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Abstract 
Whilst some software measurement research has been 
unquestionably successful, other research has struggled 
to enable expected advances in project and process 
management.  Contributing to this lack of advancement 
has been the incidence of inappropriate or non-optimal 
application of various model-building procedures.  This 
obviously raises questions over the validity and reliability 
of any results obtained as well as the conclusions that 
may have been drawn regarding the appropriateness of 
the techniques in question.  In this paper we investigate 
the influence of various data set characteristics and the 
purpose of analysis on the effectiveness of four model-
building techniques – three statistical methods and one 
neural network method.  In order to illustrate the impact 
of data set characteristics, three separate data sets, 
drawn from the literature, are used in this analysis.  In 
terms of predictive accuracy, it is shown that no one 
modeling method is best in every case.  Some 
consideration of the characteristics of data sets should 
therefore occur before analysis begins, so that the most 
appropriate modeling method is then used.  Moreover, 
issues other than predictive accuracy may have a 
significant influence on the selection of model-building 
methods.  These issues are also addressed here and a 
series of guidelines for selecting among and implementing 
these and other modeling techniques is discussed. 
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1. INTRODUCTION 

The management of software development projects has a 
relatively poor reputation in terms of avoiding cost and 
schedule overruns.  In an effort to improve this track 
record, many mature organizations (in a software 
development sense) have invested heavily in the 
development and use of software metrics – measures 
derived from and applied to software products or 
processes. 

Such metrics have been collected with the understanding 
that they may lead to the development of models that will 
enable greater control to be exercised over the 
increasingly complex software development process.  One 
of the most widely investigated metric-based models is 
the intuitively plausible relationship between software 
product size and complexity on the one hand and 
associated development effort on the other.  In this way, 
larger and more complex systems are assumed to take 
longer to develop.  An extensive array of predictive 
models has been generated largely as a result of empirical 
analyses, COCOMO (Boehm, 1981), SLIM (Putnam et 
al., 1984) and Function Point Analysis (FPA) (Albrecht 
and Gaffney, 1983) being among the most popular 
approaches.  In essence these and similar models 
incorporate one or more product size measures, normally 
program size in estimated lines of code or specification 
size in numbers of screens, files and so on, along with 
some measure of complexity, calibrated under linear 
regression in a model predicting development effort 
and/or duration.  Although some standard models are 
available, the effectiveness of the predictions is generally 
improved when organization- or domain-specific data is 
used in calibration, especially since many other factors 
can influence development effort, such as tools and 
methodologies used, and these are usually more 
consistent within organizations than between 
organizations. 

There is little doubt that such approaches have the 
potential to substantially improve the accuracy of effort 
estimation and consequently the management of 
development schedules.  This depends on a number of 
contingent factors, including having effective measures of 
size and complexity, the existence of relevant data, and 
the use of appropriate analysis methods.  It is this third 
area of research that we are currently investigating.  
Because of their relative accessibility (through widely 
available software packages, including SPSS, SAS, 
MINITAB, MATLAB, and S-Plus) standard statistical 
analyses have been most commonly adopted in the 
determination of predictive models (for example, see 
recent papers by Ebrahimi (1999), Stensrud and Myrtveit 
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(1998), Heiat and Heiat (1997) and Dolado (1997)).  
While empirical analysis is certainly to be encouraged, 
particularly over the guesswork that tended to be 
prevalent before the promotion of software metrics, its 
use must be tempered by an awareness of the relevance, 
generalisability, and limitations of particular analysis and 
modeling techniques. 

It is the inherent nature of software metrics data that 
contributes to the demand for a greater appreciation of the 
applicability of various modeling methods.  Software 
engineering data sets are often skewed to the right (that is 
to say, they exhibit a distribution with most values at the 
lower end and with a few very large observations creating 
a long tail extending to the right), and may contain a 
number of outlier observations.  Moreover, since we are 
as yet to establish (and it would seem likely that we will 
never establish) an underlying theoretical model of 
software development, a full awareness of the variables 
that contribute to development effort and how they 
interact may be unattainable.  Since many standard 
analysis methods assume data sets that conform to a 
normal distribution and involve relatively simple, if any, 
interactions, these ‘standard’ modeling methods may not 
be particularly appropriate.  This is not to say that such 
analysis methods should be discarded entirely, but rather 
that some exploratory examination of the data should 
always occur first and analysis methods chosen as a result 
of this analysis, with the purpose of the model – e.g. 
predictive accuracy, process understanding – also always 
in mind.   

For example, a simple model involving only one predictor 
variable will generally be best served by using a 
regression model rather than a feedforward neural 
network.  This is due to the greater speed of the 
regression procedure compared to training the neural 
network, and also because of the greater analysis and 
information obtainable from the regression model.  When 
dealing with many variables and with complex 
interactions assumed, a feedforward neural network could 
appear to be a better choice since this simplifies the 
model structure selection process.  If data is likely to be 
extremely contaminated then outlier resistant techniques, 
such as robust regression, may be preferred.  In these 
ways the data suggest that certain modeling techniques 
may be more effective than others.  These techniques are 
explained below, as is their use in software metric 
modelling. 

