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Introduction
Shellfish (e.g. oyster reefs) are biogenically structured landscapes 

and are challenging for manual field surveys. These habitats are 
economically and ecologically valuable, but they are depleted to 
numerous anthropogenic and natural hazards.1 These habitats can 
be referred to as “biogenic habitats”, formed by plants (e.g. salt 
marshes, mangroves, seagrass meadows, and kelp forest) and animals 
(e.g. shellfish) occurring from the intertidal out to the deep ocean.2,3 

Oyster reefs are a subset of “biogenic habitats” that have hard and 
rugged structures, sometimes visually imposing, creating a discrete 
and unique habitat from the surrounding area.4 They deliver many 
ecosystem services to support and protect biodiversity by creating 
three-dimensional structures, sediment accumulation, nutrient 
recycling, water filtration and carbon sequestration. All of which are 
important in the Anthropocene era.5-7 Restoration of this resource is of 
local and global importance and restoration management will require 
accurate spatial mapping so that ecological status can be monitored.

Recent advances in space-borne (e.g. satellite) and airborne 
(e.g. manned aerial) imagery have been successful for mapping and 
assessing the spatial extent of oyster reefs.8,9 The increase in spatial 
(31cm, panchromatic and 1.24m, visible & near-infrared), spectral 
resolution (8 multispectral) and revisit time (<1 day) provided by 
WorldView- 3/4 satellites has improved the accuracy to capture 
ecological changes in the dynamic marine environment.10,11 However, 
space-borne imagery is affected by cloud cover and atmospheric 
aerosol interference, surface reflectance and not always synchronized 
with desired oceanographic conditions. Consequently, high-

resolution imagery often translates into high-costs due to increased 
storage and processing time taken to orthorectify the imagery to the 
required accuracy.12 According to Digital Globe, the price of a 30-
cm georeferenced + natural color or 4-band WorldView 3/4 satellite 
imagery is approximately ~$22.50 USD/sq.km. Depending on the 
financial constraints high-resolution imagery may not be easily 
accessible for all researchers.9,10

Mapping biogenic intertidal rocky reefs in temperate waters during 
high tides is challenging due to turbidity and suspended sediment 
concentration (SSC), which attenuates light penetration through the 
water column.13 Even with hyper spectral high-resolution data (4.0 
x 4.0m and 126 bands), oysters (~15cm long) require higher spatial 
resolution imagery to be effectively detected and mapped, and narrow 
bands are required to penetrate the water column.13 Therefore, for the 
application of remote sensing techniques to effectively map and detect 
features, the sensor and platform must be appropriate to the feature 
being sensed. The issue of spectral band attenuation in the water 
column and spatial resolution can be solved by surveying intertidal 
biogenic habitats at low tide. 

In Europe, during low tide, researchers successfully classified 
intertidal biogenic reefs, built by the honeycomb worm, from an RPAS 
derived multispectral (red-edge (RE) and near-infrared (NIR)) very-
high-resolution (0.17m/pixel) imagery.14 Additional spectral bands 
(e.g. RE and NIR) provided further opportunities to identify and map 
biogenic habitats based on their spectral characteristics (e.g. water 
appear dark in NIR band). Another airborne survey of oyster reefs 
in Rachel Carson Reserve, North Carolina, USA, tested the quality 
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Abstract

The upsurge in the development of RPAS technology for low altitude remote sensing and 
miniaturized sensors for enhanced imaging, have led to an increase in marine ecological 
applications.  However, the ubiquity of RPAS with sensors in the visible electromagnetic 
spectrum may be limiting the applications of fine-scale mapping, monitoring, and 
identification of biogenic marine habitats along temperate intertidal rocky reefs. Here we 
used a low-cost RPAS coupled with a multispectral sensor (MicaSense® RedEdge™) and 
object-based image analysis (OBIA) workflow to produce very high-resolution maps of 
biogenic oyster reefs in Waitemata Harbour, Auckland, New Zealand. The results show 
that having spectral bands beyond the visible electromagnetic spectrum gradually enhances 
feature detection on the imagery and increases the potential to delineate targeted features 
within a heterogeneous marine ecosystem. Using a rule-based classification technique 
to extract target features, based on their spectral characteristics following segmentation, 
yielded an overall accuracy of 83.9% and a kappa coefficient of 69.8%.Spectral resolution 
improved for habitat mapping of oyster reefs with additional spectral bands. High-
spatial scale monitoring and mapping of turbid exposed intertidal rocky reefs presents 
unique challenges, but these challenges can be mitigated by targeting flights during ideal 
meteorological and oceanographic conditions with RPAS.

