

A COMPARISON OF THREE ROBOTIC

CONTROLLERS FOR NAVIGATION

Justin Matulich

A thesis submitted to AUT University

in fulfilment of the requirements for the degree of

Masters of Engineering (ME)

2017

School of Engineering

Primary Supervisor: Dr Mark Beckerleg

Secondary Supervisor: Dr John Collins

i

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been accepted for the award of any other degree or diploma of

a university or other institution of higher learning.

ii

Acknowledgement

I would like to acknowledge my supervisor Dr Mark Beckerleg for his continued

support and wisdom throughout the duration of this research. Laura Wolken and Katrina

Agnew for their very valued contributions. My wife Marise Matulich and family for

your unwavering support; I would not have achieved what I have without you.

iii

Abstract

This research provides a comparison of three types of robotic controllers and their

suitability in evolutionary robotics. Two novel systems comprised of lookup tables

(LUTs) and evolvable hardware (EHW) based controllers are compared against a

benchmark single layered artificial neural network (ANN). The controllers have been

evolved using a genetic algorithm (GA) to perform the following robotic navigational

tasks: light following, object avoidance and the combined behaviour, light following

while avoiding obstacles. Five aspects of the evolved robot controllers are evaluated: a)

controller performance, assessed both numerically and visually; b) evolutionary

efficiency, the number of generations required to obtain a good fitness; c) scalability,

based on the controller performance and evolutionary efficiency as the complexity of

the task is increased; d) quantization effects as the sampled resolution of the input

sensors is varied; and e) operation of the evolved controllers in unknown spaces.

The findings from this research shows that: 1) the evolved controller performance is

similar between the LUT, EHW and ANN controllers; 2) the evolutionary efficiency of

the ANN and EHW are comparable, whereas the LUT took four times the number of

generations to evolve; 3) the scalability of the EHW and ANN controllers were similar

with the LUT being the most affected taking twelve times the number of generations to

evolve; 4) the quantization effects of the sensors was comparable for all three controller

types with a low sensor resolution mostly having an effect as the controller performance

was moving towards a maximum; and 5) all the controllers were more robust in

unknown environments when evolved in multiple arenas.

Both the EHW and LUT controllers performed far better than the apparent search space

would suggest. This was due to the EHW having a large number of possible circuit

solutions, effectively allowing solutions to be found quickly, and the LUT requiring

only small sections of the LUT to control the robot thereby reducing the GA search

space.

The selection of which controller to use is determined by the system that it will be used

in. The ANN is suited to a processor that contains a floating-point unit, the EHW is

suited to a hybrid field programmable gate array (FPGA) with an ARM-based hard-core

processor, whereas the LUT is suited to a low cost 8-bit microcontroller based system.

iv

Table of Contents

ATTESTATION OF AUTHORSHIP ... I
ACKNOWLEDGEMENT... II
ABSTRACT III

TABLE OF CONTENTS ..IV

TABLE OF FIGURES .. VII

CHAPTER 1: INTRODUCTION ... 1
1.1 Artificial neural network ... 1
1.2 Lookup Table .. 2
1.3 Evolvable hardware .. 3
1.4 Research Objectives .. 4

1.4.1 Can a LUT be evolved separately for light following and object
avoidance behaviours? .. 5

1.4.2 Can a LUT be evolved to follow a light source while avoiding obstacles
using monolithic and subsumption methods? ... 6

1.4.3 Can a virtual-FPGA (EHW) be evolved for light following and object
avoidance? .. 7

1.4.4 Can a virtual-FPGA (EHW) be evolved to follow a light source while
avoiding obstacles using monolithic and subsumption methods? 8

1.4.5 How do these controllers compare with an ANN? 9
1.5 Publications ... 9

1.5.1 Conference Paper .. 9
1.5.2 Journal articles submitted .. 9

1.6 Thesis Structure .. 10

CHAPTER 2: LITERATURE REVIEW ... 12
2.1 Review of robotic controllers.. 12

2.1.1 ANN controllers .. 12
2.1.2 Fuzzy logic controllers .. 15
2.1.3 LUT controllers ... 16
2.1.4 EHW controllers.. 17

2.2 Hierarchical evolution ... 19
2.2.1 Subsumption .. 19

2.3 Genetic algorithm.. 20
2.3.1 Fitness allocation ... 21
2.3.2 Selection schemes ... 22
2.3.3 Procreation .. 25
2.3.4 Mutation .. 28

CHAPTER 3: COMMON SYSTEMS DEVELOPED FOR EXPERIMENTATION 29
3.1 Hardware overview ... 29

3.1.1 Robot kinematics and mathematical model .. 30

v

3.1.2 Robot Sensor Models .. 36
3.1.3 Arenas ... 46
3.1.4 Fitness allocation ... 49
3.1.5 Selection process ... 56
3.1.6 Simulation procedure .. 57

3.2 Graphical user interface .. 61

CHAPTER 4: ARTIFICIAL NEURAL NETWORK EVOLUTION FOR USE IN ROBOTIC
CONTROLLERS .. 64

4.1.1 ANN GA and software structure ... 64
4.2 Light following ... 66

4.2.1 Artificial neural network configuration .. 66
4.2.2 Light following ANN chromosome .. 68
4.2.3 Results ... 70

4.3 Obstacle avoidance ... 75
4.3.1 Artificial neural network configuration .. 75
4.3.2 Obstacle avoidance ANN chromosome .. 77
4.3.3 Results ... 78

4.4 Light following while avoiding obstacles ... 83
4.4.1 Artificial neural network configuration .. 83
4.4.2 Light following while avoiding obstacles ANN chromosome 85
4.4.3 Artificial neural network subsumption evolution 85
4.4.4 Results ... 87

4.5 Overall Conclusions .. 90

CHAPTER 5: EVOLVABLE LOOKUP TABLES FOR USE IN ROBOTIC CONTROLLERS 91
5.1.1 LUT GA and software structure .. 91

5.2 Light Following .. 91
5.2.1 LUT Chromosome .. 91
5.2.2 Offspring creation ... 95
5.2.3 Results ... 96

5.3 Obstacle avoidance ... 103
5.3.1 Object avoidance LUT chromosome .. 103
5.3.2 Offspring creation ... 105
5.3.3 Results ... 106

5.4 Light following while avoiding obstacles ... 113
5.4.1 Light following while avoiding obstacles LUT chromosome............. 113
5.4.2 Offspring creation ... 114
5.4.3 LUT subsumption evolution ... 114
5.4.4 Results ... 115

5.5 Conclusion of the experiments with a LUT based controller 118

CHAPTER 6: EVOLVABLE HARDWARE FOR USE IN ROBOTIC CONTROLLERS 119
6.1.1 EHW GA and software structure .. 120
6.1.2 Offspring creation ... 123

vi

6.2 EHW evolution for light following ... 123
6.2.1 Virtual FPGA configuration .. 123
6.2.2 Results ... 127

6.3 EHW evolution for obstacle avoidance .. 131
6.3.1 Virtual FPGA configuration .. 131
6.3.2 Results ... 133

6.4 EHW for light following while avoiding obstacles .. 138
6.4.1 Monolithic Virtual FPGA configuration ... 138
6.4.2 EHW Subsumption evolution ... 141
6.4.3 Results ... 142

CHAPTER 7: ANN, LUT AND EHW EVOLVED CONTROLLERS COMPARISON 146
7.1 Light follower controllers ... 146
7.2 Object avoidance controller comparison .. 151
7.3 Light following while avoiding obstacles comparison 157

7.3.1 Monolithic ... 157
7.3.2 Subsumption .. 161
7.3.3 Scalability .. 162
7.3.4 Light following and object avoidance comparison summary 162

CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH ... 163
8.1 Summary ... 163

8.1.1 Question responses .. 163
8.2 Future Research .. 168

REFERENCES .. 169

APPENDIX A : ACRONYMS.. 173

APPENDIX B ALTERAS DE2115 DEVELOPMENT BOARD USED FOR EXPERIMENTS 175

vii

Table of Figures

Figure 1-1 Single-layered ANN .. 2

Figure 1-2 An adaptable robotic system with a central processor for the genetic

algorithm process and multiple LUT based microcontrollers for control. ... 3

Figure 1-3 EHW logic element configuration ... 3

Figure 1-4 Block diagram of LUT simulation .. 6

Figure 1-5 Block diagram of EHW simulation ... 7

Figure 1-6 Block diagram of subsumption architecture .. 8

Figure 2-1 Roulette wheel selection scheme ... 24

Figure 2-2 Single point cross over example. ... 25

Figure 2-3 Adjusted chromosomes ... 26

Figure 2-4 Two-point cross over example .. 27

Figure 2-5 Fitness Landscape mutation example .. 28

Figure 3-1 Photo of actual robot ... 30

Figure 3-2 Diagram of the robot pivoting clockwise .. 32

Figure 3-3 Diagram of the robot moving in a straight line ... 33

Figure 3-4 Diagram of the robot turning ... 35

Figure 3-5 Proximity sensors physical layout ... 36

Figure 3-6 Proximity sensor detection view ... 37

Figure 3-7 Maximum proximity detection area (red circle 50mm sensor range) 37

Figure 3-8 Simulated proximity sensor coverage ... 38

Figure 3-9 Light sensor physical layout .. 41

Figure 3-10 Light calculation 90° heading ... 43

Figure 3-11 Light calculation 80° heading ... 44

Figure 3-12 Light calculation 45° heading ... 45

Figure 3-13 Development and test arenas ... 46

Figure 3-14 Example 1 - light follower fitness ... 50

Figure 3-15 Example 2 - light follower fitness ... 51

Figure 3-16 Object avoidance trajectory with only runtime fitness 53

Figure 3-17 Object avoidance trajectory with arena exploration fitness 54

Figure 3-18 Tournament selection block diagram .. 57

Figure 3-19 Light follower starting locations and headings ... 58

Figure 3-20 Object avoidance starting location and headings .. 59

viii

Figure 3-21 Light follower and object avoidance starting locations and headings......... 60

Figure 3-22 Graphical user interface... 61

Figure 3-23 Trajectory view ... 62

Figure 3-24 GUI settings tab ... 62

Figure 3-25 GUI set up in object avoidance mode ... 63

Figure 3-26 Object avoidance trajectory view .. 63

Figure 4-1 Simulation flow chart .. 65

Figure 4-2 ANN configuration for light following ... 67

Figure 4-3 Light follower ANN output function .. 68

Figure 4-4 Example light follower trajectories and fitness percentage 70

Figure 4-5 ANN raw quantization level trajectory ... 71

Figure 4-6 ANN Light level quantization ... 71

Figure 4-7 ANN Quantization comparison vs. generations .. 74

Figure 4-8 ANN configuration for obstacle avoidance ... 75

Figure 4-9 Arena A stages of evolution trajectories and the fitness obtained (ANN) 79

Figure 4-10 Arena B stages of evolution trajectories and the fitness obtained (ANN) .. 79

Figure 4-11 Arena C stages of evolution trajectories and the fitness obtained (ANN) .. 79

Figure 4-12 Controller testing in unfamiliar arenas (ANN).. 80

Figure 4-13 Combined arena evolution test in unfamiliar arenas (ANN) 81

Figure 4-14 Maximum fitness comparison for each arena configuration (ANN) 83

Figure 4-15 ANN configuration for light following while avoiding obstacles 84

Figure 4-16 ANN subsumption diagram ... 86

Figure 4-17 Monolithic controller trajectories (ANN).. 88

Figure 4-18 Maximum fitness trends for monolithic controller evolution 88

Figure 4-19 Subsumption controller trajectories (ANN) .. 89

Figure 5-1 Light following LUT sizes examples 3x3 and 5x5 92

Figure 5-2 Light follower LUT two-point crossover .. 95

Figure 5-3 Example light follower trajectories and fitness percentage 97

Figure 5-4 Resulting light follower trajectories .. 99

Figure 5-5 Quantization comparison - maximum fitness .. 101

Figure 5-6 Quantization comparison - average fitness ... 102

Figure 5-7 Proximity sensor combination example .. 104

Figure 5-8 Object avoidance LUT .. 104

Figure 5-9 Offspring creation with four crossover points ... 105

ix

Figure 5-10 Arena ‘A’ evolutionary stages, showing the trajectories and fitness obtained

 .. 107

Figure 5-11 Arena B evolutionary stages, showing the trajectories and fitness obtained

 .. 108

Figure 5-12 Arena ‘C’ evolutionary stages, showing the trajectories and fitness obtained

 .. 108

Figure 5-13 Evolved controllers evaluated in unfamiliar arenas 109

Figure 5-14 Combined LUT evolution test in unfamiliar arenas 110

Figure 5-15 Maximum fitness comparison for each arena configuration 112

Figure 5-16 Light follower and object avoidance LUT configuration 113

Figure 5-17 Subsumption controller vs. monolithic example 114

Figure 5-18 Monolithic controller trajectories .. 116

Figure 5-19 Maximum fitness trends for monolithic controller evolution 117

Figure 5-20 Subsumption controller trajectories... 117

Figure 6-1 EHW System .. 120

Figure 6-2 Simulation software flow chart for EHW evolution 122

Figure 6-3 Light following virtual-FPGA architecture ... 123

Figure 6-4 Light following layer 1 LAB ... 124

Figure 6-5 Light following layers 2, 3 & 4 LABs .. 126

Figure 6-6 Example light follower trajectories and fitness percentage (quantization 9)

 .. 128

Figure 6-7 Resulting light follower trajectories (EHW) ... 129

Figure 6-8 Quantization comparison - maximum fitness (EHW) 130

Figure 6-9 Object avoidance virtual-FPGA .. 131

Figure 6-10 Object avoidance LAB configuration.. 132

Figure 6-11 Arena A stages of evolution and the fitness obtained (EHW) 133

Figure 6-12 Arena ‘B’ stages of evolution and the fitness obtained (EHW) 134

Figure 6-13 Arena ‘C’ stages of evolution and the fitness obtained (EHW) 134

Figure 6-14 Controller testing in unfamiliar arenas (EHW) ... 135

Figure 6-15 Combined arena evolution test in unfamiliar arenas (EHW) 136

Figure 6-16 Maximum fitness comparison for each arena configuration (EHW) 138

Figure 6-17, Light follower and object avoidance virtual-FPGA architecture 139

Figure 6-18 LABs in layer one of the light follower and object avoidance virtual-FPGA

 .. 139

x

Figure 6-19 LABs in the layers 2-4 of the light follower and object avoidance virtual-

FPGA .. 140

Figure 6-20 EHW subsumption diagram .. 141

Figure 6-21 Monolithic controller trajectories (EHW) ... 143

Figure 6-22 Maximum fitness trends for monolithic controller evolution 144

Figure 6-23 Subsumption controller trajectories (EHW) .. 145

Figure 7-1 Light quantization comparison of fully evolved ANN, LUT and EHW 147

Figure 7-2 Light sensor activation occurrences .. 148

Figure 7-3 Robot motor direction occurrences for the light follower controllers 149

Figure 7-4 Light follower progress comparison ... 150

Figure 7-5 Object avoidance trajectory comparison (ANN, LUT and EHW) 151

Figure 7-6 Unfamiliar arena test for controllers evolved in arena A 152

Figure 7-7 Unfamiliar test for controllers evolved in arena A, B & C simultaneously 153

Figure 7-8 Object sensor input combinations ... 154

Figure 7-9 Robot motor direction occurrences for the object avoidance controllers 155

Figure 7-10 Object avoidance progress comparison ... 156

Figure 7-11 Two example EHW circuits for object avoidance..................................... 157

Figure 7-12 Light following and object avoidance comparison (ANN, LUT and EHW)

 .. 158

Figure 7-13 Light following and Object avoidance comparison 159

Figure 7-14 Motor direction occurrences for the light follower and object avoidance

controllers ... 160

Figure 7-15 Subsumption trajectory controller comparison ... 161

Figure 7-16 Subsumption vs. monolithic controller trajectories 162

xi

Tables

Table 1 LUT example (Sine wave) ... 2

Table 2 All eight possible robot motions .. 5

Table 3 Fitness proportionate example ... 23

Table 4 Fitness proportionate example with normalized fitness 23

Table 5 Parameters used in mathematical model of the robot .. 31

Table 6 Sensor positions and their respective angles .. 39

Table 7 Robot motions based on value stored in the LUT elements 47

Table 8 ANN Light level quantization results .. 73

Table 9 Arena evolution results (ANN) .. 82

Table 10 Light levels chosen for analysis ... 98

Table 11 Light level quantization results .. 100

Table 12 Arena evolution results (LUT). .. 111

Table 13 Light sensor input example for light intensities left = 5 and right = 3 124

Table 14 Light level quantization results (EHW) ... 130

Table 15 Arena evolution results (EHW).. 137

Table 16 Search space vs. required generations for light follower controllers 150

Table 17 Search space vs. required generations for object avoidance controllers 156

Table 18 Search space comparison (light following and object avoidance controller) 159

Table 19 LUT, ANN and EHW analysis .. 167

1

Chapter 1

Chapter 1: Introduction

Evolutionary robotics has been widely researched for autonomous robots due to its

adaptability in unknown environments and fault tolerance. A common evolvable

controller that has been extensively studied in this field is the ANN, where the weights

in the network are evolved rather than training the network. Other less studied evolvable

robotic controllers are the LUT where the chromosome is the parameters in the table

and EHW where the chromosome is the configuration bit-stream (CBS), which is used

to create the circuit. This research provides a comparison between these controllers and

a standard feed-forward single layer ANN. The controllers have been evolved to

perform three navigational tasks, light following, obstacle avoidance and a combination

of the two, light following while avoiding obstacles. A comparison has been made

which investigated five key aspects: 1) the performance of the evolved controller

(controller performance); 2) the number of generations required to reach this

performance (evolutionary efficiency); 3) the effects of quantization on the input

sensors; 4) the effects of scalability as the controller becomes more complex; and 5) the

effects of altering the environment after the robot controller has been evolved. The

effects of scalability for the three controller platforms are assessed using two methods:

monolithic, where complex behaviours are evolved concurrently; and subsumption,

where the behaviours are evolved individually, then combined using a switching

controller.

1.1 Artificial neural network

Widely used in robotics, the ANN is a system of interconnected neurons (Figure 1-1)

which imitates a biological neural network. A simple single layer ANN used in robotics

is comprised of three key sections: 1) inputs from the sensors are adjusted via a

weighting factor and passed onto the neuron; 2) the neuron which sums the weighted

input signals and feeds the combined signals into an activation function; and 3) the

2

output from the neuron is used to drive an actuator. The ANN configuration used in this

research is described in section 4.2.1.

Figure 1-1 Single-layered ANN

1.2 Lookup Table

Used widely in low powered microprocessors, the LUT provides a means of reducing

computational runtime. The LUT uses a simple index based system to provide a path to

a previously calculated result. LUTs are configured in a variety of formats depending on

the complexity of the computational task. Table 1 shows a typical LUT which could be

used to calculate the values of sine for a given angle. The inputs to the LUT in this

example are the angles (θ) and the outputs (sin(θ)) are contained in the table elements.

Table 1 LUT example (Sine wave)

LUTs when used as robotic controllers are restricted by the quantization of the inputs,

outputs, and scalability difficulties in complex systems. However, once evolved, the

LUT requires far fewer computational resources than that of an ANN and other

traditional control systems. This makes it ideal for implementation in processors with

low computational power such as the commonly used 8-bit microcontroller. The LUT

based controller could be used in a distributed control system. This would have a central

processor to perform the evolutionary computation for multiple local LUT based

3

microcontrollers. Continuous evolution of these multiple controllers, allows the system

to adapt to fault conditions by updating the LUT in each microcontroller (Figure 1-2)

Figure 1-2 An adaptable robotic system with a central processor for the genetic algorithm process

and multiple LUT based microcontrollers for control.

1.3 Evolvable hardware

EHW, sometimes referred to as a virtual-FPGA or a virtual reconfigurable circuit (VRC)

is comprised of an adjustable interlinked system of logic elements (Figure 1-3). Each

logic element performs logic manipulation of its inputs and passes the resulting output

to the subsequent connected logic element. The logic element and interconnections is

reconfigurable via a CBS which is used to describe the logic hardware.

Figure 1-3 EHW logic element configuration

The use of EHW in the form of a virtual-FPGA or VRC has been studied for image

processing and fault tolerance, but very little research has been undertaken into their use

as robotic controllers. For this research, a flat-layered virtual-FPGA has been developed

4

and provides the platform for the EHW controllers. The evolved chromosome is

comprised of a CBS which is used to describe the virtual-FPGA hardware.

1.4 Research Objectives

The aim of this research has been to investigate the effectiveness of using a GA to

develop two types of novel robotic controllers for three specific behaviours. The

behaviours chosen for this exercise were; light following, object avoidance and light

following while avoiding obstacles. The research has focused on developing controllers

for each of the described behaviours using LUT and EHW based controller platforms.

The controllers have been compared against an ANN controller as a benchmark.

The objectives outlined above produced five research questions.

• Can a LUT be evolved for light following and object avoidance behaviours?

• Can a LUT be evolved to follow a light source while avoiding obstacles

using monolithic and subsumption methods?

• Can a virtual-FPGA (EHW) be evolved for light following and object

avoidance?

• Can a virtual-FPGA (EHW) be evolved to follow a light source while

avoiding obstacles using monolithic and subsumption methods?

• How do these controllers compare with an ANN, in regard to controller

performance, evolutionary efficiency, resolution of inputs, scalability and

performance in unknown environments?

The methods used to answer the above questions are described in the sections 1.4.1 to

1.4.5.

5

1.4.1 Can a LUT be evolved separately for light following and object avoidance

behaviours?

The internal elements of the LUT were configured by means of a GA process and the

controller performance was assessed. The GA was designed separately to produce two

individual LUTs, one to perform light following behaviours and the other to perform

object avoidance behaviours. The axes that define the size of the LUTs contained either

a quantized representation of light intensity or a binary representation of the six

proximity sensors. The elements within the LUT contained directional information for

the robots left and right motors.

The LUT developed for the light following behaviour was a two dimensional array, the

`X` and `Y` axes contain the left and right light sensor values. The light sensor inputs

were quantized values indicative of the robots orientation with respect to the light

source.

The LUT developed for the object avoidance behaviour was a one dimensional array

with the axis representing the six proximity sensors. The six digital proximity sensors

were combined in binary format to produce a number form 0-63 (26 = 64), which is

indicative of the proximity sensor states.

The elements in the LUTs described above contain the direction for the robots left and

right motors. The direction of each wheel is defined by one of three states, forward,

reverse and stopped. This results in eight possible robot motions as shown in Table 2,

(Except for both motors stopped, which was excluded).

Table 2 All eight possible robot motions

Wheels(L/R) Description
F/F Forwards, travel straight forward
F/S Turn right forwards, turn about right wheel clockwise (CW)
F/R Rotate CW, pivot on the spot CW
S/F Turn Left forwards, turn about the left wheel counter clockwise (CCW)
S/R Turn right reverse, turn about left wheel CW
R/F Rotate CCW, pivot on the spot CCW
R/S

Turn left reverse, turn about right wheel CCW
R/R Reverse, travel straight backwards

6

The LUTs were evaluated using a computer simulation and the block diagram shown in

Figure 1-4 is a representation of the development environment. The simulation and

mathematical model pass sensor information to the LUT which returns the robots left

and right motor directions. The GA process reconfigures the LUTs and assigns each

individual a fitness value. GA progress and robot information is displayed on the

graphical user interface (GUI) which also provides user control over the evolution

process.

1.4.2 Can a LUT be evolved to follow a light source while avoiding obstacles

using monolithic and subsumption methods?

Two methods were used to explore the issues surrounding controller scalability, and are

described as follows.

Monolithic evolution– The LUT developed for this investigation was a three

dimensional array. Each axis of the LUT were represented by the following robot

sensors, right light sensor (X), left light sensor (Y) and proximity sensors (Z). The

elements of the array contain the information that determines the left and right wheel

directions.

Subsumption evolution– the previously evolved LUTs for light following and obstacle

avoidance were implemented in a hierarchy based system of which the obstacle

avoidance LUT was given a higher level of importance.

Figure 1-4 Block diagram of LUT simulation

7

The LUTs developed for the combined behaviours were evolved using a computer

simulation that is represented by the block diagram shown in Figure 1-4.

1.4.3 Can a virtual-FPGA (EHW) be evolved for light following and object

avoidance?

A virtual-FPGA has been developed using an Altera FPGA development board. The

virtual-FPGA was used to investigate the possibility of evolving a hardware controller

for light following and obstacle avoidance behaviours. The controller input was the

robot light and object sensors and the output was a three bit combination that was used

to determine the resulting robot motor directions, (same directions as the LUT). The

virtual-FPGA was configured using a CBS which was evolved using the GA process.

The block diagram in Figure 1-5 shows the interconnections between the virtual-FPGA,

the NIOS processor and the PC. The PC contains the GA and robot simulation, the

evolved bit-streams and simulated sensor information is passed to the NIOS processor.

The NIOS processor configures the virtual-FPGA accordingly and returns the resulting

robot motor direction to the PC.

Figure 1-5 Block diagram of EHW simulation

8

1.4.4 Can a virtual-FPGA (EHW) be evolved to follow a light source while

avoiding obstacles using monolithic and subsumption methods?

