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Abstract 

This research provides a comparison of three types of robotic controllers and their 

suitability in evolutionary robotics. Two novel systems comprised of lookup tables 

(LUTs) and evolvable hardware (EHW) based controllers are compared against a 

benchmark single layered artificial neural network (ANN). The controllers have been 

evolved using a genetic algorithm (GA) to perform the following robotic navigational 

tasks: light following, object avoidance and the combined behaviour, light following 

while avoiding obstacles. Five aspects of the evolved robot controllers are evaluated: a) 

controller performance, assessed both numerically and visually; b) evolutionary 

efficiency, the number of generations required to obtain a good fitness; c) scalability, 

based on the controller performance and evolutionary efficiency as the complexity of 

the task is increased; d) quantization effects as the sampled resolution of the input 

sensors is varied; and e) operation of the evolved controllers in unknown spaces.    

The findings from this research shows that: 1) the evolved controller performance is 

similar between the LUT, EHW and ANN controllers; 2) the evolutionary efficiency of 

the ANN and EHW are comparable, whereas the LUT took four times the number of 

generations to evolve; 3) the scalability of the EHW and ANN controllers were similar 

with the LUT being the most affected taking twelve times the number of generations to 

evolve; 4) the quantization effects of the sensors was comparable for all three controller 

types with a low sensor resolution mostly having an effect as the controller performance 

was moving towards a maximum; and 5) all the controllers were more robust in 

unknown environments when evolved in multiple arenas.   

Both the EHW and LUT controllers performed far better than the apparent search space 

would suggest. This was due to the EHW having a large number of possible circuit 

solutions, effectively allowing solutions to be found quickly, and the LUT requiring 

only small sections of the LUT to control the robot thereby reducing the GA search 

space.  

The selection of which controller to use is determined by the system that it will be used 

in. The ANN is suited to a processor that contains a floating-point unit, the EHW is 

suited to a hybrid field programmable gate array (FPGA) with an ARM-based hard-core 

processor, whereas the LUT is suited to a low cost 8-bit microcontroller based system. 
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Chapter 1 

Chapter 1: Introduction 

Evolutionary robotics has been widely researched for autonomous robots due to its 

adaptability in unknown environments and fault tolerance. A common evolvable 

controller that has been extensively studied in this field is the ANN, where the weights 

in the network are evolved rather than training the network. Other less studied evolvable 

robotic controllers are the LUT where the chromosome is the parameters in the table 

and EHW where the chromosome is the configuration bit-stream (CBS), which is used 

to create the circuit. This research provides a comparison between these controllers and 

a standard feed-forward single layer ANN. The controllers have been evolved to 

perform three navigational tasks, light following, obstacle avoidance and a combination 

of the two, light following while avoiding obstacles. A comparison has been made 

which investigated five key aspects: 1) the performance of the evolved controller 

(controller performance); 2) the number of generations required to reach this 

performance (evolutionary efficiency); 3) the effects of quantization on the input 

sensors; 4) the effects of scalability as the controller becomes more complex; and 5) the 

effects of altering the environment after the robot controller has been evolved. The 

effects of scalability for the three controller platforms are assessed using two methods: 

monolithic, where complex behaviours are evolved concurrently; and subsumption, 

where the behaviours are evolved individually, then combined using a switching 

controller. 

1.1 Artificial neural network 

Widely used in robotics, the ANN is a system of interconnected neurons (Figure 1-1) 

which imitates a biological neural network. A simple single layer ANN used in robotics 

is comprised of three key sections: 1) inputs from the sensors are adjusted via a 

weighting factor and passed onto the neuron; 2) the neuron which sums the weighted 

input signals and feeds the combined signals into an activation function; and 3) the 
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output from the neuron is used to drive an actuator. The ANN configuration used in this 

research is described in section 4.2.1. 

 

Figure 1-1 Single-layered ANN 

1.2 Lookup Table 

Used widely in low powered microprocessors, the LUT provides a means of reducing 

computational runtime. The LUT uses a simple index based system to provide a path to 

a previously calculated result. LUTs are configured in a variety of formats depending on 

the complexity of the computational task. Table 1 shows a typical LUT which could be 

used to calculate the values of sine for a given angle. The inputs to the LUT in this 

example are the angles (θ) and the outputs (sin(θ)) are contained in the table elements.   

Table 1 LUT example (Sine wave) 

 

LUTs when used as robotic controllers are restricted by the quantization of the inputs, 

outputs, and scalability difficulties in complex systems. However, once evolved, the 

LUT requires far fewer computational resources than that of an ANN and other 

traditional control systems. This makes it ideal for implementation in processors with 

low computational power such as the commonly used 8-bit microcontroller. The LUT 

based controller could be used in a distributed control system. This would have a central 

processor to perform the evolutionary computation for multiple local LUT based 
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microcontrollers. Continuous evolution of these multiple controllers, allows the system 

to adapt to fault conditions by updating the LUT in each microcontroller (Figure 1-2) 

 

Figure 1-2 An adaptable robotic system with a central processor for the genetic algorithm process 

and multiple LUT based microcontrollers for control. 

1.3 Evolvable hardware 

EHW, sometimes referred to as a virtual-FPGA or a virtual reconfigurable circuit (VRC) 

is comprised of an adjustable interlinked system of logic elements (Figure 1-3). Each 

logic element performs logic manipulation of its inputs and passes the resulting output 

to the subsequent connected logic element. The logic element and interconnections is 

reconfigurable via a CBS which is used to describe the logic hardware.  

 

Figure 1-3 EHW logic element configuration  

The use of EHW in the form of a virtual-FPGA or VRC has been studied for image 

processing and fault tolerance, but very little research has been undertaken into their use 

as robotic controllers. For this research, a flat-layered virtual-FPGA has been developed 
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and provides the platform for the EHW controllers. The evolved chromosome is 

comprised of a CBS which is used to describe the virtual-FPGA hardware. 

1.4 Research Objectives 

The aim of this research has been to investigate the effectiveness of using a GA to 

develop two types of novel robotic controllers for three specific behaviours. The 

behaviours chosen for this exercise were; light following, object avoidance and light 

following while avoiding obstacles. The research has focused on developing controllers 

for each of the described behaviours using LUT and EHW based controller platforms. 

The controllers have been compared against an ANN controller as a benchmark.    

The objectives outlined above produced five research questions. 

• Can a LUT be evolved for light following and object avoidance behaviours? 

• Can a LUT be evolved to follow a light source while avoiding obstacles 

using monolithic and subsumption methods? 

• Can a virtual-FPGA (EHW) be evolved for light following and object 

avoidance? 

• Can a virtual-FPGA (EHW) be evolved to follow a light source while 

avoiding obstacles using monolithic and subsumption methods? 

• How do these controllers compare with an ANN, in regard to controller 

performance, evolutionary efficiency, resolution of inputs, scalability and 

performance in unknown environments?  

The methods used to answer the above questions are described in the sections 1.4.1 to 

1.4.5. 
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1.4.1 Can a LUT be evolved separately for light following and object avoidance 

behaviours? 

The internal elements of the LUT were configured by means of a GA process and the 

controller performance was assessed. The GA was designed separately to produce two 

individual LUTs, one to perform light following behaviours and the other to perform 

object avoidance behaviours. The axes that define the size of the LUTs contained either 

a quantized representation of light intensity or a binary representation of the six 

proximity sensors. The elements within the LUT contained directional information for 

the robots left and right motors.  

The LUT developed for the light following behaviour was a two dimensional array, the 

`X` and `Y` axes contain the left and right light sensor values. The light sensor inputs 

were quantized values indicative of the robots orientation with respect to the light 

source.  

The LUT developed for the object avoidance behaviour was a one dimensional array 

with the axis representing the six proximity sensors. The six digital proximity sensors 

were combined in binary format to produce a number form 0-63 (26 = 64), which is 

indicative of the proximity sensor states.   

The elements in the LUTs described above contain the direction for the robots left and 

right motors. The direction of each wheel is defined by one of three states, forward, 

reverse and stopped.  This results in eight possible robot motions as shown in Table 2, 

(Except for both motors stopped, which was excluded). 

Table 2 All eight possible robot motions 

Wheels(L/R)  Description 
F/F Forwards, travel straight forward 
F/S Turn right forwards, turn about right wheel clockwise (CW) 
F/R Rotate CW, pivot on the spot CW 
S/F Turn Left forwards, turn about the left wheel counter clockwise (CCW) 
S/R Turn right reverse, turn about left wheel CW 
R/F Rotate CCW, pivot on the spot CCW 
R/S 

 

Turn left reverse, turn about right wheel CCW 
R/R Reverse, travel straight backwards 
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The LUTs were evaluated using a computer simulation and the block diagram shown in 

Figure 1-4 is a representation of the development environment. The simulation and 

mathematical model pass sensor information to the LUT which returns the robots left 

and right motor directions. The GA process reconfigures the LUTs and assigns each 

individual a fitness value. GA progress and robot information is displayed on the 

graphical user interface (GUI) which also provides user control over the evolution 

process. 

 

 
 

1.4.2 Can a LUT be evolved to follow a light source while avoiding obstacles 

using monolithic and subsumption methods? 

Two methods were used to explore the issues surrounding controller scalability, and are 

described as follows.  

Monolithic evolution– The LUT developed for this investigation was a three 

dimensional array. Each axis of the LUT were represented by the following robot 

sensors, right light sensor (X), left light sensor (Y) and proximity sensors (Z). The 

elements of the array contain the information that determines the left and right wheel 

directions. 

Subsumption evolution– the previously evolved LUTs for light following and obstacle 

avoidance were implemented in a hierarchy based system of which the obstacle 

avoidance LUT was given a higher level of importance.   

Figure 1-4 Block diagram of LUT simulation 
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The LUTs developed for the combined behaviours were evolved using a computer 

simulation that is represented by the block diagram shown in Figure 1-4.  

1.4.3 Can a virtual-FPGA (EHW) be evolved for light following and object 

avoidance? 

A virtual-FPGA has been developed using an Altera FPGA development board. The 

virtual-FPGA was used to investigate the possibility of evolving a hardware controller 

for light following and obstacle avoidance behaviours. The controller input was the 

robot light and object sensors and the output was a three bit combination that was used 

to determine the resulting robot motor directions, (same directions as the LUT). The 

virtual-FPGA was configured using a CBS which was evolved using the GA process.   

The block diagram in Figure 1-5 shows the interconnections between the virtual-FPGA, 

the NIOS processor and the PC. The PC contains the GA and robot simulation, the 

evolved bit-streams and simulated sensor information is passed to the NIOS processor. 

The NIOS processor configures the virtual-FPGA accordingly and returns the resulting 

robot motor direction to the PC.     

 

 

  

Figure 1-5 Block diagram of EHW simulation  



8 

1.4.4 Can a virtual-FPGA (EHW) be evolved to follow a light source while 

avoiding obstacles using monolithic and subsumption methods? 

Two controllers have been designed to investigate the use of monolithic and 

subsumption techniques to evolve a virtual-FPGA controller. The controllers are used to 

perform the combined behaviour of light following while avoiding obstacles.  

Monolithic- the monolithic EHW controller combines the light and obstacle sensors 

into 26 inputs (ten left light sensor bits, ten right light sensor bits and six proximity 

sensor bits). The controller outputs are the same as described in section 1.4.3.   

Subsumption- the previously evolved EHW controllers for light following and obstacle 

avoidance were implemented in a hierarchy based system of which the obstacle 

avoidance controller was given a higher level of importance. The block diagram shown 

in Figure 1-6 is a visual representation of the subsumption architecture. The high level 

decision maker is able to mask and unmask controllers depending on the state of the 

sensor inputs.  

 

 

Figure 1-6 Block diagram of subsumption architecture  
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1.4.5 How do these controllers compare with an ANN?  

An ANN was created and then evolved for the behaviours previously described. The 

three controllers from each platform were assessed, relating to controller performance, 

evolutionary efficiency, scalability, effects of sensor resolution and performance in 

unknown environments.     

1.5 Publications 

Results from this research has been published in an international conference and 

submitted to journals. 

1.5.1 Conference Paper 

M. Beckerleg, J Matulich,  “Evolving a lookup table based controller for robotic 
navigation”  in Evolvable Systems (ICES), 2014 IEEE International Conference, 
Orlando, Florida, 2015. 

1.5.2 Journal articles submitted  

-"A Comparison of Three Evolvable Robotic Navigation Controllers: an Artificial 

Neural Network, a Lookup Table and Evolvable Hardware" in Journal of Intelligent & 

Robotic Systems. 

-"Evolving Robotic Navigational Behaviours using Evolvable Hardware Controllers" 

publication in Genetic Programming and Evolvable Machines. 
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1.6 Thesis Structure 

This thesis is structured as described below. 

CHAPTER 1: This chapter provides an introduction to the topic and outlines the focus 

of this research.   

CHAPTER 2: Contains an overview of the previous work that has been undertaken 

within this area of research. The areas of interest outlined in this chapter have been 

divided into three sections, a general overview of evolutionary robotics followed by a 

review on the uses of EHW, look-up tables and ANN controllers. The final section 

explores the controllers when demonstrating light following and obstacle avoidance 

behaviours. 

CHAPTER 3:  This chapter is used to provide a description of the common systems 

used throughout this thesis. This includes a description of the hardware systems and 

models that have been developed and a description of the robot and its hardware along 

with mathematical models which described the robot kinematics and sensor systems. 

CHAPTER 4: A complete description is provided on the work undertaken during the 

development of ANN based controllers. The chapter is split into three main sub 

categories each outlining the work undertaken and results obtained for the three desired 

behaviours. 

CHAPTER 5:  A complete description is provided on the work undertaken during the 

development of LUT based controllers. The chapter is split into three main sub 

categories each outlining the work undertaken and results obtained for the three desired 

behaviours. 

CHAPTER 6: A complete description is provided on the work undertaken during the 

development of EHW controllers. The chapter is split into three main sub categories 

each outlining the work undertaken and results obtained for the three desired behaviours. 

CHAPTER 7: The content within this chapter provides a comparison between each of 

the developed controllers for three separate behaviours. The comparison considers five 

key areas, controller performance, evolution efficiency, scalability, quantization and 

operation in unknown environments.  
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CHAPTER 8: This chapter is the final chapter of this research and is used to provide a 

detailed description and analysis of the results obtained. The chapter also outlines any 

future research which could be undertaken to further develop the work completed as 

part of this research. 
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Chapter 2 

Chapter 2: Literature Review 

Evolutionary algorithms are heuristic search procedures designed around the natural 

reproduction processes. The algorithms are designed as search engines that are used to 

find a solution to a problem of which the solution is not easily calculable. The type of 

evolutionary algorithm chosen for this research is a GA. The GA has been developed to 

mimic the natural selection and evolution process which was developed in 1859 by 

Charles Darwin. The evolution process involves three discrete functions, reproduction, 

fitness allocation and selection. Reproduction is the process where a new generation of 

offspring is created from the parent population. The offspring are created using 

crossover and mutation methods with the goal of producing a superior individual.  

Fitness allocation is the process where the individuals are tested and their performance 

assessed. Each individual is put through the testing procedure and a fitness value is 

assigned to each. The selection process uses this fitness value to determine the 

individuals that are kept and used for reproduction and the ones that are discarded. 

2.1 Review of robotic controllers  

Robotic controllers and fully autonomous robots have long been the focus of 

evolutionary algorithms. The development of heuristic optimisation algorithms has 

provided a method for robotic controller design that does not rely on human design. 

This has proven beneficial for several areas of controller design, from simplistic 

controllers through to complex controllers that would otherwise require a high level of 

understanding and knowledge.  

2.1.1 ANN controllers 

An ANN mimics a biological neural network with a structure of layered neurons with 

each layer interconnected. Each input to the neuron is multiplied by a weighting factor. 

When the sum of these inputs into the neuron exceeds a firing threshold, the output 

value of the neuron will change. This output can be of various shapes ranging from a 
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step to a sigmoid function. There are wide ranges of network structures with the 

simplest being feed-forward. Normally the structure of the network and the neuron 

transfer function are fixed when it is designed, while the interconnection weightings are 

adjusted in a training period before the ANN is used. 

For evolutionary purposes the weightings, firing thresholds, transfer function and even 

the network structure can be encoded in a chromosome, which can be evolved using 

standard evolutionary techniques. The search space of the chromosome is related to the 

number of layers and neurons in each layer of the network. ANN controllers have 

become widely used in evolutionary robotics, and applications for their use have been 

extensively researched, such as; real time object detection and guidance oriented control 

systems using computer vision in vehicles.  

Pomerleau et al. [1] used a rule based method of combining several ANNs. Complex 

behaviours such as those required for self-driving cars require a controller capable of 

employing different controller capabilities for differing environments. The author used a 

rule based method for achieving this controller selection method and developed a high 

level controller capable of staying on the road and following a set route to a destination.  

Kodjabachian et al. [2]  used simple geometry oriented cellular encoding (SGOCE) to 

evolve recurrent neural networks for control of a simulated six legged insect. The 

resulting robotic controller was capable of gradient following and object avoidance 

behaviours. On average a solution which was capable of performing the desired task to 

a satisfactory standard was found in 50 generations.   

Glasius et al. [3] Uses a Hopfield type neural network with nonlinear neurons to control 

a robot for path planning and object avoidance behaviours. Three applications were 

investigated; 1) A point-robot was tasked with finding a point in a labyrinth; 2) A two 

joint planar robot was tasked with avoiding obstacles within an arena; and 3) A moving 

target based environment. The evolved controllers were capable to finding a suitable 

path between point locations, and were able to avoid both static and moving obstacles 

while moving between points. 

Bartha et al. [4] used a fully meshed ANN to control a light seeking robot, the controller 

was a three layer recurrent neural network with two hidden nodes. The goal of the 

controller was to navigate the robot towards a light source, which was placed inside a 

rectangular arena. The author explored the effects caused by differing fitness functions 
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and chromosome combination methods on the evolution efficiency and provided a 

comparison between the ANN and a finite state machine (FSM). It was found that the 

ANN outperformed the FSM and was able to reach a suitable fitness within 500 

generations. However, the FSM controller was found to be simpler in design and hence 

easier to comprehend.  

Abhishek et al. [5] developed an ANN controller for obstacle avoidance behaviours, the 

model was designed around the Khepera robot which used six touch and two light 

sensors. The authors evolved controllers to a suitable fitness in 50 generations. The 

controllers were also tested in a real world environment and proved to perform well 

when tasked with avoiding the wall of the arena. 

Wahab [6] trained an ANN controller for a mobile robot which was designed with two 

types of proximity detection, ultrasonic range and infrared sensors. The controller used 

two ANNs the first of which provided position control while the second provided the 

obstacle avoidance control. The final controller was successful at navigating an arena 

and stopping when reaching a target location. 

Harter [7] designed a neural controller which has been used to navigate a Khepera robot 

about an arena with obstacles.  Rather than the standard ANN model the controller was 

based on the aperiodic K –set neural population model. Each controller chromosome 

consisted of 10 KA units, four from the left proximity sensors, and four from the right 

and two for the robot motors.  Each unit ranged from -1 to 1 and consisted of 100 

increments.  Results from the experiments showed that the evolved controllers produced 

simple but effective object avoidance behaviours. 

Elnebreich and Klingler [8] used an ANN controller to navigate a four wheeled robot 

around an arena. The controller was provided sensory inputs via three dynamically 

adjustable infrared sensors. The sensors were adjusted to provide an increase detection 

angle. The controller output provided robot steering and motion control. A comparison 

was undertaken of the GA evolved ANN vs. a pre-engineered ANN. It was found that 

after 50 generations the ANN controller was able to outperform the pre-engineered 

controller. It was also discovered that small ANNs with fewer nodes performed best and 

those with large node numbers would exhibit population convergence.  
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2.1.2 Fuzzy logic controllers 

The FLC attempts to avoid crisp data, such as a precise temperature, or true/false, 

instead using fuzzy data that is imprecise or partial. This allows for a robust controller, 

which is easy to implement. A FLC has three processes, fuzzification, rule evaluation, 

and defuzzification. Fuzzification converts precise data inputs into imprecise values, by 

assigning the input to a degree of membership. Rule evaluation acts on the fuzzified 

inputs by a set of fuzzy rules, normally a sequence of if-then logic statements and fuzzy 

logic algebra. Finally, the manipulated data is defuzzified to produce a precise output 

value. The parameters of a fuzzy logic controller including fuzzification of inputs, 

implementation of fuzzy rules, and defuzzification of outputs, are normally configured 

by experiment or design.  However, a GA can be applied to these parameters to evolve 

fuzzy logic controllers. Seung et al. [9] developed a sensory motor controller for a 

mobile Khepera robot which was capable of efficiently navigating different arenas and 

demonstrating emergent behaviours. Hagras et al. [10] used a modified GA to evolve a 

fuzzy logic based robot controller. The controller was capable of online self-calibration 

to automatically adjust the membership functions. This made the controller suitable for 

a fast changing dynamic environment. Sung et al. [11] developed a self-organized fuzzy 

controller to provide the means of controlling a wheeled mobile robot. A rule based 

evolutionary process was used to find solutions to output and input membership 

functions. It was discovered that optimal solutions were not always found using the rule 

based membership function.   

Mohammad et al. [12] developed a controller for the E-Puck robot, the controller was 

designed for robot navigation and obstacle avoidance. The author used MATLAB to 

implement the fuzzy logic rules for which eight infrared sensors provide the inputs 

while the outputs are used to control the robots two motors. The fuzzy logic was a 

successful controller for the E-Puck robot and the controller enabled the robot to 

navigate through an arena to a desired location. 

Almasri et al. [13] developed two fuzzy logic robotic controllers, the controllers were 

designed for the E-Puck robot and implemented two behaviours; line following and 

object avoidance. The line follower controller used two of the three available line 

sensors as inputs. This way the controller determines the difference between the two 

sensor values and inputs the difference into the fuzzy logic controller. Two motor 

control outputs were generated which determined the robots motion.  The object 
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avoidance controller used similar methods however eight proximity inputs were used as 

inputs to the fuzzy system. The two controllers were combined to produce a robot that 

was capable of following a line until an object or other robot was encountered, the robot 

then successfully avoided the object.  

