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Abstract 

Metabolomics is a rapidly emerging discipline within functional genomics to better 

understand biochemical phenotypes across a range of biological systems. The approach 

has many demonstrated applications in aquatic biology, but has not yet been applied to 

study early lifestages of marine molluscs. This Thesis evaluates metabolomics as an 

approach to characterise early lifestage phenotypes of molluscs, and demonstrates unique 

applications in aquaculture, developmental biology, immunology, and toxicology. 

GC/MS-based metabolomics was first tested for its capacity to classify good and 

bad quality mussel larvae (i.e., slow- vs fast-growing organisms). Based on the 

composition of metabolites, larval classes could clearly be discriminated and the data 

indicated differences energy metabolism, osmotic regulation, immune function and cell–

cell communication. 

Mussel larvae which had been subjected to handling stress and different culture 

conditions were also assessed. A decrease in succinate and an increase in alanine were 

observed after the water exchange, which indicated alterations in energy production and 

osmotic balance. However, these variations were subtle and it is unlikely that the water 

exchange practice had any lasting negative effects on larval physiology and performance. 

A culture condition classification model was also constructed which revealed that larvae 

from flowthrough vs static systems differed in terms of energy, protein and lipid 

metabolism. The data also suggests that growth performance is metabolically buffered 

through an adaptive physiological mechanism to provide similar developmental 

characteristics under these conditions. 

Oyster larvae were assessed during a viral (OsHV-1 µVar) infection to characterise 

the host-virus interaction at a metabolic level. Responses included a coordinated 

disruption of the TCA cycle in accordance with mammalian macrophage stimulation via 
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activation of immunoresponsive gene 1 and production of itaconic acid, induction of a 

Warburg-like effect, and production of free fatty acids for virion assembly, among others. 

These results provide new insights into the pathogenic mechanisms of OsHV-1 infection 

in oyster larvae, which may be applied for selective breeding programmes aiming to 

enhance viral resistance. 

Lastly, metabolomics was applied to investigate mechanisms of toxicity in mussel 

larvae exposed to copper contamination. At sublethal dose levels, metabolic trajectory 

analysis indicated that larvae were successfully employing various endogenous 

mechanisms involving biosynthesis of antioxidants and a restructuring of energy-related 

metabolism in an attempt to alleviate the toxic effects on cells and developing tissues.This 

was partly confirmed by a targeted analysis of oxidative stress biomarkers (e.g., 

enzymes). A lethal copper dose induced severe metabolic dysregulation after 3 hrs 

exposure which worsened with time, substantially delayed embryonic development, 

initiated the apoptotic pathway, provided many evidences for the occurrence of oxidative 

stress (validated via oxidative stress biomarkers), and resulted in cell/organism death 

shortly after 18 hrs exposure. 

In summary, this Thesis provides strong support for the application of 

metabolomics to assess the health status of marine mollusc embryos and larvae.



iii 

Table of Contents 

Abstract ………………………………………………………………………………  i 

Table of Contents …………………………………………………………………….  iii 

List of Tables ………………………………………………………………………...   ix 

List of Figures ……………………………………………………………………….  x 

Attestation of Authorship ……………………………………………………………  xiv 

Co-author contributions ……………………………………………………………..     xv 

Acknowledgements ………………………………………………………………….  xviii 

CHAPTER 1 – SCOPE 
Thesis introduction and framework …………………………………………..  1 
      

1.1 General introduction ……………………………………………………  2 

1.1.1 Mollusc aquaculture …………………………………………......     3 

1.1.2 Early lifestage molluscan research ……..………………………..  7 

1.1.3 Moving forward ...……………………………………………….    11 

1.2 Thesis motivation ………………………………………………………    12 

1.3 Thesis aims …………………………………………………………….     15 

1.4 Thesis structure ………………………………………………………... 15 

1.5 Chapter contents and rationales .……………………………………..... 16 

1.6 Research outputs ……………………………………………………….  21 

1.6.1 Conference presentations ……………………………………….   21 

1.6.2 Industry publications ……………………………………………  22 

1.6.3 Journal publications …………………………………………….  23 

1.7 References ……………………………………………………………..  24 

CHAPTER 2 – LITERATURE REVIEW 1 
Metabolomic applications in aquaculture …………………………………… 32 

2.1 Global aquaculture ……………………………………………………..   34 

2.2 ‘Omics’ approaches ……………………………………………………   34 

2.3 What is metabolomics? ………………………………………………..   38 



iv 
 

  2.4 Advantages of metabolomics ………………………………………….   39 

  2.5 Metabolomic research ………………………………………………….   40 

  2.6 Metabolomics applications in aquaculture research ……………………   41 

   2.6.1 Hatchery production …………………………………………….   41 

   2.6.2 Nutrition and diet ...……………………………………………..   43 

   2.6.3 Disease and immunology ……………………………………….   46 

   2.6.4 Post-harvest product quality …………………………………….   51 

  2.7 Future applications and directions ……………………………………..   54 

  2.8 Conclusions …………………………………………………………….   57 

  2.9 References ……………………………………………………………...   58 

 

