 0.93 2.63 -0.04 2.46
14 4 1.54 0.88 2.60 -0.04 2.29
15 3 1.17 1.87 2.56 -0.04 4.80
16 6 2.37 0.55 2.53 -0.04 1.38
17 4 1.61 0.93 2.49 -0.04 2.33
18 1 0.41 0.88 2.45 -0.04 2.16
19 5 2.07 1.87 2.42 -0.04 4.53
20 1 0.42 0.55 2.38 -0.04 1.30
21 2 0.85 0.93 2.35 -0.04 2.19
22 3 1.30 0.88 2.31 -0.04 2.03
23 4 1.76 1.87 2.27 -0.04 4.26
24 1 0.45 0.55 2.24 -0.04 1.22
25 2 0.91 0.93 2.20 -0.04 2.06
26 1 0.46 0.88 2.17 -0.04 1.91
27 6 2.82 1.87 2.13 -0.04 3.99
28 2 0.95 0.55 2.09 -0.04 1.14
29 1 0.49 0.93 2.06 -0.04 1.92

continued . . .
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Prediction of Unknown Apache Vulnerabilities . . . continued
Time(t) Dt S̄t St

Values
Lt

Values
Tt

Values
Prediction

30 0 0.00 0.88 2.02 -0.04 1.78
31 4 2.01 1.87 1.99 -0.04 3.72
32 0 0.00 0.55 1.95 -0.04 1.06
33 0 0.00 0.93 1.91 -0.04 1.79
34 0 0.00 0.88 1.88 -0.04 1.65
35 3 1.63 1.87 1.84 -0.04 3.45
36 1 0.55 0.55 1.81 -0.04 0.99
37 0 0.00 0.93 1.77 -0.04 1.65
38 4 2.31 0.88 1.73 -0.04 1.53
39 7 4.12 1.87 1.70 -0.04 3.18
40 0 0.00 0.55 1.66 -0.04 0.91
41 Prediction - - - - 1.52
42 Prediction - - - - 1.40
43 Prediction - - - - 2.91
44 Prediction - - - - 0.83

Vulnerability Prediction Accuracy

Table 6.5 provides a summary of prediction error and TS calculated for all t periods.

Table 6.5: Prediction Error Tracking Signal of Apache

Time(t) Vuls Predictions Error
Et

Bias At = |Et| MAD TS

1 8 2.87 5.13 5.13 5.13 5.13 1.00
2 2 2.67 -0.67 4.46 5.80 2.90 1.54
3 2 5.61 -3.61 0.85 9.41 3.14 0.27
4 0 1.62 -1.62 -0.77 11.03 2.76 -0.28
5 1 2.73 -1.73 -2.50 12.76 2.55 -0.98
6 3 2.54 0.46 -2.04 13.22 2.20 -0.93
7 5 5.34 -0.34 -2.38 13.56 1.94 -1.23
8 2 1.54 0.46 -1.92 14.02 1.75 -1.10
9 6 2.6 3.40 1.48 17.42 1.94 0.76

10 3 2.42 0.58 2.06 18.00 1.80 1.14
11 2 5.07 -3.07 -1.01 21.07 1.92 -0.53
12 0 1.46 -1.46 -2.47 22.53 1.88 -1.32
13 1 2.46 -1.46 -3.93 23.99 1.85 -2.13

continued . . .
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Prediction Error Tracking Signal of Apache . . . continued
Time(t) Vuls Predictions Error

Et

Bias At = |Et| MAD TS

14 4 2.29 1.71 -2.22 25.70 1.84 -1.21
15 3 4.8 -1.80 -4.02 27.50 1.83 -2.19
16 6 1.38 4.62 0.60 32.12 2.01 0.30
17 4 2.33 1.67 2.27 33.79 1.99 1.14
18 1 2.16 -1.16 1.11 34.95 1.94 0.57
19 5 4.53 0.47 1.58 35.42 1.86 0.85
20 1 1.3 -0.30 1.28 35.72 1.79 0.72
21 2 2.19 -0.19 1.09 35.91 1.71 0.64
22 3 2.03 0.97 2.06 36.88 1.68 1.23
23 4 4.26 -0.26 1.80 37.14 1.61 1.11
24 1 1.22 -0.22 1.58 37.36 1.56 1.01
25 2 2.06 -0.06 1.52 37.42 1.50 1.02
26 1 1.91 -0.91 0.61 38.33 1.47 0.41
27 6 3.99 2.01 2.62 40.34 1.49 1.75
28 2 1.14 0.86 3.48 41.20 1.47 2.37
29 1 1.92 -0.92 2.56 42.12 1.45 1.76
30 0 1.78 -1.78 0.78 43.90 1.46 0.53
31 4 3.72 0.28 1.06 44.18 1.43 0.74
32 0 1.06 -1.06 0.00 45.24 1.41 0.00
33 0 1.79 -1.79 -1.79 47.03 1.43 -1.26
34 0 1.65 -1.65 -3.44 48.68 1.43 -2.40
35 3 3.45 -0.45 -3.89 49.13 1.40 -2.77
36 1 0.99 0.01 -3.88 49.14 1.37 -2.84
37 0 1.65 -1.65 -5.53 50.79 1.37 -4.03
38 4 1.53 2.47 -3.06 53.26 1.40 -2.18
39 7 3.18 3.82 0.76 57.08 1.46 0.52
40 0 0.91 -0.91 -0.15 57.99 1.45 -0.10

The prediction errors are distributed with Mean of 0.00. A three σ spread from

the Mean is equivalent to having a control chart with the UCL and LCL set at 5.88

and -5.88, respectively. Table 6.6 provides the Mean values, UCL, and LCL for all the

quarters.
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Table 6.6: Control Limits to Measure Accuracy of Apache Prediction

Time(t) Vuls Predictions Error
Et

MAD TS Mean UCL LCL

1 8 2.87 5.13 5.13 1.00 0.00 5.80 -5.80
2 2 2.67 -0.67 2.90 1.54 0.00 5.80 -5.80
3 2 5.61 -3.61 3.14 0.27 0.00 5.80 -5.80
4 0 1.62 -1.62 2.76 -0.28 0.00 5.80 -5.80
5 1 2.73 -1.73 2.55 -0.98 0.00 5.80 -5.80
6 3 2.54 0.46 2.20 -0.93 0.00 5.80 -5.80
7 5 5.34 -0.34 1.94 -1.23 0.00 5.80 -5.80
8 2 1.54 0.46 1.75 -1.10 0.00 5.80 -5.80
9 6 2.6 3.40 1.94 0.76 0.00 5.80 -5.80

10 3 2.42 0.58 1.80 1.14 0.00 5.80 -5.80
11 2 5.07 -3.07 1.92 -0.53 0.00 5.80 -5.80
12 0 1.46 -1.46 1.88 -1.32 0.00 5.80 -5.80
13 1 2.46 -1.46 1.85 -2.13 0.00 5.80 -5.80
14 4 2.29 1.71 1.84 -1.21 0.00 5.80 -5.80
15 3 4.8 -1.80 1.83 -2.19 0.00 5.80 -5.80
16 6 1.38 4.62 2.01 0.30 0.00 5.80 -5.80
17 4 2.33 1.67 1.99 1.14 0.00 5.80 -5.80
18 1 2.16 -1.16 1.94 0.57 0.00 5.80 -5.80
19 5 4.53 0.47 1.86 0.85 0.00 5.80 -5.80
20 1 1.3 -0.30 1.79 0.72 0.00 5.80 -5.80
21 2 2.19 -0.19 1.71 0.64 0.00 5.80 -5.80
22 3 2.03 0.97 1.68 1.23 0.00 5.80 -5.80
23 4 4.26 -0.26 1.61 1.11 0.00 5.80 -5.80
24 1 1.22 -0.22 1.56 1.01 0.00 5.80 -5.80
25 2 2.06 -0.06 1.50 1.02 0.00 5.80 -5.80
26 1 1.91 -0.91 1.47 0.41 0.00 5.80 -5.80
27 6 3.99 2.01 1.49 1.75 0.00 5.80 -5.80
28 2 1.14 0.86 1.47 2.37 0.00 5.80 -5.80
29 1 1.92 -0.92 1.45 1.76 0.00 5.80 -5.80
30 0 1.78 -1.78 1.46 0.53 0.00 5.80 -5.80
31 4 3.72 0.28 1.43 0.74 0.00 5.80 -5.80
32 0 1.06 -1.06 1.41 0.00 0.00 5.80 -5.80
33 0 1.79 -1.79 1.43 -1.26 0.00 5.80 -5.80
34 0 1.65 -1.65 1.43 -2.40 0.00 5.80 -5.80
35 3 3.45 -0.45 1.40 -2.77 0.00 5.80 -5.80
36 1 0.99 0.01 1.37 -2.84 0.00 5.80 -5.80
37 0 1.65 -1.65 1.37 -4.03 0.00 5.80 -5.80
38 4 1.53 2.47 1.40 -2.18 0.00 5.80 -5.80

continued . . .
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Control Limits to Measure Accuracy of Apache Prediction . . . continued
Time(t) Vuls Predictions Error

Et

MAD TS Mean UCL LCL

39 7 3.18 3.82 1.46 0.52 0.00 5.80 -5.80
40 0 0.91 -0.91 1.45 -0.10 0.00 5.80 -5.80

Figure 6.3 shows that TS is well within control limits. Therefore, the prediction

model does not exceed threshold and is accurate.
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Figure 6.3: Accuracy of Apache Vulnerability Prediction

6.2.2 Prediction of Unknown Apache Vulnerabilities with regard

to the Impact Levels

In this section, the impact ratings of unknown Apache vulnerabilities are predicted. The

reported Apache vulnerabilities using Local and Remote Network AVs are considered as

independent variables X1 and X2, respectively. High, Medium, and Low impact ratings

of reported vulnerabilities are used as dependent variables Y1, Y2, and Y3, respectively.

The predicted impact ratings of unknown vulnerabilities are calculated as Ȳ1, Ȳ2, and

Ȳ3 for High, Medium, and Low impact ratings, respectively.
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Prediction of High Impact Unknown Apache Vulnerabilities

Correlation coefficients are calculated using X1, X2, and Y1 (High Impact). The P-

values of both the independent variables are calculated. However, it was observed

that P-value of Local AV is higher than 0.15. Therefore, it was not considered for the

prediction. So, to make the prediction using Equation 6.10, 9 vulnerabilities would

appear exploiting the remote network during 2018. The prediction results show that

out of those 9 vulnerabilities, at least 1.48 vulnerabilities will be of High Impact. This

result is an excellent prediction as it is almost equal to the per year mean value of High

Impact reported vulnerabilities of 1.50.

Ȳ1 = a + b2(X2)

= 0.04 + 0.16(9)

= 1.48

(6.10)

Prediction of Medium Impact Unknown Vulnerabilities

Correlation coefficients X1, X2, and Y2 (Medium impact) are used to predict Medium

Impact unknown vulnerabilities. Both independent variables are considered for the

prediction as P-values are less than 0.15. So, to make the prediction using Equation 6.11

during 2018, 1 vulnerability would appear to exploit Local AV and 9 vulnerabilities

exploit Remote Network AV. The prediction shows that out of those 10 vulnerabilities,

at least 7.29 vulnerabilities will be of Medium Impact. This result is an excellent

prediction as it is very close to the per year Mean value of Medium impact reported

vulnerabilities, 7.40.
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Ȳ2 = a + b1(X1) + b2(X2)

= 0.10 + 0.71(1) + 0.72(9)

= 7.29

(6.11)

Prediction of Low Impact Unknown Vulnerabilities

Correlation coefficients X1, X2, and Y3 (Low Impact) are used to predict Low Impact

unknown vulnerabilities. Both independent variables are considered for the prediction

as P-values are less than 0.15. So, to make the prediction using Equation 6.12 during

2018, 1 vulnerability would appear to exploit Local AV and 9 vulnerabilities exploit

Remote Network AV. The prediction result shows that out of those 10 vulnerabilities, at

least 1.71 vulnerabilities will be of Low Impact. This result is an average prediction as

it is relatively close to the per year Mean value of Low Impact reported vulnerabilities,

0.90.

Ȳ3 = a + b1(X1) + b2(X2)

= −0.14 + 0.49(1) + 0.12(9)

= 1.71

(6.12)

6.3 Risk Assessment of Apache HTTP Server

This section covers risk assessment of Apache. Vulnerability impact ratings, threat

likelihood levels, and severity levels of risk to Apache are determined.

6.3.1 Determination of Apache Vulnerability Impact Ratings

An exploitation scenario for each Physical, Local, and Network vulnerability is presen-

ted. CVSS (Section 3.4.3) is used to score example scenarios to determine impact

ratings. Table 6.7 provides Apache risk, vulnerabilities, and the AVs.
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Table 6.7: Apache Risk, Vulnerabilities, and AVs

Risk
No.

Risk Type Apache Vulnerabilities Attack
Vector

R1 DoS Physical Security Vulnerability (V1) Physical
R2 Information

Leakage
Discovered Web Directories (V2)
HTTP Server Version Information (V3)

Local

R3 Unauthorised
Access

Bypass Access Restriction (V4)
Configuration Vulnerabilities (V5)
System Settings Vulnerabilities (V6)
Etag Header Information (V7)
Discovered HTTP Methods (V8)

Network

Example Scenario 1

Figure 6.4 provides the impact rating of a vulnerability exploited by a PU TA who has

physical access to the Apache web server. A PU with malicious intent can exploit a

physical vulnerability by misusing physical access, for example, shutdown the server

by unplugging the power or network cable. He can also steal the customers’ data

by copying it onto a removable drive and later use it for financial benefits. Such an

exploitation scenario is categorised as:

• Attack vector is PHYSICAL

• Attack complexity is low

• Physical access privileges are required by the attacker to exploit vulnerability

• End user’s interaction is not required to realise the exploitation

• Scope would change (exploitation would affect other components)

• Vulnerability exploitation would impact the confidentiality and availability secur-

ity objectives

6.8 is the base score calculated, and the vulnerability impact rating is labelled as

Medium.
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Figure 6.4: Apache Vulnerability Exploited through Physical AV

Example Scenario 2

The impact rating of a Local vulnerability exploitation scenario is determined here. An

NU TA can misuse local access provided to manage website directories on the Apache

web server. An NU can exploit a vulnerability, for example, a directory browsing

feature is disabled, and Apache is running with a default root user. The attacker can

use Malware or crafted attacks to gain more privileges and later use these privileges

to access the root, Bin, and Conf directories and manipulate the sensitive server data.