 
2. MODEL-BUILDING METHODS 

In the past, software development effort models have 
been built almost exclusively using least-squares linear 
regression techniques.  More recently, this approach has 
been complemented by the application of machine 
learning methods, especially neural networks, in reaction 
to continuing problems with regression-based solutions 
(Lee et al., 1998; Finnie et al. 1997; Hakkarainen et al., 
1993).  Both approaches are considered below.  One other 
method is also examined - that of robust regression (in 
two forms). 

 

2.1. Regression Methods 

Given a particular set of data points or observations, least-
squares (LS) regression attempts to determine the 
function that minimizes the sum of squared errors in the 
relationship between predicted and actual values, with the 
predictions being based on the weighted contribution of 
one or more variables (Neter et al., 1996).  The resulting 
function is normally expressed as an equation such as that 
shown in Equation (1) where development effort is 
related to the number of screens (NumScreens) and the 
number of reports (NumReports) in a system.  A constant 
term is included which may represent administrative 
overhead, but could also be used to allow a linear function 
to approximate a non-linear one over a particular range. 
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The development of a regression function is normally 
preceded by the examination of scatter plots and 
correlation analyses, along with cluster analysis to 
identify distinct groups of systems where appropriate.  
Interaction terms may need to be formed to enable the 
predictive model to cope with the effect of combinations 
of variables, and transformations can be used to partially 
compensate for non-linearities.  The general form of a 
least-squares regression graph is shown in Figure 1.  In 
this graph the number of man-months (MM) required for 
development are expressed as a function of the number of 
screens (SCRN) with a constant term added.  The 
individual data points used to develop the model (the line) 
are shown as squares on the graph.  This constant may (as 
explained above) reflect the administrative overhead of a 
project or compensate for a nonlinear relationship over a 
small range of SCRN (as in this case where the constant is 
negative and the data exhibit an exponential pattern).  The 
Rsq value given to the right of the graph indicates the 
proportion of the variation in MM that is explained by 
SCRN, in this case some 78%. 

There are several advantages associated with the use of 
the least-squares regression method.  It is a method that 
has sound theoretical foundations from its, comparatively 
speaking, long history.  Least-squares is easily accessible 
through most statistical analysis packages and is widely 
examined in standard statistical texts (for example, Neter 
et al., 1996) – thus the software metrics practitioner is 
likely to have ready access to the technique and to the 
means of gaining expertise in its use.  A further 
significant advantage of least-squares regression (and of 
regression in general) is the visibility of the resultant 
models.  Inherent in the model produced is the expression 
of those variables of statistical influence (in terms of 
predicting the dependent variable) along with the 
weightings expressed in raw and standardized forms.  
This enables the modeler to immediately consider the 
validity of the model’s structure in light of her/his own 
knowledge and experience. 

This visible structure can, however, have equally 
important disadvantages, in that regression may lead to 
the provision of equations that are difficult to interpret in 
an operational sense, particularly when many variables, 



transformations, and interaction terms are included.  More 
significantly, least-squares models may be extensively 
confounded by outlier data points (common in software 
engineering data with the relatively common ‘rogue’ 
projects) and they may not adequately cope with complex 
variable interrelationships, particularly given the 
availability of only small data sets.  Least-squares 
equations, by attempting to minimize the sum of the 
squared residuals from the model, can be dramatically 
changed by altering one single point to be suitably 
unusual (in fact, the regression line can be changed to any 
equation desired by this editing of a single observation).  
With small data sets there is even greater risk that unusual 
data points will exert undue influence over the smaller 
number of representative points. 

The degree to which data can be arbitrarily contaminated 
before the regression line can be changed to any desired 
equation is called its breakdown point.  Least squares has 
a breakdown point of 0%.  Other, robust, regression 
techniques are available with higher breakdown points, as 
discussed below (Rousseeuw and Leroy, 1987). 

Finally, the nature of the model must be formed by the 
developer, in terms of variables considered, 
transformations needed and interaction terms required.  
As with any technique, attempting to address these 
questions without sufficient expertise is likely to lead to 
anomalous or spurious models.  While the software 

metrician is not required to be an expert in statistics as 
well as project management, they do require the 
knowledge of what they can do themselves and what 
should be left for a more qualified statistician.   

Least-median-squares (LMS) and least-trimmed-squares 
(LTS) regression (Rousseeuw and Leroy, 1987) belong to 
the family of robust regression methods, so-called 
because they produce predictive models that are generally 
more effective for making predictions for the main body 
of observations in data sets containing outlier 
observations.  Although a number of such models exist, 
we have adopted the LMS and LTS techniques as they are 
easily compared to the LS approach. Rather than using 
the sum of squared residuals as the basis for error 
minimization, LMS regression minimizes the median of 
the squared residuals and LTS minimizes a trimmed sum 
of the residuals.  Thus both techniques are unaffected by a 
proportion of outlier values in a data set (called resistance 
to contamination, or breakdown point, this being 50% in 
the case of LMS, and a user-definable value for LTS).  
This is of benefit for skewed data sets since in these cases 
any outlier observations can be systematically identified 
and then dealt with accordingly (e.g. included, 
reweighted, or discarded).  The result is a more 
‘characteristic’ model in terms of the data set underlying 
its development. (See Figure 2 for an illustration of the 
influence of outlier points on regression models.) 
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Figure 1. General form of a least-squares regression graph for predicting development effort 
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Figure 2. Outlier influence on regression models developed using least-squares and least-median of squares 

 

In terms of disadvantages associated with these methods, 
they are generally less powerful than the least-squares 
approach when data set characteristics are not 
problematic, and they are not as widely accessible in 
terms of software availability.  As with the least-squares 
method, the analyst must still specify the form of the 
models. 