2.1.3 LUT controllers  

The LUT, also referred to as a “table-based” controller, is used for quantized discrete 

sensor inputs and actuator outputs where the relationship between the inputs and outputs 

are mapped in a table. They have their limitations in relationship to scalability; however, 

they are computationally fast in their execution. A current example of their use in 

control is the MAX31760 controller with a LUT stored in non-volatile memory. They 

have been researched for several control applications including building environmental 

control [14] where LUTs are used to calculate building temperature control set points 

where dependencies are based on current and predicted weather, occupancy and other 

conditions; Use in pH neutralization [15] where two dimensional LUTs are used in 

conjunction with neural networks and fuzzy controllers for applications such as boiler 

feed water and wastewater treatment; Underwater vehicles [16], where the authors 

compare the response time, overshoot and steady state error of LUT controllers, fuzzy 

logic controllers and conventional controllers for use in a six degree of freedom 

autonomous underwater vehicle; and mobile robot controllers [17],  where a LUT 

controller is designed to enable faster obstacle avoidance in a multi obstacle 

environment, it was found that the LUT method reduced the operational time by nearly 

80% when compared to a positive/negative fuzzy controller. 

For evolutionary purposes, the parameters and size of the LUT can be encoded into a 

chromosome and evolved. Several evolutionary capable robotic LUT controllers have 

been developed to control a range of robotic systems including: a mobile inverted 

pendulum [18], the walking gait of a hexapod robot [19], a curved ball-balancing beam 

system [20], a ball plate and four robotic behaviours [21], orbiting, path following, 

follow the leader and dispersal, implemented on a Kilobot simulation [22]. A 

description of the inverted pendulum, curved ball balancing beam and ball and plate 

system is described below. 

A LUT controller for a mobile inverted pendulum was evolved, this controller was a 

two dimensional LUT, with the input axis linked to the pendulums angle and angular 
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velocity. The internal elements of the LUT contained the motor speed and direction 

information which were used to maintain the robots upright position. The evolved 

controller was complete within 200 generations and was capable of maintaining an 

upright position for more than 200 seconds [18]. 

A simulation has been developed for a curved ball balancing beam, a three dimensional 

LUT controller provided the interface between the system inputs (ball position, beam 

position and ball speed) and the system output (Beam drive motor speed and direction). 

The author used a GA with two point crossover and tournament selection to evolve the 

controller and compared the effects on evolutionary efficiency caused by increasing the 

number of motor speeds in the LUT elements. It was that a controller with only two 

speeds was able to evolve to the same standard as a controller with 11 speeds in far 

fewer generations [20].   

A novel LUT controller has been developed for a ball and plate system. The system 

uses two servos to drive the plate about the X and Y axis while a touch screen provides 

feedback of the ball position to the controller.  A separate LUT was evolved for each 

servo which provided set point selection on the X and Y axis. The author investigated 

the fault tolerance of the system by introducing a fault condition and determining how 

quickly the controller would recover.  The fault recovery time varied between 

controllers. However, the majority of controllers recovered in 10 to 30 seconds [21].  

2.1.4 EHW controllers 

An EHW robotic controller uses evolved logic circuits to control the robot. The 

electronic circuits coded by a hardware description language and implemented in a 

FPGA are described by the configuration bit-stream used to program the device. This 

bit-stream can be used as a chromosome in EHW where the phenotype of the 

chromosome is the circuit. Original research used the Xilinx XC6216 FPGA, which was 

suitable for evolution as its architecture was immune to destructive chromosomes, 

however this FPGA is no longer produced [23, 24]. Currently the three main methods 

used for hardware evolution of robotic controllers for navigation are: a) genetic 

compilers that are specifically designed to evolve a CBS without destructive 

architecture [25, 26]; b) genetic programming where the hardware descriptive language 

is evolved, and then converted into the bit-stream [27]; and c)  the virtual FPGA 

configured inside a normal FPGA. The virtual FPGA is designed for non-destructive 
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and course-grained architectures suitable for evolution [28, 29]. Previous EHW 

controllers are described.  

Tyrrell et al. [25] developed an EHW controller, which was evolved on a Xilinx FPGA. 

The controller was designed for object avoidance behaviours and was implemented on 

the Khepera robot. The controller was comprised of 22 LUTs with eight inputs from the 

proximity sensors and two outputs to the robots motors. The controllers struggled to 

reach an average fitness of 1200 in 50 generations; however, when the mutation rate 

was increased it was found that an average of 1200 was reached in less than 30 

generations and the maximum fitness increased from 1200 to 1400.   

Keymeulen et al. [30] created an EHW controller which performed object avoidance 

and mobile navigation tasks. The robot was 250mm in diameter with ten infrared 

proximity sensors and two cameras which provide information used for colour object 

tracking. The controller operates as a simple Boolean function control system, the 

Boolean equivalents of the proximity sensor outputs are binary coded and used as the 

input to the control system.  The controller outputs are used directly to control the 

robots left and right motors for navigation. The evolved gate level hardware controller 

was able to take advantage of the numerous correlations of the sensor states. This 

resulted in a highly robust control system which was not affected by the shape of the 

obstacles. 

Dhanaskekaran et al. [31] used an EHW system to coordinate multiple elements of a 

smart antenna array. The system was designed to handle faults and extreme unexpected 

situations which were otherwise incorrectly handled by conventional systems. The 

control system developed for this was designed around an EHW circuit based in an 

FPGA and was evolved using a GA. The resulting outcome was a system capable of 

self-configuration and fault tolerance. It was also found that the EHW system 

outperformed the conventional systems in terms of evolution efficiency and controller 

performance.  
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2.2 Hierarchical evolution  

Standard evolutionary techniques use monolithic evolution where a behaviour is 

evolved in its entirety, however this technique has limitations in the evolutionary 

process requiring a large amount of time for evolution, difficulties in the initial 

generations (bootstrap problem), and many local minima. These problems are alleviated 

using the following techniques, including subsumption architecture and incremental 

evolution that divide behaviours into modular tasks.  

Note, this research does not focus on hierarchical evolution instead hierarchical 

evolution is used to explore the scalability properties of the controllers. 

2.2.1 Subsumption 

The concept of subsumption evolution was first conceived by Brooks [32, 33], using a 

hierarchy layered behavioural approach where the lower level layers directly interfacing 

to the actuators, perform basic behaviours such as movement, avoidance, and following, 

whereas the higher layers have complex behaviours such as foraging or fleeing. Each 

layer works independently but the higher layers can override (subsume) the lower layers 

using an inhibitor which blocks the output of a lower layer, or a suppressor which 

replaces the inputs to the lower layer.  

Saito et al. [34] used subsumption architecture for emergency obstacle avoidance in a 

mobile robot. The robot in this experiment consisted of an electronic wheelchair, a 

laptop and an embedded microcontroller which was used to interface with a laser range 

finder. The overall task was decomposed into four layers: autonomous, turn left, turn 

right and emergency stop. The range finder detection zone has been split into three 

sections and the controller determines which tasks will be suppressed based on the area 

in the detection zone that an object is detected. The controllers were tested with static 

and semi-static obstacles with good results.   

Dasmane [35] created a subsumption based controller for a robot that moved towards a 

light while avoiding obstacles. The robot used in the experiments was multi legged and 

contained real time proximity and light sensing capabilities. Individual controllers were 

used for light following and obstacle avoidance, however only one controller was used 

at a time. The light following controller was subsumed whenever an obstacle was 

detected giving the obstacle avoidance controller a higher level of priority.   
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Turner et al. [36] used a multi-layer subsumption based robot controller to map its 

environment while avoiding obstacles. A FSM based controller was used to explore the 

advantages of subsumption based architectures.  A controller platform was developed 

that used input suppressors and output inhibitors to dynamically manipulate the 

controller for any given state of sensor input.  Much like the work completed by Brooks 

[33] the controller utilised different function blocks. In this case the blocks required 

were wander, explore and avoid collisions. The controller was designed to explore and 

map a robotics lab until all available areas had been mapped. After several test runs and 

a number of problems encountered, the controller managed to produce a map of the lab 

which was approximately 790𝑚𝑚2. 

Tiong Cheng and Mahyuddin [37] used subsumption behaviours to move a robot 

towards a light source while avoiding obstacles. The robot behaviours were split into 

three sub behaviours, obstacle avoidance, goal seeking (light following) and wandering. 

The wandering behaviour has the lowest priority and was only implemented when either 

light or object was detected. The object avoidance controller had the highest level of 

priority to ensure no object was hit. A trial of 40 produced 35 successful controllers that 

avoided the obstacles and found the light source.   

2.3 Genetic algorithm  

The use of a GA as a means of finding a solution to a complex problem was originally 

explored by John Holland in the 1960s [38]. Holland`s research was directed towards 

the natural evolution process and the possibility of mimicking this process in manmade 

systems. The GA provide a method of finding solutions to a problem by using a process 

very similar to that of which occurs in nature according to the theory of evolution 

developed by Charles Darwin [39]. The GA process begins by creating a randomized 

initial population. The population is comprised of several individuals otherwise known 

as chromosomes. Each of the chromosomes contains a potential solution to the problem 

for which a solution is required. The initial population is then put through the three 

stages of evolution as outlined below. 

• Fitness evaluation – where the behaviour of each individual chromosome is 

assessed in relation to the desired behaviour and scored on how well the 

behaviour was performed.  
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• Selection – individual chromosomes from the entire population including the 

offspring are chosen to continue the evolution process depending on the fitness 

values they have been assigned. Individuals with a high fitness perform the 

desired task better than individuals with low fitness values and hence are more 

likely to be chosen for reproduction.   

• Reproduction – pairs of adults in the population are used to reproduce a new set 

of offspring with the goal of passing on desirable traits to the future generations. 

Amalgamation of the parents to form the offspring is a randomized process 

designed to mimic that which occurs in nature. 

The GA process is a continuously evolving cycle and the steps outlined above are 

repeated over and over while the population adapts and changes to suit the 

requirements as outlined by the desired behaviour.   

2.3.1 Fitness allocation 

The measure of a chromosomes performance (fitness) is calculated by means of a 

fitness function whose output is a reflection on the chromosomes ability to perform the 

desired task. The design of the fitness function is important to the success of the GA as 

it provides the foundation from which the evolved chromosomes are formed. A slightly 

misguided fitness function can cause the population to converge on a particular 

undesired behaviour. However, a precisely tuned function can greatly increase the rate 

at which a desired result is obtained.  

The importance of fitness design has previously been explored, Trujillo et al. [40] 

considered the effects on performance of an unmanned aerial vehicle (UAV) due to 

variations in fitness algorithms. Teams of three UAVs were required to set off from a 

starting point and perform a number of defined tasks. The authors discovered that due to 

limitations in the fitness algorithm some of the UAVs would complete the task much 

faster than others and return home earlier creating an unbalanced taskforce which was 

less than desirable. To overcome this, the authors made adjustments to the fitness 

algorithm to include constraints which would penalize any UAVs not returning home 

within two minutes. Introducing this constraint in the fitness algorithm proved to 

balance the task force and group the return times within the allowable time period.  

The fitness algorithm for most GAs tends to force the population to perform a particular 

behaviour. If this fitness algorithm is slightly misguided then the resulting outcome will 
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also tend to be slightly inaccurate. Hence for most genetic evolution problems the actual 

fitness algorithm will be tuned and adapted over several experimental test runs with the 

goal of producing the desired result. 

2.3.2 Selection schemes 

A selection process chooses individuals from the evolving population to be used in the 

reproduction stage of the evolution. The selection process used can conform to one of 

the many previously developed selection methods and in some cases contain attributes 

from more than one method. The goal of the selection process is to select individuals 

that will provide the best chance of success while maintaining diversity in the 

population. The actual selection is usually based on the performance of each individual 

such that better performing individuals are kept over those not performing so well. 

Tournament selection 

Tournament selection is a technique used in evolutionary algorithms to select 

chromosomes from the population for reproduction. Tournament selection operates by 

executing tournaments within the population much like the tournaments of sporting 

events. The number of individuals in each tournament has a direct effect on the 

selection pressure applied to each individual. The selection pressure is a measure of the 

requirement for an individual to perform well, this pressure decreases with small 

tournament sizes and increases with larger tournament sizes. Miller and Goldberg [41] 

created a model that predicts the selection pressure based on tournament size. The 

model was then applied to predict population convergence rates based on the selection 

pressure.   

Fitness proportionate selection 

Fitness proportionate selection, otherwise known as roulette wheel selection, is a 

technique used in evolutionary algorithms for selecting individuals that may prove 

beneficial for the success of the population. Similar to tournament selection the fitness 

proportionate selection method requires each individual to have an assigned fitness 

value. The fitness value is divided by the total fitness of the population and used to 

determine the probability of the individual being selected for reproduction. This can be 

visually represented in the form of a roulette wheel as shown in the following example. 
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Table 3 Fitness proportionate example 

Individual number Individual fitness 
1 50 
2 10 
3 20 
4 6 
5 1 
6 3 
7 4 
8 9 

 

Based on the information provided in  

Table 3 the probability for selection of each individual can be determined; the fitness of 

each individual is normalised to one by dividing the fitness by the total shown in 

Equation 1. The resulting normalised values are shown in Table 4  

 

 Total fitness = ∑ 𝐹𝐹𝑘𝑘8
𝑘𝑘=1 = (50 + 10 + 20 + 6 + 1 + 3 + 4 + 9) = 103 Equation 1 

 

Table 4 Fitness proportionate example with normalized fitness 

Individual number Individual fitness Normalized value 
1 50 0.485 
2 10 0.097 
3 20 0.194 
4 6 0.058 
5 1 0.001 
6 3 0.029 
7 4 0.039 
8 9 0.087 

The roulette wheel shown in Figure 2-1 clearly shows that the chance of individual one 

being selected is much greater than the others. However the individuals with a low 

fitness do still have a chance of been selected, meaning that if they do hold valuable 

chromosomes there still remains a chance that they could be used to reproduce and in 

turn produce an offspring containing that valuable information.    
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Figure 2-1 Roulette wheel selection scheme 

Razali and Geraghty [42] compared rank based roulette wheel and proportional roulette 

wheel selection strategies with tournament selection. The authors compared the 

selection performance on the common traveling salesman problem and found that 

tournament selection outperformed both roulette selection methods. They also 

discovered that for large problems population convergence became a problem with 

tournament and rank based roulette wheel selection methods. 
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2.3.3  Procreation 

Single point crossover 

Selected at random one point inside the chromosome is chosen, this point provides the 

separation line which will be used to divide the chromosome. In some cases this is 

easier than others, for example a two dimensional chromosome like the ones shown in 

Figure 2-2 can easily be split with one point. However complex chromosomes such as 

three dimensional LUTs may require a more sophisticated reproduction technique than 

single point crossover.  

    

    

     Parent 1 

 

A B C D E F G H 

 

    

  

      Parent2 

 

H C E D F A B G 

 

           

    

  

      Offspring 1 

 

A B C D F A B G 

 

    

  

      Offspring 2 

 

H C E D E F G H 

            Figure 2-2 Single point cross over example.  

 

In the example shown in Figure 2-2 two parent chromosomes have been selected for 

reproduction and a single point for crossover has been determined. Splitting the parents 

along the crossover point and combining the sections with one part from each parent 

creates two offspring each containing unique properties from their parents.  

In some particular situations the offspring may need to be adjusted or repaired after the 

crossover process. This is necessary when the particular task that the evolutionary 

algorithm has been designed for requires that the genes in each chromosome cannot be 

repeated. However not all evolutionary algorithms require a unique combination of 

genes in each chromosome, in some case it does not matter if a gene was to repeat over 

and over again. Such is the case for a motor controller where the chromosome may 

contain motor speed values, in this case there may be several conditions that may 

require the same speed and hence many genes in the chromosome may be repeated.  
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If the chromosomes need to be repaired then the evolution process must take care of this 

before the offspring are released into the population. In Figure 2-3 the genes highlighted 

in red were damaged genes and have been repaired to complete the chromosome. 

 

Offspring 1 

 

E B C D F A H G 

 

    

  

      Offspring 2 

 

A C E D B F G H 

 Figure 2-3 Adjusted chromosomes 

 

 

Multi-point crossover 

Multi-point crossover is a similar technique to single point crossover used in the 

creation of offspring. The difference between single and multi-point is the number of 

points and hence the number of sections created and combined together for each 

offspring.  Two-point crossover becomes necessary when the evolutionary algorithm is 

attempting to evolve large chromosomes with complex desired results. The problem 

with using a single point crossover method for larger chromosomes, is that it becomes 

difficult and highly unlikely that small sections from the internal sections of the parent 

chromosomes which may be key to the success of that individual, will be passed on to 

the future generations.  
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Figure 2-4 demonstrates how a two-point crossover technique can extract small sections 

of genes from within the parent chromosome and pass that information on to the 

offspring. In this example genes C and D are passed from parent one to offspring one 

and genes E and D are passed from parent two to offspring two. In some cases several 

points of crossover can be selected providing a larger number of sections used in the 

creation of offspring. 
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A B E D E F G H   

  

                  

Figure 2-4 Two-point cross over example 
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2.3.4 Mutation 

In nature mutation occurs spontaneously, usually at non periodic intervals with a low 

mutation rate [43]. In evolutionary algorithms mutation occurs when a gene or 

chromosome is altered from that which would normally occur during the reproduction 

process. The rate of mutation is generally set very low in the range of 1-3%, meaning 

that there is only a very low chance that a mutation will occur and when it does it 

usually only effects one gene in the chromosome. The gene that is affected is chosen at 

random and the change that occurs also happens at random. Mutation helps to provide 

diversity. When the evolution of a population has slowed or even stopped, which may 

be due to the fitness reaching a local maximum on the fitness landscape, a mutation can 

provide the required change to move the evolution process to the next peak of the 

landscape and continue the evolution process.  

 

Figure 2-5 Fitness Landscape mutation example 

Figure 2-5 shows an example of a fitness landscape with several local maxima if the 

evolution process were to converge to the point indicated by P1 then the only way the 

process could continue to find the optimum maxima is by means of a mutation. After 

which the mutated individual may appear on the landscape at the point indicated by P2 

hence allowing the evolution to continue.  
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Chapter 3 

Chapter 3: Common Systems Developed for Experimentation 

This chapter describes common systems that have been used in experimentation, and is 

broken into three main sections. An outline of each section is described below. 

• Section 1: Robot overview. This section contains the mathematical models, and 

descriptions of the hardware systems for the robot from which the simulations 

have been derived. 

• Section 2: Software and simulation design. This section describes the software 

that performs the GA evolution of the controllers and contains a functional 

description of the GUI.  

• Section 3: GA process. This section contains a description of the processes that 

have been developed specific to the GA process, such as fitness allocation and 

selection processes.  

 

Each of the sections outlined above contain an overview followed by a detailed 

description of the systems that were created for each of the robotic behaviours.  

3.1 Hardware overview 

The physical robot used in the research for this thesis was specifically designed by the 

author for research into evolvable robotic controllers for navigation. The robot hardware 

is comprised of an FPGA development board (Altera’s DE0-Nano), light and obstacle 

sensors, two wheels with associated hardware drivers, Bluetooth communications, user 

interface and battery. On board the FPGA, a soft core NIOS processor has been 

implemented, providing the interface between sensor inputs and the outputs used for 

motor control. Hardware based modules have been designed in Verilog that relay sensor 

information to the processor, the sensor information is used to determine how the robot 

should operate. The processor passes motor speed and directional information to 

additional hardware modules to drive the robots two DC motors. The DC motors 
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independently drive a wheel located opposite each other near the perimeter of the robot. 

This gives the robot the ability to rotate on the spot as well as efficiently move in a 

straight line to any location in the arena. Figure 3-1 shows an actual photo of the robot 

designed to carry out the research. 

 

 

 

Figure 3-1 Photo of actual robot 

 

3.1.1 Robot kinematics and mathematical model 

The robot modelled for this research is a stable two wheeled platform which uses two 

small guides to provide balance. The mathematical model of the robot is described 

using three equations. The first equation describes the robots change in heading, the 

second equation describes the distance travelled along the X axis and the third equation 

describes the robots distance travelled along the Y axis. Each equation is developed 

with respect to the left and right motor movements.  
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The subsequent set of parameters and equations are developed with the following 

confines applied to the system. Firstly, the simulation is designed to run at 50ms 

intervals (dt). The second restriction applied to the system is the speed control on the 

motors, to simplify the mathematical model it was decided that the motors should run at 

one set speed and only have control on the wheel rotational direction (CW or CCW).  

Table 5 contains a list of parameters and terms used in the equations and formula in this 

section. 

Table 5 Parameters used in mathematical model of the robot 

dt Simulated time step (ms) 

θ Wheel Diameter (mm) 

RPM Motor revolutions per minute  

CW Clockwise 

CCW Counter clockwise 

d Distance travelled in a straight line in 1 dt (mm) 

r Pivot radius (mm)  

Wø Wheel circumference (mm) 

dθ Change in robot heading 

dx Change in x location 

dy Change in y location 

R Turn radius 

 

Because the motor speed has been defined as constant, a finite list of available robot 

motions can be described; Forward, reverse, turn left forward, turn right forward, turn 

left reverse, turn right reverse, pivot CW, pivot CCW and stop. 
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Pivot left and right 

When the robot is pivoting CW or CCW the X and Y location of the robot will remain 

the same with only the heading increasing or decreasing, as shown in Figure 3-2. 

 

 

Figure 3-2 Diagram of the robot pivoting clockwise 

To determine the change in heading when the robot is pivoting, the distance travelled by 

a wheel in one time period (50ms) needs to be calculated using Equation 2 and Equation 

3.  

 𝑊𝑊ø =  𝜋𝜋 ∗ θ = π * 32 = 100.5mm Equation 2 

 𝑑𝑑 =  
𝑅𝑅𝑅𝑅𝑅𝑅

60
𝑑𝑑𝑑𝑑

∗ 𝑊𝑊ø =  
73
60

0.05
∗ 100.5 = 6.1𝑚𝑚𝑚𝑚 Equation 3 

Where:  

Wø is the wheel circumference. 

 θ is the diameter of the wheel (32mm), 

RPM is the selected motor speed, 10% of the maximum (730RPM), 

dt is the simulated time period (50ms), 

d is the distance travelled in dt 
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The black dot in the centre of the two wheels in Figure 3-2 represents the centre point of 

the robot. If both the left and the right motors are running in opposite directions the 

robot is said to be pivoting and the resulting change in heading can be calculated using 

Equation 4.  

 dθ = = d
r
∗ 180

π
= 6.1

40
∗ 180

π
= ±8.7° Equation 4 

Forward and reverse 

When the left and right motor directions are the same i.e. both forward or both reverse, 

the robot moves in a straight line. For simulation purposes the speed of the motors are 

assumed identical.  

