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Abstract

With the development of Internet and cellular network, it becomes much easier for

people to receive information from multiple data sources. However, the data from

different sources describing the same entity or object is usually conflicting and erroneous.

Therefore, it is important to assess the data veracity, resolve the conflicts and extract the

trustworthy information among the multi-source data for the downstream applications.

In this thesis, I focus on the truth discovery models to assess data veracity. Truth

discovery is an emerging technique that estimates the most trustworthy information (also

known as truth) of each object from the multi-source data. Specifically, a truth discovery

model is usually an unsupervised learning model that learns the unknown source

reliability from the observed multi-source data to better estimate object truth. This

thesis advances truth discovery in applications where data is collected from data streams

and crowdsourcing applications, specifically studies how to use object correlation in

streaming data truth discovery and how to improve the accuracy and efficiency of

streaming data truth discovery. For crowdsourcing applications, the thesis presents two

truth discovery models that can better model human behaviors in the truth discovery

steps. As most truth discovery methods are unsupervised learning models in which the

ground truths of objects are unknown, the thesis also discusses how to use a small set of

ground truths to guide the source reliability estimation and develops a semi-supervised

truth discovery model to better discover object truths.
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Chapter 1

Introduction

1.1 Background

In the era of big data, data resides in every aspect of our lives. With the development of

computing power, Internet and wireless network, it becomes much faster and flexible to

generate and publish data and information. Similarly, it becomes easier for people to

obtain information from various channels and systems such as World-Wide-Web, social

networks, mobile apps, physical sensors, and crowdsourcing platforms. People may use

these data for different purposes. For example, a user may use a search engine to ask a

question she is interested in, a data scientist may collect data from some meteorological

monitoring sensors to forecast the future weather, and an AI expert may obtain some

labeled data from a crowdsourcing platform to train a machine learning model. In all

these scenarios, one phenomenon that may appear frequently is that data describing the

same object could be from multiple sources. However, the multi-source data describing

the same object is usually conflicting and noisy. For example, it is well-known that

Mariana Trench has the deepest natural trench in the world, if you search the query

“what is the depth of the Mariana Trench” on a search engine, such as Google, it gives

13



Chapter 1. Introduction 14

New Zealand Australia France Italy China
Source 1 Auckland Sydney Marseille Milan Shanghai
Source 2 Wellington Canberra Paris Rome Beijing
Source 3 Auckland Melbourne Pairs Venice Beijing

MV Auckland Sydney Pairs Milan Beijing
Weighted Voting Wellington Canberra Pairs Rome Beijing

Table 1.1: A Motivative Example

you different results. From National Geographic1, it reports the depth of Mariana Trench

is 11,034 meters. However, Geology2 reports the depth of Mariana Trench is 10,994

meters. Given the noisy data, it is hard for the users to decide which one to trust. Thus,

one important task is to assess the veracity of the data and identify the most trustworthy

information as the truth of each object. From this process, it turns the conflicting and

noisy data into valuable information for the users to use in the downstream applications.

1.2 From Data Veracity Assessment to Truth Discovery

A straightforward approach of assessing data veracity is using majority voting (MV) or

mean. MV works on the categorical data. For each object, MV chooses the data that

receives the most votes as the truth of that object. Mean works on continuous data. For

each object, mean simply takes the average of the data as the truth of that object. The

assumption made underlying MV and mean is that they treat all the sources equally

reliable. However, this assumption is usually not held in many scenarios because the

reliabilities of sources vary in real-world applications. If we know the reliabilities of

each source, it can help us better assess the data veracity and we can identify the truth

for each object more accurately. For example, consider the example in Table 1.1. In

this example, there are three sources providing information of capitals of five countries.

From the information provided by the three sources, we want to find the true capitals

1https://www.nationalgeographic.org/activity/mariana-trench-deepest-place-earth/
2https://geology.com/records/deepest-part-of-the-ocean.shtml
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of the five countries. From this table we can see that the three sources cannot reach

an agreement on their claims. It is essential to decide which ones are veracious. MV

identifies the truth by checking which candidate receives the most votes. However,

it wrongly selects the capital cities of New Zealand, Australia and Italy. If we know

that Source 2 is more reliable than the other two sources, we can weigh the votes from

Source 2 more than the votes from the other two sources, then we can get better results

as shown by the method Weighted Voting in Table 1.1.

The example discussed above demonstrates the effectiveness of data veracity as-

sessment by considering the source reliability. If we know the source reliabilities,

we can easily identify object truths accurately. However, the source reliabilities are

usually unknown a priori. The only data we have on hand is usually the observed data

claimed by the sources on each object. Thus, it is a challenging task to assess the source

reliabilities from the data.

In the light of this challenge, truth discovery emerges as an effective technique for

data veracity assessment by finding the true value of each object claimed by multiple data

sources. Different from the naive MV and mean, truth discovery identifies object truths

by estimating source reliabilities. The generalized task definition of truth discovery can

be described as follows.

Definition 1.1. Truth Discovery (Y. Li, Gao et al., 2016): Given a set of objects and a

set of sources, each source can make its claims on a (sub)set of objects. The goal of

truth discovery is to aggregate the truths of the objects from the observed source claims

by estimating the source reliabilities.

As the object (Dong et al., 2015) truths and source reliabilities are usually both

unknown a priori, truth discovery exploits an unsupervised approach which learns the

source reliabilities and object truths simultaneously from the data. For this reason, truth

discovery receives a lot of attentions and becomes a hot topic in the community.
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1.3 Applications

Truth discovery has been successfully applied in many application domains. In terms

of healthcare, an early research work (Dawid & Skene, 1979) that is related to truth

discovery was proposed to evaluate the trustworthiness of clinicians’ opinions. In the

online healthcare community, the users can post health-related questions online and

seek advices from the Internet users. However, the online users are not medical experts

and some of their answers could be incorrect. The authors in (Mukherjee, Weikum &

Danescu-Niculescu-Mizil, 2014; Y. Li et al., 2017) adopt truth discovery technique to

analyze and aggregate the users’ responses in order to find the most trustworthy answer

for each question.

For data fusion and information extraction, the data describing the same entity could

be extracted from different data sources, such as database, corpora and web pages. The

data extracted from different sources could be conflicting, truth discovery (F. Li, Lee &

Hsu, 2014; Yu et al., 2014; Dong et al., 2015) can be used to resolve these conflicts and

output the accurate information for each entity.

With the development of social networks and mobile technologies, it becomes much

easier for people to update real-time information about some events we are interested in.

People can engage directly with the mobile Internet and share real-time experiences at

an unprecedented scale in social sensing applications (D. Wang, Abdelzaher & Kaplan,

2015). For example, Waze3 is a social sensing navigation mobile app that allows the

drivers to upload the real-time road conditions, and the other drivers can use this app to

view the places having congestions and avoid some traffic problems. However, the data

uploaded by the users are not always accurate. Thus, truth discovery (Le et al., 2011;

Su et al., 2014; D. Wang, Kaplan & Abdelzaher, 2014; S. Wang et al., 2015; S. Wang,

Wang, Su, Kaplan & Abdelzaher, 2014; Gupta, Lamba, Kumaraguru & Joshi, 2013)

3https://www.waze.com/
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can be used to aggregate the noisy user data and discover accurate information.

Crowdsourcing platforms, such as Amazon Mechanical Turk4 and Figure Eight5,

provide a cost-effective and efficient way to collect labeled data from the crowd workers.

The requesters can post the unlabeled data as tasks on a crowdsourcing platform, and

the crowd workers will label the tasks and earn some rewards. However, most crowd

workers are not experts and their labeling abilities are different. As a result, the labeled

data collected from the crowd workers are usually conflicting and noisy. To tackle this

problem, truth discovery techniques can be applied to process the noisy data and output

the most trustworthy label for each task.

1.4 Research Motivation

Although truth discovery techniques have been applied in many applications and with

different merits, there are still some areas that are left unexplored. The primary research

gaps are identified as follows.

• Streaming Data. In recent years, significant advances have been made in

mobile and web technologies. It has led to the proliferation of many streaming

data intensive applications, in which data in streaming format is being collected

sequentially in large volume and high speed from multiple agents. Most of

the traditional truth discovery methods are designed for static data, in which

time dimension is not involved. These methods adopt an iterative approach

that updates source reliabilities and object truths iteratively. Although these

iterative-based methods can accurately discover object truths, the iterative process

is too computationally expensive to process streaming data in which data arrives

sequentially from data streams. To tackle this problem, some incremental truth

4https://www.mturk.com/
5https://www.figure-eight.com/
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discovery methods are developed for steaming data. These incremental truth

discovery methods are efficient but they cannot estimate source reliabilities,

which results in large errors when estimating object truths. Therefore, it is desired

to have a truth discovery method that is both accurate and efficient for estimating

object truths when data arrives from data streams.

• Object Relation in Dynamic Environment. Usually, the objects are correlated

and there exists some relationships among the objects. In the truth discovery

literature, there are a few research works that consider object relations in the truth

discovery process. It is also claimed that using object relation can improve truth

discovery accuracy. However, the existing works that consider object relations

are proposed to work in a static environment where all the data is assumed to be

available all at once. In a dynamic environment where data arrives sequentially

from data streams, the existing methods accounting for object relations cannot

efficiently aggregate object truths from the streaming data. Therefore, it is

demanded to have an efficient truth discovery method accounting for object

relation that can work in both static and dynamic environment.

• Partially Observed Ground Truths. In a traditional truth discovery setting, the

source reliabilities and object truths are both unknown a priori. Most of the

truth discovery method exploits an unsupervised approach that learns the source

reliabilities and object truths at the same time from the data. Although it is

unpractical and expensive to obtain the ground truths of all the objects, sometimes

it is possible to get the ground truths of a very small set of objects. Thus, it is

important to have a semi-supervised truth discovery method that can use the small

amount of valuable ground truths. Yin & Tan et al. (2011) tackled this problem

by using graph propagation. However, the proposed method was designed for

categorical data, but it does not perform well on continuous data.
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• Human Sources. In many applications the sources that provide information are

human. Different from the non-human sources, human sources have different

patterns when providing data. For example, in crowdsourcing applications, a

crowd worker (as human source) may spam the tasks by submitting randomly

labels without even knowing the details of the tasks. A worker may also have

different probabilities of choosing the choices of tasks. Thus, it is crucial to

consider the human sources’ unique behaviors in the truth discovery process.

1.5 Research Question

According to the research motivations mentioned above, the research objectives are

described by four research questions given below.

Research Question 1: How to use object relations in truth discovery in a dynamic

environment?

• Research Sub-question 1.1: How to model object relations in a dynamic envir-

onment?

• Research Sub-question 1.2: How to efficiently discover object truths in a dy-

namic environment when object relation is considered?

Research Question 2: How to achieve both high accuracy and high efficiency for

streaming data truth discovery?

• Research sub-question 2.1: How to discover object truths efficiently if data

arrives from data streams?

• Research sub-question 2.3: Given that achieving high accuracy is an objective

of streaming data truth discovery, how to further improve stream data truth

discovery efficiency?
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Research Question 3: If the sources are human, how to model the humans’ own

characteristics in the truth discovery model?

• Research sub-question 3.1: How to model humans’ guessing behaviors in a

truth discovery model?

• Research sub-question 3.2: How to better model humans’ labeling process for

inferring truths in crowdsourcing applications?

Research Question 4 How to effectively use a small amount of ground truths to better

aggregate continuous object truths?

• Research sub-question 4.1: How to discover object truths in an un-supervised

manner?

• Research sub-question 4.2: How to adjust the importance of the ground truths

in an un-supervised truth discovery model?

1.6 Research Method

My PhD research method is an iterative process which is summarized in Figure 1.1 on

the next page. The first step is to conduct literature review of truth discovery. Next,

I identify the research gaps from the existing research works and sub-sequentially

propose a research question attempting to address the identified research gap. Then two

processes run in parallel. On one hand, I develop a solution that can be used to solve

the proposed research question. On the other hand, I collect datasets that can be used to

later evaluate the proposed solution. I use three approaches to collect data.

1. Search for the publicly available datasets used in existing research works.

2. Crawl data from websites.
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Figure 1.1: Research Method

3. Post the wanted data on a crowdsourcing platform, and ask the crowd workers to

label the data.

After a solution is developed and the ideal datasets are collected, I evaluate the developed

solution. This is achieved by comparing the proposed solution against state-of-the-

art truth discovery methods and see if the performance is improved according to the

proposed research question. By analyzing the evaluation results, I would improve the

proposed solution if required. If no improvement room can be identified, I produce the

research report and then conduct the literature review again to identify new research
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gaps.

1.7 Contributions of the Thesis

In this thesis, I propose five truth discovery models which solve different aspects raised

in the research questions. Based on the five discovery models, the contributions of the

thesis are summarized as follows:

1. I propose the Probabilistic Truth Discovery with Object Correlations (PTDCorr)

approach that can incorporate object correlations to better estimate source reliabil-

ities and object truths. The PTDCorr model aims at answering Research Question

1.1. Based on PTDCorr, I develop an incremental iPTDCorr algorithm which

works efficiently in a dynamic environment. iPTCorr is able to efficiently aggreg-

ates truths of objects from a data stream without re-processing the historical data.

The iPTCorr model aims at answering Research Question 1.2. The model and

results are published in (Yang, Bai & Liu, 2019c).

2. I propose the Dynamic Source Weight Computation Truth Discovery schema

(DSWC) that can efficiently apply iterative-based truth discovery methods to

streaming data truth discovery applications. The improvement of efficiency is

achieved by running the iterative processes at only certain time-stamps instead

of all the time-stamps. The proposed DSWC model aims at answering Research

Question 2. The model and results are published in (Yang, Bai & Liu, 2019a).

3. I propose a model, called Crowdsourced Truth Discovery modeling Guessing

and task Difficulty (CTDGD), that aggregates crowdsourcing single-choice tasks’

truths by jointly modeling tasks’ difficulties and the crowd workers’ abilities

(reliabilities) and guessing behavior. The proposed CTDGD model aims at
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answering Research Question 3.1. The model and results are published in (Yang,

Bai & Liu, 2019b).

4. I propose a model, called Confusion-aware Truth Inference (CTI), that aggregates

crowdsourcing single-choice tasks’ truths by considering choices’ confusion

degrees brought to the crowd workers. The proposed CTI model aims at answering

Research Question 3.2.

5. I propose the Optimization-based Semi-supervised Truth Discovery (OpSTD)

that can use a small set of ground truths to improve the accuracy of truth discovery.

The weights of the ground truths can be tuned freely by a hyperparameter. The

proposed OpSTD model aims at answering Research Question 4. The model and

results are published in (Yang, Bai & Liu, 2018).

In summary, The proposed models, PTDCorr, iPTDCorr and DSWC are developed

for general truth discovery tasks in which the data is fed into the applications from

data streams. These three methods aim at improving both accuracy and efficiency for

streaming data truth discovery. CTDGD and CTI are developed for truth discovery for

crowdsourcing applications in which the sources are human. The novelty of CTDGD

and CTTI is that they both consider the characteristic human behaviors in the truth

discovery steps. Finally, the OpSTD model is a general truth discovery method that can

be applied to all kinds of applications if a small set of ground truths are available.

1.8 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 reviews the state-of-the-art truth discovery models.
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• Chapter 3 presents the models of PTDCorr and iPTDCorr which discover object

truths with object correlations in both static and dynamic environment.

• Chapter 4 presents the model of DSWC that aims at improving both accuracy

and efficiency for streaming data truth discovery.

• Chapter 5 introduces a crowdsourcing truth discovery method CTDGD that

estimates object truths by estimating human source reliabilities and object diffi-

culties and modeling human sources’ guessing behavior.

• Chapter 6 presents a crowdsourcing truth discovery method CTI that considers

tasks’ choice confusion degrees in crowdsourcing applications.

• Chapter 7 presents the model of OpSTD, a semi-supervised truth discovery

method for estimating continuous object truths.

• Chapter 8 concludes the thesis. It also outlines the future work.



Chapter 2

Literature Review

Truth discovery has received a lot of attentions in recent years, and many truth discovery

methods have been proposed with different merits. This chapter aims at providing a

preliminarily of truth discovery, and reviews related research works of truth discovery

in order to identify research gaps. In Section 2.1, it reviews three common frameworks

that are adopted by many truth discovery methods. In Section 2.2, it reviews the aspects

of sources that are considered in truth discovery methods. Section 2.3 reviews the

aspects of objects that are studied in the existing truth discovery algorithms. Section

2.4 presents the commonly used metrics for evaluating the truth discovery algorithms.

In Section 2.5, it lists some representative truth discovery methods. Finally, Section 2.6

summarizes this chapter.

2.1 General Truth Discovery Frameworks

This section starts by introducing the notations and symbols. The generalized truth

discovery definition was given in Definition 1.1. Next, the restatement of truth discovery

with symbols is given below.

Truth Discovery: There is a set of objects J , for each of the object j ∈ J , the

25
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Symbol Description
J The set of all the objects
I The set of all the sources
j A single object
i A single source
ai The real weight (a.k.a. reliability, quality) of source i
âi The estimated weight (a.k.a. reliability, quality) of source i
A The set of all source weights
Â The set of all estimated source weights
xij The claim (observation) of source s on object j
X The set of all claims
Xj The set of all claims on object j
Xi The set of all claims provided by source i
zj The real truth of object j
ẑj The estimated truth of object j
Z The set of all real object truths
Ẑ The set of all estimated object truths
Ji The set of objects that are claimed by source i
Ij the set of sources that claim (observe) object j

Table 2.1: Notations in Literature Review

information of the object j can be claimed by a set of sources I . Each object j

has an unknown object truth zj and each source i has an unknown source reliability

ai. Let xij denote the information of object j claimed by source i where i ∈ I , and

X = {xij ∣i ∈ I, j ∈ J} denotes all the claims provided by all the sources. Given all the

claims X , the goal of truth discovery is to estimate the truth ẑj for each object such that

the estimated object truth ẑj shall be close to the unknown real object truth zj .

The important notations and symbols that will be used in this chapter are summarized

in Table 2.1. Note that in the subsequent chapters, the notations are re-defined to better

suit the context of the problem solved in that chapter.

As discussed in Chapter 1, truth discovery estimates the object truths by considering

source reliabilities. In the truth discovery literature, the source reliability is also known

as source weight and source quality. In the rest of this chapter, it uses the terms source

reliability, source weight and source quality interchangeably. As the object truths and
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source weights are both unknown a priori, the following principle is widely adopted

(Y. Li, Gao et al., 2016).

Principle of Truth Discovery: A source is assigned with high weight if it frequently

provides trustworthy information, and the information supported by the sources with

high weights are more likely to be selected as the truth for the objects.

Three general truth discovery frameworks are presented which incorporate the

principle of truth discovery (Y. Li, Gao et al., 2016).

2.1.1 Iterative Framework

In truth discovery, the source weights and object truths are inter-dependent. To incor-

porate the inter-dependencies between source weights and object truths, some truth

discovery methods (Dong, Berti-Equille & Srivastava, 2009a; Galland, Abiteboul,

Marian & Senellart, 2010; Pasternack & Roth, 2010; Yin, Han & Philip, 2008) are de-

veloped as iterative algorithms which treat source weights and object truths as unknown

variables. These methods update source weights and object truths alternatively and

iteratively until the algorithm converges.

In the object truth update step, the source weights are fixed, and the object truths are

updated by weighted voting. For example, in Investment (Pasternack & Roth, 2010),

the sources uniformly vote their claims by using their source weights, the object truths

are updated by the weighted voting. Specifically, for a possible truth candidate x of

object j where x ∈Xj
1, the trustworthiness T (x) of the candidate x is computed as:

T (x) = ∑
i∈Ix

ai
∣Xi∣

(2.1)

In Equation (2.1), ai is the weight of source i, a larger weight indicates that the source

1Xj is the set of claims on object j. For example, assume there are 7 sources [i1, . . . , i7], the
claims of these sources on object j are [A,A,B,B,C,C,D]. Then the truth candidates of object j are
{A,B,C,D} and x ∈ {A,B,C,D}.
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is more reliable. Ix is the sources whose claims are x, Xi is the set of claims made

by source i and ∣ ⋅ ∣ denotes its cardinality. Then the truth zj of object j is updated by

choosing the candidate with the highest trustworthiness. From Equation (2.1), we can

see that the trustworthiness of a candidate is determined by the weights of the sources

which claim it. A candidate is more trustworthy if the sources Sx are more reliable.

In the source weight update step, the object truths computed in the previous step are

fixed. The source weights harvest the reliabilities back from the updated object truths,

and can be computed as

ai = ∑
x∈Xi

(T (x) ×
ai/∣Xi∣

∑i′∈Ix ai′/∣Xi′ ∣
) (2.2)

From Equation (2.2) we can see that the source weight is determined by the trustworthi-

ness of the claims the source provides. A source is assigned with a higher weight value

if its claims are more trustworthy.

After the iterative algorithm converges, for each object, it selects the truth candidate

with the highest trustworthiness as the estimated truth of the object.

2.1.2 Optimization Framework

There are some truth discovery methods incorporate the principle of truth discovery is

incorporated by modeling the truth discovery as an optimization problem (Y. Li et al.,

2015; Q. Li, Li, Gao, Zhao et al., 2014; Q. Li, Li, Gao, Su et al., 2014; Aydin et al.,

2014; Y. Li, Li et al., 2016, 2016), which aims at optimizing an objective function f

defined in Equation (2.3)

f = ∑
j∈J
∑
i∈I
ai × d(xij, zj) (2.3)
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In Equation 2.3, d(⋅) is a distance function which measures the distance between a

source’s claim and the object truth. In other words, the distance between a source’s

claim and object truth is the error that the source makes when it claims an object.

Different distance functions can be plugged in depending on the data types in the truth

discovery application. For example, 0 − 1 loss function can be used on categorical data

and L2 norm distance can be used on continuous data.

The objective function f represents the overall errors between the claims and the

object truths. Truth discovery methods formulated as an optimization problem aim at

finding the set of estimated object truths and source weights that minimize the objective

function f . One one hand, if d(xij, zj) is big, in order to minimize the objective

function, it needs to reduce the weight ai of source i. On the other hand, if ai is high, in

order to minimize the objective function, it needs to adjust zj closer to xij .

To find the optimal solutions defined by Equation (2.3), coordinate descent (Bertsekas,

1999) can be adopted. Coordinate descent is an iterative non-linear optimization al-

gorithm that updates the unknown variables alternatively. In the truth discovery prob-

lem, there are two sets of unknown variables Z = {zj ∣j ∈ J} and source weights

A = {ai∣i ∈ I}. In each iteration, coordinate descent fixes one set of variables, e.g. Z,

and updates the other set of variables, e.g. A. Then it fixes the other set of variables and

updates the variables that are fixed previously. Coordinate descent terminates until the

algorithm converges, and uses the updated object truths and source weights in the last

iteration as the estimated (optimal) object truths and source weights.

