
Full citation: Gray, A.R., & MacDonell, S.G. (1999) Software metrics data analysis - exploring the
relative performance of some commonly used modeling techniques, Empirical Software
Engineering 4(4), pp.297-316.
doi: 10.1023/A:1009849100780

Software Metrics Data Analysis – Exploring the Relative Performance of Some
Commonly Used Modeling Techniques

Andrew R. Gray and Stephen G. MacDonell

Software Metrics Research Lab
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
+64 3 4798135 (ph.) +64 3 4798311 (fax), stevemac@infoscience.otago.ac.nz

Abstract
Whilst some software measurement research has been
unquestionably successful, other research has struggled
to enable expected advances in project and process
management. Contributing to this lack of advancement
has been the incidence of inappropriate or non-optimal
application of various model-building procedures. This
obviously raises questions over the validity and reliability
of any results obtained as well as the conclusions that
may have been drawn regarding the appropriateness of
the techniques in question. In this paper we investigate
the influence of various data set characteristics and the
purpose of analysis on the effectiveness of four model-
building techniques – three statistical methods and one
neural network method. In order to illustrate the impact
of data set characteristics, three separate data sets,
drawn from the literature, are used in this analysis. In
terms of predictive accuracy, it is shown that no one
modeling method is best in every case. Some
consideration of the characteristics of data sets should
therefore occur before analysis begins, so that the most
appropriate modeling method is then used. Moreover,
issues other than predictive accuracy may have a
significant influence on the selection of model-building
methods. These issues are also addressed here and a
series of guidelines for selecting among and implementing
these and other modeling techniques is discussed.

Keywords: Software metrics, analysis, statistical
methods, connectionist methods

1. INTRODUCTION

The management of software development projects has a
relatively poor reputation in terms of avoiding cost and
schedule overruns. In an effort to improve this track
record, many mature organizations (in a software
development sense) have invested heavily in the
development and use of software metrics – measures
derived from and applied to software products or
processes.

Such metrics have been collected with the understanding
that they may lead to the development of models that will
enable greater control to be exercised over the
increasingly complex software development process. One
of the most widely investigated metric-based models is
the intuitively plausible relationship between software
product size and complexity on the one hand and
associated development effort on the other. In this way,
larger and more complex systems are assumed to take
longer to develop. An extensive array of predictive
models has been generated largely as a result of empirical
analyses, COCOMO (Boehm, 1981), SLIM (Putnam et
al., 1984) and Function Point Analysis (FPA) (Albrecht
and Gaffney, 1983) being among the most popular
approaches. In essence these and similar models
incorporate one or more product size measures, normally
program size in estimated lines of code or specification
size in numbers of screens, files and so on, along with
some measure of complexity, calibrated under linear
regression in a model predicting development effort
and/or duration. Although some standard models are
available, the effectiveness of the predictions is generally
improved when organization- or domain-specific data is
used in calibration, especially since many other factors
can influence development effort, such as tools and
methodologies used, and these are usually more
consistent within organizations than between
organizations.

There is little doubt that such approaches have the
potential to substantially improve the accuracy of effort
estimation and consequently the management of
development schedules. This depends on a number of
contingent factors, including having effective measures of
size and complexity, the existence of relevant data, and
the use of appropriate analysis methods. It is this third
area of research that we are currently investigating.
Because of their relative accessibility (through widely
available software packages, including SPSS, SAS,
MINITAB, MATLAB, and S-Plus) standard statistical
analyses have been most commonly adopted in the
determination of predictive models (for example, see
recent papers by Ebrahimi (1999), Stensrud and Myrtveit

http://dx.doi.org/10.1023/A:1009849100780�

(1998), Heiat and Heiat (1997) and Dolado (1997)).
While empirical analysis is certainly to be encouraged,
particularly over the guesswork that tended to be
prevalent before the promotion of software metrics, its
use must be tempered by an awareness of the relevance,
generalisability, and limitations of particular analysis and
modeling techniques.

It is the inherent nature of software metrics data that
contributes to the demand for a greater appreciation of the
applicability of various modeling methods. Software
engineering data sets are often skewed to the right (that is
to say, they exhibit a distribution with most values at the
lower end and with a few very large observations creating
a long tail extending to the right), and may contain a
number of outlier observations. Moreover, since we are
as yet to establish (and it would seem likely that we will
never establish) an underlying theoretical model of
software development, a full awareness of the variables
that contribute to development effort and how they
interact may be unattainable. Since many standard
analysis methods assume data sets that conform to a
normal distribution and involve relatively simple, if any,
interactions, these ‘standard’ modeling methods may not
be particularly appropriate. This is not to say that such
analysis methods should be discarded entirely, but rather
that some exploratory examination of the data should
always occur first and analysis methods chosen as a result
of this analysis, with the purpose of the model – e.g.
predictive accuracy, process understanding – also always
in mind.

For example, a simple model involving only one predictor
variable will generally be best served by using a
regression model rather than a feedforward neural
network. This is due to the greater speed of the
regression procedure compared to training the neural
network, and also because of the greater analysis and
information obtainable from the regression model. When
dealing with many variables and with complex
interactions assumed, a feedforward neural network could
appear to be a better choice since this simplifies the
model structure selection process. If data is likely to be
extremely contaminated then outlier resistant techniques,
such as robust regression, may be preferred. In these
ways the data suggest that certain modeling techniques
may be more effective than others. These techniques are
explained below, as is their use in software metric
modelling.

