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Abstract

Optimising underlying processes and increasing work safety for employees are
two key concerns for the warehouse industry. Common technologies for ware-
houses are warehouse management systems (WMS) and radio frequency identifica-
tions (RFID). WMS aims at handling warehouse operations in an improved way and
to store relevant inventory information. RFID enables products to be automatically
identified, resulting in cost savings through shorter handling timelines. Despite the
benefits associated with WMS or RFID, there is still a margin for improvement in
the commonly employed technologies used in the warehouse industry.

Computer vision algorithms have been used to solve complex video-based an-
alytical solutions, but their potential in warehouse surveillance applications is not
yet fully explored. The recent use of deep learning-based architectures has brought
a revolution in the global information technology industry. When supplied with a
bulk of training data and with the availability of fast computational resources like
graphical processing units (GPUs), these models have brought wonders in improv-
ing detection and localisation accuracy of objects of interest. These models have
successfully been used in solving a wide diversity of computer vision tasks.

This project aims at exploring and studying the multiple object tracking (MOT)
problem in the context of a typical warehouse environment. Industrial vehicles (i.e.
forklift trucks) and pedestrians are detected and tracked in complex warehouse en-
vironment featuring challenges like occlusions, clutter or illuminations variations.
In industrial warehouses, a robust multiple object tracking framework could pro-
vide useful information on forklift truck and pedestrian movements, to be used for
processes improvement. It can help in enhancing situational awareness in ware-
houses and increase safety levels of the pedestrians working there.

This thesis describes the implementation, evaluation and analysis designed and
selected for model-based computer vision algorithms for tracking multiple targets.
Owing to the success of deep feature-based tracking mechanisms, we train, evaluate
and explore their potential in a warehouse environment using a detection based track-
ing approach. Detection to track association methods are revisited, with a novel
proposed track association algorithm. The use of various hand-crafted and deep
feature-based methods and their limitations in different tracking mechanisms are
studied in detail. A novel composite feature-based ensemble tracker is also pro-
posed, leading to robust visual tracking results.
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This thesis also reports about an experimental comparison for robust multiple
object trackers for warehouse environments, discussing model-based versus deep
learning-based methods, thus highlighting their limitations and future research di-
rections.

Keywords: Computer Vision, Deep Learning, Multiple Object Tracking, Safety,
Warehouses
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Chapter 1

Introduction

This introductory chapter reports about motivations and challenges for the presented study of
multiple target tracking in warehouses. The chapter also summarises contributions reported
in the thesis and concludes with an outline of the structure of the work.

1.1 Objectives

This study aims at detecting, localising and tracking multiple targets of interest in
warehouses. Multiple targets of interest are pedestrians and forklift trucks, sharing the
same warehouse premises. Applied technologies are various computer vision and
deep learning algorithms, designed for accurate recognition and tracking of objects
of interest.

Computer vision is commonly used for target recognition and tracking, but its
potential is not yet fully explored for solving object tracking problems in the con-
text of warehouse environments. With the availability of better acquisition systems
(CCTV cameras), producing bulks of data, and of faster computational resources,
neural networks and deep learning has gained more interest in the past few years.
Deep learning is based on computational models built on neural nets as building
blocks. These deep architectures have been used to aim for better accuracy for com-
plex computer vision tasks.

Based on the installation of monocular cameras inside of warehouses, the move-
ment of pedestrians and forklift trucks may be observed by an operator or a com-
puter vision algorithm.

A robust computer vision-based tracking framework has to track pedestrians
while taking on various poses such as standing, sitting, walking, facing backwards,
possibly lifting goods of various sizes and shapes – and all those poses may be par-
tially occluded by background clutter.

More specifically, human detection in the context of forklift applications needs
to focus on improving work safety levels in warehouses [41]. Refer to Table 1.1.
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Table 1.1: Key surveillance tasks in warehouses

Key tasks Impact Extent

Human detection Warehouse safety high
Goods volume Process efficiency high
Heat maps measure Warehouse layout decisions/productivity medium
Visual goods tracking Complaint handling/productivity high
Object recognition Safety and efficiency high
Quality inspection/pallets Process improvement/efficiency medium
Truck turnover time Productivity medium
Queue management Inventory handling/productivity low

The table lists key warehouse tasks. The third column depicts the extent of the
impact, visual surveillance should have on the listed key warehouse tasks. This
study will show how computer vision may contribute to those desired levels of
impact by implementing detection and tracking efficiently and robustly, for process
improvement in various warehouse domains.

Typically, forklift trucks operate in a warehouse in constrained environments
and their motion may include frequent accelerations, decelerations, reversing and
turns in the vicinity of other trucks or pedestrians [42]. Ensuring a safe work envi-
ronment inside a warehouse is also very important to enhance work efficiency and
to promote a productive work environment for logistics handling. Warehouses and
manufacturing plants can be cluttered and busy, with trucks and pedestrians work-
ing in close proximity. Racking infrastructure can create blind spots as shown in

Figure 1.1: Scenarios. Left. Possible blind spot. Middle. Four challenging warehouse
scenes. Right. Pedestrian and forklift in a warehouse
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Fig. 1.1 left. Moreover, as per Work Safe New Zealand, warehouse related injuries by
accidents define 8 percent of all the workplace injuries.

In computer vision, the goal is in general to successfully shift from model-driven
paradigms to data-based approaches like deep learning to improve recognition ac-
curacy and computational efficiency. Needless to say, that requirements for the de-
ployment of robust tracking modules for forklift vehicles is challenging. But taking
an initiative in the exploration of multiple object tracking problem in warehouses
and experimenting with various state of art frameworks will open new avenues of
research into industrial process improvement. Moreover, such steps will help to ob-
tain an insight into the potentials of computer vision algorithms and deep learning
models in warehouses.

Traditionally there are many methods which are normally used to increase work
safety at warehouses. One of these is the use of domed mirrors, commonly known as
convex mirrors, to allow the drivers and pedestrians to look around corners. Traffic
lighting and gating systems are also used to eliminate the risk of forklift trucks and
pedestrians being alarmingly close to each other. Systems like vehicle reversing
beeps, or rules, requiring a driver to sound their horn when entering or exiting a
shed, are also typical.

Robust multiple target frameworks can be utilised in a variety of ways in various
domains of warehouses. Tracking multiple forklift trucks, and hence the associated
goods, can aid in product complaint handling applications and in recording of any
deviations. The count of the number of objects, either forklifts or persons, pass-
ing within the camera’s field of view, will benefit the processes involving inventory
counts. It will also help in identifying abandoned or misplaced objects. The detec-
tion of the various categories of forklift trucks (reach trucks, stock pickers and so
forth) could contribute in optimising resource usage inside warehouses.

1.2 Challenges

Tracking the objects of interest over time is a challenging computer vision problem.
It involves two essential phases: Localising the targets in a video frame and associ-
ating each target to a unique identity over time. Comparatively, single object tracking
(SOT) involves fewer tasks than multiple object tracking (MOT). MOT includes the
creation of new track identities, an optimum association measure for track assign-
ment, matching of detection hypotheses to existing tracks based on cost affinity ,
deletion of a lost track when an object leaves the camera field of view, the output
tracking quality and computational efficiency, just to name a few challenges.
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Refer to Fig. 1.1, middle, for challenging warehouse scenes. Unlike SOT , the
number of objects might vary over subsequent frames in MOT.

A typical warehouse scene

A typical warehouse scene is comprised of blocks of goods stacked in storage
racks and shelves forming aisles; concrete floor stripped into zones using safety tapes
of different colour codes distinguishes work zones. Components are forklift traffic
lanes, pedestrian crossings, equipment placement or guard rails for safety and the
warehouse furniture including pallets , racks, instruction signs (directing traffic and
hazard warnings), with various types of obstacles like other forklifts trucks, pedes-
trians or parked trucks.

Typically, any tracking system combines three main components: target visual
representation, its dynamic modelling and a search mechanism employed to look
for the matching candidate detection hypothesis. The search mechanism is derived
from a statistical similarity measure. Examples are normalised cross-correlation (NCC)
for affinity computation based on raw pixel templates, or the Bhattacharyya distance
measure for colour histogram models.

The visual representation of a target to be tracked is encoded in an appearance
model (i.e. categories of unique features). Target appearance modelling is a vi-
tal step as the target may move in various challenging scenarios including due to
clutter, full or partial occlusions, illumination changes or shape deformations. The
respective motion models encode object dynamics to predict the target location in
subsequent frames. Either linear motion models (i.e. constant velocity or constant
acceleration assumption) or non-linear motion models are employed. Nonlinear
motion models are used to represent the complexity of real-world motion. Compos-
ite model-based tracking methods have also been employed which aim at striking a
balance between motion and appearance modelling schemes.

Motivated by the desire to track targets in warehouse scenes, it is essential to
use a feature encoding scheme that is suited to match complex industrial environ-
ments. According to our1 analysis, Table 1.2 lists vital MOT challenges encountered
in warehouses, together with possible solutions.

1The use of “our” or “we” throughout this thesis is purposeful. It is used to involve the reader with
the thesis as recommended in [72].
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Table 1.2: MOT challenges in warehouses.

Challenges Possible solution

Clutter
Using target representation which is
robust to identify truck or a person
from the background clutter.

Illumination
Using descriptors that are less
sensitive to scene illumination
changes.

Re-entering objects

Using a sub-module that can handle
the truck or person re-identification
problem and is able to preserve
their identity, after re-entering the
scene.

Occlusion
Using an approach robust to
occlusions and able to separate the
occluder and the actual target.

Similar looking

Sophisticated dynamic object
appearance model, might use multiple
cues like appearance, shape, colour or
texture to handle ; the trucks or pedestrians
that appears alike.

Scale
Adapting the corresponding truck or
person representation dynamically to
make it robust to scale changes.

1.3 Structure of Thesis

Refer to Fig. 1.2 for a chapter-wise outline of this thesis and how components are
connected.

Chapter 2 introduces the basic mathematical notations and concepts that are
used throughout the thesis. This chapter is brief and should be seen as a rough
overview of the basic concepts.

Chapter 3 describes the implementation of a model-based Gaussian mixture model
(GMM) approach which outputs pixel-wise moving segmented foreground and back-
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Figure 1.2: Thesis structure

ground regions for moving targets in warehouses. Target classification is imple-
mented using the Inception v3 deep learning framework and onward tracking is
based on a linear Kalman filter. Parts of this chapter have been published in [3].
This work was a major part of my research for 2017.

Chapter 4 outlines the details of novel warehouse forklift and pedestrian detec-
tor training and implementation details using novel warehouse acquired data. For
training a deep model ( i.e. Faster-RCNN), a pre-trained Alex-Net model is used [74].
It is a 25 layered architecture pre-trained on 1, 000 image categories. We re-trained
the last three layers of the model with acquired forklift truck recorded data. A
Kalman filter is used to compute the resultant trajectory of targets. Parts of this
chapter have been published [1] where I was the main contributor to the paper.

A novel data association measure for MOT is explained in Chapter 5. For train-
ing Yolo-v3, CNN weights that are pre-trained on the ImageNet dataset are used,
i.e. weights from the DarkNet53 model [112]. To handle track identity switches, an
appearance saliency map guided data association measure is exploited to verify the track
identity. A saliency distribution dissimilarity measure between a detected ROI and
predicted candidate track locations is described by the Bhattacharyya coefficient in
this work. This work has been published in [2].

Chapter 6 outlines the novel saliency-enhanced correlation filter-based visual
tracker for tracking single targets. This paper has been published in [4].

Chapter 7 outlines the detailed quantitative and qualitative analysis on both
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groups of tracking methods, applied for warehouse image data (i.e model-based
versus deep learning-based). The results are published in the International Journal of
Fuzzy Logic [5], where I also was the leading author.

Chapter 8 finally concludes. It also lists a few recommendations for future work.
Due to confidentiality limitations, tracking video output for multiple targets in ware-
house is not publically available.





Chapter 2

Basic Concepts and General Review

This chapter reports about the basic concepts used for the reported research. It provides a
condensed overview about the main concepts employed in this work.

2.1 Computer Vision in Warehouses

A typical warehouse is comprised around five main modules of operation. Right
from the start, there is order receiving, storing of the received goods, picking them
for a specific order, packing or loading for the dispatch, and the final shipment.
There are many sub-processes involved. These operations need to be monitored
and well taken care of for handling logistics efficiently.

Multiple types of sensors, like laser-based range sensors, radio frequency-based
sensors or cameras, have been used to optimise and improve these tasks in various
ways. Recently it is been seen that video-based analytics have been employed by
the warehousing industry for improved productivity and safety at premises. Mak-
ing use of recorded video data from closed-circuit television (CCTV) cameras, either
offline or in real-time, helps to measure and improve performance metrics of ware-
houses and record unusual events for surveillance applications. Refer to Fig. 2.1.
The figure shows generalised key warehouse tasks.

According to our study, Fig. 2.2 sketches the three main areas that divide the use
of computer vision techniques in the warehousing field. They include, but are not
limited to: optimising and simplifying key warehousing processes, perceiving the
warehouse environment, the self localisation of forklift vehicles, and improving the
situational awareness for the workers (enhancing work-related safety).

Laser, LiDARs (i.e., light detection and ranging) and cameras have been used to
understand the environment in warehouses and ensure safety [42, 41, 52, 56, 73, 99].
On-board camera setup was employed for automated guided forklift vehicles (AGVs)
for various tasks, for example, for improved pallet localisation and recognition as
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Figure 2.1: Key warehouse tasks [140].

in [70, 34]. Here, a vision system, designed for detecting the 3D position of pallets
for autonomous forklift vehicles, employed image segmentation methods based on
colour and geometric characteristics of pallets. It also generated a vehicle trajec-
tory to track the 3D oriented pallets [107]. For 3D guided robotic pelleting, inven-

Figure 2.2: Computer vision applied in warehouse areas.
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tory package inspection, package volume scanning and smart conveyance, on-board
camera sensors have been used in conjunction with other technologies [123].

A computer vision-based line detection and tracking algorithm was implemented
in an automated guided vehicle in [7]. A robust system, based on the detection of
salient regions, was able to perform tasks like navigation and grasping, was proposed
in [110]. An on-board camera was used for warehousing pick-and-place operations
in [56]. For warehouse pick-and-place in shelves, the use of additional cues is under
consideration. Depth sensors, such as RGB colour combined with a depth channel
(RGB-D), were tested for detecting the pose of a known object. Shelves having is-
sues like low illumination inside shelves, being cluttered, or having texture-less and
reflective objects are common in this domain [109].

An on-board vision module may be combined with radio frequency identification
(RFID) for automated storage and retrieval in warehousing, for efficient storage han-
dling and for preventing inventory discrepancies [144]. Camera-based approaches
were fused with other sensor-based methods to find the occupancy state of the load
handling device of a forklift truck [12].

Improved autonomous load handling was done by using stereo cameras in ware-
houses [135]. There are many solutions for stereo vision-based approaches [76]. For
example, in [51] the authors proposed a 6D vision approach based on tracking of
individual 3D points using an optical-flow solution. Later stereo data such as digi-
tal elevation maps (DEMs) or occupancy grids were introduced for better perception
accuracy. A DEM provides the height information in addition to occupancy values,
which is suitable for perception in crowded environments. On-board stereo-vision
based methods are also used to improve perception accuracy and trajectory path
planning.

Obstacle localisation, recognition, and tracking was done using omni-directional
stereo vision in [42]. Fish eye cameras were used for up to 360◦ perception, with a
possible application for stereo vision. An obstacle hypothesis was generated using
a classified DEM-based representation. To ensure pedestrian safety, both monocular
and stereo vision were employed in this case.

Sensor fusion is being used to perceive the surrounding environment of auto-
mated guided vehicles inside a warehouse. Common sensors for AGVs are laser
scanners (LiDAR) that provide 2.5D perception (i.e. the visible 3D geometry) of the
environment.
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Systems with many non-overlapping cameras are used for tracking vehicles and
pedestrians over larger surveillance areas. Multiple cameras form a wider baseline
stereo that covers the scene from several directions. This helps in scenes with oc-
clusions, particularly in crowded scenes and determining the accurate location of
people. Disparity discontinuities were used to aid in segmentation, as in [131], to
divide the image of the scene into multiple layers. In [42], stereo guided an active
contour model for pedestrians.

Several video-based analytics solutions are also being offered recently to im-
prove logistics handling in warehousing. To optimise the standard traffic flow inside
the warehouses, heat map analysis is very useful. Heat maps enable to see heavy traf-
fic areas in the warehouse and to decide what could be the reason for high density in
such areas. Through using these maps, decisions about shifting of certain products
to other areas that experience lower traffic could be made. It will also limit customer
wait time and even shipping or loading time.

In summary, the diversity of research demonstrates that the analysis of recorded
video data, for any specific or abnormal event monitoring, and generating useful
condensed information is useful for warehouse surveillance applications. Restricted
zone monitoring, detection of entry or exit of people or vehicles from restricted
zones, parking at loading docks, are also a few tasks that are optimised using video-
based analytic solutions.

In this study, multiple monocular off-board cameras are fixed at key warehouse
locations to acquire video data featuring vital warehousing events. A novel (ex-
tensive) recorded video data set is applied in our design and analysis, for targets
of interest and particular tracking events, under various challenging scenarios. We
carry out a review, implementation and comparison of traditional computer vision
techniques versus deep learning frameworks, for achieving improved localisation
accuracy of the targets of interest and robust tracking results.

2.2 Multiple Object Tracking Problem Formulation

A monocular camera C1 is fixed at a main location in a warehouse capturing im-
ages (i.e. video frames) denoted as I1, I2, I3, . . . , IN . Every frame contains a varying
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number of m objects, quantified by

A1, A2, A3, . . . , AN (2.1)

An object in a frame can either be a person or a truck; hence we have a two classes.
As the objects move in the scene, the number m will vary over time.

We use a state vector Si to represent locations in pixel co-ordinates for them = Ai
objects present in frame i, i.e. Si = (l1i , l

2
i , l

3
i , ...., l

m
i ). We denote the subsequent

locations of those objects in the range of i = 1 to i = t ≤ N as

S1:t = {S1, S2, S3, . . . , St} (2.2)

A visible object j has locations

ljs:f = (ljs, l
j
s+1, . . . , l

j
f ) (2.3)

in Frame s to Frame f , for 1 ≤ s ≤ f ≤ N . Also, ljs:f = (ljs, . . . , l
j
f ) starts and ends

with the initial and final subsequent location, respectively, of the j-th object in the
range s to f (where it may not be a single frame range and might involve a union of
ranges, as the object may leave the scene and reappear at a later stage).