Such an exploitation scenario is categorised as:

• Attack vector is LOCAL

• Attack complexity is high

• Low access privileges are required by the attacker to exploit vulnerability

• End user’s interaction is not required to realise the exploitation

• Scope would not change (exploitation would not affect other components)

• Vulnerability exploitation would impact the confidentiality and integrity security

objectives

Figure 6.5 provides the impact rating of a local vulnerability exploited by a malicious

NU. 6.3 is the base score calculated, and the vulnerability impact rating is labelled as
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Medium.
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Figure 6.5: Apache Vulnerability Exploited through Local AV

Example Scenario 3

An SC with malicious intent can exploit a vulnerability that exists due to an insecure

host server configuration such as unnecessary open ports. The attacker can use these

type of flaws in the server configuration to gain unauthorised access to compromise

the host system on which Apache web server is running and later, use this access to

leverage further attacks. Such an exploitation scenario is categorised as:

• Attack vector is NETWORK

• Attack complexity is high

• High access privileges are required by the attacker to exploit vulnerability

• End user’s interaction is not required to realise the exploitation

• Scope would change (exploitation would affect other components)

• Vulnerability exploitation would impact the confidentiality, integrity and availab-

ility security objectives

Figure 6.6 provides the impact rating of a network vulnerability exploited by an SC

by accessing Apache services through the internet. 8.5 is the base score calculated, and

the vulnerability impact rating is labelled as High.
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Figure 6.6: Apache Vulnerability Exploited through Network AV

AVs are considered to assign impact ratings to a set of vulnerabilities that leverage

to same risk type. For example, R2 (Information Leakage) has two corresponding

vulnerabilities (V2 and V3) which can be exploited through Local AV. Therefore, a

Medium impact level (Figure 6.5) is assigned to this set of vulnerabilities belonging

to same risk. Table 6.8 provides a summary of Apache risk, vulnerability type, corres-

ponding AV, and the impact ratings. There can be more Apache risk and corresponding

vulnerabilities. However, only three risk type are considered here to limit the scope of

the assessment process.

Table 6.8: Summary of Apache Risk, Vulnerabilities, AVs, and Impact Ratings

Risk
No.

Risk Type Apache Vulnerabilities Attack
Vector

Impact
Rating

R1 DoS Physical Security Vulnerability (V1) Physical Medium
R2 Information

Leakage
Discovered Web Directories (V2)
HTTP Server Version Information (V3)

Local Medium

R3 Unauthorised
Access

Bypass Access Restriction (V4)
Configuration Vulnerabilities (V5)
System Settings Vulnerabilities (V6)
Etag Header Information (V7)
Discovered HTTP Methods (V8)

Network High
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6.3.2 Threat Likelihood Assessment of Apache HTTP Server

In this section, a threat likelihood assessment of Apache is performed. Figure 6.7

provides an Apache attack tree. In this case, a PU is a web administrator who manages

the Apache server. An NU is a customer who uses the Apache web server to host

website(s). An SC is an unregistered user who can access Apache web services through

the internet, as provided in Figure 6.7

A 1 Manipulate Apache HTTP Server

A 1.2 Local AV A 1.3 
Network AV

A 1.3.1 
Manipulate Host  

Server OS

A 1.3.2 Manipulate 
Apache Modules

A 1.1 Physical 
AV

A 1.1.1 Exploit 
Vulnerability

A 1.1.2 
Misuse  
Physical 
Access

A 1.2.1 Exploit 
Vulnerability

A 1.2.2 
Manipulate 
Directories 
Access 

A 1.3.1.1 
Exploit 

Vulnerability 

A 1.3.1.2 
Manipulate 
Host Server 

Conf

A 1.3.2.1 
Exploit 

Vulnerability

A 1.3.2.2 
Manipulate 
Apache Conf

      = Source Nodes

      = Child/Root Nodes

Figure 6.7: Apache Attack Tree

Assigning Threat Levels to Source Nodes of Apache Tree

In this section, threat levels are assigned to the source nodes of the Apache attack tree

from PU, NU, and SC TAs.

A 1.1.1 and A 1.1.2 The source nodes connected with A 1.1 (Physical Attack) are

considered. For attack step A 1.1.1 (Exploit Physical Vulnerability) minimum

technical knowledge is required to exploit a physical vulnerability using physical

access, for example, unplugging the power or network cable. Therefore, all three
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TAs are capable enough to exploit physical vulnerability.

To assign a threat level to A 1.1.2 (Physical Access) source node, it is assumed

that Apache Web server is provided with an acceptable physical access protection,

such as locked data center, video surveillance and scanning system. However, the

web administrator may have direct or physical access to manage the Apache web

server. So, if the web administrator is influenced by a malicious party to exploit

the server, then he can either damage the server physically or steal the data from

it by using a removable disk. The PU is the only TA who is physically present on

the premises where the host server is installed and has the privileges to access it.

Therefore, both the capability and motivation (if influenced) levels are considered

as high for the PU TA. Table 6.9 provides the threat levels assigned to A 1.1.1

and A 1.1.2.

Table 6.9: Threat Levels to A 1.1.1 and A 1.1.2

TA Capability Motivation TL to

A 1.1.1

Capability Motivation TA to

A 1.1.2

PU 4 2 3 5 4 5

NU 4 2 3 1 4 2

SC 4 2 3 1 3 1

A 1.2.1 and A 1.2.2 A NU is an authorised user of the Apache web server who has

access to manage his website directories provided on the Apache server. However,

a NU user with malicious intent can exploit a vulnerability such as a directory

browsing feature to gain more privileges. Therefore, an NU TA is more capable

compared to other two, to exploit any such vulnerability through attack step A

1.2.1.

An NU who is capable of exploiting a local vulnerability, if motivated by an
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internal or external malicious party, may pose a serious threat to the Apache

server. An NU can use different methods such as Malwares and crafted attacks

to exploit weak access controls to gain more privileges on the Apache server

and later, use these high level privileges to exploit a vulnerability to manipulate

data directories such as Root, Conf and Bin through attack step 1.2.2. Table 6.10

provides the threat levels assigned to A 1.2.1 and A 1.2.2 attack steps.

Table 6.10: Threat Levels to A 1.2.1 and A 1.2.2

TA Capability Motivation TL to

A 1.2.1

Capability Motivation TA to

A 1.2.2

PU 3 2 2 2 3 2

NU 4 3 4 4 5 5

SC 2 2 1 1 3 1

A 1.3.1.1 and A 1.3.1.2 In the A 1.3.1.1 attack step, an SC can exploit vulnerabilities

such as unnecessary open ports to compromise the host server. These vulner-

abilities may exist when server hardening techniques are not followed. An SC

is assumed to be an expert attacker who is capable enough to exploit Apache

by using advance hacking tools and techniques. In the A 1.3.1.2 attack step, a

motivated SC can exploit host vulnerabilities that exist due to an insecure host

server configuration. An SC attacker can use brute force attack to retrieve the

host server password due to weak security controls. Once the attacker gains the

server’s credentials, the host server can be compromised. Table 6.11 provides the

threat levels assigned to A 1.3.1.1 and A 1.3.1.2 attack steps.
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Table 6.11: Threat Levels to A 1.3.1.1 and A 1.3.1.2

TA Capability Motivation TL to

A 1.3.1.1

Capability Motivation TA to

A 1.3.1.2

PU 2 1 1 2 2 1

NU 3 2 2 3 3 3

SC 4 3 4 4 5 5

A 1.3.2.1 and A 1.3.2.2 In the A 1.3.2.1 attack step, an SC (remote attacker) can

exploit known vulnerabilities that exist in the optional Apache modules, for

example, if the administrator has installed optional Apache modules and did

not change the default settings. In the A 1.3.2.2 attack step, a malicious SC

can exploit vulnerabilities that exist due to an improper Apache configuration.

For example, the SSL Apache module is not enabled, and the CGI module is

not disabled. The Mod_Security (Web Application Firewall) module is also not

enabled by the web administrator against attacks such as SQL Injection, Session

Hijacking, Cross Site Scripting, and Malware. Table 6.12 provides the threat

levels assigned to A 1.3.2.1 and A 1.3.2.2 attack steps.

Table 6.12: Threat Levels to A 1.3.2.1 and A 1.3.2.2

TA Capability Motivation TL to

A 1.3.2.1

Capability Motivation TA to

A 1.3.2.2

PU 2 2 1 2 3 2

NU 2 2 1 3 3 3

SC 5 3 5 5 4 5
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Propagating Threat Levels Through to the Apache Attack Tree

In this section, threat levels are propagated to the child nodes. First of all, threat levels

are propagated to A 1.3.1 and A 1.3.2 attack steps.

A 1.3.1 Manipulate Apache Host Server OS As the source nodes to A 1.3.1 are con-

nected with a logical AND operator, the minimal threat levels of source nodes are

propagated to A 1.3.1. Table 6.13 provides the threat levels to A 1.3.1 attack step.

Table 6.13: Manipulate Apache Host Server OS

Type:AND TL for

A 1.3.1.1

TL for

A 1.3.1.2

TL for

A 1.3.1

PU 1 1 1

NU 2 3 2

IC 4 5 4

A 1.3.2 Manipulate Apache Modules Source nodes to A 1.3.2 are connected with a

logical AND operator. Therefore, the minimal levels of threat of source nodes are

propagated to A 1.3.2. Table 6.14 provides the threat levels to A 1.3.2 attack step.

Table 6.14: Manipulate Apache Modules

Type:AND Likelihood

for A 1.3.2.1

Likelihood

for A 1.3.2.2

Likelihood

for A 1.3.2

PU 1 2 1

NU 1 3 1

IC 5 5 5

Now, threat levels are propagated to child nodes A 1.1, A 1.2, and A 1.3 to determine

threat likelihood levels to AVs. Threat levels are also propagated to the A 1 root node to
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determine overall threat likelihood level to Apache.

A 1.1 Apache Physical Attack The source nodes are connected to A 1.1 with a logical

AND operator. Therefore, the minimal threat levels of the two source nodes are

propagated to A 1.1.

Table 6.15 provides the threat levels to the A 1.1 attack step.

Table 6.15: Threat Likelihood Level at Physical AV

Type:AND Likelihood

for A 1.1.1

Likelihood

for A 1.1.2

Likelihood

for A 1.1

PU 3 4 3

NU 3 2 2

SC 3 1 1

A 1.2 Apache Local Attack As the source nodes are connected to A 1.2 node with

a logical AND operator, the minimal threat levels of the two source nodes are

propagated to A 1.2.

Table 6.16 provides the threat levels to A 1.2.

Table 6.16: Threat Likelihood Level at Local AV

Type:AND Likelihood

for A 1.2.1

Likelihood

for A 1.2.2

Likelihood

for A 1.2

PU 2 2 2

NU 4 5 4

SC 1 1 1

A 1.3 Apache Remote Network Attack As the child nodes are connected to A 1.3
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with a logical OR, the maximal threat levels of the two source nodes are propag-

ated to A 1.3.

Table 6.17 provides the threat levels to the A 1.3 attack step.

Table 6.17: Threat Likelihood Level at Network AV

Type:OR Likelihood

for A 1.3.1

Likelihood

for A 1.3.2

Likelihood

for A 1.3

PU 1 1 1

NU 2 1 2

SC 4 5 5

A 1 Manipulate Apache HTTP Server All three child nodes are connected to root

node A 1 with a logical OR. Therefore, the maximal levels of threat of these child

nodes are propagated to A 1. Table 6.18 provides the threat levels to the A 1

attack step by propagating threat levels from Tables 6.15, 6.16, and 6.17.

Table 6.18: Threat Likelihood Levels to Apache

Type:OR Likelihood

for A 1.1

(Physical AV)

Likelihood

for A 1.2

(Local AV)

Likelihood

for A 1.3

(Network AV)

Likelihood

for A 1

(Overall)

PU 3 2 1 3

NU 2 4 2 4

SC 1 1 5 5

Table 6.19 provides qualitative threat likelihood levels from PU, NU, and SC.
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Table 6.19: Qualitative Threat Likelihood Levels to Apache

Risk
No.

Attack
Vector

TL from PU TL from NU TL from SC

R1 Physical Moderate Low Negligible
R2 Local Low Substantial Negligible
R3 Network Negligible Low Severe

Threat levels are assigned to the Apache attack tree to determine threat likelihood

levels from PU, NU, and SC. Figures 6.8, 6.9, and 6.10 provide the threat likelihood

levels to the Apache HTTP server from PU, NU, and SC, respectively. The threat

levels are critical-6 (dark red), severe-5 (red), substantial-4 (Orange), moderate-3 (dark

yellow), low-2 (yellow) and negligible-1 (green).

A 1 Manipulate Apache HTTP Server

A 1.2 Local AV A 1.3 
Network AV

A 1.3.1 
Manipulate Host  

Server OS
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Apache Modules

A 1.1 Physical 
AV

A 1.1.1 
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A 1.1.2 
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Physical 
Access
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Vulnerability
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Directories 
Access 
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Vulnerability 

A 1.3.1.2 
Manipulate 
Host Server 

Conf

A 1.3.2.1 
Exploit 

Vulnerability

A 1.3.2.2 
Manipulate 
Apache Conf

      = Source Nodes

      = Child/Root Nodes

Figure 6.8: Apache Attack Tree for PU
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A 1 Manipulate Apache HTTP Server
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Figure 6.9: Apache Attack Tree for NU
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Figure 6.10: Apache Attack Tree for SC

A PU is likely going to exploit a physical vulnerability and poses a Moderate

likelihood level. Low, and Negligible threat likelihood levels are determined when a PU
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is likely to exploit Local and Network AVs, respectively.