Keywords: oyster reefs, intertidal marine ecosystem, mapping, object-based image 
analysis (OBIA), rule-based classification, low altitude remote sensing, remotely piloted 
aircraft system (RPAS)
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of three different RPAS platforms with RGB cameras and ultra-
high resolution (<5cm) imagery for mapping and delineating oyster 
boundaries.11 The researchers concluded that RPAS based fieldwork 
was quicker than traditional fieldwork (e.g. quadrats) and provided a 
greater number of validation points for accuracy assessment compared 
to satellite imagery. 

For classification of high-resolution (e.g. <5 cm/pixel) RPAS 
imagery, an object-based image analysis (OBIA) performs better than 
a pixel-based technique (e.g. maximum likelihood) because each pixel 
is smaller than the feature of interest.15-22 The benefit of this technique 
is its ability to delineate ecological features into meaningful image 
objects, and to extract spatial, spectral and contextual information 
from these objects.23,24

RPAS in most diverse fields of science has established itself as a new 
tool, capable of providing unprecedented scientific applications.20,25 
While recent studies suggested that RPAS may provide better sampling 
efficiency and data quality for studying intertidal marine ecology, in 
the visible spectrum.17,20 To our knowledge, there are no published 
studies that have explored the potential of a low-cost RPAS coupled 
with a multispectral sensor to map and classify biogenic oyster reefs. 

Here, we demonstrate the potential of a low-cost RPAS coupled 
with a miniaturized multispectral sensor (MicaSense® RedEdge™) 
and use structure from motion photogrammetry to deliver very high-
resolution maps useable for identification and characterization of 
biogenic oyster reefs. We show the benefits of enhanced spectral bands 
for remote sensing of biogenic habitats, and report on time taken and 
area covered from the RPAS flights. In addition, demonstrate the 
suitability of RPAS imagery and the accuracy of OBIA combined with 
rule-based classification for detecting and delineating oyster reefs 
from a heterogeneous intertidal rocky reef ecosystem.

Materials and methods 

Study site

The study area for the RPAS survey and mapping of oysters 
was Meola Reef (Te Tokaroa) in the North Island of New Zealand. 
Located at -36.853981S and 174.710194E of the Waitemata Harbour 
in Auckland. This harbor is bordered by New Zealand’s major city, 
Auckland, and it is one of New Zealand’s busiest ports. The harbor 
has been altered by human activities, pollution, urbanization, and it is 
a hotspot for non-indigenous species.26 The Te Tokaroa Meola Reef is 
a 28,000-year-old basalt volcanic rocky reef that extends over 2 km 
into the central Waitemata Harbour.27 It is the largest and most visible 
by satellite (Figure 1) natural rocky reef system in the Waitemata 
Harbour.28 This rocky reef ecosystem supports a high biodiversity of 
habitats including saltmarsh and mangroves (Avicennia marina) along 
the landward edge of the reef.29 Pacific oysters (Crassostrea gigas) 
dominate the outer reef and kelp forest dominate the subtidal zone of 
the reef.27 It also provides shelter and a breeding ground for fifty bird 
species (e.g. black swan, Tui, and South Island Oystercatcher).30 

The hydrodynamics in this area are controlled by two high (~1.9 
- 2.9m) and two low tides (~0.7- 1.0 m) daily, which flush the harbor 
from the Hauraki Gulf.27 This is a critical process for biogenic benthic 
ecosystems such as oyster beds and for larvae distribution; tides bring 
in larvae. This reef structure withstands environmental and human 
impacts, such as discharge of effluent, trampling while setting fish 
nets during low tides and shell-fishing, and it is a popular spot for bird 
watchers, hikers and dog walkers.

Figure 1 (a) Location of study site in Auckland, New Zealand. (b) Zoomed-in 
view of the study area within the Waitemata Harbour.

Flight safety

Flights were logged on Airshare,32 and all were withinthe visible 
line of sight (VLOS).The pilot was certified with Part 101 RPAS 
Civil Aviation Authority of New Zealand (CAANZ) and was always 
accompanied by a trained observer.