CHAPTER 3 – LITERATURE REVIEW 2        
 Metabolomic strategies for aquatic research ………………………………..     68   

  3.1 Introduction ……………………………………………………………   70 

  3.2 Metabolomic Strategies ……………………………………………….   71 

   3.2.1 Experimental design and sampling …………………………….     72 

   3.2.2 Analytical platforms ……………………………………………   76 

  3.3 Metabolite fingerprinting vs. profiling ………………………………...   93 

  3.4 Data analysis …………………………………………………………...   94 

   3.4.1 Univariate methods ……………………………………………..   96 

   3.4.2 Multivariate methods …………………………………………...   98 

  3.5 Biomarker discovery and validation …………………………………..  104 

  3.6 Biological interpretation and secondary bioinformatics ………………  106 

  3.7 Reporting guidelines in metabolomics ………………………………...  113 

  3.8 Incorporating metabolomics …………………………………………...  115 

  3.9 Summary ………………………………………………………………  116 

  3.10 References ……………………………………………………………  117 

 

CHAPTER 4 – CASE STUDY 1             
 Quality assessment of hatchery-reared mussel larvae ……………………...    133 
 

  4.1 Introduction ...........................................................................................    135 

  4.2 Methods ……………………………………………………………….  137 



v 
 

   4.2.1 Broodstock spawning …………………………………………..    137 

   4.2.2 Gamete collection and fertilisations ……………………………  138 

   4.2.3 Larval production and sampling ………………………………..  139 

   4.2.4 Metabolite extraction and derivatisation ……………………….  139 

   4.2.5 GC-MS analysis ………………………………………………..  141 

   4.2.6 Data pre-processing and metabolite identification …………….  141 

   4.2.7 Statistical analyses ……………………………………………..  142 

  4.3 Results ………………………………………………………………...  145 

  4.4 Discussion …………………………………………………………….  148 

  4.5 Conclusion ……………………………………………………………  150 

  4.6 References …………………………………………………………….  152 

 
CHAPTER 5 – CASE STUDY 2             
 Effect of handling and culture conditions on mussel larvae …………………  156 
 

  5.1 Introduction …………………………………………………………...  158 

  5.2 Methods ……………………………………………………………….  161 

   5.2.1 Larval rearing …………………………………………………..  161 

   5.2.2 Larval sampling ………………………………………………...  161 

   5.2.3 Metabolomics …………………………………………………..  163 

   5.2.4 Statistical analyses ……………………………………………...  163 

  5.3 Results …………………………………………………………………  165 

   5.3.1 Effect of handling and water exchange …………………………  165 

   5.3.2 Effect of culture system ………………………………………...  167 

  5.4 Discussion ……………………………………………………………...  171 

  5.5 Conclusion ……………………………………………………………..  174 

  5.6 References ……………………………………………………………...  175 

 
CHAPTER 6 – CASE STUDY 3             
 Host-virus interactions in oyster larvae ……………………………………....  178 
 

  6.1 Introduction …………………………………………………………….  180 

  6.2 Methods ………………………………………………………………..   185 

   6.2.1 OsHV-1 µVar preparation ……………………………………...   185 

   6.2.2 Larval production ……………………………………………….   186 



vi 

6.2.3 Viral challenge and larval sampling ……………………………  187 

6.2.4 Metabolite extraction and GC-MS analysis ……………………  188 

6.2.5 Spectral processing and metabolite identification ……………..  188 

6.2.6 Statistics ………………………………………………………..  189 

6.3 Results …………………………………………………………………  194 

6.3.1 Univariate analysis ……………………………………………..  194 

6.3.2 Unsupervised multivariate cluster analysis …………………….  195 

6.3.3 Supervised multivariate classification analysis ………………...  197 

6.3.4 Functional biochemical pathway analysis  ……………………..  200 

6.3.5 Correlation analysis …………………………………………….  203 

6.4 Discussion ……………………………………………………………..  205 

6.4.1 Lipid metabolism ……………………………………………….   206 

6.4.2 TCA cycle and immunoresponsive gene 1 ……………………..  212 

6.4.3 Warburg effect ………………………………………………….  217 

6.4.4 Oxidative stress …………………………………………………  219 

6.4.5 Other signatures ………………………………………………...   221 

6.5 Conclusion ……………………………………………………………..  225 

6.6 References ……………………………………………………………..  227 

CHAPTER 7 – CASE STUDY 4 
Copper toxicity during mussel embryogenesis ……………………………… 245 