Moreover, using a tracking-by-detection approach, we measure the states of these
objects at every frame using some detection algorithm. We denote the collected ob-
servations from objects for Frame i as

Oi =
(
o1i , o

2
i , o

3
i , . . . , o

m
i

)
(2.4)

for m = Ai. Subsequent observations of those multiple objects, between Frame 1 to
Frame t are combined in

Os:f = {Os, Os+1, . . . , Of} (2.5)

for 1 ≤ s ≤ f ≤ N .

The objective of multiple object tracking is to estimate, for every corresponding
Object j belonging to Frame i, i.e. oji , a location lji for all sequential frames in which
it appears. This location should be close to the ground truth location [lji ]

gt, assumed
to be measured in some accurate way (e.g. for test data by manual labelling).

Depending on the approach, this location estimate can be a 2-dimensional (2D)
centroid location (x, y) of the target in pixel coordinates, or it can be a 3-dimensional
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Figure 2.3: A frame of a warehouse recording depicting multiple objects belonging
to the class pedestrians.

(3D) world coordinate location estimate (X,Y, Z) if a target is mapped from 2D im-
ages into the 3D world.

When seeking a solution to the multiple object tracking problem, some physical
constraints need to be considered. Two different objects cannot occupy the same
physical space in the real world. Since we deal with multiple detection hypotheses,
a constraint is that in the same frame, two detection-hypotheses cannot be assigned
to the same track.

Figure 2.3 shows multiple objects belonging to the class pedestrians. The tracker
should be able to detect and track various instances of multiple classes over time.

2.3 Detection-based Tracking Approaches

Based on how objects are initialised, the MOT problem can be classified into two
categories.

In detection-based tracking, objects are first detected and linked into trajectories to
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form corresponding tracks. This strategy might involve detecting objects based on
training an object detector in advance [146]. Alternatively, objects are detected using
motion blobs (background modelling). In a background modelling-based tracking
approach, a region of interest (ROI) is detected by finding a background representa-
tion and then finding deviations from it in the following frames.

In detection-free tracking, targets of interest are initialised in the first frame and lo-
calised in subsequent frames. Processing of the frames is done either online using the
detection hypothesis from the current frame or offline which is based on the collec-
tion of hypotheses from all the frames in advance to estimate the output track [84].
The robustness of resulting tracks depends heavily on the detection quality of the
employed detector.

Some image segmentation algorithms are also used to partition the image into
clusters or segments. In data-association-based tracking approaches, detection re-
sponses are linked to trajectories with global optimisation (based on size or similar
appearance); see [9].

Based on the used search mechanism, tracking can be categorised into either
deterministic or probabilistic approaches. Probabilistic inference is based on a rep-
resentation of object states as a distribution with some degree of uncertainty. Based
on current observations, tracking algorithms are used to estimate the probabilistic
distribution of target states. These approaches are based on past and current obser-
vations and are most suitable for online tracking. A linear Kalman filter, an extended
Kalman filter, or particle filter frameworks come under this category [64].

Deterministic optimisation approaches aim to estimate the maximum-a-posterior
(MAP) solution for the tracking problem. Observations from a specific time win-
dow for all the frames are needed in advance to estimate the trajectory of the target
by globally associating them. These methods are more suitable for offline tracking
applications. Bipartite graph matching, dynamic programming, min-cost max-flow
network flow, conditional random field and finding the maximum-weight independent
set (MWIS) of the graph are examples [71, 87].

To deal with occluded and challenging tracking environments, further detection
approaches have been explored. They rely on a correct detection output from the
object detector. In some cases, 3D information or trained detectors were used for
individual object parts or application-specific motion models [84]. Learning object
view angles from a set of training examples employing supervised learning is also
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Figure 2.4: Features are learnt in increasing abstraction [121].

used to detect and classify ROIs [106].

Representation modelling of target appearance using deep features is used as an
effective cue in many recent tracking frameworks. Many such methods proved to
be robust in tracking under occlusions and varying scales of objects. These features
are extracted from a deep neural network (trained for image recognition or classi-
fication task) and used in places of conventional hand-crafted features in existing
MOT paradigms. Tracking methods employing deep learning frameworks are also
used to model the target of interest appearance using networks pre-trained for other
tasks (transfer learning) and to associate these target objects over multiple frames.

2.4 Model-based ROI Extraction Methods

Tracking is often preceded by interest object localisation in single or multiple frames.
The representation of a ROI is based on object shape or an appearance model and
which unique features are suitable to encode object representation. MOT algorithms
might also use multiple cues to represent application-specific objects of interest.

Hand-crafted features have been used to encode the appearance of targets of
interest. Feature descriptor schemes might include optic flow, the scale-invariant fea-
ture transform (SIFT) [85] or gradient based-features, histogram of oriented gradients
(HOG) [38], colour, bag-of-features [28], or deformable part-based models [47], clas-
sic classifiers such as support vector machines (SVMs) [32] and random forests [18].
The probabilistic occupancy map (POM) and depth features have also been studied.
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2.4.1 Gaussian Mixture Model

The values of particular pixels are modelled as a mixture of adaptive Gaussian distri-
butions (MOG). As a simple example, pixel value variations of a pixel (x, y, ui) in its
history of its previous t values, say from Frame 1 to Frame t, can be represented by
the set {u1, ..., ui, ..., ut}, where 1 ≤ i ≤ t. In this example, the pixel location (x, y)

would remain constant, and values ui are assumed to be scalars (as in a grey-level
image). As a more general example, distributions of values u are considered for
the whole frame, assumed to be a combination of Gaussian distributions, and these
combinations are studied over time, say from Frame 1 to Frame t.

The probability density function of the univariate Gaussian or normal distribution
is given by

G(X,µ, σ) =
1

σ
√

2π
exp

{
−1

2

(
X − µ
σ

)2
}

(2.6)

for −∞ < X < ∞, where µ is the mean and σ2 > 0 is the variance of the random
variable X (here our image values u).

The probability of observing a specific mixture component at Frame t is given
by products of probability density functions with their weights. For more than one
density function, we have a multivariate case, such as

P (Xt) =

k∑
i=1

wi,t ·G(Xt, µi,t, σi,t) (2.7)

Here, wi,t is the weight of the ith Gaussian distribution at Frame t.
Aiming at a probabilistic model for separating the background pixels from the fore-

ground by looking at the distributions, [115] proposed an update of the background
model as follows:

1. Constructing an adaptive mixture of multi-modal Gaussians per pixel. The num-
ber k of Gaussian components depends on the environmental complexity one
wants to model. In a typical warehouse indoor environment, we observed
relatively minor contrast in colours and brightness. Outdoor scenes have dif-
ferent conditions. Following [115], we keep k = 3. Targeting red-green-blue
(RGB) colour images, we also assume that all three RGB channels have the
same σ2, thus defining a 3 × 3 covariance matrix Σi,t being the product of a
variance with the unit matrix.

2. Method for updating the Gaussian parameters. For every new pixel state for the
next frame, we check whether it lies Xt ≤ 2.5 standard deviations from the
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mean; we label it matched in this case. We update weight, mean, and variance
as per the following update equations:

wi,t = (1− α) · wi,t−1 + α ·Mi,t (2.8)

µi,t = (1− ρ) · µi,t−1 + ρ ·Xt (2.9)

σ2
i,t = (1− ρ) · σ2

i,t−1 + ρ(Xt − µi,t)>(Xt − µi,t) (2.10)

where ρ = α · P (Xt|µi,t−1,Σi,t−1), 0 < α < 1 is a selected learning rate, and
Mi,t equals 1 for a model which is matched, and equals 0 for other models.

If the ith Gaussian is marked as unmatched, we decrease its initial weight as
per below equation:

wi,t = (1− α) · wi,t−1 (2.11)

If all the k Gaussians in the mixture model, for pixel valueXt, are not matched
to the pixel, we mark that specific pixel as a foreground pixel. If this is the case,
then we find the Gaussian distribution with the lowest weight in the mixture
and set the mean equal to Xt. We also adjust the corresponding variance to a
higher value and lower the weight of this distribution.

3. Heuristics for determining the background. For finding the background distribu-
tions, we rearrange the distributions in descending order by w/σ. We add up
the corresponding weights of the Gaussians in this order, till the final sum is
greater than a pre-set threshold T . We set T = 0.9 in our case. We observe
that there are fewer salient or moving objects and more background portions
in the frames. Refer to Fig. 2.5 for the concept.

Figure 2.5: Mixture of three Gaussian distributions is trained to changing pixel val-
ues in every subsequent frame, for modelling the background.
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Recent Variants for Addressing Challenges

Gaussian mixture models have been an active field of research for two decades.
Many variants have been introduced for dealing with various challenges when deal-
ing with real time moving target detection.

Shadow elimination has been a major subject. Foregrounds obtained by a MOG
technique have shadow pixels as part of the foreground. Much work has been tar-
geted towards shadow elimination [50, 130, 143, 152]. Shadow detection in colour
space is considered in [50, 75].

For the detection of slowly moving objects, see [50]. Challenges arise when these
objects are incorporated into the background due to less variance.

Adaptation of algorithms to scene changes. This is very important and controlled to
some extent by learning rate and parameter selection, see [55, 75, 156]. Background
recovery rate improvement was also studied in [143] for solving real-time surveil-
lance issues. To incorporate abandoned objects for surveillance applications, aban-
doned/removed object detection is also thoroughly researched in [130].

Update to learning equations. This involves controlling the scene changes and
slowly or fast-moving objects, see [55, 103, 156]. Learning rates and their signifi-
cance for incorporating scene changes is studied in [142]. The number k of Gaussian
components or modes depends on scene complexity and pixels modes [156]. For run-
time improvements, to adapt MOG to real-time, see [143, 156].

Initialisation of parameters is very important for initialisation of a MOG model [143].
Parameter analysis and setting as per scenario is dealt with in [152].

Dirichlet-Gaussian distribution. [58] used a Dirichlet process and a Gaussian mix-
ture model to estimate a per-pixel background distribution, which is followed by
probabilistic regularisation. This work was able to accurately model dynamic back-
grounds.

Neighbourhood correlation, to update the parameters of MOG [103], is also found
effective. Importance of spatial information other than temporal one, for detecting
accurate foregrounds [142, 143], was able to improve the foreground quality. For us-
ing other cues such as intensity and texture, for better foregrounds, see [130]. This
approach was not able to deal with resultant holes in foreground masks.
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2.4.2 Pixel Saliency-map-based Detection

Saliency refers to the visual contrast of the object compared to its background region.
Such a contrast might be based, for example, on the difference between colour, tex-
ture, or shape. Thus, it is based on measuring human attention that any salient ob-
ject attracts in an input image. Saliency detection has received considerable progress
in the field of computer vision.

Saliency map computation is used in many computer vision areas like object
recognition, image segmentation, video or image data compression, visual tracking
and robotics. Moreover, various methods have been proposed for saliency detection,
based on some priors. Such priors might include uniqueness, background contrast,
compactness, random walks, deep learning and others [31].

Traditional saliency detection models are classified into two main domains. These
are named as bottom-up and top-down approaches.

The bottom-up model is based on low-level visual features like compactness
or uniqueness. Uniqueness-based methods are further split into local and global
contrast methods. Most uniqueness-based methods use low-level features such as
colour, direction, or intensity to determine the contrast between image regions and
their surrounding pixels.

Compactness-based methods use the variance of spatial features. Salient pixels
tend to have a small spatial variance in the image space. The background is dis-
tributed on the whole image space and tends to have high spatial variance. Since
single visual cue-based salient region detection methods have few limitations in
detecting accurate salient pixels, different cues could be combined to make a com-
posite framework [105]. Some methods are based on this approach, but the selection
of visual cues depends on the context. Compared with the global contrast method,
the local contrast is a relatively better cue, to be combined with the compactness cue.

Local contrast methods can identify the foreground region [60], but they have a
limitation that they identify visible object boundaries rather than all the area. This
effect could be minimised by the propagation of saliency information based on dif-
fusion [60].

The top-down model is task-specific and has shown high performance based
on supervised learning with labels. A detailed study on the significance of using
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saliency-based ROI extraction and onward tracking, depicts the usefulness for using
saliency feature advantages over various other visual cues such as motion, texture,
gradient or colour. An object is represented and tracked based on a human attentive
mechanism using visual saliency maps. Such methods have an advantage to work
better for occluded and cluttered scenes.

A pixel saliency map was also being combined with other features types, like
colour-texture, colour-saliency, or colour-orientation [6]. Tracking the targets of in-
terest employed a simple saliency visual descriptor which counts the number of
similar pixels lying in the local neighbourhood named local similarity number (LSN).
It was used to model the amount of saliency in corresponding target patches. It was
being used in a mean-shift tracking framework with a saliency-colour histogram
model [126]. Spatio-temporal discriminative saliency maps were used to track non-
rigid objects; this outputs accurate regions occupied by the targets as tracking re-
sults.

Saliency detection using deep learning techniques have displayed very promis-
ing results, since the recent progress in deep learning models. A tailored fully convo-
lutional neural network (TFCN) was developed to model the local saliency of regions
of interest. Latter local saliency maps were generated with the help of a multi-scale
multi-region mechanism that takes into account the visual perceptions with vary-
ing spatial layouts and scales. Finally, these local saliency maps are fused with a
weighted entropy method, resulting in a final discriminative saliency map [157].

Improvement in discrete correlation filters-based trackers with saliency-based
filter responses helped to handle tracking in challenging scenes. Filter weights were
selected adaptively based on temporal consistency of visual saliency maps [13]. Par-
ticle filters suffer from tracking artefacts in occlusions, clutter and illumination vari-
ations. Saliency information incorporated in the framework aided to improve track-
ing results in complex scenes. A bottom-up saliency-based tracker that tracked any
salient target in the scene used colour features and sparse optical flow [118].

Static and motion features based on saliency are first extracted from the frames
of videos locally, regionally or globally. Then they are combined in a conditional
random-field fashion. The salient region in the frame was tracked using a particle
filter. Tracking was robust w.r.t. changes of illumination and shape and can track
any object category as long as it is salient in the scene [159].

A smooth pursuit tracking algorithm is proposed that uses three kinds of saliency
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maps. These were appearance, location and motion saliency maps. Appearance
saliency maps use deep CNN-based features along with gnostic fields. A location
map predicts where the object location will be in the next frame and motion saliency
maps show which objects are moving in the scene. All three maps were fused to-
gether in a smooth pursuit fashion. The resulting map was used to generate bound-
ing boxes for the tracked targets [149].

A deep contrast net for saliency detection has also be employed. A multiple-
scale fully convolutional neural network detects visual contrast saliency, and the
spatial pooling stream simulates saliency discontinuities for every segment along
with object respective boundaries in an end-to-end fashion [86]. Through a super
pixel-wise convolutional neural network, hierarchical contrast features for saliency
were detected. Also, colour uniqueness and color distribution were embedded into
the CNN at various scales. [66].

Zhang et al. [153] utilised a fully convolutional neural network (FCN) (encoder) and

Figure 2.6: An example of saliency detection for two objects (forklift and person)
with a corresponding heat map overlayed on the right.
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a corresponding decoder to detect the salient objects in the scene. A reformulated
dropout (R-dropout) was introduced to construct an uncertain ensemble of internal
feature units. To reduce the checkerboard artefacts of deconvolution operators, a
hybrid up-sampling method was designed in the network.

A deep hierarchical saliency network was formed by the integration of a CNN
with a global-view CNN (GV-CNN) and a hierarchical recurrent CNN (HRCNN), where
the GV-CNN computes a coarse saliency map, the HRCNN recovers the image de-
tails from local context information [96].

For this work, pixel saliency map computation is tested for extracting the ROIs;
it has been reported in [3]. We experimented with the computation of static and
motion saliency maps, as previously suggested in [65, 154]. Deep hierarchical saliency
network prediction (DHSnet) is also employed to output the saliency map of an image
using a deep CNN in [4], for better efficiency. The whole image (i.e. frame) is used
as computational unit and feed-forwarded for testing without any post-processing;
see [96] for the original proposal.

Refer to Fig. 2.6 for a saliency detection example for an image acquired in a test
warehouse environment. For the heat map, the computed saliency for a ROI is su-
perimposed (using a colour key) on the respective image.

2.5 Deep Learning Models

In addition to handcrafted feature extraction, automatic feature learning by neural
networks, especially deep convolution architectures, is state of the art.

Deep learning is a form of representation learning. A computer is fed with large
amounts of raw data and it finds out the features needed for detection, based on
learning. Deep convolutional neural nets, proposed by Krizhevsky et al. [74], have
achieved tremendous success on bigger benchmark datasets, such as ImageNet. Im-
ageNet is a dataset of over 15 million labelled high-resolution images belonging to
roughly 22, 000 categories. It took between five and six days on two GTX 580 3GB
GPUs to train a network with the ImageNet dataset. Some modern object recog-
nition models have millions of parameters and may take some weeks to be fully
trained. Hence, traditional deep learning models need a huge amount of training
data for training and resources, such as multiple GPUs. They have successfully been
used to categorise images and activities or tasks once trained with an excess of data
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samples [43].

Googles Inception [122] is one of the CNN architecture that provides a good-
performance network with relatively low computational costs. It has 9 inception
modules. Each colour in Fig. 2.8 depicts different operations: Blue colour for convo-
lution operations, red for pooling, yellow for softmax, and green for others.

Figure 2.7: AlexNet architecture [74]

Another famous architecture model is the AlexNet [74]; it achieved a top-5 error
rate of 15.3. See Fig. 2.7. Inception (GoogLeNet) [121] achieved 6.67 in the same
category. See Fig. 2.8.

Deep learning models have been employed to solve MOT problems in a variety
of ways. We divide the way deep models have enhanced the solution of MOT prob-
lems into three streams.