2.1.3 Probabilistic Graphical Model Framework

There are some truth discovery methods (Pasternack & Roth, 2013; B. Zhao & Han,

2012; B. Zhao, Rubinstein, Gemmell & Han, 2012; Z. Li, Han, Yu et al., 2016; X. Wang

et al., 2016a; Dong et al., 2015; Zhi et al., 2015; X. Wang et al., 2016b) tackle the
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aiα

xijzjβ
∣I ∣

∣J ∣

Figure 2.1: Plate Model of PGM

truth discovery problem by using probabilistic graphical model (PGM), in which the

object truth, claims and source are modeled as random variables. Specifically, the

unknown random variables in the truth discovery problem are the set of object truths

Z = {zj ∣j ∈ J} and the set of source weights A = {ai∣i ∈ I}, and the observed (known)

random variables are the set of claimsX = {xij ∣j ∈ J, i ∈ I}. In a PGM, the relationships

among the random variables are usually depicted by a graph. For example, Zhao et al.

(2012) propose GTM that models the truth discovery problem by Bayesian network (a

sub-class of GTM), and the graph that depicts GTM can be seen in Figure 2.1.

In Figure 2.1, the random variables (ai, xij and zj) are drawn in the circles, and the

circle of the observed variable (xij) is shaded. The hyperparameters are drawn with no

borders (α and β). There are two plates with labels at the bottom right, which represents

the occurrence of random variables in the model. We can read from this figure that there

are ∣I ∣ sources and ∣J ∣ objects. Here I make the assumption that each source observes

all the objects. Thus, there are ∣I ∣ × ∣J ∣ observations in total. However, the generative

model also supports sparsity in the claim set, i.e., each source claims a subset of objects.

In the context of GTM, both object truths and claims are continuous. Thus, it

assumes that object truth zj is generated from a Normal distribution with hyperparameter

β. It assumes that the source weight is generated from an Inverse-Gamma distribution

with hyperparameter α. Intuitively, the claim xij is dependent on both the object truth



Chapter 2. Literature Review 31

and the source weight, thus, xij is assumed to be generated from a Normal distribution

N(zj,1/ai) with mean zj and precision (inverse of variance) ai. Therefore, taking a

random draw xij ∼ N(zj,1/ai), xij is closer to the object truth if ai is high.

Given the formulation of GTM, the joint likelihood function can be formulated in

Equation (2.4)

p(A,Z,X) =∏
i∈I
p(ai∣α)∏

j∈J
(p(zj ∣β)∏

i∈I
p(xij ∣zj, ai)) (2.4)

To find the optimal object truths and source weights, probabilistic inference tech-

niques, such as Expectation-Maximization (EM) and Maximum A Posterior (MAP), can

be used. In the case of GTM, as the Normal distribution that generates the object truths

and the Inverse-Gamma distribution that generates the source weight are conjugate

priors of the Normal distribution that generates the claim, the object truths and source

weights can be inferred efficiently by EM algorithm.

2.1.4 Summary

Although the three models discussed above solve truth discovery problem differently,

the algorithm steps that estimate the object truths and source weights are similar. In

the iterative based methods, the update equations of object truths and source weights

are derived directly by capturing the inter-dependencies between the object truths and

source weights. They perform an iterative process to update object truths and source

weights alternatively. In the optimization based methods, an objective function aiming at

minimizing the overall error is formulated first, then it can use optimization algorithms,

such as coordinate descent, to minimize the objective function. The coordinate descent

is an iterative algorithm that updates the object truths and source weights alternatively.

In the PGM based methods, the dependencies between object truths, source weights

and claims are modeled as random variables and the relationships among them are
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established by conditional probabilities. In order to find the optimal solutions for

the object truths and source weights, probabilistic inference algorithm, such as EM

algorithm, can be used. The EM algorithm also leads to an iterative solution. Hence,

we summarize the general steps of truth discovery in Algorithm 2.1.

Algorithm 2.1: General Steps of Truth Discovery
Input :Claims X
Output :Estimated object truths Z and estimated source weights A

1 Initialize sources weights A
2 repeat
3 for j ∈ J do
4 compute object truth zj based on source weights A and X
5 end
6 for i ∈ I do
7 compute source weight ai based on object truths Z and X
8 end
9 until Convergence condition is met

10 return Ẑ and Â

In Algorithm 2.1, truth discovery starts with the initialization of source weights

(Line 1). If prior knowledge is available, the source weights can be initialized differently

according to the prior knowledge. Otherwise, the sources are treated equally initially

and they are assigned the same source weights. Then it conducts an iterative process

to update the object truths and source weights based on the derived update equations

(Lines 2 - 8). The iterative process stops until it meets some convergence condition

(Line 9). The convergence condition is determined by the used algorithm. Finally, it

returns the updated object truths and source weights in the last iteration as the estimated

object truths and source weights (Line 10).

2.2 Aspects of Source

In this section, the aspects of sources that impact truth discovery are reviewed.
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2.2.1 Source Reliability Modeling

In this subsection, two source reliability modeling techniques are reviewed.

Single Number and One-coin Model

A majority of truth discovery research works model the source reliability as a single

number. In (Aydin et al., 2014; Demartini, Difallah & Cudré-Mauroux, 2012; Karger,

Oh & Shah, 2011), the source reliability is modeled as a single number between 0 and

1: ai ∈ [0,1], it represents the probability that the claims provided by source i are the

truths. Some works (Q. Li, Li, Gao, Zhao et al., 2014; Y. Li, Li et al., 2016; Whitehill,

Wu, Bergsma, Movellan & Ruvolo, 2009) extend this idea by modeling the source

reliability on the real line ai ∈ (−∞,+∞). A source with high ws is more reliable and

its claims are more trustworthy. If the object truths are categorical (see Section 2.3.2

on page 39) such that the object truth can only be chosen from K choices, modeling

source reliability is also known as the one-coin model. In one-coin model, it assumes

that a source has the same probability that its claim is wrong. For example, given the

source reliability ai, the probability that xij is the truth of object j is

p(xij = k∣zj = k, ai) = f(ai)

where k ∈ [1,K] f is a function that maps ai to probability if ai ∈ (−∞,+∞). Then, for

any of the rest wrong choices k′ ≠ k ∩ k′ ∈ [1,K], the probability that source s claims

k′ is

p(xij = k
′∣zj = k, ai) =

1

K − 1
(1 − f(ai))

Two-coin and Confusion Matrix Model

If the object truths are binary, i.e., the object truth can only be chosen from two choices.

The source reliability can be modeled by two-coin model (Raykar et al., 2010). In
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two-coin model, the source reliability is modeled as two numbers ai = {αi, βi}. For

example, assume the object truths can be taken from {0,1}. If the object truth zj = 1,

the sensitivity (true positive rate) for a source i is defined as the probability that the

source’ claim on object j is 1

αi ∶= p(xij = 1∣zj = 1)

If the object truth is 0, the specificity (1 - false positive rate) is defined the probability

that the source’s claim on object o is 0

βi ∶= p(xij = 0∣zj = 0)

Based on the two-coin model, the source reliability can be modeled by a confusion

matrix if the object truths can be taken from K choices [1,K] (Raykar et al., 2010;

Dawid & Skene, 1979; Kim & Ghahramani, 2012; Venanzi, Guiver, Kazai, Kohli &

Shokouhi, 2014). In this case, the source reliability ai is modeled as a K ×K confusion

matrix in which all the entries are non-negative and each row sums up to 1. The

(m,n) entry of a source’s confusion matrix represents the conditional probability that

the source’s claim is n given the object truth is m. The confusion matrix model is a

generalization of the two-coin model. When K = 2, the confusion matrix model is

equivalent to the two-coin model.

Confidence

In some applications, the number of observations provided by each source is usually

different. Some datasets present a long-tail phenomenon in which the majority of the

objects are claimed by only few sources, and many sources only claim a few of objects.

If a source only claims few objects, the estimated source weight could be inaccurate
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because the estimated source weight is not statistically confident. To tackle this problem,

confidence interval estimation is used when estimating the source weights. The authors

develop CATD (Q. Li, Li, Gao, Su et al., 2014) that uses Chi-square distribution with

95% confidence interval when estimating the source weights. Specifically, the estimated

source weights are scaled down by X(0.975,∣Ji∣) where ∣Ji∣ is the number of objects

claimed by source i. For example, if there are two sources i1 and i2 who claim 100 and

10 objects respectively. i1 may claim 80 objects correctly, while i2 may claim 8 objects

correctly. If the confidence interval is not considered, the estimated source weights of i1

and i2 could be the same. By using the confidence interval, the source weight of i2 is

scaled down because it is not statically confident in estimating the source weight of i2.

Diverse Source Reliabilities

In most truth discovery methods, it assumes that a source has the same reliability when

claiming all the objects. In some cases, the objects can be divided into clusters based

on some features of the objects. For example, the objects can be politics-related or

sports-related. Given a sports website (source), the sports-related information provided

from this website is meant to be more trustworthy than the politics-related information.

Inspired by this idea, existing works (Ma et al., 2015; Welinder, Branson, Perona &

Belongie, 2010; Z. Zhao, Wei, Zhou, Chen & Ng, 2015; Zheng, Li & Cheng, 2016)

model source’s diverse reliabilities. The general approach to diverse source reliabilities

modeling is that the source weight ai is modeled as a vector with K values and K is

the number of clusters that the objects can have. Thus, it uses the kth element in ai to

estimate the truth of an object if the object belongs to cluster k.
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2.2.2 Source Relationship

Most truth discovery methods have the source independence assumption such that

the sources claim objects independently. In other words, the sources are uncorrelated

with each other, and each source provides their claims without the knowledge of other

sources. In some cases, the sources may not be independent and there exists some

relationships between the sources.

One type of relationship that exists among sources is copying, i.e., a source copies

information from other sources. In (Dong, Berti-Equille, Hu & Srivastava, 2010; Dong

et al., 2009a; Dong, Berti-Equille & Srivastava, 2009b; Pochampally, Das Sarma, Dong,

Meliou & Srivastava, 2014), the authors propose truth discovery models that consider

information copying between sources. The general idea is that it is common if sources

share many true claims. However, if two sources share many false claims, then the two

sources may be highly correlated and one may copy information from the other one.

Taking ACCU (Dong et al., 2009a) as an example, given two sources A and B, the

authors consider two copying factors. (1) The copying direction, i.e., does A copy B or

B copy A or there is no copying relationship between them. (2) If A copies information

from B, A may not copy all the information from B, then what is the likelihood that A

copies from B and how much information is copied. The copying detection is tightly

combined with the truth discovery steps when estimating source weights and object

truths, if the copying relationship is detected, then the weight of the copying source is

deceased accordingly. Based on this idea, (Dong et al., 2009b) uses Hidden Markov

Model to detect copying relationship in a dynamic environment in which the claims are

made at different time-stamps. In (Pochampally et al., 2014), the authors study more

complex copying relationship such as co-copying, positive and negative correlation

among sources.

The other type of source relationship is clustering. If some sources belong to the
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same cluster or community, they may share some common attributes, e.g., reliabilities.

In (Venanzi et al., 2014), the authors propose a community based truth discovery

algorithm CommunityBCC. In CommunityBCC, it assumes that the sources comform to

a few different community, where each community represents a cluster of sources with

similar source weights.

2.2.3 Human Sources

There usually exists two types of sources involved in the truth discovery studies: human

sources and non-human sources. Non-human sources involves websites, databases,

physical sensors, etc. The errors made by a non-human source is usually caused by

missing records, typos, out-of-date data, measurement precision, etc. The non-human

sources usually do not provide erroneous information on purpose. The errors made

by human sources are more complex to analyze because the way a human source may

have different intentions when providing information. In crowdsourcing truth discovery

literature (Whitehill et al., 2009; Ghosh, Kale & McAfee, 2011; Karger et al., 2011;

Raykar & Yu, 2012; Ipeirotis, Provost & Wang, 2010), based on the worker (human

source) intention, the workers can be divided into three types: the honest worker, the

spammer source and adversarial workers. The trustworthiness of data provided by an

honest worker is largely based on the worker’s ability, i.e., if the worker knows the truth

of an object, she is willing to provide it. Of course, if the information provided by an

honest worker is false, it is because the worker’s ability is not high enough and she does

not know the truth of the object. If a worker is a spammer, she spams the crowdsourcing

platform by providing random information to the objects without making an effort. If

a worker is adversarial, she would intentionally provide false information given that

she knows the truth of the objects. It is found that if a worker’s claims are random,

her claims are useless in estimating the truths of objects (H. Li, Zhao & Fuxman,
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2014). Thus, the claims provided by spammers should be cleansed. It turns out that the

claims provided by adversarial workers can potentially benefit truth finding (Raykar

& Yu, 2012). If a worker is identified as an adversarial worker, we can decrease the

trustworthinesses of the truth candidates the adversarial worker claim, instead, we can

relatively increase the trustworthinesses of the truth candidates the adversarial worker

does not claim.

2.3 Aspects of Object

In this section, it reviews the aspects of objects studied in the truth discovery literature.

2.3.1 Object Truth Assignment

The truth assignment of most truth discovery models can be categorized into the the

scoring method and labeling method. The scoring method (Yin & Tan, 2011; Yin et

al., 2008) first identifies the truth candidates for each object, then for each object, it

assigns a trustworthiness score for each truth candidate based on the reliabilities of

sources which vote (claim) the candidate. Finally, it performs a post decision-making

process to select the truth from the candidates. Usually the candidate with the highest

trustworthiness score is selected as the truth. The scoring method is widely adopted in

the iterative based truth discovery methods (see Section 2.1.1).

The labeling method (B. Zhao & Han, 2012; Q. Li, Li, Gao, Zhao et al., 2014; Y. Li

et al., 2015) directly assigns a label or a true value to an object instead of selecting

one from the truth candidates. For example, if three sources provide the information

of Auckland temperature on a given day as 25.6, 26.1 and 26.5 and the weights of the

three sources are 1.0, 1.1 and 1.3 respectively. By weighted voting, the estimated truth

is computed as 25.6∗1.0+26.1∗1.1+26.5∗1.5
1.0+1.1+1.5 ≈ 26.13. The labeling method is usually used in
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optimization based truth discovery methods (see Section 2.1.2) and PGM based truth

discovery methods (see Section 2.1.3).

2.3.2 Object Truth Data Type

Generally, based on the data type, the object truth can be divided into two types:

categorical and continuous. If an object truth is categorical, then the truth can only take

certain values, e.g., K values indexed from 1 to K. If an object truth is continuous, then

the truth can take infinite number of possible values within a range, e.g., any number on

the real line. Different object truth types are usually modeled differently in different

truth discovery frameworks.

The iterative based truth discovery methods are mainly developed for estimating

categorical object truths by assigning trustworthiness scores to each truth candidate.

As the iterative based truth discovery methods usually adopt scoring method to assign

object truths, they need to construct truth candidate set for each object first. Although the

continuous truth can take infinite number of possible values within a range, the number

of sources that claim an object is always finite in any applications. Therefore, these

iterative based truth discovery methods can also be extended to estimate continuous

object truths by treating them as discrete values. For example, 5 sources claim the

temperature of Auckland on a given day and the claims are 25.1,25.1,25.3,25.3,25.4

respectively. A candidate set {25.1,25.3,25.4} can be constructed first and the truth

discovery algorithm assigns trustworthiness score to each truth candidate based on the

source reliabilities.

In contrast, the PGM based truth discovery methods can only be used to estimate

one type of object truths. In a PGM, the basic building blocks are random variables, and

the random variables are expressed by probability distributions. If the object truth is
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categorical, the truth discovery methods usually assume the random variable represent-

ing an object truth has a Categorical distribution. If the object truth is continuous, the

truth discovery methods usually assume an object truth random variable has a Normal

distribution.

The optimization based truth discovery methods can estimate heterogeneous object

truth data type. The optimization based truth discovery methods aim at minimizing the

overall error between sources’ claims and object truths, it uses a distance function (see

Section 2.1.2) to measure the error between a single claim and the corresponding object

truth. If the object truth is categorical, the 0-1 loss function can be used as the distance

function. If the object truth is continuous, the L2 norm between the claim and object

truth can be used as the distance function.

2.3.3 Multiple Object Truths

Many truth discovery methods have the single truth assumption such that each object

has only one truth and the truth candidates are mutually exclusive. With this assumption,

truth discovery outputs only one most trustworthy information for each object. While

this assumption is valid in many applications, but it is not always true. For example,

each book may have multiple authors, and each movie has more than one stars. In this

case, the object truth is a set of values instead of a single value. The existing truth

discovery methods, that has the single truth assumption, can be extended to estimate

truths in these applications by treating each truth set as a single inseparable value, and

output the most trustworthy set as the truth for each object. This extension works but the

performance is usually not good because the information provided by many sources may

be partially correct. In this case, a better strategy is to estimate the trustworthiness of

each value in the set claimed by each source, and output the multiple trustworthy values

as the truths for each object. To tackle this problem, B. Zhao et al. (2012) propose a
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PGM based model that discover multiple truths for each object by considering source’s

false positive and false negative claims. Thus, it can discover multiple truths for each

object simultaneously.

2.3.4 Object Difficulty

In (Ma et al., 2015; Whitehill et al., 2009; Galland et al., 2010), the truth discovery

methods estimate object difficulty along with source reliabilities and object truths.

Estimating object difficulty is useful when the sources react differently to objects with

different difficulties, and this is widely used in crowdsourcing truth discovery literatures.

A common way of modeling object difficulty is to treat it as a random variable

in a PGM. In (Whitehill et al., 2009), the authors propose a PGM based method that

discovers categorical object truths. The difficulty do of object o is modeled as a random

variable generated from a known prior distribution with positive support (e.g., Gamma

distribution), the weight ws of source s is modeled as a random variable generated from

a known prior distribution with (−∞,+∞) support (e.g., Normal Distribution). Given

the object truth and source weight, the probability that the source’s claim is equal to the

object truth is

p(vso = k∣v
∗
o = k,w

s, do) =
1

1 + exp(−ws × do)

By the one-coin model presented in Section 2.2.1, the probability that the source’s claim

is not the object truth is

p(vso = k
′∣v∗o = k,w

s, do) =
1

K − 1
(1 −

1

1 + exp(−ws × do)
)

Then the object truths, source weights and object difficulties can be inferred by an

inference algorithm.
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2.3.5 Object Relation

In many cases, the objects are related to each other. Some truth discovery methods

((Pasternack & Roth, 2010; Yu et al., 2014; S. Wang et al., 2014; Y. Li et al., 2015; Meng

et al., 2015; S. Wang et al., 2015) use the object relations to improve truth discovery

performance. For example, if we know that A is the father of B and B is the father of C,

then we can reason that A is the grandfather or ancestor of C. If such information is

available beforehand, it would be more accurate to verify the trustworthiness of some

observations. In (Pasternack & Roth, 2010), the authors translates such prior knowledge

into propositional logic and use it in the truth discovery process. Ouyang et al. (2015)

propose a method that can incorporate spatial correlation among objects in the truth

discovery step. Object temporal correlation is studied in (S. Wang et al., 2014; Y. Li

et al., 2015). It is found that (Meng et al., 2015) using object correlation can greatly

improve the effectiveness if some objects are claim by few sources, which is common

in many real-world applications.

2.3.6 Streaming Data

Most of the existing truth discovery methods are batch algorithms designed for static

data in which time dimension is not involved. The batch algorithms are usually conduc-

ted in an iterative manner which update source weights and object truths alternatively

and iteratively. In many real-world applications which data arrives sequentially from

data streams, it is infeasible to use the batch algorithms to infer the object truths as

the batch algorithms are computationally expensive. To tackle this challenge, some

truth discovery methods are developed for truth finding over data streams. D. Wang et

al. (2013) propose an EM truth discovery algorithm for processing streaming data in

which the algorithm only scans the data once. To avoid the iterative updates of source

weights and object truths, Y. Li et al. (2015) turns the optimization based truth discovery
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framework to a probabilistic model, and the inference algorithm can update the source

weights and object truths efficiently over data streams. Based on the solution derived

from the optimization based truth discovery methods Y.Li, Li et al. (2016) propose an

incremental algorithm that updates source weights and object truths exactly only once

at each time-stamp.

2.3.7 Partially Observed Object Truth

Almost all the existing truth discovery methods are developed as unsupervised learning

algorithms in which both source weights and object truths are not known as inputs.

Although it is very expensive to obtain the ground truths for all the objects, it is

sometimes practical to get a very small set of ground truths, i.e., the object truths are

partially observed. In (Yin & Tan, 2011), the authors propose a semi-supervised truth

discovery method called SSTF. SSTF can use a small set of ground truths to guide the

estimation of source weights. It treats the truth candidates of each object and source

weights as nodes in a graph, and uses graph propagation technique to propagate the

trustworthiness of the ground truths to the truth candidates of the objects whose ground

truths are unknown. Finally, SSTF selects the single most trustworthy truth candidate

as the truth for each object.

2.4 Performance Metrics

In this section, the commonly used truth discovery performance metrics are reviewed.

The performance of truth discovery is usually evaluated from two perspectives: effect-

iveness (also known as accuracy) and efficiency.
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2.4.1 Effectiveness Metrics

The effectiveness of truth discovery is evaluated differently according to the object truth

data type.

Categorical Object Truth

• Error Rate: The percentage of the object truths that are incorrectly estimated.

• Accuracy: The percentage of the object truths that are correctly estimated (1 −

error rate).

• Precision: Precision measures the percentage of estimated object truths are

indeed true. This is used in multiple truths truth discovery.

• Recall: Recall measures the percentage of object truths that are correctly estim-

ated. This is used in multiple truths truth discovery.

Continuous Object Truth

• Mean Absolute Error (MAE): MAE measures L1 norm distance between the

estimated object truths and the ground truths. It penalizes more on the smaller

errors.

• Root of Mean Squared Error (RMSE): RMSE measures L2 norm distance

between the estimated object truths and the ground truths. It penalizes more on

the big errors.

2.4.2 Efficiency Metrics

The efficiency of truth discovery is usually evaluated by the run time, convergence steps

and time complexity.
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• Run time: Run time measures the actual elapsed time that a truth discovery

method needs to use to conduct all the truth discovery steps.

• Convergence Steps: As many truth discovery algorithms have the iterative

solution. The convergence step can be used the measure how many iterations that

an algorithm needs to take to converge.

• Time Complexity: It measures the truth discovery algorithm time complexity in

terms of Big-O notion. If the truth discovery algorithm has an iterative solution,

the time complexity is usually measured within a single iteration.

2.5 Representative Truth Discovery Methods

In this section, it will present some representative truth discovery methods and briefly

describes the specific problem they attempt to solve. Some of these truth discovery

methods are also used as baselines to evaluate the truth discovery models proposed in

the subsequent chapters.

2.5.1 Truth Discovery Methods for Static Data

The following methods are developed for static data. The algorithm flows of these

methods are iterative based. They need to update source weights and object truths

iteratively and iteratively until convergence. These methods are generally accurate, but

computationally expensive if applied to data streams directly.

• TruthFinder (Yin et al., 2008): TruthFinder is an iterative based truth discovery

method. It adopts Bayesian analysis to iteratively update source weights and

object truths.
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• Accu (Dong et al., 2009a): Accu also adopts Bayesian analysis to update source

weights and object truths. Furthermore, it considers copying relations among

sources.

• 3Estimates (Galland et al., 2010): An iterative based truth discovery method

that considers the difficulty of getting the truth for each object.

• SSTF (Yin & Tan, 2011): A semi-supervised truth discovery method that can

use a small set of ground truths to guide the source weights estimation.