 

Figure 3-3 Diagram of the robot moving in a straight line 

From Figure 3-3 Equation 5 and Equation 6 for the change in X (dx) and change in Y 

(dy) coordinates can be derived. 

 𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ sin (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) Equation 5 

 𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ cos (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) Equation 6 
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Example calculation: If the robot is travelling at a heading of 0 degrees, the expected 

change in coordinates should be a 6.1mm increase on the X axis and zero change on the 

Y axis.  

𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ cos(90) = 6.1𝑚𝑚𝑚𝑚 

 𝑑𝑑𝑑𝑑 = 6.1𝑚𝑚𝑚𝑚 ∗ sin(90) = 0𝑚𝑚𝑚𝑚 

As expected the robots position changes by 6.1mm on the X axis and remains the same 

on the Y axis.  

This set of equations holds true as long as the robot is moving in a straight line. If the 

robot starts to move nonlinearly then a separate set of equations are used to find the new 

location. These equations are explained in the next section.   
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Turn Left and right 

When one of the robots wheels are moving and the other is stationary, the robot will 

pivot around the stationary wheel producing a change in the robots heading and position, 

as shown in Figure 3-4. 

 

Figure 3-4 Diagram of the robot turning 

The new robot position is calculated using Equation 7 and Equation 8. 

 𝑑𝑑𝑑𝑑 = 40 ∗ [𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +  𝑑𝑑θ)– 𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)]  Equation 7 

  

 𝑑𝑑𝑑𝑑 = 40 ∗ [𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +  𝑑𝑑θ)– 𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)]  Equation 8 

Where: 

dθ  is the change in robot heading while turning which equals half that of the 

change in heading  while rotating (±8.7°), therefor dθ   = ±4.35°. 

 

Example calculation: If the robot heading is 0 degrees and the left wheel moves forward 

while the right wheel remains stationary. Then it is expected that the robot should move 

along on the X axis by some value that is slightly less than half of 6.1mm and move 

down the Y axis by a distance slightly greater than zero. 

 𝑑𝑑𝑑𝑑 = 40 ∗ (sin(4.35) − sin(0)) =   3.03𝑚𝑚𝑚𝑚   

 𝑑𝑑𝑑𝑑 = 40 ∗ (cos(4.35) − cos(0)) = −0.12𝑚𝑚𝑚𝑚  
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The values obtained from the equations above are as expected, a small amount of 

movement down the Y axis due to the negative value (-0.12mm) and 3.06mm along the 

X axis.  

 

3.1.2 Robot Sensor Models 

3.1.2.1 Obstacle avoidance systems 

Proximity hardware 

16 mm

1250

62 mm

32 mm

Obstacle Sensors

 

Figure 3-5 Proximity sensors physical layout 

Figure 3-5 shows the orientation and positioning of the robots six proximity sensors. 

Five sensors provide the coverage towards the front of the robot and a sixth sensor 

provides feedback from the rear. The application notes available for the proximity 

sensors (VCNL3020) describe a cone shaped detection zone with an angle of ±40º and a 

maximum range of 200 mm as shown in Figure 3-6. 
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3.46mm

200mm

400

 

Figure 3-6 Proximity sensor detection view 

The sensors have software configurable detection range, so for the simulation this 

detection range has been set to 50mm as shown in Figure 3-7. This provides ample 

distance to allow time for the robot to stop before a collision, and also allows the robot 

to navigate between closer obstacles. The sensors have been configured to provide a 

digital output. 

 

Figure 3-7 Maximum proximity detection area (red circle 50mm sensor range) 
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Proximity sensor mathematical model 

For simulation purposes the sensors have been modelled as a straight line heading 

directly outwards from the perimeter of the robot in the direction of the sensor as shown 

in Figure 3-8. 

 

Figure 3-8 Simulated proximity sensor coverage 

 

Reducing the detection area to a single line reduces the processing time required to 

check each sensor. In a real world operation the proximity detection operates at the 

speed of light only limited by the time it takes for the sensors to process the data and 

trigger an interrupt. In simulation the software needs to progressively check the sensor 

regions one small section at a time. For example if the sensor covers an area of 

1000𝑚𝑚𝑚𝑚2. Then because of the scale of the grid in the simulation, the software would 

have to check 6000 locations. This increases the evolution time dramatically.  

A formula has been developed to simulate the checking process of each of the proximity 

sensors. This formula works by calculating each X and Y coordinate in a straight line 

out from the proximity sensors to a maximum range of 50mm.  
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Equation 9 and Equation 10 provide the increments along the X and Y axes which are 

used when scanning along each sensors object detection path.  

 𝑑𝑑𝑑𝑑 = sin (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) Equation 9 

 𝑑𝑑𝑑𝑑 = cos (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) Equation 10 

   

Where: 

 dx is the increment on the X axis, 

 dy is the increment on the Y axis, 

 Robot heading is the current heading of the robot, 

 Sensor angle is the angle of the sensor in relation to 0 degrees on the robot.  

A list of the sensors and their respective angles is shown below in Table 6. 

Table 6 Sensor positions and their respective angles 

Sensor # Position Angle (Front = 0°) 
1 Left side 270° 
2 Left front 330° 
3 Front 0° 
4 Right front 30° 
5 Right side 90° 
6 Rear 180° 

 

The left and right side sensors are not positioned radially round the centre point of the 

robot; because of this, the starting coordinates of the scan line need to be calculated 

using Equation 11 and Equation 12. If the robot has a heading of 0 degrees and a 

location of (600, 600), then the resulting starting coordinates for the scan line will be (-

31, 32) and (31, 32) for the left and right sensors respectively.   

 𝑋𝑋 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑(31 ∗ cos(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) + 𝑑𝑑𝑑𝑑(32

∗ sin(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒))    
Equation 11 
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 𝑌𝑌 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑(31 ∗ sin(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) + 𝑑𝑑𝑑𝑑(32

∗ cos(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒))   
Equation 12 

Where: 

 X is the starting location for the scan cycle on the X axis 

 Y is the starting location for the scan cycle on the Y axis 

 50mm is the robots radius 

 8 is the distance the sensor is in from the perimeter 

 30 is the sensor offset from the Y axis 

 dx is the increment on the X axis 

 dy is the increment on the Y axis 

 

The scan cycle for checking each position along the straight line from each sensor, starts 

at the coordinates (X, Y) calculated using Equation 11 and Equation 12 and scans in 

1mm increments. For each step, the simulation cross references the coordinates with the 

arena information to determine if an object is within the range of the sensor. If an object 

is detected then the sensor output is true otherwise, it remains false.   
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3.1.2.2 Light following systems 

Light sensing hardware 

1000Light Sensors

80 mm
50 mm

16 mm

6 
m

m

28
 m

m

 

Figure 3-9 Light sensor physical layout 

The robot has two light sensors; the sensors are located on the top and near the centre of 

the robot as shown in Figure 3-9. The sensors and are rotated 10 degrees down from the 

X axis which provides 20 degrees of separation between the sensors. This physical 

layout provides amplification between the two light sensor readings, therefore 

increasing the measurable difference in light intensity on each sensor when looking at a 

single point light source. If the two sensors were both pointing in the same direction, 

then the light intensity seen by each sensor would be very similar. 

Light sensor mathematical model 

The light intensity value measured by the light sensors is dependent on the angle of the 

sensor in relation to the light source. If the sensor is pointing directly at the source, then 

the value will be at its maximum. If the sensor is in the same position but pointing in the 

opposite direction then the value will be at its lowest. As the sensor rotates towards the 

light source the values obtained from the sensor will gradually increase. This property 

means that the model for the light sensors only relies on the orientation or heading of 

the sensors, which can easily be calculated based on the actual heading of the robot.  
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The following set of equations determines the direction of the light source in relation to 

the robots heading. Based on this the angles between the light source and the light 

sensors are determined (left and right sensor error).  

 
𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  tan−1 �

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑋𝑋 −  𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑋𝑋
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑌𝑌 − 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑌𝑌

�  Equation 13 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) Equation 14 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 10 Equation 15 

 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 10 Equation 16 

A restriction was put in place to allow for a more realistic simulated light intensity, this 

was done by implementing a maximum displacement angle from the light source. It has 

been determine that if the angle between the light sensor and the light source is more 

than 90 degrees then the calculated intensity would be 0. Using Equation 17 the light 

intensity for each sensor can be calculated. The resolution of the sensors is determined 

by the quantization level. A quantization level of nine results in a light intensity ranging 

from zero to eight.   

 
𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑄𝑄𝑄𝑄 − 1) − �

𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
90 � ∗ (𝑄𝑄𝑄𝑄 − 1) Equation 17 

Where: 

QL is the quantization level, selectable from within the GUI, 

Sensor error is the value obtained in Equation 15 and Equation 16, 

90 is the maximum sensor error before the output value will return zero 

 

An adjustable quantization level has been implemented. This is used to explore the 

effects caused by different sensor quantization levels on the evolution process and 

controller performance. 
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Example calculations 

In Figure 3-10 the robot has a heading of 90 degrees, in this case the light source is 

directly in front of the robot and the quantization level is set to nine (0-8).  

 

Figure 3-10 Light calculation 90° heading  

 

 

Left sensor error (∅1) = 0 + 10 = 10 

Right sensor error (∅2) = 0 – 10 = -10 

Left sensor intensity =  8 − �𝐴𝐴𝐴𝐴𝐴𝐴(10)
90

� ∗ 8 = 7 

Right sensor intensity =  8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−10)
90

� ∗ 8 = 7 

 

As expected both sensors return a light intensity of seven, this is because the robot is 

facing directly at the light source.  

Even though the robot is facing directly at the light source the sensors don’t achieve the 

maximum light intensity, this is due to the 10 degrees offset of each sensor 
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Figure 3-11 is an example of what light sensor values are obtained if the robot is not 

looking directly at the light. In this case the robot has a heading of 80 degrees and again 

the quantization level is set to nine (0-8). 

 

Figure 3-11 Light calculation 80° heading 

 

 

Left sensor error(∅1)  = -10 + 10 = 0 

Right sensor error(∅2) = -10 – 10 = -20 

Left sensor intensity =  8 − �𝐴𝐴𝐴𝐴𝐴𝐴(0)
90

� ∗ 8 = 8 

Right sensor intensity =  8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−20)
90

� ∗ 8 = 6 

 

As expected the left light sensor returns a value of eight because it is facing directly at 

the light and the right sensor returns a value of six because it is facing 20 degrees away 

from the light.  
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The final example shown in Figure 3-12 shows the robot with a heading of 45 degrees 

and in this case both light sensors are pointing slightly away from the light source, 

however the right sensor is pointing further away. 

 

 

Figure 3-12 Light calculation 45° heading  

 

Left sensor error (∅1) = -45 + 10 = -35 

Right sensor error (∅2) = -45 – 10 = -55 

Left sensor intensity =  8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−35)
90

� ∗ 8 = 4.5 

Right sensor intensity =  8 − �𝐴𝐴𝐴𝐴𝐴𝐴(−55)
90

� ∗ 8 = 2.5 

The left sensor is closer to the light source and hence has a higher light intensity than 

the right sensor. For use in the simulation the light values are rounded, left = 5 and right 

= 3. 
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3.1.3 Arenas 

This section contains the scaled models of the six object avoidance arenas used in the 

object avoidance sections of this research. Arenas A, B and C have been used to evolve 

the controllers, and arenas 1, 2 and 3 are the unfamiliar arenas which are used to test the 

adaptability of the evolved controllers. All the arenas in Figure 3-13 are scaled versions 

of the actual arenas used. 

 

 Arena A Arena B Arena C 
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Figure 3-13 Development and test arenas  
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Genetic algorithm procedures 

A general overview of the evolution process for each of the behaviours is outlined 

below. 

• Initial population is created and tested. 

• The following is repeated. 

o The parent population is used to create offspring.  

o The offspring are tested. 

o The new parents are selected from the offspring and old parents. 

 

Initial population is created – 100 individuals are randomly generated, a number from 

0 to 7 is randomly selected and assigned for every element in the LUT. The value stored 

in each element is decoded using the information shown below in Table 7 to determine 

the left and right motor directions and hence the motion of the robot. 

Table 7 Robot motions based on value stored in the LUT elements 

LUT Element 
content 

Wheels(L/R)  Description 

0 F/F Forwards, robot travels in straight forward 
1 F/S Turn right forwards, robot will turn about right wheel CW 
2 F/R Rotate CW, robot pivots on the spot CW 
3 S/F Turn Left forwards, robot will turn about the left wheel 

 4 S/R Turn right reverse, robot will turn about left wheel CW 
5 R/F Rotate CCW, robot pivots on the spot CCW 
6 R/S 

 

Turn left reverse, robot will turn about right wheel CCW 
7 R/R Reverse, robot travels straight backwards 

Note, S/S has been removed from the table as it is not used in the simulation. 

A detailed description of the LUT, ANN and EHW configurations used in each of the 

three behaviours is described in chapter 4, 5 and 6 of this thesis.     

Initial population is tested – The initial population is put through a test process that 

determines how well each controller performs the desired behaviour. The simulation 

places the robot at a predefined starting location and uses the mathematical models of 

the robot to determine the required sensor information. The calculated sensor 

information is used in conjunction with the controller to determine the robots next 

motion as outlined in Table 7. The simulation again uses the mathematical models of 
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the robot to determine the robots new position and orientation. The process continues 

until a predetermined time limit is reached.  

On completion of the individual test, the robot performance is assessed. The assessment 

uses a fitness algorithm to determine a suitable fitness value based on how well the 

individual performed. Descriptions of the fitness functions for the behaviours are 

described in section 3.1.4 of this thesis. 

The population is used to create offspring – The offspring reproduction method 

varies slightly depending on the type of chromosome that is being evolved. However, 

the method of reproduction used is the same for each controller. Individuals are paired 

up and random points in the chromosome are chosen. These areas provide the point at 

which combination between chromosomes occurs before the mutation process is 

undertaken. This creates two new individuals and doubles the population size. 

The offspring are tested – The newly created offspring are then put through the same 

fitness evaluation as the initial population (parents) and suitable fitness values assigned 

to each.   

The entire population is put through a selection process – A selection process is 

used to determine if the newly created offspring preform the required behaviour better 

than the parents from which they were created.  If the offspring preforms better, then it 

will replace the parent. The selection process used throughout this research is a version 

of the well-known tournament based selection process. Using a tournament size of two, 

one offspring and one parent are compared. If the parent holds a fitness value which is 

greater than the offspring, then the parent will remain in the population and the 

offspring will be discarded. However if the offspring holds a fitness value greater than 

the parent, then the parent will be discarded and replaced by the offspring.  
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3.1.4 Fitness allocation 

Light following 

The fitness evaluation method used in the assessment of a controllers light following 

performance is determined by the distance the robot is from the light source at the end 

of the simulation A robot close to the light will achieve a high fitness and a faraway 

robot will achieve a low fitness. This method relies on a minimum runtime being used 

for each test, which is calculated as the minimum time required for the robot to reach 

the light if an optimum path is taken.  

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 100 − �

𝐹𝐹𝐹𝐹
𝐼𝐼𝐼𝐼

∗ 100�  Equation 18 

Where: 

 Fitness is the value assigned to the light follower controller that is under test 

 Fd is the final distance from the light source 

 Id is the initial distance from the light source 

 

The formula works by multiplying the ratio of initial distance vs. final distance by 100. 

This results in a value ranging from zero for a robot that has reached the light source to 

100 for a robot that did not move towards the light at all. This value is then subtracted 

from 100 to invert the results therefore zero is poor and 100 is good. If the robot turns 

away from the light, it is possible for the final distance to be greater than the initial 

distance. In this situation, the fitness it limited to zero and does not go negative. 

The initial distance is calculated using the Pythagoras formula in which a right angle 

triangle can be drawn using two given coordinates within the arena. The first coordinate 

in the formula is the robots starting location and the second is the location of the light 

source. Using these two coordinates a straight line can be drawn between the two points 

whose length is equal to the initial distance. The final distance is calculated using the 

same method as that used to calculate the initial distance, however the two coordinates 

used are the robots final position and the light source location.  The equations to 

calculate the initial distance and the final distance are shown in Equation 19 and 

Equation 20 respectively below 

 𝐼𝐼𝐼𝐼 =  �(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥)2 + (𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑦𝑦)2 Equation 19 
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 𝐹𝐹𝐹𝐹 =  �(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥)2 + (𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑦𝑦)2 Equation 20 

   

 

Figure 3-14 Example 1 - light follower fitness  

It can be seen from the robot trajectory shown in Figure 3-14, that the robot started at 

the (X, Y) coordinate (150,150) and that its final location was at (600,450). The location 

of the light source in this case was at location (600,600). 

Using Equation 18, Equation 19 and Equation 20 as described above, the fitness of the 

above example can be calculated as follows. 

 

𝐼𝐼𝑑𝑑 =  �(150 − 600)2 + (150 − 600)2 =  636mm 

𝐹𝐹𝐹𝐹 =  �(600 − 600)2 + (450 − 600)2 =  150mm 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 100 − �
150
636

∗ 100� = 76.4  

Based on the calculations above, an individual that preforms as shown in Figure 3-14 

would receive a fitness value of 76.4%. 
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The next example shown in Figure 3-15 is of an individual that came very close to the 

light source when it finished, so it is expected that this individual should receive a 

higher fitness that the previous example in Figure 3-14. 

 

Figure 3-15 Example 2 - light follower fitness  

 

𝐼𝐼𝐼𝐼 =  �(150 − 600)2 + (150 − 600)2 =  636mm 

𝐹𝐹𝐹𝐹 =  �(555 − 600)2 + (675 − 600)2 =  87mm 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 100 − �
87

636
∗ 100� = 86.3  
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Obstacle avoidance 

A fitness function has been designed specifically for the object avoidance behaviour. 

This fitness function provides a numerical indication based on how well the robot 

preformed the required task. 

It has been determined that an object avoidance controller is required to self-navigate 

through an unknown arena for a set period of time without coming into contact with a 

wall or objects. Based on these requirements the following evolution procedure has 

been developed.  

1. The robots are started in the centre of the arena from eight different starting 

headings (0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°). This forces the robots 

to explore different areas within the arena, and hence encounter different objects 

and situations in an attempt to produce a controller suitable for arenas other than 

the one which it has been evolved in.  

2. The robot would be allocated a set time limit (20 seconds) after which the 

testing procedure would be halted.  

3. If the robot encountered an obstacle then the simulation would be cut short and 

the resulting runtime was used in Equation 21 to calculate the fitness value. 

 𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  =
𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

20
∗ 100 Equation 21 

Where: 

Run time count is the length of time the robot ran before it came in contact with 

an object. 

Object avoidance Fitness is the value allocated to the individual under test 

ranging from 0 to 100. 

From this method it was predicted that a robot with a run time that matched the allowed 

runtime of 20 seconds, would be adequately preforming obstacle avoidance behaviours. 

The resulting trajectory of the robot is shown below in Figure 3-16. 
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Figure 3-16 Object avoidance trajectory with only runtime fitness 

From observations made over several different test runs like the one shown in Figure 

3-16, it became clear that a different method was required for determining a more 

suitable fitness function. The initial requirement was that the robot needed to run for a 

set length of time without hitting any objects, the problem with this method was that the 

robot was able to do this and achieve maximum fitness by simply driving in small 

circles without even coming close to an obstacle. 

Based on the conclusions from the previous tests it was decided that the fitness function 

required an influence to force the robot to explore the arena. So with this in mind the 

following modifications were made to the initial test procedure. 

1. The arena was divided into 16 sections of equal size. Whenever the robot 

entered one of the 16 previously unexplored sections, that section was marked as 

explored. 

2. Then as part of the fitness calculation after the test had finished, the number of 

explored sections was used to adjust the fitness value allocated to that individual. 

An individual with a high exploration count would receive a higher fitness than 

that of an individual with a low exploration count. 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  Fitness  = �Run time count
20

∗

50�+�Arena explored count
16

∗ 50� 
Equation 22 

Using Equation 22 as the fitness function, the robots began to demonstrate a higher 

level of object avoidance behaviours.  A typical trajectory can be seen in Figure 3-17. 
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Figure 3-17 Object avoidance trajectory with arena exploration fitness  

It was noted that due to the orientation and positioning of the obstacles it was 

impossible for the robot to explore some areas of the arena. This may not have caused 

an issue in the current arena however if an arena was chosen for the simulation that the 

object positioning only allowed the robot to explore 20% of its surroundings then there 

would be some effects on the achievable fitness.  

Due to the previously described issues regarding the maximum fitness limitations, the 

following method for determining fitness was developed.  

During the testing of each individual, a count linked to the robots continued movement 

was kept. This count was incremented whenever the individual failed to move a 

predetermined distance within a set time period (one second). This count was then used 

within the fitness function to determine an appropriate fitness for the individual, an 

individual with a high movement count would receive a lower fitness than that of an 

individual with a low movement count. The distance the robot would need to travel so 

as not to be penalized was determined to be 55% of the maximum distance the robot 

could travel if it was moving in a straight line. This time period in conjunction with the 

distance threshold allows the robot enough time to rotate and move about if obstructed 

by an obstacle without been penalized.   
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The fitness function developed for object avoidance controllers is outlined below in 

Equation 23 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  Fitness  = �Run time count
20

∗

50�+�20−Movement count
20

∗ 50� 
Equation 23 

Light following while avoiding obstacles 

A fitness function has been developed to provide a suitable indication of the 

performance of controllers which have been designed to perform light following while 

avoiding obstacle behaviours.  

Initially it was thought that the fitness function used for the light following behaviours 

could be used. However unlike the light follower testing procedure which had an easily 

calculable minimum runtime, the minimum runtime of the combined behaviour test was 

not easily calculable due to the addition of the obstacles to the robots arena. Because of 

this an alternative testing procedure was developed.  

This testing procedure uses a predefined runtime of 10 seconds and during the runtime 

three variables are considered; robot path length, destination reached and collision 

detection. 

Robot path length – at half second intervals the simulation calculates the linear distance 

the robot has travelled, the sum of all the recorded values provides the distance the robot 

has travelled. The path length is used as part of the fitness function to determine the 

final fitness. 

Destination reached – the length of the robot path can only work as a fitness function if 

the simulation is able to determine when the robot reaches the light source. This is done 

by calculating the linear distance the robot is from the light at every simulated step. If 

the robot is within 20mm of the light source then the simulation will stop and the fitness 

is calculated. 