Two controllers have been designed to investigate the use of monolithic and

subsumption techniques to evolve a virtual-FPGA controller. The controllers are used to

perform the combined behaviour of light following while avoiding obstacles.

Monolithic- the monolithic EHW controller combines the light and obstacle sensors

into 26 inputs (ten left light sensor bits, ten right light sensor bits and six proximity

sensor bits). The controller outputs are the same as described in section 1.4.3.

Subsumption- the previously evolved EHW controllers for light following and obstacle

avoidance were implemented in a hierarchy based system of which the obstacle

avoidance controller was given a higher level of importance. The block diagram shown

in Figure 1-6 is a visual representation of the subsumption architecture. The high level

decision maker is able to mask and unmask controllers depending on the state of the

sensor inputs.

Figure 1-6 Block diagram of subsumption architecture

9

1.4.5 How do these controllers compare with an ANN?

An ANN was created and then evolved for the behaviours previously described. The

three controllers from each platform were assessed, relating to controller performance,

evolutionary efficiency, scalability, effects of sensor resolution and performance in

unknown environments.

1.5 Publications

Results from this research has been published in an international conference and

submitted to journals.

1.5.1 Conference Paper

M. Beckerleg, J Matulich, “Evolving a lookup table based controller for robotic
navigation” in Evolvable Systems (ICES), 2014 IEEE International Conference,
Orlando, Florida, 2015.

1.5.2 Journal articles submitted

-"A Comparison of Three Evolvable Robotic Navigation Controllers: an Artificial

Neural Network, a Lookup Table and Evolvable Hardware" in Journal of Intelligent &

Robotic Systems.

-"Evolving Robotic Navigational Behaviours using Evolvable Hardware Controllers"

publication in Genetic Programming and Evolvable Machines.

10

1.6 Thesis Structure

This thesis is structured as described below.

CHAPTER 1: This chapter provides an introduction to the topic and outlines the focus

of this research.

CHAPTER 2: Contains an overview of the previous work that has been undertaken

within this area of research. The areas of interest outlined in this chapter have been

divided into three sections, a general overview of evolutionary robotics followed by a

review on the uses of EHW, look-up tables and ANN controllers. The final section

explores the controllers when demonstrating light following and obstacle avoidance

behaviours.

CHAPTER 3: This chapter is used to provide a description of the common systems

used throughout this thesis. This includes a description of the hardware systems and

models that have been developed and a description of the robot and its hardware along

with mathematical models which described the robot kinematics and sensor systems.

CHAPTER 4: A complete description is provided on the work undertaken during the

development of ANN based controllers. The chapter is split into three main sub

categories each outlining the work undertaken and results obtained for the three desired

behaviours.

CHAPTER 5: A complete description is provided on the work undertaken during the

development of LUT based controllers. The chapter is split into three main sub

categories each outlining the work undertaken and results obtained for the three desired

behaviours.

CHAPTER 6: A complete description is provided on the work undertaken during the

development of EHW controllers. The chapter is split into three main sub categories

each outlining the work undertaken and results obtained for the three desired behaviours.

CHAPTER 7: The content within this chapter provides a comparison between each of

the developed controllers for three separate behaviours. The comparison considers five

key areas, controller performance, evolution efficiency, scalability, quantization and

operation in unknown environments.

11

CHAPTER 8: This chapter is the final chapter of this research and is used to provide a

detailed description and analysis of the results obtained. The chapter also outlines any

future research which could be undertaken to further develop the work completed as

part of this research.

12

Chapter 2

Chapter 2: Literature Review

Evolutionary algorithms are heuristic search procedures designed around the natural

reproduction processes. The algorithms are designed as search engines that are used to

find a solution to a problem of which the solution is not easily calculable. The type of

evolutionary algorithm chosen for this research is a GA. The GA has been developed to

mimic the natural selection and evolution process which was developed in 1859 by

Charles Darwin. The evolution process involves three discrete functions, reproduction,

fitness allocation and selection. Reproduction is the process where a new generation of

offspring is created from the parent population. The offspring are created using

crossover and mutation methods with the goal of producing a superior individual.

Fitness allocation is the process where the individuals are tested and their performance

assessed. Each individual is put through the testing procedure and a fitness value is

assigned to each. The selection process uses this fitness value to determine the

individuals that are kept and used for reproduction and the ones that are discarded.

2.1 Review of robotic controllers

Robotic controllers and fully autonomous robots have long been the focus of

evolutionary algorithms. The development of heuristic optimisation algorithms has

provided a method for robotic controller design that does not rely on human design.

This has proven beneficial for several areas of controller design, from simplistic

controllers through to complex controllers that would otherwise require a high level of

understanding and knowledge.

2.1.1 ANN controllers

An ANN mimics a biological neural network with a structure of layered neurons with

each layer interconnected. Each input to the neuron is multiplied by a weighting factor.

When the sum of these inputs into the neuron exceeds a firing threshold, the output

value of the neuron will change. This output can be of various shapes ranging from a

13

step to a sigmoid function. There are wide ranges of network structures with the

simplest being feed-forward. Normally the structure of the network and the neuron

transfer function are fixed when it is designed, while the interconnection weightings are

adjusted in a training period before the ANN is used.

For evolutionary purposes the weightings, firing thresholds, transfer function and even

the network structure can be encoded in a chromosome, which can be evolved using

standard evolutionary techniques. The search space of the chromosome is related to the

number of layers and neurons in each layer of the network. ANN controllers have

become widely used in evolutionary robotics, and applications for their use have been

extensively researched, such as; real time object detection and guidance oriented control

systems using computer vision in vehicles.

Pomerleau et al. [1] used a rule based method of combining several ANNs. Complex

behaviours such as those required for self-driving cars require a controller capable of

employing different controller capabilities for differing environments. The author used a

rule based method for achieving this controller selection method and developed a high

level controller capable of staying on the road and following a set route to a destination.

Kodjabachian et al. [2] used simple geometry oriented cellular encoding (SGOCE) to

evolve recurrent neural networks for control of a simulated six legged insect. The

resulting robotic controller was capable of gradient following and object avoidance

behaviours. On average a solution which was capable of performing the desired task to

a satisfactory standard was found in 50 generations.

Glasius et al. [3] Uses a Hopfield type neural network with nonlinear neurons to control

a robot for path planning and object avoidance behaviours. Three applications were

investigated; 1) A point-robot was tasked with finding a point in a labyrinth; 2) A two

joint planar robot was tasked with avoiding obstacles within an arena; and 3) A moving

target based environment. The evolved controllers were capable to finding a suitable

path between point locations, and were able to avoid both static and moving obstacles

while moving between points.

Bartha et al. [4] used a fully meshed ANN to control a light seeking robot, the controller

was a three layer recurrent neural network with two hidden nodes. The goal of the

controller was to navigate the robot towards a light source, which was placed inside a

rectangular arena. The author explored the effects caused by differing fitness functions

14

and chromosome combination methods on the evolution efficiency and provided a

comparison between the ANN and a finite state machine (FSM). It was found that the

ANN outperformed the FSM and was able to reach a suitable fitness within 500

generations. However, the FSM controller was found to be simpler in design and hence

easier to comprehend.

Abhishek et al. [5] developed an ANN controller for obstacle avoidance behaviours, the

model was designed around the Khepera robot which used six touch and two light

sensors. The authors evolved controllers to a suitable fitness in 50 generations. The

controllers were also tested in a real world environment and proved to perform well

when tasked with avoiding the wall of the arena.

Wahab [6] trained an ANN controller for a mobile robot which was designed with two

types of proximity detection, ultrasonic range and infrared sensors. The controller used

two ANNs the first of which provided position control while the second provided the

obstacle avoidance control. The final controller was successful at navigating an arena

and stopping when reaching a target location.

Harter [7] designed a neural controller which has been used to navigate a Khepera robot

about an arena with obstacles. Rather than the standard ANN model the controller was

based on the aperiodic K –set neural population model. Each controller chromosome

consisted of 10 KA units, four from the left proximity sensors, and four from the right

and two for the robot motors. Each unit ranged from -1 to 1 and consisted of 100

increments. Results from the experiments showed that the evolved controllers produced

simple but effective object avoidance behaviours.

Elnebreich and Klingler [8] used an ANN controller to navigate a four wheeled robot

around an arena. The controller was provided sensory inputs via three dynamically

adjustable infrared sensors. The sensors were adjusted to provide an increase detection

angle. The controller output provided robot steering and motion control. A comparison

was undertaken of the GA evolved ANN vs. a pre-engineered ANN. It was found that

after 50 generations the ANN controller was able to outperform the pre-engineered

controller. It was also discovered that small ANNs with fewer nodes performed best and

those with large node numbers would exhibit population convergence.

15

2.1.2 Fuzzy logic controllers

The FLC attempts to avoid crisp data, such as a precise temperature, or true/false,

instead using fuzzy data that is imprecise or partial. This allows for a robust controller,

which is easy to implement. A FLC has three processes, fuzzification, rule evaluation,

and defuzzification. Fuzzification converts precise data inputs into imprecise values, by

assigning the input to a degree of membership. Rule evaluation acts on the fuzzified

inputs by a set of fuzzy rules, normally a sequence of if-then logic statements and fuzzy

logic algebra. Finally, the manipulated data is defuzzified to produce a precise output

value. The parameters of a fuzzy logic controller including fuzzification of inputs,

implementation of fuzzy rules, and defuzzification of outputs, are normally configured

by experiment or design. However, a GA can be applied to these parameters to evolve

fuzzy logic controllers. Seung et al. [9] developed a sensory motor controller for a

mobile Khepera robot which was capable of efficiently navigating different arenas and

demonstrating emergent behaviours. Hagras et al. [10] used a modified GA to evolve a

fuzzy logic based robot controller. The controller was capable of online self-calibration

to automatically adjust the membership functions. This made the controller suitable for

a fast changing dynamic environment. Sung et al. [11] developed a self-organized fuzzy

controller to provide the means of controlling a wheeled mobile robot. A rule based

evolutionary process was used to find solutions to output and input membership

functions. It was discovered that optimal solutions were not always found using the rule

based membership function.

Mohammad et al. [12] developed a controller for the E-Puck robot, the controller was

designed for robot navigation and obstacle avoidance. The author used MATLAB to

implement the fuzzy logic rules for which eight infrared sensors provide the inputs

while the outputs are used to control the robots two motors. The fuzzy logic was a

successful controller for the E-Puck robot and the controller enabled the robot to

navigate through an arena to a desired location.

Almasri et al. [13] developed two fuzzy logic robotic controllers, the controllers were

designed for the E-Puck robot and implemented two behaviours; line following and

object avoidance. The line follower controller used two of the three available line

sensors as inputs. This way the controller determines the difference between the two

sensor values and inputs the difference into the fuzzy logic controller. Two motor

control outputs were generated which determined the robots motion. The object

16

avoidance controller used similar methods however eight proximity inputs were used as

inputs to the fuzzy system. The two controllers were combined to produce a robot that

was capable of following a line until an object or other robot was encountered, the robot

then successfully avoided the object.

2.1.3 LUT controllers

The LUT, also referred to as a “table-based” controller, is used for quantized discrete

sensor inputs and actuator outputs where the relationship between the inputs and outputs

are mapped in a table. They have their limitations in relationship to scalability; however,

they are computationally fast in their execution. A current example of their use in

control is the MAX31760 controller with a LUT stored in non-volatile memory. They

have been researched for several control applications including building environmental

control [14] where LUTs are used to calculate building temperature control set points

where dependencies are based on current and predicted weather, occupancy and other

conditions; Use in pH neutralization [15] where two dimensional LUTs are used in

conjunction with neural networks and fuzzy controllers for applications such as boiler

feed water and wastewater treatment; Underwater vehicles [16], where the authors

compare the response time, overshoot and steady state error of LUT controllers, fuzzy

logic controllers and conventional controllers for use in a six degree of freedom

autonomous underwater vehicle; and mobile robot controllers [17], where a LUT

controller is designed to enable faster obstacle avoidance in a multi obstacle

environment, it was found that the LUT method reduced the operational time by nearly

80% when compared to a positive/negative fuzzy controller.

For evolutionary purposes, the parameters and size of the LUT can be encoded into a

chromosome and evolved. Several evolutionary capable robotic LUT controllers have

been developed to control a range of robotic systems including: a mobile inverted

pendulum [18], the walking gait of a hexapod robot [19], a curved ball-balancing beam

system [20], a ball plate and four robotic behaviours [21], orbiting, path following,

follow the leader and dispersal, implemented on a Kilobot simulation [22]. A

description of the inverted pendulum, curved ball balancing beam and ball and plate

system is described below.

A LUT controller for a mobile inverted pendulum was evolved, this controller was a

two dimensional LUT, with the input axis linked to the pendulums angle and angular

17

velocity. The internal elements of the LUT contained the motor speed and direction

information which were used to maintain the robots upright position. The evolved

controller was complete within 200 generations and was capable of maintaining an

upright position for more than 200 seconds [18].

A simulation has been developed for a curved ball balancing beam, a three dimensional

LUT controller provided the interface between the system inputs (ball position, beam

position and ball speed) and the system output (Beam drive motor speed and direction).

The author used a GA with two point crossover and tournament selection to evolve the

controller and compared the effects on evolutionary efficiency caused by increasing the

number of motor speeds in the LUT elements. It was that a controller with only two

speeds was able to evolve to the same standard as a controller with 11 speeds in far

fewer generations [20].

A novel LUT controller has been developed for a ball and plate system. The system

uses two servos to drive the plate about the X and Y axis while a touch screen provides

feedback of the ball position to the controller. A separate LUT was evolved for each

servo which provided set point selection on the X and Y axis. The author investigated

the fault tolerance of the system by introducing a fault condition and determining how

quickly the controller would recover. The fault recovery time varied between

controllers. However, the majority of controllers recovered in 10 to 30 seconds [21].

2.1.4 EHW controllers

An EHW robotic controller uses evolved logic circuits to control the robot. The

electronic circuits coded by a hardware description language and implemented in a

FPGA are described by the configuration bit-stream used to program the device. This

bit-stream can be used as a chromosome in EHW where the phenotype of the

chromosome is the circuit. Original research used the Xilinx XC6216 FPGA, which was

suitable for evolution as its architecture was immune to destructive chromosomes,

however this FPGA is no longer produced [23, 24]. Currently the three main methods

used for hardware evolution of robotic controllers for navigation are: a) genetic

compilers that are specifically designed to evolve a CBS without destructive

architecture [25, 26]; b) genetic programming where the hardware descriptive language

is evolved, and then converted into the bit-stream [27]; and c) the virtual FPGA

configured inside a normal FPGA. The virtual FPGA is designed for non-destructive

18

and course-grained architectures suitable for evolution [28, 29]. Previous EHW

controllers are described.

Tyrrell et al. [25] developed an EHW controller, which was evolved on a Xilinx FPGA.

The controller was designed for object avoidance behaviours and was implemented on

the Khepera robot. The controller was comprised of 22 LUTs with eight inputs from the

proximity sensors and two outputs to the robots motors. The controllers struggled to

reach an average fitness of 1200 in 50 generations; however, when the mutation rate

was increased it was found that an average of 1200 was reached in less than 30

generations and the maximum fitness increased from 1200 to 1400.

Keymeulen et al. [30] created an EHW controller which performed object avoidance

and mobile navigation tasks. The robot was 250mm in diameter with ten infrared

proximity sensors and two cameras which provide information used for colour object

tracking. The controller operates as a simple Boolean function control system, the

Boolean equivalents of the proximity sensor outputs are binary coded and used as the

input to the control system. The controller outputs are used directly to control the

robots left and right motors for navigation. The evolved gate level hardware controller

was able to take advantage of the numerous correlations of the sensor states. This

resulted in a highly robust control system which was not affected by the shape of the

obstacles.

Dhanaskekaran et al. [31] used an EHW system to coordinate multiple elements of a

smart antenna array. The system was designed to handle faults and extreme unexpected

situations which were otherwise incorrectly handled by conventional systems. The

control system developed for this was designed around an EHW circuit based in an

FPGA and was evolved using a GA. The resulting outcome was a system capable of

self-configuration and fault tolerance. It was also found that the EHW system

outperformed the conventional systems in terms of evolution efficiency and controller

performance.

19

2.2 Hierarchical evolution

Standard evolutionary techniques use monolithic evolution where a behaviour is

evolved in its entirety, however this technique has limitations in the evolutionary

process requiring a large amount of time for evolution, difficulties in the initial

generations (bootstrap problem), and many local minima. These problems are alleviated

using the following techniques, including subsumption architecture and incremental

evolution that divide behaviours into modular tasks.

Note, this research does not focus on hierarchical evolution instead hierarchical

evolution is used to explore the scalability properties of the controllers.

2.2.1 Subsumption

The concept of subsumption evolution was first conceived by Brooks [32, 33], using a

hierarchy layered behavioural approach where the lower level layers directly interfacing

to the actuators, perform basic behaviours such as movement, avoidance, and following,

whereas the higher layers have complex behaviours such as foraging or fleeing. Each

layer works independently but the higher layers can override (subsume) the lower layers

using an inhibitor which blocks the output of a lower layer, or a suppressor which

replaces the inputs to the lower layer.

Saito et al. [34] used subsumption architecture for emergency obstacle avoidance in a

mobile robot. The robot in this experiment consisted of an electronic wheelchair, a

laptop and an embedded microcontroller which was used to interface with a laser range

finder. The overall task was decomposed into four layers: autonomous, turn left, turn

right and emergency stop. The range finder detection zone has been split into three

sections and the controller determines which tasks will be suppressed based on the area

in the detection zone that an object is detected. The controllers were tested with static

and semi-static obstacles with good results.

Dasmane [35] created a subsumption based controller for a robot that moved towards a

light while avoiding obstacles. The robot used in the experiments was multi legged and

contained real time proximity and light sensing capabilities. Individual controllers were

used for light following and obstacle avoidance, however only one controller was used

at a time. The light following controller was subsumed whenever an obstacle was

detected giving the obstacle avoidance controller a higher level of priority.

20

Turner et al. [36] used a multi-layer subsumption based robot controller to map its

environment while avoiding obstacles. A FSM based controller was used to explore the

advantages of subsumption based architectures. A controller platform was developed

that used input suppressors and output inhibitors to dynamically manipulate the

controller for any given state of sensor input. Much like the work completed by Brooks

[33] the controller utilised different function blocks. In this case the blocks required

were wander, explore and avoid collisions. The controller was designed to explore and

map a robotics lab until all available areas had been mapped. After several test runs and

a number of problems encountered, the controller managed to produce a map of the lab

which was approximately 790𝑚𝑚2.

Tiong Cheng and Mahyuddin [37] used subsumption behaviours to move a robot

towards a light source while avoiding obstacles. The robot behaviours were split into

three sub behaviours, obstacle avoidance, goal seeking (light following) and wandering.

The wandering behaviour has the lowest priority and was only implemented when either

light or object was detected. The object avoidance controller had the highest level of

priority to ensure no object was hit. A trial of 40 produced 35 successful controllers that

avoided the obstacles and found the light source.

2.3 Genetic algorithm

The use of a GA as a means of finding a solution to a complex problem was originally

explored by John Holland in the 1960s [38]. Holland`s research was directed towards

the natural evolution process and the possibility of mimicking this process in manmade

systems. The GA provide a method of finding solutions to a problem by using a process

very similar to that of which occurs in nature according to the theory of evolution

developed by Charles Darwin [39]. The GA process begins by creating a randomized

initial population. The population is comprised of several individuals otherwise known

as chromosomes. Each of the chromosomes contains a potential solution to the problem

for which a solution is required. The initial population is then put through the three

stages of evolution as outlined below.

• Fitness evaluation – where the behaviour of each individual chromosome is

assessed in relation to the desired behaviour and scored on how well the

behaviour was performed.

21

• Selection – individual chromosomes from the entire population including the

offspring are chosen to continue the evolution process depending on the fitness

values they have been assigned. Individuals with a high fitness perform the

desired task better than individuals with low fitness values and hence are more

likely to be chosen for reproduction.

• Reproduction – pairs of adults in the population are used to reproduce a new set

of offspring with the goal of passing on desirable traits to the future generations.

Amalgamation of the parents to form the offspring is a randomized process

designed to mimic that which occurs in nature.

The GA process is a continuously evolving cycle and the steps outlined above are

repeated over and over while the population adapts and changes to suit the

requirements as outlined by the desired behaviour.

2.3.1 Fitness allocation

The measure of a chromosomes performance (fitness) is calculated by means of a

fitness function whose output is a reflection on the chromosomes ability to perform the

desired task. The design of the fitness function is important to the success of the GA as

it provides the foundation from which the evolved chromosomes are formed. A slightly

misguided fitness function can cause the population to converge on a particular

undesired behaviour. However, a precisely tuned function can greatly increase the rate

at which a desired result is obtained.

The importance of fitness design has previously been explored, Trujillo et al. [40]

considered the effects on performance of an unmanned aerial vehicle (UAV) due to

variations in fitness algorithms. Teams of three UAVs were required to set off from a

starting point and perform a number of defined tasks. The authors discovered that due to

limitations in the fitness algorithm some of the UAVs would complete the task much

faster than others and return home earlier creating an unbalanced taskforce which was

less than desirable. To overcome this, the authors made adjustments to the fitness

algorithm to include constraints which would penalize any UAVs not returning home

within two minutes. Introducing this constraint in the fitness algorithm proved to

balance the task force and group the return times within the allowable time period.

The fitness algorithm for most GAs tends to force the population to perform a particular

behaviour. If this fitness algorithm is slightly misguided then the resulting outcome will

22

also tend to be slightly inaccurate. Hence for most genetic evolution problems the actual

fitness algorithm will be tuned and adapted over several experimental test runs with the

goal of producing the desired result.

2.3.2 Selection schemes

A selection process chooses individuals from the evolving population to be used in the

reproduction stage of the evolution. The selection process used can conform to one of

the many previously developed selection methods and in some cases contain attributes

from more than one method. The goal of the selection process is to select individuals

that will provide the best chance of success while maintaining diversity in the

population. The actual selection is usually based on the performance of each individual

such that better performing individuals are kept over those not performing so well.

Tournament selection

Tournament selection is a technique used in evolutionary algorithms to select

chromosomes from the population for reproduction. Tournament selection operates by

executing tournaments within the population much like the tournaments of sporting

events. The number of individuals in each tournament has a direct effect on the

selection pressure applied to each individual. The selection pressure is a measure of the

requirement for an individual to perform well, this pressure decreases with small

tournament sizes and increases with larger tournament sizes. Miller and Goldberg [41]

created a model that predicts the selection pressure based on tournament size. The

model was then applied to predict population convergence rates based on the selection

pressure.

Fitness proportionate selection

Fitness proportionate selection, otherwise known as roulette wheel selection, is a

technique used in evolutionary algorithms for selecting individuals that may prove

beneficial for the success of the population. Similar to tournament selection the fitness

proportionate selection method requires each individual to have an assigned fitness

value. The fitness value is divided by the total fitness of the population and used to

determine the probability of the individual being selected for reproduction. This can be

visually represented in the form of a roulette wheel as shown in the following example.

23

Table 3 Fitness proportionate example

Individual number Individual fitness
1 50
2 10
3 20
4 6
5 1
6 3
7 4
8 9

Based on the information provided in

Table 3 the probability for selection of each individual can be determined; the fitness of

each individual is normalised to one by dividing the fitness by the total shown in

Equation 1. The resulting normalised values are shown in Table 4

 Total fitness = ∑ 𝐹𝐹𝑘𝑘8
𝑘𝑘=1 = (50 + 10 + 20 + 6 + 1 + 3 + 4 + 9) = 103 Equation 1

Table 4 Fitness proportionate example with normalized fitness

Individual number Individual fitness Normalized value
1 50 0.485
2 10 0.097
3 20 0.194
4 6 0.058
5 1 0.001
6 3 0.029
7 4 0.039
8 9 0.087

The roulette wheel shown in Figure 2-1 clearly shows that the chance of individual one

being selected is much greater than the others. However the individuals with a low

fitness do still have a chance of been selected, meaning that if they do hold valuable

chromosomes there still remains a chance that they could be used to reproduce and in

turn produce an offspring containing that valuable information.

24

Figure 2-1 Roulette wheel selection scheme

Razali and Geraghty [42] compared rank based roulette wheel and proportional roulette

wheel selection strategies with tournament selection. The authors compared the

selection performance on the common traveling salesman problem and found that

tournament selection outperformed both roulette selection methods. They also

discovered that for large problems population convergence became a problem with

tournament and rank based roulette wheel selection methods.

25

2.3.3 Procreation

Single point crossover

Selected at random one point inside the chromosome is chosen, this point provides the

separation line which will be used to divide the chromosome. In some cases this is

easier than others, for example a two dimensional chromosome like the ones shown in

Figure 2-2 can easily be split with one point. However complex chromosomes such as

three dimensional LUTs may require a more sophisticated reproduction technique than

single point crossover.

 Parent 1

A B C D E F G H

 Parent2

H C E D F A B G

 Offspring 1

A B C D F A B G

 Offspring 2

H C E D E F G H

 Figure 2-2 Single point cross over example.