• LTM (Zhao et al.„ 2011): LTM is a PGM based truth discovery method aiming

at discovering multiple truths for each object.

• GTM (Zhao & Han, 2012): GTM is a PGM based truth discovery method

designed for estimating continuous object truths.

• LCA (Pasternack & Roth, 2013): LCA is a PGM based truth discovery method

that considers various latent factors that may impact the truth discovery process.

• CRH (Li et al., 2014): CRH is an optimization based truth discovery method

that can estimate heterogeneous object truths.

• CATD (Li et al., 2014): CATD is an optimization based method that considers

the long-tail phenomenon. It uses confidence interval to penalize the weights of

sources which claim few objects.

• DyOP (Y. Li et al., 2015): DyOP is an optimization based truth discovery method

that aims at estimating continuous object truths at different timestamps.

• OTD (Yao et al., 2018): OTD is an optimization based truth discovery method

develop for estimating truths on time series. It uses AutoRegressive Integrated

Moving Average (ARIMA) to learn the trends and patterns from the observed

time series, and then uses the trends and patterns to assist truth estimation.
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2.5.2 Truth Discovery Methods for Streaming Data

The following methods are developed for streaming data. Different from the above truth

discovery methods having iterative based algorithm flows, the truth discovery methods

listed below updates source weights and object truths exactly once at each time-stamp

over the data stream. These methods can estimate object truths efficiently when data

arrives sequentially from data streams but the accuracy is usually lower than the truth

discovery methods designed for static data.

• iCRH (Y. Li, Li et al., 2016): iCRH is the incremental version of CRH. It is

developed for estimating heterogeneous object truths efficiently in a dynamic

environment.

• DynaTD (Y. Li et al., 2015): An incremental truth discovery method that estim-

ates continuous object truths over data streams without re-visiting the historical

data.

• DynaTD+s (Y. Li et al., 2015): An extension of DynaTD that considers smooth-

ing factor. The smoothing factor is used to enforce the object truths at adjacent

timestamps to have similar values.

• DynaTD+d (Y. Li et al., 2015): An extension of DynaTD that considers decay

factor. DynaTD uses all the errors accumulated from past to now to estimate the

source weights at the current timestamp. The decay factor is used to penalize

contributions of historical errors (errors accumulated in the past) to the source

weight estimation at the current timestamp.

• DynaTD+all (Y. Li et al., 2015): An extension of DynaTD that considers both

smoothing factor and decay factor.
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• ASRA (T. Li, Gu, Zhou, Ma & Yu, 2017): A truth discovery that balances

effectiveness and efficiency for estimating object truths over time.

2.5.3 Truth Discovery Methods for Crowdsourcing Applications

The following methods are developed for crowdsourcing applications. In the context of

crowdsourcing, the source is known as worker and the object is known as task. Hence,

the sources in crowdsourcing applications are human.

• DS (Dawid & Skene, 1979): A truth discovery method models worker reliability

as confusion matrix.

• LFC (Raykar et al., 2010): Based on DS, it further incorporates task features in

the truth discovery steps.

• ZC (Demartini et al., 2012): A truth discovery method models worker reliabil-

ity as worker probability (a single number).

• GLAD (Whitehill et al., 2009): A truth discovery method accounting for task

difficulty.

• GEM (Kurve, Miller & Kesidis, 2014): A truth discovery method accounting

for both task difficulty and worker intention.

2.5.4 Naive Methods

The following two methods estimate object truths without considering source reliabilit-

ies.

• Majority Voting (MV): MV selects the truth candidate with the most votes as

the object truth. If two truth candidates tie, it selects a random one. MV can be

applied when object truths are categorical.
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• Mean: Mean outputs the mean of truth candidates as the object truth. Mean can

be applied when object truths are continuous.

2.6 Summary

In this chapter, I have given a detailed review of truth discovery methods from four

perspectives: general frameworks, aspects of sources, aspects of objects and the per-

formance metrics used to evaluate truth discovery methods. I have also selected and

presented a list of truth discovery methods that are representative in the truth discovery

literature. Some of these methods will also be used as baselines to evaluate the truth

discovery models developed in the subsequent chapters.

To conclude this chapter, I will list the identified research gaps by analyzing the

pros and cons of the existing works.

• Most existing truth discovery methods cannot efficiently combine object correla-

tions into the truth discovery steps in a dynamic environment where data arrives

sequentially from data streams.

• Existing truth discovery methods designed for static data can achieve high ac-

curacy but are computationally expensive to be applied to stream data. Existing

truth discovery methods designed for streaming data can achieve high efficiency

but sacrifice the accuracy. A method is needed to balance the accuracy of truth

discovery over data streams and still guarantees the efficiency of truth finding.

• It lacks a semi-supervised truth discovery method that is specifically designed for

continuous data.

• The human factors in crowdsourcing applications are not well exploited in most

existing truth discovery methods.
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In the subsequent chapters, I will discuss the identified research gaps in details and

presents the solutions to fill the research gaps in truth discovery.



Chapter 3

A Probabilistic Model for Truth

Discovery with Object Correlations

3.1 Overview

There are some existing truths discovery methods that consider object correlations

in the truth discovery steps (reviewed in Section 2.3.5). However, they are batch

methods in natural, and are very expensive to run in dynamic environments where data

arrives sequentially and accumulates over time. Some efficient truth discovery methods

(reviewed in Section 2.3.6) are developed for processing data in a dynamic environment,

but the object correlations information is not considered. Object correlation is existed

in many real-world applications and it has important research value to truth discovery

problems. If object correlation can be incorporated in the truth discovery steps, the

accuracy of truth discovery can be improved. This chapter presents a novel truth

discovery model that uses object correlation in the truth discovery process. I formulate

the truth discovery task as a probabilistic inference problem. The developed probabilistic

model considers not only source reliability but also object correlations to infer object

truths. Furthermore, I extend the probabilistic model and develop an incremental truth

51
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discovery method to process data efficiently in a dynamic environment and use temporal

correlation to infer object truths. The contributions of this chapter are summarized as

following:

In this chapter, two truth discovery models, PTDCorr and iPTDCorr, are developed.

PTDCorr is a PGM based truth discovery model that capturing object correlations in

the truth discovery steps. PTDCorr is a batch algorithm that can be used to estimate

object truths from static data. In order to efficiently process streaming data in a dynamic

environment, an incremental truth discovery model, iPTDCorr, is developed based on

PTDCorr.

• I develop a chain graph based framework, Probabilistic Truth Discovery with

Object Correlations (PTDCorr), in which source reliabilities, sources’ claims and

object truths are modeled as random variables.

• An optimization-based inference solution is developed to infer object truths in

the chain graph model.

• Based on PTDCorr, I develop an incremental truth discovery algorithm, iPTDCorr,

which works efficiently in dynamic environments. iPTDCorr is able to incorporate

time-invariant correlations between different objects as well as temporal correla-

tions for the same object to effectively infer object truths. Furthermore, iPTDCorr

infers object truths by processing all data only once without re-processing the

historical data.

• I conduct experiments on three datasets to evaluate the performance of the de-

veloped methods. Experimental results show that the developed methods outper-

form the existing truth discovery methods in inferring object truths for correlated

objects.

The rest of the chapter is organized as follows. In Section 3.2, the review of related
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works is presented. Section 3.3 introduces the key definitions and formally defines

the problem of truth discovery with object correlations. In Section 3.4, I describe the

PTDCorr model and an optimization based solution for truth inference. In Section 3.5,

theoretical analysis of PTDCorr is presented. Section 3.6 describes the incremental

iPTDCorr algorithm that is able to infer object truths by using object correlations in a

dynamic environment. Experimental results are demonstrated in Section 3.7. Finally,

this chapter is concluded in Section 3.8.

3.2 Related Work

There are some works that study the object correlations in truth discovery. The authors

(D. Wang, Abdelzaher, Kaplan, Ganti et al., 2013; S. Wang et al., 2015) developed

probabilistic models to solve the truth discovery problem in the context of social

sensing. However, the models are limited to binary data and cannot be generalized

to estimate real valued object truths. Meng et al. (2015) developed an optimization-

based truth framework, and models object correlations as a regularization term in an

objective function. The method is able to aggregate continuous object truths with

correlation. However, the method is a batch algorithm and it cannot update object truths

dynamically. In a recent work, (Liu, Liu, Duan, Hu & Wei, 2017), the authors developed

a source-object network model to resolve conflicts among linked data. The linked data

is described by RDF, and the relationship of the linked data is expressed as RDF triples.

Correlations exist among RDF triples, and each RDF triple is treated as an object in

this work. If one object has a high probability of being trustworthy, then its correlated

objects also have high probabilities of being trustworthy. However, in this chapter’s

setting, the object correlations are used to reinforce the correlated object truths. This is

able to correct the inferred object truths if these objects are claimed by few or unreliable

sources.
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Truth discovery in a dynamic environment has also received a lot of attention over the

years. In (Pal, Rastogi, Machanavajjhala & Bohannon, 2012), the problem is modeled

by a hidden semi-Markovian process that aims to solve truth discovery with missing

updates and lagged claims. In (D. Wang, Abdelzaher, Kaplan & Aggarwal, 2013), the

authors used Fisher information to recursively update the estimation parameters of truth

discovery in a social sensing environment where data changes dynamically over time.

In (Y. Li et al., 2015), an incremental truth discovery method was proposed to find truths

over time. It also considered the smoothing data change and source weight evolution.

Based on the work in (Y. Li et al., 2015), authors in (T. Li et al., 2017) developed a

method which is able to trade off the accuracy and efficiency of the truth discovery

model flexibly over time by tuning the parameters. Li et al. (2016) extend the CRH

framework in (Li et al., 2015) to make it able to process data incrementally. Both (Y. Li

et al., 2015) and (Q. Li, Li, Gao, Zhao et al., 2014) explored an incremental approach

to estimate object truths over data streams. However, these methods assume that the

source weights converge over time instead of converging at each timestamp. Thus, these

methods can achieve optimal efficiency but sacrifice much accuracy. Among all the

above truth discovery methods that are capable of working in a data stream, none of

them captures object correlation and uses it to improve the performance.

3.3 Problem Definition

This section introduces the key definitions in the proposed truth discovery models.

Definition 3.1. Object, source and claim: An object, j, is a thing or an event which is

associated with a numerical value that is interested in. The set of all objects is denoted

as J where j ∈ J . A source, i, is an information provider which can provide information

on an object. The set of all sources is denoted as I where i ∈ I . A claim, xij , is a value

of object j provided by source i. X is used to denote the set of all claims, Xj denotes
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the set of claims about object j and Xi denotes the set of claims provided by source i.

Definition 3.2. Object truth and inferred object truth: An object truth, denoted as

zj , is the factual or ground truth of j, and it is unknown a priori in truth discovery

models. An inferred object truth, denoted as ẑj , is regarded as an estimated truth of

object o computed by truth discovery models. Z denotes the set of all object truths and

Ẑ denotes the set of all the inferred object truths.

Definition 3.3. Source weight: A source weight, ai, is a source’s true reliability degree

and it is modeled as a positive real number. The larger the source weight, the more

reliable the source is. The estimated source weight, âi, is the source weight estimated by

truth discovery models. A is used to denote the set of all source weights and Â denotes

the set of all estimated source weights.

Definition 3.4. Object correlation: Object correlation is a relationship between two

objects, j and j′. It can be measured by a correlation coefficient c(j, j′) where c(j, j′) ∈

[0,1]. If c(j, j′) = 1, that means that j and j′ have a strong correlation and the truths

of j and j′ could be very close. Conversely, j and j′ have no correlation relationship if

c(j, j′) is 0. C is used to denote the set of all objects’ positive correlation coefficients

where C = {c(j, j′)∣j ∈ J, j′ ∈ J, j ≠ j′, c(j, j′) > 0}.

Object correlation, as a priori knowledge, can be observed and pre-defined using

correlation coefficient in many applications. For example, it is common to use Gaussian

kernel (Equation (3.1)) to define two objects’ spatial correlation coefficient. In Equation

(3.1), two objects are considered correlated if their spatial distance d(j, j′) is within

a threshold δ, where σ determines how fast c(j, j′) is approaching 0 as the distance

becomes larger.

c(j, j′) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

exp(−d
2(j,j′)
σ2 ), if d(j, j′) ≤ δ;

0, otherwise.
(3.1)
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Notation Description
J set of all the objects
I set of the sources
Xi set of all claims from source i
zj truth of object j
Z set of all truths of objects
ẑj inferred truth of object j
Ẑ set of all the inferred truths
ai source weight of source i
A set of all sources weights
âi inferred source weight of i
Ŵ set of all inferred source weights
µj,x mean of claims of object j
σ2
j,x variance of claims of object j
xij claims of object j from source i
Xj set of all claims of object j
Xi set of all claims of objects from source i
X set of all claims of all the objects

c(j, j′) correlation coefficient between j and j′

ct temporal correlation coefficient
C set of all objects’ positive correlation coefficients
λj balancing factors of object j
θ weighting factor
E set of undirected edges connecting correlated objects
Ej a subset of E that involves j in the edges

Table 3.1: Notations in Chapter 3

In situations where data arrives sequentially, a superscript t is used to denote a

timestamp of claims, object truths and source weights. For example, ztij denotes the

claim of object j from source i at time t, ati denotes the source weight of source i at

time t and At denotes the set of all source weights at time t.

The notations used in this paper are summarized in Table 3.1. The superscript

timestamp t is omitted in the notations. Given the notations, the truth discovery problem

that is studied in this chapter is defined as follows:

Truth Discovery with Object Correlations: Given a set of objects J and their

corresponding object coefficients C, the claims X of J provided by a set of sources I
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can be observed. The truth discovery with object correlation aims at computing a set of

inferred object truths Ẑ for each object. In a dynamic environment where data arrives

sequentially at different timestamps, the inferred object truths at timestamp t need to be

computed without re-visiting the claims X arrived before t.

3.4 Probabilistic Truth Discovery with Object Correla-

tions Model

In this section, I introduce the framework of the Probabilistic Truth Discovery with

Object Correlations model (PTDCorr). Secondly, an optimization-based approach

derived from the probabilistic model is proposed to infer object truths. This is followed

by some theoretical analysis in the next section.

3.4.1 The PTDCorr Framework

As discussed, there are three major elements that may contribute to the computation of

inferred truths, namely, object truths, source weights and claims. Assuming there are n

objects of J and m sources of, there are at most mn claims in X where X = {xij ∣i ∈

I, j ∈ J}. Figure 3.1 shows the chain graph model that can characterize the generative

process of the proposed methods. Source weight ai, object truth zj and claim of an

object xij are modeled as random variables, and represented as the nodes in the chain

graph. Shaded nodes are observed variables and unshaded nodes are hidden variables.

As the dependencies of random variables are modeled in the chain graph, the terms

random variable and node interchangeably in this chapter.

The chain graph in Figure 3.1 is a partially directed acyclic graph (PDAG). The

nodes can be disjointly partitioned into several chain components where each chain

component is an induced sub-graph of the chain graph in Figure 3.1. The nodes that
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Figure 3.1: Chain Graph Model

are connected by undirected edges belong to the same chain component. The nodes

in different chain components are connected by directed edges (Koller & Friedman,

2009). Based on the types of the random variables that the nodes represent, the chain

components in Figure 3.1 can be classified into three layers: the inner layer Z enclosed

in dotted circle, the outer layer A outside the dotted rectangle, and the middle layer X

enclosed in between dotted circle and rectangle.

The inner layer Z is an undirected graph GZ = {Z,E} representing the relationship

of object truths where E is a set of undirected edges that connect the correlated nodes

s.t. E = {(j, j′)∣c(j, j′) ∈ C}, two nodes are connected by an undirected edge if they are

correlated. Assume Z can be partitioned intoK chain components Zk where ⋃
k∈K

Zk = Z.

The induced sub-graph HZk = {Zk,Ek} is undirected and connected where ⋃
k∈K

Ek = E,

the nodes within a sub-graph HZk are correlated with at least one nodes and can reach

other nodes within the chain component by at least one path. There are some chain

components which have only one node (e.g. zn in Figure 3.1). This indicates that the
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node is uncorrelated with the rest of the nodes in Z.

Each chain component Zk in Z is associated with a Markov Random Field and can

be factorized as:

p(Zk) =
1

PZk
∏
zj∈Zk

ψj(zj) ∏
(j,j′)∈Ek

ψj,j′(zj, zj′),

where PZk is a partition function, ψj(zj) is a node potential which provides the prior

probability for zj; ψj,j′(zj, zj′) is an edge potential which reinforces the distributions of

two correlated object truths zj and zj′ . Therefore, the joint probability over all chain

components in the inner layer Z can be factorized as:

p(Z) = ∏
k∈K

p(Zk)

= ∏
k∈K

(
1

PZk
∏
zj∈Z

ψj(zj) ∏
(j,j′)∈Ek

ψj,j′(zj, zj′))

=
1

∏k∈K PZk
∏
j∈J
ψj(zj) ∏

(j,j′)∈E
ψj,j′(zj, zj′)

(3.2)

In the outer layer A, sources are assumed to be independent, i.e. sources make

claims independently. Each random variable ai forms a chain component, which is

associated with a Markov Random Field with only one node and can be factorized as:

p(ai) =
1

Pai
ψi(ai)

where Pai is a partition function, ψi(ai) is a node potential which provides the prior

probability for ai. Therefore, the joint probability over all chain components in the
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outer layer A can be factorized as:

p(A) = ∏
ai∈A

1

Pai
ψi(ai)

=
1

∏ai∈APai
∏
i∈I
ψi(ai)

(3.3)

In the middle layer X , each chain component contains only one node xij . As a

claim is dependent on both its object truth and the source which claims it. Node xij

is a child of the corresponding object truth zj and source weight ai in the chain graph

model. Each chain component in X is associated with a conditional probability and can

be factorized as:

p(xij ∣zj, ai) =
1

Pxij
ψx(xij, zj, ai)

where Pxij is a partition function, ψx(xij, zj, ai) is a node potential which provides the

conditional probability for xij . The joint probability over all chain components over X

can be factorized as:

p(X ∣A,Z) = ∏
xij∈X

p(xij ∣zj, ai)

=∏
j∈J

∏
xij∈Xj

1

Zxij
ψx(xij, zj, ai)

(3.4)

where Xj are the claims about object j.

The partition functions in Equations (3.2), (3.3) and (3.4) are used to renormalize

the potential functions. In the proposed method, they are all set to 1 because the

probability density functions are used to install potential functions. These functions

will be introduced in Section 3.4.3.

Given the structure of the chain graph and the chain components, the posterior
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distribution p(Z,A∣X) is given in Equation (3.5):

p(Z,A∣X) ∝ p(Z,A,X)

∝∏
j∈J
ψj(zj) × ∏

(j,j′)∈E
ψj,j′(zj, zj′)×

∏
i∈I
ψi(ai) ×∏

j∈J
∏

xij∈Xj
ψx(xij, zj, ai)

(3.5)

The objective of the proposed truth discovery framework is to find the optimal inferred

truth ẑj for each object and source weight âi for each source to maximize the posterior

distribution shown in Equation (3.5).

3.4.2 Design Philosophy

The chain graph model shown in Figure 3.1 reflects the design philosophy of solving the

truth discovery problem with object correlations from the following aspects. Reliable

sources are able to propagate their influences over some objects even if they do not

provide information on those objects. Assuming that there are no undirected edges

in GZ , sources would only influence the objects which are claimed by the sources.

Thus, the object truths are only dependent on their claims and sources which provide

the claims. As the random variables of correlated object truths are connected, an

object truth is further directly influenced by its correlated object truths and the sources

which provide claims on its correlated objects. For example, assume that i1 and in as

represented by a1 and am, are reliable sources. i2, represented by a2, is not reliable in

Figure 3.1. In this case, the inferred object truth ẑ1 is trustworthy because it is claimed

by two reliable sources i1 and im. In contrast, it is hard to correctly infer the object truth

of j3 because j3 is only claimed by one unreliable source i2, the inferred truth ẑ3 solely

based on the claim x23 may not be accurate. However, j1 and j3 are correlated, and ẑ1

and ẑ3 could be similar. In the proposed probabilistic model, ẑ1 is able to reinforce ẑ3
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and adjust ẑ3 to a value closer to ẑ1. it can be seen that a1 and am indirectly flow their

high reliability degrees to influence ẑ3 by the correlation relationship encoded in the

chain graph model. Thus, the inferred truth ẑ3 is influenced directly by the correlation

relationship between ẑ3 and ẑ1.

3.4.3 Potential Functions

In this section, the potential functions defined in the PTDCorr model are introduced.

Node Potentials

Object truth node potential ψj(zj). For each object, its truth is among the claims

it received. It is more likely to be at the interval where the majority of claims are

distributed. Hence, the object truth zj is modeled as a real number and it is generated

from a Normal distribution. The node potential function ψj(zj) can be represented as:

ψj(zj) ∼ N(µj,x, σ
2
j,x)

∝ (σ2
j,x)

− 1
2 exp(−

(zj − µj,x)2

2σ2
j,x

)

(3.6)

where µj,x and σ2
j,x are the mean and variance of object j’s claims.

Source weight node potential ψi. The source weight ai is a positive real number

and it can be modeled by a Gamma distribution. The node potential ψi(ai) function can

be represented as:

ψi(ai) ∼ Gamma(α,β)

∝ (ai)
α−1

exp(−βai)

(3.7)

where α ≥ 1 and β > 0 and they are hyper parameters 1 that control the prior belief of a
1To make sure that the proposed inference algorithm in Section 3.4.5 converges, the shape parameter
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source’s reliability degree. If prior knowledge is available, α and β can be adjusted to

change the source weight distribution; otherwise, source weights are initially treated

equally and the same α and β are used for all source weight node potentials.

Claim node potential ψx(xij, zj, ai). A claim is dependent on its object truth and

the source which makes the claim. The claim from a reliable source is trustworthy and

it is more likely to be the truth or closer to the truth. Guided by this intuition, the claim

xij is modeled as a real number that is generated from a Normal distribution. The node

potential ψxij(xij, zj, ai) can be represented as:

ψx(xij, zj, ai) ∼ N(zj,
1

ai
)

∝ (ai)
1
2 exp(−

(xij − zj)2

2 1
ai

)

(3.8)

where zj is the object truth of the claim and ai is the weight of the source which provides

the claim. Since the Normal distribution, which generates the object truth, and the

Gamma distribution that generates the source weight, are both conjugate priors of the

Normal distribution that generates the claim, this makes the proposed model a conjugate

model and the inference performed (as described in Section 3.4.5) is traceable.

Edge Potentials

An undirected edge between two nodes zj and zj′ is used to reinforce the generated

truths by utilizing the knowledge of object correlations. This imposes a soft smoothness

constraint over the chain graph, indicating that neighboring nodes connected by undir-

ected edges should take similar values. For truth discovery in real-world applications,

object truths are unknown a priori. However, the truths of two objects can be approxim-

ated if these two objects are correlated. Specifically, given two correlated objects j and

α of Gamma distribution is constrained to be greater or equal to 1 to make the p.d.f. of Gamma distribution
finite. See Section 3.5 for further explanation.
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j′ where c(j, j′) > 0, their object truths could be numerically similar, and the absolute

difference between two correlated object truths ∣zj′ − zj ∣ should be close to 0. Guided by

this intuition, a Normal distribution is applied to represent the edge potential function

given Equation (3.9):

ψj,j′(zj, zj′) = p(∣zj′ − zj ∣) ∼ N(0,
1

θλjc(j, j′)
)

∝ (θλjc(j, j
′))

1
2 exp(−

θλjc(j, j′)(zj′ − zj)2

2
)

(3.9)

where θ and λj are two positive hyper parameters that adjust the effect of correlated

object truths to the inferred truth for inference. They will be further discussed in Section

3.4.5.

