X-HYBRIDJOIN for Near-Real-Time Data
Warehousing

M. Asif Naeem, Gillian Dobbie, and Gerald Weber

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand
mnae006Qaucklanduni.ac.nz
{gill, gerald}@cs.auckland.ac.nz

Abstract. In order to make timely and effective decisions, businesses
need the latest information from data warehouse repositories. To keep
these repositories up-to-date with respect to end user updates, near-
real-time data integration is required. An important phase in near-real-
time data integration is data transformation where the stream of up-
dates is joined with disk-based master data. The stream-based algorithm
Mesh Join (MESHJOIN) has been proposed to amortize disk access.
MESHJOIN makes no assumptions about the data distribution. In real
world applications, however, skewed distributions can be found, e.g, cer-
tain products are sold more frequently than the remainder of the prod-
ucts. The question arises, how much does MESHJOIN loose in terms
of performance by not adapting to data skew. In this paper we per-
form a rigorous experimental study analyzing the possible performance
improvements while considering typical data distributions. For this pur-
pose we design an algorithm Extended Hybrid Join (X-HYBRIDJOIN)
that is complementary to MESHJOIN in that it can adapt to data skew
and stores parts of the master data in memory permanently, reducing
the disk access overhead significantly. We compare the performance of
X-HYBRIDJOIN against the performance of MESHJOIN. We take sev-
eral precautions to make sure the comparison is adequate and focuses
on the utilization of data skew. The experiments show that considering
data skew offers substantial room for performance gains that cannot be
used by non-adaptive approaches such as MESHJOIN.

Keywords: Near-real-time data warehousing; stream-based join; data
transformation; performance and tuning

1 Introduction

Near-real-time data warehouse deployments are driving an evolution to more
aggressive data freshness levels. The tools and techniques for delivering these new
service levels are evolving rapidly [1] [2]. In the beginning, most data warehouses
refreshed all content fully during each load cycle. However, due to an increasing
demand for information freshness, it became infeasible to meet business needs.
Therefore the data acquisition mechanism in warehouses was changed from full

2 M. Asif Naeem, Gillian Dobbie, Gerald Weber

refreshment to an incremental refresh strategy, in which new data is added to
the warehouse without requiring a complete reload [3] [4]. Although this strategy
is more efficient than the traditional one, it is still batch-oriented as a fraction of
the data is propagated towards the warehouse after a particular timestamp. In
order to overcome update delays, these batch-oriented and incremental refresh
strategies are being replaced with a continuous refresh strategy [5] [6]; that is,
sales data are being captured and propagated to the data warehouse in near-
real-time fashion in order to support high levels of data freshness.

An important operation in data integration is the transformation of the
source data to a required format. Common examples of such transformations
are the enrichment of source data with master data attributes and the replace-
ment of a source data key with a warehouse key. Content enrichment is a
special form of data translation in which additional information is injected into
the current message [7]. We consider an example of an inventory sales system,
as shown in Figure 1. The source table contains attributes product_id, quantity
and date with the primary key on attribute product_id. The look-up table that
stores master data contains attributes product_id, surrogate_key, product_name,
sale_price and supplier_id while having the primary key on attribute product_id.
The attribute surrogate_key is the key for the data warehouse. This is used to
identify the records uniquely and it is different in format from the source data
key. Generally, the source updates are propagated with the attributes product_id,
quantity and date. However, before loading these source updates into the data
warehouse, they need to enrich with certain information from the look-up table.
In our example, the enriched attributes are supplier_id and total. A join operator
is required to perform these enrichment and key replacement tasks. In the con-
text of near-real-time data warehousing one of the significant factors for choosing
the join operator is that both the inputs for the join come from different sources
and arrive at different rates. The input update stream is high volume and has
a bursty nature while the access rate of the look-up table is comparatively slow
due to disk I/O cost; therefore a bottleneck is created during the join execution.
The challenge in this case is to eliminate this bottleneck by amortizing that high
volume update stream with the slow disk access rate. An alternative approach
would be to try to put the whole disk-based relation into memory. In some cases
this alternative can be feasible. But still there are a number of scenarios where
this alternative is not applicable e.g. if the join is to be performed on a single
computer where the bulk of memory is used for other purposes. Similarly, for in-
termittent streams, a main memory approach would keep the memory occupied
even when no stream data is incoming. In the limited-memory approaches here,
in contrast there is no such waste of resources.