Using deep network features

Deep features, being more discriminative than hand-crafted conventional fea-
tures, are used to replace them inside the same MOT framework to enhance the
tracking performance. Training a convolution neural net (CNN) as the used model
can be done by using extensive classification datasets already available, or by using
tracking data, or pre-training and fine-tuning the model. Fully trained CNNs are
employed for region proposal generation for object detection [111]. Siamese CNN
architecture was employed to learn the matching features for multiple object track-
ing problems.
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Figure 2.8: GoogLeNet (Inception v1)

Leal-Taixe et al. formulated a deep architecture by fusing deep features and a
motion prediction algorithm; a linear programming approach was used to solve the
tracking problem [88]. Since the optic flow is a useful feature to learn track asso-
ciation, learning deep flow through deep architecture made it more efficient and
accurate for MOT. Similarly, pair-wise images were fed to a Siamese network to
compute cost affinities for tracks. Xiang et al. proposed to learn a triplet-loss based
CNN to find the distance between trackers and detections. In the tracking process,
this distance between trackers and detections constructs the cost affinity for bipar-
tite graphs, which is solved by the Hungarian algorithm [145].

Deep learning for action classification in videos

Recognizing actions, events and activities in video data is being explored using
deep learning, but the state of the art is still far away from human recognition abil-
ities. Using CNN for feature extraction (both spatial and temporal) and employing
it for action classification is done already, but it still did not achieved the requisite
level of accuracy. Although scene labelling domain is still a success in this regard.

Compared to object classification, action classification in videos suffers from
challenges like variations in object motion and respective viewpoints. Thus, it needs
a lot of training examples per action class. It also needs better CNN frameworks that
can extract not only the spatial (appearance) features but also temporal information
precisely, to be able to classify actions and events in video streams.

Instead of using two dimensional (2D) convolution that aimed at extracting only
spatial information, three dimensional (3D) convolution were being used for spatio-
temporal feature learning [128]. 3D CNNs were being trained on large supervised
training video datas that modelled the object appearance and motion simultane-
ously. Thus employing these 3D kernel operations for all layers and using a simple
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linear classifier output promising results for varying tasks and popular benchmarks.

The task of video recognition, captioning the image and video description was
also being done on architecture based on connecting a CNN with a deep long-short
term memory (LSTM) network. These composite visual models were able to capture
challenging state dependencies for accurate recognition of videos [39] and were end-
to-end trainable.

One of the approach was an improvement on two-stream architecture proposed
by Simonyan in [114]. To incorporate temporal motion information, a separate CNN
was trained based on optical flow feature. For video action recognition, two-stream
fusion was proposed [49]. Spatial and temporal cues were fused at several levels
(spatial as well as temporal integration). The architecture was revised with fusion
operation occurring at convolution layers rather than at the softmax layer done ear-
lier.

RNNs are known to be deep temporally. Precise mapping from pixels in images
to sentence-level description, describing the event occurring in the scene is achieved.
These models have been used to generate scene captions from various intermediate
visual features derived from conventional neural network models.

Using core modules learned by a deep neural network

If core MOT modules and processes are learned using a deep neural network,
the tracking performance is improved. This study splits the domain into the follow-
ing:

Discriminative network learning is known as a tracking-by-detection approach. For
instance, a target-specific particle filter framework was employed. Features from
Faster-RCNN VGG-16 were used, where the top and bottom layer output is used to
obtain weights for the particles. A resulting track was estimated through a particle
filter framework [29, 113].

Deep metric learning for MOT is learning affinity or a distance measure of de-
tection pairs for the tracklet association problem (a tracklet is a fragment of a track
followed by a moving object).

One of the main processes in MOT is the association of detection hypotheses
over subsequent frames with a correct track. An optimum association measure was
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constructed by using learned appearance features from a person re-identification
dataset [139, 147]. To handle track identity switches, an appearance saliency map
guided data association measure is exploited to verify the track identity. A saliency
distribution dissimilarity measure between a detected ROI and predicted candidate
track locations is described by the Bhattacharyya coefficient in our work.

Extending deep models for generative learning is used to learn MOT vital parame-
ters for data distribution and can be learned through generative adversarial networks
(GAN). Fang et al. proposed to model object motion and appearance using a pos-
terior probability Gaussian distribution, using an auto-linear regression method. A
generative long short-term memory (LSTM) model was used to generate a confidence
map output. A pixel-wise probability map was generated through a decoder fol-
lowing an LSTM layer [146].

Using an end-to-end deep network

This approach is applied to model the whole process of target tracking. Since
many related sub-processes are intertwined inside the framework, the model relies
on a few assumptions like Markov properties, or a fixed distribution. For the online
MOT problem, a recursive Bayesian filter comprises prediction and update mod-
ules. Object states, observations, matching matrix and existing probabilities are fed
as input into the recurrent neural net (RNN). Predicted states, updated results and ex-
istence probabilities are the output. A set of LSTMs was used to compute a matching
matrix. Either one was used to find a match among one of the object states and the
current observations. Multiple tracking segments (i.e. tracklets) were used to train
a group of LSTMs and an RNN [48].

Deep networks are also used to learn regression models in SOT and also a few in-
stances in MOT for regression learning. In comparisons with CNNs, RNNs are more
suitable for target sequence modelling and for predicting the target’s next state ac-
cording to its historical information. However, to simplify learning the appearance
features, some existing CNNs were used to extract deep features and fed as input
for RNNs [114].
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2.6 Kalman Filter

The original Kalman filter is a recursive adaptive filter that estimates the state of
a linear, discrete-time dynamic system. Each updated estimate of the state is com-
puted from the previous estimate and the new input measurements data, based on
knowledge about process noise and measurement noise. Kalman filter is computa-
tionally more efficient than the methods based on computing the estimate directly
from the entire past observed data.

One key reason for employing a Kalman filter in tracking is that it can be con-
figured to deal with occlusions or predicting during missing detections. A separate
Kalman filter can be configured for each detected truck, when dealing with multi-
ple target tracking. To use the Kalman filter, the object is assumed to have a linear
motion model (moving at constant velocity) which is reasonable for short time in-
tervals.

The state vector, denoted by xk ∈ Rn, characterises the system state at the previ-
ous time k. xk+1 ∈ Rn is the state at the current time k + 1.

The Kalman filter has two main steps, a prediction step and a correction step.
The prediction step uses a previously estimated state xpk and the linear model A to
predict the value of the next state as well as the state’s estimation covariance:

xpk+1 = A · xpk +B · uk + w (2.12)

xpk+1 is the predicted state vector at instant k + 1. A is the state transition matrix
taking the state xk from time k to time k + 1. To account for the uncertainty result-
ing from the inaccuracy of the model, white noise to the model is added (i.e. w is a
Gaussian distribution noise with a mean 0 and a variance Q).

The predicted state error co-variance matrix P pk+1 is updated by the following
equation:

P pk+1 = A · P pk ·A
T +Q (2.13)

Also,
yk+1 = H · xk+1 + v (2.14)

where yk+1 is the measurement observable at time k + 1 and H is the measurement
matrix. The measurement noise v is assumed to be additive, white, and Gaussian,
with a co-variance matrix defined by R. Moreover, the measurement noise is uncor-
related with the process noise.
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For the correction stage, the Kalman filter corrects the state estimated based on
the current measurement, such as object location, based on the Kalman gain K. It
optimally updates the state-estimation vector (i.e., the prediction at instant k) and
the state co-variance matrix, by an innovation step of the filter:

S = HP pk+1H
T +R (2.15)

K = P pk+1H
TS−1

xek+1 = xpk+1 +Kzk+1

zk+1 = yk+1 −Hxpk+1

P ek+1 = (I −KH)P pk+1

where zk+1 is the measurement residual vector and S is the residual’s variance ma-
trix, also updated as described above.

2.7 Track Association Methods

Detection output by detector to track association is a vital challenge in designing
multiple-object tracking algorithms. The robustness of such assignments is very im-
portant for seamless tracking results. Such an association is mainly classified into
two broad categories. Local methods employ a pair of frames for data association;
this is fast, but irrelevant factors like camera motion or pose variations are likely to
cause a track miss-assignment problem [146].

Global techniques perform the same association using a batch of frames. More-
over, a few global association techniques consider this association as a constrained
network flow problem. K-shortest path algorithm is used for associating the tracks
in [19].

Tracking partially occluded, closely located targets suffers from shortcomings
incurred by object detectors, especially when following the tracking-by-detection
paradigm. Bochinski et al. [17] employed the intersection over union (IOU) measure
and predefined threshold values for the association of targets in frames. Authors de-
picted acceptable tracking performance at 100 frames per second for tracking. Chen
et al. [78] proposed a multiple hypothesis tracking method by exploiting detection
correlation across video frames. This method claimed to handle objects lying very
close to each other or partially occluded one. In a few other techniques, dense detec-
tions were also being used without non-maximum suppression for tracking, mainly
to handle scenarios where targets are in close proximity [132].
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Track association methods employing deep learning frameworks were used to
model the target of interest appearance using networks pre-trained for other tasks
(transfer learning) and to associate these target objects over multiple frames. A net-
work trained for learning data association in the context of MOT was employed
in [124]. A Siamese network was modified to learn deep features for multiple-object
tracking with object association [20].

A multipurpose CNN for both detection and tracking under common region-
based fully convolution neural network (R-FCN) was proposed [61]. A model for
person tracking using head-joints was employed based on human pose estimation;
it failed to deliver desired results under occlusions [69]. Associations of objects in
consecutive pairs of frames was jointly modelled and associations are learnt in an
end-to-end manner. Object affinities were estimated in frame-pairs using a deep
affinity network [113]; it is suggested to handle occluded scenes.

Despite the rich literature regarding deep learning-based target tracking, results
still suffer from the lack of robust track association strategies especially for close
proximity and partially occluded objects. A novel data association criterion was
proposed in this research work for robust track association, especially for partially
or fully occluded targets [2].

2.8 Correlation-filter-based Visual Tracking Methods

Visual object tracking (VOT) is a challenging computer vision problem where the tar-
get of interest needs to be tracked in every frame. Challenges might include target
deformation caused by frequent appearance changes, abrupt motion, background
clutter, or partial or full occlusions. Two types of approaches exist to handle such
problems, either generative [95, 93] or discriminative methods [21, 62].

Generative methods for visual tracking tackle the problem by searching for re-
gions which seem to be most alike the target candidate model. The models can
either be based on templates or subspaces.

The discriminative approach aims to differentiate the target from the background
by considering tracking as a binary classification problem. It uses both the target
object and background information to search for a decision boundary for differenti-
ating the target object from the background region.
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In discrete correlation filter (DCF) based tracking (see next subsection for details),
an initial state of the object to be tracked is known, either by detecting the target au-
tomatically or by manually specifying its position in the initial frame. The correla-
tion filters predict the maximum filter response by learning a least-squares classifier
in the region of interest of the target where the maximum response map corresponds
to the location of the target [23]. The key to these filter successes is exploiting all
the negative training data by including all shifted versions of the training patches.
Moreover, this kind of method mostly follows the tracking-by-detection paradigm
where each frame of the target is regarded as a detection problem. The classifier is
trained to distinguish the target object from its background.

Bolme et al. proposed a correlation filter, a minimum output sum of square er-
rors (MOSSE) for target appearance, based on a single luminance channel in visual
tracking [23]. Ma et al. suggested that multiple correlation filters can be learned
on hierarchical convolution layers [102]. Semantic and spatial information was cap-
tured by constructing multiple DCFs on low, middle and higher convolution layers.

By exploiting the circulant structure for training samples, Heriques et al. pro-
posed to derive closed-form solutions for training and detection with several types
of kernels, including Gaussian and polynomial kernels [15]. Zhang et al. incor-
porated spatio-temporal contextual relationships between the target of interest and
its local context in a Bayesian framework; this aid to model the statistical correla-
tion between low-level features from the target and outside regions for visual track-
ing [160].

Spatially regularised discriminative correlation filters (SRDCFs) introduced spatially
regularised components in learning by alleviating the unwanted boundary effects
by penalising correlation filter coefficients depending on the spatial location [45].
Qi et al. proposed an algorithm to fuse several DCFs through an adaptive hedged
method. Staple-complimentary learners for real-time tracking combined DCF and
complimentary cues like colour histograms to achieve a real-time state-of-the-art
tracking model. DCF with a channel and spatial reliability (CSR-DCF) introduced a
spatial reliability map in filter learning and the updating process.

Continuous convolution operators for visual tracking (C-COT) adopted a training
of continuous-domain convolution filters in learning DCF and integration of multi-
resolution deep feature maps, leading to top performance on several tracking bench-
marks [46]. The enhanced version of C-COT is ECO (efficient convolutional oper-
ators for tracking), which improved both speed and performance by introducing
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several efficient strategies.

ECO is a fast DCF implementation with factorised convolutional operators to re-
duce the number of parameters in the model [37]. For achieving tracker robustness,
ensemble based feature fusion methods employing dynamic programming have been
used [22]. Though dynamic programming-based tracking methods’ computational
efficiency was determined by the number of trackers in the ensemble; it is reduced
if this number increases. Also, sparse representation-based methods suffered from
low frame rates due to the fact that the overall speed being decided by the slowest
tracker in the ensemble.

For a multi-expert entropy minimisation (MEEM) algorithm, based on exploiting
the relation between current tracking and historical samples using an entropy min-
imization concept, see [158]. A discrete graph-based optimised framework is an
extended version for MEEM [94].

Target state prediction was made based on a framework using a partition fu-
sion method to group an ensemble of trackers [77]. In many of the fusion-based
methods, the trajectory was calculated twice in the forward and backward direction
which makes the tracker run twice. Also, tracker results were not fed back to indi-
vidual trackers that make a transient drift accumulate and build-up tracking errors.

The multi-cue correlation filter tracker (MCCT) employed a decision level fusion
strategy and a robustness evaluation criterion for ranking experts in order of their
reliability. It employed a training-sample-sharing strategy and adaptive expert up-
dates. The tracker output was fedback to the individual experts to prevent expert
corruption over time. We decided to use an MCCT baseline framework for our work
and propose an additive saliency feature (in short: sal-feature) that will benefit the
tracking robustness.

A novel saliency guided DCF-based ensemble tracker is proposed in our work [4].
Improved tracking results are obtained by incorporating saliency alongside other
hand-crafted and deep network features in baseline ensemble tracking framework.

2.8.1 Discrete Correlation Filter Basics

As announced above, we provide some basics for DCF. An image patch x of size
M × N has its centre on the target. Training samples are generated from circular
shifts along M and N dimensions. Shifted samples of x, denoted as x(m,n), are a
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subset of the rectangular grid {0, 1, ....,M − 1} × {0, 1, ...., N − 1} and used as train-
ing samples, with a Gaussian function label of y(m,n). A correlation filter w of the
same size as x is learned by minimising the regression problem

min
w
||Xw − y||22 + λ||w||22 (2.16)

X is the data matrix obtained by concatenating all the circular shifts for the training
patches. λ is the regularization parameter (λ ≥ 0).

For d ∈ {1, ...., D}, the learned filter weight on the dth channel equals

w∗d =
ŷ � x̂∗d∑D

i=1 x̂i
∗ � x̂i + λ

(2.17)

where operator � is the Hadamard or element-wise product. The hat symbol de-
notes the discrete Fourier transform (DFT) for the vector and symbol ∗ denotes the
conjugate complex for that vector. The response map R for z is as follows:

R = F−1
(

D∑
i=1

ŵd � ẑd
∗

)
(2.18)

where z is a ROI patch of the same size as x, cropped in the next frame to track the
target of interest. The target is localised where the response is maximised.

Numerator and denominator are updated online for the filter ŵd
∗ as follows:

Ât
d = (1− η) Âd

t−1 + ηŷ � x̂∗d
t

(2.19)

B̂t
d = (1− η) B̂d

t−1 + η

D∑
i=1

x̂∗i
t
� x̂ti (2.20)

During the filter learning step, a Hann window [63] is applied to avoid the
boundary effect problem. The learning rate is adjusted by parameter η for the frame
index t and the scale is selected based on the tracker methodology described in [40]:

ŵ∗d
t

=
Ât
d

B̂t
d + λ

(2.21)

2.9 Summary

This chapter summarises the basic concepts and techniques that are used for this
study at different stages.
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ROI detection, and tracking of objects of interest based on these detections, is
very vital step. Tracking performance is highly correlated with the quality of ex-
tracted ROIs or detected objects.

Various multiple and visual object tracking concepts are described in this chapter
that form a baseline for understanding the novelty of further work. Chapter-wise
further specific detailed explanations are provided in the the following.



Chapter 3

Improved Object Recognition in Warehouses

Deep convolution neural nets have an inherent ability to extract features automatically and
are used for accurate category classification. To propose a prototype for improved video-based
object detection and classification for warehouses, we aim to extract moving foregrounds by
using the GMM technique. We improve our findings by incorporating a pixel saliency map.
Finally, we assign labels to the foreground using a pre-trained Inception-v3 deep learning
detector and classifier.

3.1 Datasets

We acquire warehouse video data in two phases. In phase 1, we record a video
dataset by using simple RGB go-pro monocular cameras, fixed at various locations

Figure 3.1: Go-pro camera viewpoint 1 for first phase
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Figure 3.2: Go-pro camera viewpoint 2 for first phase

in an experimental warehouse, to catch the warehouse activities independently.

Several scenarios are modelled and recorded at the site. Each such camera cap-
tures images of size [W ×H] = [1280× 720] pixels at a rate of 25 images per second.

The captured scenarios also include warehouse blind spot modelling with vari-
ous vital forklift and pedestrian poses. Refer to Figs. 3.1 and 3.2 for scenes showing
two of the camera viewpoints.

In a second phase, a very diverse data set is recorded, with challenging ware-
housing scenes. We collect data from four different viewpoints with varying levels
of background complexity, different lighting conditions, un-occluded and occluded
views of pedestrian and truck activities, single-agent (pedestrian/truck) and multi-
agent activity.

In this phase, we recorded 160 videos at a frame rate of 29 frames/images per
second. Each of the captured images is of resolution [W ×H] = [2048× 1536] pix-
els. The duration of each captured video is 10 minutes.

The dataset is captured by four point-tilt-zoom (PTZ) dome monocular cameras,
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Figure 3.3: PTZ monocular camera layout positions for Phase 2 of data acquisition.

fixed in one of the production warehouses, to monitor the warehousing activities
closely. Fig. 3.3 depicts the positioning of the four different cameras in the ware-
house. Fig. 3.4 refer to the two warehouse scenes from recorded data in phase 2.