An NU poses a Substantial threat likelihood level to exploit a vulnerability through

Local AV. However, Low threat likelihood levels are observed to Physical and Network

AVs.

An SC poses a Severe threat likelihood level to exploit a vulnerability through

Network AV. However, Negligible threat likelihood levels are observed to Physical and

Local AVs.

6.3.3 Severity Levels of Risk to Apache

In this section, severity levels of risk to Apache are determined by combining vul-

nerability impact ratings and threat likelihood levels. Medium risk severity levels are

determined for R1, R2, and R3 from both PU and NU. An SC poses High risk severity

level for R3 by exploiting the Network AV. However, Low risk severity levels for R1

and R2 are observed. Table 6.20 provides the risk severity levels to Apache HTTP

server from PU, NU, and SC.

Conclusion

Apache is a software package with different architecture and functionality compared to

Xen. The generalisability and applicability of the process is determined by applying

it to Apache that is a different type of software from Xen. The evaluation results are

near accurate and show that the research methods are not limited to performing only

Xen vulnerability prediction and risk assessment. The same processes, data types, and

methods are used to perform vulnerability prediction and risk assessment of Apache.

To further ensure the applicability of the process, it is applied to another different and

common software package (Squid Proxy).
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6.4 Vulnerability Prediction of Squid Proxy Server

This section covers the vulnerability prediction process for the Squid server. The

vulnerability prediction process is applied to Squid to predict unknown vulnerabilities

for 2018. The objective of vulnerability prediction and risk assessment of Squid Proxy

server is to highlight the vulnerabilities and risks to Squid to raise awareness to the

organisations by identifying the risks with high severity levels which may be associated

with Squid service.

6.4.1 Prediction of Unknown Squid Vulnerabilities

During the search for reported vulnerabilities in the Squid proxy server, 56 vulnerability

records appeared from 2008 to 2017. Reported vulnerability data is distributed quarterly

to predict unknown vulnerabilities for 2018. Table 6.21 provides the reported Squid

vulnerabilities from 2008 to 2017.

Table 6.21: Reported Squid Vulnerabilities

Time(t) Year Quarter Vulnerabilities
1 2008 1 2
2 2 3
3 3 0
4 4 0
5 2009 1 2
6 2 0
7 3 3
8 4 4
9 2010 1 2

10 2 0
11 3 1
12 4 1
13 2011 1 0
14 2 0
15 3 1
16 4 1
17 2012 1 0

continued . . .
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Reported Squid Vulnerabilities . . . continued
Time(t) Year Quarter Vulnerabilities

18 2 1
19 3 2
20 4 1
21 2013 1 1
22 2 0
23 3 3
24 4 0
25 2014 1 0
26 2 1
27 3 2
28 4 2
29 2015 1 1
30 2 1
31 3 1
32 4 1
33 2016 1 4
34 2 11
35 3 1
36 4 0
37 2017 1 3
38 2 0
39 3 0
40 4 0

The Holt-Winters method is used to predict the unknown vulnerabilities for the first

quarter of 2018.

F1 = (L0 + T0) × S1

= (0.73 + 0.03) × 1.16

= 0.89

(6.13)

Now that a value is predicted for the first quarter, the Lt, Tt, and St values can be

updated. Therefore, L1 is updated with an assumption that α = 0.00.
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L1 = α ×
D1

S1

+ (1 − α) × (L0 + T0)

= 0.00 × 2

1.16
+ (1 − 0.00) × (0.73 + 0.03)

= 0.77

(6.14)

T1 is also updated with an assumption that β = 0.03.

T1 = β × (L1 −L0) + (1 − β) × T0

= 0.03 × (0.77 − 0.73) + (1 − 0.03) × (0.03)

= 0.03

(6.15)

After updating Lt and Tt using α and β, St values (S5 to S40) are updated with an

assumption that γ = 0.00

S5 = γ ×
D1

L1

+ (1 − γ) × (S1)

= 0.00 × 2

0.77
+ (1 − 0.00) × (1.16)

= 1.16

(6.16)

After calculating Lt, Tt and St values for all 40 periods, the vulnerabilities are

predicted for 2018.

F41 = [L40 + (T40 × 1)] × S37

= [2.12 + ((0.03) × 1)] × 1.16

= 2.50

(6.17)

F42 = [L40 + (T40 × 2)] × S38

= [2.12 + ((0.03) × 2)] × 1.14

= 2.50

(6.18)
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F43 = [L40 + (T40 × 3)] × S39

= [2.12 + ((0.03) × 3)] × 1.04

= 2.32

(6.19)

F44 = [L40 + (T40 × 4)] × S40

= [2.12 + ((0.03) × 4)] × 0.80

= 1.81

(6.20)

Table 6.22 provides all the Lt, Tt, St, and predicted values.

Table 6.22: Prediction of Unknown Squid Vulnerabilities

Time(t) Dt S̄t St

Values
Lt

Values
Tt

Values
Prediction

0 - - 0.73 0.03 -
1 2 2.61 1.16 0.77 0.03 0.89
2 3 3.74 1.14 0.80 0.03 0.91
3 0 0.00 1.04 0.84 0.03 0.87
4 0 0.00 0.80 0.87 0.03 0.70
5 2 2.21 1.16 0.91 0.03 1.05
6 0 0.00 1.14 0.94 0.03 1.07
7 3 3.07 1.04 0.98 0.03 1.02
8 4 3.96 0.80 1.01 0.03 0.81
9 2 1.91 1.16 1.05 0.03 1.21

10 0 0.00 1.14 1.08 0.03 1.23
11 1 0.90 1.04 1.11 0.03 1.16
12 1 0.87 0.80 1.15 0.03 0.92
13 0 0.00 1.16 1.18 0.03 1.37
14 0 0.00 1.14 1.22 0.03 1.39
15 1 0.80 1.04 1.25 0.03 1.31
16 1 0.78 0.80 1.29 0.03 1.03
17 0 0.00 1.16 1.32 0.03 1.53
18 1 0.74 1.14 1.36 0.03 1.55
19 2 1.44 1.04 1.39 0.03 1.45
20 1 0.70 0.80 1.43 0.03 1.14
21 1 0.68 1.16 1.46 0.03 1.70
22 0 0.00 1.14 1.50 0.03 1.71
23 3 1.96 1.04 1.53 0.03 1.60

continued . . .
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Prediction of Unknown Squid Vulnerabilities . . . continued
Time(t) Dt S̄t St

Values
Lt

Values
Tt

Values
Prediction

24 0 0.00 0.80 1.57 0.03 1.26
25 0 0.00 1.16 1.60 0.03 1.86
26 1 0.61 1.14 1.64 0.03 1.86
27 2 1.20 1.04 1.67 0.03 1.74
28 2 1.17 0.80 1.70 0.03 1.37
29 1 0.57 1.16 1.74 0.03 2.02
30 1 0.56 1.14 1.77 0.03 2.02
31 1 0.55 1.04 1.81 0.03 1.89
32 1 0.54 0.80 1.84 0.03 1.48
33 4 2.13 1.16 1.88 0.03 2.18
34 11 5.75 1.14 1.91 0.03 2.18
35 1 0.51 1.04 1.95 0.03 2.03
36 0 0.00 0.80 1.98 0.03 1.59
37 3 1.49 1.16 2.02 0.03 2.34
38 0 0.00 1.14 2.05 0.03 2.34
39 0 0.00 1.04 2.09 0.03 2.18
40 0 0.00 0.80 2.12 0.03 1.70
41 Prediction - - - - 2.50
42 Prediction - - - - 2.50
43 Prediction - - - - 2.32
44 Prediction - - - - 1.81

Squid Vulnerability Prediction Accuracy

Table 6.23 provides a summary of prediction error and TS calculated for all t periods.

Table 6.23: MAD and Tracking Signal of Squid

Time(t) Vuls Predictions Error
Et

Bias At = |Et| MAD TS

1 2 0.89 1.11 1.11 1.11 1.11 1.00
2 3 0.91 2.09 3.20 3.20 1.60 2.00
3 0 0.87 -0.87 2.33 4.07 1.36 1.72
4 0 0.70 -0.70 1.63 4.77 1.19 1.37
5 2 1.05 0.95 2.58 5.72 1.14 2.26
6 0 1.07 -1.07 1.51 6.79 1.13 1.33
7 3 1.02 1.98 3.49 8.77 1.25 2.79

continued . . .
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MAD and Tracking Signal of Squid . . . continued
Time(t) Vuls Predictions Error

Et

Bias At = |Et| MAD TS

8 4 0.81 3.19 6.68 11.96 1.50 4.47
9 2 1.21 0.79 7.47 12.75 1.42 5.27

10 0 1.23 -1.23 6.24 13.98 1.40 4.46
11 1 1.16 -0.16 6.08 14.14 1.29 4.73
12 1 0.92 0.08 6.16 14.22 1.19 5.20
13 0 1.37 -1.37 4.79 15.59 1.20 3.99
14 0 1.39 -1.39 3.40 16.98 1.21 2.80
15 1 1.31 -0.31 3.09 17.29 1.15 2.68
16 1 1.03 -0.03 3.06 17.32 1.08 2.83
17 0 1.53 -1.53 1.53 18.85 1.11 1.38
18 1 1.55 -0.55 0.98 19.40 1.08 0.91
19 2 1.45 0.55 1.53 19.95 1.05 1.46
20 1 1.14 -0.14 1.39 20.09 1.00 1.38
21 1 1.70 -0.70 0.69 20.79 0.99 0.70
22 0 1.71 -1.71 -1.02 22.50 1.02 -1.00
23 3 1.60 1.40 0.38 23.90 1.04 0.37
24 0 1.26 -1.26 -0.88 25.16 1.05 -0.84
25 0 1.86 -1.86 -2.74 27.02 1.08 -2.54
26 1 1.86 -0.86 -3.60 27.88 1.07 -3.36
27 2 1.74 0.26 -3.34 28.14 1.04 -3.20
28 2 1.37 0.63 -2.71 28.77 1.03 -2.64
29 1 2.02 -1.02 -3.73 29.79 1.03 -3.63
30 1 2.02 -1.02 -4.75 30.81 1.03 -4.63
31 1 1.89 -0.89 -5.64 31.70 1.02 -5.52
32 1 1.48 -0.48 -6.12 32.18 1.01 -6.09
33 4 2.18 1.82 -4.30 34.00 1.03 -4.17
34 11 2.18 8.82 4.52 42.82 1.26 3.59
35 1 2.03 -1.03 3.49 43.85 1.25 2.79
36 0 1.59 -1.59 1.90 45.44 1.26 1.51
37 3 2.34 0.66 2.56 46.10 1.25 2.05
38 0 2.34 -2.34 0.22 48.44 1.27 0.17
39 0 2.18 -2.18 -1.96 50.62 1.30 -1.51
40 0 1.70 -1.70 -3.66 52.32 1.31 -2.80

The prediction errors are distributed with a Mean of -0.09. A three σ spread from

the Mean is equivalent to having a control chart with the UCL and LCL set at 5.69 and

-5.87, respectively. Table 6.24 provides the Mean values, UCL, and LCL for all the
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quarters.

Table 6.24: Control Limits to Measure Accuracy of Squid Prediction

Time(t) Vuls Predictions Error
Et

MAD TS Mean UCL LCL

1 2 0.89 1.11 1.11 1.00 -0.09 5.69 -5.87
2 3 0.91 2.09 1.60 2.00 -0.09 5.69 -5.87
3 0 0.87 -0.87 1.36 1.72 -0.09 5.69 -5.87
4 0 0.70 -0.70 1.19 1.37 -0.09 5.69 -5.87
5 2 1.05 0.95 1.14 2.26 -0.09 5.69 -5.87
6 0 1.07 -1.07 1.13 1.33 -0.09 5.69 -5.87
7 3 1.02 1.98 1.25 2.79 -0.09 5.69 -5.87
8 4 0.81 3.19 1.50 4.47 -0.09 5.69 -5.87
9 2 1.21 0.79 1.42 5.27 -0.09 5.69 -5.87

10 0 1.23 -1.23 1.40 4.46 -0.09 5.69 -5.87
11 1 1.16 -0.16 1.29 4.73 -0.09 5.69 -5.87
12 1 0.92 0.08 1.19 5.20 -0.09 5.69 -5.87
13 0 1.37 -1.37 1.20 3.99 -0.09 5.69 -5.87
14 0 1.39 -1.39 1.21 2.80 -0.09 5.69 -5.87
15 1 1.31 -0.31 1.15 2.68 -0.09 5.69 -5.87
16 1 1.03 -0.03 1.08 2.83 -0.09 5.69 -5.87
17 0 1.53 -1.53 1.11 1.38 -0.09 5.69 -5.87
18 1 1.55 -0.55 1.08 0.91 -0.09 5.69 -5.87
19 2 1.45 0.55 1.05 1.46 -0.09 5.69 -5.87
20 1 1.14 -0.14 1.00 1.38 -0.09 5.69 -5.87
21 1 1.70 -0.70 0.99 0.70 -0.09 5.69 -5.87
22 0 1.71 -1.71 1.02 -1.00 -0.09 5.69 -5.87
23 3 1.60 1.40 1.04 0.37 -0.09 5.69 -5.87
24 0 1.26 -1.26 1.05 -0.84 -0.09 5.69 -5.87
25 0 1.86 -1.86 1.08 -2.54 -0.09 5.69 -5.87
26 1 1.86 -0.86 1.07 -3.36 -0.09 5.69 -5.87
27 2 1.74 0.26 1.04 -3.20 -0.09 5.69 -5.87
28 2 1.37 0.63 1.03 -2.64 -0.09 5.69 -5.87
29 1 2.02 -1.02 1.03 -3.63 -0.09 5.69 -5.87
30 1 2.02 -1.02 1.03 -4.63 -0.09 5.69 -5.87
31 1 1.89 -0.89 1.02 -5.52 -0.09 5.69 -5.87
32 1 1.48 -0.48 1.01 -6.09 -0.09 5.69 -5.87
33 4 2.18 1.82 1.03 -4.17 -0.09 5.69 -5.87
34 11 2.18 8.82 1.26 3.59 -0.09 5.69 -5.87
35 1 2.03 -1.03 1.25 2.79 -0.09 5.69 -5.87

continued . . .
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Control Limits to Measure Accuracy of Squid Prediction . . . continued
Time(t) Vuls Predictions Error

Et

MAD TS Mean UCL LCL

36 0 1.59 -1.59 1.26 1.51 -0.09 5.69 -5.87
37 3 2.34 0.66 1.25 2.05 -0.09 5.69 -5.87
38 0 2.34 -2.34 1.27 0.17 -0.09 5.69 -5.87
39 0 2.18 -2.18 1.30 -1.51 -0.09 5.69 -5.87
40 0 1.70 -1.70 1.31 -2.80 -0.09 5.69 -5.87

Figure 6.11 shows that the TS is well within control limits except for period 32,

where TS exceeded the threshold by 0.22 (from -5.87 to -6.09). However, the following

predicted values are within control limits.
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Figure 6.11: Tracking Squid Vulnerability Prediction Accuracy

6.4.2 Prediction of Unknown Squid Vulnerabilities with regard to

the Impact Levels

In this section, unknown Squid vulnerabilities are predicted with regard to the impact

levels. Reported Squid vulnerabilities using Remote Network AV are considered as the

independent variable X1. High, and Medium Impact ratings of reported vulnerabilities

are used as dependent variables Y1, and Y2, respectively. The predicted unknown

vulnerabilities are calculated as Ȳ1, and Ȳ2 for High, and Medium Impact ratings,

respectively.
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Prediction of High Impact Unknown Vulnerabilities

The prediction result shows that out of 6 vulnerabilities, 0.80 vulnerabilities will be of

High Impact during 2018. This result is an excellent prediction as it is precisely the

same as the per year Mean value (0.80) of High impact reported vulnerabilities.