A novel algorithm Mesh Join (MESHJOIN) [8] [9] has been designed espe-
cially for joining a continuous stream with a disk-based relation, such as the
scenario in active data warehouses. The algorithm makes no assumptions about
data distribution or the organization of the master data. Experiments by the
MESHJOIN authors have shown that the algorithm performs worse with skewed
data. The MESHJOIN algorithm is a hash join, where the stream serves as the

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 3

(Product_id, Quantity, Date) ~ (Surrogate _key, Suplier_id,
Quantity, Total, Date)

Source table Join

Fact table

operator

Product_id|Quantit Date urrogate key[Suplier_id!
11 5 " 113-07-2010 1001 P101 $10.00|13-07-2010
|22 8 113-07-2010 1002 O111 | $9.00 |13-07-2010
33 10 [13-07-2010 Surrogate_ke 1003 1222 [$50.00]
Sale_price, Suplier_id)
—d
Master
Data
Look-up table
Pr id[Surrogate_key|Product_name|Sale_price|Suplier_id
11 1001 Pepsi $2.00 P101
22 | 1002 | Orange Juice | _$3.00 | O1i1
33 | 1003 | _icecream | $5.00 | 1222

Fig. 1. An example of stream-based join

build input and the disk-based relation serves as the probe input. The algorithm
performs a staggered execution of the hash table build in order to load in stream
tuples more steadily. However there are some issues such as suboptimal distri-
bution of memory among the join components and an inefficient strategy for
accessing the disk-based relation [12].

Although the MESHJOIN algorithm efficiently amortizes the fast input stream,
the question remains how much potential for improvement remains untapped
because the algorithm cannot adapt to common characteristics of real-world ap-
plications. In this paper we focus on one of the most common characteristics,
a skewed distribution. Such distributions arise in practice, for example current
economic models show that in many markets a select few products are bought
with higher frequency [11]. Therefore, in the input stream, the sales transactions
related to those products are the most frequent. In MESHJOIN, the algorithm
does not consider the frequency of stream tuples, and does not need an index
structure on the master data. This can be useful in some circumstances, but
still in many other cases one obviously wants to use an index to gain maximum
performance. We propose an adaptive algorithm called Extended Hybrid Join
(X-HYBRIDJOIN). The key feature of X-HYBRIDJOIN is that the algorithm
stores the most used portion of the disk-based relation, which matches the fre-
quent items in the stream, in memory. As a result, this reduces the I/O cost
substantially, which improves the performance of the algorithm.

X-HYBRIDJOIN has two major modifications compared with MESHJOIN.
Firstly, the hash join component of X-HYBRIDJOIN is modified so that it can
make use of an index. Secondly, X-HYBRIDJOIN caches frequently used master
data. Since we want to compare MESHJOIN and X-HYBRIDJOIN; it is impor-
tant to clarify, which change leads to the performance improvement. Therefore
we also present an intermediate step, HYBRIDJOIN, which implements only
the first modification, and we compare all three algorithms. Since our purpose
is primarily to gauge the potential of skewed distributions, we consider a very
clean, artificial dataset that exactly exhibits a well-understood type of skew, a
power law.

The remainder of the paper is structured as follows. A review of the related
work is presented in Section 2. In section 3 we describe the intermediate algo-

4 M. Asif Naeem, Gillian Dobbie, Gerald Weber

rithm HYBRIDJOIN that already uses an index in the join process. In Section 4,
we present the difference between HYBRIDJOIN and X-HYBRIDJOIN, and also
derive the cost model for X-HYBRIDJOIN. The experimental study is discussed
in Section 5 and finally Section 6 concludes the paper.

2 Related work

In this section, we present an overview of the previous work that has been done
in this area, focusing on that which is closely related to our problem domain.

A novel algorithm Mesh Join (MESHJOIN) [8] [9] has been designed espe-
cially for joining a continuous stream with a disk-based relation, such as the
scenario in active data warehouses. Although it is an adaptive approach, there
are some research issues such as suboptimal distribution of memory among the
join components and an ineflicient strategy for accessing the disk-based relation.