For the work reported in this chapter, for training and experiments, we mostly
employ data recorded in Phase 1. Data recorded in Phase 2 are extensively used in
later chapters.

3.2 Warehouse Scene Challenges

As per our observations, these particular indoor scenes come with the following
environmental challenges:

1. There are multiple moving objects. We have recordings with pedestrians and
forklift trucks moving inside a warehouse.
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2. Colour contrast between background and foreground is very marginal, most
of the time.

3. Multiple occlusions are likely; the environment is semi-cluttered.

4. There are parked forklifts (stationary objects) in some areas.

5. Changes in loads occur frequently for racks in the background; typically these
changes are gradual.

6. Illumination changes are also gradual. Warehouse indoor data have usually
only a few low-illumination areas.

7. There are entries and exits of vehicles into a scene.

8. When the objects are static (i.e. no movement between two subsequent frames)
or moving only slightly then they are often wrongly classified as part of the
background.

To model object appearance in warehouses, a study is performed for various cues
or features that can be employed for targets. For the localisation of salient objects in
warehouses, SIFT and saliency-based methods were used [110]. Table 3.1 enlists the
studied observations regarding stated feature schemes. We conclude that an adap-
tive detection algorithm is needed which can detect pedestrians working behind the
warehouse clutter, which are often occluded and challenging to detect.

Due to forklift trucks with loading and unloading pallets, people working in
aisles might be occluded partially with various poses. It is vital to handle illumi-
nation variations, repetitive motions from clutter, and long-term scene changes. A

Figure 3.4: Video shots from the recorded dataset at Phase 2.
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Table 3.1: Examples of appearance modelling schemes.

Features Challenges

Gradient-based feature

Can encode target shape
robust to illumination variations
but cannot handle occlusions
and shape deformations

Colour-based feature

For instance colour-histogram
is discriminative
but spatial contents of
the image is ignored

Local features

Out of plane rotation is
a challenge
but robust to shape deformation
(optic flow, KLT)

Region features
Involve wider region
but computationally expensive
(co-variance matrix) .

Depth feature

Depth measurement
needs multiple views for
the same scene
for depth computation.

GMM based approach is chosen to detect pixel-wise moving segmented foreground
and background regions for target detection and onward tracking.

3.3 Object Tracking Pipeline

Deep convolution architectures, employing automatic feature learning and classi-
fication, are being researched in recent years. Out of many options, region-based
CNNs (R-CNNs), or later versions are frequently explored. An R-CNN is a three-
stage pipeline process. Features are extracted for every object proposal in an image
and are being cached. SVM is used as object detector, replacing the softmax classifier.
In the third stage of training, bbox regressors are learned [54]. Spatial pyramid pooling
networks (SPPnets) were introduced to speed up R-CNNs by sharing the computa-
tion burden [59]. This is also a multi-stage process which computes a convolutional
feature map for the whole input image and then classifies each object proposal, us-
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ing a feature vector extracted from the shared feature map.

Fast R-CNNs use single-stage training and a multi-task loss for better detection
accuracy and speed. Training can update all the layers of the network at once, and
no feature caching is required [111]. These nets still used selective search for region
generation; now removed in faster R-CNNs came. A cost-free region proposal network
(RPN) was employed which predicted potential object bounds and an object score
at each position in the faster R-CNN. This RPN, integrated with fast RCNN, was
trained to share features across layers [111].

Inspired by this work we propose a pipeline for object detection.

First, we select background subtraction, which is well suited for moving targets
as in our case. We follow [115] where each pixel value is modelled as a mixture of
Gaussians components. By this means we can determine whether or not a pixel is part
of the background. This supports an effective approach for separating the back-
ground from the foreground.

Second, we need to improve extracted foregrounds as they are not yet accurate.
See Figs. 3.7 to 3.12. Due to a low background pixel recovery rate and a slow adapta-
tion to scene changes when using the traditional GMM algorithm, foreground qual-
ity is not yet fair. We extracted salient pixels using a local contrast method [154],
based on a visual saliency map. A pixel-wise saliency map, for each frame, is used
to improve the corresponding foreground obtained by the GMM background ex-
traction.

Third, we want to label the detected foreground. We can repurpose features,
extracted from a pre-trained deep convolution neural network, for new object cate-
gory recognition specific to our application. This technique is called transfer learning.
We transferred the learned features from a pre-trained model (i.e. Google Inception
Model) for new category classification which are forklifts and pedestrians in a typi-
cal warehouse scenario [74, 122]. Refer to Fig. 3.6 for the architectural diagram for
the inception-v3 model.

Fourth, we use a Kalman filter to track the resulting targets. Fig. 3.5 refer to the
proposed multiple object tracking framework.
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Figure 3.5: Proposed object tracking framework.

3.4 Gaussian Mixture Model for Foreground Extraction

The Gaussian mixture model is a natural choice for our analysis (i.e. for extracting
moving targets out of a mostly stationary background). Mixture models are proba-

Figure 3.6: Inception-v3 [122].
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bilistic models which assume that underlying pixels belong to a particular mixture
distribution. To make the model more robust to lighting variations, and to handle
multiple surfaces occurring in the view frustum of particular pixels, the mixture
models need to be adaptive.

Qualitative Analysis for a Standard GMM Approach

As can be seen in the update equations above, α is the first learning rate. It needs
to be adjusted as per the scenario conditions. To incorporate slowly moving objects
and large homogeneously coloured objects, we kept α small. For scenarios which
are changing quickly, it needs to be larger to adapt to the scene. ρ is the second learn-
ing rate. Usually, it is assigned a much smaller value than α. But, as per our trial
experimentation, the use of the second learning rate increases the required compu-
tation time. Initial mean and variance are adjusted as per the scenario results. The
thresholds are the same (value 0.9) for all the experiments.

We apply the mixture of Gaussian algorithm [115] with the following parameter
setting: α = 0.001 ranging to 0.79, ρ = 0.00001, threshold T = 0.9, the number of
Gaussian components k = 3. We obtained our results by using Matlab 2017a.

Refer to Figs. 3.7 to 3.12, for the results obtained after applying the proposed
steps.

For lower alpha values, slowly moving objects are detected with good quality
foreground, but for higher values, results are not good for the same object.

GMM cannot deal with sudden illumination changes and camera movements.
This is as shown in Fig. 3.10. With passage of time, the variance decreases for more
stable pixels. If the variance becomes too small, then even camera noise is marked
as foreground pixel that effects the foreground quality.

Bigger objects, uniform in colour or slowly moving, are sometimes incorporated
into background for a few frames. In conclusion, our extensive experiments, here
illustrated by a few examples, lead to the conclusion: We need some improvement in
foreground detection, which makes it more robust to the mentioned challenges.
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Figure 3.7: Forklift crossing low illumination area. Foreground results in bottom left
and right images, after applying GMM. The pedestrians on the right are detected
poorly due to a more static posture.

3.5 Pixel Saliency for Foreground Improvement

Due to the stated observations above, we improved GMM-based foreground detec-
tion using a saliency map-based foreground extraction scheme.

We observed that pixel-based saliency map values, generated by the method of
[154], can be useful for improving the average foreground quality obtained from the
GMM method. It was computationally fast. It took 0.5 seconds or less per frame to
compute a saliency map. Visual saliency maps are able to mark salient pixels in the
images and have good results with occluded objects in warehouse scenes.

Compared with the global contrast method, the local contrast is a relatively bet-
ter cue to be combined with the compactness cue. Local contrast methods can iden-
tify the foreground region [60], but they have a limitation that they identify visible
object boundaries rather than all the area. This effect can be minimized by the prop-
agation of saliency information based on diffusion [60].

To construct the pixel saliency map for the image, we converted it into a super-
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Figure 3.8: A forklift crossing low illumination area. Frame 15 and Frame 20 fore-
ground results in bottom left and right images, after applying GMM. Very slow re-
covery of background pixels have made the area of forklift foreground bigger than
actual.

Figure 3.9: Scenario of three pedestrians standing inside warehouse. Starting from
bottom extreme left, foreground is somewhat distorted. Some foreground pixels
from previous frames are still there. For bottom middle, one of the pedestrian, who
is more static, is poorly detected in foreground.



3.5. Pixel Saliency for Foreground Improvement 47

Figure 3.10: GMM results in a sudden camera movement scenario. A pedestrian is
detected at the left, standing static in a warehouse scene. Due to variance changes in
pixels due to camera motion, most of the background pixels appeared as foreground
pixels. See upper right, bottom right, and left images.

Figure 3.11: A scenario in which three pedestrians and a forklift are detected. One of
the three pedestrians is not detected in the bottom right-most result. This pedestrian
was having a slightly static posture, so became part of the background pixels.
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Figure 3.12: GMM results for occluded pedestrians. Two occluded pedestrians
shown with clustered white pixels.

pixel representation for constructing a resultant graph. We used SLIC [10] for an
abstract graph representation of an image. Each superpixel, generated by SLIC, cor-
responds to some node. There are three parameters used in here: The number N of
superpixel nodes used in Simple Linear Iterative Clustering (SLIC), σ2 which con-
trols the fall-off rate of the exponential function, and α which balances the fitting
constraints of manifold ranking algorithms. We experimentally set the parameters

Figure 3.13: Occluded forklift, foreground improvement based on pixel saliency,
without morphological improvement.
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Figure 3.14: Improved foreground based on pixel saliency. One of the pedestrians is
missed, due to poor visibility both in GMM result and its saliency map.

to N = 200, σ2 = 0.1, and α = 0.99 for experimentation. Next, the two saliency
maps are computed based on the compactness visual cue and local contrast [154].

The resulting saliency maps are propagated using a diffusion process and the
constructed graph later. Thus, a pixel-wise saliency map is generated from two com-
puted maps. This pixel-wise saliency map for the specific frame is binary thresh-
olded. We apply logical operations between salient binary thresholded pixels and
moving pixels from GMM. Finally, some morphological processing is used to gen-
erate improved foreground masks.

See Fig. 3.13 and Fig. 3.14, for the improvement in foregrounds, as per the pro-
posed improvement foreground strategy. It can be seen that foreground is better in
quality with less redundant pixels from the background, as part of the foreground.
See Fig. 3.13. Fewer foreground holes are present in Fig. 3.14.
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3.6 Deep Learning for Object Classification

After obtaining our improved foregrounds based on pixel saliency, we aim at classi-
fication. We use a pre-trained model of Google’s Inception v3 [122] and re-train the
top layer, for new categories.

We aim at overcoming the deficiency of the training data and limitations of com-
putation time or resources by adapting a classifier, trained for other categories, to
our dataset.

Basics and a Pre-trained Network

CNNs have a reduced number of parameters and connections compared to the
same-sized feed-forward networks. These characteristics make it easier to train and
test them. They have successfully been used to categorize images and activities or
tasks once trained with an excess of data samples.

We can use a pre-trained convolutional deep learning model for classification
tasks of new categories. We can retrain final or more layers of this model, and adapt
it to our new categories and to the limited dataset available to us. This approach is
called transfer learning. We select a pre-trained model architecture, replace the top
layer by a new layer, and adapt the newly added layer to our own data classification
task. We selected Google’s v3 architecture model for moving object classification in
warehouse scenes into two categories, either forklift or pedestrian.

Google’s Inception v3 [122] is an architecture that provides a good-performance
network with relatively low computational costs. To measure the classification ac-
curacy, there are two main measurements used in the deep learning literature [122];
this is the top-5 error rate and the top-1 error rate. They measure the rate at which
the architecture fails to include the correct class in the top-5 and the top-1 output,
respectively. Refer to 3.15 for the basic inception modular diagram.

Inception v3 achieved a 5.6 % top-5 error rate, and a 21.2 % top-1 error rate. An-
other famous architecture model, i.e., AlexNet [74] achieved a top-5 error rate of 15.3
% and Inception (Google Net) [121] achieved 6.67 % in the same category. Thus we
selected the Inception v3 model architecture, pre-trained on ImageNet. We added
a new Softmax and fully connected layer for training and re-trained it in Tensor
Flow 1.0 in the Ubuntu operating system. We re-train the model for classifying our
two object categories. The top layer receives as input a 2,048-dimensional vector for
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each image. Since the Softmax layer contains two labels, this corresponds to learn-
ing 4,098 model parameters, corresponding to the learned biases and weights.

Training, Validation and Testing

We prepare our training data set containing 4,000 images, for two object cate-
gories of forklifts and pedestrians. We limit the training data to these two cate-
gories. Refer to Fig. 3.16 depicting the thumbnails for these two categories of objects
of interest. Inception network rescales images to [W ×H] = [299× 299] pixels. So
these are the input-width and input-height flags for the images. Most of the data
we processed are from recorded video clips inside of a selected warehouse, show-
ing different scenarios. Testing, validation percentages can be set by adjusting their
flags in the script. We use default values for these, i.e. 80 percent training images
and remaining 10 percent each for validation and testing. The script uses image file
names for this data splitting. We use Intel Core i7 with 16 GB RAM for re-training
the pre-trained model.

First, a calculation of transfer-values is performed, for each of the images, ar-
ranged in training, testing, and validation sets. ’Transfer value’ is the term we use
for the output feature values, at the layer just before the final top layer. We used
these feature values to differentiate the objects for new categories. Since each image
is reused many times during training and calculation, the transfer-values are being
cached (stored on disk), to be reused repeatedly for training, validation, and testing
[129]. Once the transfer value computation is complete, the actual training of the
top layer of the network begins, for new labels, and for each image.

Figure 3.15: A basic Inception module.
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Figure 3.16: Training data with two categories: forklifts and pedestrians.

We have 4,000 training steps. Each step chooses ten images at random from the
training set, finds their transfer values from the cache, and feeds them into the fi-
nal layer to get predictions for the category. Those predictions are then compared
against the actual labels, i.e. pedestrians or forklift, to update the top layer’s weights
through the back-propagation process. We obtain the following measures for each
training epoch.

The training accuracy shows what percentage of the images, we used in the present
training batch, was labelled correctly with the true class.

The validation accuracy is the percentage on a randomly-selected set of images
from a different data set, which is not present in the training set. If the training ac-
curacy is very good, but the validation accuracy is not, that means that the network
is over fitting to training data, and we need more training samples for network gen-
eralisation.

Table 3.2: Results after 4,000 training iterations.

Accuracy (in percent) 4,000 steps

Training 98
Validation 96
Cross entropy 0.12
Test 99.5
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Figure 3.17: Ubuntu training shots for transfer learning inception v3 architecture
with warehouse data.

The cross entropy is a loss function which evaluates how well the learning process
for the model is executing. The training’s objective is to make the loss as small as
possible. If it is growing lower with each epoch, we assume that learning is progress-
ing satisfactorily.

As the process continues, we also observe an improvement in accuracy, i.e. in
test accuracy, the evaluation which is run on a group of images which are kept sepa-
rate from the training and validation images. This test accuracy is the best estimate
of how well the trained model will work for a specified new classification task. This
accuracy is based on the percentage of the images in the test set, that is given the
correct label after the model is fully trained. We achieved very good testing accu-
racy of 99.5 % after 4,000 training iterations. Refer to Fig. 3.17 for shots showing the
ubuntu terminal screen, with model training finished..

Results

See Table 3.2 for training, validation and test accuracy after 4,000 training itera-
tions. Cross entropy is also listed.

We tested on images that the model has not been trained for, to check how does
it generalize to unseen forklift and pedestrian images. See Fig. 3.18 and Fig. 3.19 for
the category % assignment by the model. Figures illustrate our general finding that
the model predicts the class with acceptable test accuracy for unseen images. Refer
to Table. 3.3 for detection evaluation measures noted after 10 and 20 training steps.
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Table 3.3: Evaluation measures for 10 and 20 training steps.

Evaluation Measure 10 steps 20 steps

True Positive 197 200
False Positive 1 2
True Negative 217 217
False Negative 1 8
Precision 99.5 99
Recall 94.7 96.2
f1 97 97.6
Accuracy 97.2 97.7

Hyper-Parameters

We have kept the hyper-parameters constant throughout training and testing,

Figure 3.18: Model test accuracy for forklift test images. Upper left: 99.92, upper
right: 86.8, bottom left: 46.1, and bottom right: 71.76.
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Figure 3.19: Model test accuracy for pedestrian test images. Upper left: 86.7, upper
right: 89.23, bottom left: 86.26, and bottom right: 99.5.

with learning rate 0.01. We have edited the hyper-parameter and print misclassified
test images, to print the evaluation metrics for 20 training iterations for simplicity.
These metrics are, true positive (TR), true negative (TN), false positive (FP), and
false negative (FN). We define them as follows in our warehouse scenario: TP is the
number of images categorized as forklifts in testing, TN is the number of images

Figure 3.20: Object tracking prototype shown, classifying and tracking the targets of
interest.
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categorized as pedestrians in testing, FP is the number of images categorized as
forklifts, although they were pedestrians in real, and FN is the number of images
categorized as pedestrians, although they were forklifts in real. Refer to Fig. 3.20 for
the results, with the proposed tracking prototype. It shows the localised and tracked
targets in red bounding boxes, with tests performed on warehouse data acquired in
phase 1.

3.7 Summary

For detecting and classifying objects in warehouse scenes, we propose a refinement
of a standard GMM method by subsequent use of saliency maps, and the applica-
tion of a CNN for the final step of object classification for the detected foreground
segments.

Using the Inception pre-trained model, with only top-layer re-training, we achieved
99.5 % classification accuracy for the specified task. The model is not able to gener-
alise well for the test images of forklift models for which we have a relatively small
number of training images only in our dataset. This can be seen at the bottom-left
of Fig. 3.18 where a forklift is misclassified.
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Computing Target Trajectories

Trajectory computation for forklift trucks and pedestrians is of relevance for many warehous-
ing applications. We record a varying range of forklift truck models, frequently occluded in
aisles and besides racks. There are various pedestrian activity areas, such as loading docks,
who are busy with loading or unloading the pallets. Robust target localisation is essential for
seamless tracking results. For localising forklift trucks/pedestrians, we train faster region-
based convolution neural network (faster-RCNN) on recorded data. We use detections from
the model output to configure a linear Kalman filter (KF) to estimate the trajectories in the
pixel co-ordinates. We also improve the forklift truck trajectory by computing pixel saliency
maps for the region of interest, detected by faster-RCNN. Our analysis shows that with ro-
bust target detection (fewer false positives and false negatives) from our trained network and
Kalman-filter-based state correction, tracking results are optimally close to the respective
ground truth (labelled by ourselves).