The distribution in Equation (3.9) models the probability of ∣zj′−zj ∣, and the variance

θλoc(j, j′) controls its probability. If θλjc(j, j′) is big, the variance of the distribution

is small. ψj,j′(zj, zj′) attains a high value only if zj′ is very close to zj . Thus, it puts a

strong constraint on the correlated object truths and it reinforces them to be very similar.

Conversely, if θλjc(j, j′) is small, the variance of the distribution is big. It relaxes the

constraint and the correlated object truths do not have to be very close to each other.

3.4.4 Outlier Removal

The PTDCorr model is a probabilistic generative model, the object truth is modeled

as a Gaussian random variable using the mean and variance of the object’s claims as

its parameters. However, the mean parameter of a Gaussian random variable could be

shifted infinitely by outliers, which could have bad influences on the truth inference and

source weight estimation. In this subsection, a two-stage outlier removal algorithm is

developed.

The outlier removal algorithm is described in Algorithm 3.1. In the first stage (Lines
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Algorithm 3.1: Outlier Removal
Input :Set of claims X , thresholds δ1, δ2 and δ3

Output :Claims X in which outliers are removed
1 for xij ∈X do
2 if xij ≥ δ1 or xij ≤ δ2 then
3 Xj =Xj − xij
4 end
5 end
6 for j ∈ J do
7 has_outlier = False
8 repeat
9 x̃j = median(Xj)

10 σ̃j = standard_deviation(Xj)

11 for xij ∈Xj do
12 if ∣xij−x̃j ∣

σ̃j
> δ3 then

13 Xj =Xj − xij
14 has_outlier = True
15 end
16 end
17 until has_outlier = False
18 end
19 return X
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1 - 8), it removes the extreme claims based on the two given thresholds δ1 and δ2.

δ1 and δ2 are application-specific. For example, in the application which reports gas

prices in the US, the gas price cannot be over $6 per gallon and the gas price must be

positive. Thus, δ1 = 6 and δ2 = 0. The second stage (Lines 6 - 18) iteratively removes

outliers until no new outlier is detected. For each object, it first computes the median

and standard deviation of the object’s claims (Lines 9 -10). Then it uses the median

and standard deviation to compute the z-value for each claim and compares it with the

threshold δ3 (Line 12). The threshold δ3 can be understood as the number of standard

deviations. If the z-value of the claim is greater than the threshold δ3, it is treated as an

outlier and is removed from the set of claims. Note that the median is used to measure

the central tendency of the claims of an object as the median is less sensitive to outliers

than the mean.

Other more advanced outlier detection and removal techniques (Han, Pei & Kamber,

2011) can also be deployed here, but the z-value based outlier removal algorithm

described in Algorithm 3.1 is simple and effective. The primary goal of the outlier

removal step is to remove the extreme values that are bad for the inference. Thus, the

truth discovery algorithm will estimate source weights and infer object truths.

3.4.5 Truth Inference

As discussed in Subsection 3.4.1, the objective of the proposed truth discovery frame-

work is to find the optimal inferred truth ẑj for each object and estimated source weight

âi for each source. Maximum A Posteriori (MAP) estimation can be performed to infer

the optimal set of object truths Ẑ where ẑj ∈ Ẑ and optimal set of source weights Â

where âi ∈ Â. The MAP estimation aims at maximizing p(Z,A∣X) in Equation (3.5),

it can be formulated as an energy minimization problem (Koller & Friedman, 2009)

where the energy, denoted as a function f , corresponds to the negative log likelihood of
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the posterior probability p(Z,A∣X) and is defined as:

f(Z,A) ∝ − lnp(Z,A,X)

By plugging in the potential functions:

f(Z,A) ∝ ∑
j∈J

(
(zj − µj,x)2

σ2
j,x

) + θ ∑
(j,j′)∈E

(λjc(j, j
′)(zj′ − zj)

2)

+ 2∑
i∈I

((1 − α) lnai + βai) +∑
j∈J

∑
xij∈Xj

(ai(xij − zj)
2 − lnai)

(3.10)

Minimizing the energy in Equation (3.10) can be viewed as an optimization task that

seeks the optimal {âi} and {ẑj} that minimize f :

Â = arg min
A
∫ f(Z,A)dZ

Ẑ = arg min
Z
∫ f(Z,A)dA

Block coordinate descent (Bertsekas, 1999), in which one set of variables is updated

while fixing the other, can be adopted to solve the above optimization problem. The

validation of this approach is proved in Section 3.5. By setting df
dzj

= 0 and df
dai

= 0,

update rules of âi and ẑj for block coordinate descent can be derived in Equations (3.11)

and (3.12).

âi =
2(α − 1) + ∣Xi∣

2β +∑xij∈Xi(xij − zj)
2 (3.11)
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ẑj =

µj,x
σ2
j,x
+ θλj∑j′∈Ej c(j, j

′)zj′ +∑xij∈Xj aixij

1
σ2
j,x
+ θλj∑j′∈Ej c(j, j

′) +∑i∈Ij ai
(3.12)

In Equation (3.11), Xi is the set of claims provided by source i, ∣Xi∣ is the number of

claims provided by source i, and ∑xij∈Xi(xij − zj)
2 is the total squared error the source

makes on its claims. It can be seen that the source weight is inversely proportional to

the error, it coincides with the design of the proposed method that sources are assigned

high weights if they make less errors on the claims.

In Equation (3.12), Xj is the set of claims for object j, Ij is the set of sources that

provide claims on object j, and Ej is the set of edges that connect correlated objects

involving object j. It abuses the notation here by using the same symbol Ej to denote

the set of objects that are correlated with object j. From this equation it can be seen that

the inferred truth is determined by three parts: (1) mean of claims weighted by their

variance, (2) correlated object truths weighted by correlation coefficients, and (3) claims

weighted by source weights. θ and λj are used to adjust the contribution of correlated

object truths in the inferred truth. The use of θ and λj are analyzed below.

Let ∣Ej ∣ denotes the number of correlated objects of object j and ∣Ij ∣ denotes the

number of sources which provide information on object j. ∣Ej ∣ is independent of ∣Xj ∣.

It is known that correlation coefficient c is bounded between 0 and 1, but ai is an

unbounded positive real number. Assume θ and λj have no effect on the inferred object

truths, i.e. θ = 1 and λj = 1. If any of the source weights ai ≫ 1, but ∣Ej ∣ is numerical

close to ∣Ij ∣, then ∑i∈Ij ai ≫ ∑(j,j′)∈Ej c(j, j
′). This makes correlated object truths

insignificant to the inferred truth. Similarly, if ∣Ej ∣ ≫ ∣Ij ∣ and each ai is not highly

greater than 1 which is the upper bound of c, it makes the weighted claims insignificant

to the inferred truth.

To tackle this problem, for each object j, balancing factor, λj , is used to balance
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between the weighted correlated object truths and weighted claims in the inferred truth.

λj can be computed by the following Equation:

λj =
α

β
×

∣Ij ∣

∣Ej ∣
(3.13)

In Equation (3.13), αβ is the average mean2 of the Gamma distribution that is used to

draw source weights, as it balances the correlation coefficients (bounded between 0 and

1) with source weights. ∣Ij ∣
∣Ej ∣ balances the difference between the number of sources that

provide information on object j and the number of j’s correlated objects. The balancing

factor λj is hard to estimate if it was set empirically for different objects. By Equation

(3.13), λj can be computed for each object without any manual configuration.

By using the balancing factor λj , the effect of weighted correlated object truths can

be balanced with the weighted claims. In some datasets, if the number of correlated

objects per object is large or there are few reliable sources available, it can further

increase the contribution of weighted object truths for inferred truth. A weighting

factor, θ, is used to adjust the effect of correlated object truths in the inferred truth after

it is balanced by λj . The value of θ can be set empirically in different datasets.

In this model, there are two sets of variables, Z and A, involved in the optimization

problem. However, variables in Z are correlated, it is trivial if they are updated in the

same block by using block coordinate descent. Instead, the variables in Z can be divided

into independent blocks of variables (Meng et al., 2015) {Q1,Q2, . . . ,Ql} ⊂ Q = Z

where the variables in one block are uncorrelated from each other. Hence, an object

truth ẑj is updated in one block while its correlated object truths are fixed in other blocks.

The algorithm flow for the proposed truth discovery is summarized in Algorithm 3.2.

2Average mean of the Gamma distributions is
∑i∈Ij

α
β

∣Ij ∣
, since the source weights are initialized equally,

it can be simplified into α
β

.
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Algorithm 3.2: Truth Inference
Input :Set of claims X and set of objects’ correlation coefficients C
Output :Ẑ and Â

1 Initialize the set of estimated source weights Â
2 Initialize empty set of inferred object truths Ẑ
3 Partition Ẑ to independent blocks Q by using object correlations C
4 Ẑ, Â ← inference(Q,X ,C,Ẑ,Â)
5 return Ẑ,Â

6 Procedure inference(Q,X ,C,Ẑ,Â)
7 repeat
8 for Qk ∈ Q do
9 for zj ∈ Qk do

10 Update ẑj by Equation (3.12)
11 end
12 end
13 for ai ∈ A do
14 Update âi by Equation (3.11)
15 end
16 until Convergence condition is met
17 return Ẑ,Â
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3.5 Theoretical Analysis

In this section, it will show that block coordinate descent is a valid method to minimize

the energy defined in Equation (3.10). It will also analyze the time complexity of the

proposed method.

Theorem 3.1. Function f in Equation (3.10) converges to the global minimum when us-

ing block coordinate descent to iteratively update blocks of variables in {Q1,Q2, . . . ,Ql,A}

by Equations (3.11) and (3.12). The solution of Â and Ẑ is a stationary point w.r.t. f .

Proof. Let Y denotes the set of blocks of variables where Y = {Q1,Q2, . . . ,Ql,A} and

the size of Y is l + 1. Then the optimization problem can be refined as:

minimize f(y), s.t. y ∈ Y

According to (Bertsekas, 1999), let {yu} be the sequence generated by the the

following rule:

yu+1
i = arg min

ξ∈Yv
f(yu+1

1 , . . . , yu+1
v−1 , ξ, y

u
v+1, . . . , y

u
l+1),

v = 1, . . . , l + 1.

where u is the iterate index, then every limit point of {yu} is a stationary point and

f({yu}) is the global minimum of f if f satisfies two conditions:

1. f is continuously differentiable over Y .

2. For each yv ∈ Yv,

f(y1, y2, . . . , yv−1, ξ, yv+1, . . . , yl+1)

viewed as a function of ξ while the other blocks of variables are fixed, attains a
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unique minimum ξ̄ over Yv, and is monotonically non-increasing in the interval

from yv to ξ̄.

Then, it will show that f satisfies the above two conditions in the following two cases:

• Case 1: Update block A while fixing Q. In this case, as α ≥ 1, fQ(A) involves

linear combination negative logarithm functions, linear functions w.r.t. ai and

constants. Both negative logarithm functions and linear functions are continu-

ously differentiable over A, negative logarithm functions are strictly convex over

A, and linear functions are affine and convex over A. Hence, fQ(A) is continu-

ously differentiable and strictly convex over A. Thus, f satisfies the above two

conditions when updating A.

• Case 2: Update block Qo while fixing {Y ∖ Qo} where Qo ∈ Q. In this case,

f{Y∖Qo}(Qo) is a linear combination of quadratic functions which have the form

d(zj − e) where d and e are constants and d > 0, and constants. Since the

quadratic functions are continuously differentiable and strictly convex over Qo,

f{Y∖Qo}(Qo) is continuously differentiable and strictly convex over Qo. It con-

cludes that f satisfies the above two conditions when updating Qo.

Therefore, it is valid to use block coordinate descent to minimize energy function f .

Time Complexity Analysis: For each iteration, in the source weight update step, each

source needs to compute the error between its claims and the corresponding object truth.

Since each source can provide up to n claims and there are m sources, the cost of source

weight update is O(mn). In the object truth update step, for each object, it receives

up to m claims and has at most n − 1 correlated objects. The costs of computing the

mean and variance of object’s claims are both O(mn). The cost of computing sum

of correlated objects’ truths is O(mn) for all the objects, and the cost of computing

weighted object’s claims is O(mn). Overall, one iteration requires O(mn) time. As
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there are at most mn claims, the time complexity of one iteration is linear w.r.t. the

number of claims.

The existing work on the convergence rate of block coordinate descent assumes

the objective function is Lipschitz continuous (Beck & Tetruashvili, 2013), but the

objective function in Equation (3.10) does not satisfy Lipschitz continuity3. However,

the performance of the proposed methods for many real-world applications is reasonable

and practical as demonstrated in Section 3.7.2, and the algorithm converges very quickly

as shown in Section 3.7.5.

3.6 Incremental Truth Inference

As presented in Section 3.4, the PTDCorr model runs in a batch mode. It needs to

process the whole dataset all together to infer object truths and source weights. However,

this method is infeasible in some applications where data arrives sequentially. In these

scenarios, object truths, claims and source weights change over time, therefore, the

inferred object truths and source weights could be different at different timestamps.

Furthermore, data is accumulated over time. It would be very expensive to re-process all

the historical data, as even a small amount of data is added at each timestamp. Instead,

the truth discovery algorithm should compute the inferred truth on real time with a short

response time. To tackle this problem, I extend the PTDCorr model and develop an

incremental truth discovery model (iPTDCorr). In this section, it will first introduce the

incremental source weight estimation method. Then it will describe how to infer object

truths by capturing temporal correlation.

3This is because ai ∈ (0,+∞), lim
ai→0

∂f
∂ai

= ∞.
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3.6.1 Incremental Source Weight Estimation

The data is assumed to come into an application in a sequential order. The idea of

iPTDCorr is to retain the source weights at timestamp t − 1 where t is the current

timestamp, and uses the source weights computed at timestamp t − 1 as the prior

information to estimate the source weights at t. Thus, the posterior distribution of each

source weight after timestamp t − 1 can be computed by Equation (3.14).

p(at−1
i ∣X1∶t−1, Z1∶t−1) ∝ p(at−1

i )p(X1∶t−1∣at−1
i , Z1∶t−1)

∝ p(at−1
i )

t−1

∏
k=1

p(Xk
i ∣a

t−1
i , Z1∶t−1)

∝ (at−1
i )α−1 × exp(−βat−1

i )×

t−1

∏
k=1

∏
xkij∈Xk

i

(at−1
i )

1
2 × exp(−

at−1
i (zkj − x

k
ij)

2

2
)

∝ (at−1
i )α−1+∑

t−1
k=1 ∣X

k
i ∣

2 ×

exp(−at−1
i

2β +∑
t−1
k=1∑xkij∈Xk

i
(zkj − x

k
ij)

2

2
)

(3.14)

Equation (3.14) indicates that p(at−1
i ∣X1∶t−1

i , Z1∶t−1) follows a Gamma distribution:

Gamma(α +
∑
t−1
k=1 ∣X

k
i ∣

2
, β +

∑
t−1
k=1∑xkij∈Xk

i
(zkj − x

k
ij)

2

2
)

Let bi denotes ∑t−1
k=1 ∣X

k
i ∣, which is the historical total number of claims that a source

i has claimed from timestamps 1 to t−1. Let di denotes∑t−1
k=1∑xkij∈Xk

i
(zkj −x

k
ij)

2, which

represents the historical total errors that a source i has made through timestamps 1 to

t − 1. By using p(at−1
i ∣X1∶t−1

i , Z1∶t−1) as the prior distribution, the source weight of i at

timestamp t can be computed as :

âti =
2(α − 1) + bi + ∣X t

i ∣

2β + di +∑xtij∈Xt
i
(ztj − x

t
ij)

2
(3.15)
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As time goes on, bi and di may become very large and dominate the source weight

computation at timestamp t, which makes ∣X t
i ∣ and ∑xtij∈Xt

i
(ztj − x

t
ij)

2 for the current

timestamp t insignificant in Equation (3.15). In order to solve this problem, a decay

factor ω can be used to exponentially shrink the effect of historical claim counts and

errors to infer object truths at the current timestamp. Specifically,

bi =
t−1

∑
k=1

ωt−k∣Xk
i ∣ (3.16)

di =
t−1

∑
k=1

ωt−k ∑
xkij∈Xk

i

(zkj − x
k
ij)

2 (3.17)

From Equations (3.16) and (3.17), it can seen that the more recent historical claim

counts and errors weigh more when estimating the source weights. Once the truths at

timestamp t − 1 are inferred, bi and di are updated and they are treated as constants

when estimating source weights at timestamp t.

The incremental source weight update rule ensures that the historical claims do not

need to be re-processed and stored and makes truth inference more efficient if data

arrives sequentially.

3.6.2 Temporal Correlation

In the applications where data arrives sequentially, there usually exists temporal correl-

ation among the truths of an object. For example, the hourly temperatures of a place

usually evolve smoothly over time, so the temperatures in a short period of time are cor-

related and close. The temporal correlation can also be incorporated into the proposed

model to infer object truths. Specifically, given an object j and two timestamps t and

t′, the states of object j at timestamps t and t′ can be viewed as two pseudo objects jt

and jt′ . The temporal correlation between jt and jt′ can be measured by a temporal
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correlation coefficient ct(jt, jt′). If ct(jt, jt′) > 0, jt and jt′ are temporally correlated,

and the truths of object j at timestamps t and t′ could be close.

By incorporating the temporal correlation, the truth of object j at timestamp t can

be computed by Equation (3.18).

ẑtj =

µtj,x

σtj,x
2 + θλtj[ ∑

j′∈Ej
c(j, j′)ztj′ + ∑

jt
′∈Etj

ct(jt, jt
′
)ẑt

′
j ] + ∑

xtij∈Xt
j

atix
t
ij

1

σtj,x
2 + θλtj[ ∑

j′∈Ej
c(j, j′) + ∑

jt
′∈Etj

ct(jt, jt′)] + ∑
i∈Itj

ati

(3.18)

In Equation (3.18), Ej is the set of objects that have a time-invariant correlation with

object j, and Et
j is the set of pseudo objects that have a temporal correlation with object

j at timestamp t. ẑt′j is the inferred object truth of the pseudo object jt′ , it is also the

truth of object j at timestamp t′. ẑt′j is treated as a constant instead of a random variable

at timestamp t, because it was inferred at the previous timestamp t′. λtj is the balancing

factor for object j at timestamp t. It uses the same idea discussed in Section 3.4.5 to

compute λtj:

λtj =
∑i∈Itj(

α+bi/2
β+di/2)

∣I tj ∣
×

∣I tj ∣

∣Ej ∣ + ∣Et
j ∣

(3.19)

In Equation (3.19), α+bi/2β+di/2 is the mean of the prior distribution for each source weight at

timestamp t,
∑i∈It

j
(α+ai/2
β+di/2 )

∣Itj ∣
is the average mean of the source weight’s distributions for

the sources that claim object j at timestamp t, and ∣Ej ∣ + ∣Et
j ∣ is the size of the correlated

objects.
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Dataset Objects Sources Claims in total timestamps
Avg. number of correlated

object per object
Gas Price Dataset 3197 30 95910 N/A 7.2
Weather Dataset 42 5 37800 180 1.1
Synthetic Dataset 4000 30 2400000 20 99

Table 3.2: Datasets Statistics in Chapter 3 Experiments

3.7 Experiments

In this section, it experimentally compares the proposed methods with the state-of-

the art truth discovery methods on both real datasets and synthetic datasets. All the

experiments are conducted on a PC with an Intel i7 processor and 16 GB RAM.

3.7.1 Experiments Setup

In this section, it describes the datasets, baseline methods and performance metrics used

to evaluate the proposed PTDCorr and iPTDCorr methods.

Datasets

• Gas Price Dataset: The regular gas prices of 3197 gas stations in the US from

Gasbuddy4 are collected for one day as the ground truth. The gas stations are in 30

major cities in the US. Gas prices are reported by various users. In this experiment,

30 users with various reliability degrees and their claims are generated. In this

dataset, a gas price in a gas station is an object, and a source is a user who reports

gas prices. The gas prices is analyzed on the interactive map on Gasbuddy and

it is found that gas prices are similar if the distance between is within 5 kms.

Hence, 5 kms is used as the threshold to determine if two stations’ gas prices are

correlated and choose Gaussian kernel to install correlation coefficient function c.

• Weather Dataset: The weather forecast data from five weather forecast providers

4www.gasbuddy.com
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(Aeris5, Apixu6, Darksky7, World Weather Online8 and Wunderground9) for 42

different locations in New York city with 37800 claims are collected. The ground

truths of the weather condition are also collected for evaluation. In this dataset,

an object is a forecast temperature at a location which has different true values

at different timestamps. A source is a website which provides weather forecast

information. Two objects are considered to be correlated if the suburbs they

belong to are next to each other. It uses a constant, 0.8, to install correlation

coefficient function.

• Synthetic Dataset: This dataset contains 30 synthetically generated sources with

different reliability degrees and 4,000 generated objects spanning 20 timestamps,

hence, there are in total 2,400,000 claims in this dataset. The objects are divided

into 40 clusters where objects are correlated if they are in the same cluster. The

ground truths of objects at each timestamp within the same cluster and the ground

truths of the same object at adjacent timestamps are numerically similar. For each

source, Gaussian noise based on the source’s reliability degree is added to each

object’s ground truth for each timestamp and is used as the source’s claims. This

dataset will be used to evaluate incremental truth discovery methods.

The statistics of the three datasets are summarized in Table 3.2. The last column shows

the average number of correlated objects per object in the datasets.

Baseline Methods

PTDCorr and iPTDCorr models are compared with the state-of-the art truth discovery

solutions, including the incremental truth discovery methods: DynaTD (Y. Li et al.,

5www.aerisweather.com
6www.apixu.com
7darksky.net/about/
8www.worldweatheronline.com
9www.wunderground.com
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2015), DynaTD+all (Y. Li et al., 2015), and iCRH (Y. Li, Li et al., 2016); the static

truth discovery methods: TDCorr (Meng et al., 2015), GTM (B. Zhao & Han, 2012)

and CRH (Q. Li, Li, Gao, Zhao et al., 2014), iCRH (Y. Li, Li et al., 2016); and the naive

methods which do not consider source reliability: Mean and Median. The descriptions

of these methods can be seen in Section 2.4.

GTM is a batch method and it is not designed to work on datasets which involve

temporal relations or in a dynamic environment. Hence the same object at different

timestamps are treated as different objects when testing GTM on weather dataset and

synthetic dataset.

Performance Metrics

The data in the datasets are continuous, the difference between inferred truth and ground

truth can be measured by their numerical distance. Hence, MAE and RMSE (see Section

2.4 for description).