Aerial survey data

The RPAS aerial survey was conducted on 23 March 2019 (0.30m 
water level at 16:08 NZST) using a multispectral, MicaSense® 
RedEdge™ senor at nadir mounted on a Phantom 4 Pro® multi-
rotor. Pix4D capture® autonomous flight planner was used to plan 
the fights at 50m altitude.  The MicaSense® sensor, initially designed 
for agricultural purposes, leverages a digital RGB DJI camera, 4000 
x 3000-pixel imagery, with the following distinct bands: Blue (475 
nanometers (nm)), Green (560 nm), Red (668 nm), Near IR (840 nm), 
and Red Edge (717 nm) and 1280 x 960-pixel imagery. One of the 
benefits of using this sensor is to perform a radiometric correction 
during processing in Pix4D33 and using the following equation allows 
reflectance to be computed for all the bands: 

                            

RadianceReflectance
Irradiance

=

The images were stitched and rendered into absolute reflectance 
maps for each spectral band; pixel values ranged from 0-1.The cost 
of a consumer grade Phantom 4 Pro RPAS used in this study was 
1452.50 NZD (USD 866.70). Flight planning was done using an 
open-source flight planner, Pix4D capture®.

Aerial image processing and classification

Structure from motion photogrammetry 

RPAS aerial images were mosaicked using Pix4D® mapper (V 
4.4.12 Educational edition). Pix4D® is a professional structure using 
motion photogrammetry software to transform images into digital 
spatial models.33 Pix4D® creates an orthomosaic from geotagged 
images initially recreating a 3D scene and projecting the orthomosaic 
to the target coordinate system. Structure from motion (SFM) is a 
well-established concept for photogrammetry of high-resolution 
RPAS imagery.20,34,35 The general workflow used in Pix4D® includes 
(1) initial processing, add multispectral imagery to the software, here 
the algorithm extracts meta-data information from the geotagged 
photographs (e.g. altitude, camera model, etc.); (2) detect automatic 
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tie points between the overlapped images to create a point cloud and 
mesh; (3) final processing option produces a digital surface model 
(DSM), orthomosaic and reflectance map of all available bands (only 
for multispectral) after radiometric processing and calibration.33

Geo-reference and radiometric correction

To geo-reference the orthomosaic accurately, 10 ground control 
targets were laid out evenly across the study area. These targets were 
made similar to a section of a checkerboard, printed on an A3 paper 
and laminated. All targets were surveyed using high accuracy RTK-
GPS/GNSS (Septentrio®).  After initial processing in Pix4D®, 3D 
GCPs were added to improve the accuracy of the project.  Radiometric 
correction information was added from a reflectance panel provided 
by MicaSense® with calibrated values for each band, added in the 
final step of processing in Pix4D® mapper. This option in Pix4D® 
produces a reflectance map for each band where the value of each 
pixel represents a true reflectance of the features on the ground. 

Image segmentation

To examine, the potential of high-resolution imagery and 
accuracy of the OBIA technique to extract targeted features from a 
heterogeneous ecosystem we decided to use only one RPAS flight. 
This section of the reef is covered with mixed vegetation and oysters 
are present along the north-west section of the reef. Initially, performed 
an image segmentation with the Feature Extraction module (FEM) 
within ENVI® version 5.3 (Exelis Visual Information Solutions, Co, 
USA). The benefit of this module is that the results of segmentation 
can be previewed and refined prior to the final segmentation. 
Following segmentation, attributes/characteristics are calculated 
for all the objects in the imagery (1) spectral attributes (e.g. mean, 
standard deviation, maximum & minimum); (2) texture attributes (e.g. 
range, mean, variance & entropy) and (3) fourteen spatial attributes 
including an adjustable texture kernel size.36 Through an iterative 
process, we found that the optimal segmentation result was achieved 
at a scale level of 50 (Edge algorithm) and merge level 80 (Full 
Lambda Schedule). The FEM consisted of two techniques (1) find 
object (a) segment, (b) merge, (c) refine, (d) compute attributes and 
(2) extract objects, (a) rule-based classification, (b) exporting results 
to a shapefile.37

Rule-based classification

ENVI, feature extraction module uses an object-based approach 
to extract objects with spatial, spectral (brightness and color), and 
textural characteristics from high-resolution multispectral imagery. 
The benefit of this module is that multiple objects can be extracted at a 
time, offers more flexibility in the types of objects being extracted and 
the classification results can be previewed and further refined through 
the ENVI Zoom preview portal.37 Rules were built for classification 
based on the object’s attributes that were calculated during 
segmentation and their appearance. The following land cover classes 
were defined: (1) mangroves and saltmarsh are vegetation that reflects 
most NIR spectrum, rule assigned using their mean spectral attribute 
in band 4 (NIR); (2) shadows, bare rocks and sediments appeared very 
dark in the NIR band, so spectral mean values attributes were used to 
create a rule for these objects and were merged together; (3) finally, 
using spatial and spectral attributes of oyster reefs in band 1 (blue), 
rules were created based on, the mean spectral attribute, pattern of 
distribution, their shape and appearance (light or dark).