In the example shown in Figure 2-2 two parent chromosomes have been selected for

reproduction and a single point for crossover has been determined. Splitting the parents

along the crossover point and combining the sections with one part from each parent

creates two offspring each containing unique properties from their parents.

In some particular situations the offspring may need to be adjusted or repaired after the

crossover process. This is necessary when the particular task that the evolutionary

algorithm has been designed for requires that the genes in each chromosome cannot be

repeated. However not all evolutionary algorithms require a unique combination of

genes in each chromosome, in some case it does not matter if a gene was to repeat over

and over again. Such is the case for a motor controller where the chromosome may

contain motor speed values, in this case there may be several conditions that may

require the same speed and hence many genes in the chromosome may be repeated.

26

If the chromosomes need to be repaired then the evolution process must take care of this

before the offspring are released into the population. In Figure 2-3 the genes highlighted

in red were damaged genes and have been repaired to complete the chromosome.

Offspring 1

E B C D F A H G

 Offspring 2

A C E D B F G H

 Figure 2-3 Adjusted chromosomes

Multi-point crossover

Multi-point crossover is a similar technique to single point crossover used in the

creation of offspring. The difference between single and multi-point is the number of

points and hence the number of sections created and combined together for each

offspring. Two-point crossover becomes necessary when the evolutionary algorithm is

attempting to evolve large chromosomes with complex desired results. The problem

with using a single point crossover method for larger chromosomes, is that it becomes

difficult and highly unlikely that small sections from the internal sections of the parent

chromosomes which may be key to the success of that individual, will be passed on to

the future generations.

27

Figure 2-4 demonstrates how a two-point crossover technique can extract small sections

of genes from within the parent chromosome and pass that information on to the

offspring. In this example genes C and D are passed from parent one to offspring one

and genes E and D are passed from parent two to offspring two. In some cases several

points of crossover can be selected providing a larger number of sections used in the

creation of offspring.

 Parent 1

A B C D E F G H

 Parent2

H C E D F A B G

Offspring 1

H C C D F A B G

Offspring 2

A B E D E F G H

Figure 2-4 Two-point cross over example

28

2.3.4 Mutation

In nature mutation occurs spontaneously, usually at non periodic intervals with a low

mutation rate [43]. In evolutionary algorithms mutation occurs when a gene or

chromosome is altered from that which would normally occur during the reproduction

process. The rate of mutation is generally set very low in the range of 1-3%, meaning

that there is only a very low chance that a mutation will occur and when it does it

usually only effects one gene in the chromosome. The gene that is affected is chosen at

random and the change that occurs also happens at random. Mutation helps to provide

diversity. When the evolution of a population has slowed or even stopped, which may

be due to the fitness reaching a local maximum on the fitness landscape, a mutation can

provide the required change to move the evolution process to the next peak of the

landscape and continue the evolution process.

Figure 2-5 Fitness Landscape mutation example

Figure 2-5 shows an example of a fitness landscape with several local maxima if the

evolution process were to converge to the point indicated by P1 then the only way the

process could continue to find the optimum maxima is by means of a mutation. After

which the mutated individual may appear on the landscape at the point indicated by P2

hence allowing the evolution to continue.

29

Chapter 3

Chapter 3: Common Systems Developed for Experimentation

This chapter describes common systems that have been used in experimentation, and is

broken into three main sections. An outline of each section is described below.

• Section 1: Robot overview. This section contains the mathematical models, and

descriptions of the hardware systems for the robot from which the simulations

have been derived.

• Section 2: Software and simulation design. This section describes the software

that performs the GA evolution of the controllers and contains a functional

description of the GUI.

• Section 3: GA process. This section contains a description of the processes that

have been developed specific to the GA process, such as fitness allocation and

selection processes.

Each of the sections outlined above contain an overview followed by a detailed

description of the systems that were created for each of the robotic behaviours.

3.1 Hardware overview

The physical robot used in the research for this thesis was specifically designed by the

author for research into evolvable robotic controllers for navigation. The robot hardware

is comprised of an FPGA development board (Altera’s DE0-Nano), light and obstacle

sensors, two wheels with associated hardware drivers, Bluetooth communications, user

interface and battery. On board the FPGA, a soft core NIOS processor has been

implemented, providing the interface between sensor inputs and the outputs used for

motor control. Hardware based modules have been designed in Verilog that relay sensor

information to the processor, the sensor information is used to determine how the robot

should operate. The processor passes motor speed and directional information to

additional hardware modules to drive the robots two DC motors. The DC motors

30

independently drive a wheel located opposite each other near the perimeter of the robot.

This gives the robot the ability to rotate on the spot as well as efficiently move in a

straight line to any location in the arena. Figure 3-1 shows an actual photo of the robot

designed to carry out the research.

Figure 3-1 Photo of actual robot

3.1.1 Robot kinematics and mathematical model

The robot modelled for this research is a stable two wheeled platform which uses two

small guides to provide balance. The mathematical model of the robot is described

using three equations. The first equation describes the robots change in heading, the

second equation describes the distance travelled along the X axis and the third equation

describes the robots distance travelled along the Y axis. Each equation is developed

with respect to the left and right motor movements.

31

The subsequent set of parameters and equations are developed with the following

confines applied to the system. Firstly, the simulation is designed to run at 50ms

intervals (dt). The second restriction applied to the system is the speed control on the

motors, to simplify the mathematical model it was decided that the motors should run at

one set speed and only have control on the wheel rotational direction (CW or CCW).

Table 5 contains a list of parameters and terms used in the equations and formula in this

section.

Table 5 Parameters used in mathematical model of the robot

dt Simulated time step (ms)

θ Wheel Diameter (mm)

RPM Motor revolutions per minute

CW Clockwise

CCW Counter clockwise

d Distance travelled in a straight line in 1 dt (mm)

r Pivot radius (mm)

Wø Wheel circumference (mm)

dθ Change in robot heading

dx Change in x location

dy Change in y location

R Turn radius

Because the motor speed has been defined as constant, a finite list of available robot

motions can be described; Forward, reverse, turn left forward, turn right forward, turn

left reverse, turn right reverse, pivot CW, pivot CCW and stop.

32

Pivot left and right

When the robot is pivoting CW or CCW the X and Y location of the robot will remain

the same with only the heading increasing or decreasing, as shown in Figure 3-2.

Figure 3-2 Diagram of the robot pivoting clockwise

To determine the change in heading when the robot is pivoting, the distance travelled by

a wheel in one time period (50ms) needs to be calculated using Equation 2 and Equation

3.

 𝑊𝑊ø = 𝜋𝜋 ∗ θ = π * 32 = 100.5mm Equation 2

 𝑑𝑑 =
𝑅𝑅𝑅𝑅𝑅𝑅

60
𝑑𝑑𝑑𝑑

∗ 𝑊𝑊ø =
73
60

0.05
∗ 100.5 = 6.1𝑚𝑚𝑚𝑚 Equation 3

Where:

Wø is the wheel circumference.

 θ is the diameter of the wheel (32mm),

RPM is the selected motor speed, 10% of the maximum (730RPM),

dt is the simulated time period (50ms),

d is the distance travelled in dt

33

The black dot in the centre of the two wheels in Figure 3-2 represents the centre point of

the robot. If both the left and the right motors are running in opposite directions the

robot is said to be pivoting and the resulting change in heading can be calculated using

Equation 4.

 dθ = = d
r
∗ 180

π
= 6.1

40
∗ 180

π
= ±8.7° Equation 4

Forward and reverse

When the left and right motor directions are the same i.e. both forward or both reverse,

the robot moves in a straight line. For simulation purposes the speed of the motors are

assumed identical.

Figure 3-3 Diagram of the robot moving in a straight line

From Figure 3-3 Equation 5 and Equation 6 for the change in X (dx) and change in Y

(dy) coordinates can be derived.

 𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ sin (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) Equation 5

 𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ cos (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) Equation 6

34

Example calculation: If the robot is travelling at a heading of 0 degrees, the expected

change in coordinates should be a 6.1mm increase on the X axis and zero change on the

Y axis.

𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ cos(90) = 6.1𝑚𝑚𝑚𝑚

 𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ sin(90) = 0𝑚𝑚𝑚𝑚

As expected the robots position changes by 6.1mm on the X axis and remains the same

on the Y axis.

This set of equations holds true as long as the robot is moving in a straight line. If the

robot starts to move nonlinearly then a separate set of equations are used to find the new

location. These equations are explained in the next section.

35

Turn Left and right

When one of the robots wheels are moving and the other is stationary, the robot will

pivot around the stationary wheel producing a change in the robots heading and position,

as shown in Figure 3-4.

Figure 3-4 Diagram of the robot turning

The new robot position is calculated using Equation 7 and Equation 8.

 𝑑𝑑𝑑𝑑 = 40 ∗ [𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑑𝑑θ)– 𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)] Equation 7

 𝑑𝑑𝑑𝑑 = 40 ∗ [𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑑𝑑θ)– 𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)] Equation 8

Where:

dθ is the change in robot heading while turning which equals half that of the

change in heading while rotating (±8.7°), therefor dθ = ±4.35°.

Example calculation: If the robot heading is 0 degrees and the left wheel moves forward

while the right wheel remains stationary. Then it is expected that the robot should move

along on the X axis by some value that is slightly less than half of 6.1mm and move

down the Y axis by a distance slightly greater than zero.

 𝑑𝑑𝑑𝑑 = 40 ∗ (sin(4.35) − sin(0)) = 3.03𝑚𝑚𝑚𝑚

 𝑑𝑑𝑑𝑑 = 40 ∗ (cos(4.35) − cos(0)) = −0.12𝑚𝑚𝑚𝑚

36

The values obtained from the equations above are as expected, a small amount of

movement down the Y axis due to the negative value (-0.12mm) and 3.06mm along the

X axis.

3.1.2 Robot Sensor Models

3.1.2.1 Obstacle avoidance systems

Proximity hardware

16 mm

1250

62 mm

32 mm

Obstacle Sensors

Figure 3-5 Proximity sensors physical layout

Figure 3-5 shows the orientation and positioning of the robots six proximity sensors.

Five sensors provide the coverage towards the front of the robot and a sixth sensor

provides feedback from the rear. The application notes available for the proximity

sensors (VCNL3020) describe a cone shaped detection zone with an angle of ±40º and a

maximum range of 200 mm as shown in Figure 3-6.

37

3.46mm

200mm

400

Figure 3-6 Proximity sensor detection view

The sensors have software configurable detection range, so for the simulation this

detection range has been set to 50mm as shown in Figure 3-7. This provides ample

distance to allow time for the robot to stop before a collision, and also allows the robot

to navigate between closer obstacles. The sensors have been configured to provide a

digital output.

Figure 3-7 Maximum proximity detection area (red circle 50mm sensor range)

38

Proximity sensor mathematical model

For simulation purposes the sensors have been modelled as a straight line heading

directly outwards from the perimeter of the robot in the direction of the sensor as shown

in Figure 3-8.

Figure 3-8 Simulated proximity sensor coverage

Reducing the detection area to a single line reduces the processing time required to

check each sensor. In a real world operation the proximity detection operates at the

speed of light only limited by the time it takes for the sensors to process the data and

trigger an interrupt. In simulation the software needs to progressively check the sensor

regions one small section at a time. For example if the sensor covers an area of

1000𝑚𝑚𝑚𝑚2. Then because of the scale of the grid in the simulation, the software would

have to check 6000 locations. This increases the evolution time dramatically.

A formula has been developed to simulate the checking process of each of the proximity

sensors. This formula works by calculating each X and Y coordinate in a straight line

out from the proximity sensors to a maximum range of 50mm.

39

Equation 9 and Equation 10 provide the increments along the X and Y axes which are

used when scanning along each sensors object detection path.

 𝑑𝑑𝑑𝑑 = sin (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) Equation 9

 𝑑𝑑𝑑𝑑 = cos (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) Equation 10

Where:

 dx is the increment on the X axis,

 dy is the increment on the Y axis,

 Robot heading is the current heading of the robot,

 Sensor angle is the angle of the sensor in relation to 0 degrees on the robot.

A list of the sensors and their respective angles is shown below in Table 6.

Table 6 Sensor positions and their respective angles

Sensor # Position Angle (Front = 0°)
1 Left side 270°
2 Left front 330°
3 Front 0°
4 Right front 30°
5 Right side 90°
6 Rear 180°

The left and right side sensors are not positioned radially round the centre point of the

robot; because of this, the starting coordinates of the scan line need to be calculated

using Equation 11 and Equation 12. If the robot has a heading of 0 degrees and a

location of (600, 600), then the resulting starting coordinates for the scan line will be (-

31, 32) and (31, 32) for the left and right sensors respectively.

 𝑋𝑋 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑(31 ∗ cos(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) + 𝑑𝑑𝑑𝑑(32

∗ sin(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒))
Equation 11

40

 𝑌𝑌 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑(31 ∗ sin(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) + 𝑑𝑑𝑑𝑑(32

∗ cos(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒))
Equation 12

Where:

 X is the starting location for the scan cycle on the X axis

 Y is the starting location for the scan cycle on the Y axis

 50mm is the robots radius

 8 is the distance the sensor is in from the perimeter

 30 is the sensor offset from the Y axis

 dx is the increment on the X axis

 dy is the increment on the Y axis

The scan cycle for checking each position along the straight line from each sensor, starts

at the coordinates (X, Y) calculated using Equation 11 and Equation 12 and scans in

1mm increments. For each step, the simulation cross references the coordinates with the

arena information to determine if an object is within the range of the sensor. If an object

is detected then the sensor output is true otherwise, it remains false.

41

3.1.2.2 Light following systems

Light sensing hardware

1000Light Sensors

80 mm
50 mm

16 mm

6
m

m

28
 m

m

Figure 3-9 Light sensor physical layout

The robot has two light sensors; the sensors are located on the top and near the centre of

the robot as shown in Figure 3-9. The sensors and are rotated 10 degrees down from the

X axis which provides 20 degrees of separation between the sensors. This physical

layout provides amplification between the two light sensor readings, therefore

increasing the measurable difference in light intensity on each sensor when looking at a

single point light source. If the two sensors were both pointing in the same direction,

then the light intensity seen by each sensor would be very similar.

Light sensor mathematical model

The light intensity value measured by the light sensors is dependent on the angle of the

sensor in relation to the light source. If the sensor is pointing directly at the source, then

the value will be at its maximum. If the sensor is in the same position but pointing in the

opposite direction then the value will be at its lowest. As the sensor rotates towards the

light source the values obtained from the sensor will gradually increase. This property

means that the model for the light sensors only relies on the orientation or heading of

the sensors, which can easily be calculated based on the actual heading of the robot.

42

The following set of equations determines the direction of the light source in relation to

the robots heading. Based on this the angles between the light source and the light

sensors are determined (left and right sensor error).

𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = tan−1 �

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑋𝑋 − 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑋𝑋
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑌𝑌 − 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑌𝑌

� Equation 13

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) Equation 14

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 10 Equation 15

 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 10 Equation 16

A restriction was put in place to allow for a more realistic simulated light intensity, this

was done by implementing a maximum displacement angle from the light source. It has

been determine that if the angle between the light sensor and the light source is more

than 90 degrees then the calculated intensity would be 0. Using Equation 17 the light

intensity for each sensor can be calculated. The resolution of the sensors is determined

by the quantization level. A quantization level of nine results in a light intensity ranging

from zero to eight.

𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑄𝑄𝑄𝑄 − 1) − �

𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
90 � ∗ (𝑄𝑄𝑄𝑄 − 1) Equation 17

Where:

QL is the quantization level, selectable from within the GUI,

Sensor error is the value obtained in Equation 15 and Equation 16,

90 is the maximum sensor error before the output value will return zero

An adjustable quantization level has been implemented. This is used to explore the

effects caused by different sensor quantization levels on the evolution process and

controller performance.

43

Example calculations

In Figure 3-10 the robot has a heading of 90 degrees, in this case the light source is

directly in front of the robot and the quantization level is set to nine (0-8).

Figure 3-10 Light calculation 90° heading

Left sensor error (∅1) = 0 + 10 = 10

Right sensor error (∅2) = 0 – 10 = -10

Left sensor intensity = 8 − �𝐴𝐴𝐴𝐴𝐴𝐴(10)
90

� ∗ 8 = 7

Right sensor intensity = 8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−10)
90

� ∗ 8 = 7

As expected both sensors return a light intensity of seven, this is because the robot is

facing directly at the light source.

Even though the robot is facing directly at the light source the sensors don’t achieve the

maximum light intensity, this is due to the 10 degrees offset of each sensor

44

Figure 3-11 is an example of what light sensor values are obtained if the robot is not

looking directly at the light. In this case the robot has a heading of 80 degrees and again

the quantization level is set to nine (0-8).

Figure 3-11 Light calculation 80° heading

Left sensor error(∅1) = -10 + 10 = 0

Right sensor error(∅2) = -10 – 10 = -20

Left sensor intensity = 8 − �𝐴𝐴𝐴𝐴𝐴𝐴(0)
90

� ∗ 8 = 8

Right sensor intensity = 8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−20)
90

� ∗ 8 = 6

As expected the left light sensor returns a value of eight because it is facing directly at

the light and the right sensor returns a value of six because it is facing 20 degrees away

from the light.

45

The final example shown in Figure 3-12 shows the robot with a heading of 45 degrees

and in this case both light sensors are pointing slightly away from the light source,

however the right sensor is pointing further away.

Figure 3-12 Light calculation 45° heading

Left sensor error (∅1) = -45 + 10 = -35

Right sensor error (∅2) = -45 – 10 = -55

Left sensor intensity = 8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−35)
90

� ∗ 8 = 4.5

Right sensor intensity = 8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−55)
90

� ∗ 8 = 2.5

The left sensor is closer to the light source and hence has a higher light intensity than

the right sensor. For use in the simulation the light values are rounded, left = 5 and right

= 3.

46

3.1.3 Arenas

This section contains the scaled models of the six object avoidance arenas used in the

object avoidance sections of this research. Arenas A, B and C have been used to evolve

the controllers, and arenas 1, 2 and 3 are the unfamiliar arenas which are used to test the

adaptability of the evolved controllers. All the arenas in Figure 3-13 are scaled versions

of the actual arenas used.

 Arena A Arena B Arena C

D
ev

el
op

m
en

t a
re

na
s

 Arena 1 Arena 2 Arena 3

Te
st

 a
re

na
s

Figure 3-13 Development and test arenas

47

Genetic algorithm procedures

A general overview of the evolution process for each of the behaviours is outlined

below.

• Initial population is created and tested.

• The following is repeated.

o The parent population is used to create offspring.

o The offspring are tested.

o The new parents are selected from the offspring and old parents.

Initial population is created – 100 individuals are randomly generated, a number from

0 to 7 is randomly selected and assigned for every element in the LUT. The value stored

in each element is decoded using the information shown below in Table 7 to determine

the left and right motor directions and hence the motion of the robot.

Table 7 Robot motions based on value stored in the LUT elements

LUT Element
content

Wheels(L/R) Description

0 F/F Forwards, robot travels in straight forward
1 F/S Turn right forwards, robot will turn about right wheel CW
2 F/R Rotate CW, robot pivots on the spot CW
3 S/F Turn Left forwards, robot will turn about the left wheel

 4 S/R Turn right reverse, robot will turn about left wheel CW
5 R/F Rotate CCW, robot pivots on the spot CCW
6 R/S

Turn left reverse, robot will turn about right wheel CCW
7 R/R Reverse, robot travels straight backwards

Note, S/S has been removed from the table as it is not used in the simulation.

A detailed description of the LUT, ANN and EHW configurations used in each of the

three behaviours is described in chapter 4, 5 and 6 of this thesis.

Initial population is tested – The initial population is put through a test process that

determines how well each controller performs the desired behaviour. The simulation

places the robot at a predefined starting location and uses the mathematical models of

the robot to determine the required sensor information. The calculated sensor

information is used in conjunction with the controller to determine the robots next

motion as outlined in Table 7. The simulation again uses the mathematical models of

48

the robot to determine the robots new position and orientation. The process continues

until a predetermined time limit is reached.

On completion of the individual test, the robot performance is assessed. The assessment

uses a fitness algorithm to determine a suitable fitness value based on how well the

individual performed. Descriptions of the fitness functions for the behaviours are

described in section 3.1.4 of this thesis.

The population is used to create offspring – The offspring reproduction method

varies slightly depending on the type of chromosome that is being evolved. However,

the method of reproduction used is the same for each controller. Individuals are paired

up and random points in the chromosome are chosen. These areas provide the point at

which combination between chromosomes occurs before the mutation process is

undertaken. This creates two new individuals and doubles the population size.

The offspring are tested – The newly created offspring are then put through the same

fitness evaluation as the initial population (parents) and suitable fitness values assigned

to each.

The entire population is put through a selection process – A selection process is

used to determine if the newly created offspring preform the required behaviour better

than the parents from which they were created. If the offspring preforms better, then it

will replace the parent. The selection process used throughout this research is a version

of the well-known tournament based selection process. Using a tournament size of two,

one offspring and one parent are compared. If the parent holds a fitness value which is

greater than the offspring, then the parent will remain in the population and the

offspring will be discarded. However if the offspring holds a fitness value greater than

the parent, then the parent will be discarded and replaced by the offspring.

49

3.1.4 Fitness allocation

Light following

The fitness evaluation method used in the assessment of a controllers light following

performance is determined by the distance the robot is from the light source at the end

of the simulation A robot close to the light will achieve a high fitness and a faraway

robot will achieve a low fitness. This method relies on a minimum runtime being used

for each test, which is calculated as the minimum time required for the robot to reach

the light if an optimum path is taken.

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 100 − �

𝐹𝐹𝐹𝐹
𝐼𝐼𝐼𝐼

∗ 100� Equation 18

Where:

 Fitness is the value assigned to the light follower controller that is under test

 Fd is the final distance from the light source

 Id is the initial distance from the light source

The formula works by multiplying the ratio of initial distance vs. final distance by 100.

This results in a value ranging from zero for a robot that has reached the light source to

100 for a robot that did not move towards the light at all. This value is then subtracted

from 100 to invert the results therefore zero is poor and 100 is good. If the robot turns

away from the light, it is possible for the final distance to be greater than the initial

distance. In this situation, the fitness it limited to zero and does not go negative.

The initial distance is calculated using the Pythagoras formula in which a right angle

triangle can be drawn using two given coordinates within the arena. The first coordinate

in the formula is the robots starting location and the second is the location of the light

source. Using these two coordinates a straight line can be drawn between the two points

whose length is equal to the initial distance. The final distance is calculated using the

same method as that used to calculate the initial distance, however the two coordinates

used are the robots final position and the light source location. The equations to

calculate the initial distance and the final distance are shown in Equation 19 and

Equation 20 respectively below

 𝐼𝐼𝐼𝐼 = �(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥)2 + (𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑦𝑦)2 Equation 19

50

 𝐹𝐹𝐹𝐹 = �(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥)2 + (𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑦𝑦)2 Equation 20

Figure 3-14 Example 1 - light follower fitness

It can be seen from the robot trajectory shown in Figure 3-14, that the robot started at

the (X, Y) coordinate (150,150) and that its final location was at (600,450). The location

of the light source in this case was at location (600,600).

Using Equation 18, Equation 19 and Equation 20 as described above, the fitness of the

above example can be calculated as follows.

𝐼𝐼𝑑𝑑 = �(150 − 600)2 + (150 − 600)2 = 636mm

𝐹𝐹𝐹𝐹 = �(600 − 600)2 + (450 − 600)2 = 150mm

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 100 − �
150
636

∗ 100� = 76.4

Based on the calculations above, an individual that preforms as shown in Figure 3-14

would receive a fitness value of 76.4%.

51

The next example shown in Figure 3-15 is of an individual that came very close to the

light source when it finished, so it is expected that this individual should receive a

higher fitness that the previous example in Figure 3-14.

Figure 3-15 Example 2 - light follower fitness

𝐼𝐼𝐼𝐼 = �(150 − 600)2 + (150 − 600)2 = 636mm

𝐹𝐹𝐹𝐹 = �(555 − 600)2 + (675 − 600)2 = 87mm

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 100 − �
87

636
∗ 100� = 86.3

52

Obstacle avoidance

A fitness function has been designed specifically for the object avoidance behaviour.

This fitness function provides a numerical indication based on how well the robot

preformed the required task.

It has been determined that an object avoidance controller is required to self-navigate

through an unknown arena for a set period of time without coming into contact with a

wall or objects. Based on these requirements the following evolution procedure has

been developed.

1. The robots are started in the centre of the arena from eight different starting

headings (0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°). This forces the robots

to explore different areas within the arena, and hence encounter different objects

and situations in an attempt to produce a controller suitable for arenas other than

the one which it has been evolved in.

2. The robot would be allocated a set time limit (20 seconds) after which the

testing procedure would be halted.

3. If the robot encountered an obstacle then the simulation would be cut short and

the resulting runtime was used in Equation 21 to calculate the fitness value.

 𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

20
∗ 100 Equation 21

Where:

Run time count is the length of time the robot ran before it came in contact with

an object.

Object avoidance Fitness is the value allocated to the individual under test

ranging from 0 to 100.

From this method it was predicted that a robot with a run time that matched the allowed

runtime of 20 seconds, would be adequately preforming obstacle avoidance behaviours.