2. MODEL-BUILDING METHODS

In the past, software development effort models have
been built almost exclusively using least-squares linear
regression techniques. More recently, this approach has
been complemented by the application of machine
learning methods, especially neural networks, in reaction
to continuing problems with regression-based solutions
(Lee et al., 1998; Finnie et al. 1997; Hakkarainen et al.,
1993). Both approaches are considered below. One other
method is also examined - that of robust regression (in
two forms).

2.1. Regression Methods

Given a particular set of data points or observations, least-
squares (LS) regression attempts to determine the
function that minimizes the sum of squared errors in the
relationship between predicted and actual values, with the
predictions being based on the weighted contribution of
one or more variables (Neter et al., 1996). The resulting
function is normally expressed as an equation such as that
shown in Equation (1) where development effort is
related to the number of screens (NumScreens) and the
number of reports (NumReports) in a system. A constant
term is included which may represent administrative
overhead, but could also be used to allow a linear function
to approximate a non-linear one over a particular range.

ts75NumRepor
ns50NumScree1000rs)Effort(hou ++= (1)

The development of a regression function is normally
preceded by the examination of scatter plots and
correlation analyses, along with cluster analysis to
identify distinct groups of systems where appropriate.
Interaction terms may need to be formed to enable the
predictive model to cope with the effect of combinations
of variables, and transformations can be used to partially
compensate for non-linearities. The general form of a
least-squares regression graph is shown in Figure 1. In
this graph the number of man-months (MM) required for
development are expressed as a function of the number of
screens (SCRN) with a constant term added. The
individual data points used to develop the model (the line)
are shown as squares on the graph. This constant may (as
explained above) reflect the administrative overhead of a
project or compensate for a nonlinear relationship over a
small range of SCRN (as in this case where the constant is
negative and the data exhibit an exponential pattern). The
Rsq value given to the right of the graph indicates the
proportion of the variation in MM that is explained by
SCRN, in this case some 78%.

There are several advantages associated with the use of
the least-squares regression method. It is a method that
has sound theoretical foundations from its, comparatively
speaking, long history. Least-squares is easily accessible
through most statistical analysis packages and is widely
examined in standard statistical texts (for example, Neter
et al., 1996) – thus the software metrics practitioner is
likely to have ready access to the technique and to the
means of gaining expertise in its use. A further
significant advantage of least-squares regression (and of
regression in general) is the visibility of the resultant
models. Inherent in the model produced is the expression
of those variables of statistical influence (in terms of
predicting the dependent variable) along with the
weightings expressed in raw and standardized forms.
This enables the modeler to immediately consider the
validity of the model’s structure in light of her/his own
knowledge and experience.

This visible structure can, however, have equally
important disadvantages, in that regression may lead to
the provision of equations that are difficult to interpret in
an operational sense, particularly when many variables,

transformations, and interaction terms are included. More
significantly, least-squares models may be extensively
confounded by outlier data points (common in software
engineering data with the relatively common ‘rogue’
projects) and they may not adequately cope with complex
variable interrelationships, particularly given the
availability of only small data sets. Least-squares
equations, by attempting to minimize the sum of the
squared residuals from the model, can be dramatically
changed by altering one single point to be suitably
unusual (in fact, the regression line can be changed to any
equation desired by this editing of a single observation).
With small data sets there is even greater risk that unusual
data points will exert undue influence over the smaller
number of representative points.

The degree to which data can be arbitrarily contaminated
before the regression line can be changed to any desired
equation is called its breakdown point. Least squares has
a breakdown point of 0%. Other, robust, regression
techniques are available with higher breakdown points, as
discussed below (Rousseeuw and Leroy, 1987).

Finally, the nature of the model must be formed by the
developer, in terms of variables considered,
transformations needed and interaction terms required.
As with any technique, attempting to address these
questions without sufficient expertise is likely to lead to
anomalous or spurious models. While the software

metrician is not required to be an expert in statistics as
well as project management, they do require the
knowledge of what they can do themselves and what
should be left for a more qualified statistician.

Least-median-squares (LMS) and least-trimmed-squares
(LTS) regression (Rousseeuw and Leroy, 1987) belong to
the family of robust regression methods, so-called
because they produce predictive models that are generally
more effective for making predictions for the main body
of observations in data sets containing outlier
observations. Although a number of such models exist,
we have adopted the LMS and LTS techniques as they are
easily compared to the LS approach. Rather than using
the sum of squared residuals as the basis for error
minimization, LMS regression minimizes the median of
the squared residuals and LTS minimizes a trimmed sum
of the residuals. Thus both techniques are unaffected by a
proportion of outlier values in a data set (called resistance
to contamination, or breakdown point, this being 50% in
the case of LMS, and a user-definable value for LTS).
This is of benefit for skewed data sets since in these cases
any outlier observations can be systematically identified
and then dealt with accordingly (e.g. included,
reweighted, or discarded). The result is a more
‘characteristic’ model in terms of the data set underlying
its development. (See Figure 2 for an illustration of the
influence of outlier points on regression models.)

SCRN

160140120100806040200-20

M
M

300

200

100

0 Rsq = 0.7810

Figure 1. General form of a least-squares regression graph for predicting development effort

Data Point

New Data Point
Least Mean
Squares Line

Least Median
Squares Line

Figure 2. Outlier influence on regression models developed using least-squares and least-median of squares

In terms of disadvantages associated with these methods,
they are generally less powerful than the least-squares
approach when data set characteristics are not
problematic, and they are not as widely accessible in
terms of software availability. As with the least-squares
method, the analyst must still specify the form of the
models.