Ȳ1 = a + b1(X1)

= 0.02 + 0.13(6)

= 0.80

(6.21)

Prediction of Medium Impact Unknown Vulnerabilities

The prediction result shows that out of 6 vulnerabilities, at least 5 vulnerabilities will be

of Medium Impact during 2018. This result is also an excellent prediction as it is very

close to the per year Mean value of Medium Impact reported vulnerabilities, 4.80.

Ȳ2 = a + b1(X1)

= −0.02 + 0.87(6)

= 5.24

(6.22)

6.5 Risk Assessment of the Squid Proxy Server

In this section, risk assessment of the Squid is performed.

6.5.1 Determination of Squid Vulnerability Impact Ratings

Physical, Local, and Network exploitation scenarios for the Squid proxy server are

considered to score the vulnerabilities. Table 6.25 provides Squid risk, vulnerabilities,

and the AVs.
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Table 6.25: Squid Risk, Vulnerabilities, and AVs

Risk
No.

Risk Type Vulnerabilities Attack
Vector

R1 DoS Physical Security Vulnerability (V1) Physical
R2 Unauthorised access

to application servers
Unauthorised access to the proxy
server, and then attaining access to
the internal application and database
servers (V2)

Local

R3 Unauthorised URL
access

Unauthorised access to incorrect
URLs (V3)

Network

R4 Unauthorised URL
redirection

Unauthorised access to the proxy
server and adding and/or redirecting
URLs to unintended URLs (V4)

Network

Example Scenario 1

Figure 6.12 provides the impact rating of a physical vulnerability exploited by a PU

with physical access to a host server on which Squid proxy is running. 6.8 is the Base

score calculated, and the vulnerability impact rating is labelled as Medium.
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Figure 6.12: Squid Vulnerability Exploited through Physical AV

Example Scenario 2

Figure 6.13 provides the impact rating of a Local vulnerability exploited by an NU with

malicious intent. 8.4 is the Base score calculated for this scenario, and the vulnerability
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impact rating is labelled as High.
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Figure 6.13: Squid Vulnerability Exploited through Local AV

Example Scenario 3

Figure 6.14 provides the impact rating of a Network vulnerability exploited by an IC

attacker. 6.4 is the Base score calculated for this scenario, and the vulnerability impact

rating is labelled as Medium.
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Figure 6.14: Squid Vulnerability Exploited through Network AV

The impact ratings are assigned to corresponding set of vulnerabilities and risk type.

Table 6.26 provides the summary of Squid risk, vulnerability type, corresponding AV,

and the impact ratings.
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6.5.2 Threat Likelihood Assessment of Squid

In this section, threat likelihood assessment of the Squid proxy server is performed. A

Squid attack tree is presented in Figure 6.15.

A 1 Manipulate Squid Proxy Server

A 1.2 Local AV A 1.3 
Network AV

A 1.3.1 
Manipulate Host OS 

Security
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Configuration 
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Parameters and 

Options

      = Source Nodes

      = Child/Root Nodes

Figure 6.15: Squid Attack Tree

Assigning Threat Levels to Source Nodes

In this section, threat levels are assigned to the source nodes of Squid attack tree from

PU, NU, and IC TAs. A PU is an administrator of Squid proxy server and an NU is an

internal user who can assess Squid as a proxy from the same sub-network. Whereas, an

IC is an illegitimate external user and is assumed to be an attacker for threat likelihood

assessment.

A 1.1.1 and A 1.1.2 Table 6.27 provides the threat levels assigned to A 1.1.1 and

A 1.1.2.
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Table 6.27: Threat Levels to Squid A 1.1.1 and A 1.1.2

TA Capability Motivation TL to

A 1.1.1

Capability Motivation TA to

A 1.1.2

PU 4 2 3 4 3 4

NU 4 1 2 2 3 2

IC 4 2 3 1 4 2

A 1.2.1 and A 1.2.2 An NU with malicious intent can use different tools to exploit

local network vulnerability to sniff network traffic and retrieve server credentials.

These credentials can then be used to manipulate data directories of other network

users. Table 6.28 provides the threat levels assigned to A 1.2.1 and A 1.2.2.

Table 6.28: Threat Levels to Squid A 1.2.1 and A 1.2.2

TA Capability Motivation TL to

A 1.2.1

Capability Motivation TA to

A 1.2.2

PU 3 1 2 5 1 3

NU 2 1 1 4 3 4

IC 2 3 2 1 3 1

A 1.3.1.1 and A 1.3.1.2 An IC (remote attacker) can manipulate the security of a host

OS by exploiting a vulnerability that exists due to an insecure OS configuration.

An expert IC can use advanced tools and techniques to exploit OS configuration

flaws to gain control of the host server OS. The attacker can also exploit unused or

unwanted services running on the host OS. For example, by default, the Sendmail

service is running on Linux with the default settings which are known. The

attacker can use these default settings to exploit a reported vulnerability of an

older version of Sendmail. Table 6.29 provides threat levels assigned to A 1.3.1.1
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and A 1.3.1.2.

Table 6.29: Threat Levels to Squid A 1.3.1.1 and A 1.3.1.2

TA Capability Motivation TL to

A 1.3.1.1

Capability Motivation TA to

A 1.3.1.2

PU 1 1 1 1 1 1

NU 2 2 1 3 2 2

IC 3 4 3 4 3 4

A 1.3.2.1 and A 1.3.2.2 A remote attacker can manipulate the Squid Proxy configura-

tion by exploiting a Squid vulnerability that exists due to default Squid settings.

A remote attacker can also exploit default parameters, and options configured for

Squid.

A highly motivated and focused attacker using advanced hacking tools and tech-

niques can exploit the default parameters and options settings. For example, the

default http_port (3128) which squid uses to listen to incoming requests is

not changed, and maximum_object_size and minimum_object_size

parameters are configured to manage the size of a cached object. It can then be

manipulated by the attacker to cause DoS by requesting numerous large cache

objects.

Moreover, authenticate_ttl, and authenticate_ip_ttl parameters

should be configured carefully to set the client Time To Live (TTL) period, and

authentication bounding to a particular IP, respectively. Table 6.30 provides threat

levels assigned to A 1.3.2.1 and A 1.3.2.2.



Chapter 6. Process Evaluation 200

Table 6.30: Threat Levels to Squid A 1.3.2.1 and A 1.3.2.2

TA Capability Motivation TL to

A 1.3.2.1

Capability Motivation TA to

A 1.3.2.2

PU 1 1 1 1 1 1

NU 1 2 1 2 2 1

IC 4 3 4 5 4 5

Propagating Threat Levels Through Squid Attack Tree

In this section, threat levels are propagated to A 1.3.1 and A 1.3.2 attack steps. Later,

threat levels are propagated to A 1.1, A 1.2, and A 1.3 attack steps by using the same

process followed for Apache threat levels propagation (Section 6.3.2). Therefore, threat

levels propagation to the A 1 root node only is presented in this section.

A 1 Manipulate Squid Proxy Server All three child nodes A 1.1, A 1.2, and A 1.3

are connected to the root node A 1 by a logical OR. Therefore, the maximal level

of threat of these child nodes is propagated. Table 6.31 provides the threat levels

propagated to the A 1 attack step.

Table 6.31: Threat Likelihood Levels to Squid

Type:OR Likelihood

for A 1.1

(Physical AV)

Likelihood

for A 1.2

(Local AV)

Likelihood

for A 1.3

(Network AV)

Likelihood

for A 1

(Overall)

PU 3 2 1 3

NU 2 1 1 2

IC 2 1 4 4
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Table 6.32 provides qualitative threat likelihood levels to Squid from PU, NU, and

IC.

Table 6.32: Qualitative Threat Likelihood Levels to Squid

Risk
No.

Attack
Vector

TL from PU TL from NU TL from IC

R1 Physical Moderate Low Low
R2 Local Low Negligible Negligible
R3 Network Negligible Negligible Substantial
R4 Network Negligible Negligible Substantial

Threat levels are assigned to the Squid attack tree to determine the threat likelihood

levels from PU, NU, and IC. Figures 6.16, 6.17, and 6.18 provide threat levels to the

Squid proxy server from PU, NU, and IC, respectively. Figure 6.18 shows that an IC

poses a Substantial threat level to realise a remote network attack by exploiting a vul-

nerability that may exist due to improper Squid Parameters, and Options configuration.
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Figure 6.16: Squid Attack Tree for PU
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Figure 6.17: Squid Attack Tree for NU
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6.5.3 Severity Levels of Risk to Squid

In this section, severity levels of risk to Squid are determined by combining vulnerability

impact ratings and threat likelihood levels. Medium risk severity levels are determined

for R1 and R2, and Low risk severity levels for R3 and R4 from both PU and NU. An

IC poses Medium risk severity level for all the four risk types. Table 6.33 provides the

risk severity levels to Squid from PU, NU, and IC.

Conclusion

Squid vulnerability prediction and risk assessment results highlight the flexibility of

the research methods and the process. As in the case of Apache, research methods

did not show limitations when applied to the Squid Proxy server. However, unknown

Squid vulnerability prediction results were found to be a bit inaccurate (not close

to the average reported vulnerabilities of the last ten years). The reason can be the

missing factors, lack of optimised vulnerability reporting process, and smoothness of the

reported vulnerability data (Roumani et al., 2015). On the other hand, threat likelihood

and risk severity levels are determined accurately which concludes the generalisability

of the Xen vulnerability prediction and risk assessment process to Squid.

6.6 Conclusion

The vulnerability prediction and risk assessment process was successfully evaluated

by applying it to Apache HTTP and Squid Proxy servers. The applicability and gener-

alisability of the risk assessment process was observed through near accurate results.

NVD reported vulnerability datasets were used to predict unknown Squid and Apache

vulnerabilities similar to the case of Xen. This shows that NVD reported vulnerability



Chapter 6. Process Evaluation 204

Ta
bl

e
6.

33
:S

ev
er

ity
L

ev
el

s
of

R
is

k
fr

om
PU

,N
U

,a
nd

IC

R
is

k
N

o.
A

tt
ac

k
Ve

ct
or

Vu
l

Im
pa

ct
R

at
in

g

T
L

fr
om

PU
L

ev
el

of
R

is
k

fr
om

PU

T
L

fr
om

N
U

L
ev

el
of

R
is

k
fr

om
N

U

T
L

fr
om

IC
L

ev
el

of
R

is
k

fr
om

IC

R
1

Ph
ys

ic
al

M
ed

iu
m

M
od

er
at

e
M

ed
iu

m
L

ow
M

ed
iu

m
L

ow
M

ed
iu

m

R
2

L
oc

al
H

ig
h

L
ow

M
ed

iu
m

N
eg

lig
ib

le
M

ed
iu

m
N

eg
lig

ib
le

M
ed

iu
m

R
3

N
et

w
or

k
M

ed
iu

m
N

eg
lig

ib
le

L
ow

N
eg

lig
ib

le
L

ow
Su

bs
ta

nt
ia

l
M

ed
iu

m

R
4

N
et

w
or

k
M

ed
iu

m
N

eg
lig

ib
le

L
ow

N
eg

lig
ib

le
L

ow
Su

bs
ta

nt
ia

l
M

ed
iu

m



Chapter 6. Process Evaluation 205

data could be effectively used to predict unknown vulnerabilities using the Holt-Winters

method.

For risk assessment, the vulnerability impact ratings were not adopted like Xen.

CVSS is used to score three example scenarios to determine impact ratings. Threat

likelihood levels were determined by creating attack trees for both Apache and Squid.

However, a detailed study was conducted to understand the architecture of both Apache

and Squid to create attack trees and identify AVs.

A comprehensive search was conducted to identify and list the risk to both Apache

and Squid separately. Severity levels of risk to both these servers were determined by

using the same risk estimation matrix. Chapter 7 next provides a discussion of the Xen

vulnerability prediction and risk assessment results.