Collision detection - at every simulated step the simulation checks the robot perimeter 

to determine if contact has been made with any of the objects in the arena. If contact has 

been made then the simulation will stop and calculate the fitness value. If a collision 

occurs then path length is set to the maximum (1200). 
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Fitness =  30 − �

𝐹𝐹𝐹𝐹
𝐼𝐼𝐼𝐼

∗ 30� + 70 ∗ �1 −
𝑃𝑃𝑃𝑃 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

1200
� Equation 24 

 Where: 

 Fd is the final distance from the light 

 Id is the initial distance from the light 

 Pl is the length of the path the robot took to get to the light source.  

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the straight line distance between the robot and the light 

1200 is the maximum possible path length the robot can travel in the allowable     

run time. 

 

 

3.1.5 Selection process 

The selection process is a mechanism in which individuals are compared against one 

another and selected based on their assigned fitness values. The selection method that 

has been used throughout this research is a version of tournament selection. Tournament 

selection works on a group based section method. Each group has a set number of 

individuals which is known as the tournament size. The tournament size directly affects 

the selection pressure. A large tournament size will result in a higher selection pressure 

whereas a small tournament size will result in low selection pressure [44]. 

The tournament size for this research is two and is comprised of one parent and one 

offspring created by that parent. This provides low selection pressure, which allows 

individuals that are preforming well but may not be preforming as well as others, to 

remain in the population. A parent is only replaced when an off spring is produced 

which preforms better than the parent. If a larger tournament size was chosen, the 

selection pressure on the individuals would increase and individuals not performing as 

well may be lost, even if the individuals are still valid and contributing to the 

progression of the population.  

The tournament selection process that has been implemented is graphically represented 

below in Figure 3-18.  Two parents ‘A and B’ have created two offspring ‘a and b’, 

Parent ‘A’ and offspring ‘a’ make up one tournament group, and parent ‘B’ and 

offspring ‘b’ make up the other. In this example Parent ‘A’ has a fitness of 90 and 

offspring ‘a’ has a fitness of 50, so parent ‘A’ will remain in the population and 
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offspring ‘a’ will be discarded. However Parent ‘B’ with a fitness of 60 will be replaced 

by offspring ‘b’ which has a fitness of 95.  

 

 

Figure 3-18 Tournament selection block diagram 

 

3.1.6 Simulation procedure 

This section describes the procedures used during the simulation of the controllers for 

the three robot controller behaviours.    

Common procedures 

The simulation of the three behaviours involves the following common procedures: 

1. Check sensors – The simulation uses the mathematical models described in 

section 3.1.2 to determine the current status of the robots light sensors. The 

sensor outputs are used in conjunction with the controller under test to determine 

the resulting robot motion. 

2. Calculate position and heading – The simulation uses the equations described in 

section 3.1.1 to determine the new robot position and heading based on the 

resulting controller output. 
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The remaining procedures used during the controller development are dependent on the 

controller under development and hence they have been outlined in separate subsequent 

categories. 

Light following procedure 

Position Initialisation: There are 4 starting locations used when evolving the light 

follower controllers, these locations are represented graphically below in Figure 3-19. 

From each position the robot also starts from two headings resulting in eight starting 

orientations for each individual test. 

 

Figure 3-19 Light follower starting locations and headings 

 

Determine runtime: The minimum runtime is calculated by determining the shortest 

distance between the robots starting position and the light source. This distance is 

divided by the maximum distance the robot can travel in a time period (6.1mm in 50ms). 

The result provides the number of simulation steps that the robot needs to reach the light 

source. An allowance has also been made for the time it takes for the robot to rotate too 

the light source. This rotation allowance is determined by calculating the difference 

between the robots starting heading and the light source direction and dividing this 

angle by the maximum rotation angle of the robot 8.5 degrees. 
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Object avoidance procedure 

Position Initialisation : The robots are started in the centre of the arena from eight 

different starting headings (0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°) as shown in 

Figure 3-20. 

 

Figure 3-20 Object avoidance starting location and headings 

 

Determine runtime: The eight tests last for 20 seconds and based on the values obtained 

in 3.1.1 this would allow the robot to travel a maximum of 2.4 metres. 20 seconds 

allows the robot to explore a large section of the 1.2m x 1.2m arena providing ample 

opportunity to encounter several different objects and hence thoroughly test the 

individual. 

Collision detection – The simulation checks the perimeter of the robot to determine if a 

collision has occurred. If a collision has been detected then the simulation will stop, 

calculate the fitness then begin the test at the next scheduled starting heading. If no 

collision is detected then the simulation will continue. 

Movement threshold – As explained in section 3.1.4 the fitness function for object 

avoidance controllers requires that the robot moves 67mm every second.  Every second 

the software compares the robots new position to the previous and determines if the 
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threshold has been reached. A count is kept for the number of time the controller fails to 

reach this threshold. 

Light following while avoiding obstacles procedure 

Position initialisation: The robots are started around the perimeter of the arena at the 

eight locations as shown in Figure 3-21 and each location has a unique starting heading. 

 

Figure 3-21 Light follower and object avoidance starting locations and headings  

Determine runtime: The eight tests last for 10 seconds and based on the values obtained 

in 3.1.1 this would allow the robot to travel a maximum of 1.2 metres. This allows the 

robot the reach the other side of the arena which is more than enough time to navigate 

around an obstacle and reach the light source. 

Collision detection – The simulation checks the perimeter of the robot to determine if a 

collision has occurred. If a collision has been detected then the simulation will stop, 

calculate the fitness then begin the test at the next starting location. If no collision is 

detected then the simulation will continue. 

Path length calculation – During the simulation the software measures the distance 

travelled by the robot every half a second. These values are summed together to give the 

total path length and used to determine the robot fitness. 
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3.2 Graphical user interface  

The GUI provides a means of monitoring and controlling the evolution of the controller. 

A status window contains a log of the current generation, average fitness, maximum 

fitness and the current elapsed time.  The status window is shown to the right in Figure 

3-22. Next to the status window in the middle of the GUI is the numerical status of the 

robot. This information contains the robots current position, the starting position and the 

sensor information.  

 

Figure 3-22 Graphical user interface 

The status of the robot is shown using two methods. The first is a real time scaled model 

showing the robot in the arena (Figure 3-22). The second is a visual representation of 

the path taken by the robot (Figure 3-23). 
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Figure 3-23 Trajectory view 

Figure 3-23 shows an example trajectory during the evolution of the light follower 

controller. The robot is seen starting from four locations and two headings (green and 

black). The light source (yellow circle) is also shown in the location selected. 

Adjustments to the robots arena can be made from within the settings tab in the centre 

section of the GUI. From here it is possible to change the location of the light source 

and select between prebuilt arenas for object avoidance behaviours.  An example of the 

settings tab is shown in Figure 3-24 

 

Figure 3-24 GUI settings tab 
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If the object avoidance mode is selected, the GUI displays the selected arena in the 

display window. This provides a scaled visual representation of the robot and the 

obstacles in the arena.  

 

Figure 3-25 GUI set up in object avoidance mode 

The view from the trajectory tab when operating in object avoidance mode is shown in 

Figure 3-26. Each starting heading is shown in a different colour and the obstacles are 

shown in blue.  

 

Figure 3-26 Object avoidance trajectory view  
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Chapter 4 

Chapter 4: Artificial Neural Network evolution for use in robotic 

controllers 

This chapter describes the experimental processes and results of the evolution of ANN 

controllers. Three individual controllers have been evolved to perform these three 

behaviours, light following, object avoidance and the combination of the two light 

following while avoiding obstacles. 

Each chromosome is comprised of the following ANN parameters: the weights for the 

ANN inputs, two activation trigger points and two bias values. All of the parameter 

values range from -1 to 1 in 0.1 increments giving a total of 21 possible parameter 

values. The evolution methods and the simulation software are common to all the 

controllers being evolved and are fully described in Chapter 3,  

4.1.1 ANN GA and software structure 

The software for this research has been developed in Visual Studio using windows 

forms and C#. It runs the GA process, the robot simulation and data logging and GUI 

interface.  
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Figure 4-1 Simulation flow chart 

Initialisation – The initial steps taken by the software are to setup the system. This 

involves generating the initial population with the random individuals. The software 

also generates the virtual arena which provides the proximity and light source 

information used during the evolution process. 

Controller evolution – The core of the software is the evolution process, this is where 

the controllers are evolved until a solution is found.  

• The software uses the mathematical models which are described in section 3.1 to 

determine the proximity and light sensor values. The sensor values are used in 

conjunction with the controller under test to determine the resulting robot 

motion. The robot motion and the mathematical model of the robot provide the 

new robot location.  

• Fitness evaluation: where each individual is tested for a predetermined length of 

time or until the desired result is achieved. At this point a fitness algorithm is 

used to assign a fitness value to each of the individuals under test. 
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• Selection: where the population is put through a selection process which uses an 

elitist-tournament selection process to determine which individuals to keep or 

discard.  

• Reproduction: where individuals selected to remain in the population are used to 

produce a new set of offspring. The offspring are then put through the same 

testing process and the evolution process continues until a satisfactory result is 

obtained.  

Data logging – The information and results gained from the evolution process are 

stored in three formats to allow for easy analysis.  

• The maximum and average fitness values are stored at regular intervals with the 

current number of generations in a text file.  

• The maximum and average fitness values vs. generations are graphed and stored 

in an Excel file.   

• The chromosome of the best individual is stored in a text file for further analysis. 

 

4.2 Light following 

4.2.1 Artificial neural network configuration 

An ANN has been designed as a controller to perform light following behaviours. The 

neural network takes two sensory inputs and provides two motor control outputs. The 

inputs to the system contain the quantized light intensity which is proportional to the 

robots heading with respect to the light source. The methods and calculations used when 

determining the light intensity are described in section 3.1.  The ANN is a two neuron, 

single layer network, with inputs to the ANN linked directly to the light sensors. The 

outputs of the ANN are used to drive the left and right motors. The activation output is a 

signed multistep function which allows three possible motor control options, forward, 

reverse and stopped (similar to the LUT controllers).  

The illustration shown in Figure 4-2 is a representation of the ANN used for the light 

follower controller. The inputs from the left and right light sensors can be seen on the 

left of the diagram, these inputs are multiplied by the synapses weights represented by 

W11, W12, W21 and W22 then fed into the combinational block. The summation block 
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then uses Equation 25 and Equation 26 to determine the raw output result for the left 

and right motors respectively. 

 

Figure 4-2 ANN configuration for light following 

 

 

Output left neuron = [∑ 𝑊𝑊1𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖2
𝑖𝑖=1 ] + 𝐵𝐵1 Equation 25 

 

Output right neuron = [∑ 𝑊𝑊2𝑖𝑖 ∗ 𝑋𝑋12
𝑖𝑖=1 ] + 𝐵𝐵2 Equation 26 

Where: 

 B is the bias input to the system. 

 W is the respective weight for each branch. 

 X is the light input value. 
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The bias to the ANN is required to overcome the initial state of the system when a light 

intensity value of zero is calculated for both light sensors. Without the bias the result of 

both motor summing equations would be zero, resulting in both motors being stopped, 

causing no more changes to the light intensity and causing the controller to fail. The 

bias overcomes this problem by introducing a constant to the equation that causes the 

robot to move when no light is encountered. Allowing the robot a chance of finding the 

light source.  

The result from the summation block is fed into the activation function element which 

determines the output state of the neuron. For the ANNs developed in this research the 

output function is a signed step function as shown below in Figure 4-3. 

 

Figure 4-3 Light follower ANN output function 

The input to the activation function is represented on the X axis while the resulting 

motor output is represented on the Y axis. The motor output clearly has three states, 

forward, reverse and stopped. The points which determine the transition between these 

states are the variable activation thresholds (A1 and A2).  

4.2.2 Light following ANN chromosome  

The chromosome for this system is a combination of four weights, two activation 

thresholds and two biases, W11, W12, W21, W22 A1, A2, B1 and B2. The weights, 

activation thresholds and bias values range from -1 to 1 with a resolution of 0.1 

providing 21 possible values.  The values are used directly in Equation 25 and Equation 

26 to determine the input value to the activation function.  
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The GA search space for the ANN chromosome, which provides a value representing 

the number of possible combinations of weights, bias and threshold values, can be 

calculated using (Equation 27)  

 Search space = (W)(Synapses+bias+ activationthresholds) = (21)4+2+2

= 3.8 ∗ 1010 
Equation 27 

Where: 

 W is the number of available weights (-1 to 1 in increments of 0.1)  

 Synapses is the number of input branch weights (4) 

 Bias is the number of bias`s in the system (2). 

Activation thresholds are the number of points at which the output function can 

change (2). 
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4.2.3 Results 

Artificial neural network performance 

A set of experiments has been designed to fully evaluate the controller performance 

under a range of conditions. The experiments used four starting positions with two 

starting headings per position. The exact positions and headings have been chosen to 

provide worst and best case scenarios with the goal of providing the best chance of 

developing a universal controller. For all of the light follower experiments an upper 

fitness limit of 95% has been set, at this point the GA stops. 95% was chosen, because 

after this point, the population tends to converge and only very small levels of progress 

are made. 

The performance of the controllers can be assessed by analysing the recorded 

trajectories of the path taken by the robot during development. These trajectories of the 

stages of evolution, as shown in Figure 4-4 show how the particular controller 

performed from each of the starting positions and headings. As the evolution progresses, 

the robot moves towards the light and the trajectories straighten giving a greater fitness. 

The trajectories shown below contain two starting headings. The first heading of 90 

degrees is shown in black while the second heading of 270 degrees is shown in green. 

 

Fitness = 78% Fitness = 82% Fitness = 92% Fitness = 97% 

    
Figure 4-4 Example light follower trajectories and fitness percentage 
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Light level quantization 

To analyse the effect of sensor quantization on the controller performance, a range of 

quantized light levels were evaluated, ranging from 2 to 9. These levels are also used for 

the light follower LUT and EHW controllers as described in sections 5.1.1 and 6.1.1. 

These values are compared with a controller that would use a 10 bit ADC with a 

quantization level of 1024. The resulting trajectories are shown in Figure 4-5 and Figure 

4-6 

Quantization = 1024, 

Fitness = 97% 

 
Figure 4-5 ANN raw quantization level trajectory 

 

Quantization = 2 

(79%) 

Quantization = 3 

(86%) 

Quantization = 4 

(82%) 

Quantization = 5 

(93%) 

 
 

  
Quantization = 6 

(95%) 

Quantization = 7 

(97%) 

Quantization = 8 

(97%) 

 

Quantization = 9 

(97%) 

    
Figure 4-6 ANN Light level quantization 

 

 



72 

Analysis of the trajectories reveals two key attributes related to the level of sensor 

quantization. Firstly it can be seen that the controllers with a quantization level of five 

and below have difficulty in obtaining a high fitness, this is largely due to the reduced 

resolution from the sensors and operation of the fitness function. Secondly, increasing 

levels of quantization and hence increasing sensor resolution, the controllers can be seen 

taking the optimum path to reach the light source. A quantization level of seven and 

above matches that of a 10-bit ADC (1024 quantization level), indicating that only 

relatively low levels of quantization are required to create a good controller. The 

minimum quantization level to reach a fitness of 95% is six. 

Evolution efficiency 

The experiments in this section have been designed to explore the effects on evolution 

efficiency caused by a varying light quantization level. The evolutionary efficiency for 

these results is measured in generations so the points of interest will be analysed with 

respect to the generation of which they occurred. 

Two criteria have been tested, firstly a high level of quantization will require more 

generations to realize a suitable solution and secondly a lower quantization level may 

not be able to fully realize a suitable solution.  To explore these criteria eight individual 

ANNs with different light quantization levels were evaluated.  

Table 8 contains the results from 8 levels of quantization and the result from the raw 

“un-quantized” sensor inputs. The controllers all exhibited light following behaviours, 

however only the controllers with a quantization level of six and above produced a 

controller capable of achieving the desired fitness (95%). The controllers that failed 

were unable to reach the light within the allowable runtime and hence achieved lower 

fitness.  
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Table 8 ANN Light level quantization results 

Quantization 
level 

Initial 
fitness (%) 

Final 
fitness (%) 

Generation 
at 95% 

1024 (Raw) 74 97 24 
2 

 

76 79 --- 
3 75 86 --- 
4 74 82 --- 
5 75 94 --- 
6 79 95 348 
7 79 96 19 
8 79 97 18 
9 80 97 7 

 

Controllers with lower levels of quantization are unable to reach a fitness of 95% as 

they cannot recognize small changes in light level and are unable to navigate directly 

towards the light, while a quantization level of 6 takes 348 generations to find a solution. 

However, for quantization levels much higher than those chosen (Raw 1024), the 

generations required to reach 95% also begins to increase. The added sensor resolution 

adds a level of complexity to the controller which means the robot is able to pivot at a 

very small change in light intensity even if a pivot may not have been required. This 

reduces the chance of the robot reaching the light source and increases the number of 

required generations.  
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Comparison of maximum fitness for different quantization levels  

A comparison of the maximum fitness trends for the eight quantization levels (Figure 

4-7) reveals two interesting attributes. Firstly the final fitness is proportional to 

quantization level (Controllers with high quantization levels have higher sensor 

resolution and are more capable of reaching the light in the allowed time). Secondly, it 

can be seen that high levels of quantization decrease the initial fitness. 

Based on the comparisons described above, it was decided that the optimum 

quantization level for this set of experiments was nine. At this level the controller was 

able to reach the desired fitness in only 7 generations and perform as required.  

 

  

Figure 4-7 ANN Quantization comparison vs. generations 
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4.3 Obstacle avoidance   

4.3.1 Artificial neural network configuration 

An ANN has been evolved to perform obstacle avoidance behaviours. The input to the 

network is provided via six proximity sensors each of which provides a digital input, 

true when an object is detected and false when not. The modelling and simulation for 

these sensors is described in section 3.1. The outputs of the network are two signed 

multistep functions which drive the robot’s left and right motors. A visual 

representation of the ANN system used for this controller is above in Figure 4-8. On the 

left of the diagram the six proximity inputs to the system can be seen. 

 

Figure 4-8 ANN configuration for obstacle avoidance 
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The outputs of these sensors (True or False) are multiplied by their respective synapses 

weights and passed to the summation element. Inside the summation elements Equation 

28 and Equation 29 are used to determine the left and right raw output values. 

 
Output left neuron = ��𝑊𝑊1𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

� + 𝐵𝐵 Equation 28 

 

 
Output right neuron = ��𝑊𝑊2𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

� + 𝐵𝐵 Equation 29 

 

Where:  

 X is the input from the proximity sensor one or a zero. 

 W is the branch weighting negative one to one. 

 B is the bias value. 

 

The bias in this case is used to overcome the state of the system when all of the sensors 

are inactive. This would cause the output of the equations to be zero and because of the 

way the firing thresholds have been configured this would result in the robot not 

moving. The bias overcomes this problem by introducing a value to the equation that 

under these conditions would cause the robot to move and achieve a higher fitness value. 

The summation block in the neuron is feed into the activation function element. This 

element serves as the decision maker and determines which state the output will be 

based on the input value. For the ANNs developed in this research the output function is 

a signed step function (Figure 4-3). 
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4.3.2 Obstacle avoidance ANN chromosome  

The chromosome for this system is a combination of 12 weights, two activation 

thresholds and one bias, W11, W12, W13, W14, W15, W16, W21, W22, W23, W24, 

W25, W26 A1, A2 and B. The weights range from -1 to 1 with a resolution of 0.1 

providing 21 possible weights per synapses.  The weights are multiplied by their 

respective input and added together to create the input for the activation function.  

The GA search space for the ANN chromosome, which provides a value representing 

the number of possible combinations of weights, bias and threshold values, can be 

calculated using (Equation 27)  

 Search space = (W)(Synapses+bias+ activationthresholds) = (21)12+2+2

= 1.4 ∗ 1021 
Equation 30 

Where:  

 W is the number of available weights (-1 to 1 in increments of 0.1)  

 Synapses is the number of input branch weights (12) 

 Bias is the number of bias`s in the system (2). 

Activation thresholds are the number of points at which the output function can 

change (2). 
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4.3.3 Results 

A set of experiments has been designed to evaluate the use of an ANN as an object 

avoidance controller and the performance of the GA used to evolve it. The results 

obtained from these experiments are outlined in the two sections below, the first section 

focuses on the ANNs performance as a controller while the second section focuses on 

the GA performance.   

The fitness function used to evolve the obstacle avoidance controller considers two 

variables, the robot’s total runtime and the movement count. Both values are converted 

to a ratio with their respective maximums and used to calculate the fitness value. For all 

of the object avoidance experiments an upper fitness limit of 80% has been set. Due to 

the operation of the fitness function, a fitness value much above this point is 

unachievable. (A complete description of the fitness function can be found in section 

3.1.4)     

Artificial neural network performance 

A set of experiments has been developed to evaluate the ANNs ability to perform in a 

range of different environments. The controllers are evolved from eight starting 

headings in three arenas with differing object configurations. The controllers from each 

of the experiments are then put into other arenas and the performance evaluated.  

The first controller has been evolved in arena A and the progressing trajectories are 

shown in Figure 4-9. (A diagram of each arena used in these experiments can be found 

in section 3.1.2.1 ) 

Note, the trajectories shown below contain eight starting headings.  

0° = RED, 45° = Green, 90° = Black, 135° = Grey, 180° = Pink, 225° = Purple,  

270° = Orange, 315° = Yellow 

 

Fitness = 40% Fitness = 58% Fitness = 75% Fitness = 80% 
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Figure 4-9 Arena A stages of evolution trajectories and the fitness obtained (ANN) 

The set of images shown in Figure 4-9 are common trajectories achieved during the 

evolution cycle.  As seen in the first two trajectories basic object avoidance techniques 

are evolved early on. However these techniques are limited to when the robot is 

approaching at a heading perpendicular to the obstacle. The ability to avoid obstacles at 

other angles is developed in the final stages of the evolution cycle. This process of 

evolution is largely due to the configuration and object placement of arena A, which has 

objects perpendicular to the robots starting headings meaning that this technique needs 

to be evolved first.  

To compare the effect of arena selection during the evolution process on the 

performance of the ANN, two extra arenas have been used to develop two additional 

controllers. The trajectories for arena B and arena C are shown in Figure 4-10 and 

Figure 4-11 

 

Fitness = 45% Fitness = 62% Fitness = 74% Fitness = 81% 

    Figure 4-10 Arena B stages of evolution trajectories and the fitness obtained (ANN) 

 

Fitness = 33% Fitness = 58% Fitness = 75% Fitness = 81% 

    Figure 4-11 Arena C stages of evolution trajectories and the fitness obtained (ANN) 

Similar evolution patterns to those found in the trajectories from arena A can be seen in 

the trajectories from arena B and arena C. In the initial stages of evolution the controller 

develops basic object avoidance behaviours which are fine-tuned with the trajectories 

becoming more refined in the later stages of the evolutionary cycle.  
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The evolved controllers from arena A, B and C have been evaluated using three 

unknown arenas. The trajectories from each controller in the unknown arenas are shown 

in Figure 4-12. It can clearly be seen from the trajectories shown that the controllers in 

most of the tests exhibit some object avoidance behaviours, however, these controllers 

are not performing to the same level of fitness as achieved in the original arenas.  