2.2. Neural Networks

A neural network can be defined, in a simplistic manner,
as a number of interconnected units, with weighted
connections passing signals from unit to unit. In general
some of these units are model inputs and some model
outputs. There are a vast number of neural network
architectures, along with learning algorithms for
determining the parameters (weights) of models
expressed using these architectures. In this paper, we
limit ourselves to the most common and widely used
architecture/learning algorithm combination for
prediction purposes. This is the method of back-
propagation applied to a feed-forward neural network
architecture (Hertz et al., 1991).

A neural network of this type can be seen as a non-linear
modeling technique, that consists of inputs (the
independent variables), processing units (the hidden
nodes), and outputs (the dependent variables). The form
of the model is not selected in advance as with regression
models; instead the network is theoretically capable of
approximating any given function subject to certain
restrictions (Hornik et al., 1989). (It is inappropriate to
discuss these technical restrictions here; in general terms,
given a sufficient number of hidden nodes, any reasonable
function can be approximated.)

The use of this type of model requires the same steps as
with any statistical technique. These are to select the

model parameters, develop the model using data, test the
model on withheld data to assess its performance, and
implement the outcomes of the model in the development
process.

The process of selecting the inputs and outputs is much
the same as with any other technique: select those inputs
that provide some predictive power with respect to the
outputs. However, in the case of a neural network the
training stage will determine the form of the model so
concerns about transformations and linear relationships
can usually be omitted. Similarly, providing composite
measures is generally unnecessary, especially of the
simple types often found in software metrics. Certainly
for the purposes of software metrics data, providing any
input variable that relates to the output will in general be
satisfactory. Avoiding unnecessary input variables is the
only real restriction, either through a lack of relationship
or extreme correlation (possibly non-linear) with another
independent variable since this will slow training,
increase data collection costs, and, most seriously,
potentially introduce spurious relationships into the
network’s behavior.

The most important decision to be made by the metrician
in a neural network model is the number of hidden nodes.
It is this choice that determines the accuracy with which
the network can fit the data. The greater the number of
nodes, the more precisely the network can learn a given
function. While this may imply, and many researchers
take it to be so, that more is better, this only applies where
the goal is to learn some deterministic function, where an
exact mapping from inputs to outputs exists. In such a
case identical projects would have identical outputs (such
as effort or error density). This is obviously not the case
with software development. For such stochastic data, the
goal is instead to develop a model that generalizes to new
data. Too few hidden nodes and the network will be
unable to learn the relationship well; too many and the

network will overlearn and start to fit the training data too
closely. In addition, using more hidden nodes and thus
more weights generally increases the chance that the
network will find a solution that is not the best possible
(called a local minimum). In general the best advice is to
start with a small number of hidden nodes, perhaps even
with one or two, and after developing the model add more
nodes gradually until performance on validation data
stops improving. (Much more sophisticated methods
exist, but they are beyond the scope of this paper.)

This leads to the training process itself. Generally this
proceeds by first splitting the data file into three subsets;
these are the training file that is used to adapt the weights,
the validation file that is used to stop training and
possibly to select between architectures, and a testing file
that is only used at the very end to assess the network’s
performance. Four data files could be used here (training,
validation, selection, and testing), but given the small data
sets used for software metrics this would appear to be
extravagant. The ratios for these data sets depend on the
amounts of data available, the distributions and
relationships in the data, the number of variables, and the
desired accuracy of the assessment of the model’s true
generalisability. In general a ½:¼:¼ split for the training,
validation, and testing data respectively is recommended,
although more data may be withheld for testing as is done
in the case studies here. Each data set should be as
representative of the entire set as possible, and
stratification (breaking the data into groups of similar
observations and sampling equally from each group) can
be used to enhance this. Generally, however, a random
splitting process is used.

Once the data splitting has been performed and a network
has been created with the customary small random

weights (often between –0.1 and +0.1), training can start.
By presenting the network with the training data the
weights are iteratively adjusted by small amounts so as to
reduce the prediction error in terms of the mean of the
squared errors. Periodically, the network should be used
to recall (make predictions) on the validation data set.
When these errors have been minimized (this usually
requires saving the weights and going back once further
improvement has ceased) the network can be said to be
trained. The use of this validation data to stop training
prevents the network from overlearning on the training
data, since the network cannot explicitly adjust to fit data
that it is not presented with (the validation set). Figure 3
illustrates the behavior of errors over time. Note that
while the testing error is shown, this should not be
calculated during training if this information will have
any effect on the model selected (network architecture,
training time, and parameter selection). This is provided
here to show that optimizing the validation error
approximately optimizes the testing error.