Chapter 7

Discussion

Vulnerability Prediction and Risk 
Assessment Process of the Xen 

Hypervisor

5. Xen Risk Assessment

6. Process Evaluation

7. Discussion

7.1 Introduction

7.2 Discussion - Xen 
Vulnerability Prediction 

7.3 Discussion - Xen Risk Assessment
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for IaaS Customers before 
Risk Assessment

7.5 Security 
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Assessment

7.6 Conclusion

8. Conclusion

4. Xen Vulnerability Prediction

3. Methodology

2. Literature Review

1. Introduction

7.1 Introduction

In Chapter 6, the evaluation of the vulnerability prediction and risk assessment process

was conducted by applying it to Apache HTTP and Squid Proxy servers. This chapter

reiterates the research problem and the research methods used to address the problem.

It also covers the discussion of the Xen vulnerability prediction and risk assessment

findings, and details how results support to address the research questions. Security

206
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considerations and recommendations are provided for the IaaS customers to make

informed security decisions to adopt IaaS and select an appropriate CSP.

This chapter is organised as follows: Section 7.2 covers the discussion of the

Xen vulnerability prediction process. Section 7.3 covers discussion of the Xen risk

assessment process. Security recommendations for customers before the risk assessment

are covered in Section 7.4. Section 7.5 provides security recommendations for customers

after performing the risk assessment of Xen. The conclusion of this chapter is provided

in Section 7.6.

7.2 Discussion - Xen Vulnerability Prediction

This section provides a discussion of the vulnerability prediction process. The Holt-

Winters quantitative prediction method is used to predict unknown vulnerabilities using

the process of exponential smoothing. Using qualitative methods for the prediction can

lead to inaccurate results when a quantitative approach is available and can be more

appropriate. The qualitative prediction methods often result in inaccuracy (Newberne,

2006). On the other hand, quantitative methods such as the Holt-Winters method

provides more accurate prediction without any substantial cost. The Holt-Winters

method uses regression techniques, exponential smoothing parameters, and moving

averages methods. It is a powerful prediction method which provides accurate prediction

results. It is also easy to use and widely available to use through software such as

Microsoft Excel. Usually, every organisation uses Microsoft Office suite. Thus, the

Holt-Winters prediction method does not add extra cost in terms of buying specialised

software tools for prediction.

Prediction models offer accuracy very rarely, but, accuracy is critical because

inaccurate results can be costly in terms of time and resources. Organisations must

carefully select the prediction model on the basis of their problem, and the type and
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size of the data available to be used for the prediction. The selection of an accurate

prediction model should be based on the Level, Trend, and Seasonal components of

the available dataset. Moreover, some prediction models are not accurate for short or

long-term prediction. However, the Holt-Winters method uses smoothing parameters to

reduce the irregularities in the given dataset. It provides a more precise and effective

technique to predict values for the future. An essential aspect of using exponential

smoothing technique is that weights are applied to existing data values. Weights are set

by giving more weight to recent and relevant observations compared to observations

in the past. The exponential smoothing technique is very constructive to update the

prediction results each time a new value becomes available at the end of a given dataset.

It is observed as a useful method to predict future values using the most recent data.

Vulnerability prediction for large software applications like the Xen hypervisor makes

accurate and real-time prediction more critical.

In this research, to predict unknown Xen vulnerabilities, the Holt-Winters method

is extended with the concept of exponentially weighted moving averages to predict

different components of data variables. Holt-Winters is selected for prediction be-

cause the Xen reported vulnerabilities data contains Trend and Seasonal components.

Holt-Winters has two methods: one is additive, and another is multiplicative. The multi-

plicative method is used here because the seasonal characteristics of the data depend on

the current mean level of the time series data. The exponential smoothing parameters

used for prediction using Holt-Winters methods required a smoothing constant set in

the range of 0 < a < 1. The constant value is considered to assign weights to the data

observations. The final and optimal value of the smoothing constant depends on the

time series data used for prediction. The value of α is normally between 0.05 and 0.3.

However, α can be estimated by minimizing the sum of squared errors. The value of

the weight for each component can be changed on the basis of the data used for the

time series. When the value of α is high, more weight is assigned to the most recent
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observations. On the other hand, the low value of α means that observations further in

the past will be assigned more weight or given more importance. The multiplicative

Holt-Winters method involves three smoothing parameters for the Level, Trend, and

Seasonal component. Mathematically it is written as:

Lt = α ×
Dt

St

+ (1 − α) × (Lt−1 + Tt−1) (7.1)

Tt = β × (Lt −Lt−1) + (1 − β) × Tt−1 (7.2)

St+p = γ ×
Dt

Lt

+ (1 − γ) × (St) (7.3)

The Xen reported vulnerability data time series is assigned three smoothing paramet-

ers. However, the method is adjusted by changing the values of smoothing parameters

to determine the output with lower Mean Absolute Percentage Error (MAPE). Initially,

the default values of smoothing parameters are used. Default values are set at 0.10 for

Level, Trend, and Seasonal components. Afterwards, the weights that produced the

lowest MAPE value are noted.

The Xen reported vulnerability data is selected from 2013 to 2017 and the seasonal

period is four (quarterly for each year). The smoothing parameters are applied to 20

observations to predict the number of unknown Xen vulnerabilities for the first two

quarters of 2018 (periods 21 and 22). The forecast error is then examined, and the one

with the lowest MAPE is applied to predict the unknown vulnerabilities for the last two

quarters of 2018 (periods 23 and 24), basically creating a new fitting period. The final

predicted values are compared to the actual data values for the same time periods.
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7.2.1 Reliability of the Prediction Model

The reliability of the prediction model is checked to determine the consistency of the

prediction results. Initially, unknown Xen vulnerabilities are predicted for periods 21

and 22. Later, another prediction sample is created when the actual data values of these

two periods are added to the original data set. Now, the calibration with the lower

MAPE is applied to new data set with 22 periods instead of 20 periods to predict the

unknown vulnerabilities for periods 23 and 23 (the last two quarters of 2018). The

reliability of the prediction model is measured by assessing the extent to which the

MAPE of the first data set (20 periods) is similar to the MAPE of the second data set

(22 periods) when the same calibration of the prediction model is applied to both data

sets.

7.2.2 Security Recommendations to Mitigate Hypervisor Vulner-

ability Exploitations

Like any other software package, the Xen hypervisor contains vulnerabilities. However,

the concern from customers is what security tools and techniques CSPs are using

to harden the hypervisor to mitigate the risk of vulnerability exploitation. Like the

architectural and configuration risk, customers must ensure that CSPs use measures

to protect the hypervisor code base. The hypervisor provides and manages the whole

virtualised infrastructure and a vulnerability in the hypervisor leverages threats that may

result in exploitation of VMs. Some of the security considerations for customers against

software vulnerabilities are:

• Protection against single point of failure – The dynamic nature of the hypervisor

can be a cause for concern if a malicious VM runs a code to compromise hyper-

visor instance. A single event of malware can also exploit other hypervisors in

the same network environment resulting in a single point of failure.



Chapter 7. Discussion 211

• Like any other software, the hypervisor should be patched and updated regularly

to help fix vulnerabilities.

• Vendor’s website should be visited regularly to see the news or updates about the

hypervisor.

• Vulnerability databases should also be checked regularly to know about new

zero-day exploits.

• Controlled access to VMs should be ensured by properly managing privileges

and access to VMs. The controlled access to VMs would help reduce the code

base and its exploitation through malicious tools.

7.3 Discussion - Risk Assessment

In Section 7.2, the discussion of the Xen vulnerability assessment process was provided.

This section provides a discussion of the Xen risk assessment process. Despite the

many benefits of virtualised infrastructure, virtual systems are not risk free. In fact,

virtualised infrastructure introduce new risk. Many of the vulnerabilities can appear due

to architectural and configuration errors in the hypervisors. Compromise of virtualised

infrastructure results in loss of CIA security objectives and can be a nightmare for

customers using the compromised infrastructure. Exploitations by sophisticated threats

lead to risks such as Loss of Business Reputation Due to Co-Tenant Activities, Isolation

Failure, Malicious Insider, Intercepting Data in Transit, Data Leakage within Cloud,

Undertaking Malicious Probes or Scans, Privilege Escalation, and Hypervisor Manage-

ment Interface Compromise (Ruiz & Pedraza, 2016). However, the risks vary between

cloud service delivery models, depending upon the type of hypervisor, security controls,

security procedures, and risk management methods used to protect the hypervisors.

Selecting an appropriate CSP to move to cloud-based services is very important

for organisations. However, in most of the cases, organisations may not have sufficient
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knowledge to understand the risk to cloud virtualised infrastructure and perform the

appropriate selection. The reason can be that they may not have required security

experts and specialists for this important job and lack of visibility about the operations

and security considerations of the CSPs. Therefore, for some organisations selecting an

appropriate CSP is difficult based on their security requirements especially when there

are many CSPs available for selection.

Customers should understand the risk after the move to cloud infrastructure and

what security controls they need from the proposed CSP to ensure the security of their

assets. They should ask the CSP where they stand against these risks and what security

controls are in place. If the CSP is complying with the security considerations, a report

of their risk assessment should be provided to customers showing how the controls

are implemented, and the risks are being mitigated. If the CSP cannot provide an

assessment report or does not correctly explain the security controls implementation,

then this should be a cause for concern.

To make an appropriate selection of CSPs, customers need a platform to perform

a risk assessment to understand the risk and security controls that should be in place

by the CSPs to mitigate these risk. Therefore, the Xen risk assessment process enables

customers to identify the risks and their severity levels to their data and information.

Once the risk assessment results are understood by customers, CSPs should be asked

questions about the risk control and mitigation strategies. However, instead of approach-

ing CSPs directly, customers can use CSA’s Cloud Controls Matrix (CCM) (STAR

Registry, 2017), which is a robust framework available for organisations to help them

select a CSP. CCM is based on different regulatory compliance and security standards.

It provides details of the security controls that should be implemented by the CSP to

meet the security requirements of customers. If they can find their proposed CSP in

CCM, then they can look for the answers they are seeking. In case they do not find the

CSPs, then customers should directly approach the CSP.
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7.3.1 Implications of the Risk Assessment Process

Once the risk assessment is complete, customers can refer to the CSA Security, Trust

& Assurance Registry (STAR) database (STAR, 2017). Customers can use the CSA

Consensus Assessments Initiative Questionnaire (CAIQ) and CCM to determine which

security controls are needed by the CSPs to manage these risk. Both CAIQ and CCM

provides a way to prepare a proposal request for those security controls. It allows

customers to quickly determine which security controls are compulsory and should be

implemented by the CSPs to mitigate risk with high severity levels.

The CSA STAR database (STAR, 2017) offers a complimentary registry that

provides the self-assessment results from more than 100 CSPs where more than 200

questions were answered by each CSP (STAR Registry, 2017). The registry entries

document the detail of security controls implemented by the CSPs. This online registry

database allows cloud customers to assess and select an appropriate CSP based on their

risk assessment results. The CSA STAR is based on the research of the CSA Gov-

ernance, Risk Management and Compliance (GRC) Stack. It provides four initiatives

for customers, CSPs, and other key stakeholders. The GRC Stack components include

CAIQ, CCM, Cloud Audit, and Cloud Trust Protocol (CTP). However, CAIQ and CCM

are very useful for customers to assess the CSPs’ security controls and procedures

before making adoption decisions.

7.3.2 Xen Hypervisor Risk Assessment

The risk assessment process enables customers to accept or reject the risk based on

their severity levels. Risk acceptance is a very sensitive stage, and it must be considered

carefully. Risk decisions are critical for customers, and they should follow a formal

process such as security cost-benefit analysis and benchmarking (Alruwaili & Gulliver,

2014). Customers should also discuss risk assessment results with internal and external
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information security auditors to develop an understanding of risk.

Through the Xen risk assessment process, nine risk categories are identified along

with the relevant vulnerabilities, and assets. Three example scenarios are presented

to score Xen vulnerabilities from two different TAs to determine the impact ratings.

However, all Xen vulnerability exploitation scenarios can be identified and scored to

determine the impact ratings. Since it is not practicable to cover all possible exploitation

scenarios, vulnerability impact ratings are adopted from ENISA’s risk framework

(Catteddu & Hogben, 2009). For example, Risk 1 is related to vulnerability V1 (Lack

of Resource Isolation), V2 (Hypervisor Code Vulnerabilities), and asset A1 (Company

reputation), A2 (Personal sensitive data), A3 (Personal data), and A4 (Service delivery).

High impact rating is determined as the exploitation of both V1 and V2 can result in loss

of service delivery and data leakage. The exploitation can also affect the reputation of

the organisations. Table 7.1 provides a summary of the Xen risk, relevant vulnerabilities,

and their impact ratings.

Table 7.1: Summary of Xen Risk, Vulnerabilities, and Impact Ratings

Risk Type Vulnerabilities Impact Rating
Loss of Business Reputation
Due to Co-Tenant Activities

V1,V2 High

Isolation Failure V1,V2,V3,V4 Very High
Malicious Insider V5,V6 Very High
Intercepting Data In Transit V3,V4,V5 High
Data Leakage V3,V4,V5 High
Undertaking Malicious
Probes or Scans

V3,V4 Medium

Compromise Hypervisor V1,V2 Very High
Privilege Escalation V2,V5 High
Management Interface Com-
promise

V5,V7 Very High

V1 = Lack of resource isolation, V2 = Hypervisor code vulnerabilities
V3 = Possibility of internal network probing, V4 = Possibility of co-residence checks
V5 = AAA Vulnerabilities, V6 = Inadequate physical security procedures
V7 = Remote access to management interface
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Threat identification and the determination of their likelihood levels are an essential

characteristic of the risk assessment process. Threats result in compromise of CIA

security objectives. The loss of security objectives may happen when a threat exploits

one or more assets. It is necessary for customers to know the threats and their likelihood

levels. However, the threat likelihood levels may differ between customers. In this

research, a qualitative threat likelihood assessment of Xen is performed. Attack trees

are combined to generate a cyclic attack tree for Xen. The analysis results show that

out of two TAs, an NU is most likely going to realise a network attack by exploiting a

vulnerability in the virtual network tool stack to pose a Severe threat level. Whereas,

a PU is going to exploit a physical vulnerability to compromise hypervisor. Table 7.2

provides threat likelihood levels to Xen from both PU and NU.