A revised version of MESHJOIN called R-MESHJOIN (reduced Mesh Join)
[12] has been presented by us. It addresses the issue of optimal distribution
of memory among the join components. In this algorithm a new strategy for
memory distribution among the join components is introduced capturing real
constraints. However the issue of an inefficient strategy for accessing the disk-
based relation still exists in R-MESHJOIN.

One approach for improving MESHJOIN has been a partition-based join
algorithm [10] which can also deal with stream intermittence. It uses a two-level
hash table in order to attempt to join stream tuples as soon as they arrive, and
uses a partition-based waiting area for other stream tuples. For the algorithm in
[10], however, the time that a tuple waits for execution is not bounded. We are,
however, interested in a join approach where the time in which a stream tuple
is joined is guaranteed.

3 Index-based Hash Join architecture: HYBRIDJOIN

In this section we introduce the HYBRIDJOIN algorithm, which implements our
first modification of MESHJOIN in order to make use of a non-clustered index.
We introduce the join architecture for HYBRIDJOIN. This will be used, with a
single modification, for the algorithm X-HYBRIDJOIN as well.

HYBRIDJOIN joins a disk-based relation R with a stream S. We assume
a non-clustered index on R for the join attribute, and we assume that the join
attribute is unique within the master data. This is a very natural set of as-
sumptions and matches the application domain described above, for example in
key exchange applications. By only requiring a non-clustered index, we keep our
assumptions as minimal as possible.

The memory architecture used in HYBRIDJOIN and in X-HYBRIDJOIN
is shown in Figure 2. The main memory components are a disk buffer, a hash
table, a queue and a stream buffer while the disk-based relation R and stream
S are the inputs. In our algorithm, we assume that R has an index with the join
attribute as the key.

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 5

Queue
E—

Hash table
.

D=

]

ion |

Stream buffer \functlon/
Disk buf‘ferﬁ

Non-
\ swappable /
L] Join window

Disk-based relation | [p, |
R

[....]
[P |

Swappable

Fig. 2. Architecture of HYBRIDJOIN and X-HYBRIDJOIN. The only difference be-
tween the two algorithms is that in X-HYBRIDJOIN the disk buffer is split and its
two parts are treated differently, as explained in the text.

The stream is used as the build input. This means that the algorithm keeps
stream tuples in a hash table which occupies the largest share of the memory, and
the hash table is filled with the next pending stream tuples to its full capacity.
Additionally we keep identifiers of the stream tuples in a queue which allows
random deletion, the simplest implementation is a doubly linked list.

HYBRIDJOIN is an iterative algorithm, and in each iteration it uses a parti-
tion of the disk-based relation R as a probe input. For that purpose, the partition
is loaded into the disk buffer. In HYBRIDJOIN, the disk buffer contains only
this partition, later in X-HYBRIDJOIN the partition will only occupy one part
of the disk buffer. After that, the algorithm performs the typical operation of a
hash join, i.e., it loops over all the tuples of the disk buffer and looks them up
in the hash table. In the case of a match, the algorithm generates that stream
tuple as an output.

Also, in each iteration, HYBRIDJOIN evicts stream tuples that have been
matched. This is justified through the assumption that the join attribute is
unique in R. Evicting a tuple means it is deleted from the hash table and the
queue. The algorithm also keeps a counter w of the evicted tuples. After pro-
cessing the whole disk buffer, the algorithm reads w new tuples from the stream
buffer, loads them in the hash table along with entering their identifiers in the
queue.

For choosing the next partition of R, HYBRIDJOIN looks at the join at-
tribute of the oldest stream tuple in the queue. Using the index, it loads the par-
tition of R with that join attribute value into the disk buffer. It is this last step
which makes HYBRIDJOIN adaptive, because in HYBRIDJOIN, every loaded
partition matches at least one stream tuple. As a simple example, consider R has
a section that is not referred to in the stream, for example an obsolete group of
products. In MESHJOIN, this section would still be loaded, while in HYBRID-
JOIN it would not be loaded, because no stream tuple will trigger the loading
of that section.