3.7.2 Performance Comparison

In this section, it presents the experiment results conducted on the three datasets. All

the baseline methods are implemented and tuned with the parameters that result in the

best performances.

Effectiveness

In many real-world scenarios, an object may not be reported by all the sources. Hence

the experiments is conducted on different coverages of sources. The coverage is defined

as the percentage of sources that make claims on the objects. For example, in the gas

price dataset, there are 30 sources in total. If the coverage is 100%, it means that each

object is reported by all the 30 sources. If the coverage is 60%, it means that each object
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Gas Price Dataset
Metric MAE RMSE

XXXXXXXXXXXXMethod
Coverage

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

PTDCorr 0.198 0.182 0.176 0.172 0.167 0.06 0.047 0.042 0.04 0.037
TDCorr 0.226 0.221 0.22 0.219 0.195 0.073 0.066 0.065 0.063 0.06
GTM 0.409 0.301 0.26 0.233 0.214 0.263 0.142 0.104 0.086 0.072
CRH 0.43 0.329 0.289 0.267 0.251 0.290 0.169 0.131 0.11 0.096
Mean 0.469 0.377 0.336 0.291 0.273 0.344 0.223 0.175 0.13 0.113

Median 0.491 0.366 0.307 0.276 0.252 0.382 0.213 0.151 0.12 0.101

Table 3.3: Gas Price Dataset Experimental Result

is reported by 18 randomly selected sources. For the gas price and synthetic datasets,

the experiments are conducted under the coverage of 20%, 40%, 60%, 80% and 100%.

For the weather dataset, experiments are conducted under the coverage of 40%, 60%,

80% and 100%. It is trivial to test for the coverage under 40% for this dataset because

each object is only claimed by 1 source if the coverage is below 40%.

The experiment results for the gas price dataset is summarized in Table 3.3. The

baseline methods iCRH, DynaTD and DynaTD+all are designed to work on data having

temporal relations. Hence, they are not tested with the gas price dataset. From the table

it can be seen that the proposed method outperforms all the baseline methods under all

the coverages. Among all the baseline methods, only TDCorr uses object correlation

and it is a batch truth discovery method. According to the experiment results, PTDCorr

improves the accuracy by more than 30% in comparison to GTM and CRH. When the

coverage is low at 20%, PTDCorr performs 32% better than GRM and 67% better than

CRH. The result is very encouraging because in many real-world applications, it is

common that the coverage is normally low. The proposed method can provide a good

solution for these scenarios. PTDCorr also outperforms TDCorr by at least 12% for

all coverages. This demonstrates that the proposed method can better utilize object

correlation in truth discovery.

Table 3.4 shows the experimental results of the weather dataset. The weather

dataset contains weather forecasts over time provided by multiple sources but the
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Weather Dataset
Metric MAE RMSE

XXXXXXXXXXXXMethod
Coverage

40% 60% 80% 100% 40% 60% 80% 100%

iPTDCorr 1.159 1.042 0.959 0.902 2.402 1.798 1.473 1.355
TDCorr 1.23 1.121 1.022 0.95 2.597 2.029 1.627 1.455
DynaTD 1.34 1.2 1.12 1.02 2.988 2.125 1.676 1.573

DynaTD+all 1.265 1.123 1.027 0.985 2.839 1.952 1.679 1.566
iCRH 1.331 1.158 1.035 0.989 2.849 1.998 1.705 1.68
GTM 1.336 1.19 1.056 0.991 2.858 2.029 1.797 1.688
Mean 1.647 1.463 1.359 1.287 3.776 2.597 2.432 2.325

Median 1.517 1.390 1.293 1.226 3.746 3.021 2.592 2.172

Table 3.4: Weather Dataset Experimental Result

Synthetic Dataset
Metric MAE RMSE

XXXXXXXXXXXXMethod
Coverage

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

iPTDCorr 0.196 0.179 0.156 0.142 0.131 0.081 0.05 0.039 0.032 0.027
TDCorr 0.247 0.223 0.199 0.18 0.164 0.097 0.079 0.062 0.051 0.042
DynaTD 0.379 0.268 0.225 0.192 0.172 0.223 0.115 0.076 0.06 0.049

DynaTD+all 0.345 0.257 0.22 0.19 0.168 0.188 0.105 0.073 0.056 0.045
iCRH 0.38 0.271 0.223 0.191 0.172 0.222 0.117 0.078 0.057 0.048
GTM 0.386 0.273 0.223 0.193 0.172 0.234 0.117 0.078 0.058 0.047
Mean 0.406 0.288 0.235 0.203 0.181 0.26 0.13 0.087 0.065 0.052

Median 0.443 0.328 0.273 0.238 0.213 0.311 0.169 0.117 0.089 0.072

Table 3.5: Synthetic Dataset

average number of correlated objects per object is very low. Therefore, the impact

of object correlations on inferred truth may be small. Even in this situation, the

proposed incremental model iPTDCorr outperforms all the baseline methods under

all the coverages. DynaTD and DynaTD+all perform better than TDCorr when the

coverage is high. However, when the coverage is 40%, TDCorr provides better results.

This further demonstrates that object correlation has a positive impact on truth discovery.

It becomes more critical in low coverage situations which are common for many real-

world applications. However, TDCorr cannot update source weights and object truths

incrementally for each timestamp, hence its performance is not as good as the proposed

iPTDCorr.

The experimental results for the synthetic dataset is summarized in Table 3.5.
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iPTDCorr has the lowest errors compared to the baseline methods under all coverages.

Being different from the weather dataset, the average number of correlated objects

per object is much larger. Hence, the evidence of effectiveness is prominent. When

coverage is 100%, iPTDCorr outperforms TDCorr, DynaTD+all and iCRH by 20%,

22% and 23% respectively. Its error is nearly 24% lower than the batch method GTM.

When the coverage is 20%, iPTDCorr remains a 21% advantage over TDCorr, and

performs 43%, 48% and 49% better than DynaTD+all, iCRH and GTM respectively.

It can be observed from the experimental results that the performances of PTDCorr,

iPTDCorr and TDCorr increase as the coverage decreases for all the three datasets.

The reason is that when the coverage is low, an object is claimed by less sources. It

increases the chances that objects are claimed by unreliable sources. By utilizing object

correlation, the inferred object truths claimed by reliable sources can be propagated

to those who are claimed by unreliable sources to improve the effectiveness of truth

discovery. This also coincides with the design philosophy of the proposed method that

reliable sources are able to propagate their influences to the objects even if they do not

report information on those objects directly. Compared with TDCorr, the performance

of PTDCorr and iPTDCorr are better because (1) the probabilistic model captures the

dependencies among object truth, source weight, claim and object correlation in a more

systematic way; (2) iPTDCorr is able to estimate the source weights incrementally for

each timestamp in a dynamic environment.

Efficiency

In this section, I compare the efficiencies of the proposed methods. The data is preloaded

into the memory and the independent blocks of variables are constructed based on the

correlations among objects. For the weather dataset and the synthetic dataset, the

arrival of data is modeled coming from a stream. For the weather dataset which has 180

timestamps, there are few claims for each timestamp and the running time for processing
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Figure 3.2: PTDCorr Running Time on Gas Price Dataset

each timestamp is very small. Hence, it reports the accumulated running time for every

9 timestamps for the weather dataset. The running times of PTDCorr/iPTDCorr and the

state-of-art truth discovery methods are plotted in Figures 3.2, 3.3 and 3.4 respectively.

For baseline methods, the running times of DynaTD and DynaTD+all are very close,

and the running times of Mean and Median are also very close. Hence, it only shows

the result of DynaTD and Mean for clear presentation. Among all the methods, Mean

has the optimal efficiency because it does not estimate source reliabilities in comparison

to the other truth discovery methods.

The efficiency experiment conducted on the gas price dataset is shown in Figure 3.2.

The running times of PTDCorr and TDCorr are similar. However, these two methods

are slower than GTM and CRH because PTDCorr and TDCorr use object correlations in

their models. This results in extra computation when summing the weighted correlated

object truths in the truth update step.

Figure 3.3 shows the results of the weather dataset. It can seen that the running

times of TDCorr and GTM grow linearly over time and they have a similar running time.
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Figure 3.3: iPTDCorr Running Time on Weather Dataset

The reason is that these algorithms have to be re-executed over the whole dataset when

new data arrives. On the other hand, for iPTDCorr, DynaTD and iCRH, the elapsed

running times in each timestamp do not deviate greatly from each other and they are

significantly faster than the two batch algorithms. This is because these three methods

are able to find truths incrementally without re-visiting the historical data. Compared

with DynaTD and iCRH, the running time of iPTDCorr is slightly slower because it

needs to conduct iterative processes and compute the weighted correlated object truths

to obtain accurate object truth.

The efficiency experiment conducted on the synthetic dataset is plotted in Figure 3.4.

As the running times of DynaTD and iCRH are very similar, they overlap in the figure.

Both iPTDCorr and TDCorr need to compute the sum of weighted correlated object

truths to update the inferred truths. iPTDCorr is able to divide such computation to each

timestamp, but TDCorr has to compute the sum of weighted correlated object truths

for the whole dataset all at once. This also makes its running time slower than that of

GTM. As more computation is required for iPTDCorr, it runs slower than DynaTD and

iCRH, but it improves the effectiveness significantly by sacrificing some efficiency as

demonstrated in Section 3.7.2.
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Figure 3.4: iPTDCorr Running Time on Synthetic Dataset

3.7.3 Influence of the Weighting Factor on the Errors

Weighting factor θ is introduced in Section 3.4 and is used to adjust the weight of

correlated object truths that contributed to the inferred truth. Figure 3.5 shows the

effect of different weighting factors on MAE and RMSE for the three datasets with

different coverages. The optimal θ that leads to the smallest MAE and RMSE under

each coverage is marked by a square.

When θ = 0, it corresponds to the case where correlated object truths do not

contribute to inferred truths in the proposed method. For all the three datasets, the

performance of PTDCorr and iPTDCorr increases as soon as θ begins to increase from

0, and this demonstrates that the developed methods are able to use object correlations

information. Indeed, object correlations benefit the performance of truth discovery.

For the weather dataset, a relatively small θ leads to the best performance. The

reason is that each object has few correlated objects, averagely 1.1, but each object is

reported by 5 sources. If correlated object truths contribute too much to the inferred

truth, it would make the weighted claims insignificant to the inferred truth. For the

gas price dataset and synthetic dataset, as the average number of correlated objects
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Figure 3.5: Effects of θ on MAE and RMSE

per object is big, a relatively big θ would benefit the performance. It is interesting to

find that the errors of the gas price dataset do not increase significantly as θ passes the

optimal value. The reason is that the gas prices of two correlated gas stations are very
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close to each other, thus, a larger weight of correlated object truths in the inferred truth

does not result in a big error.

From Figure 3.5, it can be seen that the optimal value increases as the coverage

decreases for all datasets. The reason is that when the coverage is low, each object is

claimed by few or unreliable sources. Thus, increasing the contribution of correlated

object truths to the inferred truth is able to benefit the performance of truth discovery in

these scenarios.

Different θs lead to different optimal errors evaluated by MAE and RMSE, but the

two best θs for MAE and RMSE are very close. For example, for the gas price dataset,

when the coverage is 100%, the best θ that leads to optimal MAE is 2.2 while the best

θ that leads to the optimal RMSE is 3.8. MAE and RMSE evaluate the errors from

different perspectives whereas RMSE penalizes heavily on large errors. If the truth

discovery application is more concerned with the large errors of inferred truths, one

can choose to use the best θ that leads to the optimal RMSE to run the truth discovery

algorithm.

3.7.4 Influence of the Decay Factor on the Errors

Decay factor γ is introduced in Section 3.6 and it is used to exponentially shrink the

effect of historical claim counts and errors to infer object truths at the current timestamp

for incremental truth inference. Figure 3.6 shows the effect of different decay factors on

MAE and RMSE for the weather and synthetic datasets under different coverages. The

optimal γ that leads to the smallest MAE and RMSE under each coverage is marked by

a square.

For the weather dataset, after γ is decreased below the optimal value, the errors

begin to increase slowly. This implies that the source weights in this dataset evolve

smoothly. Indeed, using the historical claims counts and errors affects the source
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Figure 3.6: Effects of γ on MAE and RMSE

weights estimation. After γ is decreased below the optimal value for the synthetic

dataset, the errors also increase, but the increment is very small. The reason is that it did

not enforce the source weights to be changed smoothly over time when the synthetic

dataset is generated. Therefore, the source weights in the synthetic dataset are less

affected by the historical claims counts and errors.

It can also be observed that both MAE and RMSE reduced significantly as soon as

γ was decreased from 1 in both datasets. The reason is that when γ = 1, it corresponds

to the case that it uses all the historical claim counts and errors to compute the source

weight in Equation (3.15). As time goes on, the accumulated historical claims counts
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and errors become very large and dominate the source weight computation at the current-

timestamp. This causes the source weight rarely changes over time. Thus, using a decay

factor smaller than 1 will immediately remedy this problem.

3.7.5 Convergence Analysis

To show the convergence of PTDCorr and iPTDCorr, I take the synthetic dataset as

an example shown in Figure 3.7. In Figure 3.7(a), it shows the MAE w.r.t the number

of iterations in the first timestamp. It can be seen that iPTDCorr converges within 4

iterations. The MAE is reduced significantly in the first 3 iterations. This is because

iPTDCorr can estimate source weights within few iterations, which makes the truth

discovery process more efficiently. Figure 3.7(b) shows the required number of iterations

for reaching convergence. From this figure it can be observed that it uses the most

iterations to reach convergence in the first timestamp, and the subsequent timestamps

require less iterations to converge. The reason for this phenomenon is that the source

weights are initialized uniformly in the first timestamp. The initialized source weights

might be largely discrepant from the estimated source weights leading to convergence.

Therefore, it requires more iterations to reach convergence for the first timestamp. For

the subsequent timestamps, the posterior distribution of source weight estimated from

previous timestamp is used as the prior distribution to estimate the source weights at the

current timestamp. Over data streams, the source weights usually evolve smoothly over

time. This implies that the weights of a source at two adjacent timestamps are usually

very close. Thus, it requires less iterations to converge.

In summary, the proposed PTDCorr and iPTDCorr methods can effectively infer

object truths by using object correlations, and they outperform all the state-of-art truth

discovery methods in terms of effectiveness. The proposed methods are especially

effective when information is provided by few sources. By processing the data only
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Figure 3.7: Convergence Analysis

once, iPTDCorr can efficiently infer object truths in a dynamic environment, and the

experiments have shown that the proposed method has a significant improvement in

efficiency over the existing truth discovery method that consider object correlation in a

dynamic environment.

3.8 Conclusion

In this chapter, the truth discovery problem with object correlations was investigated.

The object correlations are modeled as edges in a chain graph model and a probabilistic

truth inference algorithm is proposed to infer object truths with correlations. In order to

handle data arriving sequentially in a dynamic environment, incremental truth inference

algorithm is develop. It is able to incorporate time-invariant correlations between

different objects as well as temporal correlations for the same object to effectively

infer object truths. It is also able to retain source reliability information over time as it

does not need to re-process the historical data. The experiments demonstrated that the

proposed methods outperformed some existing state-of-the-art truth discovery methods

both effectively and efficiently.

The models developed in this chapter aims at answering research question 1. The

work in this chapter has been published in (Yang et al., 2019c).



Chapter 4

Dynamic Source Weight Computation

for Truth Inference over Data Streams

4.1 Overview

As reviewed in Chapter 2, most existing truth discovery methods designed for static

data can achieve high accuracy but are computationally expensive to be applied to

stream data. On the other hand, many existing truth discovery methods designed

for streaming data can achieve high efficiency but sacrifice the accuracy. A method is

needed to improve the accuracy of truth discovery over data streams, and still guarantees

the efficiency. To address the accuracy and efficiency issues of streaming data truth

inference, this chapter presents a novel truth inference method, Dynamic Source Weight

Computation (DSWC) truth inference, which is able to work with a wide range of

iterative truth inference methods for both high accuracy and efficiency. Specifically, unit

error is defined that captures the truth discovery error caused by not changing source

weights at certain timestamps. It analyzes the relationship between unit error and source

weight evolution, and proves that the unit error is limited if the source weight evolution

satisfies a certain condition. If the unit error is under a threshold, it skips the expensive

91
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iterative process and computes object truths directly. As the source weight evolution is

unknown before the source weights are computed, a prediction model is developed to

predict source weight evolution over time. Finally, DSWC algorithm flow is presented

by integrating the error analysis and the prediction model to present. In summary, the

contributions in this chapter are detailed as follows.

• It theoretically analyzes the relationship between unit error and source weight evol-

ution when each object is only claimed or reported by a subset of sources/agents.

It is proved that the unit error can be limited within a threshold if the source

weight evolution satisfies a certain condition.

• A prediction model is developed that is able to accurately predict source weight

evolution and report the posterior distribution of source weight and source weight

evolution.

• By integrating the error analysis and the prediction model, it presents DSWC

algorithm that can work with a wide range of iterative-based methods for truth

inference over data streams to achieve better accuracy as well as efficiency for

streaming data.

• The experiments on four datasets demonstrate high performance of the developed

method.

The rest of this chapter is organized as follows. In Section 4.2 it defines the truth

discovery studied in this chapter and discusses the related work. In Section 4.3, it

presents the preliminary of this chapter. In Section 4.4, it theoretically analyzes the

relationship between unit error and source weight evolution. Section 4.5 describes a

prediction model that predicts source weight evolution. The DSWC algorithm flow

is presented in Section 4.6. Section 4.7 presents the experimental results. Finally, it

concludes in Section 4.8.
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Notation Description
j an object
i an source
J set of all the objects
Jpi the set of objects that are claimed by source i at timestamp p
I set of the sources
Ipj set of sources that claim object j at time-stamp p
xpij the claim of object j provided by a source i at timestamp p
zpj the truth of object j at timestamp p
mp
j the maximum value of claims of object j at timestamp p

api the weight of source i at timestamp p
φ
p/q
j the unit error of object j between timestamps p and q
z
p/q
j the truth of j at timestamp q estimated by source weights computed at timestamp p
λ a smoothing factor
δ
p/q
i the source weight evolution of source i between timestamp p and q

Table 4.1: Notations in Chapter 4

4.2 Truth Discovery & Related Work

In this section, the problem definition of truth discovery on data streams is given below,

and important notations that will be used throughout this chapter are summarized in

Table 4.1.

Problem Definition. Suppose there are a set of objects J and a set of agents/sources

I . Each object j at a timestamp p can be claimed by a set of sources Ipj where Ipj ⊆ I .

The claims of an object j by a source i at timestamp p is denoted as xpij . The goal

of truth discovery is to estimate the truth for each object at each timestamp, i.e. {zpj }

where zpj is defined as the truth of object j at timestamp p.

As reviewed in Chapter 2, many truth discovery methods have iterative algorithm

flows which update source weights and object truths alternatively and iteratively. A

well-known truth discovery strategy is weighted aggregation (Q. Li, Li, Gao, Su et al.,

2014; Q. Li, Li, Gao, Zhao et al., 2014; Y. Li, Li et al., 2016; B. Zhao & Han, 2012;

Y. Li et al., 2015; Yao et al., 2018). The weighted aggregation can be derived by using

coordinate descent if the truth inference problem is modeled as an optimization task
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(Q. Li, Li, Gao, Zhao et al., 2014), or expectation maximization if the truth inference

problem is modeled by a probabilistic graphical model (B. Zhao & Han, 2012). The

high-level view of weighted aggregation is given below.

zpj =
∑i∈Ipj a

p
i × x

p
ij + c

∑i∈Ipj a
p
i + b

(4.1)

In Equation (4.1), api is the weight of source i at timestamp p. It is modeled as a

positive number which reflects the reliability of source i. A source’s weight is higher

if its claims are closer to the truths. c and b can be set differently to capture different

characteristics when inferring object truths. For example, c1 and c2 are set to 0 for

basic weighted aggregation (Q. Li, Li, Gao, Zhao et al., 2014). If PGM is used to

estimate object truths where the object truths are generated from Gaussian distributions

(B. Zhao & Han, 2012), then c =
µpj

σpj
2 and b = ( 1

σpj
)2, where µpj and σpj are the mean and

variance parameters of the Gaussian distribution that generates the truth of object j at

timestamp p. In a data stream, the object truths usually evolve smoothly over time, i.e.,

the truths of an object in adjacent timestamps are very close. To capture the temporal

smoothness (Y. Li et al., 2015), c and b can be set to λzp−1
j and λ, respectively, where

λ is a smooth factor (hyperparameter), and zp−1
j is the estimated truth of object j at

the previous timestamp p − 1. A larger λ enforces the truth at current timestamp to be

very close to the estimated truth at the previous timestamp. If a claim at timestamp p is

significantly different from zp−1
j , this claim can be treated as an outlier and discarded.

The source weights computation strategy can be derived differently by different

methods. For example, CRH (Q. Li, Li, Gao, Zhao et al., 2014) and DyOP (Y. Li et al.,

2015) use the following equations to compute source weights.

CRH: api = − log
∑j∈Jpi (x

p
ij − z

p
j )

2

∑i′∈I ∑j∈Jp
i′
(xpi′j − z

p
j )

2
(4.2)
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DyOP: api =
∣Jpi ∣

∑j∈Jpi (x
p
ij − z

p
j )

2
(4.3)

In the above two equations, Jpi denotes the objects that are claimed by source i at

timestamp p. ∑j∈Jpi (x
p
ij − z

p
j )

2 represents the error that i makes on claiming the objects

at timestamp p. By incorporating prior beliefs, it can be assumed the source weight is

generated from an Inverse-Gamm distribution, and GTM can be applied to compute

source weights (Zhao & Han, 2012):

GTM: api =
2(β1 + 1) + ∣Jpi ∣

2β2 +∑j∈Jpi (x
p
ij − z

p
j )

2
(4.4)

In Equation (4.4), β1 and β2 are the hyperparameters of an Inverse-Gamma distribution

which encode the prior beliefs of api . Although the source weights are computed

differently by different methods, it can be observed that all the methods assign high

weights to the reliable sources whose claims are closer to the object truths.

Normally, the iterative based1 methods can achieve high accuracy. However, iter-

ative processes are computationally expensive. For data arriving from streams, it is

inefficient if an iterative process needs to be conducted at each timestamp. To improve

the efficiency of truth inference over data streams, Y. Li et al. (2015) proposed an incre-

mental truth inference method which transforms their optimization-based framework

(DyOP) to a probabilistic model DynaTD. Thus, data needs to be scanned only once

without conducting iterative processes. As information usually evolves smoothly over

time, based on DynaTD and DynaTD+s was proposed by adding a smoothness con-

straint to infer object truths. iCRH (Y. Li, Li et al., 2016) was developed to infer truths

of heterogeneous data incrementally over data streams. These methods are efficient

1In this chapter, the truth discovery methods having an iterative algorithm flow are referred as
iterative-based methods. This is different from the methods that are designed with an iterative truth
discovery framework presented in Section 2.1.1. For example, CRH is an optimization based truth
discovery method, but it has an iterative algorithm flow, so CRH is treated as an iterative based method in
this chapter.
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because they give up using the iterative processes to compute source weights at each

timestamp. Instead, they compute each source weight and object truth exactly once

at each timestamp without reaching convergence. The consequence of adopting this

approach is that the incremental methods cannot compute accurate source weights at

each timestamp, which results in large errors when inferring object truths.