Table 7.2: Threat Likelihood Levels from PU and NU Threat Actors

Risk Type Attack
Vector

PU Threat
Likelihood

Level

NU Threat
Likelihood

Level
Loss of Business Reputation
Due to Malicious Co-Tenant

Local Negligible Moderate

Isolation Failure Local Negligible Moderate
Malicious Insider Physical Moderate Negligible
Intercepting Data in Transit Network Negligible Severe
Data Leakage Local Negligible Moderate
Undertaking Malicious
Probes or Scans

Network Negligible Severe

Compromise Hypervisor Physical Moderate Severe
Privilege Escalation Local Negligible Moderate
Management Interface Com-
promise

Network Negligible Severe

Vulnerability impact ratings and threat likelihood levels are mapped together to

determine the severity levels of risk to hypervisors. Table 7.3 provides a summary of

the risk severity levels from the PU and NU TAs.
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Table 7.3: Severity Levels of Risk to Xen

Risk Type Levels of Risk
from PU

Levels of Risk
from NU

Loss of Business Reputation Due to
Malicious Co-Tenant

Medium Medium

Isolation Failure Medium High
Malicious Insider High Medium
Intercepting Data in Transit Medium High
Data Leakage Medium Medium
Undertaking Malicious Probes or
Scans

Low High

Compromise Hypervisor High High
Privilege Escalation Medium Medium
Management Interface Compromise Medium High

7.4 Security Recommendations for Customers Before

the Risk Assessment

This section provides security considerations for customers who are planning to move to

cloud infrastructure and want to go through a risk assessment process to make informed

adoption decisions.

7.4.1 Critical Assets

Before assessing the risk to virtualised infrastructure, customers need to understand

the criticality and security of the data and information which will move to the cloud

infrastructure. It is also important for the customers to know the sensitivity of the data.

Otherwise, customers will end up placing their critical data in the cloud infrastructure

where appropriate security controls and procedures are not in place to mitigate risk.

On the other hand, if the criticality of the data is exaggerated, then it could lead to the

implementation of additional security controls that would add more cost and require
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more resources to manage. So, it is important for customers to classify the security of

data carefully to ensure the appropriate protection.

7.4.2 Data Privacy

Organisations who want to move to cloud infrastructure need to perform a Privacy

Impact Assessment (PIA) to ensure the privacy of their personal information and risk

associated with cloud infrastructure along with the security controls and procedures

required to mitigate those risks. In a typical scenario, CSPs normally have guidelines to

define how personal information of customers will be gathered and used. Therefore,

organisations must identify and consider the implications of accepting a CSP’s privacy

policy and guidelines.

7.4.3 Data Confidentiality

Data stored in the cloud infrastructure are more vulnerable to unauthorised access

compared to the case where data are stored on a local server. However, the factors that

may allow unauthorised access to data in the cloud varies between service delivery

models. Implementing and managing security controls to ensure the confidentiality of

the data depends entirely on the delivery model. Moreover, the type of cloud deployment

also affects the implementation and management of control requirements.

7.4.4 Data Integrity

CSPs provide better security and protection against data loss or corruption compared

to an organisation who manages their own data centre environment. Some CSPs offer

data backup and recovery services as optional services along with core cloud services.

However, some CSPs offer data backup services at additional cost and even some CSPs

do not offer backup services at all. Therefore, it is better for the customers to assess and
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select a CSP which provides them better data backup and recovery services to avoid

data loss and corruption. Furthermore, it is necessary for customers to determine the

data protection level by assessing how CSPs protect against data loss and corruption.

Customers should also determine the level of granularity they have to restore the data

after an incident happens. Therefore, customers should assess the CSPs data backup and

recovery processes to ensure the compliance of their organisational security practices.

7.4.5 Data Availability

SLA is an important attribute of availability. SLA usually provide the level of availability

a CSP is going to provide for a cloud service. The customer should have a clear

understanding of the percentage of availability they need. Customers should also

be able to assess whether or not these availability levels meet their organisational

requirements.

The risk of DoS attacks is not entirely different in CC compared to a traditional

data centre environment. However, the increased rate of adoption of cloud services has

increased the level of DoS risk because DoS attack happens due to the aggregation of

multiple VMs sharing the same hardware and this may be more attractive for an attacker.

A customer can be affected by DoS attack if it is launched against the customer itself,

CSP, and even other tenants.

7.5 Security Recommendations for Customers After the

Xen Risk Assessment

Section 7.4 provide the security considerations for the customers before the risk assess-

ment. In this section, security recommendations are provided for customers to make

informed security decisions after the risk assessment. The risks with High severity are
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explained along with the security considerations relevant to each risk type. It would

guide customers to seek answers from the proposed CSPs that how they mitigate these

types of risk.

7.5.1 Security Recommendations for Risk Severity Levels Posed

by a PU

This section details the reasons for risk severity levels from a PU TA and security

recommendations for customers. Table 7.4 provides the risk with High severity levels

from a PU TA. Risk types where the threat level is Negligible does not result in High

severity levels. Therefore, the risks with High severity levels are considered here. Risk

assessment results show that R3 (Malicious Insider) and R7 (Compromise Hypervisor)

pose a High severity level to Xen from a PU.

Table 7.4: Severity Levels of Risk to Xen from a PU

Risk Type Levels of Risk from
PU

Impact on Security
Objective

Malicious Insider High Integrity and Availabil-
ity

Compromise Hyper-
visor

High Integrity and Availabil-
ity

Recommendations to Mitigate a Malicious Insider Risk

A high risk severity level is determined for this risk type. Malicious insider risk is

one of the most common risks for many customers who are planning to move to

cloud infrastructure services. A malicious insider can access and manipulate sensitive

information that belongs to different cloud customers. Customers should ascertain

whether CSPs follow appropriate procedures to manage this risk. To mitigate the risk of

a malicious insider, the CSPs should consider the following points:
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• A proper background check should be performed by the CSPs before hiring their

employees. However, the amount of detail that customers can have about the

CSPs’ hiring process depends on the physical location of the CSP and services

offered. An efficient hiring process may help CSPs to hire a person with no

previous record of being untrustworthy. However, scrutinizing may not help

the CSPs to identify candidates who are untrustworthy but do not have criminal

records or history. Moreover, it would be difficult to identify a malicious employee

who has been trustworthy for a long time and is now untrustworthy.

• The CSPs should monitor employees’ activities and enforce separation of duties

to reduce the chances of a malicious insider executing unauthorised activities.

Monitoring employees’ activities can help the CSPs to a large extent to manage

malicious insider risk. Monitoring should include all the day-to-day activities that

all the employees perform in their job such as logical access use, physical access

use, and accessing media or content that contains customers’ data. CSPs should

maintain a log of these activities to identify any malicious activity. The activity

logs should be protected from alteration or deletion by ensuring separation of

duties among employees. For example, the administrator of one hypervisor and

host OS should not be given access to delete or change the log file of that system.

Log files should also not be saved on the local server where administration has

access.

• Just like an efficient hiring process, the CSPs should use appropriate practices

when terminating employees. Their access to the servers and network should

be monitored carefully during the last days of their job. Moreover, their access

to the servers and network should be revoked immediately after they leave the

organisation.

• The CSPs should collect and regularly analyse the server and network logs and

make sure that the IT staff is aware of that. This will make the IT staff realise
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that their access activities are monitored which would eventually decrease the

chances of a malicious insider attack.

Recommendations to Mitigate the Compromise Hypervisor Risk

This type of risk also poses a High severity level. Compromising the hypervisor would

be useful to escape the isolation between different VMs. It would result in unauthorised

access to data stored on different VMs. Moreover, unauthorised access can lead to

monitoring and modifying the data residing on the VMs. A compromised hypervisor

can also lead to a reduction of the hardware resources to the VM, resulting in DoS.

Therefore, due to this High severity risk, CSPs should implement appropriate

controls to ensure that the hypervisor or host server are physically protected from a

malicious insider or third-party contractors. Physical security of CSPs’ data centres

where hypervisors and host servers are running, is vital to ensure the overall security of

the virtualised infrastructure.

Physical access to the host server on which the hypervisor is running should be

monitored and controlled by the CSP. All unused hardware such as removable disks

should be disconnected from the server after use. Extra network cards should also be

removed from the host server if not in use and only connected to a network.

In addition to data theft by misusing physical access, a malicious administrator

can alter the security settings of the host server to access the hypervisor later remotely.

Therefore, remote access to the hypervisor and the host server should also be controlled

and monitored to mitigate this risk type.

Using the above security considerations, customers can ask questions from the

CSPs. However, sometimes it would be impossible for the customers to understand the

physical controls that are implemented by a CSP. In such as case, customers should rely

on a third party’s audit report that covers a physical security assessment of a proposed

CSP.
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7.5.2 Security Recommendations for Risk Levels posed by an NU

This section details the reasons for risk severity levels from an NU TA and security

recommendations for customers. Table 7.5 provides the summary of the risk with High

severity levels from an NU TA.

Table 7.5: Severity Levels of Risk to Xen from an NU

Risk Type Levels of Risk
from NU

Impact on Security
Objective

Isolation Failure High Confidentiality and In-
tegrity

Intercepting Data in Transit High Confidentiality and In-
tegrity

Undertaking Malicious Probes or
Scans

High Integrity and Availabil-
ity

Compromise Hypervisor High Integrity and Availabil-
ity

Management Interface Compromise High Confidentiality and In-
tegrity

Recommendations to Mitigate the Isolation Failure Risk

This risk type poses a High severity level. It includes the failure of security controls and

mechanisms which CSPs have implemented to separate storage, memory, and network

between different VMs running on the same shared hardware.

The hypervisor allows CSP to take a snapshot or copy of the memory and disk

of a running VM at a point in time to use it for backup and recovery purposes. If

CSPs do not have security controls implemented to protect these snapshots adequately,

then an attacker can gain unauthorised access to the data which is stored on the VM’s

local drives and also the encryption keys which are stored in the memory. Therefore,

customers should be concerned about the security of their data as there is lack of

visibility about the CSPs’ security controls together with the patch and vulnerability
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management policies to ensure the security of data stored on the VMs.

Moreover, to mitigate this type of risk, CSPs should disable all unnecessary services

which are not in use by the hypervisor. For example, file sharing between guest VMs

and host OS should be disabled if not required. File sharing can be used as an attack

vector where the same folder on the host server is shared between host OS and different

VMs.

The hypervisor’s introspection capabilities should be used effectively to monitor the

security of guest VMs. It should also be used to monitor the security of the hypervisor’s

functionalities shared between VMs.

Recommendations to Mitigate the Intercepting Data in Transit Risk

The distributed and dynamic nature of virtualisation implies more data in transit than

the conventional IT environment. Different network attacks such as sniffing, spoofing,

man-in-the-middle, and replay attacks should be considered as possible threat sources.

The hypervisor connects multiple guest VMs together through virtual switches.

However, it can be a security concern for some organisations where there are policies to

monitor all the networks in different ways. Virtual network switches in most hypervisors

do not have capabilities to monitor network traffic between VMs compared to physical

network switches which can be managed to monitor network traffic between physical

servers. However, some hypervisors allow the creation of VLANs using virtual switches.

They also provide firewall capabilities to keep the traffic separate that belongs to different

VMs. Therefore, CSPs should implement additional security appliances to inspect,

control and monitor VMs’ network communication in a central location.

VMs should be protected with both host-level and network-level security measures.

In the case of VMs, the virtual network configuration plays a vital role in the security

of VMs. Four virtual network configuration areas, network segmentation, network

path redundancy, traffic control using a firewall, and VM traffic monitoring, should be
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considered carefully by the CSPs.

Moreover, the network should be segmented, for example, the hypervisor manage-

ment traffic should be in a different VLAN. VMs and the hypervisor management traffic

in the same network can allow an attacker to exploit a network vulnerability to attack

the hypervisor for a malicious VM. The segregation of a network to keep the VMs

traffic segmented from hypervisor management traffic should mitigate the risk.

Recommendations to Mitigate the Undertaking Malicious Probes or Scans Risk

Though Malicious Probes or Scans are indirect risks to the virtualised infrastructure,

they pose a High severity level when an attacker tries to collect information to launch

further attacks.

The hypervisor should not be placed in the same network where all the VMs are

located to mitigate this risk. A separate network such as VLAN should be created to

separate the hypervisor management and remote access traffic. The ping and traceroute

replies should also be blocked for the network/subnet where the hypervisor is running.

Moreover, the management of the hypervisor from a network location should be

disabled most of the time. Also, the management interfaces should be appropriately

configured. Inaccurate configuration can expose the hypervisor to attacks from the

network.

Recommendations to Mitigate the Compromise Hypervisor Risk

This risk also poses a High severity level and to mitigate it, CSPs should install the

hypervisor with proper security considerations and vendor recommended best practices

to ensure its security. The CSP should follow best practices when managing the

hypervisor:

• Extra hardware such as external hard disk drives should not be left connected
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after a task is completed such as backup.

• Clipboard or file sharing services should not be enabled that allow a guest OS to

access the file from the host OS.

• Vendor website or notifications should be considered for important news of

bulletins.

• Management interfaces for remote access should be properly secured or mon-

itored.

• Access to the hypervisor and management software should be restricted.

• Proper access controls to manage administrative access should be implemented.

Recommendations to Mitigate the Management Interface Compromise Risk

Securing the management interface of the hypervisor is critical to protecting against

attacks that use network access as AV. The management interface should be secured

from both local and remote network attacks. If an administrator needed to access the

hypervisor through the network and required access to management interfaces, then

access to management interfaces, network traffic must be encrypted using Virtual Private

Network (VPN) to encapsulate the traffic. The network traffic should also be secured

through the firewall. Security policies should be applied to restrict unauthorised access

to these management interfaces. VLANs can also be considered where there should be

a separate management network which can only be accessed by the administrator.