 
2.2. Neural Networks 

A neural network can be defined, in a simplistic manner, 
as a number of interconnected units, with weighted 
connections passing signals from unit to unit.  In general 
some of these units are model inputs and some model 
outputs.  There are a vast number of neural network 
architectures, along with learning algorithms for 
determining the parameters (weights) of models 
expressed using these architectures.  In this paper, we 
limit ourselves to the most common and widely used 
architecture/learning algorithm combination for 
prediction purposes.  This is the method of back-
propagation applied to a feed-forward neural network 
architecture (Hertz et al., 1991).   

A neural network of this type can be seen as a non-linear 
modeling technique, that consists of inputs (the 
independent variables), processing units (the hidden 
nodes), and outputs (the dependent variables).  The form 
of the model is not selected in advance as with regression 
models; instead the network is theoretically capable of 
approximating any given function subject to certain 
restrictions (Hornik et al., 1989).  (It is inappropriate to 
discuss these technical restrictions here; in general terms, 
given a sufficient number of hidden nodes, any reasonable 
function can be approximated.) 

The use of this type of model requires the same steps as 
with any statistical technique.  These are to select the 

model parameters, develop the model using data, test the 
model on withheld data to assess its performance, and 
implement the outcomes of the model in the development 
process.   

The process of selecting the inputs and outputs is much 
the same as with any other technique: select those inputs 
that provide some predictive power with respect to the 
outputs.  However, in the case of a neural network the 
training stage will determine the form of the model so 
concerns about transformations and linear relationships 
can usually be omitted.  Similarly, providing composite 
measures is generally unnecessary, especially of the 
simple types often found in software metrics.  Certainly 
for the purposes of software metrics data, providing any 
input variable that relates to the output will in general be 
satisfactory.  Avoiding unnecessary input variables is the 
only real restriction, either through a lack of relationship 
or extreme correlation (possibly non-linear) with another 
independent variable since this will slow training, 
increase data collection costs, and, most seriously, 
potentially introduce spurious relationships into the 
network’s behavior. 

The most important decision to be made by the metrician 
in a neural network model is the number of hidden nodes.  
It is this choice that determines the accuracy with which 
the network can fit the data.  The greater the number of 
nodes, the more precisely the network can learn a given 
function.  While this may imply, and many researchers 
take it to be so, that more is better, this only applies where 
the goal is to learn some deterministic function, where an 
exact mapping from inputs to outputs exists.  In such a 
case identical projects would have identical outputs (such 
as effort or error density).  This is obviously not the case 
with software development.  For such stochastic data, the 
goal is instead to develop a model that generalizes to new 
data.  Too few hidden nodes and the network will be 
unable to learn the relationship well; too many and the 



network will overlearn and start to fit the training data too 
closely.  In addition, using more hidden nodes and thus 
more weights generally increases the chance that the 
network will find a solution that is not the best possible 
(called a local minimum).  In general the best advice is to 
start with a small number of hidden nodes, perhaps even 
with one or two, and after developing the model add more 
nodes gradually until performance on validation data 
stops improving.  (Much more sophisticated methods 
exist, but they are beyond the scope of this paper.) 

This leads to the training process itself.  Generally this 
proceeds by first splitting the data file into three subsets; 
these are the training file that is used to adapt the weights, 
the validation file that is used to stop training and 
possibly to select between architectures, and a testing file 
that is only used at the very end to assess the network’s 
performance.  Four data files could be used here (training, 
validation, selection, and testing), but given the small data 
sets used for software metrics this would appear to be 
extravagant.  The ratios for these data sets depend on the 
amounts of data available, the distributions and 
relationships in the data, the number of variables, and the 
desired accuracy of the assessment of the model’s true 
generalisability.  In general a ½:¼:¼ split for the training, 
validation, and testing data respectively is recommended, 
although more data may be withheld for testing as is done 
in the case studies here.  Each data set should be as 
representative of the entire set as possible, and 
stratification (breaking the data into groups of similar 
observations and sampling equally from each group) can 
be used to enhance this.  Generally, however, a random 
splitting process is used. 