 Arena 1 Arena 2 Arena 3 Original arena 

C
on

tro
lle

r A
 

   
 

 Fitness = 64% Fitness = 47% Fitness = 44% Fitness = 80% 

C
on

tro
lle

r B
 

 

 

  
 

 Fitness =77% Fitness = 51% Fitness = 56% Fitness = 81% 

 

C
on

tro
lle

r C
 

   
 

 Fitness =57% Fitness = 39% Fitness = 40% Fitness = 81% 

 
Figure 4-12 Controller testing in unfamiliar arenas (ANN) 
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Multiple arena evolution 

To overcome the incomplete evolution problem, a change has been made to the 

evolution process. For this test a controller (called ABC) was evolved in all three known 

arenas A, B and C. The average fitness from the combined arenas was used to determine 

the fitness of the individual. The evolved controller achieved a fitness of at least 80% in 

each known arena.  

The resulting trajectories from the combined controller in the unfamiliar arenas are 

shown in Figure 4-13.  When compared to the trajectories in Figure 4-12, a significant 

performance increase can be seen, evident in the longer runtimes and smoother 

trajectories, while the fitness in all arenas was above 80% 

 Arena 1 Arena 2 Arena 3 

C
on

tro
lle

r A
B

C
 

    Fitness = 85% Fitness = 81% Fitness = 81% 

Figure 4-13 Combined arena evolution test in unfamiliar arenas (ANN) 
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Evolutionary efficiency 

This section focuses on the evolution efficiency in particular the number of generations 

required for a suitable result to be obtained. Controllers have been evolved in arenas A, 

B and C separately and in arenas A, B and C simultaneously. The results are shown in 

Table 9.   

Table 9 Arena evolution results (ANN) 

Arena Initial 
fitness (%) 

Final 
fitness (%) 

Generation 
at 70% 

Generation 
at 80% 

Arena Complexity 
Less to more(1-4) 

A 

 

70 80 3 10 3 
B 42 82 8 8 2 
C 38 81 8 8 1 

ABC 49 89 8 20 4 
 

All four controllers achieve the desired fitness of 80%, with three of them exceeding it. 

A difference in complexity level can be seen between the arenas, where arena ABC is 

seen to be the most complex due to the number of generations required achieving 80%.  

 

Maximum individual fitness trends for each arena configuration. 

Maximum fitness trends shown in Figure 4-14, show that the arena complexity is 

directly related to the number of generations required to reach a suitable fitness. This 

also confirms the original order of arena complicities been C, B, A, ABC (from least 

complex to most) and a clear complexity difference can be seen for arena ABC which 

takes the longest to evolve.  
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Figure 4-14 Maximum fitness comparison for each arena configuration (ANN)  

 

4.4 Light following while avoiding obstacles   

The focus for this section is to investigate scaling issues with an ANN as the complexity 

of the problem is increased. This is performed by comparing the results of monolithic 

and subsumption evolution. 

4.4.1 Artificial neural network configuration 

An ANN has been created to perform the combined task of light following while 

avoiding obstacles using monolithic evolution. The ANN contains eight inputs and two 

outputs. The inputs have been quantized as they were for the separate light following 

and object avoidance controllers and the outputs are configured as signed multistep 

functions to provide valid comparisons with the LUT and EHW controllers.  Figure 

4-15 is a representation of the ANN created for the combined behaviour controller. The 

system contains 16 individual synaptic weights which provide variable amplitude 

adjustment of the system inputs. 
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Figure 4-15 ANN configuration for light following while avoiding obstacles 

Using Equation 31 and Equation 32 the weighted inputs are summed together and the 

result used in the activation function to determine the system output.  

 
Activation function left motor = ��𝑊𝑊1𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

8

𝑖𝑖=1

� + 𝐵𝐵 Equation 31 

  

 
 Activation function right motor = ��𝑊𝑊2𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖

8

𝑖𝑖=1

� + 𝐵𝐵 Equation 32 

       

Where:  

 X is the input from the proximity sensors and the light sensors 

 W is the branch weighting (-1 to 1) 

 B is the bias value. 
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The bias values for this configuration are used to overcome the no light or no obstacle 

condition which results in a zero from both summation equations. The output from the 

activation function has been configured as a signed multistep function (Figure 4-3). 

4.4.2 Light following while avoiding obstacles ANN chromosome  

The chromosome for this system is a combination of 16 weights, two activation 

thresholds and one bias, W11, W12, W13, W14, W15, W16, W17, W18, W21, W22, 

W23, W24, W25, W26, W27, W28, A1, A2 and B. The weights range from -1 to 1 with 

a resolution of 0.1 providing 21 possible weights.  The weights are multiplied by their 

respective input and summed together to create the input for the activation function.  

The GA search space for the ANN chromosome, which provides a value representing 

the number of possible combinations of weights, bias and threshold values, can be 

calculated using (Equation 33)  

 Search space = (W)(Synapses+bias+ activationthresholds) = (21)16+2+2

= 2.8 ∗ 1026 
Equation 33 

Where:  

 W is the number of available weights (-1 to 1 in increments of 0.1)  

 Synapses is the number of input branch weights (16) 

 Bias is the number of biases in the system (2). 

Activation thresholds are the number of points at which the output function can 

change (2). 

 

4.4.3 Artificial neural network subsumption evolution 

Two ANN controllers are evolved separately and a switching controller employed to 

perform the combined task of light following while avoiding obstacles. This controller 

has been developed using subsumption evolution techniques where the complex task is 

broken down into individual less complicated tasks (light following and object 

avoidance) and evolved separately as described in 4.2 and 4.3. The evolved controllers 

are then combined using an algorithm which decides based on the sensory inputs, which 

controller is used and which is masked. 
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Figure 4-16 ANN subsumption diagram 

Figure 4-16 illustrates the system design for the subsumption controller. The decision 

making block has highest level of control and has the ability to mask and unmask the 

inputs from the individual controllers. If an obstacle is detected then the obstacle 

avoidance controller is unmasked until the robot is clear of any obstacles, at which point 

after a small delay the obstacle avoidance controller is masked and the light follower 

controller is unmasked.   
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4.4.4 Results 

A set of experiments have been designed to evaluate the ANN and the GA performance 

when controllers are evolved for light following while avoiding obstacles. Each 

individual is placed in an arena with obstacles and a light source. Each individual is 

tested in eight starting locations each with a unique heading. Eight controllers have been 

evolved, four using the monolithic and four using subsumption techniques. The evolved 

controllers performance and evolutionary efficiency are compared.  

The fitness function used to evolve the ANNs for the combined behaviours considers 

two variables; the robots distance from the light at the end of the test and the length of 

the path taken. (A complete description can be found in section 3.1.4).    

Note, all of the experiments are undertaken using arena A and an upper fitness limit of 

80% or 3000 generations has been set for the monolithic evolution. A controller 

receiving a fitness of 80% is considered to be a good controller due to the way the 

fitness function operates. 

Monolithic evolution results 

The four controllers shown in Figure 4-17 perform to a very high standard and are fully 

developed in the allocated generation limit of 3000. The controllers are seen to be 

moving towards the light source and navigating around any objects encountered. In 

doing so, the robot is able to reach the light source and maintain an optimum path length. 

The final fitness achieved for each controller is indicative of a good result due to the 

operation of the fitness function.    

As shown in Figure 4-7, the average number of generations required to reach a desirable 

result was 1120, substantially more than when the behaviours were evolved separately. 

The evolution process steadily increased until a fitness of about 35% was reached and 

after this the GA progress reduced noticeably. The reduction in progress was found to 

be the point where the controller had managed to reach the light source. However in 

order to progress past this point it was required that the path to the light be optimized. 
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Controller 1 Controller 2 Controller 3 Controller 4 

    Fitness = 83% 

Generations = 1025 

Fitness = 90% 

Generations = 850 

Fitness = 80% 

Generations = 495 

Fitness = 82% 

Generations = 2116 

Figure 4-17 Monolithic controller trajectories (ANN) 

 

 

Figure 4-18 Maximum fitness trends for monolithic controller evolution 
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Subsumption evolution results 

Four previously evolved light follower and object avoidance ANN controllers were 

chosen for the creation of the subsumption controllers. The controllers were paired up 

with a selection algorithm to create four controllers. The results are shown in Figure 

4-19. 

Note, the previously evolved controllers have been selected and paired randomly with 

no bias towards certain controllers. The trajectory shown below is a result from one of 

these pairs. 

 

 
Subsumption Fitness = 94% 

Generations for light follower ANN = 7 

Generations for object avoidance ANN = 10 

Total generations = 17 

Figure 4-19 Subsumption controller trajectories (ANN) 

 

The trajectories of the subsumption controllers show excellent light following and 

obstacle avoidance properties. Each of the four controllers clearly navigates towards the 

light source and only deviates from course when an object is detected. The same test 

was applied to several other controller combinations with very similar results obtained. 

The advantages of subsumption evolution are clear when compared with monolithic 

techniques. The average 17 generations were required to evolve the controllers with 

subsumption techniques, where as to evolve a controller of the same performance level 

with monolithic techniques requires 1120 generations.  
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4.5 Overall Conclusions  

• Light following – a range of ANNs were successfully evolved, it was found that 

quantization level of nine was the optimum size. 

• Obstacle avoidance – an ANN has been evolved which was fully capable of 

collision avoidance. 

• Combined behaviours – controllers have been successfully evolved using 

monolithic and subsumption evolution techniques. It has been found that 

controllers developed using subsumption methods outperform those developed 

using monolithic methods. The combined behaviours only require 17 

generations to reach a desired result, where as those controllers evolved using 

monolithic techniques required on average 1120 generations. 
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Chapter 5 
Chapter 5: Evolvable Lookup Tables for use in robotic controllers 

This chapter outlines the experimental outcomes that have arisen as a result of evolving 

LUTs for use in robotic controllers. Experimentation has been undertaken with the goal 

of producing three evolved controllers for three different robotic behaviours. 

Light following, obstacle avoidance and the combined behaviour of light following 

while avoiding obstacles.  

The controllers for the behaviours outlined above were designed in a PC based 

simulated environment. The software containing the simulation and GA process has 

been described in Chapter 3: 

5.1.1 LUT GA and software structure 

The software structure for the LUT controller GA and simulation is very similar to the 

software used to develop the ANN controller as described in section 4.1.1. Only 

changes to the chromosome format were made. 

5.2 Light Following 

5.2.1 LUT Chromosome  

The LUTs were required to enable the robot to locate and move directly towards a light 

source. Thus the input to the controller was two quantized light levels received from the 

left and right senor, and the output is the required robot direction. A two dimensional 

LUT was used with the two axis linked to the left and right light sensor inputs. The 

LUT elements are used to control the left and right motors shown in Figure 5-1. 
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Figure 5-1 Light following LUT sizes examples 3x3 and 5x5 

 

Two important questions arose while designing the LUT configuration for light 

following. 

- What size LUT was required, relating to the quantization of the inputs and 

outputs? 

- What sensor and actuator values should the LUT contain? 

What size LUT is required, relating to the quantization of the inputs and outputs?  

The elements of the LUT contain left and right motor control information, however 

what remained unclear was the level of control information that was required to achieve 

a satisfactory result. It was decided that the elements of the LUT would contain 

directional information only and that the motors would be both running at the same set 

speed. Using only the directional control versus speed control to drive the motors 

reduces the number of possible combinations that are available for each of the LUT 

elements, hence keeping the search space to a minimum. From the information 

presented above in Figure 5-1 it can be seen that limiting the control to directional 

control there are nine possible combinations of motor directions.  

The search space for a LUT with a quantization light level of six: 

- Quantized light level (Q)  =  6 



93 

- Possible element outputs (E) = 9 

 Search space  =  𝐸𝐸(𝑄𝑄)2 =  962 = 2.2 ∗ 1034 Equation 34 

 

To see the change in search space size, one can consider the option of implementing 

speed adjustment. If only three speed increments are used, such that the motors have 

three reverse speeds and three forward speeds, then it can be seen that the search space 

will be greatly increased. 

- Quantized light level (Q)  =  6 

- Possible element outputs (E) = (3 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 3 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 2 = 49 

 Search space  =  𝐸𝐸(𝑄𝑄)2 =  4962 = 7 ∗ 1060 Equation 35 

The search space of the LUT with speed control would be 2.5*1018 times larger than 

the LUT that uses only directional information. 

In an effort to minimise the search space further it was decide that the stop condition in 

the list of available output motions was unnecessary and it could be removed. This 

would reduce the number of combinations to eight and reduce the search space as 

shown below.  

- Quantized light level (Q)  =  6 

- Possible element outputs (E) = 8 

 Search space(no stop)  =  𝐸𝐸(𝑄𝑄)2 =  862 = 3.2𝑥𝑥1032 Equation 36 

Removing the stop condition provides a reduction in the search space by a factor of 67.  

A number of experiments were undertaken to further investigate the effect of search 

space on the GA process and the LUT performance, these tests include testing 

quantization levels from two to nine. The results can be found in section 5.2.3.   

What sensor values should the LUT contain?  

The size of the LUT is directly related to two important factors, the robot behaviour, (a 

smoother path requires a finer resolution of the light sensors) and secondly the GA 

search space (a finer resolution of the light sensors would create a larger LUT and a 
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large search space). The light sensor outputs have been converted to integer format and 

quantized, with the level of quantization determining the size of the LUT and the search 

space for the GA. 

Several quantization levels were investigated to determine the optimum motion of the 

robot and efficiency of the GA process, these ranged from 2x2 to 9x9. Figure 5-1 shows 

example 3x3 and 5x5 LUTs with respective search spaces of 1.3𝑥𝑥108 and 3.8𝑥𝑥1022 

The LUTs shown in Figure 5-1 are possible solutions that could be obtained from 

experimentation if the quantization levels were configured to be three or five. The 

elements within the LUTs contain the left and right motor directions and for this 

example each motor direction is represented as Forward (F), Reverse (R) and Stopped 

(S). 
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5.2.2 Offspring creation 

A two-point crossover technique has been implemented. This technique involved 

selecting two random points along the X axis then sections separated by the selected 

points are swapped over to create the new offspring. Using a two-point cross over 

method for reproduction allows smaller sections of the LUT to be altered without 

making changes to other areas of the LUT. An example of the described method of 

reproduction is shown below in Figure 5-2.   

 

Figure 5-2 Light follower LUT two-point crossover  
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5.2.3 Results 

A set of experiments has been designed to test the performance of the LUT controllers 

and to analyse the efficiency of the GA process for light following behaviours. The 

results are divided into two main sections. The first section demonstrates the 

performance of the evolved controllers, and the second section explores the GA 

performance. 

The fitness function used to evolve the light follower LUT calculates the robots distance 

from the light source after the allowable simulation time. This distance is used to 

determine a suitable fitness value. (A complete description of the fitness function can be 

found in section 3.1.4). Note, for all of the light follower experiments an upper fitness 

limit of 95% has been set, at this point the GA stops. 95% was chosen, because after 

this point, the population tends to converge and only very small levels of progress are 

made. 

Look up table controller performance 

The experiments start the robot in four starting positions and two starting headings per 

test, the exact positions and headings have been chosen to provide worst and best case 

scenarios with the goal of providing the best chance of developing a universal controller. 

One of the starting headings is pointing away from the light source while the other is 

pointing almost directly at the light and two of the starting positions are close to the 

light source while the others are much further away.  

The performance of the controllers can be assessed by analysing the recorded 

trajectories taken by the robot, and the fitness during evolution. These trajectories as 

shown in Figure 5-3 demonstrate how the particular controller performed from each of 

the starting positions and headings during the evolutionary process. Note, the 

trajectories shown below contain two starting headings. The first heading of 90 degrees 

is shown in black while the second heading of 270 degrees is shown in green.  
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Fitness = 33% Fitness = 44% Fitness = 50% Fitness = 68% 

    
Fitness = 78% Fitness = 83% Fitness = 90% Fitness = 97% 

    
Figure 5-3 Example light follower trajectories and fitness percentage 

In Figure 5-3 the stages of evolution can be seen. The initial stages of evolution seem to 

focus on developing the ability of the controller to steer towards the light and in most 

cases the path taken is a curve. Although traveling in an arc is not the most direct route, 

it still allows the robot to get fairly close to the light source and hence receive a 

reasonable fitness value.  

Separate stages of the LUT trajectories can be seen evolving at different periods during 

the evolution of the controller. This is due the controller evolving different behaviours 

at separate times. For instance, the first resemblance of light following behaviours 

occurs when the robot is started in the general direction of the light source. In this 

situation a high fitness can be achieved by simply directing the robot to go forward 

causing the robot to end up nearer to the light source. Controllers that perform in this 

way tend to achieve a fitness of approximately 30-40%, and hence usually out perform 

any of the initial population which usually start out with an average fitness of 10-15%. 

The next characteristic that tends to develop is the tightening of the arc shaped pathways 

creating a more direct route to the light, achieving a higher fitness value, usually 60-

80%.  

The final stage of evolution involves the rotation of the robot when no light source is 

detected. This occurs at the beginning of the testing procedure when the robot is initially 

pointing away from the light source. There are two main reasons this occurs only in the 



98 

final stages of evolution. The first is due to complexity of the problem itself, the robot is 

required to rotate then move towards the light. If the robot does not stop rotating the 

rotate function serves no benefit and would achieve a fitness of zero. This rotate and 

move function requires more than just one evolved area of the LUT and it is highly 

unlikely that this would be found in the early stages of the evolution cycle. The second 

reason the rotate function tends to be evolved last is due to the way the fitness is 

allocated.  An individual can achieve a high enough fitness to succeed in the tournament 

selections without the ability to rotate. This requirement only becomes a necessity to 

succeed in the final stages of evolution due to increasing levels of the average 

population fitness. 

Light level quantization 

Eight levels of quantization have been selected for controller performance analysis. 

These levels are shown with their respective LUT dimensions in Table 10 

Table 10 Light levels chosen for analysis 

Quantization LUT size Elements Search space 
2 2x2 4 4096 

3 3x3 9 1.3∗ 108 
4 4x4 16 2.8∗ 1014 
5 5x5 25 3.8∗ 1023 
6 6x6 36 3.2∗ 1032 
7 7x7 49 1.8∗ 1044 
8 8x8 64 6.2∗ 1057 
9 9x9 81 1.4 ∗ 1074 

 

The resulting trajectories of the fully evolved controllers are shown in Figure 5-4. Note, 

not all the trajectories reached the light in the required time, even though the path was 

more direct. This was due to minor oscillations of the robot’s movement caused by the 

quantization of the light sensors. 

The final trajectories shown (Figure 5-4) revealed two noticeable characteristics that can 

be attributed to the level of quantization used. The first is the limited ability for the 

controllers with low quantization levels to reach the light source in the time limit set for 

each test. This is more noticeable in the trajectory for the 2x2, 3x3 and 4x4 controllers. 

The fitness measurement used for the evolution of these controllers uses an algorithm to 

determine the run time for each test. The algorithm assumed that the robot will rotate on 
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the spot until facing the light then travel in a straight line until the light source is 

reached. However if the light sensor resolution is limited as is in the smaller LUTs, the 

fine heading adjustments required to move directly towards the light are not possible. 

This can cause the controllers to oscillate when moving towards the light. The 

oscillations waste run time resulting in the robot coming up short at the end of the time 

period. 

2x2 Fitness = 78% 3x3 Fitness = 91% 4x4 Fitness = 91% 5x5 Fitness = 95% 

    
6x6 Fitness = 96% 7x7 Fitness = 97% 8x8 Fitness = 97% 9x9 Fitness = 97% 

    
Figure 5-4 Resulting light follower trajectories 

The second characteristic is the path in which the robot takes to get to the light source. 

Ideally the robot should begin the test by rotating on the spot until the sensors detect 

that the light source is directly in front. The robot should then move in a straight line 

towards the light. To do this the controllers require a sensor input resolution fine enough 

to accurately determine when the light is directly in front. The smaller LUTs have a 

disadvantage in the way that the sensor inputs have been quantized, such that the range 

of headings where the sensors would detect a light source directly in front would be 

greater than that of the larger LUTs. This causes the controllers to drive the robot 

forward assuming that the light source is directly in front however in reality the robot 

could be 10 degrees off course. When the robot gets close enough to the light the sensor 

inputs change and only then can the controller correct the course, this action results in 

an arc-like pathway towards the light source. As expected the radius of the arc shaped 

pathway tends to increase straightening out the path as the quantization level increases.  
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Evolutionary efficiency 

The experiments in this section have been designed to explore the effects on 

evolutionary efficiency caused by varying search space. The evolutionary efficiency for 

these results is measured in generations and hence the points of interest will be analysed 

with respect to the generation in which they occurred. 

Two criteria are tested: firstly will a high level of quantization require more generations 

to realise a suitable solution; and secondly will a lower quantization level be able to 

fully realise a suitable solution.  To explore these criteria eight individual LUTs with 

different light quantization levels were evaluated.  

The results obtained from the effects of quantization on the evolutionary efficiency are 

shown in Table 11. 

 

Table 11 Light level quantization results  

LUT 
Size 

Initial 
fitness (%) 

Final 
fitness (%) 

Generation 
at 95% 

Search space 

2x2 

 

77 80 --- 4096 
3x3 70 92 --- 1.3∗ 108 
4x4 68 91 --- 2.8∗ 1014 
5x5 55 95 37 3.8∗ 1023 
6x6 53 95 33 3.2∗ 1032 
7x7 52 95 33 1.8∗ 1044 
8x8 48 97 43 6.2∗ 1057 
9x9 47 97 50 1.4 ∗ 1074 

 

The lower levels of quantization (2x2 to 4x4) were unable to meet the required 95% 

performance. The optimum evolutionary efficiency occurred at quantization levels of 

6x6 and 7x7. It is clear from the results that increasing quantization levels result in 

increased evolution times. The fitness of controllers with low quantization levels 

plateaued within 100 generations whereas those with higher levels plateaued much later 

at 200-300 generations.  