4.1 Introduction

For environments with complex backgrounds as in the case of warehousing (chang-
ing object scales and and view angles due to having multiple fixed cameras, back-
ground clutter and occlusions), obtaining robust detection results is challenging. It
limits most trackers to use only prediction information for track (or trajectory) pre-
diction for objects of interest. False negatives and false positives are very common
in these methods. The resulting track association problem (between detection and
target) is challenging.

Since multiple scales and models of the same forklift truck have to be dealt with,
detectors based only on shape, appearance, motion, colour or any other cue, may
not be sufficient for encoding target object features.

We conduct experiments for tracking objects in single forklift truck scenario se-
quences as well as in multiple-pedestrian and multiple forklift truck sequences. For
single target tracking, we localise a forklift truck bounding box by training a faster-
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RCNN (i.e. a special deep learning framework). We employ transfer learning with
a pre-trained AlexNet model [74]. Detection results are used to initialize a KF [64],
used for the prediction of an object’s future location in pixel co-ordinates.

Based on localisation coordinate feedback from the faster-RCNN trained net-
work, the KF corrects the predicted trajectory. We also improve the trajectory re-
sults by using a saliency map of the ROI (as detected by faster-RCNN). Using a ROI
saliency map [65], the KF performs state correction for every frame. The resulting
trajectory is improved and close to ground truth trajectory.

4.2 Our Tracking Model

We employ a challenging warehouse video dataset recorded in one of the produc-
tion warehouse, for this work.

We define a forklift truck’s current state at frame k as xk = (xk, vxk, axk, yk, vky, aky);
xk and yk are the centroid coordinates for a forklift truck, vk is the velocity of the
window centre, and ak is the acceleration. The main steps of the algorithm are as
follows:

1. For the previous k − 1 frame, find the bounding box for the detected forklift
truck using faster-RCNN. A pre-trained AlexNet model is retrained with fork-
lift truck training images involving varying forklift truck models, colours and
view angles. We use frames from our pre-recorded data.

2. 2) We calculate the centroid of the bounding box for the forklift truck. Using
detected centroid from each frame, we initialise a track. A track is a structure
representing a detected object in the video. The purpose of the structure is to
maintain the state of a tracked object.

3. Initialise a KF to predict the centroid of the corresponding track in the current
frame k based on the previous initialized state [64].

4. The predicted centroid-location, estimated by KF, is corrected using the corre-
sponding detected centroid for the forklift truck in the current frame.

5. Estimating the trajectory for the collection of frames, showing the path fol-
lowed by the forklift truck centroid based on KF parameters adjustment and
experimentation.
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ROI saliency-map-based trajectory improvement

To improve the forklift truck trajectory, we incorporate further improvement
steps. We refine the location of a centroid computed by faster-RCNN bounding
box criterion, based on ROI pixel saliency map [65, 149]. A centroid computed from
faster-RCNN bounding box centre criterion seemed to be less stable. We use im-
proved centroid computation, using the most salient region of the ROI. The points
recomputed for trajectory correction by the KF are more consistent and accurate
with respect to ground-truth centroid points. Ground-truth centroids are described
by pixel co-ordinates for the center of the ground-truth target location. The improve-
ment steps are as follows:

1. We compute a pixel saliency map for the detected ROI for frame k from faster-
RCNN [65].

2. We threshold the ROI based on a maximum-saliency area into a binary threshold
saliency map.

3. We calculate the centroid of the corresponding threshold area.

4. This time, the predicted centroid-location estimate by the KF, is corrected us-
ing the corresponding detected centroid points, from a binary threshold area.

Object detection using faster-RCNN

Faster-RCNN [111] is an extension of the fast-RCNN [53] object detection tech-
nique. Both techniques use CNN based framework. Refer to Fig. 4.1 for the archi-
tecture details.

RCNN [54] and fast-RCNN use a region proposal computation as a pre-processing
step before running the CNN. Region proposal algorithms include edge boxes [155]
or selective search, which are independent of the CNN. In the case of fast-RCNN,
the use of such algorithms becomes the processing bottleneck compared to CNN.
Faster-RCNN resolves this issue by implementing the region-proposal mechanism
using the CNN, thus making the region proposal a part of the CNN training and
prediction steps.

Faster-RCNN proposes a regional proposal network (RPN) which shares the fully
convolution layers with a fast R-CNN object detection framework. RPN is a fully
convolution neural network, which predicts both object proposals and objectness
scores. It takes an image (of any size) as input and outputs a set of rectangular
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Figure 4.1: Faster-RCNN architecture [111].

object proposals. The proposals and scores are fed into a fast-RCNN network for
model training. The RPN implemented as a fully convolutional neural network can
be trained end-to-end by back-propagation and stochastic gradient descent (SGD).

The faster-RCNN algorithm reduces the time of computation, enabling a cost-
free region proposal generation. It has good object detection performance with high
mean average precision (mAP) at ImageNet large-scale visual recognition competition
(ILSVRC 2015) and the Common objects in context(COCO 2015) competition.

Training data and pre-processing

Video data is recorded event-wise and activity-wise. Event-wise (ordered frames,
like order collection, reach forklift trucks moving down aisles, pallets are being
shifted to the racks, with forklift truck picking up the next order) are events. Above
combination of events, formulating an activity, like order storage.
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We formulate and annotate a training dataset for warehouse images for fork-
lift trucks category. In our experiments, we use a subset from our dataset, including
3, 077 training images with manually labelled ground truth bounding boxes for fork-
lift trucks and pedestrians defining 8,242 ROIs.

We resize images to [600× 600] pixels, to reduce the computation time and then
annotate with corresponding label categories. We use faster-RCNN detections both
for single and multiple object tracking trials. Each image contains 1 − 7 labelled
instances of a forklift truck or pedestrian. Matlab R2017a is used in model training.
We used GeForce GTX 1080 Titanium GPU with compute capability 6.1 and 12GB
memory.

Faster-RCNN training and evaluation

We use a transfer learning approach. Transfer learning involves retraining a few
layers of a pre-trained deep learning model for novel category classification tasks.
We select the AlexNet deep learning model. It is a 25 layered architecture pre-
trained on 1000 image categories. We re-train the last three layers of the model
with our own forklift truck recorded data.

Training has four main phases. In the first two steps, we train the region pro-
posal and detection networks separately as used in faster-RCNN. In the last two
steps, we combine the networks from the first two steps. A single network is cre-
ated for detection [111]. Training steps have different convergence rates. So, we
specify independent training options for each step. The learning rate for the first two
steps is set higher compared to the last two steps i.e. 1e−5. Since the last two steps
are fine-tuning steps, the network weights can be modified more slowly than in the
first two steps (1e−6).

During model training, image patches are extracted from training data. The two
vital training parameters, the positive overlap range and the negative overlap range, con-
trol which image patches are used for training. We specify positive training samples
as those samples that overlap with ground-truth boxes by 60% to 100%, as measured
by the bounding-box-intersection-over-union measure. Negative training sample used
overlap by 0% to 30%. The best values for these parameters are chosen by testing
the trained detector on a validation data set (set separate from training and testing
datasets).

To fully evaluate the detector, we test it on a testing warehouse dataset (we used
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600 images at multiple scales). We use the average precision evaluation measure over
all the detection results. This is the ratio of true-positive instances of forklift trucks
to all positive instances for the object, based on the ground truth. It provides a sin-
gle number that incorporates the ability of the model to make correct classifications
(Precision) and the ability of the detector to find all relevant objects of interest (Re-
call).

We achieved true positive = 367, false positive = 33, true negative =83, false neg-
ative = 17, thus Precision = 91.75, Recall = 95.5, and f1 = 93.7 We obtained a running
time for the detection as 5 frames per second on GPU.

4.3 Qualitative Results

Single forklift truck tracking

We obtain tracking trajectories that are close to manually estimated ground truth
trajectories (based on calculating the accurate centroids of forklift trucks in each
frame).

Scenario 1 shows a forklift truck moving straight down the aisle. There are not
much curves or twists in the path; the forklift truck is assumed to be moving with
constant velocity. The faster-RCNN results are shown in Fig. 4.2, left. For trajectory,
refer to Fig. 4.2, right: The left image shows the overlaid faster-RCNN detections
along with tracking points; right image shows the final (estimated) trajectory.

We improve the scenario 1 trajectory based on ROI saliency map thresholding;
see Fig. 4.5, right. It shows the heat map for the overlaid saliency map on original
images. Compare the estimated trajectories in Figs. 4.2, right, and 4.3. Fig. 4.3 de-
picts the trajectory correction based on ROI saliency thresholding.

Scenario 2 shows a forklift truck moving up the aisle from the left. Fig. 4.4, left,
depicts the faster-RCNN detection output. There is a missing detection for the fork-
lift truck in a couple of consecutive frames in this scenario. The KF robustly predict
the path followed by the forklift truck when the missing detection arises, based on
motion statistics. For trajectory, refer to Fig. 4.4, right. The left image shows the
overlaid faster-RCNN detection along with tracking points. The right image shows
the estimated trajectory.
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Figure 4.2: Scenario 1. Left. Faster RCNN detection results. Right. Estimated trajec-
tory.

Scenario 3 has a forklift truck moving from the right, occluded for a few frames
behind the racks in the aisle, and then moving up to the left. Our trained fork-
lift truck faster-RCNN model gives an accurate detection for the occluded forklift
truck. Refer to Fig. 4.5, left. Left image shows the overlaid faster-RCNN detection
along with tracking points. The right image shows the estimated trajectory.

Multiple target tracking

For multiple forklift trucks and pedestrians tracking, a detection association method
is used. In every up-coming frame, new RCNN detections are assigned to corre-
sponding tracks from the previous frame using the Hungarian algorithm [81]. The
assignment cost is minimized and calculated based on the Euclidean distance d be-
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Figure 4.3: Left. Saliency map with detected centroid in red. Middle. Trajectory
estimated by KF. Right. Ground truth trajectory.

Figure 4.4: Scenario 2. Left. Faster RCNN detection results. Right. Estimated trajec-
tory.

Figure 4.5: Left. Scenario 3 trajectory. Right. Heat map for pixel saliency overlaid on
frames.

tween the centroids of each pair of bounding boxes [26]:

d = ||pc(j)− pc(i)||2 (4.1)

where pc(i) and pc(j) are centroids of boxes i and j, respectively. A maximum dis-
tance threshold is used to rate the assignment such that matches are discarded if
d > dmax.

With new detections being assigned to existing tracks, the track is updated by
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Figure 4.6: Multiple target tracking. Left to right. Frames 35, 54, 88, and 121.
Coloured lines show track history of bounding box centroids for each tracked target.

estimating the state using the new observation. If a track is not assigned, i.e. a
new detection in the current frame, the new bounding box is predicted by the KF.
Matches between new detections in two consecutive frames create a new track. In
case of false detections, showing up for a few frames, or no detections associated to
a track for threshold track age, the track is deleted.

Refer to Fig. 7.5. Forklift truck tracks are shown in yellow and pedestrians with
red bounding boxes. Forklift truck tracks 3 and 11, and pedestrian tracks 4, 15, and
6 remain consistent with no ID switching in the sequence we tested (of 840 frames).
We have seen a few cases of track-ID switching. coloured lines show the track his-
tory of bounding box centroids, for each tracked target.

4.4 Quantitative Evaluation

Tracking performance can be mainly evaluated using two important evaluation
measures, i.e. multiple object tracking accuracy (MOTA) and multiple object track-
ing precision (MOTP). MOTA takes into account all configuration errors made by
the tracker i.e. false-positives, misses, number of mismatches, averaged over all
frames:

MOTA = 1−
∑
t(FNt + FPt + IDSWt)∑

tGTt
(4.2)

where FNt is the number of false-negatives or misses, FPt is the number of false-
positives, and IDSW is the number of ID mismatches/switches, where t is the frame
index and GT is the number of ground truth objects.

The multiple object tracking precision (MOTP) is the average dissimilarity be-
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tween all true-positives and their corresponding ground truth targets:

MOTP =

∑
t,i dt,i∑
t ct

(4.3)

where ct denotes the total number of matches in frame t and dt,i is the bounding
box overlap of target i with its assigned ground truth object.

Table 4.1: Left. Single-object tracking. Right. Comparison of tracking results on TUD
crossing sequence of [100] also showing our method. Last column shows our results
for forklift truck-pedestrian sequence.

Table 4.1 left, outlines the evaluation for single forklift truck tracking using se-
quence scenarios as discussed before. It outlines the improvement we achieve by
incorporating ROI saliency maps in our tracking framework. Corrections for bound-
ing box centroids based on ROI saliency map results in lesser localisation errors and
targets missed due to threshold distance. Eventually, MOTP and MOTA have en-
hanced accordingly. We use a singe object track as a special case of MOT with the
CLEAR MOT measure [27].

We benchmark our pedestrian/forklift truck tracking framework and tested it on
the TUD crossing public dataset [101]. TUD crossing is an outdoor sequence with
201 frames [100]. Table 4.1, right, outlines the methods we compare and the MOT
evaluation results [124].

Since for the forklift truck-pedestrian category, no public benchmarks are avail-
able for evaluation, a ground truth for our dataset sequence is formulated and we
evaluate tracking results for multiple forklift truck-pedestrian objects accordingly.
We obtain very fair results for multiple-object tracking; see Table 4.1, right.
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4.5 Summary

We successfully computed target trajectories under challenging and constrained
warehouse environment. Kalman filter is able to successfully track corresponding
targets, especially for the objects, for whom we are able to get accurate detection
results from trained faster-RCNN detector. Few challenging scenes involving par-
tially occluded pedestrians and forklift trucks, offered more false positives and false
negatives, that effected the tracker robustness and trajectory quality.

We also observe that faster-RCNN is better at trajectory computation for forklift
trucks, rather than pedestrians. Detection quality for pedestrian is not very optimal
under clutter and occlusions. We study that the reason is successive downsampling
degrades the feature maps associated with small region hypotheses for the pedes-
trian class and effect its classification accuracy. Calculated pedestrian and forklift
truck trajectories lead to further analysis tasks for pedestrian safety in warehousing.





Chapter 5

Improved Data Association Measure for MOT

The association of predicted object locations to its respective correct track over time is vi-
tal for robust tracking results. When employing a detection-based tracking approach, it is
important for handling object track identity switches which is one of the limiting issues
when designing multiple-object trackers. In this chapter, an object model is described by
its saliency-colour histogram. The dissimilarity between a reference track model and input
candidate detection (obtained by an object detector) is quantified by a measure derived from
the Bhattacharyya coefficient. The Bhattacharyya distance measure is used for validating the
confidence in tracks based on an adaptively obtained threshold value. This approach results
in improved tracker results under a track-identity loss scenario, especially under short-term
partial or full occlusions, clutter or scale variations. The suggested method for track assign-
ment, combined with a state-of-art real-time object detector You only look once (YOLO) led
to improved tracking results by reducing the number of miss-assignments within tracks.

5.1 Introduction

Multiple methods have been used in literature for the computation of cost affinity,
for the task of assigning candidate detections outputs to corresponding tracks in
online tracking applications. Traditionally, a cost assignment matrix is generated by
using various distance measures based on cues such as motion, appearance, colour,
saliency, texture, or a combination of them. The popular Hungarian method has been
used quite often for solving such an assignment in a multiple-object tracking (MOT)
paradigm [81].

In detection-based tracking frameworks, rather than employing features beyond
the detection component, object bounding box geometry (i.e. its position and size)
is often being used for motion estimation and data association. The simple online
and real-time tracker (SORT) is an example of such an approach. This is a Kalman-
filter-based tracking algorithm [25] with frame-to-frame data association being done
based on the intersection over union (IOU) measure. This measure expresses the
bounding-box overlap-ratio, and gives most effective tracking outputs at higher
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frame rates. SORT used the Hungarian algorithm for solving the cost assignment
problem. Its recent version is SORT with a deep association metric (DeepSort). See [139].

In DeepSort, for data association both motion and appearance cues were com-
bined to form a cost affinity matrix. It has an improved multiple-object tracking ac-
curacy (MOTA) compared to its predecessor. It mainly improved the problem of
identity switches in tracks. This is being achieved by adding a deep CNN that has
been trained offline to classify pedestrians on a large scale person re-identification
dataset. The cosine distance between detected pedestrians and their tracks in appear-
ance space is being used to re-identify them. This deep distance metric, in combi-
nation with the Mahalanobis distance, is used to compute detection-to-track affinity
for assigning multiple detections to their corresponding tracks [139].

Also, the complex joint probability data association based filter (JPDAF) tracker has
been revisited, in a tracking-by-detection paradigm. It is based on weighing object
measurements by their association likelihoods for generating state hypotheses [57].
In a multiple hypothesis tracking approach (MHT) [78], every possible state hypoth-
esis is tracked. For both these approaches, their computational complexity grows
exponentially with an increase in the number of objects to be tracked which makes
them impractical for online real-time tracking applications.

It is suggested that appearance-saliency-map guided data association measure could
be an advantage to verify the track identity especially in cases of occluding tracks or
multiple bounding boxes on the same target. A visual saliency map of the ROI could
be an important feature in validating the track assignment problem. A saliency dis-
tribution dissimilarity measure between a detected ROI and predicted candidate
track locations is described by the Bhattacharyya coefficient. It could be a useful
association metric if used in conjunction with the Mahalanobis distance. Though it
is used earlier in the mean shift tracking framework, here is it re-purposed for val-
idating confidant tracks. It is an optimal assumption due to its link to Bayesian er-
rors; although there are other distance measures like the Kullback distance measure
(but this violates one of the distance axioms) or the histogram intersection measure
(which is scale variant) [35].