Once the data splitting has been performed and a network 
has been created with the customary small random 

weights (often between –0.1 and +0.1), training can start.  
By presenting the network with the training data the 
weights are iteratively adjusted by small amounts so as to 
reduce the prediction error in terms of the mean of the 
squared errors.  Periodically, the network should be used 
to recall (make predictions) on the validation data set.  
When these errors have been minimized (this usually 
requires saving the weights and going back once further 
improvement has ceased) the network can be said to be 
trained.  The use of this validation data to stop training 
prevents the network from overlearning on the training 
data, since the network cannot explicitly adjust to fit data 
that it is not presented with (the validation set).  Figure 3 
illustrates the behavior of errors over time.  Note that 
while the testing error is shown, this should not be 
calculated during training if this information will have 
any effect on the model selected (network architecture, 
training time, and parameter selection).  This is provided 
here to show that optimizing the validation error 
approximately optimizes the testing error. 

Finally, as with any software metrics model the 
performance needs to be assessed.  While some analysts 
will use the validation data for this purpose, the error rate 
on this data is still biased since it was its minimization 
that stopped training.  This is where the testing data set 
should be used to make predictions and calculate the 
error, using the desired error measure(s).  It is this error, 
assuming that the data was divided randomly or 
representatively, that enables us to make an estimate of 
the degree of confidence we can place in the network.  
This is an important aspect of the implementation of the 
model, as how we manage our projects will depend on the 
certainty we can attach to our estimates. 
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Figure 3. Typical behavior of errors over time during neural network training 

 

3. EMPIRICAL ANALYSIS 

In this paper three published data sets are examined from 
the perspective of the empirical results obtained using the 
various model-building techniques.  The data from 
Miyazaki et al. (1994) is a set of 48 observations, 

detailing the development effort and various functional 
measures of the systems (Table 1 in that paper).  This data 
set has already been analyzed by Miyazaki et al., 
providing us with a baseline against which to assess the 
techniques employed in this study in terms of several 
error measures.  The testing set used here consists of 16 



randomly selected observations.  The second data set is 
the QUES data from Li and Henry (1993).  This data 
provides a number of object-oriented measures of 
systems, and the subsequent maintenance changes made 
to those systems.  A total of 71 observations are provided, 
with 24 of these making up the testing set.  While Li and 
Henry provide some analysis of models predicting 
changes from the system measures, their choice of error 
measures is somewhat limited for comparative purposes.  
The final data set examined here is that of Dolado (1997).  
This data set consists of 24 observations, giving function 
point measures and the development effort expended.  
Eight of these were withheld for testing.  Dolado provides 
some analysis of the data, but little that can be used for 
comparison with the results here, as no predictive models 
were actually constructed by Dolado.   

Each of the three data sets was evaluated under regression 
and neural network prediction models with development 
effort or maintenance changes used as the dependent 
variable and all available independent variables used 
initially, as illustrated in the following sections.  
Influential independent variables were then selected using 
stepwise regression techniques.  The performance of the 
models on the various data sets (development and testing 
for regression models, training, validation, and testing 
sets for neural network models) is given.  In addition 
some more detailed information about the performance of 
the alternative regression techniques is provided. 

 
3.1. Regression Predictions 

In all cases the model development data set (roughly two-
thirds of the entire set) was analyzed using correlation 
analyses, scatter plots and stepwise regression, in order to 
identify influential variables with a view to sensible and 
pragmatic model creation.  Models were developed based 
on the outcomes of this exploratory analysis under the 
least-squares, least-median-squares and least-trimmed-
squares methods.  The resulting models were then applied 
to the testing subset (the remaining third of observations) 
and were evaluated using the following error measures. 

The magnitude of relative error (MRE) is a normalized 
measure of the discrepancy between the actual data values 
(VA) and the fitted values (VF): 

A
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V
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MRE
−

=                               (2) 

The mean MRE (MMRE) is therefore the mean value for 
this indicator over all observations in the sample.  A 
lower value for MMRE generally indicates a more 
accurate model from the perspective of a project manager. 

The Pred(l) measure provides an indication of overall fit 
for a set of data points, based on the MRE values for each 
data point: 

n
iPred(l) =                                     (3) 

In equation (3) l is the selected threshold value for MRE 
(from equation (2)), i is the number of data points with 

MRE less than or equal to l, and n is the total number of 
data points.   

The Balanced MMRE measure (BMMRE) is also used 
here, as defined in Miyazaki et al. (1994).  The relative 
error (R) is taken as the lower of the MRE with the actual 
as the denominator and the MRE with the predicted as the 
denominator.  The BMMRE is then the mean value of the 
absolute values of R.  The AR(l) measure refers to the 
proportion of BMMRE values less than l%, similar to the 
Pred(l) measure above.  An absolute error measure 
(Average Absolute error – AAR) is also included here 
since relative errors may not be the only concern of 
project managers, although it would appear reasonable 
that relative errors are more informative.   