The resulting trajectory of the robot is shown below in Figure 3-16.

53

Figure 3-16 Object avoidance trajectory with only runtime fitness

From observations made over several different test runs like the one shown in Figure

3-16, it became clear that a different method was required for determining a more

suitable fitness function. The initial requirement was that the robot needed to run for a

set length of time without hitting any objects, the problem with this method was that the

robot was able to do this and achieve maximum fitness by simply driving in small

circles without even coming close to an obstacle.

Based on the conclusions from the previous tests it was decided that the fitness function

required an influence to force the robot to explore the arena. So with this in mind the

following modifications were made to the initial test procedure.

1. The arena was divided into 16 sections of equal size. Whenever the robot

entered one of the 16 previously unexplored sections, that section was marked as

explored.

2. Then as part of the fitness calculation after the test had finished, the number of

explored sections was used to adjust the fitness value allocated to that individual.

An individual with a high exploration count would receive a higher fitness than

that of an individual with a low exploration count.

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Fitness = �Run time count
20

∗

50�+�Arena explored count
16

∗ 50�
Equation 22

Using Equation 22 as the fitness function, the robots began to demonstrate a higher

level of object avoidance behaviours. A typical trajectory can be seen in Figure 3-17.

54

Figure 3-17 Object avoidance trajectory with arena exploration fitness

It was noted that due to the orientation and positioning of the obstacles it was

impossible for the robot to explore some areas of the arena. This may not have caused

an issue in the current arena however if an arena was chosen for the simulation that the

object positioning only allowed the robot to explore 20% of its surroundings then there

would be some effects on the achievable fitness.

Due to the previously described issues regarding the maximum fitness limitations, the

following method for determining fitness was developed.

During the testing of each individual, a count linked to the robots continued movement

was kept. This count was incremented whenever the individual failed to move a

predetermined distance within a set time period (one second). This count was then used

within the fitness function to determine an appropriate fitness for the individual, an

individual with a high movement count would receive a lower fitness than that of an

individual with a low movement count. The distance the robot would need to travel so

as not to be penalized was determined to be 55% of the maximum distance the robot

could travel if it was moving in a straight line. This time period in conjunction with the

distance threshold allows the robot enough time to rotate and move about if obstructed

by an obstacle without been penalized.

55

The fitness function developed for object avoidance controllers is outlined below in

Equation 23

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Fitness = �Run time count
20

∗

50�+�20−Movement count
20

∗ 50�
Equation 23

Light following while avoiding obstacles

A fitness function has been developed to provide a suitable indication of the

performance of controllers which have been designed to perform light following while

avoiding obstacle behaviours.

Initially it was thought that the fitness function used for the light following behaviours

could be used. However unlike the light follower testing procedure which had an easily

calculable minimum runtime, the minimum runtime of the combined behaviour test was

not easily calculable due to the addition of the obstacles to the robots arena. Because of

this an alternative testing procedure was developed.

This testing procedure uses a predefined runtime of 10 seconds and during the runtime

three variables are considered; robot path length, destination reached and collision

detection.

Robot path length – at half second intervals the simulation calculates the linear distance

the robot has travelled, the sum of all the recorded values provides the distance the robot

has travelled. The path length is used as part of the fitness function to determine the

final fitness.

Destination reached – the length of the robot path can only work as a fitness function if

the simulation is able to determine when the robot reaches the light source. This is done

by calculating the linear distance the robot is from the light at every simulated step. If

the robot is within 20mm of the light source then the simulation will stop and the fitness

is calculated.

Collision detection - at every simulated step the simulation checks the robot perimeter

to determine if contact has been made with any of the objects in the arena. If contact has

been made then the simulation will stop and calculate the fitness value. If a collision

occurs then path length is set to the maximum (1200).

56

Fitness = 30 − �

𝐹𝐹𝐹𝐹
𝐼𝐼𝐼𝐼

∗ 30� + 70 ∗ �1 −
𝑃𝑃𝑃𝑃 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

1200
� Equation 24

 Where:

 Fd is the final distance from the light

 Id is the initial distance from the light

 Pl is the length of the path the robot took to get to the light source.

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the straight line distance between the robot and the light

1200 is the maximum possible path length the robot can travel in the allowable

run time.

3.1.5 Selection process

The selection process is a mechanism in which individuals are compared against one

another and selected based on their assigned fitness values. The selection method that

has been used throughout this research is a version of tournament selection. Tournament

selection works on a group based section method. Each group has a set number of

individuals which is known as the tournament size. The tournament size directly affects

the selection pressure. A large tournament size will result in a higher selection pressure

whereas a small tournament size will result in low selection pressure [44].

The tournament size for this research is two and is comprised of one parent and one

offspring created by that parent. This provides low selection pressure, which allows

individuals that are preforming well but may not be preforming as well as others, to

remain in the population. A parent is only replaced when an off spring is produced

which preforms better than the parent. If a larger tournament size was chosen, the

selection pressure on the individuals would increase and individuals not performing as

well may be lost, even if the individuals are still valid and contributing to the

progression of the population.

The tournament selection process that has been implemented is graphically represented

below in Figure 3-18. Two parents ‘A and B’ have created two offspring ‘a and b’,

Parent ‘A’ and offspring ‘a’ make up one tournament group, and parent ‘B’ and

offspring ‘b’ make up the other. In this example Parent ‘A’ has a fitness of 90 and

offspring ‘a’ has a fitness of 50, so parent ‘A’ will remain in the population and

57

offspring ‘a’ will be discarded. However Parent ‘B’ with a fitness of 60 will be replaced

by offspring ‘b’ which has a fitness of 95.

Figure 3-18 Tournament selection block diagram

3.1.6 Simulation procedure

This section describes the procedures used during the simulation of the controllers for

the three robot controller behaviours.

Common procedures

The simulation of the three behaviours involves the following common procedures:

1. Check sensors – The simulation uses the mathematical models described in

section 3.1.2 to determine the current status of the robots light sensors. The

sensor outputs are used in conjunction with the controller under test to determine

the resulting robot motion.

2. Calculate position and heading – The simulation uses the equations described in

section 3.1.1 to determine the new robot position and heading based on the

resulting controller output.

58

The remaining procedures used during the controller development are dependent on the

controller under development and hence they have been outlined in separate subsequent

categories.

Light following procedure

Position Initialisation: There are 4 starting locations used when evolving the light

follower controllers, these locations are represented graphically below in Figure 3-19.

From each position the robot also starts from two headings resulting in eight starting

orientations for each individual test.

Figure 3-19 Light follower starting locations and headings

Determine runtime: The minimum runtime is calculated by determining the shortest

distance between the robots starting position and the light source. This distance is

divided by the maximum distance the robot can travel in a time period (6.1mm in 50ms).

The result provides the number of simulation steps that the robot needs to reach the light

source. An allowance has also been made for the time it takes for the robot to rotate too

the light source. This rotation allowance is determined by calculating the difference

between the robots starting heading and the light source direction and dividing this

angle by the maximum rotation angle of the robot 8.5 degrees.

59

Object avoidance procedure

Position Initialisation : The robots are started in the centre of the arena from eight

different starting headings (0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°) as shown in

Figure 3-20.

Figure 3-20 Object avoidance starting location and headings

Determine runtime: The eight tests last for 20 seconds and based on the values obtained

in 3.1.1 this would allow the robot to travel a maximum of 2.4 metres. 20 seconds

allows the robot to explore a large section of the 1.2m x 1.2m arena providing ample

opportunity to encounter several different objects and hence thoroughly test the

individual.

Collision detection – The simulation checks the perimeter of the robot to determine if a

collision has occurred. If a collision has been detected then the simulation will stop,

calculate the fitness then begin the test at the next scheduled starting heading. If no

collision is detected then the simulation will continue.

Movement threshold – As explained in section 3.1.4 the fitness function for object

avoidance controllers requires that the robot moves 67mm every second. Every second

the software compares the robots new position to the previous and determines if the

60

threshold has been reached. A count is kept for the number of time the controller fails to

reach this threshold.

Light following while avoiding obstacles procedure

Position initialisation: The robots are started around the perimeter of the arena at the

eight locations as shown in Figure 3-21 and each location has a unique starting heading.

Figure 3-21 Light follower and object avoidance starting locations and headings

Determine runtime: The eight tests last for 10 seconds and based on the values obtained

in 3.1.1 this would allow the robot to travel a maximum of 1.2 metres. This allows the

robot the reach the other side of the arena which is more than enough time to navigate

around an obstacle and reach the light source.

Collision detection – The simulation checks the perimeter of the robot to determine if a

collision has occurred. If a collision has been detected then the simulation will stop,

calculate the fitness then begin the test at the next starting location. If no collision is

detected then the simulation will continue.

Path length calculation – During the simulation the software measures the distance

travelled by the robot every half a second. These values are summed together to give the

total path length and used to determine the robot fitness.

61

3.2 Graphical user interface

The GUI provides a means of monitoring and controlling the evolution of the controller.

A status window contains a log of the current generation, average fitness, maximum

fitness and the current elapsed time. The status window is shown to the right in Figure

3-22. Next to the status window in the middle of the GUI is the numerical status of the

robot. This information contains the robots current position, the starting position and the

sensor information.

Figure 3-22 Graphical user interface

The status of the robot is shown using two methods. The first is a real time scaled model

showing the robot in the arena (Figure 3-22). The second is a visual representation of

the path taken by the robot (Figure 3-23).

62

Figure 3-23 Trajectory view

Figure 3-23 shows an example trajectory during the evolution of the light follower

controller. The robot is seen starting from four locations and two headings (green and

black). The light source (yellow circle) is also shown in the location selected.

Adjustments to the robots arena can be made from within the settings tab in the centre

section of the GUI. From here it is possible to change the location of the light source

and select between prebuilt arenas for object avoidance behaviours. An example of the

settings tab is shown in Figure 3-24

Figure 3-24 GUI settings tab

63

If the object avoidance mode is selected, the GUI displays the selected arena in the

display window. This provides a scaled visual representation of the robot and the

obstacles in the arena.

Figure 3-25 GUI set up in object avoidance mode

The view from the trajectory tab when operating in object avoidance mode is shown in

Figure 3-26. Each starting heading is shown in a different colour and the obstacles are

shown in blue.

Figure 3-26 Object avoidance trajectory view

64

Chapter 4

Chapter 4: Artificial Neural Network evolution for use in robotic

controllers

This chapter describes the experimental processes and results of the evolution of ANN

controllers. Three individual controllers have been evolved to perform these three

behaviours, light following, object avoidance and the combination of the two light

following while avoiding obstacles.

Each chromosome is comprised of the following ANN parameters: the weights for the

ANN inputs, two activation trigger points and two bias values. All of the parameter

values range from -1 to 1 in 0.1 increments giving a total of 21 possible parameter

values. The evolution methods and the simulation software are common to all the

controllers being evolved and are fully described in Chapter 3,

4.1.1 ANN GA and software structure

The software for this research has been developed in Visual Studio using windows

forms and C#. It runs the GA process, the robot simulation and data logging and GUI

interface.

65

Figure 4-1 Simulation flow chart

Initialisation – The initial steps taken by the software are to setup the system. This

involves generating the initial population with the random individuals. The software

also generates the virtual arena which provides the proximity and light source

information used during the evolution process.

Controller evolution – The core of the software is the evolution process, this is where

the controllers are evolved until a solution is found.

• The software uses the mathematical models which are described in section 3.1 to

determine the proximity and light sensor values. The sensor values are used in

conjunction with the controller under test to determine the resulting robot

motion. The robot motion and the mathematical model of the robot provide the

new robot location.

• Fitness evaluation: where each individual is tested for a predetermined length of

time or until the desired result is achieved. At this point a fitness algorithm is

used to assign a fitness value to each of the individuals under test.

66

• Selection: where the population is put through a selection process which uses an

elitist-tournament selection process to determine which individuals to keep or

discard.

• Reproduction: where individuals selected to remain in the population are used to

produce a new set of offspring. The offspring are then put through the same

testing process and the evolution process continues until a satisfactory result is

obtained.

Data logging – The information and results gained from the evolution process are

stored in three formats to allow for easy analysis.

• The maximum and average fitness values are stored at regular intervals with the

current number of generations in a text file.

• The maximum and average fitness values vs. generations are graphed and stored

in an Excel file.

• The chromosome of the best individual is stored in a text file for further analysis.

4.2 Light following

4.2.1 Artificial neural network configuration

An ANN has been designed as a controller to perform light following behaviours. The

neural network takes two sensory inputs and provides two motor control outputs. The

inputs to the system contain the quantized light intensity which is proportional to the

robots heading with respect to the light source. The methods and calculations used when

determining the light intensity are described in section 3.1. The ANN is a two neuron,

single layer network, with inputs to the ANN linked directly to the light sensors. The

outputs of the ANN are used to drive the left and right motors. The activation output is a

signed multistep function which allows three possible motor control options, forward,

reverse and stopped (similar to the LUT controllers).

The illustration shown in Figure 4-2 is a representation of the ANN used for the light

follower controller. The inputs from the left and right light sensors can be seen on the

left of the diagram, these inputs are multiplied by the synapses weights represented by

W11, W12, W21 and W22 then fed into the combinational block. The summation block

67

then uses Equation 25 and Equation 26 to determine the raw output result for the left

and right motors respectively.

Figure 4-2 ANN configuration for light following

Output left neuron = [∑ 𝑊𝑊1𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖2
𝑖𝑖=1] + 𝐵𝐵1 Equation 25

Output right neuron = [∑ 𝑊𝑊2𝑖𝑖 ∗ 𝑋𝑋12
𝑖𝑖=1] + 𝐵𝐵2 Equation 26

Where:

 B is the bias input to the system.

 W is the respective weight for each branch.

 X is the light input value.

68

The bias to the ANN is required to overcome the initial state of the system when a light

intensity value of zero is calculated for both light sensors. Without the bias the result of

both motor summing equations would be zero, resulting in both motors being stopped,

causing no more changes to the light intensity and causing the controller to fail. The

bias overcomes this problem by introducing a constant to the equation that causes the

robot to move when no light is encountered. Allowing the robot a chance of finding the

light source.

The result from the summation block is fed into the activation function element which

determines the output state of the neuron. For the ANNs developed in this research the

output function is a signed step function as shown below in Figure 4-3.

Figure 4-3 Light follower ANN output function

The input to the activation function is represented on the X axis while the resulting

motor output is represented on the Y axis. The motor output clearly has three states,

forward, reverse and stopped. The points which determine the transition between these

states are the variable activation thresholds (A1 and A2).

4.2.2 Light following ANN chromosome

The chromosome for this system is a combination of four weights, two activation

thresholds and two biases, W11, W12, W21, W22 A1, A2, B1 and B2. The weights,

activation thresholds and bias values range from -1 to 1 with a resolution of 0.1

providing 21 possible values. The values are used directly in Equation 25 and Equation

26 to determine the input value to the activation function.

69

The GA search space for the ANN chromosome, which provides a value representing

the number of possible combinations of weights, bias and threshold values, can be

calculated using (Equation 27)

 Search space = (W)(Synapses+bias+ activationthresholds) = (21)4+2+2

= 3.8 ∗ 1010
Equation 27

Where:

 W is the number of available weights (-1 to 1 in increments of 0.1)

 Synapses is the number of input branch weights (4)

 Bias is the number of bias`s in the system (2).

Activation thresholds are the number of points at which the output function can

change (2).

70

4.2.3 Results

Artificial neural network performance

A set of experiments has been designed to fully evaluate the controller performance

under a range of conditions. The experiments used four starting positions with two

starting headings per position. The exact positions and headings have been chosen to

provide worst and best case scenarios with the goal of providing the best chance of

developing a universal controller. For all of the light follower experiments an upper

fitness limit of 95% has been set, at this point the GA stops. 95% was chosen, because

after this point, the population tends to converge and only very small levels of progress

are made.

The performance of the controllers can be assessed by analysing the recorded

trajectories of the path taken by the robot during development. These trajectories of the

stages of evolution, as shown in Figure 4-4 show how the particular controller

performed from each of the starting positions and headings. As the evolution progresses,

the robot moves towards the light and the trajectories straighten giving a greater fitness.

The trajectories shown below contain two starting headings. The first heading of 90

degrees is shown in black while the second heading of 270 degrees is shown in green.

Fitness = 78% Fitness = 82% Fitness = 92% Fitness = 97%

Figure 4-4 Example light follower trajectories and fitness percentage

71

Light level quantization

To analyse the effect of sensor quantization on the controller performance, a range of

quantized light levels were evaluated, ranging from 2 to 9. These levels are also used for

the light follower LUT and EHW controllers as described in sections 5.1.1 and 6.1.1.

These values are compared with a controller that would use a 10 bit ADC with a

quantization level of 1024. The resulting trajectories are shown in Figure 4-5 and Figure

4-6

Quantization = 1024,

Fitness = 97%

Figure 4-5 ANN raw quantization level trajectory

Quantization = 2

(79%)

Quantization = 3

(86%)

Quantization = 4

(82%)

Quantization = 5

(93%)

Quantization = 6

(95%)

Quantization = 7

(97%)

Quantization = 8

(97%)

Quantization = 9

(97%)

Figure 4-6 ANN Light level quantization

72

Analysis of the trajectories reveals two key attributes related to the level of sensor

quantization. Firstly it can be seen that the controllers with a quantization level of five

and below have difficulty in obtaining a high fitness, this is largely due to the reduced

resolution from the sensors and operation of the fitness function. Secondly, increasing

levels of quantization and hence increasing sensor resolution, the controllers can be seen

taking the optimum path to reach the light source. A quantization level of seven and

above matches that of a 10-bit ADC (1024 quantization level), indicating that only

relatively low levels of quantization are required to create a good controller. The

minimum quantization level to reach a fitness of 95% is six.

Evolution efficiency

The experiments in this section have been designed to explore the effects on evolution

efficiency caused by a varying light quantization level. The evolutionary efficiency for

these results is measured in generations so the points of interest will be analysed with

respect to the generation of which they occurred.

Two criteria have been tested, firstly a high level of quantization will require more

generations to realize a suitable solution and secondly a lower quantization level may

not be able to fully realize a suitable solution. To explore these criteria eight individual

ANNs with different light quantization levels were evaluated.

Table 8 contains the results from 8 levels of quantization and the result from the raw

“un-quantized” sensor inputs. The controllers all exhibited light following behaviours,

however only the controllers with a quantization level of six and above produced a

controller capable of achieving the desired fitness (95%). The controllers that failed

were unable to reach the light within the allowable runtime and hence achieved lower

fitness.

73

Table 8 ANN Light level quantization results

Quantization
level

Initial
fitness (%)

Final
fitness (%)

Generation
at 95%

1024 (Raw) 74 97 24
2

76 79 ---
3 75 86 ---
4 74 82 ---
5 75 94 ---
6 79 95 348
7 79 96 19
8 79 97 18
9 80 97 7

Controllers with lower levels of quantization are unable to reach a fitness of 95% as

they cannot recognize small changes in light level and are unable to navigate directly

towards the light, while a quantization level of 6 takes 348 generations to find a solution.

However, for quantization levels much higher than those chosen (Raw 1024), the

generations required to reach 95% also begins to increase. The added sensor resolution

adds a level of complexity to the controller which means the robot is able to pivot at a

very small change in light intensity even if a pivot may not have been required. This

reduces the chance of the robot reaching the light source and increases the number of

required generations.

74

Comparison of maximum fitness for different quantization levels

A comparison of the maximum fitness trends for the eight quantization levels (Figure

4-7) reveals two interesting attributes. Firstly the final fitness is proportional to

quantization level (Controllers with high quantization levels have higher sensor

resolution and are more capable of reaching the light in the allowed time). Secondly, it

can be seen that high levels of quantization decrease the initial fitness.

Based on the comparisons described above, it was decided that the optimum

quantization level for this set of experiments was nine. At this level the controller was

able to reach the desired fitness in only 7 generations and perform as required.

Figure 4-7 ANN Quantization comparison vs. generations

75

4.3 Obstacle avoidance

4.3.1 Artificial neural network configuration

An ANN has been evolved to perform obstacle avoidance behaviours. The input to the

network is provided via six proximity sensors each of which provides a digital input,

true when an object is detected and false when not. The modelling and simulation for

these sensors is described in section 3.1. The outputs of the network are two signed

multistep functions which drive the robot’s left and right motors. A visual

representation of the ANN system used for this controller is above in Figure 4-8. On the

left of the diagram the six proximity inputs to the system can be seen.

Figure 4-8 ANN configuration for obstacle avoidance

76

The outputs of these sensors (True or False) are multiplied by their respective synapses

weights and passed to the summation element. Inside the summation elements Equation

28 and Equation 29 are used to determine the left and right raw output values.

Output left neuron = ��𝑊𝑊1𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

� + 𝐵𝐵 Equation 28

Output right neuron = ��𝑊𝑊2𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

� + 𝐵𝐵 Equation 29

Where:

 X is the input from the proximity sensor one or a zero.

 W is the branch weighting negative one to one.

 B is the bias value.

The bias in this case is used to overcome the state of the system when all of the sensors

are inactive. This would cause the output of the equations to be zero and because of the

way the firing thresholds have been configured this would result in the robot not

moving. The bias overcomes this problem by introducing a value to the equation that

under these conditions would cause the robot to move and achieve a higher fitness value.

The summation block in the neuron is feed into the activation function element. This

element serves as the decision maker and determines which state the output will be

based on the input value. For the ANNs developed in this research the output function is

a signed step function (Figure 4-3).

77

4.3.2 Obstacle avoidance ANN chromosome

The chromosome for this system is a combination of 12 weights, two activation

thresholds and one bias, W11, W12, W13, W14, W15, W16, W21, W22, W23, W24,

W25, W26 A1, A2 and B. The weights range from -1 to 1 with a resolution of 0.1

providing 21 possible weights per synapses. The weights are multiplied by their

respective input and added together to create the input for the activation function.

The GA search space for the ANN chromosome, which provides a value representing

the number of possible combinations of weights, bias and threshold values, can be

calculated using (Equation 27)

 Search space = (W)(Synapses+bias+ activationthresholds) = (21)12+2+2

= 1.4 ∗ 1021
Equation 30

Where:

 W is the number of available weights (-1 to 1 in increments of 0.1)

 Synapses is the number of input branch weights (12)

 Bias is the number of bias`s in the system (2).

Activation thresholds are the number of points at which the output function can

change (2).

78

4.3.3 Results

A set of experiments has been designed to evaluate the use of an ANN as an object

avoidance controller and the performance of the GA used to evolve it. The results

obtained from these experiments are outlined in the two sections below, the first section

focuses on the ANNs performance as a controller while the second section focuses on

the GA performance.

The fitness function used to evolve the obstacle avoidance controller considers two

variables, the robot’s total runtime and the movement count. Both values are converted

to a ratio with their respective maximums and used to calculate the fitness value. For all

of the object avoidance experiments an upper fitness limit of 80% has been set. Due to

the operation of the fitness function, a fitness value much above this point is

unachievable. (A complete description of the fitness function can be found in section

3.1.4)

Artificial neural network performance

A set of experiments has been developed to evaluate the ANNs ability to perform in a

range of different environments. The controllers are evolved from eight starting

headings in three arenas with differing object configurations. The controllers from each

of the experiments are then put into other arenas and the performance evaluated.

The first controller has been evolved in arena A and the progressing trajectories are

shown in Figure 4-9. (A diagram of each arena used in these experiments can be found

in section 3.1.2.1)

Note, the trajectories shown below contain eight starting headings.

0° = RED, 45° = Green, 90° = Black, 135° = Grey, 180° = Pink, 225° = Purple,

270° = Orange, 315° = Yellow

Fitness = 40% Fitness = 58% Fitness = 75% Fitness = 80%

79

Figure 4-9 Arena A stages of evolution trajectories and the fitness obtained (ANN)

The set of images shown in Figure 4-9 are common trajectories achieved during the

evolution cycle. As seen in the first two trajectories basic object avoidance techniques

are evolved early on. However these techniques are limited to when the robot is

approaching at a heading perpendicular to the obstacle. The ability to avoid obstacles at

other angles is developed in the final stages of the evolution cycle. This process of

evolution is largely due to the configuration and object placement of arena A, which has

objects perpendicular to the robots starting headings meaning that this technique needs

to be evolved first.

To compare the effect of arena selection during the evolution process on the

performance of the ANN, two extra arenas have been used to develop two additional

controllers. The trajectories for arena B and arena C are shown in Figure 4-10 and

Figure 4-11

Fitness = 45% Fitness = 62% Fitness = 74% Fitness = 81%

 Figure 4-10 Arena B stages of evolution trajectories and the fitness obtained (ANN)

Fitness = 33% Fitness = 58% Fitness = 75% Fitness = 81%

 Figure 4-11 Arena C stages of evolution trajectories and the fitness obtained (ANN)

Similar evolution patterns to those found in the trajectories from arena A can be seen in

the trajectories from arena B and arena C. In the initial stages of evolution the controller

develops basic object avoidance behaviours which are fine-tuned with the trajectories

becoming more refined in the later stages of the evolutionary cycle.