In order to improve the robustness of the tracker, we combine both colour and
saliency features here, weighting their respective contribution automatically to the
cost likelihood function, making this a more informed metric for data associations.
Colour histogram feature incorporation makes the tracker robust to the scenes where
objects seem to be less salient than background and saliency cues seem to be less in-
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Figure 5.1: Left. Saliency detection example. Right. Identity switch scenario for short
term occlusion

formed measures for the association. The resulting strategy will improve the mostly
tracked trajectories (MTT) metric and decreases identity switches between tracks.

5.2 Concept

See Fig. 5.1. The left figure outlines a saliency detection example and the right de-
picts a scenario for a short term occlusion. It can be seen that two tracks are par-
tially occluded by each other for a short time. We argue that the IOU distance mea-
sure [24], between detections and predicted bounding boxes from the existing track
targets, is a non-optimum measure here. Track identity is lost only because the IOU
distance measure validates the red track but is actually the yellow track interfering
with the target, causing the track miss-assignment here (in the third frame, detection
belonging to the yellow track being assigned to the red track).

It is proposed that the corresponding detection will not be assigned to the red
track if the Bhattacharyya distance validation fails (due to dissimilarity between colour-
saliency distribution between predicted red track location and corresponding de-
tection) outlining that it is just occluding another track and not the original tracked
object. We suggest that the Mahalanobis distance will solve the Kalman motion un-
certainty problem; a saliency distribution similarity measure of candidate detection
and tracking, quantified by the Bhattacharyya distance measure bdist, will solve the
short-term occlusion problems. It will make the tracker more robust to occlusions.
This work is inspired by various recent multiple-target tracking algorithms which
have employed visual saliency maps for robust tracking outputs [6, 13, 26, 105, 118,
149, 157, 159].
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5.3 Tracking Framework

An object is being modelled based on its appearance and motion features. The dis-
placement of a specific object in the next frame is modelled by a linear velocity as-
sumption using a Kalman filtering framework. The camera is assumed to be static
and uncalibrated. The tracking problem is defined in 8-dimensional state space
(u, v, γ, h, ẋ, ẏ, γ̇, ḣ) which combines bounding box centre coordinates (u, v), their
aspect ratio γ, height h and velocities in image space. An object state at any time
instance t is defined directly by its bounding box coordinates (u, v, γ, h).

5.3.1 YOLOv3 Object Detector

Robust target localisation is attained using deep architectures such as Faster-RCNN
[111], SSD [98] or YOLO [112]. Few make use of sliding-window approaches or
region-proposal methods, to generate region hypotheses, and then to generate ob-
jectness scores. These methods proved to be more robust for detection for varying
scales of objects [112]. The YOLO architecture for detection has been released in two
versions: v2 and v3.

The reason for employing a deep learning framework like YOLO in this work is
getting reliable, i.e. accurate and real-time detection quality for tracking.

YOLO is an end-to-end single CNN architecture which detects the object’s ROIs
based on their bounding box predictions and class probabilities. It divides the input
image into a S × S grid. Moreover, if the centre of an object is located within that
grid, then the grid will detect the object of interest. Each grid predicts the bounding
boxes and a confidence score, where the confidence score quantifies how confident
the model is that the bounding box certainly contains a specific class of objects.

The IOU measure between a predicted box and ground truth is used to calculate
confidence for a detection. It outputs 1 for a perfect match case, and the opposite if
a predicted box is not present in the grid. YOLO is a sliding window-based method;
but, unlike a model-based Aggregate Channel Features(ACF) detector, it examines
the entire image during training. It learns the context of the object with respect to
its surroundings as well.
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Algorithm 1: Saliency-guided data association for computing track assign-
ment

Input : A new frame at time t with detections set from YOLO detector Dt

and track set T t−1

Output: The new track set T t

1 For each detection candidate from set Dt;
2 if Mahalanobis-distance < τm then
3 if Bhattacharyya-distance < τbdist then
4 Assign the corresponding detection to a track;
5 Obtain assigned track set T t−1assigned matched detection set Dt

matched ,
Unassigned track set T t−1unassigned and unmatched detection set
Dt
unmatched;

6 Predict first track subset by Kalman Filtering based on successful
association in previous step: Tracksett1;

7 Predict second track subset from unassigned track set or remove the
ones who crossed the max track age threshold τmax−age i.e. output
is Tracksett2;

8 Create third track subset from unmatched detection set Dt
unmatched

i.e. Tracksett3;
9 Combine the three track subsets to form new candidate track set

T tcandidate;
10 T tcandidate formed new input for the algorithm at time t+1 with

detections set Dt+1 For each detection candidate from set Dt+1, find
Mahalanobis-distance b/w each detection and corresponding track
mean and Bhattacharyya-distance quantifying degree of similarity
in their saliency distributions, go to Step 3 if condition is met.

11 end
12 end

YOLO version 3 (YOLOv3) is an improved version of its earlier version YOLOv2,
now using multi-scale training, a better classifier and image patches of 320× 320; it
runs in 22 ms at 28.2 mean average precision (mAP). The trade-off between speed
and accuracy of the network is checked during training by changing the size of the
network.
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Figure 5.2: Architecture for Yolo-v3 [150]

5.3.2 Training Data

The YOLOv3 object detector is trained for categories: pedestrians and forklift trucks.
The detection outputs are employed to track pedestrians and trucks in occluded and
cluttered warehouse environments (tracking by detection approach).

We have 3, 077 training images with manually labelled ground truth bounding
boxes for forklift trucks and pedestrians, defining 8, 242 ROIs. Each frame contains
1− 7 labelled instances of a forklift truck or pedestrian. Subsets of image data from
the Caltech pedestrian [30] and INRIA pedestrian datasets [67], are also added to
get enough training samples for pedestrians.

The pedestrians, present in these subsets, with different degrees of occlusion,
wearing different costumes, have many kinds of scales and changing postures.
GeForce GTX 1080 Titanium GPU with compute capability 6.1 and 12GB memory is
used for model training. Table 5.1 summarises the number of training images and
ROIs used for every image subset.
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Table 5.1: Datasets

Dataset Caltech pedestrian subset [30] INRIA person subset [67] Our dataset

Training images 10,000 614 3,077
ROIs 22,000 1,237 8,242

Figure 5.3: Graphical comparison to other architectures [151]

5.3.3 YOLO Training and Evaluation

For model training, CNN weights that are pre-trained on the ImageNet dataset are
used, i.e. weights from the DarkNet53 model. DarkNet model inputs a text file for
each image and every ground truth object in the image in the format x, y, width, height
where these parameters are relative to the image’s width and height. A text file with
names and paths of the images to be trained was supplied to DarkNet to load the
images to be trained on. A test text file for testing and validation text file for valida-
tion images is also created.
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After training the pre-trained DarkNet53 model for about 20k iterations (13, 500

images), a validation accuracy of 91.2 and a testing accuracy of 90 % is obtained.
This was without any data augmentations or other transformations. Random flag
parameters for multi-scale training were enabled in the script, resulting in robust-
ness for detecting objects in different image resolutions. The input image size by
default was set to a resolution of (416×416), but was altered every 10 batch. Result-
ing test accuracy was good enough for this work.

5.4 Data Association

The Mahalanobis distance, which is the squared distance between predicted object
states (by a Kalman filter) and incoming new measurements, can be written as fol-
lows:

d1 (i, j) = (dj − yi)T S−1i (dj − yi) (5.1)

where (yi, Si) denotes the projection of the i-th track distribution into measurement
space and dj denotes the j-th bounding box detection. It provides information about
possible object locations based on motion that helps in short term prediction of
tracking a state. It eliminated unlikely assignments by thresholding at 95 percent
confidence interval, computed from the inverse χ2 distribution χ̃2 [139].

We denote by p∗ the reference track saliency-colour model; p (xt) is the can-
didate detection model. Then, the distance between the two is described by the
Bhattacharyya distance (bdist) [118]:

d2 (i, j) = bdist
[
p∗,p (xt)

]
=

[
1−

M∑
u=1

√
p∗u (xo)pu (xt)

] 1
2

(5.2)

For this work, the degree of saliency of a region with respect to its neighbour-
hood is described by the Euclidean distance between the pixel vector and the aver-
age vector of the input detection in the Lab colour space [8]. It is described by:

S (x, y) = ||I∗µ − I∗σ (x, y) || (5.3)

where I∗µ is the mean image feature and I∗σ is the Gaussian blurred image, using
a5× 5 separable binomial kernel.

Also, the colour or saliency distribution of a region of interest ,described by de-
tection, centred at location x, is given by:

pu (x) = C

Np∑
i=1

k

(
||xi − x

h
||2
)
δ
[
b (xi)− u

]
(5.4)
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Figure 5.4: Saliency guided data association

where C is a normaliser, δ is the Kronecker function, k is a kernel with bandwidth h,
Np is the number of pixels in the ROI and b (xi) is a function that assigns one of the
m bins to a given colour or saliency at location xi. The kernel k is used to consider
spatial information for adaptively lowering the values for far pixels [118]

The influence of each distance measure on the combined association cost can
be controlled through a hyperparameter Λ. Colour and saliency will be weighted
automatically according to its value for deciding the final affinity for corresponding
detections. The cost optimisation is being solved optimally through the Hungarian
algorithm:

ci,j = Λd1 (i, j) + (1− Λ)d2 (i, j) (5.5)

Refer to Fig. 5.4 for visualising the concept. It can be seen that for detection 1,
bdist between detection 1 and track 1 fulfils the bdist criterion and also lies within
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the Mahalanobis distance threshold, so it is being assigned to track 1. The distance
of detection 1 to track 2 violates the bdist threshold. The same principle applies for
the detection 2 assignment here:

1. For the task of assigning detections to current track targets, every targets bound-
ing box geometry is predicted by the Kalman filter.

2. The tracker is initialised by using the geometry of the object bounding box,
with the initial velocity set to value zero.

3. Covariance of the velocity component is initialised with a large value to model
uncertainty in assumption.

4. When a detection is associated to the target, the target state is updated by this
detection and Kalman filter is used to solve the velocity components optimally.
But if the detection is not associated to the target identity, then its state is pre-
dicted rather than corrected by the filter using the respective motion model.

5. A threshold is imposed to reject assignments where the detections lie beyond
that region of assignment both for Mahalanobis and Bhattacharyya distance, i.e.
should lie within the thresholds τm and τbdist (These thresholds are selected
adaptively based on the scenario).

6. For creating trackers, we consider any detection that violates both distance
criterion, to signify the existence of an untracked object.

7. Tracker has to undergo a trial period where the target needs to be associated
with detections to have enough evidence in order to prevent tracking of false
positives. Tracks are terminated if they are not detected for τmax−age frames.
This ensures to prevent an increase in the number of trackers caused by pre-
dictions over longer durations without corrections from the detector.

8. In all experiments τmax−age is set to 30 frames contrary to max-age of one
frame (as in SORT) [24] that resulted in many identity switches among tracks).

5.5 Quantitative Evaluation

To evaluate tracking performance, two evaluation measures are employed in this
work, i.e. multiple object tracking accuracy (MOTA) and multiple object tracking preci-
sion (MOTP). We conducted experiments with the proposed improvement in data
association metric. We use detections for pedestrians and trucks with a confidence
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Table 5.2: Tracking metric results improvement depicted by increase in value of
MOTP, MOTA and MT(mostly tracked trajectories).

Quantitative evaluation

Metrics With IOU
measure

with
saliency
guided bhat-
tacharyya
distance
measure

MOTP 71.1 73.9 ↑
MOTA 61.3 63.7↑
FAF 0.1 1.3
MT 13.2 20.1 ↑
ML 15.4 43.1
FP 267 345
FN 401 325
ID SW 25 19
Fragment. 27 82

threshold of .25 or higher from YOLO for our work.

Refer to Fig. 5.5. Tracking results from our warehouse data is shown for pedes-
trians and trucks, partially occluded by each other. It can be seen that there is no
identity switching due to the use of distinct colour-saliency map validation step.

We also tested it on the TUD-Stadtmitte sequence from the MOT challenge 2015

Figure 5.5: Left. Occluded forklift tracking Right. Multiple occluded pedestrian
tracking



80 5. Improved Data Association Measure for MOT

Figure 5.6: Example of a challenging scene from the TUD-Stadtmitte sequence
showing pedestrians with similar looking appearance and different poses [100]

dataset [100]. It is recorded with a static camera placed at 2 meters height showing
people walking on the street. It is an outdoor sequence with 179 frames, 10 tracks,
1, 156 bounding boxes, 640× 480 resolution and 25 fps. Pedestrians are shown par-
tially occluded with low illumination in background and object contrast is minimal.
Figure 5.6 is a shot from the sequence.

Check Table 5.2 for quantitative results improvement by incorporation of the
proposed saliency guided data association method.

Table 5.3 outlines the comparison with other state of art multiple objects track-
ers [24, 139]. Our implementation runs at around 20 frames/second. Hence, given a
modern GPU, the system will operate in real-time. Since for the forklift tracking cat-
egory, public ground-truth detections and tracks are not available, we formulated
ground-truth dataset for evaluation.
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Table 5.3: Quantitative comparison with [24, 139]. Last column lists results for a
forklift-pedestrian sequence from warehouse data

Sequence:TUD Crossing

Metrics [24] [139] Ours Results
MOTP 63.1 71.9 72.3 73.3 ↑
MOTA 35.3 53.7 56.2 75.1↑
FAF 2.3 1.3 1.1 1.6
MT 12.5 38.2 41.2↑ 55.3↑
ML 25.4 14 21 23.1
FP 762 1062 833 513
FN 401 325 256 1056
ID SW 442 245 331 254
Fragment.186 102 142 317

5.6 Summary

We aimed at a deep exploration into an algorithm for robust multi-object tracking,
for further limiting problems known from testing previous trackers. Such robust
track association criterion will definitely help to deal with occluding moving targets
tracking and dealing with track identity switch problems, especially in the MOT
paradigm.





Chapter 6

Saliency-enhanced Correlation-filter-based
Visual Tracking

A discrete correlation-filter-based multi-cue-analysis framework is constructed by fusing dif-
ferent feature types to form potential candidate trackers that track the target independently.
The selection of corresponding cues and the exploitation of their individual or combined
strengths is a less researched topic especially in the context of ensemble tracking. Every
candidate tracker from the ensemble is chosen according to the degree of its robustness per
frame. We argue that, if each of the candidate trackers is guided by higher-level semantic
information (i.e. pixel-wise saliency maps in the ensemble-based tracker), this will make
tracking better to cope with appearance or viewpoint changes. Recently, saliency prediction
using deep architectures have made this process accurate and fast. The formation of mul-
tiple candidate trackers by saliency-guided features along with other different handcrafted
and hierarchical feature types enhances the robustness score for that specific tracker. It has
improved multiple tracker-based DCF frameworks in efficiency and accuracy as reported in
our experimental evaluation, compared to state-of-the-art ensemble trackers.

6.1 Introduction

For multi-cue correlation-filter based visual tracking (MCCT), an adaptive tracking
switch mechanism is employed where the tracker adaptively transfers the tracking
task to one of the ensemble candidate trackers [138]. The candidate, which results in
precise target localisation and which is consistent in its results, is chosen to track in a
given frame. Such tracking candidates might be constructed by fusing handcrafted
low-level features, e.g. HOG [38], colour names [136], or middle and higher level
deep activation features using outputs from conv3-4, conv4-4, and conv5-4 layers
from a VGG-19 pre-trained model [116]. See Table 6.1 for an example of an ensem-
ble. State-of-the-art results on visual recognition tasks are obtained by exploiting
rich hierarchies in features in deep architectures and learning multi-layer correla-
tion response maps. Response maps are analysed in a coarse to refined manner to
include the features that are most appropriate for tracking tasks.
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Table 6.1: Candidate-trackers selection.

Trackers Feature type

Tracker I Sal-feature and low (HOG)
Tracker II Sal-feature and middle (conv3-4) of VGG-19
Tracker III Sal-feature and high (conv5-4) of VGG-19
Tracker IV Sal-feature and low, middle
Tracker V Sal-feature and low, high
Tracker VI Sal-feature and middle, high
Tracker VII Sal-feature and low, middle, high

For deep CNNs, features from later layers convolution layers are more closely re-
lated to object category level semantic information. These feature maps though are
robust to intra-class appearance variations but they fail the objective to locate tar-
gets precisely. The output of earlier convolution layer outputs is more appropriate
for target object fine-spatial appearance information, but not for the semantics [102].

We propose that saliency is a discriminant feature that aids in differentiating the
target from the background and can be a useful and efficient way to attain robust-
ness against target appearance changes at a semantically higher level. We argue
that incorporating a saliency feature as a complementary higher-level feature, and
learning correlation filters for them separately, will aid the tracking quality for each
tracker in an ensemble. A candidate tracker employing this semantic aware higher-
level feature will benefit in track accuracy and precision and thus the final tracking
robustness against appearance and viewpoint changes.

This can also be verified in a performance gain attained for the candidate track-
ers. The corresponding weight for the saliency response will be chosen adaptively
according to its consistency over time for the saliency feature in consecutive frames.
We treat saliency and other features separately [14] for each tracker. This benefits
the framework effectively, especially under occlusions and frequent scale variations
of the target.
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6.2 Saliency Feature

Saliency-based trackers show the usefulness for using saliency features over various
other cues such as motion, texture, gradient or colour. An object is represented and
tracked based on a human attentive mechanism using visual saliency maps. These
maps aid to segment the regions based on spatio-temporal characteristics in videos
and images.

A combination of various features like colour-texture, colour-saliency, or colour-
direction is explored. To track non-rigid objects, spatio-temporal discriminative

Figure 6.1: Saliency detection example.
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saliency maps were used. This gave accurate regions occupied by the targets as
tracking results. A tailored fully convolutional neural network (TFCN) was developed.
It was used to model the local saliency of regions of interest. Finally, these local
saliency maps were fused with a weighted entropy method, resulting in a final dis-
criminative saliency map [157].

In this work, deep hierarchical saliency network prediction (DHSnet) is employed to
output the saliency map of an image using a deep CNN. It uses the whole image
as a computational unit and feedforwards the image for testing without any post-
processing. First, a coarse saliency map is generated for the global view for a rough
estimation of salient objects. By incorporating local context in the image, a refined
saliency map is obtained through a recurrent CNN. This refinement is done in many
steps hierarchically and successively [96]. Refer to Fig. 6.1 for saliency detection ex-
amples.