Finally, as with any software metrics model the
performance needs to be assessed. While some analysts
will use the validation data for this purpose, the error rate
on this data is still biased since it was its minimization
that stopped training. This is where the testing data set
should be used to make predictions and calculate the
error, using the desired error measure(s). It is this error,
assuming that the data was divided randomly or
representatively, that enables us to make an estimate of
the degree of confidence we can place in the network.
This is an important aspect of the implementation of the
model, as how we manage our projects will depend on the
certainty we can attach to our estimates.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300

Epochs

M
S

E

Training Error
Validating Error
Testing Error

Figure 3. Typical behavior of errors over time during neural network training

3. EMPIRICAL ANALYSIS

In this paper three published data sets are examined from
the perspective of the empirical results obtained using the
various model-building techniques. The data from
Miyazaki et al. (1994) is a set of 48 observations,

detailing the development effort and various functional
measures of the systems (Table 1 in that paper). This data
set has already been analyzed by Miyazaki et al.,
providing us with a baseline against which to assess the
techniques employed in this study in terms of several
error measures. The testing set used here consists of 16

randomly selected observations. The second data set is
the QUES data from Li and Henry (1993). This data
provides a number of object-oriented measures of
systems, and the subsequent maintenance changes made
to those systems. A total of 71 observations are provided,
with 24 of these making up the testing set. While Li and
Henry provide some analysis of models predicting
changes from the system measures, their choice of error
measures is somewhat limited for comparative purposes.
The final data set examined here is that of Dolado (1997).
This data set consists of 24 observations, giving function
point measures and the development effort expended.
Eight of these were withheld for testing. Dolado provides
some analysis of the data, but little that can be used for
comparison with the results here, as no predictive models
were actually constructed by Dolado.

Each of the three data sets was evaluated under regression
and neural network prediction models with development
effort or maintenance changes used as the dependent
variable and all available independent variables used
initially, as illustrated in the following sections.
Influential independent variables were then selected using
stepwise regression techniques. The performance of the
models on the various data sets (development and testing
for regression models, training, validation, and testing
sets for neural network models) is given. In addition
some more detailed information about the performance of
the alternative regression techniques is provided.

3.1. Regression Predictions

In all cases the model development data set (roughly two-
thirds of the entire set) was analyzed using correlation
analyses, scatter plots and stepwise regression, in order to
identify influential variables with a view to sensible and
pragmatic model creation. Models were developed based
on the outcomes of this exploratory analysis under the
least-squares, least-median-squares and least-trimmed-
squares methods. The resulting models were then applied
to the testing subset (the remaining third of observations)
and were evaluated using the following error measures.

The magnitude of relative error (MRE) is a normalized
measure of the discrepancy between the actual data values
(VA) and the fitted values (VF):

A

FA

V
VV

MRE
−

= (2)

The mean MRE (MMRE) is therefore the mean value for
this indicator over all observations in the sample. A
lower value for MMRE generally indicates a more
accurate model from the perspective of a project manager.

The Pred(l) measure provides an indication of overall fit
for a set of data points, based on the MRE values for each
data point:

n
iPred(l) = (3)

In equation (3) l is the selected threshold value for MRE
(from equation (2)), i is the number of data points with

MRE less than or equal to l, and n is the total number of
data points.

The Balanced MMRE measure (BMMRE) is also used
here, as defined in Miyazaki et al. (1994). The relative
error (R) is taken as the lower of the MRE with the actual
as the denominator and the MRE with the predicted as the
denominator. The BMMRE is then the mean value of the
absolute values of R. The AR(l) measure refers to the
proportion of BMMRE values less than l%, similar to the
Pred(l) measure above. An absolute error measure
(Average Absolute error – AAR) is also included here
since relative errors may not be the only concern of
project managers, although it would appear reasonable
that relative errors are more informative.

3.1.1 Miyazaki, Terakado, Ozaki, and Nozaki data

set

Results presented in Table 1 illustrate the effectiveness of
the best-performing regression model for this data set,
that built under least-squares and incorporating two
independent variables. Least-squares was selected as it
had the best MMRE by far and was superior, or
equivalent to, all but one of the Pred(l) measures. One
very simple way in which such an evaluation can be
performed in a quantitative manner is to assign rankings
to the performance of each model according to each error
measure and then determine the average ranking for each
approach – this has been used in this investigation for
illustrative purposes. For instance, in Table 2 the
performance of the models in terms of minimizing
MMRE would see the LS approach ranked 1, the LMS
model ranked 2, and the LTS model ranked 3. Where a
tie is evident, the sum of the rankings can be divided by
the number of tied models and each assigned the same
value. For example, in the Pred(10) column of Table 2
the LMS model is best (maximized) so it receives a
ranking value of 1, but the remaining two models are tied.
The ranks to be awarded are 2 and 3 so we can simply
total these two values (5), divide this sum by the number
of tied models (2) and award each tied model this value
(2.5). Finally, we can total the ranking values across the
error criteria and then divide it by the number of error
measures (in this case 5) to get an average ranking value.
The model with the lowest average ranking value can then
be selected as the optimal model for this data set. (Note:
this is a very simple approach – for one thing it assumes
that all the criteria are equally important and that the
magnitude of differences between error values is not
important. These may not be realistic assumptions in
practice – however this is simply an illustration, and the
specific approach chosen will vary from organization to
organization depending on their measurement goals.)
Applying such an approach to this data set, the LS
approach receives an average ranking value of 1.6, the
LMS approach 2.1, and the LTS method 2.3, suggesting
that the LS method is optimal in this case.

Under the LS model the relative error measures indicate
adequate but unspectacular performance, but the average
absolute error suggests some significant problems are still
evident in the model. Interestingly, we were unable to
replicate the superior performance of the robust

regression methods achieved by the original authors
(Table 2 shows our results using robust regression) – this
may have been due to the selection of different robust

methods in this case, or an artifact of the data splitting
procedure.