80

The evolved controllers from arena A, B and C have been evaluated using three

unknown arenas. The trajectories from each controller in the unknown arenas are shown

in Figure 4-12. It can clearly be seen from the trajectories shown that the controllers in

most of the tests exhibit some object avoidance behaviours, however, these controllers

are not performing to the same level of fitness as achieved in the original arenas.

 Arena 1 Arena 2 Arena 3 Original arena

C
on

tro
lle

r A

 Fitness = 64% Fitness = 47% Fitness = 44% Fitness = 80%

C
on

tro
lle

r B

 Fitness =77% Fitness = 51% Fitness = 56% Fitness = 81%

C
on

tro
lle

r C

 Fitness =57% Fitness = 39% Fitness = 40% Fitness = 81%

Figure 4-12 Controller testing in unfamiliar arenas (ANN)

81

Multiple arena evolution

To overcome the incomplete evolution problem, a change has been made to the

evolution process. For this test a controller (called ABC) was evolved in all three known

arenas A, B and C. The average fitness from the combined arenas was used to determine

the fitness of the individual. The evolved controller achieved a fitness of at least 80% in

each known arena.

The resulting trajectories from the combined controller in the unfamiliar arenas are

shown in Figure 4-13. When compared to the trajectories in Figure 4-12, a significant

performance increase can be seen, evident in the longer runtimes and smoother

trajectories, while the fitness in all arenas was above 80%

 Arena 1 Arena 2 Arena 3

C
on

tro
lle

r A
B

C

 Fitness = 85% Fitness = 81% Fitness = 81%

Figure 4-13 Combined arena evolution test in unfamiliar arenas (ANN)

82

Evolutionary efficiency

This section focuses on the evolution efficiency in particular the number of generations

required for a suitable result to be obtained. Controllers have been evolved in arenas A,

B and C separately and in arenas A, B and C simultaneously. The results are shown in

Table 9.

Table 9 Arena evolution results (ANN)

Arena Initial
fitness (%)

Final
fitness (%)

Generation
at 70%

Generation
at 80%

Arena Complexity
Less to more(1-4)

A

70 80 3 10 3
B 42 82 8 8 2
C 38 81 8 8 1

ABC 49 89 8 20 4

All four controllers achieve the desired fitness of 80%, with three of them exceeding it.

A difference in complexity level can be seen between the arenas, where arena ABC is

seen to be the most complex due to the number of generations required achieving 80%.

Maximum individual fitness trends for each arena configuration.

Maximum fitness trends shown in Figure 4-14, show that the arena complexity is

directly related to the number of generations required to reach a suitable fitness. This

also confirms the original order of arena complicities been C, B, A, ABC (from least

complex to most) and a clear complexity difference can be seen for arena ABC which

takes the longest to evolve.

83

Figure 4-14 Maximum fitness comparison for each arena configuration (ANN)

4.4 Light following while avoiding obstacles

The focus for this section is to investigate scaling issues with an ANN as the complexity

of the problem is increased. This is performed by comparing the results of monolithic

and subsumption evolution.

4.4.1 Artificial neural network configuration

An ANN has been created to perform the combined task of light following while

avoiding obstacles using monolithic evolution. The ANN contains eight inputs and two

outputs. The inputs have been quantized as they were for the separate light following

and object avoidance controllers and the outputs are configured as signed multistep

functions to provide valid comparisons with the LUT and EHW controllers. Figure

4-15 is a representation of the ANN created for the combined behaviour controller. The

system contains 16 individual synaptic weights which provide variable amplitude

adjustment of the system inputs.

84

Figure 4-15 ANN configuration for light following while avoiding obstacles

Using Equation 31 and Equation 32 the weighted inputs are summed together and the

result used in the activation function to determine the system output.

Activation function left motor = ��𝑊𝑊1𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

8

𝑖𝑖=1

� + 𝐵𝐵 Equation 31

 Activation function right motor = ��𝑊𝑊2𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

8

𝑖𝑖=1

� + 𝐵𝐵 Equation 32

Where:

 X is the input from the proximity sensors and the light sensors

 W is the branch weighting (-1 to 1)

 B is the bias value.

85

The bias values for this configuration are used to overcome the no light or no obstacle

condition which results in a zero from both summation equations. The output from the

activation function has been configured as a signed multistep function (Figure 4-3).

4.4.2 Light following while avoiding obstacles ANN chromosome

The chromosome for this system is a combination of 16 weights, two activation

thresholds and one bias, W11, W12, W13, W14, W15, W16, W17, W18, W21, W22,

W23, W24, W25, W26, W27, W28, A1, A2 and B. The weights range from -1 to 1 with

a resolution of 0.1 providing 21 possible weights. The weights are multiplied by their

respective input and summed together to create the input for the activation function.

The GA search space for the ANN chromosome, which provides a value representing

the number of possible combinations of weights, bias and threshold values, can be

calculated using (Equation 33)

 Search space = (W)(Synapses+bias+ activationthresholds) = (21)16+2+2

= 2.8 ∗ 1026
Equation 33

Where:

 W is the number of available weights (-1 to 1 in increments of 0.1)

 Synapses is the number of input branch weights (16)

 Bias is the number of biases in the system (2).

Activation thresholds are the number of points at which the output function can

change (2).

4.4.3 Artificial neural network subsumption evolution

Two ANN controllers are evolved separately and a switching controller employed to

perform the combined task of light following while avoiding obstacles. This controller

has been developed using subsumption evolution techniques where the complex task is

broken down into individual less complicated tasks (light following and object

avoidance) and evolved separately as described in 4.2 and 4.3. The evolved controllers

are then combined using an algorithm which decides based on the sensory inputs, which

controller is used and which is masked.

86

Figure 4-16 ANN subsumption diagram

Figure 4-16 illustrates the system design for the subsumption controller. The decision

making block has highest level of control and has the ability to mask and unmask the

inputs from the individual controllers. If an obstacle is detected then the obstacle

avoidance controller is unmasked until the robot is clear of any obstacles, at which point

after a small delay the obstacle avoidance controller is masked and the light follower

controller is unmasked.

87

4.4.4 Results

A set of experiments have been designed to evaluate the ANN and the GA performance

when controllers are evolved for light following while avoiding obstacles. Each

individual is placed in an arena with obstacles and a light source. Each individual is

tested in eight starting locations each with a unique heading. Eight controllers have been

evolved, four using the monolithic and four using subsumption techniques. The evolved

controllers performance and evolutionary efficiency are compared.

The fitness function used to evolve the ANNs for the combined behaviours considers

two variables; the robots distance from the light at the end of the test and the length of

the path taken. (A complete description can be found in section 3.1.4).

Note, all of the experiments are undertaken using arena A and an upper fitness limit of

80% or 3000 generations has been set for the monolithic evolution. A controller

receiving a fitness of 80% is considered to be a good controller due to the way the

fitness function operates.

Monolithic evolution results

The four controllers shown in Figure 4-17 perform to a very high standard and are fully

developed in the allocated generation limit of 3000. The controllers are seen to be

moving towards the light source and navigating around any objects encountered. In

doing so, the robot is able to reach the light source and maintain an optimum path length.

The final fitness achieved for each controller is indicative of a good result due to the

operation of the fitness function.

As shown in Figure 4-7, the average number of generations required to reach a desirable

result was 1120, substantially more than when the behaviours were evolved separately.

The evolution process steadily increased until a fitness of about 35% was reached and

after this the GA progress reduced noticeably. The reduction in progress was found to

be the point where the controller had managed to reach the light source. However in

order to progress past this point it was required that the path to the light be optimized.

88

Controller 1 Controller 2 Controller 3 Controller 4

 Fitness = 83%

Generations = 1025

Fitness = 90%

Generations = 850

Fitness = 80%

Generations = 495

Fitness = 82%

Generations = 2116

Figure 4-17 Monolithic controller trajectories (ANN)

Figure 4-18 Maximum fitness trends for monolithic controller evolution

89

Subsumption evolution results

Four previously evolved light follower and object avoidance ANN controllers were

chosen for the creation of the subsumption controllers. The controllers were paired up

with a selection algorithm to create four controllers. The results are shown in Figure

4-19.

Note, the previously evolved controllers have been selected and paired randomly with

no bias towards certain controllers. The trajectory shown below is a result from one of

these pairs.

Subsumption Fitness = 94%

Generations for light follower ANN = 7

Generations for object avoidance ANN = 10

Total generations = 17

Figure 4-19 Subsumption controller trajectories (ANN)

The trajectories of the subsumption controllers show excellent light following and

obstacle avoidance properties. Each of the four controllers clearly navigates towards the

light source and only deviates from course when an object is detected. The same test

was applied to several other controller combinations with very similar results obtained.

The advantages of subsumption evolution are clear when compared with monolithic

techniques. The average 17 generations were required to evolve the controllers with

subsumption techniques, where as to evolve a controller of the same performance level

with monolithic techniques requires 1120 generations.

90

4.5 Overall Conclusions

• Light following – a range of ANNs were successfully evolved, it was found that

quantization level of nine was the optimum size.

• Obstacle avoidance – an ANN has been evolved which was fully capable of

collision avoidance.

• Combined behaviours – controllers have been successfully evolved using

monolithic and subsumption evolution techniques. It has been found that

controllers developed using subsumption methods outperform those developed

using monolithic methods. The combined behaviours only require 17

generations to reach a desired result, where as those controllers evolved using

monolithic techniques required on average 1120 generations.

91

Chapter 5
Chapter 5: Evolvable Lookup Tables for use in robotic controllers

This chapter outlines the experimental outcomes that have arisen as a result of evolving

LUTs for use in robotic controllers. Experimentation has been undertaken with the goal

of producing three evolved controllers for three different robotic behaviours.

Light following, obstacle avoidance and the combined behaviour of light following

while avoiding obstacles.

The controllers for the behaviours outlined above were designed in a PC based

simulated environment. The software containing the simulation and GA process has

been described in Chapter 3:

5.1.1 LUT GA and software structure

The software structure for the LUT controller GA and simulation is very similar to the

software used to develop the ANN controller as described in section 4.1.1. Only

changes to the chromosome format were made.

5.2 Light Following

5.2.1 LUT Chromosome

The LUTs were required to enable the robot to locate and move directly towards a light

source. Thus the input to the controller was two quantized light levels received from the

left and right senor, and the output is the required robot direction. A two dimensional

LUT was used with the two axis linked to the left and right light sensor inputs. The

LUT elements are used to control the left and right motors shown in Figure 5-1.

92

Figure 5-1 Light following LUT sizes examples 3x3 and 5x5

Two important questions arose while designing the LUT configuration for light

following.

- What size LUT was required, relating to the quantization of the inputs and

outputs?

- What sensor and actuator values should the LUT contain?

What size LUT is required, relating to the quantization of the inputs and outputs?

The elements of the LUT contain left and right motor control information, however

what remained unclear was the level of control information that was required to achieve

a satisfactory result. It was decided that the elements of the LUT would contain

directional information only and that the motors would be both running at the same set

speed. Using only the directional control versus speed control to drive the motors

reduces the number of possible combinations that are available for each of the LUT

elements, hence keeping the search space to a minimum. From the information

presented above in Figure 5-1 it can be seen that limiting the control to directional

control there are nine possible combinations of motor directions.

The search space for a LUT with a quantization light level of six:

- Quantized light level (Q) = 6

93

- Possible element outputs (E) = 9

 Search space = 𝐸𝐸(𝑄𝑄)2 = 962 = 2.2 ∗ 1034 Equation 34

To see the change in search space size, one can consider the option of implementing

speed adjustment. If only three speed increments are used, such that the motors have

three reverse speeds and three forward speeds, then it can be seen that the search space

will be greatly increased.

- Quantized light level (Q) = 6

- Possible element outputs (E) = (3 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 3 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 2 = 49

 Search space = 𝐸𝐸(𝑄𝑄)2 = 4962 = 7 ∗ 1060 Equation 35

The search space of the LUT with speed control would be 2.5*1018 times larger than

the LUT that uses only directional information.

In an effort to minimise the search space further it was decide that the stop condition in

the list of available output motions was unnecessary and it could be removed. This

would reduce the number of combinations to eight and reduce the search space as

shown below.

- Quantized light level (Q) = 6

- Possible element outputs (E) = 8

 Search space(no stop) = 𝐸𝐸(𝑄𝑄)2 = 862 = 3.2𝑥𝑥1032 Equation 36

Removing the stop condition provides a reduction in the search space by a factor of 67.

A number of experiments were undertaken to further investigate the effect of search

space on the GA process and the LUT performance, these tests include testing

quantization levels from two to nine. The results can be found in section 5.2.3.

What sensor values should the LUT contain?

The size of the LUT is directly related to two important factors, the robot behaviour, (a

smoother path requires a finer resolution of the light sensors) and secondly the GA

search space (a finer resolution of the light sensors would create a larger LUT and a

94

large search space). The light sensor outputs have been converted to integer format and

quantized, with the level of quantization determining the size of the LUT and the search

space for the GA.

Several quantization levels were investigated to determine the optimum motion of the

robot and efficiency of the GA process, these ranged from 2x2 to 9x9. Figure 5-1 shows

example 3x3 and 5x5 LUTs with respective search spaces of 1.3𝑥𝑥108 and 3.8𝑥𝑥1022

The LUTs shown in Figure 5-1 are possible solutions that could be obtained from

experimentation if the quantization levels were configured to be three or five. The

elements within the LUTs contain the left and right motor directions and for this

example each motor direction is represented as Forward (F), Reverse (R) and Stopped

(S).

95

5.2.2 Offspring creation

A two-point crossover technique has been implemented. This technique involved

selecting two random points along the X axis then sections separated by the selected

points are swapped over to create the new offspring. Using a two-point cross over

method for reproduction allows smaller sections of the LUT to be altered without

making changes to other areas of the LUT. An example of the described method of

reproduction is shown below in Figure 5-2.

Figure 5-2 Light follower LUT two-point crossover

96

5.2.3 Results

A set of experiments has been designed to test the performance of the LUT controllers

and to analyse the efficiency of the GA process for light following behaviours. The

results are divided into two main sections. The first section demonstrates the

performance of the evolved controllers, and the second section explores the GA

performance.

The fitness function used to evolve the light follower LUT calculates the robots distance

from the light source after the allowable simulation time. This distance is used to

determine a suitable fitness value. (A complete description of the fitness function can be

found in section 3.1.4). Note, for all of the light follower experiments an upper fitness

limit of 95% has been set, at this point the GA stops. 95% was chosen, because after

this point, the population tends to converge and only very small levels of progress are

made.

Look up table controller performance

The experiments start the robot in four starting positions and two starting headings per

test, the exact positions and headings have been chosen to provide worst and best case

scenarios with the goal of providing the best chance of developing a universal controller.

One of the starting headings is pointing away from the light source while the other is

pointing almost directly at the light and two of the starting positions are close to the

light source while the others are much further away.

The performance of the controllers can be assessed by analysing the recorded

trajectories taken by the robot, and the fitness during evolution. These trajectories as

shown in Figure 5-3 demonstrate how the particular controller performed from each of

the starting positions and headings during the evolutionary process. Note, the

trajectories shown below contain two starting headings. The first heading of 90 degrees

is shown in black while the second heading of 270 degrees is shown in green.

97

Fitness = 33% Fitness = 44% Fitness = 50% Fitness = 68%

Fitness = 78% Fitness = 83% Fitness = 90% Fitness = 97%

Figure 5-3 Example light follower trajectories and fitness percentage

In Figure 5-3 the stages of evolution can be seen. The initial stages of evolution seem to

focus on developing the ability of the controller to steer towards the light and in most

cases the path taken is a curve. Although traveling in an arc is not the most direct route,

it still allows the robot to get fairly close to the light source and hence receive a

reasonable fitness value.

Separate stages of the LUT trajectories can be seen evolving at different periods during

the evolution of the controller. This is due the controller evolving different behaviours

at separate times. For instance, the first resemblance of light following behaviours

occurs when the robot is started in the general direction of the light source. In this

situation a high fitness can be achieved by simply directing the robot to go forward

causing the robot to end up nearer to the light source. Controllers that perform in this

way tend to achieve a fitness of approximately 30-40%, and hence usually out perform

any of the initial population which usually start out with an average fitness of 10-15%.

The next characteristic that tends to develop is the tightening of the arc shaped pathways

creating a more direct route to the light, achieving a higher fitness value, usually 60-

80%.

The final stage of evolution involves the rotation of the robot when no light source is

detected. This occurs at the beginning of the testing procedure when the robot is initially

pointing away from the light source. There are two main reasons this occurs only in the

98

final stages of evolution. The first is due to complexity of the problem itself, the robot is

required to rotate then move towards the light. If the robot does not stop rotating the

rotate function serves no benefit and would achieve a fitness of zero. This rotate and

move function requires more than just one evolved area of the LUT and it is highly

unlikely that this would be found in the early stages of the evolution cycle. The second

reason the rotate function tends to be evolved last is due to the way the fitness is

allocated. An individual can achieve a high enough fitness to succeed in the tournament

selections without the ability to rotate. This requirement only becomes a necessity to

succeed in the final stages of evolution due to increasing levels of the average

population fitness.

Light level quantization

Eight levels of quantization have been selected for controller performance analysis.

These levels are shown with their respective LUT dimensions in Table 10

Table 10 Light levels chosen for analysis

Quantization LUT size Elements Search space
2 2x2 4 4096

3 3x3 9 1.3∗ 108
4 4x4 16 2.8∗ 1014
5 5x5 25 3.8∗ 1023
6 6x6 36 3.2∗ 1032
7 7x7 49 1.8∗ 1044
8 8x8 64 6.2∗ 1057
9 9x9 81 1.4 ∗ 1074

The resulting trajectories of the fully evolved controllers are shown in Figure 5-4. Note,

not all the trajectories reached the light in the required time, even though the path was

more direct. This was due to minor oscillations of the robot’s movement caused by the

quantization of the light sensors.

The final trajectories shown (Figure 5-4) revealed two noticeable characteristics that can

be attributed to the level of quantization used. The first is the limited ability for the

controllers with low quantization levels to reach the light source in the time limit set for

each test. This is more noticeable in the trajectory for the 2x2, 3x3 and 4x4 controllers.

The fitness measurement used for the evolution of these controllers uses an algorithm to

determine the run time for each test. The algorithm assumed that the robot will rotate on

99

the spot until facing the light then travel in a straight line until the light source is

reached. However if the light sensor resolution is limited as is in the smaller LUTs, the

fine heading adjustments required to move directly towards the light are not possible.

This can cause the controllers to oscillate when moving towards the light. The

oscillations waste run time resulting in the robot coming up short at the end of the time

period.

2x2 Fitness = 78% 3x3 Fitness = 91% 4x4 Fitness = 91% 5x5 Fitness = 95%

6x6 Fitness = 96% 7x7 Fitness = 97% 8x8 Fitness = 97% 9x9 Fitness = 97%

Figure 5-4 Resulting light follower trajectories

The second characteristic is the path in which the robot takes to get to the light source.

Ideally the robot should begin the test by rotating on the spot until the sensors detect

that the light source is directly in front. The robot should then move in a straight line

towards the light. To do this the controllers require a sensor input resolution fine enough

to accurately determine when the light is directly in front. The smaller LUTs have a

disadvantage in the way that the sensor inputs have been quantized, such that the range

of headings where the sensors would detect a light source directly in front would be

greater than that of the larger LUTs. This causes the controllers to drive the robot

forward assuming that the light source is directly in front however in reality the robot

could be 10 degrees off course. When the robot gets close enough to the light the sensor

inputs change and only then can the controller correct the course, this action results in

an arc-like pathway towards the light source. As expected the radius of the arc shaped

pathway tends to increase straightening out the path as the quantization level increases.

100

Evolutionary efficiency

The experiments in this section have been designed to explore the effects on

evolutionary efficiency caused by varying search space. The evolutionary efficiency for

these results is measured in generations and hence the points of interest will be analysed

with respect to the generation in which they occurred.

Two criteria are tested: firstly will a high level of quantization require more generations

to realise a suitable solution; and secondly will a lower quantization level be able to

fully realise a suitable solution. To explore these criteria eight individual LUTs with

different light quantization levels were evaluated.

The results obtained from the effects of quantization on the evolutionary efficiency are

shown in Table 11.

Table 11 Light level quantization results

LUT
Size

Initial
fitness (%)

Final
fitness (%)

Generation
at 95%

Search space

2x2

77 80 --- 4096
3x3 70 92 --- 1.3∗ 108
4x4 68 91 --- 2.8∗ 1014
5x5 55 95 37 3.8∗ 1023
6x6 53 95 33 3.2∗ 1032
7x7 52 95 33 1.8∗ 1044
8x8 48 97 43 6.2∗ 1057
9x9 47 97 50 1.4 ∗ 1074

The lower levels of quantization (2x2 to 4x4) were unable to meet the required 95%

performance. The optimum evolutionary efficiency occurred at quantization levels of

6x6 and 7x7. It is clear from the results that increasing quantization levels result in

increased evolution times. The fitness of controllers with low quantization levels

plateaued within 100 generations whereas those with higher levels plateaued much later

at 200-300 generations.

The initial fitness obtained is directly related to the quantization level. A high

quantization level provides a large search space which makes finding an adequate

solution at the beginning of the GA process unlikely, and this reduces the initial fitness.

However with a low quantization level the search space is much smaller and the chance

101

of finding an adequate random solution is much more likely, and this causes the initial

fitness to be higher.

Comparison of maximum fitness for different quantization levels

A comparison between the maximum fitness trends from each of the eight quantization

(Figure 5-5) levels yields two interesting results. Firstly, as described above, the initial

fitness can be seen to be increasing as the quantization level decreases and secondly, the

generation at which the fitness begins to plateau increases as the quantization level

increases.

Figure 5-5 Quantization comparison - maximum fitness

102

Comparison of average fitness for different quantization levels

The general shape and positioning of the fitness curves for the population averages

(Figure 5-6) over all the quantization levels remain very similar with the only noticeable

difference being that of the 2x2 LUT.

Figure 5-6 Quantization comparison - average fitness

Based on the comparisons described above it was determined that the optimal

quantization level for LUT controllers in this simulation was eight (8x8 LUT). This was

chosen because of the high level of fitness (95%) achieved and only requiring 33

generations vs. 50 generations for the quantization level of nine which also reached the

high fitness level.

103

5.3 Obstacle avoidance

5.3.1 Object avoidance LUT chromosome

LUTs have been evolved to perform object avoidance behaviours. The LUTs are

configured as one dimension arrays with the axis connected to the proximity sensors

and the parameters providing the output motor controls.

The six analogue proximity sensors mounted on the robot have been quantized to

provide a digital signal. The quantization of the outputs from analogue to digital reduces

the GA search space and the overall complexity of the problem. The quantization level

is such that the sensors return a logic one when an object is detected within range

(50mm) and a logic zero when no object is detected.

The quantized (digital) output from the sensors is combined in a binary format, which

provides a number from 0-63. The binary configuration of the sensors is used as the

indexing value for the LUT. Equation 37 describes how the maximum decimal value is

obtained from a varying number of object sensors.

 Object sensor bit combinations = 2𝑛𝑛 = 26 = 64 Equation 37

Where:

n is the total number of object sensors.

104

As shown in Figure 5-7 the proximity sensors have been allocated a bit number from 0-

5, this provides the order for which the sensor outputs are combined. In this example,

sensors one and four are active which combines to the binary format 010010 which is

equivalent to the decimal value 18. Hence under these conditions the contents of

element 18 in the LUT would be retrieved and used to provide the motor control.

Figure 5-7 Proximity sensor combination example

A visual representation of the LUT used can be seen in Figure 5-8, the index values

range from 0-63 and the elements contain the left and right motor directions.

Figure 5-8 Object avoidance LUT

105

Search space – The search space of the designed LUT can be calculated as follows.

 Object avoidance Search space = 𝐸𝐸2𝑛𝑛 = 826 = 6.2 ∗ 1057 Equation 38

Where:

E is the number of possible element combinations

n is the number of sensors

5.3.2 Offspring creation

The reproduction method uses four-point crossover with a mutation rate of three per

cent. This has proven to be successful and provides enough amalgamation to produce

desirable offspring.

Figure 5-9 shows the creation of two offspring by means of a four point crossover, the

four points are chosen at random and are used to determine which parts of the parent’s

chromosomes are used to create the offspring.

Figure 5-9 Offspring creation with four crossover points

106

5.3.3 Results

A set of experiments has been designed to evaluate the controller performance of a LUT

used as an object avoidance controller and the evolutionary efficiency of the GA used to

evolve it. The results obtained from these experiments are outlined in the two sections

below, the first section focuses on the LUTs performance as a controller and the second

section focuses on the GA efficiency.

The fitness function used to evolve the obstacle avoidance LUT considers two variables,

the robot’s total runtime and the movement count. Both values are converted to a ratio

with their respective maximums and used to calculate the fitness value. Note, for all of

the object avoidance experiments an upper fitness limit of 80% has been set. Due to the

operation of the fitness function, a fitness value much above this point is unachievable.

A complete description of the fitness function can be found in section 3.1.4.

LUT controller performance

The experiments developed are used to evaluate the LUTs ability to perform in a range

of different environments. The controllers are evolved from eight starting headings in

three arenas with differing object configurations. The controllers from each of the

experiments are then put into other arenas and the performance evaluated. The first

controller has been evolved in arena A and the progressing trajectories are shown in

Figure 5-10. A diagram of each arena used in these experiments can be found in section

3.1.3.