In order to leverage accuracy and efficiency of streaming data truth inference, ASRA

(T. Li et al., 2017) was developed recently. ASRA uses iterative-based methods to

compute source weights only at certain timestamps to reduce the frequency of iterative

processes. It analyzes the error of inferred object truths by using source weights

computed at a previous timestamp. If the error is predicted to be small, it uses the

previously computed source weights to infer object truths at the current timestamp.

However, ASRA is limited in the following ways.

• ASRA assumes that every object must be claimed by all the agents at every

timestamp, i.e., ∀t ∈ [1, T ], ∣I tj ∣ = ∣I ∣. If this condition is not satisfied, its

theoretical analysis does not hold. This condition is not realistic for many real-

world applications, such as crowdsourcing and social sensing, in which each

agent reports only a small set of objects.

• The source weight evolution estimation model of ASRA does not consider the

covariance of source weights at each timestamp, which may produce inaccurate

estimates.

• ASRA cannot incorporate priors if prior knowledge about the object truths and

source weights are available.

The developed method, DSWC, aims at balancing accuracy and efficiency, and

addressing the limitations of ASRA for truth inference over data streams. Specifically,

DSWC can work with a wide range of iterative-based methods, including methods
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that incorporate prior beliefs. Moreover, the error analysis described in Section 4.4

is based on Taylor expansion, it only requires each source claims a subset of objects,

which is more practical for real-world applications. The source weight prediction model

developed in Section 4.5 is able to capture the covariance of source weights over time,

which ensures the accuracy and efficiency of DSWC. In the next section, it will present

the preliminaries of this chapter.

4.3 Preliminary

This chapter studies numerical truth inference problem over data streams. The weighted

aggregation in Equation (4.1) is adopted to estimate object truths. From Equation (4.1)

it can be seen that the truth of an object at timestamp i is determined by the the weights

of sources who claim it at timestamp i. The weighted aggregation can also be written as

a function of source weights given below

fpj ({a
p
i }) = z

p
j =

∑i∈Ipj a
p
i × x

p
ij + c

∑i∈Ipj a
p
i + b

(4.5)

where {api } are the weights of sources that claim object j at timestamp p, and {xpij}, c

and b are all constants. By Equation (4.5), it can be observed that the estimated object

truth is sensitive to the change of the source weights. If the values of source weights are

varied, then the estimated object truth is changed. In real-world applications, source

weights usually change smoothly over time (Y. Li et al., 2015). At timestamp q, if it

uses the source weights computed at a previous timestamp p, where p < q, to estimate

the truth directly without computing the source weights iteratively, it will produce a

small error on the estimated truth. Whereas, the efficiency can be improved by skipping

the iterative process. Inspired by this idea, I develop a novel method, Dynamic Source
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Weight Computation truth inference (DSWC). It can work with a range of iterative-

based methods which use weighted aggregation to dynamically compute source weights

only at certain timestamps to achieve both high accuracy and efficiency. Specifically, the

unit error φp/qj is defined in Equation (4.6) which measures the deviation of estimated

object truth at timestamp q by using source weights computed at timestamp p.

φ
p/q
j = (

zpj − z
p/q
j

mq
j

)
2

= (
f qj ({a

q
i}) − f

q
j ({a

p
i })

mq
j

)
2

(4.6)

In Equation (4.6), zqj is the truth estimated by the source weights {aqi} computed at

timestamp q, i.e., f qj ({a
q
i}), and zp/qj is the approximate truth of object j at timestamp q

estimated by the source weights {api } computed at timestamp p, i.e., f qj ({a
p
i }). mq

j is a

scaling factor and defined as the absolute maximum value of claims for j at timestamp

q, i.e. mq
j = max{xqij}i∈Iqj . If the unit error is under a user-defined tolerable threshold

ε, then it chooses to use {api } to approximate the object truths at timestamp q without

conducting an expensive iterative process.

At timestamp q, the unit error is determined by the change of source weights from

timestamp p to q. The source weight evolution δp/qi , given in Equation (4.7), can be used

to capture the absolute difference of source weights from timestamp p to q. Without loss

of generality, it assumes the source weights at each timestamp are scaled and summed

up to 1, i.e., ∀t ∈ {1, . . . , T},∑i∈I a
t
i = 1.

δ
p/q
i = ∣aqi − a

p
i ∣ (4.7)

In the next section, I will discuss the relationship between unit error and source weight

evolution, and present the source weight evolution upper bound for limiting unit error.
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4.4 Error Analysis

In this section, I will theoretically analyze the upper bound of source weight evolution

that limits the unit error for each object.

The approximate truth zp/qj , or f qj ({a
p
i }), is sensitive to the the source weights {api }.

The change rate of f qj ({a
p
i }) can be captured by its derivative:

∂f({api })

∂api
=

xqij×(∑i′∈Iq
j
ap
i′+b)−(∑i∈Iqj

ap
i′×x

q

i′j+c)

∑i′∈Iq
j
ap
i′+b

(∑i′∈Iq
j
ap
i′+b)

2

∑i′∈Iq
j
ap
i′+b

=
xpij − f({a

p
i })

∑i′∈Ipj a
p
i′ + b

(4.8)

To keep the notation uncluttered, Equation (4.8) uses f to denote f qj . Next, it presents a

theorem to show the high order derivative of weight aggregation in Equation (4.5).

Theorem 4.1. The nth order partial derivative of f({api }) w.r.t. n source weights (i.e.

api1, . . . , a
p
in) is:

∂nf({api })

∂api1 . . . ∂a
p
in

= (−1)n−1(n − 1)!
∑
n
k=1 x

q
ikj

− f({aqi})

(∑i′∈Ijq a
p
i′ + b)

n
(4.9)

Proof. For any integers n ≥ 1, let P (n) denotes the statement ∂nf({api })
∂api1

...∂apin
= (−1)n−1(n−

1)!
ei1+ei2+⋅⋅⋅+ein
(∑i′∈Iq

j
ap
i′+b)

n where ei = x
q
ij − f({a

p
i }). Theorem 4.1 can be proved by induction.

Base step (n = 1): P (1) is true as shown by Equation(4.8).

Inductive step P (k) → P (k + 1): Fix some integer k ≥ 2. Assume that P (k) holds. It

needs to show that P (k + 1):

∂k+1f({api })

∂api1 . . . ∂a
p
ik
∂apik+1

= (−1)k(k)!
ei1 + ⋅ ⋅ ⋅ + eik + eik+1
(∑i′∈Iqj a

p
i′ + b)

k+1
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Let Ω
p/q
j = ∑i∈Iqj a

p
i + b, by the assumption it can derive

∂kf({api })

∂api1 . . . ∂a
p
ik

= (−1)k−1(k − 1)!
(∑

k
y=1 x

q
iyj

) − k × f({api })

(Ω
p/q
j )k

because eiy = x
p
iyj

− f({api }). Rearrange the above equation, it can get:

kf({api }) =
k

∑
y=1

xqiyj −
1

(−1)k−1(k − 1)!
×
∂kf({api })

∂api1 . . . ∂a
p
ik

(Ω
p/q
j )k

Taking the derivative w.r.t. wsk+1i on both sides of the above equation:

k
∂f({api })

∂apik+1
=

∂

∂apik+1
(

k

∑
y=1

xqiyj −
1

(−1)k−1(k − 1)!
×
∂kf({api })

∂api1 . . . ∂aik

p

× (Ω
p/q
j )k)

= −
1

(−1)k−1(k − 1)!
(
∂k+1f({api })

∂api1 . . . ∂a
p
ik+1

× (Ω
p/q
j )k + k(Ω

p/q
j )k−1 ×

∂kf({api })

∂api1 . . . ∂a
p
ik

)

Rearrange the above equation, it can show that:

∂k+1f({api })

∂api1 . . . ∂a
p
ik+1

=
−1

(Ω
p/q
j )k

((−1)k−1(k − 1)!k
∂f({api })

∂apik+1
+ k(Ω

p/q
j )k−1 ∂

kf({api })

∂api1 . . . ∂a
p
ik

)

= (−1)kk!
(xqi1j − f({a

p
i })) + ⋅ ⋅ ⋅ + (xqikj − f({a

p
i })) + (xqik+1j − f({a

p
i }))

(Ω
p/q
j )k+1

= (−1)k(k)!
ei1 + ⋅ ⋅ ⋅ + eik+1

(∑i′∈Iqj a
p
i′ + b)

k+1

Conclusion: By induction, it is proved that for all integers n ≥ 1, P (n) is true. There-

fore, Equation (4.9) holds.

Next, it analyzes the unit error by using Taylor Expansion:

√

φ
p/q
j =

∣f({aqi}) − f({a
p
i })∣

mq
j

=
1

mq
j

∣ ∑
i1∈Iqj

∂f

∂api1
∆a

p/q
i1

+
1

2!
∑
i1∈Iqj

∑
i2∈Iqj

∂2f

∂api1∂a
p
i2

∆a
p/q
i1

∆a
p/q
i2

+ . . . ∣

(4.10)
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where ∆a
p/q
i1

= aqi1 − a
p
i1

. Based on the Equations (4.8 - 4.10), the following proposition

is proposed to show the upper bound of source weight evolution to ensure φp/qj ≤ ε.

Proposition 4.1. Given a unit error threshold ε and an object j, φp/qj ≤ ε if the source

weight evolution δp/qi for each source i ∈ Iqj satisfies the following condition:

δ
p/q
i ≤

√
ε ×Ω

p/q
j

∣Iqj ∣ × (ξ
p/q
j +

√
ε)

(4.11)

where Ω
p/q
j = ∑i∈Iqj a

p
i + b, and ξp/qj = max{

∣xqij−f({a
p
i })∣

mqj
}
i∈Iqj

.

Proof. By definition, δp/qi = ∣∆a
p/q
i ∣. Substituting the derivatives (Equations (4.8) and

(4.9)) into Equation (4.10), it can infer:

√

φ
p/q
j ≤ ∑

i1∈Iqj

ξ
p/q
j

Ω
p/q
j

δ
p/q
i1

+
1

2
∑
i1∈Iqj

∑
i2∈Iqj

2ξ
p/q
j

(Ω
p/q
j )2

δ
p/q
i1
δ
p/q
i2

+ . . .

Substituting Formula (4.11) in the above inequation, by the sum of geometric series it

can show that:

√

φ
p/q
j ≤ ξ

p/q
j × (

√
ε

ξ
p/q
j +

√
ε
+ (

√
ε

ξ
p/q
j +

√
ε
)2 + . . . )

= ξ
p/q
j ×

√
ε

ξ
p/q
j +

√
ε −

√
ε
=
√
ε

Hence, φp/qj ≤ ε.

Proposition 4.1 states that for an object j, if every source i ∈ Iqj satisfies the condition

given in Formula (4.11), then {api } can be used to approximate xqij and ensure φp/qj ≤ ε at

the same time. Based on Proposition 4.1, Proposition 4.2 is proposed to define the upper

bound of source weight evolution which guarantees that all the objects’ unit errors are

under ε.
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Proposition 4.2. For each source i, if δp/qi ≤ r
p/q
i where rp/qi = min({

√
ε×Ω

p/q
j

∣Iqj ∣×(ξ
p/q
j +√ε)

}j∈Jqi ),

then for each object j ∈ J , φp/qj ≤ ε.

Proposition 4.2 states that for a source i ∈ I , the upper bound of its source weight

evolution should be no more than rp/qi to ensure the unit errors of its claimed objects

under ε. Hence, for each object j, ensuring P (φ
p/q
j ≤ ε) ≥ α is equivalent to ensure

P (δ
p/q
i ≤ r

p/q
i ) ≥ α for all the sources.

4.5 Prediction Model

The previous section presents the source weight evolution upper bound that limits the

unit error. However, the source weight evolution is unknown unless computing the

source weights at the current timestamp q. In order to avoid the iterative process at

each timestamp, this section presents a source weight prediction model to predict the

source weights {aqi} instead of computing them iteratively. Specifically, the prediction

model predicts the probability of φp/qj ≤ ε. Given a user-defined confidence threshold

α, if p(φp/qj ≤ ε) ≥ α, then it chooses to estimate object truths at timestamp q by

source weight computed at timestamp p. Otherwise, it conducts the iterative process at

timestamp q to obtain accurate object truths and source weights. Next, it will describe

the prediction model in details.

The source weight aqi is computed differently by different methods. Thus, aqi can

be treated as a random function gi(q). Similarly, given a vector of timestamps t =

[1, . . . , j]T , let gi(t) denotes the vector of weights of i over t, i.e., gi(t) = [a1
i , . . . , a

p
i ]
T .

Then, gi(t) can be modeled as a Gaussian Process (GP) gi(t) ∼ N(m(t),K(i))

where m(t) is a prior mean function for gi(t), K(i) is a p × p covariance mat-

rix at timestamp p. The (x, y) entry in K(p) stores the covariance between gi(x)
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and gi(y), which is measured by a kernel function k(x, y). Then aqi can be pre-

dicted by P (gi(q)∣q, t, gi(t)) = N(µq, σ2
q) with mean µq and variance σ2

q given below

(Rasmussen, 2004).

µq =m(q) + kq(K
(p))−1(gi(t) −m(t))

σ2
q = k(q, q) − q(K

(p))−1(kq)
T

kq = [k(q,1), . . . , k(q, p)]

By definition, δp/qi = ∣aqi − a
p
i ∣. Therefore, the probability P (δ

p/q
i ≤ r

p/q
i ) can be

computed by evaluating P (−r
p/q
i ≤ gi(q) − a

p
i ≤ r

p/q
i ), which can be calculated by using

the cumulative probability of Normal distribution N(µq − a
p
i , σ

2
q).

The developed GP-based prediction model has the following benefits to predict

source weights and source weight evolution over data streams. (1) It reports the

probability distribution of aqi , which is suitable for evaluating P (δ
p/q
i ≤ r

p/q
i ). (2) It is

nonparametric. The prediction model treats the source weight as a random function,

which can be used to predict source weights computed by different methods. (3) It

uses kernels to measure the covariance and the similarity of source weights at different

timestamps. Different kernel functions can be applied for different applications. (4)

It considers the covariance of source weights over data streams, which makes the

prediction more robust.

Update Prediction Model. At each timestamp,K(p) needs to be updated for future

prediction. The update procedures into the following two cases:

Case 1: P (δ
p/q
i ≤ r

p/q
i ) ≥ α: In this case, it uses {api } to approximate xqij , and does

not updateK(p).

Case 2: P (δ
p/q
i ≤ r

p/q
i ) < α: In this case, it needs to compute {aqi}. The procedure

of updating K(p) for this case is summarized in Algorithm 4.1. In Algorithm 4.1, it

will augment K(p) (q − p) times. In each augment, it first computes the covariance
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Algorithm 4.1: Update Covariance MatrixK
Input :K(i) at timestamp i
Output :K(j) at timestamp j

1 for t = p + 1 . . . q do
2 Kt = [k(t,1), . . . , k(t, t − 1)]
3 if t = q then ρ = 0
4 else ρ = σ2

t

5 K(t) = [
K(t−1) (Kt)

T

Kt k(t, t) + ρ
]

6 end
7 returnK(j)

between the source weights at timestamp t and the previous ones (Line 2). If the source

weight ati is predicted, there will be an error ρ involved in the predicted source weight,

and this error can be captured by the variance σ2
t of this distribution (Lines 3-7). Then,

K(p) is augmented by adding new covariances and error of ati in it.

Gaussian Process needs to retain all the historical information which measures

the covariance between each source weight at different timestamps in K(p). From

Algorithm 4.1, it can be seen that the size of K(p) is increased by 2p + 1 for each

augment. As K(p) becomes larger, the matrix inversion becomes computationally

expensive, which will make the prediction inefficient. In real-world applications, the

present weight of a source may not be correlated with its weights computed or predicted

long time ago. Hence, a sliding window can be used to maintain the covariances of L

most recently source weights inK(p). By using the sliding window technique to update

K(p), the size ofK(p) will be at most L2 and the inversingK(p) is not an issue.

4.6 DSWC Algorithm Flow

By integrating the error analysis and prediction model, the DSWC algorithm in presented

Algorithm 4.2.

In Algorithm 4.2, p is the last timestamp at which the source weights are computed
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by an iterative process, q is the current timestamp, and L is the size of the sliding

window. Xq is the set of claims at timestamp q and Zq is the set of truths at timestamp

q. In the beginning of the truth inference process, it computes source weights by

an iterative process (iterative_process()) in the first L timestamps to obtain accurate

source weights to initialize the prediction model (Lines 3-4). In iterative_process(), it

computes the source weights and truths (Lines 15 - 19). An existing iterative approach is

adopted here, e.g. DyOP or CRH. It ensures the source weights and truths are accurately

computed at this timestamp. Line 20 scales the source weights to make them sum up to

1. Then it updates the covariance matrix of the prediction model (Line 21), and marks

the current timestamp as the last timestamp to compute source weights (Line 22). After

the first L timestamps, the prediction model is initialized and ready to use. At each

timestamp, if P (δ
p/q
i ≤ r

p/q
i ) ≥ α is satisfied (Line 6), it uses {api } to approximate object

truths at timestamp q (Line 7). Otherwise, iterative_process() will be conducted at the

current timestamp to compute source weights and object truths.

4.7 Experiments

This section presents the experimental results conducted by using four real-world data-

sets to evaluate the performance of DSWC algorithm. All the methods are implemented

in Java. Experiments are conducted on a Windows PC with Intel i7 CPU and 16 GBs

RAM.

4.7.1 Experiment Setup

Datasets. The dataset descriptions are given below.

• Weather (Dong et al., 2010): This dataset contains 18 sources that record daily
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Algorithm 4.2: DSWC Truth Inference
Input :Claims {Xq}q=[1,T ], ε and α
Output :Truths at each timestamp {Zq}j=[q,T ]

1 p← 1;
2 for q = 1→ T do
3 if q ≤ L then
4 iterative_process();
5 else
6 if all sources satisfy P (δ

p/q
i ≤ r

p/q
i ) ≥ α then

7 Zq ← {z
p/q
i }

8 else
9 iterative_process();

10 end
11 end
12 end
13 return {Zq}

14 Procedure iterative_process()
15 Initialize the truths Zq;
16 repeat
17 Compute source weights;
18 Compute truths;
19 until Convergence condition satisfied
20 Scale source weights;
21 UpdateK for sources;
22 p = q;

weather information for 30 cities over 6 months. 17 sources2 are selected from

the dataset. The daily temperature property is used in the experiments.

• Stock (X. Li, Dong, Lyons, Meng & Srivastava, 2012): This dataset records data

for 1000 stocks collected from 55 sources over 21 working days in 2011. The

open price property is used in the experiments.

• Forecast: Hourly weather forecast data are collected from five sources (Aeris3,

2The only source that is not used because it does not contain temperature data.
3www.aerisweather.com
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Apixu4, Darksky5, World Weather Online6 and Wunderground7) for 42 different

locations (objects) in New York city over 180 hours. The ground truths are

collected for evaluation.

• Rates: This dataset8 contains 756 pairs of exchange rates over 439 days and use

them as ground truths for the objects. 20 sources are generated with smoothly

evolved source weights over 439 days. Claims are generated by adding different

levels of Gaussian noises based on source weights upon the ground truth for each

day. Different from the other three datasets, the likelihood of conflicting claims is

high.

Performance Metrics. Efficiency is evaluated by runtime. Accuracy is evaluated

by Mean Absolute Error (MAE).

Baselines. The source weight computation strategies of CRH, DyOP and GTM, as

shown in Equations (4.2), (4.3) and (4.4), are applied in DSWC, and denote them as

DSWC(CRH), DSWC(DyOP) and DSWC(GTM). By applying the temporal smooth-

ing constraint when computing object truths on DSWC(CRH), DSWC(DyOP) and

DSWC(GTM), these methods are denoted as DSWC(CRH+s), DSWC(DyOP+s) and

DSWC(GTM+s). For all the experiments, m(t) in the prediction model returns the

mean of the most recent source weights in sliding window L. Squared exponential

kernel is used to measure the covariance between source weights at different timestamps.

The baseline truth inference methods include the iterative-based methods: DyOP

(Y. Li et al., 2015), GTM (B. Zhao & Han, 2012), CRH (Q. Li, Li, Gao, Zhao et al.,

2014), LFC (Raykar et al., 2010) and OTD (Yao et al., 2018). The descriptions of the

baseline methods can be seen in Section 2.5 on page 45. As GTM can incorporate

4www.apixu.com
5darksky.net/about/
6www.worldweatheronline.com
7www.wunderground.com
8Data collected from https://fixer.io/.
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prior beliefs, in the experiment I incorporate the information of object truths and source

weights computed at the previous timestamp into the Bayesian prior distributions at

current timestamp for inferring object truths and computing source weights. The

incremental methods include: DynaTD (Y. Li et al., 2015), DynaTD+s (Y. Li et al.,

2015) and iCRH (Y. Li, Li et al., 2016). The ASRA methods include ASRA(DyOP),

ASRA(CRH), ASRA(DyOP+s) and ASRA(CRH+s). ASRA cannot work with GTM

because ASRA cannot work with weighted aggregation that encodes prior beliefs.

In the stock dataset, each source averagely claims 897 objects, two sources claim

less than 200 objects at each day, and no source claim all the 1000 objects at any day. It

does not meet the condition required by ASRA unless removing some objects from the

dataset, which is not practical. Therefore, ASRA cannot be performed on this dataset.

4.7.2 Prediction Model Evaluation

This subsection presents the results of experiments which compared the effectiveness of

the developed prediction model with the one proposed in ASRA. In order to approximate

object truths over the data streams by using the previously computed source weights,

the source weight evolution must satisfy the condition, δp/qi ≤ r
p/q
i , to ensure φp/qi ≤ ε

with probability at least α. Therefore, the prediction results at any timestamp can be

categorized into the following cases.

• True Positive (TP): The actual source weight evolution condition is satisfied, and

the truth inference method does not compute source weights.

• True Negative (TN): The actual source weight evolution condition is not satisfied,

and the truth inference method computes source weights.

• False Positive (FP): The actual source weight evolution condition is not satisfied,

but the truth inference method does not compute source weights.
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Table 4.2: Prediction Model Evaluation for Weather Dataset

Table 4.3: Prediction Model Evaluation for Rates Dataset

• False Negative (FN): The actual source weight evolution condition is satisfied,

but the truth inference method computes source weights.

Higher TP and TN indicate that the prediction model predicts source weight evol-

ution correctly. Thus, accuracy (accuracy = TP + TN
TP + TN + FP + FN) is used to measure the

effectiveness of the prediction model. Two parameters, ε and α are varied to evaluate

the performance with different settings.

The results of experiments conducted on weather and rates datasets are shown in

Tables 4.2 and 4.3. It can observed that the prediction model in DSWC outperforms

the probabilistic model in ASRA under all parameter settings. The reason is that the
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prediction model of DSWC evaluates the covariances between the source weights over

time. However, ASRA models the satisfaction of source weight evolution as a Bernoulli

random variable. It overlooks the correlation of the source weights over the data streams,

which results in less accurate prediction results.