 
3.1.1 Miyazaki, Terakado, Ozaki, and Nozaki data 

set 

Results presented in Table 1 illustrate the effectiveness of 
the best-performing regression model for this data set, 
that built under least-squares and incorporating two 
independent variables.  Least-squares was selected as it 
had the best MMRE by far and was superior, or 
equivalent to, all but one of the Pred(l) measures.  One 
very simple way in which such an evaluation can be 
performed in a quantitative manner is to assign rankings 
to the performance of each model according to each error 
measure and then determine the average ranking for each 
approach – this has been used in this investigation for 
illustrative purposes.  For instance, in Table 2 the 
performance of the models in terms of minimizing 
MMRE would see the LS approach ranked 1, the LMS 
model ranked 2, and the LTS model ranked 3.  Where a 
tie is evident, the sum of the rankings can be divided by 
the number of tied models and each assigned the same 
value.  For example, in the Pred(10) column of Table 2 
the LMS model is best (maximized) so it receives a 
ranking value of 1, but the remaining two models are tied.  
The ranks to be awarded are 2 and 3 so we can simply 
total these two values (5), divide this sum by the number 
of tied models (2) and award each tied model this value 
(2.5).  Finally, we can total the ranking values across the 
error criteria and then divide it by the number of error 
measures (in this case 5) to get an average ranking value.  
The model with the lowest average ranking value can then 
be selected as the optimal model for this data set.  (Note: 
this is a very simple approach – for one thing it assumes 
that all the criteria are equally important and that the 
magnitude of differences between error values is not 
important.  These may not be realistic assumptions in 
practice – however this is simply an illustration, and the 
specific approach chosen will vary from organization to 
organization depending on their measurement goals.)  
Applying such an approach to this data set, the LS 
approach receives an average ranking value of 1.6, the 
LMS approach 2.1, and the LTS method 2.3, suggesting 
that the LS method is optimal in this case. 

Under the LS model the relative error measures indicate 
adequate but unspectacular performance, but the average 
absolute error suggests some significant problems are still 
evident in the model.  Interestingly, we were unable to 
replicate the superior performance of the robust 



regression methods achieved by the original authors 
(Table 2 shows our results using robust regression) – this 
may have been due to the selection of different robust 

methods in this case, or an artifact of the data splitting 
procedure. 

 

 

Table 1. Selected model and results for Miyazaki, Terakado, Ozaki, and Nozaki data set - LS regression (Actual model: 
Effort = -18.754 + 1.753FORM + 1.457FILE) 

 Development  
Data 

Testing  
Data 

All  
Data 

MMRE 1.01 0.76 0.92 
    
Pred(10) 0.16 0.13 0.15 
Pred(25) 0.34 0.25 0.31 
Pred(35) 0.41 0.38 0.40 
Pred(50) 0.50 0.44 0.48 
    
BMMRE 0.47 0.46 0.46 
    
AR(10) 0.16 0.13 0.15 
AR(25) 0.38 0.31 0.35 
AR(35) 0.44 0.44 0.44 
AR(50) 0.59 0.56 0.58 
    
AAR 29.2 78.3 45.5 

 

Table 2. Performance of regression models on testing data for Miyazaki et al. 

 MMRE Pred 
(10) 

Pred 
(25) 

Pred 
(35) 

Pred 
(50) 

Least Squares 0.76 0.13 0.25 0.38 0.44 
Least Median Squares 1.03 0.19 0.19 0.25 0.44 
Least Trimmed Squares 1.24 0.13 0.19 0.38 0.44 

 
3.1.2 Li and Henry data set 

Of particular note in relation to the effectiveness of the 
optimal regression model chosen here (the LMS method) 
are the Pred(l) thresholds and average absolute error 
(Table 3).  The LMS method was chosen on the basis of 
the average ranking value comparison described above, in 
this case resulting in values of 1.9 for LS, 1.8 for LMS 
and 2.3 for LTS.  Given the closeness of the results it is 
clear that LMS is not unambiguously the best model, but 
it seems sensible to treat it as best on the basis of the 
average ranking value comparison.  Whilst the MMRE 
indicates some modeling problems over the data set as a 
whole, the Pred(l) and AR indicators suggest that 
performance for specific observations is reasonably 
sound.  The gains from robust regression are fairly small, 
but nonetheless robust regression could be seen as slightly 
better performing (Table 4) in terms of accuracy. 

 

3.1.3 Dolado data set 

Analysis of the Dolado data resulted in the selection of 
the least trimmed squares model, based on average 
ranking values of 2.3 for LS, 2.5 for LMS and 1.2 for 
LTS.  Both the MMRE and Pred(l) indicators suggest that 
the LTS model fits the data reasonably well, and it is 
unambiguously superior in terms of accuracy to the two 
other models presented here.  A need for caution is borne 
out, however, by the high value for average absolute 
error, suggesting significant problems with the model.  
The use of the robust LTS regression seems to assist with 
some of the problems in this data set (Table 6). 

 
3.2. Neural Network Predictions 

All of the neural network models were developed in the 
same manner, by following these steps:  

1. The data set for model development was split into the 



training and validation sets (roughly two-thirds and one-
third respectively).  The data sets are exactly the same as 
those used in the regression cases above, with the 
regression development set equal to the training and 
validation sets here.  The test data sets are identical in all 
cases and this enables comparisons between models in 
terms of using available information. 

2. A simulation was prepared that created networks 
with a variety of architectures (the number of hidden units 
was varied from one to ten in each case) and different 
training parameters. 
 