6 M. Asif Naeem, Gillian Dobbie, Gerald Weber

HYBRIDJOIN works for any data distribution, as MESHJOIN does. How-
ever, in practice, certain distributions are common. Current research has shown
that sales data typically follows a power law, or Zipfian distribution [11]. The
power law is characterized by its exponent. For an exponent < 1 the distribu-
tion is said to have a long tail, for an exponent > 1 the distribution has a short
tail. For exponent 1 we get the distribution of Zipf’s law, which gave rise to the
general term Zipfian distribution. In sales, the 80/20 rule is used to model the
scenario where the frequency of selling a small number of products is signifi-
cantly higher compared to the rest of the product, often simplified in the 80/20
rule. The 80/20 rule corresponds to an exponent slightly smaller than 1 [13].

Our aim is to describe an algorithm that takes advantage of the likely dis-
tribution of the data. Therefore we created a dataset generator that can create
artificial data sets following a power law with an exponent that can be chosen
freely. In all our experiments, the master data is sorted with respect to the access
frequency.

4 X-HYBRIDJOIN

In this section, we describe our second algorithm, X-HYBRIDJOIN which is an
extension of HYBRIDJOIN.

4.1 Difference between X-HYBRIDJOIN and HYBRIDJOIN

As we will see later, the service rate of HYBRIDJOIN increases as the exponent
of the distribution goes above 1 i.e. as the distribution gets closer to a short-
tailed distribution. However, if a distribution is fairly short-tailed, then many
matches are with the most frequent tuples. So the question arises, how much
can be gained in terms of performance by buffering the most frequent tuples
permanently, and this gives rise to X-HYBRIDJOIN.

The difference between the two algorithms is that in X-HYBRIDJOIN we di-
vide the disk buffer into two parts. One part stores the most popular pages
of disk-based relation R in memory permanently, and we call this the non-
swappable part of the disk buffer. The other part of the disk buffer is swappable
and is used to load partitions from the remainder of relation R into memory in
the same way as in the HYBRIDJOIN algorithm. As a natural default setting,
we assign the same amount of memory to both parts.

4.2 Cost model

In this section we derive the general formulae for calculating the cost for our
proposed X-HYBRIDJOIN. We derive equations for memory and processing time
of X-HYBRIDJOIN. Equation 1 describes the total memory used to implement
the algorithm except for the stream buffer; whereas Equation 2 calculates the
processing cost for w tuples. The symbols used to measure the costs are specified
in Table 1.

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 7

Table 1. Notations used in cost estimation of X-HYBRIDJOIN

Parameter name Symbol
Total allocated memory (bytes) M
Service rate (processed tuples/sec) 7

Input size (=number of matching tuples in previous iteration) w
Stream tuple size (bytes) Vs

Size of each swappable and non-swappable part (bytes) (=size of

1 disk partition) vp

Size of disk tuple (bytes) UR

Size of each swappable and non-swappable part (tuples) dr = Z—;
Memory weight for the hash table o
Memory weight for the queue l-a
Cost to read one disk partition into the disk buffer (nanosecs) cr/o(vp)
Cost to lookup one tuple in the hash table (nanosecs) cH

Cost to generate the output for one tuple (nanosecs) co

Cost to remove one tuple from the hash table and the queue (nanosecs) cg

Cost to read one stream tuple into the stream buffer (nanosecs) cs

Cost to append one tuple into hash table and the queue (nanosecs) caA

Total cost for one loop iteration of X-HYBRIDJOIN (secs) Cloop

Memory cost In X-HYBRIDJOIN, the disk buffer is divided into two equal
parts. One is swappable, the other is non-swappable. As said before, the largest
share of the total memory is used for the hash table; a much smaller portion is
used for the disk buffer. The queue size is a constant fraction of the hash table
size. The memory for each component of X-HYBRIDJOIN can be calculated as
shown below.

Memory reserved for the swappable and non-swappable parts= vp + vp = 2vp
(in the case of HYBRIDJOIN it is vp only.)

Memory for the hash table = a(M — 2vp)

Memory for the queue (1 — a)(M — 2vp)

The total memory used by X-HYBRIDJOIN can be determined by aggregating
all of the above.