Principles to discriminate oyster rocks

One of the objectives of this study was to discriminate oyster 
reefs from multispectral orthomosaics from other land cover features. 
To achieve this, we capitalized on the spectral reflective properties 

of different objects on the ground. The following remote sensing 
principles were followed: (1) most vegetation (mangroves and 
saltmarsh) absorbs red and blue light for photosynthesis and a plant 
with chlorophyll reflects near-infrared light, spectral reflectance: 0.47 
– 1.84 in band 4 (NIR-840nm wavelength). Shadows, bare rock (at a 
higher elevation than oyster reefs) and sediment (lower elevation than 
oyster reefs) have dark texture and appearance, spectral reflectance 
0.16 – 0.47 in band 4 (NIR). Oyster reefs have spectral reflectance: 
0.13 – 0.29 in band 1 (blue – 475nm wavelength).

Accuracy assessment

For accuracy assessment, used 2,772 random regions of interest 
(ROI) and an equalized stratified random sampling strategy to create 
ground truth ROI in the orthomosaic for each class in the total land 
cover area. The reliability of ground truth points is greater with 
a high-resolution (3.5 cm/pixel) orthomosaic.38 Consequently, a 
confusion matrix was generated, which evaluates the accuracy of the 
OBIA classification. To assess the accuracy of the final classifications 
including: (1) overall accuracy from the referenced site what 
percentage were mapped correctly, (2) kappa coefficient is calculated 
from a statistical test of the accuracy of a classification, (3) producer’s 
accuracy is the map accuracy from the perspective of a mapmaker; 
how often real features on the ground are correctly shown on the 
classified map (4) user’s accuracy is the accuracy from the perspective 
of a map user, often referred as reliability of classification i.e. the 
classes on a map will actually be present on the ground.

We also conducted an on-foot survey on 2 May 2019, to confirm 
the visual interpretation of oysters in the land cover from the 
classification map. For this purpose, we used an eTrex® 20 Garmin 
handheld GPS with a positional accuracy of, ±1-2 m. Along with 
taking GPS waypoints, a Huawei P30 Pro mobile phone was used to 
collect geotagged ground photographs. The waypoint and geotagged 
photos were imported in ArcGIS and projected to WGS 1984 UTM 
Zone 60S datum for visual classification against the classified imagery.

Visual analysis 

To evaluate how RPAS high-resolution imagery can fill the gap in 
spatial resolution for monitoring marine ecosystems, an RGB (3 band) 
satellite imagery year 2015 of resolution 75 cm/pixel was used.28 After 
exploring the archive of LINZ and Auckland Council (sources of 
imagery in New Zealand) this was the only imagery available at low 
tide. The spatial accuracy is ±15cm. Here we zoomed in both imagery 
until they are blurred to show the scale at which we can view the 
imagery without any modification or classification.

Results
Intertidal rocky reef high-resolution orthomosaic

This study does not distinguish between different types of oysters, 
including different vertical height and refers to all oyster structures 
as oyster reefs (including patch and string, clumps of oysters and 
those attached on mangrove).  The most basic need for oyster reef 
conservation is suitably scaled maps with sufficient information 
to identify ecological change.39 Therefore, to evaluate the potential 
of a low-cost RPAS with miniaturized multispectral sensor along a 
rocky intertidal reef, characterized by the presence of oyster reefs, 
7 missions were conducted along Meola Reef in Auckland Harbor. 
Flights were performed between ~9 to 12 minutes, a total of 18,760 
geotagged images were selected after clean-up (involved removing 
blurred photos before processing) and the total reef area covered was 
0.253 Km2 (Table 1). The orthomosaics has a spatial resolution of 
3.5cm/pixel.
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Table 1 Details of RPAS flights, the area covered, and geotagged photos used for photogrammetry

Flight number Time for data capture Area covered (Km2) Number of geotagged photos used after clean-up 

1 10 minutes 0.04 2840

2 10 minutes 0.033 2570

3 12 minutes 0.053 2740

4 11 minutes 0.046 3230

5 11 minutes 0.046 3520

6 10 minutes 0.035 2595

7 9 minutes 0.026 1265

  Total 0.253 18,760

The high level of detail in the generated map (Figure 2) clearly 
shows some important features such as the extent of mangroves 
and spatial distribution of oyster reefs and provides useful data 
for mapping and monitoring intertidal biogenic habitats. Indeed, 
in addition to the dominating features (e.g. mangroves), areas of 
saltmarsh were clearly distinguishable. Since all the images captured 
were in the late afternoon, shadows from mangroves were reflected in 
the northeast direction and had no impact on oyster reefs located in 
the northwest section. 