Moreover, CSPs should use token-based authentication to allow access to the

hypervisor through management interfaces. The access to the hypervisor should be

restricted on the basis of the policies specifying who can or cannot access the hypervisor.
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7.6 Conclusion

The broad characteristics of cloud services such as multi-tenancy, elasticity, data resid-

ency, wide network access, and shared responsibilities between customers and CSPs

makes them very dynamic and increases their scale. Cloud virtualised infrastructure

leverages more threats and risks that can have a serious impact on the security and

privacy of customers’ data. To preserve the security level of the data and information,

customers need to know the risks and their severity levels, and security controls to

mitigate these risks.

Through the Xen risk assessment process, the customers can identify the risk to the

Xen hypervisor. Once the risks and their severity levels are determined, the customers

can ask questions of CSPs about their security controls and procedures. The security

recommendations are also provided for customers for the risk with High severity

levels. Customers can use these recommendations to develop their understanding of

the required security controls of a proposed CSP to mitigate these risks. This would

eventually result in an increased cloud infrastructure adoption rate. CSPs would also

realise the sensitivity of the stored data and place proper security controls to minimise

the security risk to encourage customers to adopt cloud infrastructure. Chapter 8

next provides the conclusion, problem re-statement, limitations, and future research

directions of this research.
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1. Introduction

8.1 Introduction

In the Chapter 7, a discussion of the Xen vulnerability prediction and risk assessment

process was provided. This chapter provides the conclusion of the thesis, research

limitations, and directions to extend this research in the future. The chapter briefly

restates the problem area and highlights the functionalities of the vulnerability prediction

and risk assessment process. It also covers how the process addresses the research

problem.
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This thesis presented work that contributes to the security of the Xen hypervisor

which provides and manages virtualised infrastructure. The literature review conducted

in Chapter 2, identified the research gaps and raised research questions to drive this

research. Chapter 3 provided the detail of DSR methodology that was adapted to

conduct this research. The Time Series Holt-Winters Method, Regression Analysis,

ENISA’s risk framework, CVSS, Asset-driven Structured Analysis, and Risk Estimation

Matrix were used to test the hypotheses and address the research questions. The major

contributions of this research were presented in Chapters 4, 5 and 6. A discussion on the

Xen vulnerability prediction and risk assessment process was presented in Chapter 7.

This chapter is organised as follows: Section 8.2 restates the research problem.

Section 8.3 provides the limitations. Future directions of this research are provided in

Section 8.4. The conclusion of this chapter is provided in Section 8.5.

8.2 Problem Re-statement

CC is an emerging computing paradigm that offers benefits to organisations such as

unlimited hardware resources, energy savings, ease of maintenance, management of

systems and data, and affordability. In other words, it provides an efficient, flexible,

scalable, and cost-effective platform to organisations who consume IT services to de-

liver their businesses. It offers three service delivery models to organisations, such as

infrastructure, platform and software as a service. However, despite offering many ad-

vantages, CIA of customers’ data and the information is the biggest concern. Moreover,

each of the delivery models faces different risks that impact service delivery to its

customers. Furthermore, vulnerability and risk assessment of CC is difficult due to

multiple threats from different sources such as CSPs, technological vulnerabilities, and

malicious activities from co-tenants.
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CC introduces new risks to assets compared to the risks of conventional IT en-

vironments. New and unknown risks raise security concerns and result in a lack of

adoption of cloud services by many organisations. Much research has been conducted

regarding risk assessment of CC, but it assesses risk from a broader perspective rather

than focusing on CC service delivery models. The fact is, threats and risks vary between

these service delivery models. The existing research lacks implementation details and

inherits common limitations such as assumptions to determine impact ratings and the

probability of threat occurrence. Therefore, these limitations highlight gaps in existing

research and drive the need for an optimised vulnerability and risk assessment platform.

Risk assessment is a process of risk management which provides a platform to exam-

ine the vulnerabilities, analyse threats, and determine overall risk to assets (Alturkistani

& Emam, 2014; Kiran, 2014). The risk assessment process can lead to recording and

prioritising risk to make security decisions. The risk assessment can be qualitative

or quantitative, or a combination of both. For qualitative risk assessment, the output

of the assessment process is a self-descriptive value such as high, medium and low

risk. However, for quantitative risk assessment, the result is a numeric value such as a

probability, a proportion, or an expected rate (Cayirci, 2015). Risk assessment has a

solid relationship with the analysis of vulnerability impact and the likelihood of threat

occurrence (X. Zhang et al., 2010).

8.3 Limitations

Apache and Squid reported vulnerability data is less smooth due to inconsistent trend

and seasonal factors. The number of reported vulnerabilities vary in all quarters of

the last ten years. Some quarters do not have even a single vulnerability reported.

Furthermore, the vulnerability datasets are very small as only 100 Apache, and 56

Squid vulnerabilities were reported to NVD. Therefore, inconsistent data resulted in
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less accurate results. Symmetric Mean Absolute Percent Error (SMAPE) was used to

measure the accuracy of the predicted results (Equation 8.1). MAPE was not considered

because the data that contains zero values may have twisted the overall prediction error.

SMAPE has a lower bound of 0% and an upper bound of 200% to avoid problems of

zero values when determining prediction error.

SMAPE = 200

N
×

N

∑
i=1

∣ActualData − Prediction
ActualData + Prediction ∣ (8.1)

Apache prediction results produced 77.61% SMAPE. Squid prediction results are

also less accurate with 105% SMAPE (SMAPE upper bound is 200%). However, Xen

prediction results are better with 50.30% SMAPE because Xen reported vulnerability

data is relatively smoother than Apache and Squid.

A structured analysis approach using attack trees was used to determine threat like-

lihood levels. However, attack trees tend to be used at high levels of abstraction. Attack

trees are also limited to viable threat-only vectors that contain implicit information such

as assets, vulnerabilities, and TAs (Hutle et al., 2015).

The CSA STAR database can be searched for answers to make security decisions.

More than 100 CSPs answered the questionnaire, and each CSP answered more than

200 questions. The answers from CSPs in most cases were not just Yes or No, but

were descriptive. Therefore, the search would require a significant amount of time from

customers to find the relevant answers to make adoption decisions.

The vulnerability prediction process uses reported vulnerability data from online

vulnerability databases. However, there is another limitation related to proprietary

software where vendors do not report their vulnerabilities to databases.
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8.4 Future Directions

This section provides the directions to extend this research in the future.

8.4.1 Vulnerability Prediction

Currently, the number of reported vulnerabilities is used as an input dataset to predict

vulnerabilities for future. However, the reported vulnerability data which is used for

prediction treats all the reported vulnerabilities equally. The accuracy of the prediction

model could be improved by including additional factors such as an access complexity

score and the impact level of each reported vulnerability to the input dataset. The

prediction model could be then further optimised to predict other dependent variables

such as type and frequency of the reported vulnerabilities instead of only predicting the

number of unknown vulnerabilities.

Another future direction would be to use other prediction models such as ARIMA

prediction models to predict unknown vulnerabilities using the same input dataset.

Roumani et al. (2015) uses both ARIMA and exponential smoothing time series methods

to predict the number of vulnerabilities for five web browsers. ARIMA could be

considered to predict the unknown vulnerabilities of large software applications like

Xen. The prediction results of ARIMA could be compared with the Holt-Winters

prediction to see which model provides more accurate results with the given input

dataset.

8.4.2 Threat Likelihood Assessment

Threat likelihood assessment is an essential phase of the Xen risk assessment process.

The accuracy of risk assessment results depends on the accuracy of the threat likelihood

assessment process. In this research, a structured analysis approach is used for threat

likelihood assessment. It provides a broader and high-level view of threats using attack
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trees. However, attack trees become unwieldy on devices or at implementation specific

lower levels. Therefore, an optimised threat modelling technique such as Semantic

Threat Graphs (STGs) could be used to ensure an in-depth threat analysis at a lower

technical level. STGs are better for the assessment of specific components and imple-

mentations on the lower level that includes identification of suitable countermeasures.

However, STGs are complex and lack methods to model weak entry points of the system

and between different components of the system.

Therefore, to have an optimised threat assessment process, attack trees and STGs

could be combined to develop a more comprehensive and understandable map of the

potential weak entry points of the system. This hybrid process would also provide

detailed knowledge and protection strategies for the system and components such as

STGs make the information implicit which is explicit in an attack tree. Therefore, it

is suggested that STGs could be used along with attack trees to identify not only the

threats but also the countermeasures for the identified threats.

Hutle et al. (2015) proposes the use of STGs to explicitly present the relationships

between the threats and the security controls. The attack graphs are used as a general-

isation of attack trees, a Smart Grid Architectural Model (SGAM) based model, and

attack patterns to identify threats to key information assets in a smart grid. The purpose

is to construct comprehensive graphs that describe threats to large software applications

like the Xen hypervisor.

8.5 Conclusion

Cloud computing due to its dynamic nature leverages different security risks to each

of its service delivery models. There is a long list of factors on which risks are

dependent upon such as data or information belonging to customers, scalable and flexible

architecture, and immature security controls. The lack of security controls to mitigate
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risk in CC results in lack of adoption of cloud services by the organisations. This

research presents a vulnerability prediction and qualitative inductive risk assessment

process that targets the Xen hypervisor. A hypervisor is a core component of the IaaS

service delivery model. Security management is mostly the responsibility of customers

in this delivery model; however, CSPs are only responsible for the security of the

hypervisor. Customers are unaware of the security of the virtualised infrastructure

where their data and information will be stored after the move to cloud infrastructure.

This raises concerns from many customers resulting in a lack of adoption of cloud

infrastructure services. Therefore, a platform for customers to analyse vulnerabilities

and risks to these hypervisors is desirable.

Prediction of vulnerabilities can help minimise the damage therefore, it is desirable

to identify the vulnerabilities earlier in software systems to help reduce the cost of

damage and also the loss of reputation which can be caused by a successful exploitation.

This research presented an unknown vulnerability prediction process that would enable

the organisations to identify the security tools to harden the hypervisor to mitigate the

risks of vulnerability exploitations. Time Series Holt-Winters method is used to predict

the number of unknown vulnerabilities as it is a good fit for the vulnerability datasets

(Roumani et al., 2015). This research used the reported Xen vulnerability dataset

retrieved from the NVD. The prediction model predicted 41.85 vulnerabilities for 2018.

The average reported Xen vulnerabilities from 2013 to 2017 were 43.80 vulnerabilities

per year. The validity and reliability of the prediction model was determined by using

MAPE. MAD was used to measure the accuracy of the result using control chart by

tracking the prediction. Prediction model did not exceed thresholds levels, as tracking

signal was well under the upper and lower control limits. Security recommendations

were also provided to mitigate vulnerability exploitation scenarios for example, the

hypervisor should be patched and updated regularly, the vendor’s website should be

visited regularly to see the news or updates, vulnerability databases should also be
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checked regularly to know about new vulnerabilities regarding the hypervisors.

Risk assessment of the cloud and effective management is a challenging research

problem. To minimise the security concerns of customers and to convince them to

adopt IaaS, risks and their severity levels must be known to make informed security

decisions. The risk assessment process in this research would allow customers to have

a comprehensive risk assessment platform to analyse Xen security and make decisions

to adopt Xen based virtualised infrastructure. The risk assessment would allow them

to avoid and reduce threats, adverse actions, and attacks by quantifying the risks and

implementing mitigation strategies. Through risk assessment, nine technical risks of

Xen were identified along with the relevant vulnerabilities, and assets. The results show

that R3 (Malicious Insider) and R7 (Compromise Hypervisor) pose a High severity level

to Xen from a PU threat actor. The assessment results also show that an NU threat actor

poses a High risk severity levels for R2 (Isolation Failure), R4 (Intercepting Data in

Transit), R6 (Undertaking Malicious Probes or Scans), R7 (Compromise of Hypervisor),

and R9 (Management Interface Compromise). Later, security recommendations were

made for the organisations to mitigate the risks with high severity. However, customers

are encouraged to identify and add new risks in the assessment process that may be

specific to their services, data, and information. The customers can consider the security

recommendations made in this research to improve the security of their Xen based

virtual environment or optimise selection process of a cloud service provider after

analysing the security controls and procedures.

The vulnerability prediction and risk assessment process was evaluated by applying

it to the Apache HTTP and Squid Proxy software packages. Apache and Squid were

chosen to demonstrate the generalisability and applicability of the process to other

open source infrastructure level software packages. Moreover, Apache and Squid were

targeted for their wide level of usage around the computer world as a web cache and

proxy servers respectively. Furthermore, being open source software packages, complete
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reported vulnerability data was available through vulnerability databases. The evaluation

process did not show limitations and indicates that it is not explicitly developed for

the Xen hypervisor. It can also be applied to other open source infrastructure level

software packages. The process would not require changes in analysis methods, but a

thorough study would be required to identify the new risk that may be introduced due

to advancements in cyber-attacks. Also, new types of vulnerabilities and threats may

appear due to upgradations of Xen.
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Appendix A

Vulnerability Types and Threat Actors

Properties

A.1 Vulnerability Types

Reported and unknown vulnerabilities are the two vulnerability categories which are

mentioned as follows:

Known or Reported Vulnerabilities Known vulnerabilities are those which are re-

ported to vulnerability databases. The security community discovers and analyses

the vulnerabilities and shares the vulnerability information over the internet

through databases such as NVD, CVE, and SANS. This online vulnerability

information helps the community to identify and truly understand the attack type.

Unknown Vulnerabilities Unknown vulnerabilities are those which are not discovered

yet. In another case, the vulnerabilities which are discovered but not reported to

the vulnerability databases are also referred as unknown vulnerabilities.
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A.1.1 Threat Actor Capabilities

This section details the capabilities of TAs to exploit a vulnerability.

Formidable A TA with formidable capability can take several months to exploit a

target system. A TA can use specially developed tools and equipment for some

specific targets. Moreover, TAs with such capability have expert level knowledge

about computers and security.