M =2vp+a(M —2vp)+ (1 —a)(M —2vp) (1)

Currently we do not include the memory reserved by the stream buffer because
of its small size (0.05 MB has been sufficient in all our experiments).

Processing cost In this section, we calculate the processing cost for the pro-
posed X-HYBRIDJOIN. We denote the cost for one loop iteration of the algo-
rithm as ¢jo0p and express it as the sum of the costs for the individual operations.
We first calculate the processing cost for each component separately.

Cost to read swappable or non-swappable parts of the disk buffer= c;,o(vp)
Cost to look-up swappable and non-swappable parts of the disk buffer in the
hash table = dp.cy + dr.cy = 2dr.cy (in the case of HYBRIDJOIN it is dp.cy
only.)

8 M. Asif Naeem, Gillian Dobbie, Gerald Weber

Cost to generate the output for w matching tuples = w.co

Cost to remove w tuples from the hash table and the queue = w.cg

Cost to read w tuples from stream S into the stream buffer = w.cg

Cost to append w tuples in the hash table and the queue = w.cy

As the non-swappable part of the disk buffer is read only once before the execu-
tion starts we exclude it. By aggregating the terms, the total cost for one loop
iteration is:

Cloop(secs) = 1079[61/0(1}13) +2dp.cy +w(co + cg +cs+ca)l (2)

For all ¢jo0p seconds the algorithm processes w tuples of stream .S; therefore,
the service rate p can be calculated by dividing w by the cost for one loop
iteration as shown in Equation 3.

p= (3)

Cloop

5 Experiments

We performed experiments to compare the performance of our algorithms with
MESHJOIN. We also validate the measured cost by comparing it with the cal-
culated cost for each algorithm. As mentioned before, we use synthetic datasets
with a known skew.

5.1 Experimental setup

Hardware specifications: We carried out our experiments on a Pentium-IV
2X2.13GHz machine under WindowsXP. The maximum memory we allocated for
our experiments is 250MB. We implemented the algorithm in Java. To measure
the memory and processing time, we used built-in plugins provided by Apache
and Java API respectively.

Data specifications: The synthetic workload that we used to test the algo-
rithms was generated using Zipf’s Law with exponent 1. The generated stream
has two additional characteristics known as burstyness and self similarity. The
detailed specifications of the data set that we used for analysis are shown in
Table 2. The relation R is stored on disk using MySQL 5.0 databases. To mea-
sure the cost for each I/O operation accurately we set the fetch size for the
ResultSet equal to the size of one partition on disk. X-HYBRIDJOIN needs
to store multiple values in the hash table against one key value. However, the
hash table provided by the standard Java API does not support this feature;
therefore, we have used the Multi-Hash-Map from Apache as the hash table in
our experiments.

Measurement strategy: We define the performance of the algorithms as ser-
vice rate, with a higher service rate being better. The service rate has been mea-
sured by calculating the number of tuples processed in a unit second. In each
experiment, the algorithm is executed for one hour. We started our measure-
ments after 20 minutes and keep measuring for 20 minutes. For added accuracy,

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 9

Table 2. Data specification

Parameter [value
Disk-based data
Size of disk-based relation R|0.5 million to 8 million tu-
ples

Size of each tuple 120 bytes

Stream data
Size of each tuple 20 bytes
Size of each node in queue |12 bytes

Benchmark
Based on Zipf’s law
Characteristics Bursty and self-similar

we took three readings for each specification and then calculated the average.
Where required we also calculated the confidence interval by considering 95%
accuracy. The calculation of confidence interval is based on 4000 measurements
for one setting. Moreover, during the execution of the algorithm no other appli-
cation was running in parallel.

5.2 Experimental results

In our experimental study, we analyzed the results from three different perspec-
tives. Firstly, we compare the performance of HYBRIDJOIN and X-HYBRIDJOIN
with the other related algorithms. Secondly, we examine the role of the non-
swappable part of the disk buffer in stream processing. Finally, we validate our
predicted cost model through experiment.

Performance comparisons The two possible parameters that can vary and
directly affect the performance of the algorithms under test are the total avail-
able memory for the algorithm and the size of the disk-based relation. In our
experiments, we tested the algorithms for different values of these parameters
and compared their performance.