Furthermore, it can be observed that TN of ASRA is usually smaller than that in

DSWC, this causes ASRA to compute source weights more frequently, which makes

the truth inference process inefficient. Note that the accuracy of the prediction model is

not high when α = 0.9. The reason is that the variance of the posterior distribution is

not small enough to assert P (δ
p/q
i ≤ r

p/q
i ) ≥ α, which results in a higher FN. However,

if α is set to a relatively smaller number, the prediction model performs much better. In

the experiments, when α = 0.7, the accuracies of the prediction model in DSWC for

the weather dataset are all above 0.7, and the accuracies are all above 0.85 in the rates

dataset.

In summary, the prediction model in DSWC is effective. It predicts the source

weight evolution correctly most of the times. This guarantees DSWC algorithm is both

accurate and efficient for computing object truths over data streams.

4.7.3 Source Weight Evolution Condition

The weather and rates datasets are used to to test the source weight evolution condition

that satisfies φq−1/q
i ≤ ε between consecutive timestamps for DSWC and ASRA. ε is set

to 0.1, DyOP is run on the datasets with ground truths to obtain real source weights at

each timestamp. As the source weight evolution condition is different for each source

computed by rp/qi in Proposition 4.2 for DSWC, a random source is chosen from each

dataset and compute the upper bound by the real source weights. The source weight

evolution conditions for DSWC (red), ASRA (black) and real source weight evolutions

(RSWE, blue) over the first 90 timestamps are plotted in Figure 4.1. It can be observed
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Figure 4.1: Source Weight Evolution Condition Comparison

that most of the blue dots are under red ones. It means the source weight evolution

condition computed by DSWC can capture most of the real source weight evolution

that ensures φq−1/q
i ≤ ε. There are many blue dots above the black dots but under the

red dots. This indicates that DSWC is capable of capturing most of the true source

weight evolution ensuring φq−1/q
i but ASRA cannot. For the moments when the blue

dot is above the red one, it means the source weight evolution δq−1/q
i cannot guarantee

φ
q−1/q
i ≤ ε. In summary, DSWC allows source weights to change more between adjacent

timestamps, but still guarantees that the unit error is less than the user-defined threshold.

4.7.4 Parameters Analysis

This subsection presents the results of experiments that tested the effect of parameters

ε and α on the performance of DSWC. The experiments were conducted by fixing

one parameter and varying the other. The results of weather and rates datasets run

by DSWC(DyOP) are illustrated in Figure 4.2. In the figure, on one hand, it can be

seen that as ε increases, MAE increases but the runtime decreases for both datasets.

The reason is that larger ε increases the probability P (δ
p/q
i ≤ r

p/q
i ), which results in

less iterative processes conducted over time. In this case, the truth inference process
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Figure 4.2: Parameters Analysis
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Table 4.4: Accuracy and Efficiency Comparison

is configured to tolerate a large error, which runs more efficiently but less accurately.

On the other hand, as α increases, MAE decreases but the runtime increases. This is

because a larger α makes P (δ
p/q
i ≤ r

p/q
i ) ≥ α less likely to hold. In this case, the truth

inference is configured to tolerate a tiny error, which requires more iterative processes

conducted.

4.7.5 Performance Comparison

The performance of DSWC is compared against the baselines with the following

parameter settings. Weather dataset: ε = 0.1, α = 0.7 and L = 5. Stock dataset: ε = 10−3,

α = 0.7 and L = 5. Rates dataset: ε = 0.1, α = 0.7 and L = 8.

Table 4.4 summarizes the experimental results for all the methods conducted on the

four datasets. For weather dataset, in terms of accuracy, DSWC is more accurate than

the incremental methods. The reason is that the incremental methods cannot compute
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accurate source weights at each timestamp, which results in large errors when inferring

truths. Compared with iterative-based methods, DSWC(DyOP) and DSWC(CRH) are

less accurate since they approximate object truths at certain timestamps without updating

source weights. However, DSWC(DyOP+s) and DSWC(CRH+s) are more accurate

than the iterative-based methods because they infer object truths with smoothness

constraint, but the iterative-based methods do not consider this when inferring truths.

Note that although OTD uses a point estimate produced by ARIMA to assist its truth

aggregation, it does not perform better than DSWC because ARIMA may not predict the

truths correctly if the time series does not present a significant trend. DSWC methods

are also more accurate than ASRA. The reason is that the source weight prediction

model of DSWC is more accurate to predict source weight evolution, which results in

less unsuccessful predictions that fail to assert P (δ
p/q
i ≤ r

p/q
i ) ≥ α.

In terms of efficiency, the incremental methods have the best performance because

they scan data only once. DSWC and ASRA only compute source weights at certain

timestamps. Therefore, they are more efficient than the iterative-based methods which

compute source weights at each timestamp. Compared with ASRA, DSWC is more

efficient. The reason is that DSWC’s prediction model can predict source weight

evolution more accurately and DSWC has a more flexible source weight evolution

condition to limit the unit error, which results in less number of iterative processes

conducted to compute source weights over the data streams.

4.8 Conclusion

This chapter introduced presents a novel method, DSWC, that can work with a wide

range of truth inference methods to improve accuracy and efficiency for truth inference

over data streams. DSWC dynamically computes agent/source weights over data

streams. The error analysis and the source wight prediction model guarantee a high
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accuracy even if the source weights are only computed at certain timestamps. Compared

with the existing work ASRA, DSWC can incorporate prior beliefs for computing object

truths and DSWC’s prediction model is more robust to predict source weights and source

weight evolutions. Furthermore, DSWC does not need to satisfy the condition that all

sources must claim all objects at each timestamp. Thus, it fits into more application

scenarios. Experiments on four datasets demonstrate that the developed method is both

accurate and efficient for truth inference over data streams.

The models developed in this chapter aims at answering Research Question 2. The

work in this chapter has been published in (Yang et al., 2019a).



Chapter 5

Modeling Random Guessing and Task

Difficulty for Truth Discovery in

Crowdsourcing

5.1 Overview

This chapter and the next chapter study the truth discovery problem in crowdsourcing

systems, and focus on the single-choice crowdsourcing tasks. In the context of crowd-

sourcing, the objects are the crowdsourcing tasks, the data sources are the crowd

workers, and the truth discovery is usually referred as truth inference in the context of

crowdsourcing. A single-choice crowdsourcing task has several choices for the workers

to label. The available choices of a task is mutual exclusive and there is only one true

label for each single-choice task, the true label is also known as the truth of the task.

Each worker can label a task by choosing one choice from the candidate choices of the

single-choice task as her response to the crowdsourcing system. As the crowd workers

are not experts and the abilities of workers are different, the workers’ labels to the same

task can be conflicting. Thus, truth discovery techniques can be applied to estimate

116
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the truths of each task. As the crowd workers are human, it brings more challenges to

the truth discovery task. In this chapter, it considers two important phenomenons in

crowdsourcing applications for crowdsourcing truth discovery. (1) The difficulties of

tasks are usually different. A worker who can frequently label an easy task correctly

does not mean that her labels to the hard tasks are also trustworthy. Thus, by modeling

and estimating tasks’ difficulties, the performance of truth discovery in crowdsourcing

applications is expected to be improved. (2) As the workers are human and each single-

choice task has several candidate choices to choose from, when a worker does not know

the true answer of a task, she may choose to guess and submit a random choice as her

label.

Motivated by the two phenomenons described above, this chapter presents a novel

method, called Crowdsourced Truth Discovery modeling Guessing and task Difficulty

(CTDGD), that estimates the truth of single-choice tasks by jointly modeling tasks’

difficulties and workers’ abilities and guessing behavior. Specifically, the workers’

abilities and labels and the tasks’ true labels and difficulties are modeled as random

variables in a probabilistic generative model. A worker’s ability and the task’s true label

and difficulty jointly determine if the worker knows the true label of the task. If the

worker does not know the truth, she submits a guessed label from the candidate choices.

By modeling guessing, the workers’ abilities can be estimated without overestimation.

By modeling tasks’ difficulties, the truths of the hard tasks can be estimated more

accurately.

The rest of this chapter is organized as follows. Section 5.2 reviews related work.

Section 5.3 presents the worker label modeling. In Section 5.4, it describes the prob-

abilistic representation of CTDGD. Section 5.5 describes the inference algorithm that

infers the unknown worker ability, tasks’ difficulties and truths. The experiments are

presented in Section 5.6. Finally, it concludes this chapter in Section 5.7.
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5.2 Related Work

There are some existing approaches which estimate task’ truths by considering tasks’

difficulties, thus, they are relevant to the proposed method. HA-EM (Marshall, Syed

& Wang, 2016) applies NLP technique to analyze the tasks’ difficulties from text

descriptions, and then uses the analyzed difficulty as input to its truth discovery model.

UTD (Y. Wang, Ma, Su & Gao, 2017) models each true label as a distribution, and

measures a task’ difficulty by the variance of the true label’s distribution. MistakeLCA

(Pasternack & Roth, 2013) models the difficulty as the probability of a worker making

mistakes on all the tasks. The difficulty is analyzed from the perspective of the workers

instead of the questions, which cannot capture the real difficulties of tasks. FaitCrowd

(Ma et al., 2015) and GLAD (Whitehill et al., 2009) both use probabilistic graphical

model (PGM) to model the task’s difficulty as a parameter. The methods discussed in

this paragraph so far considers the difficulty on the task level, a task is more difficult if

more workers label it wrongly, and the workers are rewarded with higher quality if they

label hard tasks correctly. However, they do not consider the relationship between the

fine-grained answer level difficult and the quality of workers. In (Galland et al., 2010),

the authors proposed 3estimates in which the difficulty is captured by introducing the

error factor of each answers. If a worker gives a wrong answer of a question, the penalty

is distributed to both the worker’s ability and the error of the chosen answer. However, it

ignores the uncertainties the workers expressed on the answers with different difficulties.

The only work that has made progress in capturing the worker’s guessing behavior

is GuessLCA (Pasternack & Roth, 2013). However, GuessLCA assumes that the

worker’s guessing distribution is known as an input and it does not account for the tasks’

difficulty.
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5.3 Worker Label Modeling

Suppose there are m workers {wi}m−1
i=0 , and n tasks {tj}n−1

j=0 . Each task has K mutual

exclusive choices indexed from 1 to K. Each worker wi can label a task tj by choosing

a choice as her response xij for the task. The goal of truth discovery is to find the true

labels {zj} for each task in {tj} from the observed labels {xij}. At the same time, the

proposed CTDGD outputs the estimated workers’ abilities {ai} and tasks’ difficulties

{dj}.

A worker’s ability ai and a task’s difficulty dj are modeled as real numbers taken

from (−∞,+∞). Using the logistic function, the probability φij of worker wi knowing

the true label of tj is

φij = σ(ai − dj) =
1

1 + exp(−(ai − dj))
(5.1)

where σ is the logistic function. From Equation (5.1) suggests that the probability that

worker wi knows the truth of tj is high if ai − dj is large. Therefore, a worker is more

likely to give a true label to an easy task and less likely to label a hard task correctly if

her ability is smaller than the task’s difficulty.

If the worker does not know the truth, she may guess and submit a random label as

her label. Thus, the probability of an observed label xij being the truth zj is:

p(xij = k∣zj = k, dj, ai) = φij + (1 − φij)
1

K
(5.2)

Here I choose to use the "one-coin model" (see Section 2.2.1) to model the cases that a

worker submits a wrong label. Thus, for all k′ ≠ k, the probability of an observed label

xij being wrong is:

p(xij = k
′∣zj = k, dj, ai) = (1 − φij)

1

K
(5.3)
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Combing Equations (5.2) and (5.3), the conditional probability of an observed worker’s

label is:

p(xij ∣zj, dj, ai) = (φij + (1 − φij)
1

K
)
δij

((1 − φij)
1

K
)

1−δij
(5.4)

where δij denotes the Kronecker delta function.

5.4 Representation of CTDGD

CTDGD is a generative model. The worker’s ability ai, the task’s difficulty dj and

truth zj and the worker’s label xij are modeled as random variables. The relationships

between these random variables are depicted in Figure 5.1. The generative processes of

each random variable are described as follows.

The true label is generated from a Categorical distribution: p(zj) = Cat(K,α).

The worker’s label is generated from a Categorical distribution with the p.m.f. defined

in Equation (5.4). The task difficulty dj is generated from a Normal distribution:

p(dj) = N(µj, σ2
j ). The ability of a worker is generated from a Normal distribution:

p(ai) = N(µi, σ2
i ). α, µj , σ2

j , µi and σ2
i are hyperparameters.
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5.5 Inference

This section presents an Expectation-Maximization (EM) algorithm that estimates the

optimal values of workers’ abilities and tasks’ truths and difficulties. Specifically, the

true labels Z = {zj} are treated as the latent variables, Θ = {D,A} are treated as the

model parameters where D = {dj} and A = {ai}, and X = {xij} are treated as the

observations. The likelihood function of the model parameters is given in Equation

(5.5).

L(Θ;X,Z) = p(X,Z ∣Θ)

=∏
j

(p(zj)∏
i

[ p(ai)p(xij ∣zj, dj, ai)])
(5.5)

Then EM algorithm finds the maximum likelihood of L and the optimal values of Z

and Θ by iteratively performing an E-Step and a M-Step described as the followings.

E-step: In this step, it computes an auxiliary function Q(Θ∣Θ(t)), which is defined

as the expectation of the log-likelihood function lnL(Θ;X,Z) w.r.t. the latent variables

Z given the current estimated model parameters Θ(t) at iteration t and observations X:

Q(Θ∣Θ(t)) = EZ∣Θ(t),X[ lnL(Θ;X,Z)]

= ∑
j

K

∑
k=1

p
(t)
jk lnp(zj) +∑

j

p
(t)
jk ∑

i

lnp(xij ∣zj, dj, ai)

= ∑
j

K

∑
k=1

p
(t)
jk lnp(zj) +∑

j

K

∑
k=1

p
(t)
jk ∑

i

[δij ln(φij +
1 − φij
K

)

+ (1 − δij) ln(
1 − φij
K

)]

(5.6)

In Equation (5.6), p(t)jk = p(zj = k∣Θ(t),X), it is defined as the conditional probability

of the latent variables given the current estimated model parameters at iteration t and

the observations. From the graphical model depicted in Figure 5.1, it can be observed

that the workers’ labels xij ∈ X are conditional dependent given A, Z and D, i.e.
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xij ⊥ xi′j′ ∣{A,Z,D}. Thus, the probability p(zj ∣Θ(t),X) can be decomposed as:

p(zj ∣Θ
(t),X) ∝ p(zj)∏

i

p(xij ∣zj, dj, ai) (5.7)

Based on the decomposition in Equation (5.7), p(t)jk can be computed by the following

equation.

p
(t)
jk =

p(zj = k)∏
i
p(xij ∣zj = k, dj, ai)

∑
K
k′=1 p(zj = k

′)∏
i
p(xij ∣zj = k′, dj, ai)

(5.8)

M-Step: M-step re-estimates the model parameters Θ at the next iteration t + 1 by

maximizing the auxiliary function Q(Θ∣Θ(t)):

Θ(t+1) = arg max
Θ

Q(Θ∣Θ(t))

There is no closed form to compute ai and dj directly to maximize Q(Θ∣Θ(t)). There-

fore, gradient ascent is adopted to maximize Q(Θ∣Θ(t)), and the gradient of Q(Θ∣Θ(t))

can be constructed by differentiating Q(Θ∣Θ(t)) w.r.t. ai and dj . Taking the first de-

rivative w.r.t. ai will make the first summation in Q vanish since the summation is a

constant w.r.t. ai. By the fact that the first derivative of logarithmic function is:

d ln(x)

x
=

1

x

and the first derivative of the logistic function is:

dσ(x)

dx
= σ(x)(1 − σ(x))
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the first partial derivative of Q w.r.t. ai can be computed as:

∂Q

∂αi
= ∑

j

K

∑
k=1

p
(t)
jk [δij

(K − 1)φij(1 − φij)

(K − 1)φij + 1
− (1 − δij)φij]

= ∑
j

K

∑
k=1

p
(t)
jk [δij

(K − 1)φij(1 − φij)

(K − 1)φij + 1
− φij + δijφij]

= ∑
j

K

∑
k=1

p
(t)
jk [δij

(K − 1)φij(1 − φij) + ((K − 1)φij + 1)φij
(K − 1)φij + 1

− φij]

= ∑
j

K

∑
k=1

p
(t)
jk [δij

Kφij
(K − 1)φij + 1

− φij]

= ∑
j

K

∑
k=1

p
(t)
jk [δij

K

(K − 1) + 1
φij

− φij]

(5.9)

Similarly, the first partial derivative of Q w.r.t. dj can be computed by Equation

(5.10) given below.

∂Q

∂dj
= −∑

i

K

∑
k=1

p
(t)
jk [δij

K

(K − 1) + 1
φij

− φij] (5.10)

Given the above derivations, EM algorithm iteratively conducts the E-step and

M-step until convergence. The convergence analysis of the EM algorithm has been

extensively studied (Wu, 1983) and it is beyond the scope of this thesis. In practice,

the EM algorithm can be terminated if the change of the likelihoods between two

consecutive iterations is small. After the EM algorithm terminates, the model parameters

in the last iteration can be used as as the estimated worker’s ability and task’s difficulty.

At the same time, the estimated task truth ẑj can be estimated by selecting the kth choice

that has the highest probability among p(t)jk , i.e., ẑj = arg max
k

{p
(t)
jk }.
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5.6 Experiments

Experiments is conducted on a real-world dataset, Game (Aydin, Yilmaz & Demirbas,

2017), to compare CTDGD with the state-of-art truth discovery methods. This dataset

is collected from a crowdsourcing platform of an Android App based on “Who Wants

to Be a Millionaire”. This dataset contains 1908 unique questions with 12 difficulty

levels. 1891 questions are answered by 37,332 workers with 214,658 unique answers.

In the experiments, each question is treated as a task, and each task has 4 choices. The

performance is measured accuracy, and the ground truths are available for evaluation.

The baseline methods that are used for comparison include ZC (Demartini et al.,

2012), GLAD (Whitehill et al., 2009), DS (Dawid & Skene, 1979), LFC (Raykar

et al., 2010), CRH (Li et al., 2014), 3Estimates (Galland et al., 2010), GuessLCA

(Pasternack & Roth, 2013), TruthFinder (Yin et al., 2008) and MV. The descriptions of

these methods can be found in Section 2.5.

The results of experiments conducted on the Game dataset are summarized in Table

5.1. The number of tasks under each difficulty level is enclosed in the parentheses.

There are only 9 questions in Level 11 and 1 question in Level 12, these questions on

Level 11 and 12 are merged into Level 10, which includes the hardest tasks in this

dataset. The number of questions is listed in each level in the parentheses. From Table

5.1, it can be observed that CTDGD has the best overall performance. For the easy

tasks, it can be seen that all the methods have a very high accuracy, even majority voting

can achieve over 90% accuracy. However, for the medium and hard level tasks, the

accuracies of all the methods are dropped below 90%. This is because many workers

cannot answer difficult questions correctly. Among all the methods, CTDGD has the

best performance on medium and hards tasks, which demonstrates the superiority of

CTDGD by jointly modeling tasks’ difficulty and workers’ guessing behavior.
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Table 5.1: Experimental Results

5.7 Conclusion

This chapter presents a crowdsourcing truth discovery model, Crowdsourced Truth

Discovery modeling Guessing and task Difficulty (CTDGD), which jointly models

tasks’ difficulties, workers’ guessing behavior and abilities to estimate tasks’ truths.

Experiments on a real-world dataset demonstrate that CTDGD is more effective to

estimate the truths of crowdsourced tasks than the state-of-art truth discovery methods,

especially when the tasks are difficult.

The models developed in this chapter aimed at answering Research Question 3.1.

The work introduced in this chapter has been published in (Yang et al., 2019b).
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Chapter 7

On the Discovery of Continuous Truth:

A Semi-Supervised Approach with

Partial Ground Truths

7.1 Overview

The general setting of truth discovery is that source reliabilities and object ground

truths are both known. Based on this setting and the principle of truth discovery, truth

discovery methods are developed as an unsupervised learning algorithm that estimates

the source reliabilities and object truths from the observed claims. Indeed, obtaining

the entire set of ground truths from highly reliable sources is usually expensive and

infeasible, but it is usually practical to acquire some ground truths for a small set

of objects. For example, part of the objects’ ground truths may be available from

government websites, information released by governments and official sites is usually

real and we can treat it as ground truths. If the partial objects’ ground truths can be

used by adding some supervisions in the truth discovery steps, the accuracy of truth

discovery is expected to be improved. In this chapter, it presents a semi-supervised truth

153
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discovery method, Optimization based Semi-supervised Truth Discovery (OpSTD) ,

for continuous object truths. The object truths and source reliabilities are modeled

as unknown variables, and the ground truth is modeled as a regularization term to

propagate its trustworthiness to the estimated truths. This chapter also presents the

theoretical analysis for OpSTD and it shows a series of experiments on both real-world

datasets and synthetic dataset to demonstrate the effectiveness of OpSTD.

The detailed contributions of this chapter are summarized as follows.

• The semi-supervised continuous truth discovery problem is formulated as an

optimization task in which the partially observed ground truth is incorporated in

an objective function by an regularization term.

• An algorithm that estimates the optimal source weights and object truths is

developed

• It theoretically proves the convergence and analyze the time complexity of the

developed algorithm.

• The experiment results on both real world datasets and synthetic dataset show

that the proposed method outperforms the existing methods significantly.

The rest of this chapter is organized as follows. In Section 7.2, it reviews the related.

Section 7.3 presents the OpSTD framework and the iterative solution. Section 7.4

presents the convergence property of the proposed method and analyze time complexity.

In Section 7.5, it shows the experiments to evaluate the performance of the proposed

method. Finally, Section 7.6 concludes this chapter.



Chapter 7. Semi-Supervised Truth Discovery with Partial Ground Truths 155

7.2 Related Work

There is some work that share similarities with ours. In (Pasternack & Roth, 2013),

source reliabilities are modeled as latent variables, its expectation maximization (EM)

algorithm based solution can incorporate a small set of ground truths to help truth infer-

ence. But it is limited to work with categorical data only. Yin et al. (Yin & Tan, 2011)

propose a truth discovery method SSTF that is specifically designed for semi-supervised

truth discovery problem. SSTF is originally designed for estimating categorical object

truths, it uses a graph based semi-supervised technique, label propagation, to propagate

the trustworthiness of ground truths to the claims. SSTF is limited that it uses scoring

technique (refer to Section 2.3.1) to output object truths. Therefore, it requires the

ground truths are among claims, which is not suitable for the truth discovery applica-

tions in which the data is continuous. SSTF also uses a predefined similarity function

to capture the relations among observations. This similarity function is application

specific and usually hard to define in practice. In contrast, the proposed method OpSTD

is specially designed for semi-supervised truth discovery over continuous data and the

setting of OpSTD is much simpler. The experiments in Section 7.5 also demonstrates

that OpSTD outperforms SSTF to find continuous object truths.

7.3 Semi-Supervised Truth Discovery on Continuous Data

This section presents the formulation of the problem of the semi-supervised truth

discovery for continuous object truths first. Then the OpSTD framework and the truth

discovery algorithm are presented.
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7.3.1 Problem Formulation

Important notations related with this chapter formally defined in this subsection. In

addition, related parameters are listed in Table 7.1.