The segmentation of the orthomosaic is a fundamental step during 
thematic map production through OBIA since the characteristics 
of many objects can be used in the classification process. In ENVI, 
segmentation separates objects into real-world features, and the results 
from segmentation determine the geometry of objects (Figure 3). 
Another benefit of using this classification technique is that the final 
classification results and their associated geometry can be exported as 
vector shapefiles, which can be subsequently used for other statistical 
analyses (Figure 4).

Figure 2 High-resolution false-color orthomosaic (3.5cm/pixel) of Meola 
Reef. Key features from the land cover are clearly distinguishable from the 
imagery (e.g. oyster reefs and mangroves).

Figure 3 Segmentation results, showing features have been successfully 
segmented into different real-world (e.g mangrove) objects.

Figure 4 The result of OBIA classification exported as vector shape files with 
their geometric properties.
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Thematic map

In this part of the reef, closer to the landward side, thematic map 
generation to highlight the characteristics of oysters was difficult, 
due to bird droppings and wet/dry sediments that resembled the 
spectral properties of oysters. However, despite these limiting factors, 
satisfactory classification accuracy was achieved following OBIA 
feature extraction and rule-based classification workflow. A classified 
map (Figure 5) delineating oysters, demonstrated a good match 
between the classified land cover and the original RPAS imagery 
leading to an Overall Accuracy of 83.9% and a Kappa Coefficient 
of 69.8% (Table 2). The Producer’s Accuracy for the oyster class 
was 62.89% while the User’s Accuracy was 95.0%. This means that 
even though 62.9% of the reference oyster areas have been correctly 
identified as “oyster”, 95.0% of the areas identified as “oysters” in 
the classification were oysters. The reason for this reliability was the 
contributionof the high-resolution imagery (3.5 cm/pixel), enabling 
oyster reefs to be clearly distinguishable.

Figure 5 A high-quality thematic map generated after segmentation and rule-
based classification, classified into three main land cover classes.

Visual analysis

Visual analysis was conducted to examine the potential of RPAS 
imagery to fill the gap in spatial resolution for remote sensing of oyster 
reefs. The RPAS imagery has a 3.5cm/pixel resolution and the satellite 
imagery has a 7.5cm/pixel resolution. We interpreted the result using 
visual cues (e.g. texture, tone, shape, distribution pattern) from both 
imageries. At a map scale of 1:200 it was difficult to manually digitize 
and located oysters from the satellite imagery and at 1:100 the image 

became pixelated (Figure 6A), whereas from the RPAS imagery 
oysters were evident at a scale of 1:100 (Figure 6B). 

Figure 6 A, Satellite imagery zoomed to a map scale of 1: 10028; B, RPAS 
imagery zoomed to a map scale of 1:100; For visual analysis of remotely 
sensed oyster reefs.

Table 2 Classified imagery accuracy assessment and absolute accuracy of 
imagery

Classified Imagery 

Classes
Producers 
Accuracy 
(%) 

User’s 
Accuracy 
(%)

Overall 
Accuracy 

Kappa 
Coefficient

Mangrove 85.85 87.62

Oysters 62.89 95 83.94% 69.80%

Saltmarsh 53.25 89

Merged classes 
(shadows, 
bare rock, and 
sediments

100 84.98    

Discussion
Oysters are fundamental ecosystem engineers, where they 

also function as nutrient recyclers to filter sediments from water, 
increasing water clarity to thrive other biogenic habitats (e.g. 
seagrass).1,40 Removing excess nutrients from water is a priority for 
marine management.3 However, once a dominant feature in many 
temperate marine environments, oyster reefs around the world 
have shown a marked decline in response to natural (e.g. predation, 
temperature) and anthropogenic stressors (e.g. sedimentation, housing 
expansion).1,7 While remote sensing (e.g. satellite and aerial imagery) 
in the marine environment is usually difficult to target optimum tidal 
and meteorological conditions, the availability of RPAS as a survey 
tool has met this need.17,20 For marine ecological research, RPAS 
connects the difference between satellites and high-resolution ground 
surveys.42,43 However, ground surveys have a limited window of time 
for sampling between tides and can be destructive (e.g. trampling) to 
biodiversity. Our result from RPAS derived imagery produced high-
resolution orthomosaic with a ground sampling distance of 3.5 cm/
pixel, were captured within a smaller time-frame (~10 minutes flight 
time) and were obtained in a non-destructive manner. 