 

Table 3. Selected model and results for Li and Henry data set – LMS regression (Actual model: Changes = 8.075 + 
0.259SIZE1 - 1.560SIZE2) 

 Development 
Data 

Testing  
Data 

All  
Data 

MMRE 0.31 0.37 0.33 
    
Pred(10) 0.26 0.21 0.24 
Pred(25) 0.49 0.25 0.41 
Pred(35) 0.64 0.46 0.58 
Pred(50) 0.85 0.67 0.79 
    
BMMRE 0.25 0.34 0.28 
    
AR(10) 0.26 0.25 0.25 
AR(25) 0.53 0.29 0.45 
AR(35) 0.70 0.46 0.62 
AR(50) 0.94 0.75 0.87 
    
AAR 15.7 29.9 20.5 

 

Table 4. Performance of regression models on testing data for Li and Henry 

 MMRE Pred 
(10) 

Pred 
(25) 

Pred 
(35) 

Pred 
(50) 

Least Squares 0.42 0.21 0.38 0.42 0.79 
Least Median Squares 0.37 0.21 0.25 0.46 0.67 
Least Trimmed Squares 0.37 0.13 0.38 0.42 0.63 

 

Table 5. Selected model and results for Dolado data set – LTS regression (Actual model: Effort = 149.4 + 1.39INDE) 

 Development 
Data 

Testing  
Data 

All  
Data 

MMRE 0.36 0.31 0.34 
    
Pred(10) 0.31 0.25 0.29 
Pred(25) 0.50 0.63 0.54 
Pred(35) 0.56 0.63 0.58 
Pred(50) 0.81 0.75 0.79 
    
BMMRE 0.25 0.30 0.27 
    
AR(10) 0.38 0.25 0.33 
AR(25) 0.50 0.63 0.54 



 Development 
Data 

Testing  
Data 

All  
Data 

AR(35) 0.63 0.63 0.63 
AR(50) 0.94 0.75 0.88 
    
AAR 71.5 158.2 100.4 

 

Table 6. Performance of regression models on testing data for Dolado 

 MMRE Pred 
(10) 

Pred 
(25) 

Pred 
(35) 

Pred 
(50) 

Least Squares 0.34 0.13 0.50 0.50 0.75 
Least Median Squares 0.36 0.13 0.50 0.63 0.63 
Least Trimmed Squares 0.31 0.25 0.63 0.63 0.75 

 
 

3. The networks were then trained using the training 
data set, until the lowest error on the validation data set 
was achieved.  It should be noted that because a number 
of simulations were performed (as mentioned in step 2), 
the chance of the validation data set fitting better than the 
training is greater than normal. 

4. The best network, in terms of having the lowest 
validation data set error, was used to recall (make 
predictions) for the testing data. 

5. A number of error measures were then calculated on 
the network’s performance for the three splits of each data 
set. 

 
3.2.1 Miyazaki, Terakado, Ozaki, and Nozaki data 

set 

With this data set the best architecture was a one-hidden 
node network.  All inputs were used, and the training 
continued for 9540 epochs (in steps of 10 epochs).  The 
network achieved a low average absolute error, although 
the relative errors are significantly higher than would be 
desired (Table 7).  This is reflected by poor predictions 
for the very small systems, where small absolute errors 
lead to large relative ones. 

These results compare favorably to those presented in 
Miyazaki et al. (1994) where the BMMREs were 0.663 
and 2.032 for robust and least-squares regression 
respectively.  It should be noted that these figures from 
Miyazaki et al. were based on the entire data set, and that 
the neural network model performs significantly better 
than their regression models, even on new, unseen, data. 

 
3.2.2 Li and Henry data set 

The best network found for this data set used five hidden 
nodes, and was trained for 260 epochs (in steps of 10 
epochs) (Table 8).  There is some evidence that the 
network found was over-fitted to the validation data 
(recall that a large number of simulations were 
performed), and perhaps performs less effectively on the 

training and testing data than would be desirable.  This 
illustrates the dangers of running a large number of 
simulations, where even selecting on the basis of withheld 
data performance does not always ensure generalisability.  
As was mentioned above, a selection data set could have 
been used here to attempt to overcome this problem but 
with such small data sets this is impractical. 

 
3.2.3 Dolado data set 

The best performing network for this small data set used 
one hidden node, trained for 990 epochs (in steps of 10 
epochs) (Table 9) and using four main inputs.  This 
network shows definite signs of overfitting to the 
validation data, partly due to the small size of the data set.   

 
3.3. Comparing the Predictions 

The above results suggest that no single modeling 
technique outperforms the others on all data sets, at least 
in regard to measures of predictive error.  The results are 
summarized in Table 10, showing the optimum MMRE 
and Pred(l) error measures achieved under the ‘best’ 
regression method and neural network architecture.  For 
the Miyazaki et al. (1994) data the neural network 
performs better on the testing data in terms of the 
prediction threshold error measure, while for the Li and 
Henry (1993) data the LMS regression model performs 
slightly better on this criteria.  On the Dolado (1997) data 
set the regression technique, LTS this time, is superior 
based on the prediction threshold error measure.  In all 
cases the regression models perform better according to 
the MMRE measure.  This may suggest that where 
MMRE is more important than Pred(l) performance, 
regression should be used over neural network models 
and vice versa. 