Note the trajectories shown below contain eight starting headings.

0° = RED, 45° = Green, 90° = Black, 135° = Grey, 180° = Pink, 225° = Purple,

270° = Orange, 315° = Yellow.

107

Fitness = 11% Fitness = 30% Fitness = 40% Fitness = 45%

 Fitness = 50% Fitness = 54% Fitness = 60% Fitness = 84%

 Figure 5-10 Arena ‘A’ evolutionary stages, showing the trajectories and fitness obtained

The total fitness for each test is comprised of an average from the eight starting

headings. Because of this an individual can achieve a low fitness even though it may

appear that it performed well. This is the case with the individual achieving 11%

(shown in Figure 5-10), where clearly some of the starting headings are performing well

but others are not. As the evolution process progresses it can be seen that other starting

headings begin to perform and hence the fitness begins to increase.

It can also be seen that the individuals moving about the arena with a smoother

trajectory achieve a higher fitness as is the case with the individuals with 54% and 60%.

This is due to the properties of the fitness function which has been designed to force the

robot to move about the arena. This is achieved by keeping track of the robots

movement at periodic intervals. Therefore, when the robot fails to move a set distance

the fitness is reduced and this can be seen in the trajectories where the path appears to

get stuck when an object is encountered.

To compare the effect of arena selection during the evolution process on the

performance of the LUT, two more arenas have been used to develop two additional

controllers. The trajectories for arena B and arena C are shown in Figure 5-11 and

Figure 5-12.

108

Fitness = 11% Fitness = 18% Fitness = 21% Fitness = 42%

 Fitness = 50% Fitness = 60% Fitness = 73% Fitness = 89%

 Figure 5-11 Arena B evolutionary stages, showing the trajectories and fitness obtained

Fitness = 10% Fitness = 18% Fitness = 21% Fitness = 41%

 Fitness = 62% Fitness = 69% Fitness = 73% Fitness = 83%

 Figure 5-12 Arena ‘C’ evolutionary stages, showing the trajectories and fitness obtained

Similar evolution patterns to those found in the trajectories from arena A can be seen in

the trajectories from arena B and arena C. The initial stages of evolution cause the

controller to roughly move about the arena with the overall path becoming smoother in

the later stages of the evolutionary cycle.

109

The evolved controllers from arena A, B and C have been evaluated using three

unfamiliar arenas. The trajectories from each controller in the arenas are shown below

in Figure 5-13.

 Arena 1 Arena 2 Arena 3 Original arena

C
on

tro
lle

r A

 Fitness = 11% Fitness = 75% Fitness = 22% Fitness = 84%

C
on

tro
lle

r B

 Fitness =40% Fitness = 20% Fitness = 29% Fitness = 85%

C
on

tro
lle

r C

 Fitness =30% Fitness = 51% Fitness = 51% Fitness = 83%

Figure 5-13 Evolved controllers evaluated in unfamiliar arenas

It can clearly be seen from the trajectories shown above that the controllers in most of

the tests exhibit some object avoidance behaviours. However when placed into an

unfamiliar arena, these controllers are not capable of performing to the same standard as

achieved in the original arenas. This inability to perform as a universal controller is due

to the incomplete evolution of the LUT. Not all of the possible sensor combinations are

encountered during the evolution process and the LUT does not fully evolve.

110

Multiple arena evolution

To overcome the incomplete evolution problem, a change has been made to the

evolution process. For this test the controllers have been evolved using a combination of

arenas simultaneously. The combination is comprised of arenas A, B and C. The

average fitness from the combined arenas is used to determine the fitness of the

individual. Note, the combined evolved controller achieved a fitness of 81%

 Arena 1 Arena 2 Arena 3

C
on

tro
lle

r A
B

C

 Fitness = 63% Fitness = 78% Fitness = 55%

Figure 5-14 Combined LUT evolution test in unfamiliar arenas

The resulting trajectories from the combined controller in the unfamiliar arenas are

shown in Figure 5-14. When compared to the trajectories in Figure 5-13, a significant

performance increase can be seen. The controller runs for much longer during each run

and also travels via a much smoother path.

111

Evolutionary efficiency

This section focuses on the efficiency of the GA process in particular the number of

generations required to obtain a suitable result. Controllers have been evolved in arenas

A, B and C separately and arenas A, B and C simultaneously. The results are shown in

Table 12.

Table 12 Arena evolution results (LUT).

Arena Initial
fitness (%)

Final
fitness (%)

Generation
at 70%

Generation
at 80%

Arena Complexity
Less to more(1-4)

A

2 80 104 262 3
B 19 85 101 208 2
C 2 84 121 161 1

ABC 12 81 213 347 4

Due to the complexity of the problem, very low initial fitness’s are achieved (2-19%)

and any differences in arena complexities are not obvious when comparing these values.

However when comparing the generations at which the fitness reaches 70 and 80%, a

clear difference can be seen. Based on the number of generations required to reach a

suitable solution, the order of complexity for the arenas from highest to lowest would be

ABC, A, B, C.

112

Maximum individual fitness trends for each arena configuration.

Analysis of the maximum fitness plots in Figure 5-15 reveals two areas of interest.

Firstly the number of generations required to evolve the controllers is directly related to

the complexity of the arena. The least complex arena C can be seen evolving at a steady

rate and reaching a fitness of 80% in fewer generations than the other arenas. The

second area of interest is the difference in evolution progress between the single arenas

(A, B and C) and the combined arena (ABC). The single arenas tend to have large

increases in fitness whereas the combined arena has small increases. This is attributed to

the arena environment in which the controllers are evolved. A large increment in fitness

can occur in a single arena when a controller evolves to navigate one particular obstacle

in that arena. However, the same evolved behaviour in a combined arena environment

will not exhibit the same result due to the large variety of obstacles in the combined

arenas.

Figure 5-15 Maximum fitness comparison for each arena configuration

113

5.4 Light following while avoiding obstacles

The focus for this section of the research has been to evaluate the GA efficiency with an

increase in the problems’ complexity, using monolithic and subsumption evolution

techniques to evolve LUT controllers.

5.4.1 Light following while avoiding obstacles LUT chromosome

LUTs have been evolved to perform the combined tasks of light following while

avoiding obstacles. A three dimensional LUT has been configured to integrate the light

and proximity sensor inputs. The outputs from the left and right light sensors provide

the x and y index values while the proximity sensors provide the z index. The LUT

elements contain directional control for the robot’s left and right motors.

Figure 5-16 is a visual representation of the LUT configured for light following and

object avoidance. The front face of the LUT is the same as the dedicated light follower

LUT with the additional sections behind providing the necessary proximity detection

control.

Figure 5-16 Light follower and object avoidance LUT configuration

114

As with the dedicated object avoidance LUT the number of elements available is

directly related to the number of proximity sensors. In this case with six proximity

sensors there are 26 possible elements, this combined with a light follower LUT with a

light quantization level of 8 would provide a LUT size of 8x8x64 resulting in a total of

4096 elements in the LUT and a search space of 84096.

5.4.2 Offspring creation

The reproduction process chosen for the light follower and object avoidance LUT

differs slightly from the reproduction of the individual behaviours. During reproduction

the LUT is treated as a single dimension array of length determined by the number of

elements in the LUT. Four points are chosen at random along the array and used as the

crossover points to produce the offspring. This method provides the necessary level of

genome amalgamation and has proven to produce suitable offspring.

5.4.3 LUT subsumption evolution

Subsumption evolution involves taking a complex behaviour and splitting it into smaller

less complicated behaviours. In this case the combined behaviour was split into two

behaviours, light following and object avoidance and evolved separately. The two

evolved solutions were then combined using a switching controller such that the two

controllers operate as one and perform the desired complex behaviour. Figure 5-17

below contains an example block representation of a subsumption controller vs. a

monolithic controller.

Figure 5-17 Subsumption controller vs. monolithic example

115

Implementation of the subsumption controller involved taking the previously developed

controllers for the separate behaviours and switching between them by considering the

current status of the robot’s sensors. If the proximity sensors are inactive, then the

controller will use the LUT evolved to perform light following behaviours. However

when an object is present and one or more of the proximity sensors are active, the LUT

evolved for the object avoidance behaviours will be used.

The desired outcome would be a robot that would turn directly to the light source and

move towards it in a straight line. If the robot encountered an object then the robot

would switch controllers and move away from the object until the object was not

detected, then switch back to the light follower controller.

5.4.4 Results

A set of experiments have been designed to evaluate the LUT performance and

evolutionary efficiency when controllers are developed using monolithic and

subsumption techniques.

The fitness function used to evolve the LUTs for the combined behaviours considers

two variables; the robots distance from the light at the end of the test and the length of

the path taken.

A complete description of the fitness function can be found in section 3.1.4

The method of evolution developed for these experiments starts each individual from

eight different starting locations each with a unique heading. Four controllers have been

evolved using the monolithic and subsumption techniques. These controllers have been

compared in two ways, firstly the performance of the controller is analysed and

secondly the GA process itself is analysed.

Note, all of the experiments are undertaken using arena A and an upper fitness limit of

80% or 20,000 generations has been set for the monolithic evolution. A controller

receiving a fitness of 80% is considered to be a good controller due to the way the

fitness function operates.

116

Monolithic evolution results

The four controllers shown in Figure 5-18 clearly exhibit both light following and

object avoidance behaviours. All of the controllers perform to a very high standard and

have been fully evolved before the limit of 20,000 generations. The evolved controllers

can be seen navigating around obstacles and when a clear path is found heading directly

towards the light and hence achieving the maximum allowable fitness. The reason these

controllers do not reach fitness much higher than 80% is due to the operation of fitness

function. A path length equal to the minimum straight line distance between the starting

position and the light would be required to reach a fitness of 100% and this is not

possible.

Controller 1 Controller 2 Controller 3 Controller 4

Fitness = 81%

Generations = 8227

Fitness = 85%

Generations = 10998

Fitness = 84%

Generations = 16126

Fitness = 86%

Generations = 11041

Figure 5-18 Monolithic controller trajectories

The disadvantage of using this method of evolution for complex behaviours is the

number of generations required to achieve a desirable fitness as shown in Figure 5-19.

The evolution progress was very slow with most of the controllers taking over 10,000

generations to evolve. This is largely due to the large search space created by the three

dimensional LUT. In summary the LUT is useful for evolving controllers for simple

behaviours, however it suffers from scalability issues as the complexity of the controller

increases.

117

Figure 5-19 Maximum fitness trends for monolithic controller evolution

Subsumption evolution results

Four previously evolved light follower and object avoidance LUTs were chosen for the

creation of the subsumption controllers. The LUTs were paired up with a selection

algorithm to create four controllers of which the results are shown in Figure 5-20.

Note, the previously evolved controllers have been selected and paired randomly with

no bias. The trajectory shown is a result from one of these pairs.

Subsumption Fitness = 80%

Generations for light follower LUT = 50

Generations for object avoidance LUT = 298

Total generations = 348

Figure 5-20 Subsumption controller trajectories

118

The trajectories of the subsumption controllers show excellent light following and

obstacle avoidance properties. Each of the four controllers clearly navigates towards the

light source and only deviates from course when an object is detected.

Evolving the controllers using subsumption techniques has clear advantages, the

combined generations required to evolve both of the sub-behaviours are far fewer than

if the controller were to be evolved using monolithic techniques as one complete

controller.

5.5 Conclusion of the experiments with a LUT based controller

• Light following – a range of LUTs were successfully evolved, it was found that

the 8x8 LUT was the optimum size.

• Obstacle avoidance – a LUT has been evolved which was fully capable of

collision avoidance.

• Combined behaviours – Controllers have been successfully evolved using both

monolithic and subsumption evolution techniques and it has been found that

controllers developed using subsumption methods outperform those developed

using monolithic methods.

o Monolithic – A singular three dimensional LUT has been evolved and is

capable of performing light following tasks while avoiding obstacles.

o Subsumption – Two LUTs have been separately evolved and combined

using a high level decision making algorithm to perform light following

tasks while avoiding obstacles.

119

Chapter 6

Chapter 6: Evolvable Hardware for use in robotic controllers

This chapter describes the use of EHW controllers to create robotic controllers. These

controllers have been evolved to perform three behaviours -light following, object

avoidance and light following while avoiding obstacles. In order to overcome the

limitations of a normal FPGA with a fine-grained architecture, capable of destructive

routing, a reconfigurable FPGA platform known as a virtual-FPGA was created. This

was based on a Cartesian architecture, non-destructive and course grained, providing a

reduced search space and implemented in the actual FPGA device. The virtual-FPGA

was comprised of logic array blocks (LABs) that contain multiplexers for switching

inputs, and logic elements to provide logic manipulation of the selected inputs. The

following virtual-FPGA architectures described here are the result of several iterations

of testing including reducing and flat layer architectures as well as a variety of logic

element configurations. The virtual-FPGA is configured via a CBS. The bit-stream

provides control over the internal LABs of the virtual-FPGA and is the chromosome

evolved via the GA.

The GA and the software simulation are run on a PC and the configuration bit-stream is

transmitted via a serial link to a NIOS soft-core processor and the virtual-FPGA that has

been implemented on Altera’s DE2-115 application board (Figure 6-1). The NIOS was

constructed with a UART enabling serial communications to the PC; a SDRAM driver

for memory; fourteen 32-bit I/O ports for parallel transfer of the CBS and two I/O ports

for the virtual-FPGA inputs and outputs sent from the robot simulation on the computer.

120

Figure 6-1 EHW System

6.1.1 EHW GA and software structure

The software used to evolve the EHW controllers is similar to the software used for the

LUT and ANN controllers however an additional piece of software has been developed

which runs on an NIOS processor on the FPGA development board. The NIOS receives

bit-stream information from the PC and configures the virtual-FPGA accordingly. Note,

as with the LUT and ANN controllers the chromosome for the EHW controller is

evolved on the PC.

The structure of the software on the NIOS processor is described below.

• Communications received – The main function of the NIOS processor is to

receive and interpret the communications from the PC. The information sent

from the PC contains the bit-stream from the individual under test as well as the

robot’s light and proximity sensor information.

• Virtual-FPGA configuration – The received bit-stream information is used to

configure the virtual-FPGA for the individual under test.

• Using the virtual-FPGA – New sensor information received from the PC is input

to the virtual-FPGA and the resulting outputs are read and sent back to the PC.

The structure of the software on the PC is described below.

• Initialisation – The Initialisation takes place once at the beginning of every

evolution cycle. This involves generating the randomised population of bit-

streams. Each bit-stream conforms to the format that has been developed to

configure the specific virtual-FPGA for the desired behaviour.

121

• Communication – For each new test, the software begins by sending the bit-

stream information via the RS232 interface to the NIOS processor. This

configures the virtual-FPGA. The software then transmits the current sensor

status to the NIOS processor and receives back the resulting output to determine

the robot motion.

• Bit-stream evolution – the bit-streams are put through the testing, selection and

reproduction processes until a satisfactory result is achieved.

• Data logging – The results obtained from the simulated evolution process are

stored in text files which contain the maximum fitness, average fitness and the

generations. These results are also plotted in an Excel spread sheet for ease of

result analysis. The software also takes the bit-stream from the best performing

individual and converts this into three logic expressions, the output of each

expression represents one of the three bits required to determine the robot’s

motion.

• The computer clock speed was two orders of magnitude faster than the clock on

the NIOS processor, thus the robot simulation and the GA were executed on the

computer. This however required a large amount of data to be continually sent

on the serial interface to the NIOS, slowing the evolution down. In order to

reduce the data transfer, a protocol was developed that stored the response of

the EHW on the computer for each new input state request. Thus if the data had

already been retrieved from a previous request, the computer would use the

previously stored data rather than interrogate the EHW.

122

Figure 6-2 is a visual representation of the sequences taken by the software running the

GA evolution and the simulation for the evolution of a generic VFGPA.

Figure 6-2 Simulation software flow chart for EHW evolution

123

6.1.2 Offspring creation

The reproduction method applied to the CBS, is similar to the method used to evolve

the LUTs used for object avoidance. This uses a multiple point crossover method and a

3% mutation rate. The number of points used during the reproduction is chosen at

random and ranges from 2 to 20.

6.2 EHW evolution for light following

This section describes the methods used to evolve the virtual-FPGA controllers

designed to perform light following behaviours.

6.2.1 Virtual FPGA configuration

The virtual-FPGA has four layers of LABs. The inputs and outputs of the system consist

of 20 digital inputs and 3 digital outputs. The digital inputs are split into two 10-bit

sections which are used to provide the light level input to the system (Figure 6-3). For

valid comparisons between controller platforms, the three output bits have been

configured to provide eight possible robot motions as used in the LUT and ANN

controllers.

Figure 6-3 Light following virtual-FPGA architecture

124

The LAB contains two sections. The first section (MUX A and MUX B) is used to

make two selections (A and B), from the available inputs. The second part (LE) is used

to combine the selected inputs (A and B) using one of 16 selectable logic expressions

(Figure 6-4).

Figure 6-4 Light following layer 1 LAB

The input bits 0-9 contain the light intensity for the left sensor while inputs 10-19

contain the intensity from the right sensor. The bits are encoded so that as the light level

increases the bits are left-shifted on the inputs, with a level of zero equal to 0000000001

and a level of five equal to 0000111111. Unused inputs are held at zero. A light

intensity of five and three for the left and right light sensors respectively would create

the combination of inputs shown in Table 13

Table 13 Light sensor input example for light intensities left = 5 and right = 3

125

(L,R) Bit# Bit
L 0 1
L 1 1
L 2 1
L 3 1
L 4 1
L 5 1
L 6 0
L 7 0
L 8 0
L 9 0
R 10 1
R 11 1
R 12 1
R 13 1
R 14 0
R 15 0
R 16 0
R 17 0
R 18 0
R 19 0

The number of bits required to configure each LAB in the first layer is comprised of

five bits to control each multiplexer and four bits from the LE selection, resulting in a

total of 14 bits per LAB. To control all eight LABs in the first layer of the virtual-FPGA

requires (14*8 = 112) bits.

The configuration of the LABs used in the second, third and fourth layers differ quite

considerably from those used in the first layer. Each comprises of eight inputs and one

output (Figure 6-5).

126

Figure 6-5 Light following layers 2, 3 & 4 LABs

Each input multiplexer selects one of the eight inputs and passes them on to the LE

which performs one of 32 available logic expressions on the inputs (A, B, C and D).

The output is a single bit.

Each LAB in these layers requires 17 bits to configure the multiplexers, three for each

of the input multiplexers and five for output providing a total of 435 bits to configure

the entire virtual-FPGA (112 bits in layer one and 323 bits in layers two, three and four).

The search space for this virtual-FPGA is 8.8x10130.

127

6.2.2 Results

A set of experiments has been designed to test the effectiveness of the EHW controller

designed for light following behaviours (controller performance) and to analyse the

efficiency of the GA process used to develop them, (evolutionary efficiency). To clearly

outline the results obtained from this area of research the following section is divided

into two main sections. The first section demonstrates simulated controller performance

of the evolved controllers, while the second section explores the evolutionary efficiency.

The fitness function used to evolve the light follower EHW calculates the robots

distance from the light source after the allowable simulation time. This distance is used

to determine a suitable fitness value. A complete description of the fitness function can

be found in section 3.1.4. Note, for all of the light follower experiments an upper fitness

limit of 95% has been set, at this point the GA stops. 95% was chosen, because after

this point, the population tends to converge and only very small levels of progress are

made.

EHW controller Performance

The experiments described in this section use four starting positions and two starting

headings per position. With the intention of developing a robust controller, one of the

starting headings has been chosen so that the robot is pointing away from the light

source while the other is pointing almost directly at the light. The starting positions have

been chosen so that two are close to the light source and two are much further away.

The performance of the controllers is assessed by analysing the recorded paths taken by

the robot during development. These paths as shown in Figure 6-6 show how a typical

evolution cycle of a light follower controller. Note, the paths shown contain two starting

headings. The first heading of 90 degrees is shown in black while the second heading of

270 degrees is shown in green.

128

Fitness = 58% Fitness = 65% Fitness = 67% Fitness = 85%

Fitness = 88% Fitness = 92% Fitness = 94% Fitness = 97%

Figure 6-6 Example light follower trajectories and fitness percentage (quantization 9)

The controller trajectories clearly show an increase in controller performance as the

evolution cycle continues. As seen with the previous light follower controllers the initial

stages of evolution seem to focus on developing the ability of the controller to steer

towards the light and in most cases the path taken is usually a curve and it is not until

the later stages of evolution the trajectories become more direct.

Light level quantization

Eight levels of quantization have been selected for performance analysis. These levels

and the trajectories of the fully evolved controllers are shown in Figure 6-7. Note, not

all the trajectories reached the light within the required timeframe, even though the path

was more direct, due to minor oscillations of the robot’s movement caused by the

quantization of the light sensors.

129

Quantization = 2

(82%)

Quantization = 3

(91%)

Quantization = 4

(91%)

Quantization = 5

(92%)

Quantization = 6

(94%)

Quantization = 7

(95%)

Quantization = 8

(95%)

Quantization = 9

(95%)

Figure 6-7 Resulting light follower trajectories (EHW)

The final trajectories revealed two noticeable characteristics that can be attributed to the

level of quantization used. Firstly for the controllers with quantization levels greater

than five there are only slight differences in performance. However the lower levels of

quantization are unable to perform in an optimal manner. This is due to the loss of light

sensor resolution caused by the level of quantization. Note, the fitness for the

quantization levels four and five was reduced because the robot did not pivot in the

shortest rotation before moving towards the light.

Evolutionary Efficiency

The experiments in this section have been designed to explore the effects on

evolutionary efficiency caused by varying the level of light quantization. The

evolutionary efficiency for these results is measured in generations and hence the points

of interest will be analysed with respect to the generation of which they occurred. To

explore these criteria eight individual EHW controllers with different light quantization

levels were evaluated.

The table of results (Table 14) show that low levels of quantization affects the controller

performance. This is not related to the search space, as in the case of the LUT, rather the

ability to more accurately observe the direction of the light will affect the controller

performance.

130

Table 14 Light level quantization results (EHW)

Quantization
level

Initial
fitness (%)

Final
fitness (%)

Generation
at 95%

2

45 82 ---
3 50 91 ---
4 82 91 ---
5 72 92 ---
6 61 94 ---
7 73 95 15
8 70 95 15
9 79 95 10

The effects of quantization on the inputs can be seen graphically (Figure 6-8). With the

exception of the controller with a quantization level of two, the remaining controllers all

reach a fitness of 90% in a similar number of generations, however only the controllers

with a quantization level of seven and above can reach the required 95% fitness.

In general, the evolution progresses up to a fitness of 90 per cent relatively quickly, with

the majority of controllers requiring less than 10 generations. The final stages of

evolution where the controller refines the path to the light can be seen evolving around

the 80th generation point. This refinement is fairly difficult to achieve and only results in

a small increase in fitness and this is why so many generations are required to achieve

this.

Figure 6-8 Quantization comparison - maximum fitness (EHW)

131

6.3 EHW evolution for obstacle avoidance

This section contains a description of the virtual-FPGA architecture used in the

evolution of the hardware controller developed to perform object avoidance behaviours.

6.3.1 Virtual FPGA configuration

A controller has been evolved to perform object avoidance behaviours and is comprised

of a three layer virtual-FPGA. The first two layers contain six LABs and the third layer

has three LABs reducing the six input bits to three output bits. The inputs to the

controller are six proximity sensors which have been digitised, the sensor model can be

found in section 3.1.2. The output bits have been combined to provide eight

combinations which provide the eight robot motions.

Figure 6-9 Object avoidance virtual-FPGA

The evolved controller contains a total of 27 LABs. Although unlike the virtual-FPGA

evolved for light following, these LABs remain the same for each layer of the virtual-

FPGA. The complexity of the input layer and the LABs has been reduced due to the

reduction of input bits from the robot sensors. The overall reduction in complexity of

the systems means that the required bit-stream length is also reduced.

132

Figure 6-10 Object avoidance LAB configuration

Each LAB is comprised of two stages. The first stage selects between the six inputs and

passes the selected inputs to the second stage. The second stage performs one of the

thirty two available logic operations on the selected inputs and passes the result on to

the next stage of the virtual-FPGA. The virtual-FPGA is fully configurable with a total

of 459 bits comprised of 27 LABs each requiring 17 bits to configure, giving a search

space of 1.5x10138.

133

6.3.2 Results

A set of experiments has been designed to evaluate an EHW controller for object

avoidance behaviours and the efficiency of the GA used to evolve it. The results

obtained from these experiments are outlined in the following two sections. The first

section focuses on the controller performance while the second section focuses on the

evolutionary efficiency.

The fitness function used to evolve the obstacle avoidance controller considers two

variables, the robot’s total runtime and the movement count. Both values are converted

to a ratio with their respective maximums and used to calculate the fitness value. Note,

for all of the object avoidance experiments an upper fitness limit of 80% has been set as

due to the operation of the fitness function, a fitness value much above this point is

unachievable. A complete description of the fitness function can be found in section

3.1.4.