The initial fitness obtained is directly related to the quantization level. A high 

quantization level provides a large search space which makes finding an adequate 

solution at the beginning of the GA process unlikely, and this reduces the initial fitness. 

However with a low quantization level the search space is much smaller and the chance 
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of finding an adequate random solution is much more likely, and this causes the initial 

fitness to be higher. 

 
Comparison of maximum fitness for different quantization levels  

A comparison between the maximum fitness trends from each of the eight quantization 

(Figure 5-5) levels yields two interesting results. Firstly, as described above, the initial 

fitness can be seen to be increasing as the quantization level decreases and secondly, the 

generation at which the fitness begins to plateau increases as the quantization level 

increases.  

 

 

Figure 5-5 Quantization comparison - maximum fitness 
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Comparison of average fitness for different quantization levels 

The general shape and positioning of the fitness curves for the population averages 

(Figure 5-6) over all the quantization levels remain very similar with the only noticeable 

difference being that of the 2x2 LUT.  

 

 

Figure 5-6 Quantization comparison - average fitness 

Based on the comparisons described above it was determined that the optimal 

quantization level for LUT controllers in this simulation was eight (8x8 LUT). This was 

chosen because of the high level of fitness (95%) achieved and only requiring 33 

generations vs. 50 generations for the quantization level of nine which also reached the 

high fitness level. 
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5.3 Obstacle avoidance 

5.3.1 Object avoidance LUT chromosome  

LUTs have been evolved to perform object avoidance behaviours. The LUTs are 

configured as one dimension arrays with the axis connected to the proximity sensors 

and the parameters providing the output motor controls.   

The six analogue proximity sensors mounted on the robot have been quantized to 

provide a digital signal. The quantization of the outputs from analogue to digital reduces 

the GA search space and the overall complexity of the problem. The quantization level 

is such that the sensors return a logic one when an object is detected within range 

(50mm) and a logic zero when no object is detected.  

The quantized (digital) output from the sensors is combined in a binary format, which 

provides a number from 0-63. The binary configuration of the sensors is used as the 

indexing value for the LUT. Equation 37 describes how the maximum decimal value is 

obtained from a varying number of object sensors. 

 Object sensor bit combinations  =  2𝑛𝑛 =  26 = 64 Equation 37 

Where: 

n is the total number of object sensors. 
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As shown in Figure 5-7 the proximity sensors have been allocated a bit number from 0-

5, this provides the order for which the sensor outputs are combined. In this example, 

sensors one and four are active which combines to the binary format 010010 which is 

equivalent to the decimal value 18. Hence under these conditions the contents of 

element 18 in the LUT would be retrieved and used to provide the motor control. 

 

 

Figure 5-7 Proximity sensor combination example 

 

A visual representation of the LUT used can be seen in Figure 5-8, the index values 

range from 0-63 and the elements contain the left and right motor directions. 

 

Figure 5-8 Object avoidance LUT  
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Search space – The search space of the designed LUT can be calculated as follows. 

 Object avoidance Search space  =  𝐸𝐸2𝑛𝑛 =  826 = 6.2 ∗ 1057 Equation 38 

   

Where: 

E is the number of possible element combinations  

n is the number of sensors 

5.3.2 Offspring creation 

The reproduction method uses four-point crossover with a mutation rate of three per 

cent. This has proven to be successful and provides enough amalgamation to produce 

desirable offspring.  

Figure 5-9 shows the creation of two offspring by means of a four point crossover, the 

four points are chosen at random and are used to determine which parts of the parent’s 

chromosomes are used to create the offspring. 

 

 

Figure 5-9 Offspring creation with four crossover points 
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5.3.3 Results 

A set of experiments has been designed to evaluate the controller performance of a LUT 

used as an object avoidance controller and the evolutionary efficiency of the GA used to 

evolve it. The results obtained from these experiments are outlined in the two sections 

below, the first section focuses on the LUTs performance as a controller and the second 

section focuses on the GA efficiency.   

The fitness function used to evolve the obstacle avoidance LUT considers two variables, 

the robot’s total runtime and the movement count. Both values are converted to a ratio 

with their respective maximums and used to calculate the fitness value. Note, for all of 

the object avoidance experiments an upper fitness limit of 80% has been set. Due to the 

operation of the fitness function, a fitness value much above this point is unachievable. 

A complete description of the fitness function can be found in section 3.1.4.   

LUT controller performance 

The experiments developed are used to evaluate the LUTs ability to perform in a range 

of different environments. The controllers are evolved from eight starting headings in 

three arenas with differing object configurations. The controllers from each of the 

experiments are then put into other arenas and the performance evaluated. The first 

controller has been evolved in arena A and the progressing trajectories are shown in 

Figure 5-10. A diagram of each arena used in these experiments can be found in section 

3.1.3. 

Note the trajectories shown below contain eight starting headings.  

0° = RED, 45° = Green, 90° = Black, 135° = Grey, 180° = Pink, 225° = Purple,  

270° = Orange, 315° = Yellow.  
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Fitness = 11% Fitness = 30% Fitness = 40% Fitness = 45% 

    Fitness = 50% Fitness = 54% Fitness = 60% Fitness = 84% 

    Figure 5-10 Arena ‘A’ evolutionary stages, showing the trajectories and fitness obtained  

The total fitness for each test is comprised of an average from the eight starting 

headings. Because of this an individual can achieve a low fitness even though it may 

appear that it performed well. This is the case with the individual achieving 11% 

(shown in Figure 5-10), where clearly some of the starting headings are performing well 

but others are not. As the evolution process progresses it can be seen that other starting 

headings begin to perform and hence the fitness begins to increase.  

It can also be seen that the individuals moving about the arena with a smoother 

trajectory achieve a higher fitness as is the case with the individuals with 54% and 60%. 

This is due to the properties of the fitness function which has been designed to force the 

robot to move about the arena. This is achieved by keeping track of the robots 

movement at periodic intervals.  Therefore, when the robot fails to move a set distance 

the fitness is reduced and this can be seen in the trajectories where the path appears to 

get stuck when an object is encountered. 

To compare the effect of arena selection during the evolution process on the 

performance of the LUT, two more arenas have been used to develop two additional 

controllers. The trajectories for arena B and arena C are shown in Figure 5-11 and 

Figure 5-12. 
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Fitness = 11% Fitness = 18% Fitness = 21% Fitness = 42% 

    Fitness = 50% Fitness = 60% Fitness = 73% Fitness = 89% 

    Figure 5-11 Arena B evolutionary stages, showing the trajectories and fitness obtained 

 

Fitness = 10% Fitness = 18% Fitness = 21% Fitness = 41% 

    Fitness = 62% Fitness = 69% Fitness = 73% Fitness = 83% 

    Figure 5-12 Arena ‘C’ evolutionary stages, showing the trajectories and fitness obtained 

Similar evolution patterns to those found in the trajectories from arena A can be seen in 

the trajectories from arena B and arena C. The initial stages of evolution cause the 

controller to roughly move about the arena with the overall path becoming smoother in 

the later stages of the evolutionary cycle.  
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The evolved controllers from arena A, B and C have been evaluated using three 

unfamiliar arenas. The trajectories from each controller in the arenas are shown below 

in Figure 5-13. 

 

 Arena 1 Arena 2 Arena 3 Original arena 

C
on

tro
lle

r A
 

  
  

 Fitness = 11% Fitness = 75% Fitness = 22% Fitness = 84% 

C
on

tro
lle

r B
 

 

 

 
  

 Fitness =40% Fitness = 20% Fitness = 29% Fitness = 85% 

 

C
on

tro
lle

r C
 

  
  

 Fitness =30% Fitness = 51% Fitness = 51% Fitness = 83% 

 
Figure 5-13 Evolved controllers evaluated in unfamiliar arenas 

It can clearly be seen from the trajectories shown above that the controllers in most of 

the tests exhibit some object avoidance behaviours. However when placed into an 

unfamiliar arena, these controllers are not capable of performing to the same standard as 

achieved in the original arenas. This inability to perform as a universal controller is due 

to the incomplete evolution of the LUT. Not all of the possible sensor combinations are 

encountered during the evolution process and the LUT does not fully evolve.  
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Multiple arena evolution 

To overcome the incomplete evolution problem, a change has been made to the 

evolution process. For this test the controllers have been evolved using a combination of 

arenas simultaneously. The combination is comprised of arenas A, B and C. The 

average fitness from the combined arenas is used to determine the fitness of the 

individual. Note, the combined evolved controller achieved a fitness of 81% 

 

 Arena 1 Arena 2 Arena 3 

C
on

tro
lle

r A
B

C
 

  
 

 Fitness = 63% Fitness = 78% Fitness = 55% 

Figure 5-14 Combined LUT evolution test in unfamiliar arenas 

The resulting trajectories from the combined controller in the unfamiliar arenas are 

shown in Figure 5-14.  When compared to the trajectories in Figure 5-13, a significant 

performance increase can be seen. The controller runs for much longer during each run 

and also travels via a much smoother path. 
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Evolutionary efficiency 

This section focuses on the efficiency of the GA process in particular the number of 

generations required to obtain a suitable result. Controllers have been evolved in arenas 

A, B and C separately and arenas A, B and C simultaneously. The results are shown in 

Table 12.   

Table 12 Arena evolution results (LUT). 

Arena Initial 
fitness (%) 

Final 
fitness (%) 

Generation 
at 70% 

Generation 
at 80% 

Arena Complexity 
Less to more(1-4) 

A 

 

2 80 104 262 3 
B 19 85 101 208 2 
C 2 84 121 161 1 

ABC 12 81 213 347 4 
 

Due to the complexity of the problem, very low initial fitness’s are achieved (2-19%) 

and any differences in arena complexities are not obvious when comparing these values. 

However when comparing the generations at which the fitness reaches 70 and 80%, a 

clear difference can be seen. Based on the number of generations required to reach a 

suitable solution, the order of complexity for the arenas from highest to lowest would be 

ABC, A, B, C.  
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Maximum individual fitness trends for each arena configuration. 
 
Analysis of the maximum fitness plots in Figure 5-15 reveals two areas of interest. 

Firstly the number of generations required to evolve the controllers is directly related to 

the complexity of the arena. The least complex arena C can be seen evolving at a steady 

rate and reaching a fitness of 80% in fewer generations than the other arenas. The 

second area of interest is the difference in evolution progress between the single arenas 

(A, B and C) and the combined arena (ABC). The single arenas tend to have large 

increases in fitness whereas the combined arena has small increases. This is attributed to 

the arena environment in which the controllers are evolved. A large increment in fitness 

can occur in a single arena when a controller evolves to navigate one particular obstacle 

in that arena. However, the same evolved behaviour in a combined arena environment 

will not exhibit the same result due to the large variety of obstacles in the combined 

arenas. 

 
 

 

Figure 5-15 Maximum fitness comparison for each arena configuration 
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5.4 Light following while avoiding obstacles  

The focus for this section of the research has been to evaluate the GA efficiency with an 

increase in the problems’ complexity, using monolithic and subsumption evolution 

techniques to evolve LUT controllers. 

5.4.1 Light following while avoiding obstacles LUT chromosome  

LUTs have been evolved to perform the combined tasks of light following while 

avoiding obstacles. A three dimensional LUT has been configured to integrate the light 

and proximity sensor inputs. The outputs from the left and right light sensors provide 

the x and y index values while the proximity sensors provide the z index. The LUT 

elements contain directional control for the robot’s left and right motors.   

Figure 5-16 is a visual representation of the LUT configured for light following and 

object avoidance.  The front face of the LUT is the same as the dedicated light follower 

LUT with the additional sections behind providing the necessary proximity detection 

control.  

 

Figure 5-16 Light follower and object avoidance LUT configuration  
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As with the dedicated object avoidance LUT the number of elements available is 

directly related to the number of proximity sensors. In this case with six proximity 

sensors there are 26 possible elements, this combined with a light follower LUT with a 

light quantization level of 8 would provide a LUT size of 8x8x64 resulting in a total of 

4096 elements in the LUT and a search space of 84096.   

5.4.2 Offspring creation 

The reproduction process chosen for the light follower and object avoidance LUT 

differs slightly from the reproduction of the individual behaviours. During reproduction 

the LUT is treated as a single dimension array of length determined by the number of 

elements in the LUT. Four points are chosen at random along the array and used as the 

crossover points to produce the offspring. This method provides the necessary level of 

genome amalgamation and has proven to produce suitable offspring. 

5.4.3 LUT subsumption evolution  

Subsumption evolution involves taking a complex behaviour and splitting it into smaller 

less complicated behaviours. In this case the combined behaviour was split into two 

behaviours, light following and object avoidance and evolved separately. The two 

evolved solutions were then combined using a switching controller such that the two 

controllers operate as one and perform the desired complex behaviour. Figure 5-17 

below contains an example block representation of a subsumption controller vs. a 

monolithic controller.  

 

 

Figure 5-17 Subsumption controller vs. monolithic example 
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Implementation of the subsumption controller involved taking the previously developed 

controllers for the separate behaviours and switching between them by considering the 

current status of the robot’s sensors. If the proximity sensors are inactive, then the 

controller will use the LUT evolved to perform light following behaviours. However 

when an object is present and one or more of the proximity sensors are active, the LUT 

evolved for the object avoidance behaviours will be used.  

The desired outcome would be a robot that would turn directly to the light source and 

move towards it in a straight line. If the robot encountered an object then the robot 

would switch controllers and move away from the object until the object was not 

detected, then switch back to the light follower controller. 

5.4.4 Results 

A set of experiments have been designed to evaluate the LUT performance and 

evolutionary efficiency when controllers are developed using monolithic and 

subsumption techniques. 

The fitness function used to evolve the LUTs for the combined behaviours considers 

two variables; the robots distance from the light at the end of the test and the length of 

the path taken.  

A complete description of the fitness function can be found in section 3.1.4  

  

The method of evolution developed for these experiments starts each individual from 

eight different starting locations each with a unique heading. Four controllers have been 

evolved using the monolithic and subsumption techniques. These controllers have been 

compared in two ways, firstly the performance of the controller is analysed and 

secondly the GA process itself is analysed.   

Note, all of the experiments are undertaken using arena A and an upper fitness limit of 

80% or 20,000 generations has been set for the monolithic evolution. A controller 

receiving a fitness of 80% is considered to be a good controller due to the way the 

fitness function operates. 
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Monolithic evolution results 

The four controllers shown in Figure 5-18 clearly exhibit both light following and 

object avoidance behaviours. All of the controllers perform to a very high standard and 

have been fully evolved before the limit of 20,000 generations. The evolved controllers 

can be seen navigating around obstacles and when a clear path is found heading directly 

towards the light and hence achieving the maximum allowable fitness. The reason these 

controllers do not reach fitness much higher than 80% is due to the operation of fitness 

function. A path length equal to the minimum straight line distance between the starting 

position and the light would be required to reach a fitness of 100% and this is not 

possible.   

 

Controller 1 Controller 2 Controller 3 Controller 4 

    

Fitness = 81% 

Generations = 8227 

Fitness = 85% 

Generations = 10998 

Fitness = 84% 

Generations = 16126 

Fitness = 86% 

Generations = 11041 

Figure 5-18 Monolithic controller trajectories 

The disadvantage of using this method of evolution for complex behaviours is the 

number of generations required to achieve a desirable fitness as shown in Figure 5-19. 

The evolution progress was very slow with most of the controllers taking over 10,000 

generations to evolve. This is largely due to the large search space created by the three 

dimensional LUT. In summary the LUT is useful for evolving controllers for simple 

behaviours, however it suffers from scalability issues as the complexity of the controller 

increases. 

 



117 

 

Figure 5-19 Maximum fitness trends for monolithic controller evolution 

Subsumption evolution results 

Four previously evolved light follower and object avoidance LUTs were chosen for the 

creation of the subsumption controllers. The LUTs were paired up with a selection 

algorithm to create four controllers of which the results are shown in Figure 5-20.  

Note, the previously evolved controllers have been selected and paired randomly with 

no bias. The trajectory shown is a result from one of these pairs. 

 

 
Subsumption Fitness = 80% 

Generations for light follower LUT = 50 

Generations for object avoidance LUT = 298 

Total generations = 348 

Figure 5-20 Subsumption controller trajectories 
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The trajectories of the subsumption controllers show excellent light following and 

obstacle avoidance properties. Each of the four controllers clearly navigates towards the 

light source and only deviates from course when an object is detected.   

Evolving the controllers using subsumption techniques has clear advantages, the 

combined generations required to evolve both of the sub-behaviours are far fewer than 

if the controller were to be evolved using monolithic techniques as one complete 

controller.  

5.5 Conclusion of the experiments with a LUT based controller 

• Light following – a range of LUTs were successfully evolved, it was found that 

the 8x8 LUT was the optimum size. 

• Obstacle avoidance – a LUT has been evolved which was fully capable of 

collision avoidance. 

• Combined behaviours – Controllers have been successfully evolved using both 

monolithic and subsumption evolution techniques and it has been found that 

controllers developed using subsumption methods outperform those developed 

using monolithic methods.    

o Monolithic – A singular three dimensional LUT has been evolved and is 

capable of performing light following tasks while avoiding obstacles. 

o Subsumption – Two LUTs have been separately evolved and combined 

using a high level decision making algorithm to perform light following 

tasks while avoiding obstacles. 
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Chapter 6 

Chapter 6: Evolvable Hardware for use in robotic controllers 

This chapter describes the use of EHW controllers to create robotic controllers. These 

controllers have been evolved to perform three behaviours -light following, object 

avoidance and light following while avoiding obstacles. In order to overcome the 

limitations of a normal FPGA with a fine-grained architecture, capable of destructive 

routing, a reconfigurable FPGA platform known as a virtual-FPGA was created. This 

was based on a Cartesian architecture, non-destructive and course grained, providing a 

reduced search space and implemented in the actual FPGA device. The virtual-FPGA 

was comprised of logic array blocks (LABs) that contain multiplexers for switching 

inputs, and logic elements to provide logic manipulation of the selected inputs. The 

following virtual-FPGA architectures described here are the result of several iterations 

of testing including reducing and flat layer architectures as well as a variety of logic 

element configurations. The virtual-FPGA is configured via a CBS. The bit-stream 

provides control over the internal LABs of the virtual-FPGA and is the chromosome 

evolved via the GA.  

The GA and the software simulation are run on a PC and the configuration bit-stream is 

transmitted via a serial link to a NIOS soft-core processor and the virtual-FPGA that has 

been implemented on Altera’s DE2-115 application board (Figure 6-1). The NIOS was 

constructed with a UART enabling serial communications to the PC; a SDRAM driver 

for memory; fourteen 32-bit I/O ports for parallel transfer of the CBS and two I/O ports 

for the virtual-FPGA inputs and outputs sent from the robot simulation on the computer. 
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Figure 6-1  EHW System 

6.1.1 EHW GA and software structure 

The software used to evolve the EHW controllers is similar to the software used for the 

LUT and ANN controllers however an additional piece of software has been developed 

which runs on an NIOS processor on the FPGA development board.  The NIOS receives 

bit-stream information from the PC and configures the virtual-FPGA accordingly. Note, 

as with the LUT and ANN controllers the chromosome for the EHW controller is 

evolved on the PC. 

The structure of the software on the NIOS processor is described below. 

• Communications received – The main function of the NIOS processor is to 

receive and interpret the communications from the PC. The information sent 

from the PC contains the bit-stream from the individual under test as well as the 

robot’s light and proximity sensor information.  

• Virtual-FPGA configuration – The received bit-stream information is used to 

configure the virtual-FPGA for the individual under test.   

• Using the virtual-FPGA – New sensor information received from the PC is input 

to the virtual-FPGA and the resulting outputs are read and sent back to the PC. 

The structure of the software on the PC is described below. 

• Initialisation – The Initialisation takes place once at the beginning of every 

evolution cycle. This involves generating the randomised population of bit-

streams. Each bit-stream conforms to the format that has been developed to 

configure the specific virtual-FPGA for the desired behaviour.  
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• Communication – For each new test, the software begins by sending the bit-

stream information via the RS232 interface to the NIOS processor.  This 

configures the virtual-FPGA. The software then transmits the current sensor 

status to the NIOS processor and receives back the resulting output to determine 

the robot motion.  

• Bit-stream evolution – the bit-streams are put through the testing, selection and 

reproduction processes until a satisfactory result is achieved.  

• Data logging – The results obtained from the simulated evolution process are 

stored in text files which contain the maximum fitness, average fitness and the 

generations. These results are also plotted in an Excel spread sheet for ease of 

result analysis. The software also takes the bit-stream from the best performing 

individual and converts this into three logic expressions, the output of each 

expression represents one of the three bits required to determine the robot’s 

motion. 

• The computer clock speed was two orders of magnitude faster than the clock on 

the NIOS processor, thus the robot simulation and the GA were executed on the 

computer. This however required a large amount of data to be continually sent 

on the serial interface to the NIOS, slowing the evolution down. In order to 

reduce the data transfer, a protocol was developed that stored the response of 

the EHW on the computer for each new input state request. Thus if the data had 

already been retrieved from a previous request, the computer would use the 

previously stored data rather than interrogate the EHW. 
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Figure 6-2 is a visual representation of the sequences taken by the software running the 

GA evolution and the simulation for the evolution of a generic VFGPA.  

 

Figure 6-2 Simulation software flow chart for EHW evolution 
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6.1.2 Offspring creation 

The reproduction method applied to the CBS, is similar to the method used to evolve 

the LUTs used for object avoidance. This uses a multiple point crossover method and a 

3% mutation rate. The number of points used during the reproduction is chosen at 

random and ranges from 2 to 20. 

6.2 EHW evolution for light following 

This section describes the methods used to evolve the virtual-FPGA controllers 

designed to perform light following behaviours.  

6.2.1 Virtual FPGA configuration   

The virtual-FPGA has four layers of LABs. The inputs and outputs of the system consist 

of 20 digital inputs and 3 digital outputs. The digital inputs are split into two 10-bit 

sections which are used to provide the light level input to the system (Figure 6-3). For 

valid comparisons between controller platforms, the three output bits have been 

configured to provide eight possible robot motions as used in the LUT and ANN 

controllers. 

 

Figure 6-3 Light following virtual-FPGA architecture 
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The LAB contains two sections. The first section (MUX A and MUX B) is used to 

make two selections (A and B), from the available inputs. The second part (LE) is used 

to combine the selected inputs (A and B) using one of 16 selectable logic expressions 

(Figure 6-4). 