Table 1. Selected model and results for Miyazaki, Terakado, Ozaki, and Nozaki data set - LS regression (Actual model:
Effort = -18.754 + 1.753FORM + 1.457FILE)

 Development
Data

Testing
Data

All
Data

MMRE 1.01 0.76 0.92

Pred(10) 0.16 0.13 0.15
Pred(25) 0.34 0.25 0.31
Pred(35) 0.41 0.38 0.40
Pred(50) 0.50 0.44 0.48

BMMRE 0.47 0.46 0.46

AR(10) 0.16 0.13 0.15
AR(25) 0.38 0.31 0.35
AR(35) 0.44 0.44 0.44
AR(50) 0.59 0.56 0.58

AAR 29.2 78.3 45.5

Table 2. Performance of regression models on testing data for Miyazaki et al.

 MMRE Pred
(10)

Pred
(25)

Pred
(35)

Pred
(50)

Least Squares 0.76 0.13 0.25 0.38 0.44
Least Median Squares 1.03 0.19 0.19 0.25 0.44
Least Trimmed Squares 1.24 0.13 0.19 0.38 0.44

3.1.2 Li and Henry data set

Of particular note in relation to the effectiveness of the
optimal regression model chosen here (the LMS method)
are the Pred(l) thresholds and average absolute error
(Table 3). The LMS method was chosen on the basis of
the average ranking value comparison described above, in
this case resulting in values of 1.9 for LS, 1.8 for LMS
and 2.3 for LTS. Given the closeness of the results it is
clear that LMS is not unambiguously the best model, but
it seems sensible to treat it as best on the basis of the
average ranking value comparison. Whilst the MMRE
indicates some modeling problems over the data set as a
whole, the Pred(l) and AR indicators suggest that
performance for specific observations is reasonably
sound. The gains from robust regression are fairly small,
but nonetheless robust regression could be seen as slightly
better performing (Table 4) in terms of accuracy.

3.1.3 Dolado data set

Analysis of the Dolado data resulted in the selection of
the least trimmed squares model, based on average
ranking values of 2.3 for LS, 2.5 for LMS and 1.2 for
LTS. Both the MMRE and Pred(l) indicators suggest that
the LTS model fits the data reasonably well, and it is
unambiguously superior in terms of accuracy to the two
other models presented here. A need for caution is borne
out, however, by the high value for average absolute
error, suggesting significant problems with the model.
The use of the robust LTS regression seems to assist with
some of the problems in this data set (Table 6).

3.2. Neural Network Predictions

All of the neural network models were developed in the
same manner, by following these steps:

1. The data set for model development was split into the

training and validation sets (roughly two-thirds and one-
third respectively). The data sets are exactly the same as
those used in the regression cases above, with the
regression development set equal to the training and
validation sets here. The test data sets are identical in all
cases and this enables comparisons between models in
terms of using available information.

2. A simulation was prepared that created networks
with a variety of architectures (the number of hidden units
was varied from one to ten in each case) and different
training parameters.

Table 3. Selected model and results for Li and Henry data set – LMS regression (Actual model: Changes = 8.075 +
0.259SIZE1 - 1.560SIZE2)

 Development
Data

Testing
Data

All
Data

MMRE 0.31 0.37 0.33

Pred(10) 0.26 0.21 0.24
Pred(25) 0.49 0.25 0.41
Pred(35) 0.64 0.46 0.58
Pred(50) 0.85 0.67 0.79

BMMRE 0.25 0.34 0.28

AR(10) 0.26 0.25 0.25
AR(25) 0.53 0.29 0.45
AR(35) 0.70 0.46 0.62
AR(50) 0.94 0.75 0.87

AAR 15.7 29.9 20.5

Table 4. Performance of regression models on testing data for Li and Henry

 MMRE Pred
(10)

Pred
(25)

Pred
(35)

Pred
(50)

Least Squares 0.42 0.21 0.38 0.42 0.79
Least Median Squares 0.37 0.21 0.25 0.46 0.67
Least Trimmed Squares 0.37 0.13 0.38 0.42 0.63

Table 5. Selected model and results for Dolado data set – LTS regression (Actual model: Effort = 149.4 + 1.39INDE)

 Development
Data

Testing
Data

All
Data

MMRE 0.36 0.31 0.34

Pred(10) 0.31 0.25 0.29
Pred(25) 0.50 0.63 0.54
Pred(35) 0.56 0.63 0.58
Pred(50) 0.81 0.75 0.79

BMMRE 0.25 0.30 0.27

AR(10) 0.38 0.25 0.33
AR(25) 0.50 0.63 0.54

 Development
Data

Testing
Data

All
Data

AR(35) 0.63 0.63 0.63
AR(50) 0.94 0.75 0.88

AAR 71.5 158.2 100.4

Table 6. Performance of regression models on testing data for Dolado

 MMRE Pred
(10)

Pred
(25)

Pred
(35)

Pred
(50)

Least Squares 0.34 0.13 0.50 0.50 0.75
Least Median Squares 0.36 0.13 0.50 0.63 0.63
Least Trimmed Squares 0.31 0.25 0.63 0.63 0.75

3. The networks were then trained using the training
data set, until the lowest error on the validation data set
was achieved. It should be noted that because a number
of simulations were performed (as mentioned in step 2),
the chance of the validation data set fitting better than the
training is greater than normal.

4. The best network, in terms of having the lowest
validation data set error, was used to recall (make
predictions) for the testing data.