 
4. SELECTING THE OPTIMAL TECHNIQUE 

In this paper a number of different data analysis and 
modeling techniques have been described and tested on 



case study data sets.  It has been suggested that use of the 
most appropriate technique can lead to more accurate 
models; however, this should not be the only criterion 
used for selecting a technique.  This section discusses a 
subset of the issues that need to be considered when 
making such a decision.  These include the quantities of 
data available, the nature of the relationships in that data, 

the accuracy required from the model, the available 
expertise, and the necessity to communicate and learn 
from the models produced.  Many of these are qualitative 
and difficult to measure, but must still be kept in mind by 
the metrician. 

 

 

Table 7. Results for Miyazaki, Terakado, Ozaki, and Nozaki data set neural network performance 

 Training  
Data 

Validating  
Data 

Testing  
Data 

All  
Data 

MMRE 0.75 1.10 1.32 1.02 
     
Pred(10) 0.24 0.55 0.25 0.31 
Pred(25) 0.33 0.55 0.50 0.44 
Pred(35) 0.52 0.55 0.50 0.52 
Pred(50) 0.62 0.73 0.56 0.63 
     
BMMRE 0.36 0.21 0.36 0.33 
     
AR(10) 0.24 0.55 0.31 0.33 
AR(25) 0.43 0.55 0.50 0.48 
AR(35) 0.57 0.64 0.50 0.56 
AR(50) 0.76 0.82 0.69 0.75 
     
AAR 22.4 16.4 27.0 22.5 

 

 

Table 8. Results for Li and Henry data set neural network performance 

 Training  
Data 

Validating  
Data 

Testing  
Data 

All  
Data 

MMRE 0.49 0.39 0.51 0.47 
     
Pred(10) 0.19 0.19 0.08 0.15 
Pred(25) 0.45 0.44 0.29 0.39 
Pred(35) 0.55 0.56 0.42 0.51 
Pred(50) 0.84 0.69 0.58 0.72 
     
BMMRE 0.29 0.27 0.37 0.31 
     
AR(10) 0.19 0.19 0.08 0.15 
AR(25) 0.45 0.50 0.38 0.44 
AR(35) 0.65 0.69 0.46 0.59 
AR(50) 0.87 0.94 0.63 0.80 
     
AAR 21.0 19.4 32.9 24.7 

 

 



Table 9. Results for Dolado data set neural network performance 

 Training  
Data 

Validating  
Data 

Testing  
Data 

All  
Data 

MMRE 0.46 0.21 0.35 0.36 
     
Pred(10) 0.10 0.17 0.25 0.17 
Pred(25) 0.50 0.67 0.38 0.50 
Pred(35) 0.70 0.83 0.50 0.67 
Pred(50) 0.80 1.00 0.63 0.79 
     
BMMRE 0.29 0.21 0.32 0.28 
     
AR(10) 0.10 0.17 0.25 0.17 
AR(25) 0.50 0.67 0.50 0.54 
AR(35) 0.70 0.83 0.63 0.71 
AR(50) 0.80 1.00 0.63 0.79 
     
AAR 82.0 64.7 163.8 104.9 

 

Table 10. Summary of results on testing sets (accuracy only) 

 Miyazaki et al. (1994) Li and Henry (1993) Dolado (1997) 
 Regression –  

LS 
NN – 1 
hidden 

Regression – 
LMS 

NN – 5 
hidden 

Regression – 
LTS 

NN – 1 
hidden 

MMRE 0.76 1.32 0.37 0.51 0.31 0.35 
       
Pred(10) 0.13 0.25 0.21 0.08 0.25 0.25 
Pred(25) 0.25 0.50 0.25 0.29 0.63 0.38 
Pred(35) 0.38 0.50 0.46 0.42 0.63 0.50 
Pred(50) 0.44 0.56 0.67 0.58 0.75 0.63 

 
4.1. Quantities of Data 

It is well known that building more complex statistical 
models requires greater amounts of data, because more 
parameters need to be determined.  This is often a 
motivation for software metricians to develop simple 
models for predicting the development process.  The same 
principle applies to neural network modeling.  Since there 
are many more parameters (a network with 6 inputs, four 
hidden units, and one output generally contains some 33 
adjustable weights), it is important that reasonable 
amounts of data are available (although techniques such 
as bootstrapping can be used to overcome some 
deficiencies in data quantity).  In relation to the empirical 
evaluations shown above, for example, use of the neural 
network method with the Dolado data set was ineffective, 
possibly partially because of the small number of 
observations available. 

 
4.2. Nature of Relationships 

The choice of technique also depends on what type of 
relationship (if any) the metrician anticipates finding.  For 
many systems a simple linear model may largely reflect 

the underlying physical phenomena (for example, the 
effort required to check test cases where each case takes 
the same length of time).  In such situations, the use of a 
non-linear model such as a neural network would 
represent unnecessary complexity.  In a similar manner, 
the use of robust regression techniques can really only be 
justified if the data may contain some outliers.  While 
software metricians may well be faced with such 
contaminated data sets, there are situations where least-
squares regression will perform more effectively.  In our 
empirical evaluation above, for instance, this was the case 
for the Miyazaki et al. data. 