6.3 Our Approach

A brief outline of our approach is as follows:

1. First, a discrete correlation filter is learned from the appearance of the ob-
ject at a given frame. Features are extracted from chosen ROI where fsal and
fHOG−CNN denotes the feature maps for saliency, and HOG and CNN.

2. Second, the previously learned correlation filters for saliency and other fea-
tures denoted by gsal and gfeat, respectively, are convolved with the extracted
feature maps for them in order to obtain responses (scores) Rsal and Rfeat.

3. Finally, the filter is updated according to the new appearance which is ob-
tained from the location found in the second step according to the proposed
adaptive update strategy.

These steps will become more clear with the explanations below.

The robustness of different trackers varies with regard to various feature mod-
els employed for them. One dynamic feature model will not suffice to deal with
varying challenges faced by the visual trackers [102]. Low, middle and high-level
features are combined into 7 candidate trackers (see Table 6.1), working indepen-
dently in an ensemble where the low-level HOG feature is 31-dimensional. Settings
are re-used as employed in hierarchical convolutional features (HCF) for different



6.3. Our Approach 87

level response maps [102]. Tracking diversity is achieved by adaptively choosing
the trackers according to its robustness for the current frame.

Trackers using just a single feature may not be sufficiently robust to an optimum
extent, but the addition of a complimentary sal-feature improved the results. We
tested the sal-feature-guided strategy for our 7 different trackers in the ensemble
and found that the response for each candidate was improved. Tracker VII, based
on three kinds of feature hierarchy performances, is also improved and more robust
to appearance changes. Section 6.4 depicts detailed quantitative experimental re-
sults.

Saliency response and other feature response maps from each tracker are ob-
tained separately and denoted as Rsal and Rfeat, respectively. Refer to Fig. 2 for an
overview. Every tracker is proposed to employ saliency as a high-level complemen-
tary feature, though the reliability of the saliency needs to be estimated for each
incoming frame.

First, we estimate the saliency-based on DHSNet [96]. This saliency prediction
network is based on a hierarchical end-to-end deep convolution neural network.
This network learns global saliency cues like contrast, objectness, compactness with
the added recurrent neural network to refine the saliency map details by adding lo-
cal contextual details. This network is trained by employing a bulk of images and
their corresponding saliency masks.

To estimate the similarity between the vectorized saliency maps Salt and Salt+1

at frames t and t+ 1, cosine similarity is used which is described by:

Csim (Salt, Salt+1) =
Salt · Salt+1

||Salt||2 · ||Salt+1||2
(6.1)

A maximum contribution of the saliency is selected adaptively based on the previ-
ous and current saliency response. The weight of the saliency for frame t is given
by:

w (t) = M

[
(1− λ)w (t− 1) + λ · Csim (Salt, Salt+1)

]
(6.2)

We choose M to be 0.5; that is the maximum suggested contribution assigned to
the saliency feature. This value is adaptively chosen based on scene statistics. The
learning rate λ is chosen to be 0.01 owing to the intention that the update of saliency
is assumed to be gradual due to noise. The initial weight of saliency is chosen to be
w(t = 0) = 0.25, i.e. half of the possible maximum contribution. We base our choice
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Figure 6.2: Suggested update concept for feature and decision fusion.

on settings employed by [14].

6.3.1 Tracker Robustness Measurement

Each tracker is employing the same region of interest and sharing similar training
samples during filter learning and the tracking update process. By exploiting the
refined feedback results from each tracker for target localisation, weak tracking out-
puts, especially during tracking drift scenarios and failures, are improved. This is
the main reason for framework computational efficiency as well. The feature extrac-
tion is done only twice, rather than 14 times.

Peak to sidelobe ratio (PSR) is commonly used in a standard DCF framework to
estimate the reliability of tracking outputs. Often this measure fails to quantify the
reliability properly when un-reliable samples have the same PSR as the target of in-
terest. Robustness score for the candidate trackers is computed from two measures.
tracker pairs evaluation stands for the degree of consistency between pairs of trackers
for each frame, and tracker self-evaluation stands for the trajectory smoothness of a
candidate tracker hypothesis at every frame.

Let {T1, T2, T3, ...., T7} denote the seven hypothesis trackers. In the t-th frame,
Tracker i’s bounding box is denoted by BtTi

, and Tracker j’s bounding box accord-
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ingly by BtTj
.

The overlap ratio OtTi,Tj
is defined by:

OtTi,Tj
=
BtTi
∩BtTj

BtTi
∪BtTj

(6.3)

Tracker pair robustness score is given by:

Scoretpair (Ti) =
M t
Ti

F tTi
+ η

(6.4)

where M t
Ti

is the mean of the overlap ratios and F tTi
is extent of fluctuation of over-

lap ratios for t frames computed as in [138].

Self evaluation measure for candidate tracker is measured by Euclidean distance
shift between centres of the previous and current bounding boxes denoted by dis-
tance dtTi

, and is given by

exp

(
−1

2σ2
Ti

(
F t

i

)2) (6.5)

where σEi
is the average of the width and height of bounding box given by tracker

i.

Tracker robustness degree is the linear sum of both pair-wise evaluation and self-
evaluation. After evaluation of the overall reliability for each one, the tracker with
the highest robustness score is selected and its tracking result is taken for the current
frame:

Rt (Ti) = Rtpair (Ti) +Rtself (Ti) (6.6)

See Fig. 6.3.

6.4 Experimentation and Analysis

For experimentation, the DCF method is employed for forming candidate track-
ers [63]. MATLAB 2017a is used for tracker implementation. A GeForce GTX 1080
Titanium GPU with compute capability 6.1 and 12GB memory is used for exper-
imentation and testing. The MatConvNet toolbox is used for extraction of deep
features from VGG-19 [116]. This framework runs at about 1 FPS on CPU. The GPU
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Figure 6.3: Left. Tracker with peak robustness measure of 1 will be chosen for track-
ing for that frame. Right. Depicts bounding-box tracking outputs for all candidate
trackers.

version of MCCT tracker runs at about 7 FPS.

The evaluation measure for tracking is chosen as the area under success curve
(AUC). It is plotted between overlap threshold and success rate. The overlap be-
tween the ground truth and tracking result is calculated as follows:

O (T,GT ) =
|T ∩GT |
|T ∪GT |

(6.7)



6.4. Experimentation and Analysis 91

If O (T,GT ) is greater than an overlap threshold, then tracking is a success. The
success rate is the ratio of successfully tracked frames to the total number of frames
in the sequence.

AUC is the average of all success rates at different overlap thresholds when these
threshold values are evenly distributed [79].

In One-Pass evaluation (OPE), the tracker is initialized in the first frame, so track-
ing is sensitive to frame number and bounding box spatial location for the target.
The average success is calculated.

Spatial Robustness evaluation (SRE), tracking is done by starting it at various po-
sitions employing 4 spatial shifts around the centre, corner and scale variations.
Amount of this shift is 10% target with scale variations of 0.8, 0.9, 1.1, and 1.2. The
average performance is reported with tracker evaluated 12 times.

For temporal robustness evaluation (TRE), the video is divided into 20 segments
and tracking is performed for 20 segments with different initial frames each time.
Average performance is calculated for all video segments.

We employed two datasets for evaluation. One is the OTB − 2015 [141] dataset
and the other one is V OT2016 [79, 80]. Trackers are evaluated using an overlap
threshold of 0.5. Overlap success plots using one-pass evaluation are generated as
well for OTB-2015.

Refer to Fig. 6.4 for OPE comparative values for mean distance precision at a
threshold of 20 pixels, mean overlap precision at 0.5 threshold and AUC for OTB-
2015 dataset.

Also under challenging attributes like low illumination, clutter, occlusion or mo-
tion blur, OPE is evaluated for the dataset for experimental comparison to other
state of art trackers like MEEM [158], ECO [37], ECO-SAL [14], VTD [82], VTS [83],
LSK [97], FRAG [11], CXT [36] and baseline MCCT tracker [138]. Refer to Fig. 6.5 for
OPE results for those.

The visual object-tracking challenge 2016 (VOT2016) [79] benchmark provides
an evaluation toolkit. It re-initializes the tracker to the correct position to continue
tracking when tracking failure occurs. In VOT2016, the expected average overlap
(EAO) is used for ranking trackers, which combine the raw values of per-frame
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Figure 6.4: Mean DP, OP and AUC results on OTB-2015 sequence

accuracies and failures (tracker robustness). EAO is an estimation of the average
overlap; it is expected for a tracker to attain on several smaller sequences [80]. See
Fig. 6.6.

Table 6.2 details the quantitative comparison between the EAO scores, accuracy
and failure rate for comparative study. Fig. 6.5 provides an insight into trackers
numbered in order of EAO scores.

OPE, SRE (spatial robustness evaluation) and TRE (temporal robustness evalu-
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Figure 6.5: One-pass evaluation OPE plot for various attributes.

Table 6.2: Accuracy, robustness and EAO scores for various state-of-the-art trackers

Quantitative evaluation

Metrics MCCT [138] ECO [37] ECO-
SAL [14]

MEEM [158] ours

Accuracy 0.56 0.51 0.59 0.55 0.58
Failure
rate

0.74 0.72 0.91 0.85 0.71

EAO
score

0.37 0.35 0.36 0.31 0.39
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Table 6.3: Comparison to the baseline: One pass evaluation (OPE)

One-pass Evaluation-OTB2015

OC LI SV BKC
MCCT 0.71 0.71 0.76 0.64
Ours 0.76 0.61 0.78 0.71

Table 6.4: Comparison to the baseline: Spatial robustness evaluation (SRE)

Robustness analysis-OTB2015

OC LI SV BKC
MCCT 0.61 0.69 0.66 0.64
Ours 0.66 0.61 0.68 0.71

ation) results for OTB2015, under various challenging attributes, are shown in Ta-
bles 6.3, 6.4and 6.5, respectively. We denote the occlusion challenge by OC, low
illumination as LI, scale variation challenge as SV, and background clutter as BKC.

It can be seen that under low illumination (LI) conditions, our framework results
have not shown much improvement over the MCCT framework. The reason is that
saliency prediction is less discriminant in such scenes.

Figure 6.6: EAO curve with trackers labelled in order of EAO values
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Table 6.5: Comparison to the baseline: Temporal robustness evaluation (TRE)

Robustness analysis-OTB2015

OC LI SV BKC
MCCT 0.74 0.79 0.67 0.67
Ours 0.66 0.71 0.78 0.70

6.5 Summary

We propose novel saliency-guided correlation tracking with 7 candidate trackers.
Our experimental results demonstrate that employing saliency features as comple-
mentary features in multi-cue-based ensemble tracking helps improve the tracking
performance. We suggest that saliency map-based region semantic information has
further potentials when used as a higher-level tracking feature.

Moreover, we have shown that ensemble tracking benefited from improved can-
didate tracker robustness. We assume that this feature can benefit many other base-
line tracking paradigms as well. This scheme also helps to reduce the tracking model
drift problem caused by occluders. It will prevent trackers corruption over time.
Finally, extensive experiments show that our tracker outperformed state-of-the-art
methods on popular benchmark datasets.
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MOT Comparative Analysis

We perform an experimental comparative study for model-based GMM Kalman tracker and
tracking by detection technique, using two deep learning models (Faster-RCNN and Yolo-
v3). For optimum analysis of the strength and the weakness of each of the tracking algorithms
under various environmental challenges, we categorised the video sequences used for the ex-
perimental comparison into three main attributes. These attributes includes low illumina-
tion, occluded and cluttered warehouse areas. These sequences are chosen from warehouse
recorded video data. This chapter briefly reports the outcomes for this experimental study.

7.1 Experimental Sequences

Three video sequences are chosen for experimental comparison study, for three
main challenges. Refer to Table 7.1 for the sequence characteristics. Columns 3

and 4 list the number of frames and the number of tracks in each sequence.

Table 7.1: Sequences used for comparison

Sequences Attribute Frames Tracks

Seq1 Low illumination areas 150 7
Seq2 Occlusions 614 21
Seq3 Cluttered areas 614 9

We evaluate the results under considered attributes, for each studied tracking
technique separately. It helps to obtain an insight into which method is most suit-
able to which warehouse scene challenge.

We also formulate a ground-truth target location dataset for the corresponding
target’s ground-truth positions and ground-truth trajectories manually for the con-
sidered sequences. This help in robust tracking evaluation results. For example,
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refer to Figs. 7.1 and 7.2 for the ground truth for the objects. It also shows the corre-
sponding detections from Faster-RCNN detector.

Figure 7.1: Top. Ground truth objects are shown in red. Bottom. Faster-RCNN detec-
tions are shown in bottom frames in brown colour

Figure 7.2: Top. Ground truth objects are shown in red. Bottom. Faster-RCNN detec-
tions are shown in bottom frames in brown colour

For fair comparisons, corresponding parameters of each tested method are fixed
for all the considered sequences. Refer to Figs. 7.3, 7.4 and 7.5 for qualitative evalu-
ation results for GMM, Faster-RCNN and Yolo-v3 based trackers.
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Figure 7.3: For three sequences, resulting tracked bounding boxes are shown. Top
row depicts the tracked bounding boxes for each sequence and bottom row shows
the corresponding foreground regions.
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Figure 7.4: Top row depicts the trajectory computed by faster-RCNN based tracker.
Bottom row, left. Saliency map with detected centroid in red. Middle. Trajectory
estimated by Kalman. Right. Ground truth trajectory

Figure 7.5: Multiple target tracking. Left to right. Frames 35, 54 and 88 using Yolo-v3
tracker with bounding box shown for each tracked target

7.2 Evaluation metrics

We observe that there is no single tracking approach that is ideal to handle track-
ing targets of interest, under all the three mentioned challenging attributes. For
fair evaluation, many vital factors such as the target of interest position accuracy
(bounding box location), robustness over different appearance or scale changes,
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Table 7.2: Average quantitative comparison for model and deep-learning based
tracker. Comments are listed in last column.

tracking time efficiency, memory consumption, and ease of usage for tracking method,
are studied. Even in one frame with the tracking output and ground-truth object
state, there could be several qualitative and quantitative evaluation metrics to mea-
sure accuracy and tracking performance.

Generally, for the multiple object tracking problem, quantitative performance is
evaluated using two measures i.e. multiple object tracking accuracy (MOTA) and
multiple object tracking precision (MOTP) [101], [27]. MOTA takes considers all
configuration errors for tracker results (i.e. false-positives, false negatives), aver-
aged over all the frames:

MOTA = 1−
∑
t(FNt + FPt + IDSWt)∑

tGTt
(7.1)

where FNt is the number of false-negatives or misses, FPt is the number of false-
positives, and IDSW is the number of track identity switches, where t is the frame
index and GT is the number of ground truth objects.

The multiple object tracking precision (MOTP) is the average of the dissimilarity
between all true-positives and their corresponding ground truth locations:

MOTP =

∑
t,i dt,i∑
t ct

(7.2)

where ct denotes the total number of matches in frame t and dt,i is the bounding
box overlap of target i with its assigned ground truth object.
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Quantitative comparison results have been summarised in Table 7.3 for each
method for the three considered sequences. It is seen that targets are consistently
tracked over large parts of Sequences 1 and 3 for the model-based GMM method.
Also, targets are tracked over considerable parts of all Sequences 1, 2 and 3 using
tracking by deep model-based detection.

Table 7.2 lists the studied specific observations regarding model and deep-learning-
based tracking methods. It also shows the quantitative comparison of the two cate-
gories of methods compared, based on MOT evaluation metrics. It can be seen that
Yolo-v3 based tracking by detection techniques gave the best tracking quality and
best quantitative results for the considered warehouse challenging scenes.

7.3 Summary

Evaluation of the model-based GMM technique and deep-learning-based tracking
frameworks in an industrial environment of warehouse is carried out. We conclude
that when a deep learning model is supplied with enough and variable training
data (with targets in every pose, scale, background or position), they are accurate
at target localisation and in avoiding tracking errors as compared to model-based
methods. Robustness of target detection accuracy is very important for seamless

Table 7.3: Comparison of tracking results on three challenging sequences using
MOT evaluation measures [100]
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target tracking, with minimal track fragmentation and identity switching scenarios.

Any deep model needs to be supplied with training data, that includes targets
under a variety of challenging attributes and background complexity. Otherwise, a
single trained model might only be good enough for only specific custom tasks it is
trained for.

A model trained for one set of attributes and video frames might not be good
enough for a set of others. Robustness is a relative measure in this regard and highly
variable as per the scene statistics.

Using deep features and models for simplifying vital tracking sub-tasks other
than only target detection and localisation is also valid. The tasks that can benefit
might include cost affinity computation for assignment of detections to tracks and
handling track re-identification problem in multiple target tracking.

We observe that model-based methods are better at finding regions of interest
but comparably see fewer variables according to scene attributes. Possibly, a hybrid
model and deep feature-learned network can work best in the warehouse’s chal-
lenging scenarios.

We assume that optimum quality of MOT results will lay the ground for sub-
sequent higher-level computer vision tasks such as people action recognition and
process improvement. Furthermore, we suggest that such a detection and tracking
framework would be useful for increasing work safety at the warehouses.





Chapter 8

Conclusions and Future Work

This chapter reports the conclusions and possible future research directions for tracking mul-
tiple targets in warehouses.

8.1 Detection of Occluded Targets

This work is mainly based on using tracking by detection technique where multi-
ple objects are tracked, based on detection outputs from a detector. Initially, we used
one of the model-based motion segmentation techniques (i.e. GMM) to extract mov-
ing objects from the scene in cluttered warehouse environments. Refer to Fig. 8.1 for
a cluttered warehouse scene. Most of the pedestrian objects are seen occluded be-
hind the warehouse clutter, occupying fewer pixels (small ROIs).

Any algorithm that can segment them, among the cluttered background, will
be efficient in localising all the instances of the respective class. Since robustness of
most of the tracking algorithms is limited by the quality of localisation results, GMM
proved to be an effective technique in the extraction of instances of the pedestrian
class; the only limitation is that it has to be moving instances of the corresponding
class. Moving (or partially or fully occluded) forklift trucks are also detected, with
a lesser number of errors (false positives and false negatives), where it was able to
extract the forklift moving blobs.