 

Figure 6-4 Light following layer 1 LAB 

 

The input bits 0-9 contain the light intensity for the left sensor while inputs 10-19 

contain the intensity from the right sensor. The bits are encoded so that as the light level 

increases the bits are left-shifted on the inputs, with a level of zero equal to 0000000001 

and a level of five equal to 0000111111. Unused inputs are held at zero. A light 

intensity of five and three for the left and right light sensors respectively would create 

the combination of inputs shown in Table 13 

 

Table 13 Light sensor input example for light intensities left = 5 and right = 3 



125 

(L,R) Bit# Bit  
L 0 1 
L 1 1 
L 2 1 
L 3 1 
L 4 1 
L 5 1 
L 6 0 
L 7 0 
L 8 0 
L 9 0 
R 10 1 
R 11 1 
R 12 1 
R 13 1 
R 14 0 
R 15 0 
R 16 0 
R 17 0 
R 18 0 
R 19 0 

 

The number of bits required to configure each LAB in the first layer is comprised of 

five bits to control each multiplexer and four bits from the LE selection, resulting in a 

total of 14 bits per LAB. To control all eight LABs in the first layer of the virtual-FPGA 

requires (14*8 = 112) bits. 

The configuration of the LABs used in the second, third and fourth layers differ quite 

considerably from those used in the first layer. Each comprises of eight inputs and one 

output (Figure 6-5). 
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Figure 6-5 Light following layers 2, 3 & 4 LABs 

 

Each input multiplexer selects one of the eight inputs and passes them on to the LE 

which performs one of 32 available logic expressions on the inputs (A, B, C and D). 

The output is a single bit. 

Each LAB in these layers requires 17 bits to configure the multiplexers, three for each 

of the input multiplexers and five for output providing a total of 435 bits to configure 

the entire virtual-FPGA (112 bits in layer one and 323 bits in layers two, three and four). 

The search space for this virtual-FPGA is 8.8x10130.  
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6.2.2 Results 

A set of experiments has been designed to test the effectiveness of the EHW controller 

designed for light following behaviours (controller performance) and to analyse the 

efficiency of the GA process used to develop them, (evolutionary efficiency). To clearly 

outline the results obtained from this area of research the following section is divided 

into two main sections. The first section demonstrates simulated controller performance 

of the evolved controllers, while the second section explores the evolutionary efficiency. 

The fitness function used to evolve the light follower EHW calculates the robots 

distance from the light source after the allowable simulation time. This distance is used 

to determine a suitable fitness value. A complete description of the fitness function can 

be found in section 3.1.4. Note, for all of the light follower experiments an upper fitness 

limit of 95% has been set, at this point the GA stops. 95% was chosen, because after 

this point, the population tends to converge and only very small levels of progress are 

made. 

EHW controller Performance 

The experiments described in this section use four starting positions and two starting 

headings per position. With the intention of developing a robust controller, one of the 

starting headings has been chosen so that the robot is pointing away from the light 

source while the other is pointing almost directly at the light. The starting positions have 

been chosen so that two are close to the light source and two are much further away.  

The performance of the controllers is assessed by analysing the recorded paths taken by 

the robot during development. These paths as shown in Figure 6-6 show how a typical 

evolution cycle of a light follower controller. Note, the paths shown contain two starting 

headings. The first heading of 90 degrees is shown in black while the second heading of 

270 degrees is shown in green. 
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Fitness = 58% Fitness = 65% Fitness = 67% Fitness = 85% 

    
Fitness = 88% Fitness = 92% Fitness = 94% Fitness = 97% 

    

Figure 6-6 Example light follower trajectories and fitness percentage (quantization 9) 

The controller trajectories clearly show an increase in controller performance as the 

evolution cycle continues. As seen with the previous light follower controllers the initial 

stages of evolution seem to focus on developing the ability of the controller to steer 

towards the light and in most cases the path taken is usually a curve and it is not until 

the later stages of evolution the trajectories become more direct.  

Light level quantization 

Eight levels of quantization have been selected for performance analysis. These levels 

and the trajectories of the fully evolved controllers are shown in Figure 6-7. Note, not 

all the trajectories reached the light within the required timeframe, even though the path 

was more direct, due to minor oscillations of the robot’s movement caused by the 

quantization of the light sensors. 
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Quantization = 2 

(82%) 

Quantization = 3 

(91%) 

Quantization = 4 

(91%) 

Quantization = 5 

(92%) 

    

Quantization = 6 

(94%) 

Quantization = 7 

(95%) 

Quantization = 8 

(95%) 

 

Quantization = 9 

(95%) 

    

Figure 6-7 Resulting light follower trajectories (EHW) 

The final trajectories revealed two noticeable characteristics that can be attributed to the 

level of quantization used. Firstly for the controllers with quantization levels greater 

than five there are only slight differences in performance. However the lower levels of 

quantization are unable to perform in an optimal manner. This is due to the loss of light 

sensor resolution caused by the level of quantization. Note, the fitness for the 

quantization levels four and five was reduced because the robot did not pivot in the 

shortest rotation before moving towards the light.  

Evolutionary Efficiency  

The experiments in this section have been designed to explore the effects on 

evolutionary efficiency caused by varying the level of light quantization. The 

evolutionary efficiency for these results is measured in generations and hence the points 

of interest will be analysed with respect to the generation of which they occurred. To 

explore these criteria eight individual EHW controllers with different light quantization 

levels were evaluated.  

The table of results (Table 14) show that low levels of quantization affects the controller 

performance. This is not related to the search space, as in the case of the LUT, rather the 

ability to more accurately observe the direction of the light will affect the controller 

performance.  
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Table 14 Light level quantization results (EHW) 

Quantization 
level 

Initial 
fitness (%) 

Final 
fitness (%) 

Generation 
at 95% 

2 

 

45 82 --- 
3 50 91 --- 
4 82 91 --- 
5 72 92 --- 
6 61 94 --- 
7 73 95 15 
8 70 95 15 
9 79 95 10 

 

The effects of quantization on the inputs can be seen graphically (Figure 6-8). With the 

exception of the controller with a quantization level of two, the remaining controllers all 

reach a fitness of 90% in a similar number of generations, however only the controllers 

with a quantization level of seven and above can reach the required 95% fitness.  

In general, the evolution progresses up to a fitness of 90 per cent relatively quickly, with 

the majority of controllers requiring less than 10 generations.  The final stages of 

evolution where the controller refines the path to the light can be seen evolving around 

the 80th generation point. This refinement is fairly difficult to achieve and only results in 

a small increase in fitness and this is why so many generations are required to achieve 

this. 

 

Figure 6-8 Quantization comparison - maximum fitness (EHW) 
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6.3 EHW evolution for obstacle avoidance 

This section contains a description of the virtual-FPGA architecture used in the 

evolution of the hardware controller developed to perform object avoidance behaviours.  

6.3.1 Virtual FPGA configuration   

A controller has been evolved to perform object avoidance behaviours and is comprised 

of a three layer virtual-FPGA. The first two layers contain six LABs and the third layer 

has three LABs reducing the six input bits to three output bits. The inputs to the 

controller are six proximity sensors which have been digitised, the sensor model can be 

found in section 3.1.2. The output bits have been combined to provide eight 

combinations which provide the eight robot motions.  

 

Figure 6-9 Object avoidance virtual-FPGA  

The evolved controller contains a total of 27 LABs. Although unlike the virtual-FPGA 

evolved for light following, these LABs remain the same for each layer of the virtual-

FPGA. The complexity of the input layer and the LABs has been reduced due to the 

reduction of input bits from the robot sensors. The overall reduction in complexity of 

the systems means that the required bit-stream length is also reduced. 
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Figure 6-10 Object avoidance LAB configuration 

Each LAB is comprised of two stages. The first stage selects between the six inputs and 

passes the selected inputs to the second stage. The second stage performs one of the 

thirty two available logic operations on the selected inputs and passes the result on to 

the next stage of the virtual-FPGA. The virtual-FPGA is fully configurable with a total 

of 459 bits comprised of 27 LABs each requiring 17 bits to configure, giving a search 

space of 1.5x10138.  
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6.3.2 Results 

A set of experiments has been designed to evaluate an EHW controller for object 

avoidance behaviours and the efficiency of the GA used to evolve it. The results 

obtained from these experiments are outlined in the following two sections. The first 

section focuses on the controller performance while the second section focuses on the 

evolutionary efficiency.   

The fitness function used to evolve the obstacle avoidance controller considers two 

variables, the robot’s total runtime and the movement count. Both values are converted 

to a ratio with their respective maximums and used to calculate the fitness value. Note, 

for all of the object avoidance experiments an upper fitness limit of 80% has been set as 

due to the operation of the fitness function, a fitness value much above this point is 

unachievable. A complete description of the fitness function can be found in section 

3.1.4.    

EHW controller performance 

A set of experiments has been developed to evaluate the EHWs ability to perform in a 

range of different environments. The controllers are evolved from eight starting 

headings in three arenas with differing object configurations. The controllers from each 

of the experiments are then put into unknown arenas and their performance evaluated.  

The first controller has been evolved in arena A. The set of images shown in Figure 

6-11 are common trajectories achieved during the evolution cycle.  Note, the trajectories 

shown below contain eight starting headings.  

0° = RED, 45° = Green, 90° = Black, 135° = Grey, 180° = Pink, 225° = Purple,  

270° = Orange, 315° = Yellow 

 

Fitness = 43% Fitness = 51% Fitness = 71% Fitness = 82% 

    Figure 6-11 Arena A stages of evolution and the fitness obtained (EHW) 
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The paths show that several fail dependant on the angle that the robot moves towards 

the obstacle, however over time the fitness improves as the controller evolves the ability 

to avoid an obstacle when approached from several angles. The final stage of evolution 

is avoidance refinement, where the controller achieves a smoother path. 

To compare the effect of arena selection during the evolution process on the 

performance of the EHW, two extra arenas have been used to develop two additional 

controllers. The trajectories for arena B and arena C are shown in Figure 6-12 and 

Figure 6-13. 

Fitness = 23% Fitness = 66% Fitness = 76% Fitness = 85% 

    Figure 6-12 Arena ‘B’ stages of evolution and the fitness obtained (EHW) 

Fitness = 12% Fitness = 56% Fitness = 77% Fitness = 85% 

    
Figure 6-13 Arena ‘C’ stages of evolution and the fitness obtained (EHW) 

Similar evolution patterns to those found in the trajectories from arena A can be seen in 

the trajectories from arena B and arena C. In the initial stages of evolution the controller 

develops basic object avoidance behaviours which are fine-tuned with the trajectories 

becoming more refined in the later stages of the evolutionary cycle.  
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The evolved controllers from arena A, B and C have been evaluated using three new 

arenas. The trajectories from each controller in the arenas are shown in Figure 6-14. It 

can clearly be seen from the trajectories shown in Figure 6-13 that the controllers in 

most of the tests exhibit some object avoidance behaviours. However when placed into 

an unfamiliar arena, these controllers do not perform to the same standard as achieved 

in the original arenas.  

 

 Arena 1 Arena 2 Arena 3 Original arena 

C
on

tro
lle

r A
 

   
 

 Fitness = 10% Fitness = 12% Fitness = 9% Fitness = 82% 

C
on

tro
lle

r B
 

 

 

  
 

 Fitness =46% Fitness = 57% Fitness = 70% Fitness = 81% 

 

C
on

tro
lle

r C
 

   
 

 Fitness =23% Fitness = 35% Fitness = 45% Fitness = 81% 

 
Figure 6-14 Controller testing in unfamiliar arenas (EHW) 
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Multiple arena evolution 

To overcome the incomplete evolution problem, a change has been made to the 

evolution process. For this test the controllers have been evolved in arenas A, B and C 

simultaneously. The average fitness from the combined arenas is used to determine the 

fitness for the individual. Note, the evolved controllers both achieved fitness’s of at 

least 80%. 

The resulting trajectories from the combined controllers under test in the unfamiliar 

arenas are shown in Figure 6-15.  When compared to the trajectories in Figure 6-14, a 

significant performance increase can be seen. Controller ABC has a fitness greater than 

80% in all the unknown arenas. This is a substantial performance increase and is linked 

to the longer runtimes and smoother trajectories. 

 Arena 1 Arena 2 Arena 3 

C
on

tro
lle

r A
B

C
 

    Fitness = 88% Fitness = 88% Fitness = 88% 

Figure 6-15 Combined arena evolution test in unfamiliar arenas (EHW) 
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Evolutionary Efficiency 

This section focuses on the efficiency of the GA process in particular the number of 

generations required for a suitable result to be obtained. Controllers have been evolved 

in arenas A, B and C separately and A, B and C simultaneously. The results are shown 

in Table 15.   

Table 15 Arena evolution results (EHW)  

Arena Initial 
fitness (%) 

Final 
fitness (%) 

Generation 
at 80% 

Arena Complexity 
Less to more(1-4) 

C 61 86 13 1 
B 58 85 24 2 
A 

 

48 83 25 3 
ABC 22 88 27 4 

 

All five controllers exceeded the desired fitness of 80%. A difference in complexity 

level can be seen between the arenas. Arena ABC is seen to be the most complex as it 

was the combination of A, B and C. 

Maximum individual fitness trends for each arena configuration. 

The maximum fitness plots shown in Figure 6-16 can be seen evolving at rates related 

to the complexity of the arena in which the controller is evolved. The fitness increments 

are larger for the controllers evolved in single arenas compared to the combined arena 

controller. The arena complexity is also evident in the number of generations required 

for the controllers to reach 80%, where arena ABC which is the most complex, is seen 

to require more generations than arena C which is the least complex. Overall the 

number of generations required to reach a solution is low, giving this controller a high 

evolutionary efficiency. 
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Figure 6-16 Maximum fitness comparison for each arena configuration (EHW) 

 

6.4 EHW for light following while avoiding obstacles  

This section describes the virtual-FPGA configuration used and the results obtained in 

the evolution of the controllers evolved to perform light following while avoiding 

obstacles behaviours. 

Two techniques have been used to evolve the controllers. The first technique uses 

monolithic evolution to evolve the controller as a complete unit. The second uses 

subsumption evolution, where two separate controllers are evolved for individual 

behaviours and combined in such a way to perform the desired overall behaviour. This 

way scalability issues can be observed. 

6.4.1 Monolithic Virtual FPGA configuration   

The virtual-FPGA architecture used for the light follower and object avoidance 

controller is a combination of the previous controllers used for the individual 

behaviours. Much like the input stage used in the light follower controller there are 

eight LABs. However to cater for the addition of the proximity sensors to the system, 

the number of inputs to each of the LABs has been increased from twenty to twenty-six. 

Twenty of the inputs are used to provide the required information used to indicate light 

intensity and the remaining six provide the proximity information to the system.    
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Figure 6-17, Light follower and object avoidance virtual-FPGA architecture 

With the exception of layer one all of the LABs are the same and contain eight inputs 

and one output. The LAB in layer one provides the interface between the sensors and 

the virtual-FPGA system and handles a total of 26 inputs as shown in Figure 6-18. 

 

Figure 6-18 LABs in layer one of the light follower and object avoidance virtual-FPGA 

Unlike the LABs used in the virtual-FPGAs for the previous behaviours, these LABs 

contain only two multiplexers in the input stage. This reduces the length of the bit-

stream required to configure the system and reduces the overall complexity of the 

system. The outputs from the two input multiplexers are fed through to the logic 

element and put through a selection of logic expressions with the output passed on to 

the next layer in the system.  
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The remaining layers in the virtual-FPGA contain LABs with the configuration as 

shown in Figure 6-19. 

 

Figure 6-19 LABs in the layers 2-4 of the light follower and object avoidance virtual-FPGA 

Each LAB in layers 2, 3 and 4 is comprised of an array of multiplexers designed to 

provide the interface to the LAB. The input multiplexers are configured to select one of 

the eight inputs and transfer the selected input to the LE. The LE puts the four selected 

inputs through one of 32 logic expressions and outputs the result to the next layer. The 

total system is configured using a bit-stream length of 435 bits comprised of 19 LABs in 

layers 2, 3 and 4 each requiring 17 bits and 8 LABs from layer 1 each requiring 14 bits. 

The search space for this is 8.9x10130, similar to the light following virtual-FPGA. 



141 

6.4.2 EHW Subsumption evolution  

The focus of this section is on the evolution of an EHW controller created to perform 

the combined task of light following while avoiding obstacles. This controller has been 

developed using subsumption evolution techniques where the complex task is broken 

down into individual less complicated tasks (light following and object avoidance) and 

evolved separately as described in sections 6.1.1 and 6.3. The evolved controllers are 

then combined using a switching controller which decides which controller is used and 

which is masked based on the sensory inputs. 

Figure 6-20 is a visual representation of the subsumption based hardware controller 

architecture. The individual controllers for light following and object avoidance are 

switched by the upper level decision maker, which determines the status of the input 

sensors and selects the appropriate controller accordingly. If an obstacle is detected then 

the obstacle avoidance controller is used until the robot is clear of any, at which point 

the light follower controller is used. 

 

Figure 6-20 EHW subsumption diagram 
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6.4.3 Results 

A set of experiments has been designed to evaluate the EHW controller performance for 

both monolithic and subsumption techniques. The method of evolution developed for 

these experiments starts each individual from eight different starting locations each with 

a unique heading. Four controllers have been evolved using the monolithic and 

subsumption techniques and these controllers have been compared in two ways. Firstly 

the controller performance is analysed and secondly the evolutionary efficiency itself is 

analysed. 

The fitness function used to evolve the EHW controllers for the combined behaviours 

considers two variables; the robots distance from the light at the end of the test and the 

length of the path taken. A complete description of the fitness function can be found in 

section 3.1.4.    

Note, all of the experiments are undertaken using arena A and an upper fitness limit of 

80% or 3000 generations has been set for the monolithic evolution. A controller 

receiving a fitness of 80% is considered to be a good controller due to the way the 

fitness function operates.  
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Monolithic evolution results 

The four controllers shown in Figure 6-21 perform to a very high standard and are fully 

developed much faster than the allocated 3000 generation limit. Each controller can be 

seen actively seeking out the light source and navigating around any objects 

encountered. However different methods of avoiding obstacles can also be seen, such 

that some controllers are seen navigating smoothly around obstacles while others 

roughly avoid them. This variety of controller performance is due to the large number of 

possible controller configurations providing several solutions to the problem.  

 

Controller 1 Controller 2 Controller 3 Controller 4 

    Fitness = 83% 

Generations = 868 

Fitness = 86% 

Generations = 1026 

Fitness = 87% 

Generations = 702 

Fitness = 94% 

Generations = 574 

Figure 6-21 Monolithic controller trajectories (EHW) 

On average the number of generations required to reach a desirable result was 800, 

substantially more than when the behaviours were evolved separately (Figure 6-22). 

Staggered progress is clear during the evolution of the controllers, in the early 

generations small increases in fitness can be seen which is usually attributed to one of 

the starting positions reaching or getting close to the light source. It is not until much 

later on in the evolution cycle where larger gains in fitness can be seen, these large 

increases in fitness occur when the majority of the starting positions manage to reach 

the light source. 
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Figure 6-22 Maximum fitness trends for monolithic controller evolution 
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Subsumption evolution results 

A previously evolved light follower and object avoidance hardware controllers was 

randomly chosen for the creation of the subsumption controller. The controller was run 

in the simulation to observe the path and corresponding fitness (Figure 6-23).  

 
Subsumption Fitness = 89% 

Generations for light follower EHW = 111 

Generations for object avoidance EHW  = 25 

Total generations = 136 

Figure 6-23 Subsumption controller trajectories (EHW) 

 

The trajectories of the subsumption controllers show good light following and obstacle 

avoidance properties. For all eight starting positions the robot can be seen navigating 

around the obstacles and moving directly toward the light source when the path is clear.  
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Chapter 7 

Chapter 7: ANN, LUT and EHW evolved controllers comparison 

This chapter compares the three evolvable controllers, LUTs ANNs and EHWs for the 

navigational tasks, light following, object avoidance and light following while avoiding 

obstacles. The comparisons made are in evolution efficiency, controller performance, 

scalability and sensor quantization. The results obtained in Chapters Four, Five and Six 

provide the comparable data from which the conclusions have been made.  

7.1 Light follower controllers  

This section compares the three controllers used for light following. The comparisons 

are made on the effects of sensor quantization; robot trajectories; evolutionary 

efficiency; controller performance and controller motor direction statistics.  

Note, the fitness function used to evolve the controllers is a function of the robots initial 

and final distance from the light source and the simulation is stopped when a fitness 

value greater than 95% is achieved 

Quantization trajectory comparison 

Figure 7-1 illustrates the final light following trajectories for the ANN, LUT and EHW 

controllers for five levels of sensor quantization (2-3-5-7-9).  It can be seen that all the 

controllers have a similar controller performance. The controller performance is 

adequate (above 90%) for a quantization level of three and above. A quantization level 

of seven and above produces excellent performance.  
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Figure 7-1 Light quantization comparison of fully evolved ANN, LUT and EHW 

Controller input light levels and output motor direction statistics 

A statistical analysis of the input light levels and output motor directions for all three 

light following controllers has been undertaken. The results are recorded during one test 

run of the fully evolved controllers with a light quantization level of nine. The light 

sensor activation points shown in Figure 7-2 represents an overall percentage of 

occurrences from 0-100% (0% not shown). 

All of the light sensor points occur diagonally down the centre of each table. This is due 

to the light sensors being intentionally misaligned by 20 degrees. The light intensity is 

based on robot heading the majority of sensor combinations are unobtainable. For 

example it is impossible for the left sensor to see a maximum light level and the right 

sensor to see a minimum level. Two key areas in the occurrence tables have been 

identified as (0,0) and (7,7), the former when the robot is facing away from the light and 

the latter, when the robot is facing directly towards the light source. These points 

(highlighted in green) indicate areas where the robot is required to pivot when no light 

is detected and move directly towards the light when the light value is the same for both 

sensors.  
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The LUT controller is slightly different from the other controllers. Instead of the 

majority of sensor values occurring at (7,7) as with the ANN and EHW controllers, the 

majority occurs at (8,6) and (6,8) (Highlighted in yellow). From observation it was 

noticed that the LUT trajectory was slightly offset from the light, and it made minor 

adjustments as it moved towards the light. This offset was small and had little effect on 

the maximum fitness. 

 

Figure 7-2 Light sensor activation occurrences 
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The output directions of the controller have been analysed and a graph representing the 

percentage of each occurrence during one test run is shown in Figure 7-3. As expected, 

the controllers are moving forward for the majority of the time during each test run, 

with pivoting taking up the most of the remaining time, as well as some small course 

corrections.  