5. A number of error measures were then calculated on
the network’s performance for the three splits of each data
set.

3.2.1 Miyazaki, Terakado, Ozaki, and Nozaki data

set

With this data set the best architecture was a one-hidden
node network. All inputs were used, and the training
continued for 9540 epochs (in steps of 10 epochs). The
network achieved a low average absolute error, although
the relative errors are significantly higher than would be
desired (Table 7). This is reflected by poor predictions
for the very small systems, where small absolute errors
lead to large relative ones.

These results compare favorably to those presented in
Miyazaki et al. (1994) where the BMMREs were 0.663
and 2.032 for robust and least-squares regression
respectively. It should be noted that these figures from
Miyazaki et al. were based on the entire data set, and that
the neural network model performs significantly better
than their regression models, even on new, unseen, data.

3.2.2 Li and Henry data set

The best network found for this data set used five hidden
nodes, and was trained for 260 epochs (in steps of 10
epochs) (Table 8). There is some evidence that the
network found was over-fitted to the validation data
(recall that a large number of simulations were
performed), and perhaps performs less effectively on the

training and testing data than would be desirable. This
illustrates the dangers of running a large number of
simulations, where even selecting on the basis of withheld
data performance does not always ensure generalisability.
As was mentioned above, a selection data set could have
been used here to attempt to overcome this problem but
with such small data sets this is impractical.

3.2.3 Dolado data set

The best performing network for this small data set used
one hidden node, trained for 990 epochs (in steps of 10
epochs) (Table 9) and using four main inputs. This
network shows definite signs of overfitting to the
validation data, partly due to the small size of the data set.

3.3. Comparing the Predictions

The above results suggest that no single modeling
technique outperforms the others on all data sets, at least
in regard to measures of predictive error. The results are
summarized in Table 10, showing the optimum MMRE
and Pred(l) error measures achieved under the ‘best’
regression method and neural network architecture. For
the Miyazaki et al. (1994) data the neural network
performs better on the testing data in terms of the
prediction threshold error measure, while for the Li and
Henry (1993) data the LMS regression model performs
slightly better on this criteria. On the Dolado (1997) data
set the regression technique, LTS this time, is superior
based on the prediction threshold error measure. In all
cases the regression models perform better according to
the MMRE measure. This may suggest that where
MMRE is more important than Pred(l) performance,
regression should be used over neural network models
and vice versa.

4. SELECTING THE OPTIMAL TECHNIQUE

In this paper a number of different data analysis and
modeling techniques have been described and tested on

case study data sets. It has been suggested that use of the
most appropriate technique can lead to more accurate
models; however, this should not be the only criterion
used for selecting a technique. This section discusses a
subset of the issues that need to be considered when
making such a decision. These include the quantities of
data available, the nature of the relationships in that data,

the accuracy required from the model, the available
expertise, and the necessity to communicate and learn
from the models produced. Many of these are qualitative
and difficult to measure, but must still be kept in mind by
the metrician.

Table 7. Results for Miyazaki, Terakado, Ozaki, and Nozaki data set neural network performance

 Training
Data

Validating
Data

Testing
Data

All
Data

MMRE 0.75 1.10 1.32 1.02

Pred(10) 0.24 0.55 0.25 0.31
Pred(25) 0.33 0.55 0.50 0.44
Pred(35) 0.52 0.55 0.50 0.52
Pred(50) 0.62 0.73 0.56 0.63

BMMRE 0.36 0.21 0.36 0.33

AR(10) 0.24 0.55 0.31 0.33
AR(25) 0.43 0.55 0.50 0.48
AR(35) 0.57 0.64 0.50 0.56
AR(50) 0.76 0.82 0.69 0.75

AAR 22.4 16.4 27.0 22.5

Table 8. Results for Li and Henry data set neural network performance

 Training
Data

Validating
Data

Testing
Data

All
Data

MMRE 0.49 0.39 0.51 0.47

Pred(10) 0.19 0.19 0.08 0.15
Pred(25) 0.45 0.44 0.29 0.39
Pred(35) 0.55 0.56 0.42 0.51
Pred(50) 0.84 0.69 0.58 0.72

BMMRE 0.29 0.27 0.37 0.31

AR(10) 0.19 0.19 0.08 0.15
AR(25) 0.45 0.50 0.38 0.44
AR(35) 0.65 0.69 0.46 0.59
AR(50) 0.87 0.94 0.63 0.80

AAR 21.0 19.4 32.9 24.7

Table 9. Results for Dolado data set neural network performance

 Training
Data

Validating
Data

Testing
Data

All
Data

MMRE 0.46 0.21 0.35 0.36

Pred(10) 0.10 0.17 0.25 0.17
Pred(25) 0.50 0.67 0.38 0.50
Pred(35) 0.70 0.83 0.50 0.67
Pred(50) 0.80 1.00 0.63 0.79

BMMRE 0.29 0.21 0.32 0.28

AR(10) 0.10 0.17 0.25 0.17
AR(25) 0.50 0.67 0.50 0.54
AR(35) 0.70 0.83 0.63 0.71
AR(50) 0.80 1.00 0.63 0.79

AAR 82.0 64.7 163.8 104.9

Table 10. Summary of results on testing sets (accuracy only)