Performance comparisons for varying size of the disk-based rela-
tion: In the experiment shown in Figure 3(a), we assumed the total allocated
memory for the join was fixed while the size of the disk-based relation R was
grown exponentially. Figure 3(a) shows that for all sizes of R performance of
X-HYBRIDJOIN is substantially better than all the other approaches. Another
key observation from the figure is that when R is 0.5 million the performance
of HYBRIDJOIN is almost 70% of X-HYBRIDJOIN and when R is equal to
8 million this percentage decreases to 50%. This means that the performance
of the other algorithms decreases more sharply compared to X-HYBRIDJOIN
when R increases.

Performance comparisons when the size of available memory varies:
In our second experiment, we analysed the performance of X-HYBRIDJOIN

10 M. Asif Naeem, Gillian Dobbie, Gerald Weber

x10' x10*
T

T T T
—— X-HYBRIDJOIN —%— X-HYBRIDJOIN

—6— HYBRIDJOIN —6— HYBRIDJOIN
—4—R-MESHION | —%— R-MESHJOIN

35 —%— MESHJOIN 5 —F— MESHJOIN

Service rate (tuples/sec)
Service rate (tuples/sec)

L L L L L 054 L L
05 1 2 4 8 50

, ,
100 150 200 250
Size of disk relation R on log scale (million tuples) Total allocated memory (MB)

(a) Performance comparison with 95% (b) Performance comparison with 95%
confidence interval while M= 50MB and confidence interval while R= 2 million tu-
R varies ples and M varies

Fig. 3. Performance comparisons

using different memory budgets while the size of R is fixed (2 million tuples).
Figure 3(b) presents the results of our experiment. The figure indicates that, for
all memory budgets, the performance of X-HYBRIDJOIN is again significantly
better than all the other algorithms. The reason behind this improvement is
our intuition about X-HYBRIDJOIN. In our calculations, introducing the non-
swappable part in X-HYBRIDJOIN can save about 33% of the disk I/O cost.
Although keeping the non-swappable part in memory increases the look-up cost
and reduces the memory for the hash table, both these factors are very small
compared to the disk I/O cost.

From the experiments we can see that HYBRIDJOIN performs consistently
slightly better that MESHJOIN and R-MESHJOIN. However, the improvement
is rather modest. Our experiments show that the main performance gain of
X-HYBRIDJOIN is due to the second improvement, the introduction of a non-
swappable part in the disk-buffer.

Role of the non-swappable part in stream processing To get a better
understanding of the role of the non-swappable part of the disk buffer, we per-
formed an experiment where we counted the stream tuples which are processed
using only the non-swappable part of disk buffer. The results of this experiment
are shown in Figure 4. As before, we set the size of the non-swappable part to
be equal to the size of the swappable part. It is clear from the figure that in
4000 iterations when the memory budget is 50 MB and the size of R is 2 million
tuples, about 0.4 million stream tuples are processed through the non-swappable
part of the disk buffer and this number increases if we increase the total allo-
cated memory. For 250 MB memory with the same size of R (2 million tuples),

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 11

0.026
0.024

0022

15F 4
WL i S oo 4
0016 4
05t 4
0014 4
I 50 100 150 200 250
50 100 150 200 250

Total memory (MB) Total memory (MB)

Processing cost (seconds)
g

Stream tuples processed by non-swappable part

Fig. 4. Total number of stream tuples Fig. 5. Cost validation
processed with non-swappable part of
disk buffer in 4000 iteration

this amount reaches more than 2 million. In the other algorithms, since this
non-swappable part is loaded from the disk each time, the I/O cost increases
significantly.

Cost validation We validate our results by comparing the predicted cost with
the measured cost. Figure 5 presents the comparisons of both costs for each
algorithm. In the figure, it can be seen that for each algorithm the predicted
cost closely matches the measured cost, which is evidence of the consistency of
our study.