 

Figure 7-3 Robot motor direction occurrences for the light follower controllers 

 

Evolutionary efficiency and search space 

The plots shown in Figure 7-4 represent a typical test run for each controller platform. 

The evolution efficiency for the EHW and ANN controllers are much the same, both 

start at similar fitness levels and progress to 95% very quickly. The LUT evolution 

efficiency is significantly lower and hence takes much longer to evolve than the EHW 

and ANN.  
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Figure 7-4 Light follower progress comparison 

An initial assumption was that the evolution efficiency is related to the search space of 

the chromosome. However on analysing Figure 7-4 and Table 16 it was found that the 

controller with the largest search space (EHW) evolved in the minimum number of 

generations. On further investigation it was found that the EHW controllers have many 

possible configurations capable of performing the desired task. This means that a 

solution is more easily found for EHW controllers than the other controllers (ANN and 

LUT). In cases where a controller may be configured several ways and still perform the 

desired task the search space alone is not an accurate method to determine evolution 

rates.          

Table 16 Search space vs. required generations for light follower controllers 

Controller Generation at 95% Search space 
ANN 6 1.2 ∗ 1018 
LUT 50 1.4 ∗ 1074 
EHW 15 8.9 ∗ 10130 

 

Light follower comparison summary  

In summary all the controllers evolved to an excellent level of controller performance, 

however the evolutionary efficiency of the LUT was less than the ANN and EHW. For 

applications requiring simplistic controllers, such as those running eight bit processors; 

the simplistic properties and minimal computing requirements of a LUT may outweigh 

the reduced evolution efficiency found for the LUT controllers.  
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7.2 Object avoidance controller comparison 

This section of the thesis investigates and compares the three controller platforms and 

their capacity to perform as object avoidance controllers. Comparisons are made on: 

unfamiliar environment testing; robot trajectories; Evolution efficiency; controller 

performance and controller motor direction statistics.  

Note, the fitness function used to evolve the obstacle avoidance controllers considers 

two variables, the robot’s total runtime and the movement count. Both values are 

converted to a ratio with their respective maximums and used to calculate the fitness 

value and the simulation is stopped when a fitness of 80% is achieved. 

Controller performance 

The trajectories shown in Figure 7-5 are the results of the controllers evolved in three 

arenas. Clearly each controller is more than capable of performing the desired task with 

all controllers exceeding the required fitness of 80%.  

 

 Object avoidance arenas 
A B C 

A
N

N
 

   
(80%) (81%) (81%) 

L
U

T
 

   
(84%) (89%) (83%) 

E
H

W
 

   
(82%) (85%) (85%) 

Figure 7-5 Object avoidance trajectory comparison (ANN, LUT and EHW) 
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Unfamiliar environment testing  

To assess the obstacle avoidance controller’s ability to operate in an unknown 

environment, the controllers evolved in arena A have been tested in three unfamiliar 

arenas and the resulting trajectories compared in Figure 7-6. All of the results showed 

noticeable reductions in controller performance. The ANN performs better than the 

EHW and LUT controllers more tolerant to changes in environment. This is due to the 

digital circuits and LUT parameters which confine the controller’s ability whereas the 

ANN`s “Analogue” controller architecture allows for a more adaptable controller.  

 

  Unfamiliar object avoidance arenas 
 Arena 1 Arena 2 Arena 3 
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N
 

   
(64%) (47%) (44%) 

L
U
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(11%) (75%) (22%) 

E
H

W
 

   
(10%) (12%) (9%) 

Figure 7-6 Unfamiliar arena test for controllers evolved in arena A 
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The reduction in controller performance (shown in Figure 7-6) is caused by incomplete 

evolution of the controllers. To improve the adaptability of the controllers, each has 

been evolved in arenas A, B and C simultaneously then retested in the unfamiliar arenas. 

The resulting trajectories are shown in Figure 7-7.  

The test results clearly show that each controller exhibits improved performance with all 

of the ANN and EHW tests reaching the desired fitness level. The increased 

performance is related to the controller’s level of evolution. A simple test environment 

(one arena) creates a poorly evolved controller, whereas a controller which has evolved 

in multiple arenas evolves and adapts to a larger range of sensor input combinations 

which creates a more adaptable controller.    

 

  Unfamiliar object avoidance arenas 
 Arena 1 Arena 2 Arena 3 

A
N

N
 

   
(85%) (81%) (81%) 

L
U
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(63%) (78%) (55%) 

E
H

W
 

   
(88%) (88%) (88%) 

Figure 7-7 Unfamiliar test for controllers evolved in arena A, B & C simultaneously 
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Controller input sensor combinations and output motor direction statistics 

A statistical analysis of the input object sensor combinations and output motor 

directions for all three object avoidance controllers has been undertaken. This focuses 

on the percentage of occurrences for the sensor combinations and robot motor directions. 

The results are recorded during one test run of the fully evolved controllers (Using the 

controllers evolved simultaneously in arenas A, B and C). The object sensor 

occurrences shown in Figure 7-8 represents an overall percentage of occurrences from 

 0-100%. 

 

Figure 7-8 Object sensor input combinations 

As expected the majority of time the robot sensors are not active (the robot is not near 

any objects), as the robot will alter its course when an object is detected.  

The motor direction outputs for each controller have been assessed and are shown in 

Figure 7-9. The data has been recorded during one test run of the fully evolved 

controller (ABC) in arena A. 
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Figure 7-9 Robot motor direction occurrences for the object avoidance controllers 

The majority of motor directions are forward (F, F).   Pivoting left (RF) and pivoting 

right (FR) are the next most common directions. For the controller to be successful it 

needs to move straight when no objects are detected, this forces the robot to move about 

the arena instead of stopping or going in circles. When an object is detected the robot 

will pivot until the object is not seen then move forward again. 
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Evolutionary efficiency and search space 

Figure 7-10 represents the evolutionary progression from a typical solution for each 

ABC controller platform. The maximum values for the ANN and EHW controllers are 

seen progressing at similar rates reaching 80% in a similar number of generations. The 

LUT controller has a poor evolutionary efficiency in comparison.  

 

Figure 7-10 Object avoidance progress comparison 

The search space (Table 17) of the ANN is much smaller than the EHW search space, 

however as discovered with the light follower controllers, there is no difference in the 

evolution rate. This is because for the EHW controller there are multiple solutions 

available which creates multiple maxima in the fitness landscape and hence increases 

the rate of evolution and the chance of finding a successful solution.  

Table 17 Search space vs. required generations for object avoidance controllers 

Controller Generation at 80% Search space 
ANN 20 1.2 ∗ 1024 
LUT 298 6.2 ∗ 1057 
EHW 27 5.8 ∗ 1076 

 

Multiple evolved circuits for the EHW controllers have been analysed and none of the 

circuits are the same which indicates there are multiple circuit configurations that can be 

created to produce the required output. Below are two examples of the logic expressions 
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evolved for object avoidance controller. Both controllers perform object avoidance 

behaviours to the required standard but contain different logic.  

BIT[0] = BACK 
BIT[1] = BACK + RIGHT + CENTRE + FRONT_LEFT + FRONT_RIGHT 
BIT[2] = BACK + RIGHT 
 
BIT[0] = Always zero 
BIT[1] = FRONT_RIGHT + CENTRE + RIGHT + FRONT_LEFT + LEFT 
BIT[2] = Always zero 

Figure 7-11 Two example EHW circuits for object avoidance 

Object avoidance comparison summary 

In summary, all the controllers have evolved to an excellent level of controller 

performance. The EHW and ANN controllers both have comparable evolutionary 

efficiencies whereas the LUT exhibits a reduced evolutionary efficiency. 

7.3 Light following while avoiding obstacles comparison 

This section investigates any scalability issues within the three controller types. This is 

tested using monolithic and subsumption evolution techniques. The fitness function 

used to evolve the controllers for light following and object avoidance considers two 

variables, the robots final distance from the light and the length of the path taken to 

reach the light. The simulation is stopped after a fitness of 80% is achieved. 

7.3.1 Monolithic 

Controller performance 

Three controllers have been evolved for each of the controller platforms (ANN, LUT 

and EHW) and the resulting final trajectories are shown in Figure 7-12. All of the 

controllers have successfully evolved and are capable of avoiding obstacles and seeking 

the light. The ANN and EHW controllers both exhibit smooth pathways; however on 

average the EHW controller exhibits shorter path lengths resulting in a higher fitness. 
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Evolutionary efficiency 

The plots shown in Figure 7-13 represent a typical evolution cycle for each controller 

platform. The slowest to evolve is the LUT controller which takes more than 9000 

generations. The evolution progress for the ANN and EHW controllers are very similar; 

however taking 850 and 702 generations respectively. 

 Controller #  
1 2 3 

A
N

N
 

   
(90%) (80%) (83%) 

L
U

T
 

   
(81%) (84%)  (85%) 

E
H

W
 

   
(86%) (87%) (94%) 

Figure 7-12 Light following and object avoidance comparison (ANN, LUT and EHW) 
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Figure 7-13 Light following and Object avoidance comparison 

As discovered with the light following controllers, the search space (Table 18) for the 

EHW controller does not directly relate to the evolution time. In this case the EHW 

search space is much larger than the ANN yet the required generations to evolve are 

actually fewer. This is due to the large number of available hardware configurations that 

can produce the same required result. The LUT had an extremely large search space and 

yet managed to evolve a good controller in a reasonable number of generations. This is 

because only a part of the LUT is required to control the robot, effectively reducing the 

search space. 

Table 18 Search space comparison (light following and object avoidance controller) 

Controller Generation at 80% Search space 
ANN 850 1.0 ∗ 1026 
LUT 10998 1.1 ∗ 103699 
EHW 702 8.9 ∗ 10130 
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Controller output motor direction statistics 

A statistical analysis of the output motor directions for all three light following and 

object avoidance controllers has been undertaken. This focuses on the percentage of 

motor direction occurrences. The results are recorded during one test run of the fully 

evolved controllers. The output directions shown in Figure 7-14 represent an overall 

percentage of occurrences from 0-100%. 

 

Figure 7-14 Motor direction occurrences for the light follower and object avoidance controllers 

The three controllers use different approaches to find the light and avoid obstacles; the 

LUT moves forward for the majority of the time and pivots left (R, F) and right (F, R). 

The ANN also moves forward for the majority of the time but is more likely to pivot 

right (F, R). The EHW uses an approach that sees the robot moving in a straight line 

only 10% of the time. To move forward the EHW alternates between turn left (S, F) and 

turn right (F, S) causing a zigzag action.  
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7.3.2 Subsumption 

The trajectories and generation statistics shown in Figure 7-15 represent subsumption 

controllers for the three controller platforms (ANN, LUT and EHW). The number of 

generations required to create the controller is a summation of the required generations 

from the individual controllers. The technique used to determine the controller fitness is 

the same as that used for the monolithic controllers. 

Each controller is capable of avoiding obstacles and reaching the light source; however 

the controllers do not perform to the same standard. The LUT controller performs the 

worst, only achieving a fitness of 80%. This low fitness is caused by the forward and 

reverse motion used to avoid the obstacles which results in an excessive path length.  

The EHW and ANN controllers both perform well and achieve the desired fitness; 

however the path taken by the ANN controller is shorter than the EHW path so it 

achieves a higher fitness.  

 

 

 

 

 

 

  

Controller platform 
ANN LUT EHW 

   
(94%) (80%) (94%) 

Generations(LF) = 7 
 
Generations (OA) = 10 
 
Total generations = 17 

Generations(LF) = 50 
 
Generations (OA) = 298 
 
Total generations = 348 

Generations(LF) = 15 
 
Generations (OA) = 27 
 
Total generations = 42 

Figure 7-15 Subsumption trajectory controller comparison 
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7.3.3 Scalability 

The trajectories shown in Figure 7-16 are typical results obtained from light following 

and object avoidance controllers evolved using monolithic and subsumption techniques. 

It can be seen that the ANN and EHW perform well with increases in complexity, 

however the LUT is more affected, taking ten times the number of generations to evolve 

compared to the others. 

 

 

7.3.4 Light following and object avoidance comparison summary 

In summary, all controllers evolved were capable of seeking the light and avoiding 

obstacles achieving similar controller performance. The ANN and EHW had a similar 

evolutionary performance whereas the LUT performed the worst. The effects of 

scalability were most noticeable with the LUT, with both the ANN and EHW 

performing well with an increase in complexity.   

  

 Controller platform 
 ANN LUT EHW 

Su
bs

um
pt

io
n 

   
(94%) (80%) (89%) 

Generations = 17 Generation  = 348 Generations  = 42 

M
on

ol
ith

ic
 

   
(90%) (85%) (87%) 

Generations = 850 Generations = 10998 Generations = 702 
Figure 7-16 Subsumption vs. monolithic controller trajectories 
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Chapter 8 

Chapter 8: Conclusions and Future Research  

8.1 Summary  

To summarise, this research has investigated two novel forms of robotic controller and 

their suitability in the field of evolutionary robotics. LUT and EHW controllers have 

been developed and comparisons made against benchmark ANN controllers. The 

controllers have been designed to perform light following, obstacle avoidance and light 

following while avoiding obstacle behaviours. The controllers have been evolved using 

a GA which used tournament selection and two-point crossover reproduction. 

Comparisons were made on the generations required for the controller to evolve and the 

final fitness achieved. The results from the comparisons has revealed that the EHW 

controllers outperform the LUT controllers for all comparisons and the ANN and EHW 

controllers both perform very well achieving high fitness values in a minimal number of 

generations.        

8.1.1 Question responses   

Can a LUT be evolved separately for light following and object avoidance behaviours? 

Two LUTs have been designed to investigate the suitability of LUTs as evolvable 

robotic controllers for light following and object avoidance behaviours. The LUTs 

elements contained the robots left and right motor directions, while the table axes were 

linked to the sensory inputs (left and right light sensors and proximity sensors).  

Light follower controller: The light following controller was designed as a two 

dimensional LUT and the X and Y axes of the LUT were linked to the left and right 

light sensor values. To investigate the effect of GA search space on the evolution time 

eight levels of sensor quantization were used (two, three, four, five, six, seven, eight and 

nine). This resulted in LUTs sizes from (2x2) to (9x9) and search spaces ranging from 

4096 to 1.4 ∗ 1074. It was found that the controllers with lower search spaces would 

reach their maximum fitness earlier than those with large search spaces however due to 
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a reduction in sensor resolution the maximum fitness achievable was reduced.  All of 

the sensor quantization levels exhibited light following behaviours however; it was 

found that the best light quantization level was eight.  

Object avoidance controller:  The object avoidance controller was designed as a 

singular dimensional LUT and the X axis was linked to the bit combination of the six 

proximity sensors. The object avoidance controllers have been assessed on two 

outcomes, the first is the controller’s ability to avoid obstacles and the second is on the 

controller’s ability to avoid obstacles in unfamiliar environments. It was found that the 

evolved controllers were fully capable of avoiding obstacles in the arena which they 

were evolved however; when the controllers were tested in unfamiliar arenas a 

substantial reduction in performance observed. To create a more adaptable controller a 

new controller was evolved using three arenas simultaneously. The resulting controller 

tested very well in unfamiliar arenas showing a considerable increase in the overall 

performance.      

Can a LUT be evolved to follow a light source while avoiding obstacles using 
monolithic and subsumption methods? 

Two methods of creating a light following and obstacle avoidance LUT controller have 

been investigated. The first method, monolithic, evolves a three dimensional LUT with 

light sensor values linked to the X and Y axis and the bit combination of six proximity 

sensors linked to the Z axis. The second method, subsumption, evolves two LUT 

controllers separately for the individual behaviours and combines them using a selection 

algorithm.  

Monolithic controller: The monolithic controller is 9x9x64 three dimensional LUT, 

each element in the LUT contains one of eight possible motor direction combinations. 

Multiple controllers were evolved and all of the completed controllers we able to seek 

out the light source while avoiding obstacles. However, it was found that the controllers 

required a large number of generations to evolve. This was found to be caused by the 

LUTs large search space and limited number of solutions available. When compared to 

the ANN monolithic controller the generations required were about ten times more. 

Subsumption controller: The design of the subsumption controller involved a two part 

process; the first was to evolve the two individual controllers separately, the second was 

to develop a selection algorithm that would choose which controller was used under 
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differing input sensor combinations. The selection algorithm selected the light follower 

LUT when no objects were detected and the object avoidance LUT when objects were 

detected. This resulted in a LUT controller with a high performance level that required a 

minimal number of generations to produce (348 vs. 10098 for the monolithic). In 

comparison to the ANN subsumption controller it was found that the required 

generations were still about ten times more for the LUT.  

Can a virtual FPGA (EHW) be evolved for light following and object avoidance? 

Two EHW controllers have been designed to explore the possibilities of evolving a 

virtual-FPGA for light following and object avoidance behaviours.  

Light following: The light following EHW controller had 20 inputs and three outputs. 

The 20 inputs were comprised of ten left light sensor bits and ten right light sensor bits. 

The three output bits were used in a bit combination to determine which of the eight 

motor direction combinations were selected. Eight controllers were tested using eight 

levels of quantization. All eight controllers showed light following abilities, however it 

was found that with a reduction in sensor resolution, the controllers with low levels of 

quantization performed poorly. The ideal sensor quantization level was nine, at this 

level the controllers performed very well and achieved the maximum fitness in only 

three generations vs. 50 for the LUT and six for the ANN. 

Object avoidance: The object avoidance EHW controller had six inputs and three 

outputs. The six inputs contained the digital input from the six proximity sensors and 

the three output bits were used in a bit combination to determine which of the eight 

motor direction combinations were selected. The evolved controllers performed well in 

the arenas which they were evolved in however; when tested in the unfamiliar arenas 

the EHW controller performed poorly. A second controller was evolved in three 

different arenas simultaneously and this controller had a major performance increase 

surpassing the required 80% fitness.        

  



166 

Can a virtual FPGA (EHW) be evolved to follow a light source while avoiding 
obstacles using monolithic and subsumption methods? 

Two EHW controllers have been designed to investigate the possibility of using a 

virtual-FPGA as a controller for the combined behaviour of light following while 

avoiding obstacles. The first is a complete controller which has been evolved using 

monolithic techniques. The second controller uses subsumption techniques, where 

smaller sub-behaviours are evolved separately and combined using a selection algorithm 

to perform the desired task. 

Monolithic controller: The monolithic controller is a flat three layered virtual-FPGA 

with a fourth layer providing a three bit reduced output. The input to the VPFGA 

contained 26 bits left light sensor (ten), right light sensor (ten) and proximity sensors 

(six). The three bit output provided the bit combination used to determine the resulting 

motor directions. Multiple controllers were developed using monolithic techniques and 

all were successful in seeking out the light while avoiding obstacles and achieved and 

average fitness of 89%. When compared to the controllers developed on the ANN and 

LUT platforms it was found the EHW controller outperformed both controllers.  

Subsumption controller: The subsumption controller is made up of two individual 

controllers previously evolved for the sub behaviours of light following and object 

avoidance. A selection algorithm is used to select which of the controllers is used for a 

given input sensor combination. The controllers created for this section of the research 

proved to be very efficient at avoiding obstacles and seeking out the light source.  
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Which of the controller platforms perform better (LUT or EHW)? 

To determine which if better controller is LUT or EHW, comparisons have been made 

in four categories (The results are shown in Table 19). The categories are light 

following, object avoidance, light following while avoiding obstacles- monolithic and 

light following while avoiding obstacles- subsumption. In all four comparisons the 

EHW controllers require about 10% of the generations required by the LUT controllers 

to fully evolve. The EHW and LUT controllers achieve the same maximum fitness for 

all comparisons except for the object avoidance and subsumption. In these cases the 

EHW controller was superior to the LUT.   

Table 19 LUT, ANN and EHW analysis 

Light follower (Quantization level of nine) 
Controller type EHW LUT ANN 
Final fitness (%) 97 97 97 
Generations (95%) 3 50 6 

Object avoidance evolved in arena (A,B & C) 
Controller type EHW LUT ANN 
Final fitness (%) 87 83 88 
Generations (80%) 27 298 20 

Light following while avoiding obstacles (Monolithic) 
Controller type EHW LUT ANN 
Final fitness (%) 86 85 89 
Generations (80%) 702 10998 850 

Light following while avoiding obstacles (Subsumption) 
Controller type EHW LUT ANN 
Final fitness (%) 89 80 94 
Generations (80%) 54 348 17 
 

The results found in this research show that the EHW controller is an ideal development 

platform for evolutionary robotics. A large number of solutions exist within the EHW 

GA search space, this results in a controller type that exhibits very good scalability 

performance and is largely unaffected by an increasing GA search space. The LUT 

exhibits good controller performance; however, has poor evolution efficiency in 

comparison to that seen with the EHW and ANN. Based on these discoveries it was 

decided that the EHW controller is better suited for evolutionary robotics than the LUT 

controller.  
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8.2 Future Research 

Real world environment testing 

- The configuration and architecture of the EHW circuits could be further 

explored with experiments designed to investigate changes in LAB 

configuration and the resulting changes to controller performance.  

- Speed options could be applied to the outputs of the controllers rather than only 

using forward, reverse and stop. This would enable complex control of the robot 

motions, but would greatly increase the complexity of the developed controllers.  

- Investigation into fault tolerance where faults could be introduced into the 

controller models and the controller’s ability to adapt to the faults could be 

assessed.  

- An analysis of simulated controllers in a real world environment could be 

undertaken using the controllers developed in this research. Previous work 

undertaken has resulted in the design and construction of a two wheeled robot 

with light sensing and object avoidance capabilities. This robot was designed to 

be used as a platform for research into the field of evolutionary robotics. The 

robot has been designed using an Altera FPGA which is suitable for 

implementing hardware and software controllers. All three controller platforms 

will be implemented on this robot and the resulting controller performance 

analysed. It is expected that further adjustments will need to be made to the 

simulation in which the controllers are evolved to allow for environmental 

factors such as external noise and non-ideal robot characteristics.   
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Appendix A : Acronyms 

Lookup table – LUT 

Evolvable hardware – EHW 

Artificial neural network – ANN 

Genetic algorithm – GA 

Configuration bit stream – CBS 

Virtual reconfigurable circuit – VRC 

Graphical user interface – GUI 

Finite state machine – FSM 

Clockwise – CW 

Counter clockwise – CCW 

Logic array block – LAB 

Logic element – LE 

Light follower – LF 

Object avoidance – OA 

Field programmable gate array – FPGA 
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Appendix B Alteras DE2115 Development Board used for experiments 
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