Definition 7.1. Object, Source and Claim: An object, j, is a thing or an event that has

a continuous property. A source, i, is an information provider which can observe and

report the property value of object j. A Claim, zij ∈ R, is the continuous property value

of object j reported by source i.

Definition 7.2. Ground truth and estimated truth: The ground truth, z̄j ∈ R, of object

j is the fractal truth that correctly describes the property value of j. It is usually

unknown a priori. The Estimated truth, zj ∈ R, of object o, is the estimated most

trustworthy information describing the property value of j, it is the output of a given

truth discovery method.

Definition 7.3. Source Weight: The source weight, ai ∈ R+, reflects the reliability of

source i. The information provided by sources with high source weights is usually more

trustworthy and closer to the truth.

This chapter studies the semi-supervised truth discovery for continuous object truths,

in which some partially available ground truths are used to supervise the truth discovery

process. Let I be the set of all the sources and J be the set of all the objects. J is split

into two sets Jg and Ju where Jg and Ju are disjoint and Jg ∪ Ju = J . Jg is the set of

objects whose ground truths are available, and Ju is the set of objects whose ground

truths are unknown. Usually ∣Jg ∣ << ∣Ju∣. Next, the semi-supervised truth discovery

problem is formally defined as follows.

Problem Definition. Given the ClaimsX whereX = {xij}j∈J,i∈I and a set of ground

truths {z̄j}j∈Jg , semi-supervised truth discovery for continuous object truths aims at

resolving conflicts among multi-source data and estimating the truths Zu = {zj}j∈Ju

with the help of available ground truths.
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Notation Description
J set of all the objects
Ju set of objects whose ground truths are unknown
Jg set of objects whose ground truths are available
Jiu set of objects claimed by i, and the objects’ ground truths are unknown
Jig set of objects claimed by i, and the objects’ ground truths are available
I set of all the sources
Ij set of sources that claim object j
X set of all the claims
Zu set of estimated truths for objects in Ju
A set of all the source weights
xij the claims for object j reported by source i
ai weight of source i
z̄j the ground truth of object j
zj the estimated truth of object j

Table 7.1: Notations and parameters in Chapter 7

7.3.2 The OpSTD Framework

This subsection presents the OpSTD framework. The semi-supervised truth discovery

is formulated as an optimization problem. Based on the principle of truth discovery,

ground truths is used to guide the source weight estimation that can in turn impact on

the truths estimation for the objects whose ground truths are unknown. Following, it is

the objective function of OpSTD that aims at minimizing the overall error between the

estimated object truths and source’s claims.

min
Zu,A

f(Zu,A) = ∑
j∈Ju

{∑
i∈Ij

ai(zj − xij)
2} + θ ∑

j∈Jg
{∑
i∈Ij

ai(z̄j − xij)
2}

∑
i∈I

exp(−ai) = 1

(7.1)

In Equation (7.1), Ij is the set of sources that observe object j. In the first term

∑j∈Ju{∑i∈Ij ai(zj − xij)
2}, for source i, (zj − xij)2 models the estimated error made

by i on the claims for object j, and it computes the discrepancy between the claims

provided by sources and the estimated object truths. This term itself estimates the
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source weights and object truths in an unsupervised manner. In order to minimize f , the

optimization process will assign high weights to sources which make small estimated

errors. Similarity, if the estimated error is large, it will assign a low weight to ai to

minimize the error’s contribution in the objective function.

The second term∑j∈Jg{∑i∈Ij ai(z̄j −xij)
2} introduces supervision into the objective

function to supervise source weight and object truth estimation process. For a source i,

(z̄j − xij)2 models the discrepancy between the ground truth and the source’s claims

for object j. It is the real error made by i for object j. To minimize the objective

function, it penalizes the unreliable sources and assigns low weights to them if the real

error is large. θ is a hyper parameter which balances these two terms in the objective

function. Combining these two terms makes the proposed framework semi-supervised.

The source weights are determined by both estimated errors and real errors, and the

ground truths supervises object truths and source weights estimation. This will be

further discussed in Section 7.3.3.

The constraint function, ∑i∈I exp(−ai) = 1 is required mathematically to constrain

the source weights between 0 and 1. Otherwise the source weights can be set to −∞ to

minimize the objective function.

7.3.3 The Iterative Solution

The object truths and source weights shall be learned jointly to minimize the objective

function, and the optimal values learned after the optimization process will be selected

as the object truths and source weights. In order to minimize the objective function f ,

block coordinate descent (Bertsekas, 1999) is adopted to optimize the object function.

Block coordinate descent iteratively updates one set of variables while fixing the other

set to keep reducing the value of f until reaching convergence. There are two steps

involved to minimize function f . Step one is to update the estimated truths Zu while
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fixing the source weights A. Step two is to update the source weights A while fixing the

estimated truths Zu. These two steps can be mathematically formulated by Formulas

(7.2) and (7.3). Next, it discusses in details on how to derive the rules to update source

weights and estimated truths.

Zu ← arg min
Zu

f(Zu,A) (7.2)

A← arg min
A

f(Zu,A) s.t. ∑
i∈I

exp(−ai) = 1 (7.3)

Object truth update rule: In this step, it updates the set of estimated object truths

Zu while fixing A. By setting dfA(Zu)
dzj

= 0 for the object j ∈ Ju, the update rule of the

estimated object truth is:

zj =
∑i∈Ij aixij

∑i∈Ij ai
(7.4)

Source weight update rule: The Lagrange multiplier approach is used to solve

Formula (7.3). The Lagrangian can be formulated as:

L(A,λ) = f(Zu,A) + λ(∑
i∈I

exp(−ai) − 1) (7.5)

where λ is the Lagrange multiplier. By setting dL(A,λ)
dai

= 0, from the constraint it can

derive that

λ exp(−ai) = ∑
j∈Jui

(zj − xij)
2 + θ ∑

j∈Jg
(z̄j − zij)

2 (7.6)



Chapter 7. Semi-Supervised Truth Discovery with Partial Ground Truths 160

where Jui and Jgi are both claimed by source i, but their ground truths are unknown

and available respectively. Combined with the constraint equation ∑i∈I exp(−ai) = 1,

the Lagrange multiplier is computed as:

λ = ∑
i∈I

{ ∑
j∈Jui

(zj − xij)
2 + θ ∑

j∈Jgi
(z̄j − xij)

2} (7.7)

Plugging Equation (7.7) back to Equation (7.6), it can derive the source weight update

rule in Equation (7.8).

ai = − log (
∑j∈Jui(zj − xij)

2 + θ∑j∈Jgi(z̄j − xij)
2

∑i∈I {∑j∈Jui(zj − xij)
2 + θ∑j∈Jgi(z̄j − xij)

2}
) (7.8)

Discussion: From Equation (7.8) of the source weight update rule, it can be seen

that a source has higher weight if it makes few errors among all the sources. Specifically,

the errors are determined by the estimated errors and real errors, and the proportion

can be adjusted by controlling θ. If increasing θ, the source weight will be computed

mostly by the real errors. In the extreme case where θ = ∞, the term ∑j∈Jui(zj − xij)
2

is ignored and the source weight is totally determined by objects with the ground truths.

Conversely, if decreasing θ, the source weight will be computed mostly by the estimated

errors. If θ = 0, this is equivalent to the truth discovery in an unsupervised setting where

the ground truths do not contribute to the truth discovery process and we estimate source

weights solely from the observations.

From Equation (7.4) it can be seen that the estimated object truth is computed by

weighted aggregation in which all the claims for object j ∈ Ju contribute to the estimated

truth, but the contribution is discounted by the weights of the sources which provide

these claims. As a result, the estimated truth will be close to the claims from sources

with high weights. Furthermore, the source weights are partially computed by ground

truths as in Equation (7.8). Thus, the ground truths also impact the truths estimation for
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the objects whose ground truths are unknown.

The algorithm flow of the OpSTD is summarized in Algorithm 7.1. First, the source

weights are initialized. If no prior knowledge is available about the reliabilities of the

sources, the source weights can be initialized uniformly, i.e. ai = − log( 1
∣I ∣). Otherwise

the source weights can be changed accordingly to reflect the initial belief of the source

reliability. Then the algorithm iteratively updates object truths and source weights by

Equations (7.4) and (7.8) until convergence.

Algorithm 7.1: OpSTD Algorithm Flow
Input :Claims X , ground truths X∗

g for Jg
Output :Inferred object truths zu

1 Initialize source weights;
2 repeat
3 for j ∈ Ju do
4 Update zj by Equation (7.4);
5 end
6 for i ∈ I do
7 Update ai by Equation (7.8);
8 end
9 until Convergence

10 return Zu

7.4 Theoretical Analysis

This section theoretically analyzes the convergence property of the OpSTD algorithm

and its time complexity.

7.4.1 Convergence Analysis

The following theorem shows that OpSTD algorithm converges, and it is valid to use

block coordinate descent to minimize the objective function in Equation (7.1).
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Theorem 7.1. The iterative process in OpSTD algorithm converges, and the optimal

solutions, Zu and A, is a stationary point for the objective function in Equation (7.1) to

attain minimum.

Proof. There are two blocks of variables, Zu and A, involved in the objective function

f . We use Y to denote the union of the two blocks of variables, i.e. Y = {Zu,A}. Let

the size of Y be l where l = ∣Zu∣ + ∣A∣. Then the optimization problem can be rewritten

as:

minimize f(y), s.t. y ∈ Y

According to (Bertsekas, 1999), let {yr} be the sequence generated by the following

rule:

yr+1
k = arg min

ξ∈Yk
f(yr+1

1 , . . . , yr+1
k−1, ξ, y

r
k+1, . . . , y

r
l ) for k = 1,2, . . . , l

where r is the current iterate index, then every limit point of yr is a stationary point and

f({yr}) is the global minimum of f if f satisfies the following two conditions:

1. f is continuously differentiable over Y .

2. For each yk ∈ Yk, f(y1, y2, . . . , yk−1, ξ, yk+1, . . . , yl), viewed as a function of ξ

while the other variables are fixed, attains a unique minimum ξ̄ over Yk, and is

monotonically non-increasing in the interval from yk to ξ̄.

Next, it shows that the objective function f satisfies the two above conditions in the

following two scenarios:

• Scenario 1: Update Zu while fixing A. In this case, fA(Zu) is a combination of

quartic functions ai(zjxij)2 where ai > 0. Hence, fA(Zu) is strictly convex and

continuously differentiable and attains a unique minimum.
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• Scenario 2: Update A while fixing Zu. In this case, fZu(A) is a combination of

linear functions w.r.t ai, which is affine, strictly convex and continuous differ-

entiable. In addition, the exponential function is strictly convex, the constraint

in the objective function is also strictly convex. Thus, fZu(A) is continuously

differentiable and attains a unique minimum while fixing Zu.

Therefore, Algorithm 7.1 converges when f attains its minimum f(yr), and {Zu,A} =

{yr} is the stationary point.

7.4.2 Time Complexity Analysis

The time complexity of OpSTD algorithm is analyzed by analyzing the computational

complexity of each iteration in Algorithm 7.1. In the object truth update step, each object

can be claimed by up to ∣I ∣ sources. The cost of updating object truths is O(∣Ju∣ × ∣I ∣)

since this step computes the sum of claims weighted by source weights. In the source

weight update step, each source can claim up to ∣J ∣ objects. The cost of updating source

weight is O(∣J ∣ × ∣I ∣) since this step computes the squared error between each source’s

claims and truths. Therefore, the computational complexity of each iteration in OpSTD

algorithm is O(∣J ∣ × ∣I ∣). In the truth discovery application, there are at most ∣J ∣ × ∣I ∣.

Hence, the computational complexity of each iteration is also linear with the number of

observations.

7.5 Experiments

This section presents the results of experiments that compare the proposed method with

the state-of-art truth discovery methods on both real and synthetic datasets. All the

experiments are conducted on a PC with Intel i7 processor and 16 GB RAM.
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Method
Dataset

Weather Stock Gas Price
MAE RMSE MAE RMSE MAE RMSE

OpSTD 0.7274 1.1546 0.0038 0.0002 0.2264 0.0781
SSTF N/A N/A N/A N/A 0.2613 0.1057
GTM 0.8196 1.5074 0.0044 0.0004 0.2502 0.0946
CRH 0.7829 1.4518 0.0046 0.0004 0.2525 0.0987
Mean 0.9524 2.2517 0.0128 0.004 0.3156 1.1514

Table 7.2: Accuracy Comparison

7.5.1 Experiment Setup

This subsection describe the setup of the experiments.

Baseline Methods

OpSTD is compared with the following state-of-art truth discovery methods: GTM

(B. Zhao & Han, 2012), CRH (Q. Li, Li, Gao, Zhao et al., 2014), SSTF (Yin & Tan,

2011) and Mean. The descriptions of these methods can be seen in Section 2.5.

Datasets

Two real-world datasets. Weather and Stock, and one synthetic dataset, Gas Price, are

used to evaluate OpSTD. Weather and Stock datasets are also used in the experiments

in Chapter 4, the descriptions of these two methods can be found in Section 4.7.1. Gas

Price dataset is used in the experiments in Chapter 3, its description and generation

process can be found in Section 3.7.1.

Performance Metrics

The accuracy of truth discovery methods are evaluated by MAE and RMSE (see Section

2.4). The efficiency of truth discovery methods are evaluated by running time.
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7.5.2 Performance Comparison

This section reports the performance evaluation for OpSTD against the baseline methods

on the three datasets. For weather and stock datasets, since the ground truths are not

among the claims, it does not satisfy the condition of SSTF, SSTF is not able to estimate

object truths for these two datasets. For each dataset, 20% objects are randomly chosen

and the ground truths of these objects in the truth discovery process, the ground truths

of the rest objects are only used for evaluation.

Accuracy Comparison

The experiment results conducted on the three datasets in terms of accuracy are sum-

marized in Table 7.2. As shown in the table, OpSTD consistently achieves the best

accuracy in terms of MAE and RMSE. Among all the methods, Mean performs worst

because it simply takes the average of claims for each object as truth, which does not

take source reliabilities into consideration. Compared with GTM and CRH, OpSTD’s

error is reduced ranging from 7% - 14% in terms of MAE and 17% - 50% in terms

of RMSE over the three datasets. The reason is that these two methods explore an

unsupervised approach which does not use ground truths in the truth discovery process.

Therefore, their errors are larger compared to OpSTD. OpSTD also outperforms the

semi-supervised method SSTF. Note that SSTF’s accuracy is even lower than GTM

and CRH even if it uses ground truths to estimate object truths. This is because its

algorithm is designed for handling categorical data and it runs poorly on continuous

data scenarios.

Efficiency

The experiment results conducted on the three datasets in terms of running times are

summarized in Table 7.3. From this table, it can be seen that Mean achieves the optimal
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Table 7.3: Running Times (Second(s))

efficiency. This is because Mean ignores source reliabilities estimation and it outputs

mean of observations as truths directly. Among the baseline methods, OpSTD runs

about 10% faster than GTM and CRH over the three datasets. The reason is that OpSTD

uses 20% ground truths as its input and it estimates the truths for the rest 80% objects,

while GTM and CRH discovers truths for the whole dataset. Compared with SSTF,

OpSTD runs 57 times faster, which demonstrates the superiority of OpSTD for truth

finding with ground truths.

7.5.3 Sensitivity Analysis

This subsection presents the experiments on testing the effect of ground truth size and θ

to the accuracy of the proposed OpSTD. The effect of ground truth size to the accuracy

of OpSTD is tested first. The θs are fixed at 20, 15 and 35 for weather, stock and gas

price datasets, respectively.The size of the available ground truth is varied over the

whole dataset from 0 to 0.8 with the step of 0.2. Since the accuracy of SSTF is also

sensitive to the ground truth size, SSTF is also tested with different sizes of ground

truths on gas price dataset in this experiment. The experiment result is plotted in Figure

7.1. From Figure 7.1, on one hand, it can be seen that both MAE and RMSE are high

for all the three datasets when ground truth size is 0. This is the case when no ground

truth is used in OpSTD and its accuracy is the same as CRH. As the ground truths are

involved in the proposed truth discovery process, the errors begin to drop; on the other
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hand, it can also be seen that the errors are inverse proportional to the size of ground

truths. This demonstrates that the ground truth indeed benefits the truth estimation in

OpSTD. From Figures 7.1(e) and 7.1(f) it can also be observed that OpSTD outperforms

SSTD in terms of MAE and RMSE under all ground truth sizes. This shows that OpSTD

can utilize ground truths better for truth discovery tasks with continuous object truths.

The effect of θ to the accuracy of the proposed method is plotted in Figure 7.2. In

this experiment, the ground truth size is fixed at 0.2 and θ is varied from 0 to 50. From

this Figure 7.2, it can be seen that the errors begin to decrease when θs begin to increase

from 0 and reach the optimal error very soon. Being different from the ground truth

size, when increasing θ, the errors also begin to increase after it reaches the optimal

ones. The reason is that as the θ is increased, the real errors become significant and it

dominates the estimated errors in Equation (7.8). This may cause the estimated source

weights overfit the objects whose ground truths are available, but less general to the

rest 80% objects whose object truths are estimated. Given different datasets having

different distribution and characteristics, θ is sensitive to OpSTD and we use the best θ

to achieve the optimal performance.

In summary, ground truth, even a small set of ground truth, are beneficial for truth

discovery. By effectively incorporating ground truths into the proposed method, the

accuracy can be improved significantly. When ground truth size is small, θ is sensitive

to different datasets and can be tuned to achieve optimal results.

7.6 Conclusion

In this chapter, semi-supervised truth discovery method for continuous object truths

is investigated. The truth discovery problem is formulated as an optimization task in

which object truths and source weights are modeled as unknown variables, and the

ground truths is formulated as a regularization term to reinforce the source weights.
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An iterative solution is developed to estimate object truths and source weights and

its convergence property and time complexity are analyzed. A series of experiments

is conducted to demonstrate that the proposed method outperforms the existing truth

discovery methods in terms of both accuracy and efficiency.

The models developed in this chapter aims at answering Research Question 4. The

work introduced in this chapter has been published in (Yang et al., 2018).



Chapter 8

Conclusion

This chapters summarizes the truth discovery models developed in this thesis, as well

as address the limitations and the future work directions. This thesis presents five truth

discovery models that address different aspects of truth discovery problems in different

applications.

8.1 Summary of Thesis Contribution

There are five truth discovery models developed in this thesis.

8.1.1 Capturing Object Correlation in a Dynamic Truth Discovery

Environment

Using object correlation is studied in Chapter 3. I proposed a chain graph based

framework, Probabilistic Truth Discovery with Object Correlation (PTDCorr), in which

source reliabilities, sources’ claims and object truths are modeled as random variables.

The correlation among objects are modeled as Markov Random Field in the probabilistic

model, and the proposed PTDCorr model aimed at answering Research Question 1.1.

Due to the modeling of object correlations, the influences of reliable sources can be

171
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propagated to their neighbors in the chain graph model. This significantly improves the

truth discovery accuracy when there are some objects claimed by few sources.

Based on PTDCorr, I developed iPTDCorr, which is the incremental version of

PTDCorr that can efficiently estimate object truths over data streams, and the proposed

iPTDCorr model aimed at answering Research Question 1.2. The novelty of iPTDCorr

is that it can further use the temporal correlation among objects and it is able to estimate

object truths at the present timestamp without re-processing the historical data.

8.1.2 Improving Accuracy and Efficiency for Truth Discovery over

Data Streams

This thesis further studies how to improve both accuracy and efficiency for truth

discovery over data streams. Chapter 4 presented Dynamic Source Weight Computation

(DSWC) truth discovery algorithm that can apply many existing iterative truth discovery

algorithms to stream data applications in order to improve both accuracy and efficiency.

DSWC was proposed to answer Research Question 2. DSWC allows the users to set

an error threshold, it uses the source weights computed at the previous timestamp to

approximate the object truths at present if the error can be limited under the given

threshold. Thus, the iterative source weight computation steps can be avoided and high

efficiency can be achieved.

8.1.3 Modeling Task Difficulty and Worker Guessing Behavior

This thesis also specifically studies truth discovery in crowdsourcing applications for

single-choice crowdsourcing tasks. In the context of crowdsourcing, the object is a

task and the source is a worker. As the tasks have different difficulties and workers

may guess a label if they do not know the truth of some tasks, Chapter 5 presented a

probabilistic generative model CTDGD that jointly models task difficulty and worker’s
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guessing behaviors in the truth discovery step. The proposed CTDGD model aimed at

answering Research Question 3.1.

8.1.4 Impact of Choice Confusion Degrees to the Workers

The choices of a crowdsourcing task may bring different levels of confusions to a crowd

worker. In Chapter 6, I argued that choice confusion degrees determine task difficulty.

Thus, I proposed a probabilistic generative truth discovery model CTI that considers

choice confusion degrees in the truth inference process. By modeling choice confusion

degrees, the accuracy of crowdsourcing truth inference is improved and it is verified by

experiments. The CTI model was proposed to answer Research Question 3.2.

8.1.5 Incorporating Partially Observed Ground Truths

Many existing truth discovery methods are unsupervised learning models in which the

object truths and source weights are both unknown a priori. It is infeasible and very

expensive to obtain the ground truths for all the objects, but it is sometimes practical to

acquire a small set of ground truths for some objects. Chapter 7 discussed how to use

the partially observed ground truths to guide source weight estimation. In Chapter 7,

I presented a semi-supervised truth discovery method, OpSTD, for continuous object

truths, and the OpSTD model was proposed to answer Research Question 4. In OpSTD,

the truth discovery problem is formulated as an optimization task which needs to

minimize an objective function in order to minimize the overall error between sources’

claims and object truths. The partially observed ground truths are modeled as an

regularization term in the objective function and the strength of this regularization term

can be tuned freely in different applications.
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8.2 Research Limitations and Future Works

This section addresses some limitations of the developed methods in this thesis and

discuss the future works.

• The PTDCorr model presented in Chapter 3 treats the object correlation informa-

tion as an input. The correlation is captured by a function and it is application

dependent. Thus, it requires domain knowledge to pre-define the correlation

function before the truth discovery is conducted on the dataset. In the future

work I would like to dive deeper into this problem and aim at developing a truth

discovery method that can infer object correlations from the data instead of using

it as an input.

• The DSWC algorithm developed in Chapter 4 assumes the object truth is com-

puted by weighted aggregation. A more general method is required to be de-

veloped in the future which can be applied to a wider range of iterative methods.

• The CTDGD algorithm developed in Chapter 5 assumes the work guesses a label

randomly if she does not know the truth. However, some workers may choose

some more sophisticated guessing methods and this needs to be explored in the

future work.

Besides, each truth discovery method either developed in this thesis or proposed

by other researches has different kinds of assumptions. For example, all the methods

developed in this thesis have the source dependency assumption. There is no single

method that work well on all the exiting truth discovery datasets because the real-world

problems are very complex and some assumptions are usually not held. Truth discovery

is still at the emerging phase, more sophisticated truth discovery methods are required

to relax more assumptions in the existing methods and can be applied to more complex

real-world applications.
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