 
4.3. Accuracy Required from the Model 

As a general rule the accuracy of a model increases as the 
complexity of the modeling technique rises (although as 
stated previously overfitting can be a problem).  It is 
vitally important to distinguish between accuracy in 
learning the relationships contained in the 
training/development data, and in learning the 
relationships inherent in the physical realization of the 
process.   



The case studies above illustrate that more complex 
techniques such as neural networks are potentially 
capable of fitting more accurate models to the training 
data by virtue of their non-linearities and interactions.  In 
the same way, using transformations, more independent 
variables, and interaction terms in a regression model can 
have the same effect.  However this opens up the risk of 
over-fitting, even with all due care taken, when using 
small data sets such as are common for software metrics 
research.  It should also be recalled that it is only in 
potential that such increases in accuracy exist.  They will 
not necessarily be realized in all cases. 

In some cases, however, the accuracy requirements for a 
model may be low when compared to other goals, and 
these other motivations may be overriding, especially 
where the improvements in accuracy are small.  Gaining 
an understanding of what it is that makes a system more 
error-prone, for instance, may be much more important to 
a manager than a 5% increase in predictive accuracy that 
may be gained from a much more complex and costly 
model.  It is also important to specify pre-analysis what is 
meant by accuracy for a particular modeling task.  In 
some cases absolute errors are of concern, while in others 
relative errors are more important.  Also, a choice must be 
made between the relative importance of threshold-based 
errors (like Pred(l)) and average errors.  These issues are 
certainly not trivial ones, to be faced with the same 
solution for all projects. 

 
4.4. Available Expertise 

The availability of sufficient modeling expertise may be 
seen as perhaps one of the most restrictive requirement 
for the technique selection process.  While there has been 
enthusiastic adoption of neural network models in many 
fields, including software metrics, there is often an under-
appreciation of the expertise required for their use.  This 
is not assisted by the all-too-common perception of such 
models as automatic, universal approximators that 
overcome all of the problems with traditional statistical 
methods.  In fact, the effective use of neural network 
models requires at least as much expertise as non-linear 
regression, and in some ways may require even more as 
their flexibility opens up new pitfalls. 

 
4.5. Communicating and Learning from Models 

Finally, there is the issue of interpretability of the models 
in their final form.  Regression equations (both least-
squares and robust) have the advantage of being presented 
in a manner that most managers can understand.  It is 
relatively easy to see the influence of a single independent 
variable on the model’s output.  However, by using a 
black box technique such as a neural network, the 
opportunities to view the form of the model are limited.  
While the weights are available, it is difficult to then 
interpret these in a meaningful manner. 

Some options for extracting rules from neural networks 
do exist (Kasabov, 1996; Wang and Mendel, 1992).  
However, these techniques then require even more 
expertise and the software is much less accessible, still 

being an area of research rather than widespread practice.  
A simpler approach is sensitivity analysis where the 
network’s outputs for a variety of inputs are plotted, 
holding all but one input variable (or perhaps two 
variables) constant.  This can be useful for confirming 
relationships in the model (as with examining the slopes 
in regression models). 

 
4.6. The Actual Selection of the Technique 

The factors that have been briefly mentioned above all 
need to be considered in conjunction.  For a particular 
project, the relative importance of each should be 
assessed, along with the advantages/disadvantages of each 
technique when compared to the others.  In many cases 
the best solution is to not select any one technique, but 
rather to develop models using two or more methods.  
This may have the consequent advantage of discouraging 
absolute reliance on a single number that is produced as 
model output – it is only an estimate, after all.  If more 
than one technique is used, a range of estimates will 
result. 

More information on these techniques from a software 
metrics perspective, and other techniques such as fuzzy 
logic and case-based reasoning, is available in Gray and 
MacDonell (1997) and MacDonell and Gray (1997).  It is 
only by using these techniques on a wide range of data 
sets than any useful guidelines to their general use can be 
formulated.  The dangers of relying on another’s (or even 
your own) success with a technique on a single data set 
are obvious. 
 

5. CONCLUSIONS 

In this paper we have investigated a number of issues that 
need to be considered as part of the model building 
process for software metrics.  While the most overriding 
consideration is generally the accuracy of the model, in 
particular for predictions on new data, other issues such 
as data characteristics, expertise, and interpretability 
should also be taken into account.  While many of these 
issues are difficult to quantify, some consideration must 
still be made.  In order to make these decisions the 
software metrician needs to be aware of the techniques, 
both in terms of strengths/weaknesses and in terms of 
correct usage. 

We have demonstrated that empirically the techniques can 
perform quite differently on various data sets, thus 
leading to the conclusion that no one technique can be 
used as a panacea for software metrics’ analysis 
problems.  Our intention is to continue with this area of 
research and formulate a more rigorous examination of 
the data set characteristics of software metrics, and the 
effects of these on the modeling process. 
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