High spatial and temporal resolution using low altitude remote 
sensing with multispectral RPAS has the benefit of being able to 
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detect changes preceding ecological collapse (e.g. tipping points).39 
In the past, researchers have conducted manual ecological field 
surveys using quadrat sampling on reefs.27 Between 2001 and 2017, 
Pacific oysters (Crassostrea gigas), and New Zealand rock oysters 
(Saccostrea glomerate) were the most abundant species on the reef. 
However, a subsequent increase in the population of predatory oyster 
borer snails has reduced the population of both species of oysters.26,27,29  
Although in this study we evaluated the potential of a multispectral 
sensor coupled with a low-cost RPAS from a 50 m altitude, future 
studies can use this technique to monitor and map the distribution of 
predatory borer snails from an altitude of ~20-30m. A lower flying 
altitude would improve the detail provided for directing mitigation 
measures or eradication of the predators.

Our results validated that RPAS platforms as a useful tool for 
the identification of intertidal marine biogenic habitats.20,35,44 To our 
knowledge, this is the first time multispectral sensors coupled with 
RPAS for high-resolution have been used to map oysters in temperate 
marine environments.  In this study, a high resolution (3.5 cm/pixel) 
multispectral orthomosaic demonstrated that the use of spectral 
bands beyond the visible electromagnetic spectrum enhanced feature 
detection and increased the ability to delineate targeted features within 
a heterogeneous marine ecosystem. In temperate marine environments, 
turbidity and SSC usually make remote sensing of marine habitats 
difficult.45 To overcome this, we used RPAS on-demand capability to 
capture targeted habitats at low tide and at optimum meteorological 
conditions. Although data capture was after the solar noon, the flights 
were planned so that shadows from vegetation had no impact on the 
targeted feature, oyster reefs. 

To maintain biodiversity, pivotal habitats such as oyster reefs 
that provide quality breeding and feeding grounds for many fish 
and bird species need to be protected.7 This research showed that 
high-resolution RPAS derived imagery and OBIA with a rule-
based classification (based on spectral attributes of target features) 
has the potential to accurately delineate targeted features within a 
heterogeneous marine ecosystem. The results from segmentation of 
different features, such as oysters and mangroves, can be exported 
as vector shapefiles and used for other geo-analytics. RGB camera 
images are often good for revealing where a feature is on the 
ground, whereas the multispectral imagery allowed us to capture a 
target’s reflectance from each wavelength (e.g. RedEdge and NIR) 
for enhanced target discrimination. This can be explored in future 
studies to classify oyster reefs into more categories including: shell 
density, mean size, alive versus dead (because dead oysters are more 
reflective), reef complexity and oyster species.

Conclusion
As anthropogenic impacts including climate change continue to 

exert pressure on marine biogenic habitats, innovative methods for 
deriving useful information from multiple remote sensing imagery 
will be increasingly useful as a tool to monitor this change. The 
technologies we have deployed in this study will be able to provide 
a critical source of information to marine managers for conservation 
and planning.  RPAS remote sensing enables the conduct of surveying 
on-demand during low tides and over a broad spatial scale. Flying 
low enables the capture of high-resolution imagery ranging from 50 to 
4 mm. Despite limitations for classifying features of similar spectral 
reflectance OBIA for segmentation with a rule-based classification 
was sufficient for object identification and delineation of oyster reefs 
from other habitats. Our study showed that the deployment of RPAS 
coupled with a multispectral sensor for mapping and identification of 

oyster reefs in a heterogeneous marine environment greatly increased 
the classification accuracy. Overall accuracy of 83.9% and a Kappa 
Coefficient of 69.8% was achieved. Our method enables long-term 
monitoring of marine environments at lower cost to ground-based 
methods, at higher accuracy to other remote sensing methods and is 
therefore a valuable tool for conservation and restoration management. 
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