 Miyazaki et al. (1994) Li and Henry (1993) Dolado (1997)
 Regression –

LS
NN – 1
hidden

Regression –
LMS

NN – 5
hidden

Regression –
LTS

NN – 1
hidden

MMRE 0.76 1.32 0.37 0.51 0.31 0.35

Pred(10) 0.13 0.25 0.21 0.08 0.25 0.25
Pred(25) 0.25 0.50 0.25 0.29 0.63 0.38
Pred(35) 0.38 0.50 0.46 0.42 0.63 0.50
Pred(50) 0.44 0.56 0.67 0.58 0.75 0.63

4.1. Quantities of Data

It is well known that building more complex statistical
models requires greater amounts of data, because more
parameters need to be determined. This is often a
motivation for software metricians to develop simple
models for predicting the development process. The same
principle applies to neural network modeling. Since there
are many more parameters (a network with 6 inputs, four
hidden units, and one output generally contains some 33
adjustable weights), it is important that reasonable
amounts of data are available (although techniques such
as bootstrapping can be used to overcome some
deficiencies in data quantity). In relation to the empirical
evaluations shown above, for example, use of the neural
network method with the Dolado data set was ineffective,
possibly partially because of the small number of
observations available.

4.2. Nature of Relationships

The choice of technique also depends on what type of
relationship (if any) the metrician anticipates finding. For
many systems a simple linear model may largely reflect

the underlying physical phenomena (for example, the
effort required to check test cases where each case takes
the same length of time). In such situations, the use of a
non-linear model such as a neural network would
represent unnecessary complexity. In a similar manner,
the use of robust regression techniques can really only be
justified if the data may contain some outliers. While
software metricians may well be faced with such
contaminated data sets, there are situations where least-
squares regression will perform more effectively. In our
empirical evaluation above, for instance, this was the case
for the Miyazaki et al. data.

4.3. Accuracy Required from the Model

As a general rule the accuracy of a model increases as the
complexity of the modeling technique rises (although as
stated previously overfitting can be a problem). It is
vitally important to distinguish between accuracy in
learning the relationships contained in the
training/development data, and in learning the
relationships inherent in the physical realization of the
process.

The case studies above illustrate that more complex
techniques such as neural networks are potentially
capable of fitting more accurate models to the training
data by virtue of their non-linearities and interactions. In
the same way, using transformations, more independent
variables, and interaction terms in a regression model can
have the same effect. However this opens up the risk of
over-fitting, even with all due care taken, when using
small data sets such as are common for software metrics
research. It should also be recalled that it is only in
potential that such increases in accuracy exist. They will
not necessarily be realized in all cases.

In some cases, however, the accuracy requirements for a
model may be low when compared to other goals, and
these other motivations may be overriding, especially
where the improvements in accuracy are small. Gaining
an understanding of what it is that makes a system more
error-prone, for instance, may be much more important to
a manager than a 5% increase in predictive accuracy that
may be gained from a much more complex and costly
model. It is also important to specify pre-analysis what is
meant by accuracy for a particular modeling task. In
some cases absolute errors are of concern, while in others
relative errors are more important. Also, a choice must be
made between the relative importance of threshold-based
errors (like Pred(l)) and average errors. These issues are
certainly not trivial ones, to be faced with the same
solution for all projects.

4.4. Available Expertise

The availability of sufficient modeling expertise may be
seen as perhaps one of the most restrictive requirement
for the technique selection process. While there has been
enthusiastic adoption of neural network models in many
fields, including software metrics, there is often an under-
appreciation of the expertise required for their use. This
is not assisted by the all-too-common perception of such
models as automatic, universal approximators that
overcome all of the problems with traditional statistical
methods. In fact, the effective use of neural network
models requires at least as much expertise as non-linear
regression, and in some ways may require even more as
their flexibility opens up new pitfalls.

4.5. Communicating and Learning from Models

Finally, there is the issue of interpretability of the models
in their final form. Regression equations (both least-
squares and robust) have the advantage of being presented
in a manner that most managers can understand. It is
relatively easy to see the influence of a single independent
variable on the model’s output. However, by using a
black box technique such as a neural network, the
opportunities to view the form of the model are limited.
While the weights are available, it is difficult to then
interpret these in a meaningful manner.

Some options for extracting rules from neural networks
do exist (Kasabov, 1996; Wang and Mendel, 1992).
However, these techniques then require even more
expertise and the software is much less accessible, still

being an area of research rather than widespread practice.
A simpler approach is sensitivity analysis where the
network’s outputs for a variety of inputs are plotted,
holding all but one input variable (or perhaps two
variables) constant. This can be useful for confirming
relationships in the model (as with examining the slopes
in regression models).

4.6. The Actual Selection of the Technique

The factors that have been briefly mentioned above all
need to be considered in conjunction. For a particular
project, the relative importance of each should be
assessed, along with the advantages/disadvantages of each
technique when compared to the others. In many cases
the best solution is to not select any one technique, but
rather to develop models using two or more methods.
This may have the consequent advantage of discouraging
absolute reliance on a single number that is produced as
model output – it is only an estimate, after all. If more
than one technique is used, a range of estimates will
result.

More information on these techniques from a software
metrics perspective, and other techniques such as fuzzy
logic and case-based reasoning, is available in Gray and
MacDonell (1997) and MacDonell and Gray (1997). It is
only by using these techniques on a wide range of data
sets than any useful guidelines to their general use can be
formulated. The dangers of relying on another’s (or even
your own) success with a technique on a single data set
are obvious.