EHW controller performance

A set of experiments has been developed to evaluate the EHWs ability to perform in a

range of different environments. The controllers are evolved from eight starting

headings in three arenas with differing object configurations. The controllers from each

of the experiments are then put into unknown arenas and their performance evaluated.

The first controller has been evolved in arena A. The set of images shown in Figure

6-11 are common trajectories achieved during the evolution cycle. Note, the trajectories

shown below contain eight starting headings.

0° = RED, 45° = Green, 90° = Black, 135° = Grey, 180° = Pink, 225° = Purple,

270° = Orange, 315° = Yellow

Fitness = 43% Fitness = 51% Fitness = 71% Fitness = 82%

 Figure 6-11 Arena A stages of evolution and the fitness obtained (EHW)

134

The paths show that several fail dependant on the angle that the robot moves towards

the obstacle, however over time the fitness improves as the controller evolves the ability

to avoid an obstacle when approached from several angles. The final stage of evolution

is avoidance refinement, where the controller achieves a smoother path.

To compare the effect of arena selection during the evolution process on the

performance of the EHW, two extra arenas have been used to develop two additional

controllers. The trajectories for arena B and arena C are shown in Figure 6-12 and

Figure 6-13.

Fitness = 23% Fitness = 66% Fitness = 76% Fitness = 85%

 Figure 6-12 Arena ‘B’ stages of evolution and the fitness obtained (EHW)

Fitness = 12% Fitness = 56% Fitness = 77% Fitness = 85%

Figure 6-13 Arena ‘C’ stages of evolution and the fitness obtained (EHW)

Similar evolution patterns to those found in the trajectories from arena A can be seen in

the trajectories from arena B and arena C. In the initial stages of evolution the controller

develops basic object avoidance behaviours which are fine-tuned with the trajectories

becoming more refined in the later stages of the evolutionary cycle.

135

The evolved controllers from arena A, B and C have been evaluated using three new

arenas. The trajectories from each controller in the arenas are shown in Figure 6-14. It

can clearly be seen from the trajectories shown in Figure 6-13 that the controllers in

most of the tests exhibit some object avoidance behaviours. However when placed into

an unfamiliar arena, these controllers do not perform to the same standard as achieved

in the original arenas.

 Arena 1 Arena 2 Arena 3 Original arena

C
on

tro
lle

r A

 Fitness = 10% Fitness = 12% Fitness = 9% Fitness = 82%

C
on

tro
lle

r B

 Fitness =46% Fitness = 57% Fitness = 70% Fitness = 81%

C
on

tro
lle

r C

 Fitness =23% Fitness = 35% Fitness = 45% Fitness = 81%

Figure 6-14 Controller testing in unfamiliar arenas (EHW)

136

Multiple arena evolution

To overcome the incomplete evolution problem, a change has been made to the

evolution process. For this test the controllers have been evolved in arenas A, B and C

simultaneously. The average fitness from the combined arenas is used to determine the

fitness for the individual. Note, the evolved controllers both achieved fitness’s of at

least 80%.

The resulting trajectories from the combined controllers under test in the unfamiliar

arenas are shown in Figure 6-15. When compared to the trajectories in Figure 6-14, a

significant performance increase can be seen. Controller ABC has a fitness greater than

80% in all the unknown arenas. This is a substantial performance increase and is linked

to the longer runtimes and smoother trajectories.

 Arena 1 Arena 2 Arena 3

C
on

tro
lle

r A
B

C

 Fitness = 88% Fitness = 88% Fitness = 88%

Figure 6-15 Combined arena evolution test in unfamiliar arenas (EHW)

137

Evolutionary Efficiency

This section focuses on the efficiency of the GA process in particular the number of

generations required for a suitable result to be obtained. Controllers have been evolved

in arenas A, B and C separately and A, B and C simultaneously. The results are shown

in Table 15.

Table 15 Arena evolution results (EHW)

Arena Initial
fitness (%)

Final
fitness (%)

Generation
at 80%

Arena Complexity
Less to more(1-4)

C 61 86 13 1
B 58 85 24 2
A

48 83 25 3
ABC 22 88 27 4

All five controllers exceeded the desired fitness of 80%. A difference in complexity

level can be seen between the arenas. Arena ABC is seen to be the most complex as it

was the combination of A, B and C.

Maximum individual fitness trends for each arena configuration.

The maximum fitness plots shown in Figure 6-16 can be seen evolving at rates related

to the complexity of the arena in which the controller is evolved. The fitness increments

are larger for the controllers evolved in single arenas compared to the combined arena

controller. The arena complexity is also evident in the number of generations required

for the controllers to reach 80%, where arena ABC which is the most complex, is seen

to require more generations than arena C which is the least complex. Overall the

number of generations required to reach a solution is low, giving this controller a high

evolutionary efficiency.

138

Figure 6-16 Maximum fitness comparison for each arena configuration (EHW)

6.4 EHW for light following while avoiding obstacles

This section describes the virtual-FPGA configuration used and the results obtained in

the evolution of the controllers evolved to perform light following while avoiding

obstacles behaviours.

Two techniques have been used to evolve the controllers. The first technique uses

monolithic evolution to evolve the controller as a complete unit. The second uses

subsumption evolution, where two separate controllers are evolved for individual

behaviours and combined in such a way to perform the desired overall behaviour. This

way scalability issues can be observed.

6.4.1 Monolithic Virtual FPGA configuration

The virtual-FPGA architecture used for the light follower and object avoidance

controller is a combination of the previous controllers used for the individual

behaviours. Much like the input stage used in the light follower controller there are

eight LABs. However to cater for the addition of the proximity sensors to the system,

the number of inputs to each of the LABs has been increased from twenty to twenty-six.

Twenty of the inputs are used to provide the required information used to indicate light

intensity and the remaining six provide the proximity information to the system.

139

Figure 6-17, Light follower and object avoidance virtual-FPGA architecture

With the exception of layer one all of the LABs are the same and contain eight inputs

and one output. The LAB in layer one provides the interface between the sensors and

the virtual-FPGA system and handles a total of 26 inputs as shown in Figure 6-18.

Figure 6-18 LABs in layer one of the light follower and object avoidance virtual-FPGA

Unlike the LABs used in the virtual-FPGAs for the previous behaviours, these LABs

contain only two multiplexers in the input stage. This reduces the length of the bit-

stream required to configure the system and reduces the overall complexity of the

system. The outputs from the two input multiplexers are fed through to the logic

element and put through a selection of logic expressions with the output passed on to

the next layer in the system.

140

The remaining layers in the virtual-FPGA contain LABs with the configuration as

shown in Figure 6-19.

Figure 6-19 LABs in the layers 2-4 of the light follower and object avoidance virtual-FPGA

Each LAB in layers 2, 3 and 4 is comprised of an array of multiplexers designed to

provide the interface to the LAB. The input multiplexers are configured to select one of

the eight inputs and transfer the selected input to the LE. The LE puts the four selected

inputs through one of 32 logic expressions and outputs the result to the next layer. The

total system is configured using a bit-stream length of 435 bits comprised of 19 LABs in

layers 2, 3 and 4 each requiring 17 bits and 8 LABs from layer 1 each requiring 14 bits.

The search space for this is 8.9x10130, similar to the light following virtual-FPGA.

141

6.4.2 EHW Subsumption evolution

The focus of this section is on the evolution of an EHW controller created to perform

the combined task of light following while avoiding obstacles. This controller has been

developed using subsumption evolution techniques where the complex task is broken

down into individual less complicated tasks (light following and object avoidance) and

evolved separately as described in sections 6.1.1 and 6.3. The evolved controllers are

then combined using a switching controller which decides which controller is used and

which is masked based on the sensory inputs.

Figure 6-20 is a visual representation of the subsumption based hardware controller

architecture. The individual controllers for light following and object avoidance are

switched by the upper level decision maker, which determines the status of the input

sensors and selects the appropriate controller accordingly. If an obstacle is detected then

the obstacle avoidance controller is used until the robot is clear of any, at which point

the light follower controller is used.

Figure 6-20 EHW subsumption diagram

142

6.4.3 Results

A set of experiments has been designed to evaluate the EHW controller performance for

both monolithic and subsumption techniques. The method of evolution developed for

these experiments starts each individual from eight different starting locations each with

a unique heading. Four controllers have been evolved using the monolithic and

subsumption techniques and these controllers have been compared in two ways. Firstly

the controller performance is analysed and secondly the evolutionary efficiency itself is

analysed.

The fitness function used to evolve the EHW controllers for the combined behaviours

considers two variables; the robots distance from the light at the end of the test and the

length of the path taken. A complete description of the fitness function can be found in

section 3.1.4.

Note, all of the experiments are undertaken using arena A and an upper fitness limit of

80% or 3000 generations has been set for the monolithic evolution. A controller

receiving a fitness of 80% is considered to be a good controller due to the way the

fitness function operates.

143

Monolithic evolution results

The four controllers shown in Figure 6-21 perform to a very high standard and are fully

developed much faster than the allocated 3000 generation limit. Each controller can be

seen actively seeking out the light source and navigating around any objects

encountered. However different methods of avoiding obstacles can also be seen, such

that some controllers are seen navigating smoothly around obstacles while others

roughly avoid them. This variety of controller performance is due to the large number of

possible controller configurations providing several solutions to the problem.

Controller 1 Controller 2 Controller 3 Controller 4

 Fitness = 83%

Generations = 868

Fitness = 86%

Generations = 1026

Fitness = 87%

Generations = 702

Fitness = 94%

Generations = 574

Figure 6-21 Monolithic controller trajectories (EHW)

On average the number of generations required to reach a desirable result was 800,

substantially more than when the behaviours were evolved separately (Figure 6-22).

Staggered progress is clear during the evolution of the controllers, in the early

generations small increases in fitness can be seen which is usually attributed to one of

the starting positions reaching or getting close to the light source. It is not until much

later on in the evolution cycle where larger gains in fitness can be seen, these large

increases in fitness occur when the majority of the starting positions manage to reach

the light source.

144

Figure 6-22 Maximum fitness trends for monolithic controller evolution

145

Subsumption evolution results

A previously evolved light follower and object avoidance hardware controllers was

randomly chosen for the creation of the subsumption controller. The controller was run

in the simulation to observe the path and corresponding fitness (Figure 6-23).

Subsumption Fitness = 89%

Generations for light follower EHW = 111

Generations for object avoidance EHW = 25

Total generations = 136

Figure 6-23 Subsumption controller trajectories (EHW)

The trajectories of the subsumption controllers show good light following and obstacle

avoidance properties. For all eight starting positions the robot can be seen navigating

around the obstacles and moving directly toward the light source when the path is clear.

146

Chapter 7

Chapter 7: ANN, LUT and EHW evolved controllers comparison

This chapter compares the three evolvable controllers, LUTs ANNs and EHWs for the

navigational tasks, light following, object avoidance and light following while avoiding

obstacles. The comparisons made are in evolution efficiency, controller performance,

scalability and sensor quantization. The results obtained in Chapters Four, Five and Six

provide the comparable data from which the conclusions have been made.

7.1 Light follower controllers

This section compares the three controllers used for light following. The comparisons

are made on the effects of sensor quantization; robot trajectories; evolutionary

efficiency; controller performance and controller motor direction statistics.

Note, the fitness function used to evolve the controllers is a function of the robots initial

and final distance from the light source and the simulation is stopped when a fitness

value greater than 95% is achieved

Quantization trajectory comparison

Figure 7-1 illustrates the final light following trajectories for the ANN, LUT and EHW

controllers for five levels of sensor quantization (2-3-5-7-9). It can be seen that all the

controllers have a similar controller performance. The controller performance is

adequate (above 90%) for a quantization level of three and above. A quantization level

of seven and above produces excellent performance.

147

Figure 7-1 Light quantization comparison of fully evolved ANN, LUT and EHW

Controller input light levels and output motor direction statistics

A statistical analysis of the input light levels and output motor directions for all three

light following controllers has been undertaken. The results are recorded during one test

run of the fully evolved controllers with a light quantization level of nine. The light

sensor activation points shown in Figure 7-2 represents an overall percentage of

occurrences from 0-100% (0% not shown).

All of the light sensor points occur diagonally down the centre of each table. This is due

to the light sensors being intentionally misaligned by 20 degrees. The light intensity is

based on robot heading the majority of sensor combinations are unobtainable. For

example it is impossible for the left sensor to see a maximum light level and the right

sensor to see a minimum level. Two key areas in the occurrence tables have been

identified as (0,0) and (7,7), the former when the robot is facing away from the light and

the latter, when the robot is facing directly towards the light source. These points

(highlighted in green) indicate areas where the robot is required to pivot when no light

is detected and move directly towards the light when the light value is the same for both

sensors.

148

The LUT controller is slightly different from the other controllers. Instead of the

majority of sensor values occurring at (7,7) as with the ANN and EHW controllers, the

majority occurs at (8,6) and (6,8) (Highlighted in yellow). From observation it was

noticed that the LUT trajectory was slightly offset from the light, and it made minor

adjustments as it moved towards the light. This offset was small and had little effect on

the maximum fitness.

Figure 7-2 Light sensor activation occurrences

149

The output directions of the controller have been analysed and a graph representing the

percentage of each occurrence during one test run is shown in Figure 7-3. As expected,

the controllers are moving forward for the majority of the time during each test run,

with pivoting taking up the most of the remaining time, as well as some small course

corrections.

Figure 7-3 Robot motor direction occurrences for the light follower controllers

Evolutionary efficiency and search space

The plots shown in Figure 7-4 represent a typical test run for each controller platform.

The evolution efficiency for the EHW and ANN controllers are much the same, both

start at similar fitness levels and progress to 95% very quickly. The LUT evolution

efficiency is significantly lower and hence takes much longer to evolve than the EHW

and ANN.

150

Figure 7-4 Light follower progress comparison

An initial assumption was that the evolution efficiency is related to the search space of

the chromosome. However on analysing Figure 7-4 and Table 16 it was found that the

controller with the largest search space (EHW) evolved in the minimum number of

generations. On further investigation it was found that the EHW controllers have many

possible configurations capable of performing the desired task. This means that a

solution is more easily found for EHW controllers than the other controllers (ANN and

LUT). In cases where a controller may be configured several ways and still perform the

desired task the search space alone is not an accurate method to determine evolution

rates.

Table 16 Search space vs. required generations for light follower controllers

Controller Generation at 95% Search space
ANN 6 1.2 ∗ 1018
LUT 50 1.4 ∗ 1074
EHW 15 8.9 ∗ 10130

Light follower comparison summary

In summary all the controllers evolved to an excellent level of controller performance,

however the evolutionary efficiency of the LUT was less than the ANN and EHW. For

applications requiring simplistic controllers, such as those running eight bit processors;

the simplistic properties and minimal computing requirements of a LUT may outweigh

the reduced evolution efficiency found for the LUT controllers.

151

7.2 Object avoidance controller comparison

This section of the thesis investigates and compares the three controller platforms and

their capacity to perform as object avoidance controllers. Comparisons are made on:

unfamiliar environment testing; robot trajectories; Evolution efficiency; controller

performance and controller motor direction statistics.

Note, the fitness function used to evolve the obstacle avoidance controllers considers

two variables, the robot’s total runtime and the movement count. Both values are

converted to a ratio with their respective maximums and used to calculate the fitness

value and the simulation is stopped when a fitness of 80% is achieved.

Controller performance

The trajectories shown in Figure 7-5 are the results of the controllers evolved in three

arenas. Clearly each controller is more than capable of performing the desired task with

all controllers exceeding the required fitness of 80%.

 Object avoidance arenas
A B C

A
N

N

(80%) (81%) (81%)

L
U

T

(84%) (89%) (83%)

E
H

W

(82%) (85%) (85%)

Figure 7-5 Object avoidance trajectory comparison (ANN, LUT and EHW)

152

Unfamiliar environment testing

To assess the obstacle avoidance controller’s ability to operate in an unknown

environment, the controllers evolved in arena A have been tested in three unfamiliar

arenas and the resulting trajectories compared in Figure 7-6. All of the results showed

noticeable reductions in controller performance. The ANN performs better than the

EHW and LUT controllers more tolerant to changes in environment. This is due to the

digital circuits and LUT parameters which confine the controller’s ability whereas the

ANN`s “Analogue” controller architecture allows for a more adaptable controller.

 Unfamiliar object avoidance arenas
 Arena 1 Arena 2 Arena 3

A
N

N

(64%) (47%) (44%)

L
U

T

(11%) (75%) (22%)

E
H

W

(10%) (12%) (9%)

Figure 7-6 Unfamiliar arena test for controllers evolved in arena A

153

The reduction in controller performance (shown in Figure 7-6) is caused by incomplete

evolution of the controllers. To improve the adaptability of the controllers, each has

been evolved in arenas A, B and C simultaneously then retested in the unfamiliar arenas.

The resulting trajectories are shown in Figure 7-7.

The test results clearly show that each controller exhibits improved performance with all

of the ANN and EHW tests reaching the desired fitness level. The increased

performance is related to the controller’s level of evolution. A simple test environment

(one arena) creates a poorly evolved controller, whereas a controller which has evolved

in multiple arenas evolves and adapts to a larger range of sensor input combinations

which creates a more adaptable controller.

 Unfamiliar object avoidance arenas
 Arena 1 Arena 2 Arena 3

A
N

N

(85%) (81%) (81%)

L
U

T

(63%) (78%) (55%)

E
H

W

(88%) (88%) (88%)

Figure 7-7 Unfamiliar test for controllers evolved in arena A, B & C simultaneously

154

Controller input sensor combinations and output motor direction statistics

A statistical analysis of the input object sensor combinations and output motor

directions for all three object avoidance controllers has been undertaken. This focuses

on the percentage of occurrences for the sensor combinations and robot motor directions.

The results are recorded during one test run of the fully evolved controllers (Using the

controllers evolved simultaneously in arenas A, B and C). The object sensor

occurrences shown in Figure 7-8 represents an overall percentage of occurrences from

 0-100%.

Figure 7-8 Object sensor input combinations

As expected the majority of time the robot sensors are not active (the robot is not near

any objects), as the robot will alter its course when an object is detected.

The motor direction outputs for each controller have been assessed and are shown in

Figure 7-9. The data has been recorded during one test run of the fully evolved

controller (ABC) in arena A.

155

Figure 7-9 Robot motor direction occurrences for the object avoidance controllers

The majority of motor directions are forward (F, F). Pivoting left (RF) and pivoting

right (FR) are the next most common directions. For the controller to be successful it

needs to move straight when no objects are detected, this forces the robot to move about

the arena instead of stopping or going in circles. When an object is detected the robot

will pivot until the object is not seen then move forward again.

156

Evolutionary efficiency and search space

Figure 7-10 represents the evolutionary progression from a typical solution for each

ABC controller platform. The maximum values for the ANN and EHW controllers are

seen progressing at similar rates reaching 80% in a similar number of generations. The

LUT controller has a poor evolutionary efficiency in comparison.

Figure 7-10 Object avoidance progress comparison

The search space (Table 17) of the ANN is much smaller than the EHW search space,

however as discovered with the light follower controllers, there is no difference in the

evolution rate. This is because for the EHW controller there are multiple solutions

available which creates multiple maxima in the fitness landscape and hence increases

the rate of evolution and the chance of finding a successful solution.

Table 17 Search space vs. required generations for object avoidance controllers

Controller Generation at 80% Search space
ANN 20 1.2 ∗ 1024
LUT 298 6.2 ∗ 1057
EHW 27 5.8 ∗ 1076

Multiple evolved circuits for the EHW controllers have been analysed and none of the

circuits are the same which indicates there are multiple circuit configurations that can be

created to produce the required output. Below are two examples of the logic expressions

157

evolved for object avoidance controller. Both controllers perform object avoidance

behaviours to the required standard but contain different logic.

BIT[0] = BACK
BIT[1] = BACK + RIGHT + CENTRE + FRONT_LEFT + FRONT_RIGHT
BIT[2] = BACK + RIGHT

BIT[0] = Always zero
BIT[1] = FRONT_RIGHT + CENTRE + RIGHT + FRONT_LEFT + LEFT
BIT[2] = Always zero

Figure 7-11 Two example EHW circuits for object avoidance

Object avoidance comparison summary

In summary, all the controllers have evolved to an excellent level of controller

performance. The EHW and ANN controllers both have comparable evolutionary

efficiencies whereas the LUT exhibits a reduced evolutionary efficiency.

7.3 Light following while avoiding obstacles comparison

This section investigates any scalability issues within the three controller types. This is

tested using monolithic and subsumption evolution techniques. The fitness function

used to evolve the controllers for light following and object avoidance considers two

variables, the robots final distance from the light and the length of the path taken to

reach the light. The simulation is stopped after a fitness of 80% is achieved.

7.3.1 Monolithic

Controller performance

Three controllers have been evolved for each of the controller platforms (ANN, LUT

and EHW) and the resulting final trajectories are shown in Figure 7-12. All of the

controllers have successfully evolved and are capable of avoiding obstacles and seeking

the light. The ANN and EHW controllers both exhibit smooth pathways; however on

average the EHW controller exhibits shorter path lengths resulting in a higher fitness.

158

Evolutionary efficiency

The plots shown in Figure 7-13 represent a typical evolution cycle for each controller

platform. The slowest to evolve is the LUT controller which takes more than 9000

generations. The evolution progress for the ANN and EHW controllers are very similar;

however taking 850 and 702 generations respectively.

 Controller #
1 2 3

A
N

N

(90%) (80%) (83%)

L
U

T

(81%) (84%) (85%)

E
H

W

(86%) (87%) (94%)

Figure 7-12 Light following and object avoidance comparison (ANN, LUT and EHW)

159

Figure 7-13 Light following and Object avoidance comparison

As discovered with the light following controllers, the search space (Table 18) for the

EHW controller does not directly relate to the evolution time. In this case the EHW

search space is much larger than the ANN yet the required generations to evolve are

actually fewer. This is due to the large number of available hardware configurations that

can produce the same required result. The LUT had an extremely large search space and

yet managed to evolve a good controller in a reasonable number of generations. This is

because only a part of the LUT is required to control the robot, effectively reducing the

search space.

Table 18 Search space comparison (light following and object avoidance controller)

Controller Generation at 80% Search space
ANN 850 1.0 ∗ 1026
LUT 10998 1.1 ∗ 103699
EHW 702 8.9 ∗ 10130

160

Controller output motor direction statistics

A statistical analysis of the output motor directions for all three light following and

object avoidance controllers has been undertaken. This focuses on the percentage of

motor direction occurrences. The results are recorded during one test run of the fully

evolved controllers. The output directions shown in Figure 7-14 represent an overall

percentage of occurrences from 0-100%.

Figure 7-14 Motor direction occurrences for the light follower and object avoidance controllers

The three controllers use different approaches to find the light and avoid obstacles; the

LUT moves forward for the majority of the time and pivots left (R, F) and right (F, R).

The ANN also moves forward for the majority of the time but is more likely to pivot

right (F, R). The EHW uses an approach that sees the robot moving in a straight line

only 10% of the time. To move forward the EHW alternates between turn left (S, F) and

turn right (F, S) causing a zigzag action.

161

7.3.2 Subsumption

The trajectories and generation statistics shown in Figure 7-15 represent subsumption

controllers for the three controller platforms (ANN, LUT and EHW). The number of

generations required to create the controller is a summation of the required generations

from the individual controllers. The technique used to determine the controller fitness is

the same as that used for the monolithic controllers.

Each controller is capable of avoiding obstacles and reaching the light source; however

the controllers do not perform to the same standard. The LUT controller performs the

worst, only achieving a fitness of 80%. This low fitness is caused by the forward and

reverse motion used to avoid the obstacles which results in an excessive path length.

The EHW and ANN controllers both perform well and achieve the desired fitness;

however the path taken by the ANN controller is shorter than the EHW path so it

achieves a higher fitness.

Controller platform
ANN LUT EHW

(94%) (80%) (94%)

Generations(LF) = 7

Generations (OA) = 10

Total generations = 17

Generations(LF) = 50

Generations (OA) = 298

Total generations = 348

Generations(LF) = 15

Generations (OA) = 27

Total generations = 42

Figure 7-15 Subsumption trajectory controller comparison

162

7.3.3 Scalability

The trajectories shown in Figure 7-16 are typical results obtained from light following

and object avoidance controllers evolved using monolithic and subsumption techniques.

It can be seen that the ANN and EHW perform well with increases in complexity,

however the LUT is more affected, taking ten times the number of generations to evolve

compared to the others.

7.3.4 Light following and object avoidance comparison summary

In summary, all controllers evolved were capable of seeking the light and avoiding

obstacles achieving similar controller performance. The ANN and EHW had a similar

evolutionary performance whereas the LUT performed the worst. The effects of

scalability were most noticeable with the LUT, with both the ANN and EHW

performing well with an increase in complexity.

 Controller platform
 ANN LUT EHW

Su
bs

um
pt

io
n

(94%) (80%) (89%)

Generations = 17 Generation = 348 Generations = 42

M
on

ol
ith

ic

(90%) (85%) (87%)

Generations = 850 Generations = 10998 Generations = 702
Figure 7-16 Subsumption vs. monolithic controller trajectories

163

Chapter 8

Chapter 8: Conclusions and Future Research

8.1 Summary

To summarise, this research has investigated two novel forms of robotic controller and

their suitability in the field of evolutionary robotics. LUT and EHW controllers have

been developed and comparisons made against benchmark ANN controllers. The

controllers have been designed to perform light following, obstacle avoidance and light

following while avoiding obstacle behaviours. The controllers have been evolved using

a GA which used tournament selection and two-point crossover reproduction.