8.2 Transfer Learning

To assign category labels to the respective segmented moving blobs, a deep archi-
tecture is retrained, by transfer learning the Inception v3 pre-trained model. Trans-
fer learning is also employed in re-training faster-RCNN with pre-trained AlexNet
model and Yolo-v3 with Darknet53 model for this research.
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Figure 8.1: Pedestrians are marked in a red bounding box, occluded partially behind
the cluttered warehouse background.

Transfer learning is used to customise a pre-trained deep model to a given classi-
fication task, by taking advantage of the learned feature maps to classify new classes
of objects. A new classifier is added and retrained from scratch, where only feature
maps which are learned previously for the corresponding dataset are re-purposed.
Since most of the pre-trained models are trained for generic data, re-using them
helps to classify new objects, avoiding overfitting.

Alternatively, by fine tuning the higher-order feature maps representation for
the model employed, they are made more specifIc to the requisite custom task. By
retraining a few top layers of the frozen network and a new classifier for object cate-
gories, the model is re-purposed. For this work, with only top-layer re-training, we
obtain 99.5 classification accuracy. Transfer learning proved to be an effective tech-
nique for obtaining accurate detection outputs when the number of training images
are limited. It also took less training time for the model.
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In our case, we have acquired our own recorded warehouse dataset. The dataset
is very variable with respect to multiple forklift truck and pedestrian poses seen in
the videos. The videos have forklift trucks with varying models, make and shape,
with every truck is designed for different functions inside warehouses. It includes
stock pickers, reach trucks, and others.

Transfer learning worked well, especially when the features of the source and
target dataset are quite similar and the overlap is quite significant.

On the other hand, we observe that our retrained model is not able to generalise
well for the test images of those forklift models for which we have a relatively small
number of training images in our dataset. To obtain robust target classification re-
sults and prevent overfitting, a deep learning model needs to be supplied with a
variety of truck model images, in all possible poses/positions of forklift forks and
shapes.

Thus we conclude that we could have improved the detection/classification ac-
curacy if we were able to get the maximum dataset annotated and train the net-
work from scratch, especially for such miss classification cases. We also assume
that warehouses are commercial premises and tracking targets inside such environ-
ments needs to be commercially feasible, with little ambiguity or error. We suggest
that any MOT framework for such workplaces needs to be robust to detector quality
limitations. A model trained from scratch, solely for warehouse custom categories
tracking, under various environmental challenges it has to offer, would be the most
feasible solution. It also needs better computational resources like graphical pro-
cessing units (GPUs) and the bulk of well annotated training data for model training
from scratch.

Varying background configurations for such forklift trucks also need to be ad-
dressed, to be localised in any background statistics, at least for the considered
warehouse where the data was acquired. Few motion blobs extracted by the GMM
algorithm to be supplied as region proposal in the proposed tracking prototype as
in [3], was not accurately classified by retrained Inception v3 model. Due to the bad
quality of candidate region hypotheses, tracking performance is somewhat limited
with an increased number of false positives and negatives in such cases.
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8.3 Kalman Filter Limitations

Kalman filter is used to estimate the state of linear dynamic systems. The Kalman
filter’s linearity limitation is a bottleneck for estimating variables for non-linear mo-
tion.

For non-linear systems, in general, it might not be possible to have optimal state
estimation in closed form. There are many variations of Kalman filters that might
be worth to be tested in this case. An alternative to a traditional Kalman filter could
be an unscented Kalman filter (UKF) for tracking non-linear motions, or also an ex-
tended Kalman filter (EKF). We conclude that employing EKF for targets trajectory
estimation gave robust trajectory results, close to the ground truth.

Also, a particle filter propagates, by estimating state estimates (known as par-
ticles) distributed according to a probability density function (pdf) of to the true
state [117]. Our experiments with particle filters were comparable to the EKF for
tracking forklift trucks.

8.4 Track Re-Identification in MOT

Deep features are being used in simplifying tracking sub-tasks, other than the de-
tection and localisation of targets of interest. Multiple object tracking problems also
include computing cost for the assignment of corresponding detections to tracks.

The track re-identification problem in MOT is also a big challenge. It is also
one of the main reasons for switches in track identity over time and the track frag-
mentation problem in MOT. For warehouse cases, when a target leaves the field of
view of the camera and appears again after some time in the same view, it has to
be associated with the same track identity as before. It could also be the case when
targets come very close to each other and merge their respective paths, we need to
re-identify the respective targets, against those trajectory fragments.

Though, to lessen the number of track ID switches, further improvement mod-
ules need to be incorporated in the tracking framework. We conclude that once the
corresponding track has disappeared from the scene, associating the corresponding
detection to the same track needs to consider many variables in general.

Incorporating the appearance space information for track assignments is very vi-
tal in this regard, in addition to the use of various metric distance measures. These
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distance measures might include the Euclidean distance, Cosine distance and oth-
ers. Solving for such distance measure for track assignment, might not be the only
validation needed for such assignment. Computing reliable appearance cues fast
and easy will aid to solve this track validation robustly. Finding specific track de-
viations in appearance space is vital and will help to identify and re-identify the
targets over longer sequences of videos.

We anticipate various trade-offs when solving such issues. For example, an
offline CNN-trained model for pedestrian re-identification has already shown im-
proved results under track-identity switch scenarios [139]. Such an idea for appearance-
space distance measures can be extended to other object categories such as trucks in
warehouses or cars on roads.

8.5 Pixel Saliency Map Significance

Saliency map computation for the specific region of interest proves to be very ef-
fective in various ways in this research. These maps are able to mark vital salient
information in the image and have very satisfactory results with occluded objects
in warehouse scenes. This method is also computationally fast. We have employed
these maps to achieve multiple targeted tasks, as stated below:

1. We tested the computation of static and motion saliency maps by [154] and [65].
In our work [3], it is used for improving quality of GMM-based foreground
quality. The obtained foregrounds were improved with few redundant pixels
from the background, as part of the foreground and fewer foreground holes.

2. We refined the location of a centroid computed by faster-RCNN bounding box
criterion, based on ROI pixel saliency map [65, 149]. We used improved cen-
troid computation, using the most salient region of the ROI as reference. The
resulting centroids recomputed for trajectory correction by the linear Kalman
filter were more consistent and accurate with respect to ground-truth centroid
points [1].

3. We employed these maps in validating the track assignment problem for MOT.
We concluded that appearance-saliency-map guided data association measure can
be used to verify the track identity especially in cases of occluding tracks or
multiple bounding boxes on the same target. A saliency distribution dissimi-
larity measure between a detected ROI and predicted candidate track locations
is described by the Bhattacharyya coefficient. It could be used to validate the
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track association problem, if used in conjunction with the Mahalanobis dis-
tance measure.

4. For deep CNNs, features from the last convolution layers are more closely
related to object category level semantic information. These feature maps
though are robust to intra-class appearance variations but fail the objective
to locate targets precisely. Earlier convolution layer outputs are more appro-
priate for target object fine-spatial appearance information, but not for the se-
mantics [102]. We propose that saliency is a discriminant feature that aids in
differentiating the target from the background and can be useful and efficient
way to attain robustness against target appearance changes at a semantically
higher level.

5. We also used saliency features as guiding high-level semantic features in ensem-
ble tracking. Learning correlation filters for saliency along with other features,
will aid the tracking quality for each tracker in an ensemble. Any tracker in
an ensemble employing this semantic aware higher-level feature will bene-
fit in track accuracy and precision and thus achieve final tracking robustness
against appearance and viewpoint changes.

6. We also concluded that the saliency map-based region semantic feature can
benefit many other baseline tracking paradigms. This also aids to solve the
trackers drift problem in ensemble tracking, caused by occluders. It will also
prevent trackers corruption over time by accumulation of the tracking drifts
in an ensemble.

8.6 Increasing Warehouse Safety

Various ways to track multiple targets are proposed in this work. We suggest that
the need to improve warehouse work safety is vital. The corresponding tracking
prototype might be extended further into a safety system, to enhance work safety in
such premises.

For example, see Fig. 8.2 depicting the suggested added modules in a proposed
tracking prototype [3], that can help to improve situational awareness for the work-
ers. It includes three additional modules other than object detector, classifier and a
tracker.

First one outputs targets bird eye’s views based on inverse perspective map-
ping (IPM). Such information will be forwarded to a collision probability prediction
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Figure 8.2: Suggested prototype for increasing work-related safety in warehouse

module. The third module which is signalling system that can be triggered when it
is detected that target lies in close proximity to the predicted trajectory of the other
(any hazard could be be a predicted forklift truck path and a pedestrian being in
close proximity of that path).

Thus, the corresponding tracked targets can be mapped onto a ground plane
(i.e. into a top-down bird’s eye view). Refer to Figure 8.3 for a shot depicting the
two forklift trucks, marked by red circles to indicate the positions. IPM is a math-
ematical technique, where a coordinate system is transferred from one perspective
to another [127]. Homography matrix H computation is performed for the corre-
sponding mapping from pixel into real-world coordinates. In one of the ways, these
points can be obtained by choosing the same four points in the source and destina-
tion images and solving for H in a linear system framework. H is a 3 × 3 matrix
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such that: XY
1

 = H ·

xy
1

 (8.1)

where x and y are pixel coordinates for the source image and X,Y are the pixel co-
ordinates for the destination image.This information is communicated to the next
module, where an unwanted interaction risk is predicted in advance, for the targets
lying close to each other.

The target’s distance is recorded in pixel coordinates and distance is converted
into metres (might be based on some manual calibration criterion, like the number
of pixels equivalent to 1 metre). Unwanted target interaction is defined as an event,
for example where the recent forklift path is predicted and it is observed that it lies
very close to a recently observed track for a pedestrian. Degree of unwanted inter-
action [16] is based on the corresponding distance between targets of interest, their
speed and direction.

For the task of predicting unwanted interactions between targets (i.e. between
forklift trucks and pedestrians), forklift’s trajectories need to predicted periodically,
a few seconds ahead in up-coming future frames. It is suggested for the correspond-
ing prediction algorithm to keep a record for all the pedestrian positions around a
predicted forklift truck trajectory, in pixel coordinates within a window of a few sec-
onds. Around predicted forklift truck positions, it is suggested to perform a fixed
radius nearest neighbour search [33]. For instance, they can be the four quadrants
around the forklift truck (front-left, front-right, rear-left, rear-right). The range for
search distances and prediction time frames should be chosen carefully and will
highly depend on scene statistics.

8.7 Approaches To Improve MOT Accuracy

To obtain seamless output tracking results for multiple targets, detection quality is
vital. For detection based tracking approaches, robustness of the object detector
need to be improved. It is being observed that deep learning-based object detectors;
when trained with bulk of training data which is dynamic in terms of scale, view-
point changes and varying poses, proved to be more robust than model based object
detection techniques.

Multiple object tracking accuracy also depend a lot on the capability of the track-
ing algorithm to handle track identity switches and swaps. Identity of the multiple
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tracks need to be consistant in various challenging scenes like partial or full occlu-
sions, clutter, multiple scales of same track, targets with similar appearance and
illumination changes in scenes. One of the few challenges that affect MOT accuracy
is solving track-reidentification problem. Associating the same identity even after
the object leaves the scene in camera FOV and reappear after few video frames, is
crucial to avoid false identity switches. Track association criterion for the algorithm
needs to be improved to cater such challenges i.e. unexpected entry and exit of tar-
gets. An improved saliency-colour based dissimilarity measure based track ReID
module is proposed in this work to solve such miss-assignment in MOT problems.

For tracking linear motion, Kalman filter proved to be robust for tracking under
occlusions and missed targets. Incorporation of saliency-map based localisation in-
formation to improve the tracking trajectory is tested and verified in this work.

Quantitative evaluation is stated in earlier chapters based on various MOT vari-
ables like type of object detection for detection-based tracking, using saliency-based
multiple object tracking, type of detection association criterion and ensemle-based
tracking mechanisms. Online MOT challenge dataset is also used for online evalua-
tion and benchmarking for MOT [100].

For warehouse data, all the evaluation is carried based on novel ground truth
formulation for pre-captured video sequences. Because, there is no direct evalua-
tion yet on this confidential dataset, a quantifiable comparison(where possible) with
other trackers is performed based on mentioned variables under various challeng-
ing scenarios.
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Figure 8.3: A shot showing two forklift truck targets shown with red circles.



Appendix A

Datasets

A.1 Data Recording Phase 1

For Phase 1 of data recording, collection of video data from a warehouse test envi-
ronment at the Crown facility is done. With the help of Crown engineers, we set up
data collection hardware and collect video data of pedestrians and forklifts under
different specific test scenarios and configurations.

It includes different camera viewpoints with varying backgrounds, different il-
lumination settings or un-occluded and occluded views of pedestrian and forklift
activities. We use GoPro (Hero Edition) cameras for this work.

Refer to Fig. A.1 for the video shots acquired with Camera 1.

Figure A.1: Camera 1 recorded video thumbnails
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A.2 Data Recording Phase 2

Four point, tilt and zoom (PTZ) cameras are fixed at different viewpoints in a real
production warehouse as in Fig. A.2 and Fig. A.3.

Video data of duration 40 minutes (10 minutes from each of the four cameras) is
recorded at the Crown plant. The videos with date stamps between 2017−12−14 to
2017− 12− 19 were captured with cameras facing the directions shown in Fig. A.2.
There are 100 recorded videos in total with this camera configuration and settings.

Figures A.4, A.5, A.6, A.7 are shots for recorded videos with details mentioned
in the respective captions.

At the next stage, the pan function on the cameras is adjusted to change the view
to the approximate directions shown in Fig. A.3. These are the videos with dates-
tamps between 2017− 12− 20 to 2017− 12− 22. There are 60 videos recorded in this
setting.

Figure A.2: Camera 17,18,19,20 positions for acquiring 100 videos data
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Figure A.3: Camera 17, 18, 19, 20 positions for acquiring 60 videos data

Figure A.4: Video data thumbnails on 2017− 12− 14
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Figure A.5: Video data thumbnails on 2017− 12− 15

Figure A.6: Video data thumbnails on 2017− 12− 18

Note that both the camera 18 and 20 pair and the camera 17 and 19 pair have
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Figure A.7: Video data thumbnails on 2017− 12− 19

overlapping fields of view. Figures A.8, A.9 and A.10 depict recordings on dates
mentioned in respective captions.

Figure A.8: Video data thumbnails on 2017− 12− 20
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Figure A.9: Video data thumbnails on 2017− 12− 21

Figure A.10: Video data thumbnails on 2017− 12− 22

A.3 Multiple Object Tracking Benchmark Dataset

This is a centralised benchmark dataset for the task of object detection and tracking,
pedestrian tracking, 3D reconstruction, optic flow and stereo estimation. Though
there are very limited benchmark datasets available online for standard MOT eval-
uation, but this one proved to be very helpful for MOT research, especially for track-
ing pedestrians. It has a large collection of datasets which has challenging sequences
with varying attributes [100].

In this centralized benchmark interface for MOT, detections with various kind of
state of art detectors for the video sequences are provided. It also contains ground
truth dataset for the detections, for a fair comparison with various state of art detec-
tors and trackers. A common evaluation platform is provided to evaluate various
performance measures like MOTA, MOTP, FPs, FNS and others.
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2DMOT2015

This is a collection of video sequences that include sequences with occluded
backgrounds, distractors, similar-looking targets, non-linear motions and various
tracking challenges. It is recorded in an unconstrained outdoor environment. This
dataset is also being used in this work for tracking challenging pedestrian scenes.
It also helped to understand various challenging person movements in warehouse
premises.

Refer to Fig. A.11 for a walking pedestrian raw scene from a video sequence be-

Figure A.11: ADL-Rundle-6 sequence 1. Left. A challenging occluded pedestrians
scene. Right. Ground truth pedestrians

Figure A.12: Detections for the ADL-Rundle-6 sequence
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Figure A.13: TUD-Stadtmitte sequence. Left. A challenging similar looking occluded
pedestrians. Right. Ground truth pedestrians

Figure A.14: Detections for the TUD-Stadtmitte sequence

longing to 2MOT2015 collection [101]. Figure A.12 refers to detections for this video
sequence.

Refer to Fig. A.13 for a walking pedestrian raw scene from a video sequence be-
longing to 2DMOT2015 collection. The sequence is used for this work as well. It fea-
tures multiple persons looking alike and facing backwards. It is a challenging scene
to be tracked, with tricky track association problems for all frames. Figure A.14
refers to detections for this video sequence.
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A.4 INRIA Person Dataset

For the detection of standing or upright people, this dataset was collected [38]. The
images also contain partially occluded static or moving people with various colours
of clothing, poses and background. The dataset features positive as well as nega-
tive test and train images in sequence collections [67]. Figure A.15 refers to sample
examples.

Figure A.15: The first two rows depict the positive pedestrians images in various
poses, static or in motion, with various backgrounds and scene contexts. The bottom
row shows the negative images from INRIA person dataset
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A.5 Caltech Pedestrian Detection Benchmark

Caltech pedestrian dataset is composed of around 10 hours of 640 × 480 video
data acquired from a moving vehicle in an urban environment. It contains 250, 000

frames with a total of 350, 000 bounding boxes and 2300 pedestrians. The corre-
sponding annotation covers temporal correspondence between the bounding boxes
and occlusion labels for the targets [30].

Figure A.16 refers to sample examples.

Figure A.16: The sample detection image for pedestrians from Caltech pedestrian
detection benchmark
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OTB-2015, 91
over fitting, 52

pallets, 6
POM, 18
PSR, 88
PTZ, 38

R-dropout, 25
RCNN, 41
region

salient, 13
RFID, 13
RGB, 19
RGB-D, 13
RNN, 29
ROI, 17
RPN, 42

saliency, 22
saliency-colour histogram, 69
Self evaluation measure, 89
SGD, 60
SIFT, 18
SLIC, 48
softmax, 41
SORT, 69
SOT, 6
SPPnets, 41
SRDCF, 33
SRE, 91
superpixel, 48
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SV, 94
SVM, 18

TFCN, 23, 86
track, 58
tracker pair robustness, 89
tracking model drift, 95
tracklet, 28
trajectory, 58
transfer learning, 42
TRE, 91

unwanted- interaction prediction, 112

VGG-16, 28
visual saliency map, 42
VOT, 32, 91
VTD, 91
VTS, 91

weights, 51

YOLO, 69
v2, 73
v3, 73