Significant A TA with significant capability can spend few months to exploit a target

system. A TA can use publicly available tools and large equipment for some

specific targets. Moreover, TAs with such capability have professional level

knowledge about computers and security.

Limited A TA with limited capability can spend few weeks or days to exploit a target

system. A TA can use publicly available tools with some equipment. Moreover, a

TA with limited capability is a trained computer or a network user.

Little A TA with little capability can spend few hours or days to exploit a target system.

A TA can try different hacking tools with some equipment. Moreover, a TA with

little capability is an average computer or a network user.

Very Little A TA with minimal capability can spend few hours to exploit a target

system. A TA can use the equipment already connected to the target system such

as plug and play, and removable devices.

A.1.2 Threat Actor Motivation Levels

This section details the motivation levels of TAs to exploit a vulnerability.

Very High (Focused) The primary objective of a focused TA is to exploit the target

system by all means necessary.

High (Committed) A TA who is highly committed, will try to exploit the target system
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on a frequent or constant basis. However, they may require formal clearance and

could be deterred.

Medium (Interested) A TA who is interested, will try to exploit the target system if

an opportunity exists, and the attack takes less effort. However, they may require

taking formal clearance and could be deterred.

Low (Curious) A TA who is curious, will investigate the target system casually and

attack if there is any weakness. However, TA may require formal clearance and

could be deterred.

Very Low (Indifferent) A TA with indifferent motivation level will not attack the

system and does not pose any risk.

A.2 Qualitative Threat Likelihood Level from Threat

Actors

Threat likelihood levels can be determined as Severe, Substantial, Moderate, Low, and

Negligible.

Severe A severe threat level can be expected when a TA behaves very severely, ignores

all the security policies, and is an unreliable person. This threat level can be

observed in organisations which do not meet IA Maturity Model Level 1.

Substantial The level of threat will be substantial if a TA does not behave well,

sometimes ignores all the security policies and procedures, and occasionally is an

unreliable person. This threat level can be observed in organisations which do

not meet IA Maturity Model Level 1.

Moderate The threat level will be moderate if a TA is a reliable and trustworthy

person, and behaves well. They also follow security policies and procedures and

do not try to bypass security controls to perform job-related tasks. This threat
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level can be observed in organisations which do not meet IA Maturity Model

Level 2.

Low The threat level will be low if a TA behaves exceptionally well, is a reliable

and trustworthy person. They strictly follow security policies and have complete

awareness of consequences of bypassing security controls. This threat level can

be observed in organisations which do not meet IA Maturity Model Level 3.

Negligible Organisations can ignore this threat level as it does not pose any risk.



Appendix B

Common Vulnerability Scoring

Systems

B.1 Common Vulnerability Scoring Systems

This appendix provides the details of Common Vulnerability Scoring Systems (CVSS)

used score the vulnerabilities to determine their impact ratings. Section B.1.1 provides

the equation used to calculate Base score. Section B.1.2 presents the rubric used to

calculate the score. Section B.1.3 and B.1.4 covers the metrics that determine the

sub score to finally determine the Base score to determine the impact of vulnerability

exploitation.

B.1.1 Base Scoring Equation

The Impact and Exploitability sub score equations are combined to calculate the Base

Score. The Base score is calculated as,
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B.1.2 Scoring Rubrics

CVSS 3.0 provide guidelines to score vulnerabilities. To figure it out that when to

score the impact of the vulnerability, constraint impacts should be considered to an

understandable final impact which an attacker is going to achieve. The attacker’s ability

level to cause impact on an asset should be supported by the exploitability sub score as

a minimum. But the vulnerability’s description should also be considered to include

details to determine the impact.

The below Figures from 4.6 to 4.13 provides the CVSS 3.0 scoring rubrics to score

base group metrics as provided in above Table 4.18.
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Attack Vector9/8/2017 AV1 (1).xml
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Does the attacker exploit the
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network stack?
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Network (N)
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Adjacent Network
(A)
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logical network
distance i.e.

bluetooth, wifi etc.

Local (L)
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Physical (P)
Attacker requires
physical access to

the vulnerable
component

Yes

No

Yes

Yes

No

No

B
as

e 
sc

or
e 

in
cr

ea
se

s 
th

e 
fa

rth
er

 th
e 

at
ta

ck
er

 c
an

 b
e 

fro
m

 th
e 

ta
rg

et

Figure B.1: Scoring Rubric for Attack Vector Metric
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Attack Complexity

9/8/2017 AC1.xml
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Figure B.2: Scoring Rubric for Attack Complexity Metric

Privileges Required

9/8/2017 PR1.xml

1/1

Must the attacker be 
authorised to the vulnerable
component prior to attack

Are administrator privileges
required?

None (N)
An unauthorised

attacker

Low (L)
User level access

required

High (H)
Administrator or

system level access
required

Yes

Yes

No

No
B

as
e 

sc
or

e 
in

cr
ea

se
s 

as
 fe

w
er

 p
riv

ile
ge

s 
ar

e 
re

qu
ire

d

Figure B.3: Scoring Rubric for Privileges Required Metric
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User Interaction

9/8/2017 UI1.xml
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Figure B.4: Scoring Rubric for User Interaction Metric
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Scope

9/8/2017 S1.xml

1/1

Can the attacker affect a
component whose authority is
different than the vulnerable

component?

Changed (C)
Impacts caused to

systems beyond the
exploitable
component

Unchanged (U)
Impact is localised to

the exploitable
component

Yes

No

B
as

e 
sc

or
e 

is
 g

re
at

er
 w

he
n 

im
pa

ct
 a

ffe
ct

s 
sy

st
em

s 
be

yo
nd

 th
e 

vu
ln

er
ab

le
 c

om
po

ne
nt

Figure B.5: Scoring Rubric for Scope Metric
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Confidentiality Impact

9/8/2017 CI1.xml
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critical?
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Figure B.6: Scoring Rubric for Confidentiality Impact Metric

Integrity Impact

9/8/2017 Integrity1.xml
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Figure B.7: Scoring Rubric for Integrity Impact Metric
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Availability Impact

9/8/2017 avail1.xml
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access to the affected

 component , OR is the  
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Figure B.8: Scoring Rubric for Availability Impact Metric

B.1.3 Exploitability Metrics

The Exploitability metrics provide characteristics of a vulnerability and formally refers

to a vulnerable component. These metrics are categorised as Attack Vector (AV), Attack

Complexity (AC), Privileges Required (PR), User Interaction (UI) and Scope (S). All

these metrics should be scored relative to the vulnerable component and provide the

qualities of the exploited vulnerability.

Attack Vector (AV)

AV provides the context of vulnerability exploitation. This metric value is based on the

attacker’s way to reach to the target system through Network (N), Adjacent Network (A),

Local (L) and Physical (P). The metric value will result in more score if the attacker is

exploiting the target system across the internet as compared to exploiting it by requiring

physical access to it. Table 3.2 provides the AV metric values and their description.
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Table B.1: Attack Vector Metric Values

Metric
Value

Description

Network
(N)

This metric value refers to the vulnerable system which can
be compromised by exploiting a network vulnerability. Such
a vulnerability is considered as “remotely exploitable” and
the vulnerable component is one or more hops away from
the attacker.

Adjacent
Network
(A)

This metric value means that the vulnerable component is
bound to network layer but the attacker should have network
access using the same physical network device and must be
within the same subnet as the vulnerable component. This
attack can happen when both the attacker and target are in
the same broadcast domain.

Local (L) This metric value means that the vulnerable component
is not bound to the network layer and the attacker uses
read/write/execute capabilities. The attack can happen in two
ways, either the attacker is logged in locally and have access
to the system to exploit the vulnerability or attacker require
end user’s interaction to execute the required commands.

Physical (P) This metric value means that the attacker is required to phys-
ically access and manipulate the vulnerable component.

Attack Complexity (AC)

This metric provides the conditions which are beyond the control of the attacker. For

example, higher this metric value is, higher is the complexity of the attack. The

conditions offered by this metric forces the attacker to learn more about the target

system, configuration settings and policies. The detail of AC metric values and their

description is provided in Table 3.3.
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Table B.2: Attack Complexity Metric Values

Metric
Value

Description

Low (L) This metric value allows the attacker to achieve repeatable
success again the vulnerable component. The attacker does
not need to put too many efforts to learn about the target
system and its configurations.

High (H) This metric value forces the attacker to learn more about
the vulnerable component and its configuration settings etc.
The attacker needs to spend more time and efforts in pre-
paration and exploitation of the vulnerable component. For
example, the attacker must put extra efforts to learn about
target system’s configuration settings, shared secrets and
exploit mitigation techniques. The attacker may also need
to launch a man-in-the middle attack to learn or modify
network communications.

Privileges Required (PR)

This metric value is the level of privileges an attacker must possess to exploit a vulner-

able component. For example, higher the value of this metric is, lower the privileges

an attacker require. Means, if the attacker has no or low privileges, then it would be

difficult for him to exploit the vulnerability as he needs to obtain access privileges.

However, if the attacker has a high level of privileges, then it would be easy for him

to exploit the vulnerability. Table 3.4 provides PR metric values and their relevant

description.

Table B.3: Privileges Required Metric Values

Metric
Value

Description

None (N) The attacker has no privileges and not authorised to access
settings or configuration information to exploit the vulnerab-
ility.

continued . . .
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. . . continued
Metric
Value

Description

Low (L) This metric value means that the attacker has some level
of privileges and authorised to access some file and config-
uration settings. Therefore, this metric makes the attacker
capable to exploit a vulnerability resulting in an impact to
non-sensitive resources.

High (H) The attacker has high privileges to access files and configur-
ation settings. Making the attacker very capable to exploit
the vulnerable system and cause damage to component-wide
settings and files belongs to other users.

User Interaction (UI)

This metric value determines the level of participation from the end user to launch a

successful attack and exploit the vulnerable component. This metric value would be

high if no interaction is required from the end user. The detail of UI metric values and

relevant description is provided in the Table 3.5.

Table B.4: User Interaction Metric Values

Metric
Value

Description

None (N) No interaction or participation from the end user is required
to exploit the vulnerable component.

Required
(R)

The end user must participate and take some actions for
the attacker to exploit the vulnerable system. For example,
the vulnerability exploitation is only possible at the time
when administrator is installing an application on the target
system.

Scope (S)

This metric means when the attacker exploits a vulnerability which is under one au-

thorisation scope can affect resources managed by another authorisation scope. For

example, in the context of virtual environment, the change of scope occurs when an
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attacker runs malicious code on guest Virtual Machine (VM) to bypass the hypervisor

layer and access or delete some files of the host OS (Dom0 in case of Xen hypervisor).

So, there are two scopes involved in this example. One scope that is, authorises and

controls VM and its user’s privileges and second scope that is, authorises and controls

host OS privileges. This metric value would be high if the scope change has occurred.

Table 3.6 provides the values and relevant description for S metric.

Table B.5: Scope

Metric
Value

Description

Unchanged
(U)

This metric value means that the exploited vulnerability can
only affect the resources under the same authorisation scope.
Exploitation does not affect resources authorised by another
scope.

Changed
(C)

This metric value means that the exploited vulnerability can
affect resources which are under another authorisation scope.
Exploitation does affect resources authorised by another
scope.

B.1.4 Impact Metrics

The impact metrics provide the properties of the exploited component. It refers to the

component that is affected by a successful attack and reflects Confidentiality, Integrity,

and Availability (CIA) impact to the exploited component. However, if the exploitation

resulted in a change of Scope, then this metric should reflect the CIA impact to the

exploited component or the impacted component under another authorisation scope. If

the exploitation resulted in no change of Scope, then this metric should only reflect the

CIA impact to the exploited component.
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Confidentiality (C)

This metric value provides the impact to the confidentially of the data or information

managed by the vulnerable component. If the value of this metric is high, then the loss

of confidentially is also very high. Table 3.7 provides the C metric values along with

the relevant description.

Table B.6: Confidentiality Impact Metric Values

Metric
Value

Description

High (H) This metric value means a complete violation of the con-
fidentiality and disclosure of all the information such as
administrator’s password and shared encryption keys to the
attacker.

Low (L) This metric value refers to the loss of confidentiality but, to
some extent. A successful exploitation results in access to
some information but not complete control of the inform-
ation and does not directly affect the target system or its
users.

None (N) This metric value refers to no loss of confidentiality.

Integrity (I)

This metric value provides the impact to the integrity of the information after a successful

exploitation. Integrity refers to the reliability and exactness of the information. If the

value of this metric is high, then the loss of integrity is also very high. Table 3.8 provides

the I metric values along with the relevant description.
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Table B.7: Integrity Impact Metric Values

Metric
Value

Description

High (H) This metric value is a complete violation of the integrity
and loss of protection of all the information. For example,
unauthorised modification of all the files protected by the
vulnerable system. High metric value refers to the direct
impact of the loss of integrity to the users of the systems.

Low (L) This metric value refers to the loss of integrity but, to some
extent. A successful exploitation results in a unauthorised
modification to some information but not complete control
of the information. Low metric value refers to the level of
unauthorised modification that does not have a direct impact
on the vulnerable system or its users.

None (N) This metric value refers to no loss of integrity.

Availability (A)

This metric value provides the impact to the availability of the information to the

legitimate users after a successful attack. Availability refers to the accessibility of the

required information by the users of the target system. If the value of this metric is high,

then the consequences are also very high. The metric values and their description for A

metric are provided in the Table 3.9.

Table B.8: Availability Impact Metric Values

Metric
Value

Description

High (H) This metric value means complete loss of the availability
of information to legitimate users of the target system. A
successful exploitation of the target system results in loss of
some availability, but High metric value refers to the direct
impact of the loss of availability to the users of the vulnerable
system.

continued . . .
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. . . continued
Metric
Value

Description

Low (L) This metric value refers to the loss of integrity but, to some
extent. A successful exploitation results in a unauthorised
modification to some information but not complete control
of the information. Low metric value refers to the level of
unauthorised modification that does not have a direct impact
on the vulnerable system or it’s users.

None (N) This metric value refers to no loss of availability.
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