6 Conclusions and future work

In this paper, we explored the potential improvement for stream-based joins if
characteristics of the data such as skew are taken into account. MESHJOIN
performs worse with skewed distributions, which is a problem since these distri-
butions are common in real world applications. We presented a robust algorithm
called X-HYBRIDJOIN (Extended Hybrid Join) with two major modifications
over MESHJOIN. The first modification is the use of an index on disk-based
master data. The second modification is that X-HYBRIDJOIN caches the most
frequent tuples of master data. As a result it reduces the disk access and improves
the performance substantially. To validate our arguments we implemented the
prototypes for both modifications and carried out experiments comparing the dif-
ferent algorithms. We provided open source implementations of our algorithms.
In the future we plan to tune the X-HYBRIDJOIN algorithm in order to
utilize the available memory resources optimally.
Source URL: The source of our implementations and pseudo-codes can be down-
loaded using the given URL:
https://www.cs.auckland.ac.nz/research/groups/serg/src/

https://www.cs.auckland.ac.nz/research/groups/serg/src/

12 M. Asif Naeem, Gillian Dobbie, Gerald Weber

References

1. Karakasidis, A., Vassiliadis, P., Pitoura, E.: ETL queues for active data warehousing.
In: IQIS ’05: Proceedings of the 2nd International Workshop on Information Quality
in Information Systems, pp. 28-39. ACM, New York, NY, USA(2005)

2. Naeem, M. A., Dobbie, G., Weber, G.: An Event-Based Near Real-Time Data In-
tegration Architecture. In: Enterprise Distributed Object Computing Conference
Workshops, pp. 401-404. IEEE, Munich, Germany(2008)

3. Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom, J.: Performance Issues
in Incremental Warehouse Maintenance. In: VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, pp. 461-472, San Francisco,
CA, USA(2000)

4. Labio, W. J., Wiener, J. L., Garcia-Molina, H., Gorelik, V.: Efficient resumption
of interrupted warehouse loads. In: SIGMOD Rec., vol. 29, no. 2, pp. 46-57, New
York, NY, USA(2000)

5. Nguyen, A., Tjoa, A.: Zero-Latency data warehousing for hetrogeneous data sources
and continuous data streams. In: iiWAS’2003 - The Fifth International Conference
on Information Integration and Web-based Applications Services, pp. 55-64, Aus-
trian Computer Society(OCG)(2003)

6. Golab, L., Johnson, T., Seidel, J. S., Shkapenyuk, V.: Stream warehousing with
DataDepot. In: Proceedings of the 35th SIGMOD International Conference on Man-
agement of Data, pp. 847854, Providence, Rhode Island, USA (2009)

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley Longman Publishing Co., Boston,
MA, USA (2003)

8. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.E.: Sup-
porting Streaming Updates in an Active Data Warehouse. In: ICDE 2007. IEEE
23rd International Conference on Data Engineering, pp. 476-485. Los Alamitos,
CA, USA(2007)

9. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Mesh-
ing Streaming Updates with Persistent Data in an Active Data Warehouse. In:
IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 7, pp. 976-991, Piscataway, NJ,
USA(2008)

10. Chakraborty, A., Singh, A.: A partition-based approach to support streaming up-
dates over persistent data in an active datawarehouse. In: IPDPS ’09: Proceedings
of the 2009 IEEE International Symposium on Parallel & Distributed Processing,
pp. 1-11, IEEE Computer Society, Washington, DC, USA, (2009)

11. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More.,
2006, Hyperion

12. Naeem, M. A., Dobbie, G., Weber, G.: R-MESHJOIN for Near-real-time Data
Warehousing. In: DOLAP’10: Proceedings of the ACM 13th International Workshop
on Data Warehousing and OLAP, ACM, Toronto, Canada, (2010)

13. Knuth, Donald E.: The art of computer programming., pp. 400-401, Addison-Wiley,
Reading, Mass.,(1968)

	X-HYBRIDJOIN for Near-Real-Time Data Warehousing
	Introduction
	Related work
	Index-based Hash Join architecture: HYBRIDJOIN
	X-HYBRIDJOIN
	Difference between X-HYBRIDJOIN and HYBRIDJOIN
	Cost model
	Memory cost
	Processing cost

	Experiments
	Experimental setup
	Experimental results
	Performance comparisons
	Role of the non-swappable part in stream processing
	Cost validation

	Conclusions and future work