Comparisons were made on the generations required for the controller to evolve and the

final fitness achieved. The results from the comparisons has revealed that the EHW

controllers outperform the LUT controllers for all comparisons and the ANN and EHW

controllers both perform very well achieving high fitness values in a minimal number of

generations.

8.1.1 Question responses

Can a LUT be evolved separately for light following and object avoidance behaviours?

Two LUTs have been designed to investigate the suitability of LUTs as evolvable

robotic controllers for light following and object avoidance behaviours. The LUTs

elements contained the robots left and right motor directions, while the table axes were

linked to the sensory inputs (left and right light sensors and proximity sensors).

Light follower controller: The light following controller was designed as a two

dimensional LUT and the X and Y axes of the LUT were linked to the left and right

light sensor values. To investigate the effect of GA search space on the evolution time

eight levels of sensor quantization were used (two, three, four, five, six, seven, eight and

nine). This resulted in LUTs sizes from (2x2) to (9x9) and search spaces ranging from

4096 to 1.4 ∗ 1074. It was found that the controllers with lower search spaces would

reach their maximum fitness earlier than those with large search spaces however due to

164

a reduction in sensor resolution the maximum fitness achievable was reduced. All of

the sensor quantization levels exhibited light following behaviours however; it was

found that the best light quantization level was eight.

Object avoidance controller: The object avoidance controller was designed as a

singular dimensional LUT and the X axis was linked to the bit combination of the six

proximity sensors. The object avoidance controllers have been assessed on two

outcomes, the first is the controller’s ability to avoid obstacles and the second is on the

controller’s ability to avoid obstacles in unfamiliar environments. It was found that the

evolved controllers were fully capable of avoiding obstacles in the arena which they

were evolved however; when the controllers were tested in unfamiliar arenas a

substantial reduction in performance observed. To create a more adaptable controller a

new controller was evolved using three arenas simultaneously. The resulting controller

tested very well in unfamiliar arenas showing a considerable increase in the overall

performance.

Can a LUT be evolved to follow a light source while avoiding obstacles using
monolithic and subsumption methods?

Two methods of creating a light following and obstacle avoidance LUT controller have

been investigated. The first method, monolithic, evolves a three dimensional LUT with

light sensor values linked to the X and Y axis and the bit combination of six proximity

sensors linked to the Z axis. The second method, subsumption, evolves two LUT

controllers separately for the individual behaviours and combines them using a selection

algorithm.

Monolithic controller: The monolithic controller is 9x9x64 three dimensional LUT,

each element in the LUT contains one of eight possible motor direction combinations.

Multiple controllers were evolved and all of the completed controllers we able to seek

out the light source while avoiding obstacles. However, it was found that the controllers

required a large number of generations to evolve. This was found to be caused by the

LUTs large search space and limited number of solutions available. When compared to

the ANN monolithic controller the generations required were about ten times more.

Subsumption controller: The design of the subsumption controller involved a two part

process; the first was to evolve the two individual controllers separately, the second was

to develop a selection algorithm that would choose which controller was used under

165

differing input sensor combinations. The selection algorithm selected the light follower

LUT when no objects were detected and the object avoidance LUT when objects were

detected. This resulted in a LUT controller with a high performance level that required a

minimal number of generations to produce (348 vs. 10098 for the monolithic). In

comparison to the ANN subsumption controller it was found that the required

generations were still about ten times more for the LUT.

Can a virtual FPGA (EHW) be evolved for light following and object avoidance?

Two EHW controllers have been designed to explore the possibilities of evolving a

virtual-FPGA for light following and object avoidance behaviours.

Light following: The light following EHW controller had 20 inputs and three outputs.

The 20 inputs were comprised of ten left light sensor bits and ten right light sensor bits.

The three output bits were used in a bit combination to determine which of the eight

motor direction combinations were selected. Eight controllers were tested using eight

levels of quantization. All eight controllers showed light following abilities, however it

was found that with a reduction in sensor resolution, the controllers with low levels of

quantization performed poorly. The ideal sensor quantization level was nine, at this

level the controllers performed very well and achieved the maximum fitness in only

three generations vs. 50 for the LUT and six for the ANN.

Object avoidance: The object avoidance EHW controller had six inputs and three

outputs. The six inputs contained the digital input from the six proximity sensors and

the three output bits were used in a bit combination to determine which of the eight

motor direction combinations were selected. The evolved controllers performed well in

the arenas which they were evolved in however; when tested in the unfamiliar arenas

the EHW controller performed poorly. A second controller was evolved in three

different arenas simultaneously and this controller had a major performance increase

surpassing the required 80% fitness.

166

Can a virtual FPGA (EHW) be evolved to follow a light source while avoiding
obstacles using monolithic and subsumption methods?

Two EHW controllers have been designed to investigate the possibility of using a

virtual-FPGA as a controller for the combined behaviour of light following while

avoiding obstacles. The first is a complete controller which has been evolved using

monolithic techniques. The second controller uses subsumption techniques, where

smaller sub-behaviours are evolved separately and combined using a selection algorithm

to perform the desired task.

Monolithic controller: The monolithic controller is a flat three layered virtual-FPGA

with a fourth layer providing a three bit reduced output. The input to the VPFGA

contained 26 bits left light sensor (ten), right light sensor (ten) and proximity sensors

(six). The three bit output provided the bit combination used to determine the resulting

motor directions. Multiple controllers were developed using monolithic techniques and

all were successful in seeking out the light while avoiding obstacles and achieved and

average fitness of 89%. When compared to the controllers developed on the ANN and

LUT platforms it was found the EHW controller outperformed both controllers.

Subsumption controller: The subsumption controller is made up of two individual

controllers previously evolved for the sub behaviours of light following and object

avoidance. A selection algorithm is used to select which of the controllers is used for a

given input sensor combination. The controllers created for this section of the research

proved to be very efficient at avoiding obstacles and seeking out the light source.

167

Which of the controller platforms perform better (LUT or EHW)?

To determine which if better controller is LUT or EHW, comparisons have been made

in four categories (The results are shown in Table 19). The categories are light

following, object avoidance, light following while avoiding obstacles- monolithic and

light following while avoiding obstacles- subsumption. In all four comparisons the

EHW controllers require about 10% of the generations required by the LUT controllers

to fully evolve. The EHW and LUT controllers achieve the same maximum fitness for

all comparisons except for the object avoidance and subsumption. In these cases the

EHW controller was superior to the LUT.

Table 19 LUT, ANN and EHW analysis

Light follower (Quantization level of nine)
Controller type EHW LUT ANN
Final fitness (%) 97 97 97
Generations (95%) 3 50 6

Object avoidance evolved in arena (A,B & C)
Controller type EHW LUT ANN
Final fitness (%) 87 83 88
Generations (80%) 27 298 20

Light following while avoiding obstacles (Monolithic)
Controller type EHW LUT ANN
Final fitness (%) 86 85 89
Generations (80%) 702 10998 850

Light following while avoiding obstacles (Subsumption)
Controller type EHW LUT ANN
Final fitness (%) 89 80 94
Generations (80%) 54 348 17

The results found in this research show that the EHW controller is an ideal development

platform for evolutionary robotics. A large number of solutions exist within the EHW

GA search space, this results in a controller type that exhibits very good scalability

performance and is largely unaffected by an increasing GA search space. The LUT

exhibits good controller performance; however, has poor evolution efficiency in

comparison to that seen with the EHW and ANN. Based on these discoveries it was

decided that the EHW controller is better suited for evolutionary robotics than the LUT

controller.

168

8.2 Future Research

Real world environment testing

- The configuration and architecture of the EHW circuits could be further

explored with experiments designed to investigate changes in LAB

configuration and the resulting changes to controller performance.

- Speed options could be applied to the outputs of the controllers rather than only

using forward, reverse and stop. This would enable complex control of the robot

motions, but would greatly increase the complexity of the developed controllers.

- Investigation into fault tolerance where faults could be introduced into the

controller models and the controller’s ability to adapt to the faults could be

assessed.

- An analysis of simulated controllers in a real world environment could be

undertaken using the controllers developed in this research. Previous work

undertaken has resulted in the design and construction of a two wheeled robot

with light sensing and object avoidance capabilities. This robot was designed to

be used as a platform for research into the field of evolutionary robotics. The

robot has been designed using an Altera FPGA which is suitable for

implementing hardware and software controllers. All three controller platforms

will be implemented on this robot and the resulting controller performance

analysed. It is expected that further adjustments will need to be made to the

simulation in which the controllers are evolved to allow for environmental

factors such as external noise and non-ideal robot characteristics.

169

References

[1] D. A. Pomerleau, J. Gowdy, and C. E. Thorpe, "Combining artificial neural
networks and symbolic processing for autonomous robot guidance," Engineering
Applications of Artificial Intelligence, vol. 4, pp. 279-285, 1991.

[2] J. Kodjabachian and J. A. Meyer, "Evolution and development of neural
controllers for locomotion, gradient-following, and obstacle-avoidance in
artificial insects," IEEE Transactions on Neural Networks, vol. 9, pp. 796-812,
1998.

[3] R. Glasius, A. Komoda, and S. C. Gielen, "Neural network dynamics for path
planning and obstacle avoidance," Neural Networks, vol. 8, pp. 125-133, 1995.

[4] A. Bartha, A. Sobe, and W. Elmenreich, "Towards the light Comparing evolved
neural network controllers and Finite State Machine controllers," in Intelligent
Solutions in Embedded Systems (WISES), 2012 Proceedings of the Tenth
Workshop on, 2012, pp. 83-87.

[5] V. Abhishek, A. Mukerjee, and H. Karnick, "Artificial ontogenesis of controllers
for robotic behavior using VLG GA," in Systems, Man and Cybernetics, 2003.
IEEE International Conference on, 2003, pp. 3376-3383 vol.4.

[6] W. Wahab, "Autonomous mobile robot navigation using a dual artificial neural
network," in TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, pp. 1-6.

[7] D. Harter, "Evolving neurodynamic controllers for autonomous robots," in
Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., 2005, pp. 137-142 vol. 1.

[8] W. Elmenreich and G. Klingler, "Genetic Evolution of a Neural Network for the
Autonomous Control of a Four-Wheeled Robot," in 2007 Sixth Mexican
International Conference on Artificial Intelligence, Special Session (MICAI),
2007, pp. 396-406.

[9] L. Seung-Ik and C. Sung-Bae, "Emergent behaviors of a fuzzy sensory-motor
controller evolved by genetic algorithm," IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 31, pp. 919-929, 2001.

[10] H. Hagras, V. Callaghan, and M. Colley, "Online learning of the sensors fuzzy
membership functions in autonomous mobile robots," in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No.00CH37065), 2000, pp. 3233-3238
vol.4.

170

[11] K. Sung Hoe, P. Chongkug, and F. Harashima, "A self-organized fuzzy
controller for wheeled mobile robot using an evolutionary algorithm," IEEE
Transactions on Industrial Electronics, vol. 48, pp. 467-474, 2001.

[12] S. H. A. Mohammad, M. A. Jeffril, and N. Sariff, "Mobile robot obstacle
avoidance by using Fuzzy Logic technique," in 2013 IEEE 3rd International
Conference on System Engineering and Technology, 2013, pp. 331-335.

[13] M. M. Almasri, K. M. Elleithy, and A. M. Alajlan, "Development of efficient
obstacle avoidance and line following mobile robot with the integration of fuzzy
logic system in static and dynamic environments," in 2016 IEEE Long Island
Systems, Applications and Technology Conference (LISAT), 2016, pp. 1-6.

[14] B. Coffey, "Using building simulation and optimisation to calculate control
lookup tables offline," in 12th Conference of International Building
Performance Simulation Association, 2011.

[15] P. K. Singh, S. Bhanot, and H. Mohanta, "Neural Control of Neutralization
Process using Fuzzy Inference System based Lookup Table," International
Journal of Computer Applications, vol. 61, 2013.

[16] P. V. S. Sobhan, G. V. N. Kumar, M. R. Priya, and B. V. Rao, "Look Up Table
Based Fuzzy Logic Controller for Unmanned Autonomous Underwater
Vehicle," in 2009 International Conference on Advances in Computing, Control,
and Telecommunication Technologies, 2009, pp. 497-501.

[17] J. Kim, Y. G. Kim, Y. D. Kim, W. S. Kang, and J. An, "Design Based on a
Shared Lookup-Table for an Obstacle Avoidance Fuzzy Controller for Mobile
Robots," in 2009 Ninth International Conference on Intelligent Systems Design
and Applications, 2009, pp. 731-736.

[18] M. Beckerleg and J. Collins, "An analysis of the chromosome generated by a
genetic algorithm used to create a controller for a mobile inverted pendulum," in
Autonomous Robots and Agents, ed: Springer, 2007, pp. 145-152.

[19] J. Currie, M. Beckerleg, and J. Collins, "Software Evolution Of A Hexapod
Robot Walking Gait," in 2008 15th International Conference on Mechatronics
and Machine Vision in Practice, 2008, pp. 305-310.

[20] M. Beckerleg and J. Collins, "An analysis of the genetic evolution of a ball-
beam robotic controller based on a three dimensional look up table
chromosome," in IAENG Transactions on Engineering Technologies, ed:
Springer, 2013, pp. 109-122.

[21] M. Beckerleg and R. Hogg, "Evolving a lookup table based motion controller for
a ball-plate system with fault tolerant capabilites," in 2016 IEEE 14th
International Workshop on Advanced Motion Control (AMC), 2016, pp. 257-262.

171

[22] M. Beckerleg and Z. Chan, "Evolving individual and collective behaviours for
the Kilobot robot," in 2016 IEEE 14th International Workshop on Advanced
Motion Control (AMC), 2016, pp. 263-268.

[23] M. Okura, A. Matsumoto, H. Ikeda, and K. Murase, "Artificial evolution of
FPGA that controls a miniature mobile robot Khepera," in SICE 2003 Annual
Conference (IEEE Cat. No.03TH8734), 2003, pp. 2858-2863 Vol.3.

[24] K. C. Tan, C. M. Chew, K. K. Tan, L. F. Wang, and Y. J. Chen, "Autonomous
robot navigation via intrinsic evolution," in Evolutionary Computation, 2002.
CEC '02. Proceedings of the 2002 Congress on, 2002, pp. 1272-1277.

[25] A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary algorithm for the
promotion of evolvable hardware," IEE Proceedings - Computers and Digital
Techniques, vol. 151, pp. 267-275, 2004.

[26] R. Krohling, Y. Zhou, and A. Tyrrell, "Evolving FPGA-based robot controllers
using an evolutionary algorithm," in 1st international conference on Artificial
Immune Systems, Canterbury, 2002.

[27] H.-S. Seok, K.-J. Lee, and B.-T. Zhang, "An on-line learning method for
objectlocating robots using genetic programming on evolvable hardware," in
Proceedings of the Fifth International Symposium on Artificial Life and
Robotics, 2000, pp. 321-324.

[28] M. Beckerleg and J. Collins, "Evolving Electronic Circuits For Robotic
Control," in 2008 15th International Conference on Mechatronics and Machine
Vision in Practice, 2008, pp. 651-656.

[29] M. Beckerleg and J. Collins, "Using a hardware simulation within a genetic
algorithm to evolve robotic controllers," in Proceedings of the World Congress
on Engineering and Computer Science WCWCS, 2011.

[30] D. Keymeulen, M. Iwata, K. Konaka, Y. Kuniyoshi, and T. Higuchi, "Evolvable
hardware: A robot navigation system testbed," New Generation Computing, vol.
16, pp. 97-122, 1998.

[31] D. Dhanasekaran and K. B. Bagan, "Fault Tolerant Dynamic Antenna Array in
Smart Antenna System Using Evolved Virtual Reconfigurable Circuit," in 21st
International Conference on VLSI Design (VLSID 2008), 2008, pp. 77-83.

[32] R. A. Brooks, "A robot that walks; emergent behaviors from a carefully evolved
network," in Proceedings, 1989 International Conference on Robotics and
Automation, 1989, pp. 692-4+2 vol.2.

[33] R. Brooks, "A robust layered control system for a mobile robot," IEEE Journal
on Robotics and Automation, vol. 2, pp. 14-23, 1986.

172

[34] H. Saito, R. Amano, N. Moriyama, K. Kobayashi, and K. Watanabe,
"Emergency obstacle avoidance module for mobile robots using a laser range
finder," in The SICE Annual Conference 2013, 2013, pp. 348-353.

[35] V. S. Dasmane and M. R. M. , "Implementation and analysis of real time
obstacle avoiding subsumption controlled robot," International Journal of
Advanced Research in Computer and Communication Engineering, vol. 3, p. 4,
2014.

[36] J. T. Turner, S. N. Givigi, and A. Beaulieu, "Implementation of a subsumption
based architecture using model-driven development," in 2013 IEEE
International Systems Conference (SysCon), 2013, pp. 331-338.

[37] C. Tan Tiong and M. N. Mahyuddin, "Implementation of behaviour-based
mobile robot for obstacle avoidance using a single ultrasonic sensor," in 2009
Innovative Technologies in Intelligent Systems and Industrial Applications, 2009,
pp. 244-248.

[38] J. Holland, Adaptation in Natural and Artificial Systems MIT Press, 1975.

[39] M. Ruse, "Charles Darwin's theory of evolution: an analysis," Journal of the
History of Biology, vol. 8, pp. 219-241, 1975.

[40] M. M. Trujillo, K. Duling, M. Darrah, E. Fuller, and M. Wathen, "Fitness
function changes to improve performance in a GA used for multi-UAV tasking,"
in 2015 Workshop on Research, Education and Development of Unmanned
Aerial Systems (RED-UAS), 2015, pp. 211-218.

[41] B. L. Miller and D. E. Goldberg, "Genetic algorithms, tournament selection, and
the effects of noise," Complex systems, vol. 9, pp. 193-212, 1995.

[42] M. R. Noraini and J. Geraghty, "Genetic algorithm performance with different
selection strategies in solving TSP," 2011.

[43] P. D. Sniegowski, P. J. Gerrish, and R. E. Lenski, "Evolution of high mutation
rates in experimental populations of E. coli," Nature, vol. 387, pp. 703-705,
1997.

[44] T. Blickle and L. Thiele, "A Mathematical Analysis of Tournament Selection,"
in ICGA, 1995, pp. 9-16.

173

Appendix A : Acronyms

Lookup table – LUT

Evolvable hardware – EHW

Artificial neural network – ANN

Genetic algorithm – GA

Configuration bit stream – CBS

Virtual reconfigurable circuit – VRC

Graphical user interface – GUI

Finite state machine – FSM

Clockwise – CW

Counter clockwise – CCW

Logic array block – LAB

Logic element – LE

Light follower – LF

Object avoidance – OA

Field programmable gate array – FPGA

174

175

Appendix B Alteras DE2115 Development Board used for experiments

	Attestation of Authorship
	Acknowledgement
	Abstract
	Table of Contents
	Table of Figures
	Chapter 1: Introduction
	1.1 Artificial neural network
	1.2 Lookup Table
	1.3 Evolvable hardware
	1.4 Research Objectives
	1.4.1 Can a LUT be evolved separately for light following and object avoidance behaviours?
	1.4.2 Can a LUT be evolved to follow a light source while avoiding obstacles using monolithic and subsumption methods?
	1.4.3 Can a virtual-FPGA (EHW) be evolved for light following and object avoidance?
	1.4.4 Can a virtual-FPGA (EHW) be evolved to follow a light source while avoiding obstacles using monolithic and subsumption methods?
	1.4.5 How do these controllers compare with an ANN?

	1.5 Publications
	1.5.1 Conference Paper
	1.5.2 Journal articles submitted
	1.5.3

	1.6 Thesis Structure

	Chapter 2: Literature Review
	2.1 Review of robotic controllers
	2.1.1 ANN controllers
	2.1.2 Fuzzy logic controllers
	2.1.3 LUT controllers
	2.1.4 EHW controllers

	2.2 Hierarchical evolution
	2.2.1 Subsumption

	2.3 Genetic algorithm
	2.3.1 Fitness allocation
	2.3.2 Selection schemes
	Tournament selection
	Fitness proportionate selection

	2.3.3 Procreation
	Single point crossover
	Multi-point crossover

	2.3.4 Mutation

	Chapter 3: Common Systems Developed for Experimentation
	3.1 Hardware overview
	3.1.1 Robot kinematics and mathematical model
	Pivot left and right
	Forward and reverse
	Turn Left and right

	3.1.2 Robot Sensor Models
	3.1.2.1 Obstacle avoidance systems
	Proximity hardware
	Proximity sensor mathematical model

	3.1.2.2 Light following systems
	Light sensing hardware
	Light sensor mathematical model
	Example calculations

	3.1.3 Arenas
	3.1.4 Fitness allocation
	Light following
	Obstacle avoidance
	Light following while avoiding obstacles

	3.1.5 Selection process
	3.1.6 Simulation procedure
	Common procedures
	Light following procedure
	Object avoidance procedure
	Light following while avoiding obstacles procedure

	3.2 Graphical user interface

	Chapter 4: Artificial Neural Network evolution for use in robotic controllers
	4.1.1 ANN GA and software structure
	4.2 Light following
	4.2.1 Artificial neural network configuration
	4.2.2 Light following ANN chromosome
	4.2.3 Results
	Artificial neural network performance
	Light level quantization
	Evolution efficiency

	4.3 Obstacle avoidance
	4.3.1 Artificial neural network configuration
	4.3.2 Obstacle avoidance ANN chromosome
	4.3.3 Results
	Artificial neural network performance
	Multiple arena evolution
	Evolutionary efficiency

	4.4 Light following while avoiding obstacles
	4.4.1 Artificial neural network configuration
	4.4.2 Light following while avoiding obstacles ANN chromosome
	4.4.3 Artificial neural network subsumption evolution
	4.4.4 Results
	Monolithic evolution results
	Subsumption evolution results

	4.5 Overall Conclusions

	Chapter 5: Evolvable Lookup Tables for use in robotic controllers
	5.1.1 LUT GA and software structure
	5.2 Light Following
	5.2.1 LUT Chromosome
	5.2.2 Offspring creation
	5.2.3 Results
	Look up table controller performance
	Light level quantization
	Evolutionary efficiency

	5.3 Obstacle avoidance
	5.3.1 Object avoidance LUT chromosome
	5.3.2 Offspring creation
	5.3.3 Results
	LUT controller performance
	Multiple arena evolution
	Evolutionary efficiency

	5.4 Light following while avoiding obstacles
	5.4.1 Light following while avoiding obstacles LUT chromosome
	5.4.2 Offspring creation
	5.4.3 LUT subsumption evolution
	5.4.4 Results
	Monolithic evolution results
	Subsumption evolution results

	5.5 Conclusion of the experiments with a LUT based controller

	Chapter 6: Evolvable Hardware for use in robotic controllers
	6.1.1 EHW GA and software structure
	6.1.2 Offspring creation
	6.2 EHW evolution for light following
	6.2.1 Virtual FPGA configuration
	6.2.2 Results
	EHW controller Performance
	Light level quantization
	Evolutionary Efficiency

	6.3 EHW evolution for obstacle avoidance
	6.3.1 Virtual FPGA configuration
	6.3.2 Results
	EHW controller performance
	Multiple arena evolution
	Evolutionary Efficiency

	6.4 EHW for light following while avoiding obstacles
	6.4.1 Monolithic Virtual FPGA configuration
	6.4.2 EHW Subsumption evolution
	6.4.3 Results
	Monolithic evolution results
	Subsumption evolution results

	Chapter 7: ANN, LUT and EHW evolved controllers comparison
	7.1 Light follower controllers
	Quantization trajectory comparison
	Controller input light levels and output motor direction statistics
	Evolutionary efficiency and search space
	Light follower comparison summary

	7.2 Object avoidance controller comparison
	Controller performance
	Unfamiliar environment testing
	Controller input sensor combinations and output motor direction statistics
	Evolutionary efficiency and search space
	Object avoidance comparison summary

	7.3 Light following while avoiding obstacles comparison
	7.3.1 Monolithic
	Controller performance
	Evolutionary efficiency
	Controller output motor direction statistics

	7.3.2 Subsumption
	7.3.3 Scalability
	7.3.4 Light following and object avoidance comparison summary

	Chapter 8: Conclusions and Future Research
	8.1 Summary
	8.1.1 Question responses
	Can a LUT be evolved separately for light following and object avoidance behaviours?
	Can a LUT be evolved to follow a light source while avoiding obstacles using monolithic and subsumption methods?
	Can a virtual FPGA (EHW) be evolved for light following and object avoidance?
	Can a virtual FPGA (EHW) be evolved to follow a light source while avoiding obstacles using monolithic and subsumption methods?
	Which of the controller platforms perform better (LUT or EHW)?

	8.2 Future Research
	Real world environment testing

	References
	Appendix A : Acronyms
	Appendix B Alteras DE2115 Development Board used for experiments