5. CONCLUSIONS

In this paper we have investigated a number of issues that
need to be considered as part of the model building
process for software metrics. While the most overriding
consideration is generally the accuracy of the model, in
particular for predictions on new data, other issues such
as data characteristics, expertise, and interpretability
should also be taken into account. While many of these
issues are difficult to quantify, some consideration must
still be made. In order to make these decisions the
software metrician needs to be aware of the techniques,
both in terms of strengths/weaknesses and in terms of
correct usage.

We have demonstrated that empirically the techniques can
perform quite differently on various data sets, thus
leading to the conclusion that no one technique can be
used as a panacea for software metrics’ analysis
problems. Our intention is to continue with this area of
research and formulate a more rigorous examination of
the data set characteristics of software metrics, and the
effects of these on the modeling process.

REFERENCES

Albrecht, A.J. and Gaffney, J.E., Jr. 1983. Software
function, source lines of code, and development effort
prediction: a software science validation. IEEE
Transactions on Software Engineering 9(6): 639-648

Boehm, B.W. 1981. Software Engineering Economics.
Englewood Cliffs NJ: Prentice-Hall.

Dolado, J.J. 1997. A study of the relationships among
Albrecht and Mark II function points, lines of code 4GL
and effort. Journal of Systems and Software 37: 161-173.

Ebrahimi, N.B. 1999. How to improve the calibration of
cost models. IEEE Transactions on Software Engineering
25(1): 136-140.

Finnie, G.R., Wittig, G.E. and Desharnais, J.-M. 1997. A
comparision of software effort estimation techniques:
using function points with neural networks, case-based
reasoning and regression models. Journal of Systems and
Software 39: 281-289.

Gray, A.R., and MacDonell, S.G. 1997. A comparison of
techniques for developing predictive models of software
metrics. Information and Software Technology 39: 425-
437.

Hakkarainen, J., Laamanen, P. and Rask, R. 1993. Neural
networks in specification level software size estimation.
In Proceedings of the 26th Hawaii International
Conference on System Sciences. Hawaii, USA, IEEE
Computer Society Press, 626-634.

Heiat, A. and Heiat, N. 1997. A model for estimating
efforts required for developing small-scale business
applications. Journal of Systems and Software 39: 7-14.

Hertz, J., Krogh, A., and Palmer, R.G. 1991. Introduction
to the Theory of Neural Computation. Redwood City CA:
Addison-Wesley.

Hornik, K., Stinchcombe, M., and White, H. 1989.
Multilayer feedforward networks are universal
approximators. Neural Networks 2: 359-366.

Kasabov, N.K. 1996. Foundations of Neural Networks,
Fuzzy Systems and Knowledge Engineering. Cambridge
MA: MIT Press.

Lanubile, F. and Visaggio, G. 1997. Evaluating
predictive quality models derived from software
measures: lessons learned. Journal of Systems and
Software 38: 225-234.

Lee, A., Cheng, C.H. and Balakrishnan, J. 1998. Software
development cost estimation: integrating neural network
with cluster analysis. Information & Management 34: 1-9.

Li, W., and Henry, S. 1993. Object-oriented metrics that
predict maintainability. Journal of Systems and Software
23: 111-122.

MacDonell, S.G., and Gray, A.R. A comparison of
modeling techniques for software development effort
prediction. Proceedings of the 1997 International
Conference on Neural Information Processing and
Intelligent Information Systems, Dunedin, New Zealand,
869-872.

Miyazaki, Y., Terakado, M., Ozaki, K., and Nozaki, H.
1994. Robust regression for developing software
estimation models. Journal of Systems and Software 27:
3-16.

Neter, J., Kutner, M.H., Nachtsheim, C.J., and
Wasserman, W. 1996. Applied Linear Statistical Models.
Chicago: Irwin.

Putnam, L.H., Putnam, D.T. and Thayer, L.P. 1984. A
tool for planning software projects. Journal of Systems
and Software 5: 147-154

Rousseeuw, P.J., and Leroy, A.M. 1987. Robust
Regression and Outlier Detection. New York NY, USA:
John Wiley & Sons.

Stensrud, E. and Myrtveit, I. 1998. Human performance
estimating with analogy and regression models: an
empirical validation. In Proceedings of the Fifth
International Software Metrics Symposium (Metrics'98).
Los Alamitos, California, IEEE Computer Society Press,
205-213.

Wang, L.-X., and Mendel, J.M. 1992. Generating fuzzy
rules by learning from examples. IEEE Transactions on
Systems, Man, and Cybernetics 22: 1414-1427.

	Software Metrics Data Analysis – Exploring the Relative Performance of Some Commonly Used Modeling Techniques
	1. Introduction
	2. Model-building Methods
	2.1. Regression Methods
	2.2. Neural Networks

	3. Empirical Analysis
	3.1. Regression Predictions
	3.1.1 Miyazaki, Terakado, Ozaki, and Nozaki data set
	3.1.2 Li and Henry data set
	3.1.3 Dolado data set

	3.2. Neural Network Predictions
	3.2.1 Miyazaki, Terakado, Ozaki, and Nozaki data set
	3.2.2 Li and Henry data set
	3.2.3 Dolado data set

	3.3. Comparing the Predictions

	4. Selecting the Optimal Technique
	4.1. Quantities of Data
	4.2. Nature of Relationships
	4.3. Accuracy Required from the Model
	4.4. Available Expertise
	4.5. Communicating and Learning from Models
	4.6. The Actual Selection of the Technique

	5. Conclusions
	References