Part A: Untargeted metabolite profiling ………………………………… 246 

7.1 Introduction ……………………………………………………… 248 

7.2 Methods ………………………………………………………….. 252 

7.2.1 Experimental design summary …………………………… 252 

7.2.2 Chemicals and seawater preparation ……………………...   252 

7.2.3 Broodstock collection and spawning ……………………..   254 

7.2.4 Fertilisation and tank incubation ………………………….   254 

7.2.5 Embryo and larval sampling ………………………………   254 

7.2.6 Seawater chemistry ………………………………………. 256 

7.2.7 Metabolite analysis ………………………………………. 258 

7.2.8 Statistical analysis and data visualisation ………………... 258 



vii 

7.3 Results …………………………………………………………… 262 

7.3.1 Seawater chemistry ……………………………………….    262 

7.3.2 Survival and Development ………………………………..   263 

7.3.3 Metabolomics …………………………………………......   265 

7.4 Discussion ………………………………………………………..   276 

7.4.1 Bulk seawater composition ……………………………….    276 

7.4.2 Cu speciation, toxicity and macroscopic endpoints ………   276 

7.4.3 Metabolomics ……………………………………………..   279 

7.4.4 Metabolomics as a health assessment tool ………………..   302 

7.5 References ………………………………………………………..   304 

Part B: Targeted analysis of oxidative stress biomarkers ……………….   324 

7.6 Introduction ………………………………………………………   326 

7.7 Methods …………………………………………………………..   329 

7.7.1 Experimental design summary and sampling ……………..   329 

7.7.2 Protein, lipid and DNA analysis …………………………..   329 

7.7.3 Antioxidant enzyme analysis ……………………………...   332 

7.7.4 Reduced glutathione analysis ………………………….......   334 

7.7.5 ROS analysis ………………………………………………   334 

7.7.6 Statistics and data presentation ……………………………   335 

7.8 Results ……………………………………………………………   336 

7.9 Discussion ………………………………………………………..    340 

7.9.1 Reactive oxygen species …………………………………..    340 

7.9.2 Glutathione ………………………………………………...   342 

7.9.3 Enzymatic biomarkers of oxidative stress …………………  343 

7.9.4 Macromolecular biomarkers of oxidative damage ………...  347  

7.10 Conclusion ………………………………………………………  348 

7.11 References ………………………………………………………  350  



viii 

CHAPTER 8 – SYNTHESIS 
Discussion and conclusions …………………………………………………..  356 

8.1 Thesis background ……………………………………………………  357 

8.2 Core chapter philosophies ……………………………………………  359 

8.3 Study limitations ……………………………………………………..  367 

8.4 Future metabolomics research ……………………………………….  369  

8.5 Conclusion ……………………………………………………………  374 

8.6 References …………………………………………………………….  375 



ix 

List of Tables 

Table 3.1 A selection of studies using metabolomics-based approaches with 

relevance to aquaculture ……………………………………………. 

 

…..  80 

Table 3.2 Comparisons between different analytical platforms for processing 

metabolomics samples ……………………………………………... 

 

…..  92 

Table 3.3 Summary of sample-specific topics which should be described in 

detail when reporting the results of a metabolomics project ………... 

 

….. 114 

Table 4.1 Degree of importance and rank frequency of candidate biomarkers 

in models for larval class separation ……………………………….. 

 

….. 147 

Table 4.2 Candidate biomarker ratios and associated relative metabolite 

abundances in high and poor quality larvae ………………………... 

 

….. 147 

Table 5.1 Larval rearing parameters used during low-density static and high-

density flow through culture ……………………………………….. 

 

….. 162 

Table 5.2 Metabolic profiles of larvae before and after a prolonged handling 

and water exchange process ………………………………………… 

 

….. 165 

Table 5.3 Metabolic profiles of larvae reared to ten days post-fertilisation in 

low-density static and high-density flow through systems ………… 

 

….. 166 

Table 5.4 Statistical analyses of metabolite ratio biomarkers for assessing 

quality of larvae reared in different culture systems ……………….. 

 

….. 174 

Table 6.1 List of altered metabolic pathways in larval hosts during viral 

(OsHV-1 μVar) infection …………………………………………... 

 

….. 204 

Table 7.1 Composition of the bulk seawater used (prior to EDTA additions) 

during a copper stress experiment ………………………………….. 

 

….. 262 

Table 7.2 Copper speciation in seawater (after EDTA and CuSO4 additions) 

during a copper stress experiment ………………………………….. 

 

….. 262 

Table 7.3 Targeted analysis of oxidative stress biomarkers in mussel embryos 

and larvae in response to copper exposure …………………………. 

 

….. 338 



x 

List of Figures 

Figure 2.1 Diagram of ‘omics’ cascade defining genomics, transcriptomics, 

proteomics and metabolomics, and depicting their position along the 

genotype to phenotype continuum …………………………………. 

 

 

…..  36 

Figure 2.2 Trends in metabolomics-based research with applications to the 

aquaculture sector …………………………………………………... 

 

…..  37 

Figure 3.1 General workflow involved in a metabolomics study outlining the 

six main steps ………………………………………………………. 

 

…..  72 

Figure 3.2 Bibliometric analysis of usage trends for various metabolomics-

based analytical platforms employed over the past decade ………… 

 

…..  77 

Figure 3.3 Multi-platform metabolomics-based analysis of fish (Danio rario) 

liver samples showing sex-specific differences in spectral 

fingerprints obtained from three platforms (NMR, CG-MS and LC-

MS) ………………………………………………………………… 

 

 

 

…..  79 

Figure 3.4 Overview of the processes involved using pre-separation techniques 

combined with mass spectrometry …………………………………. 

 

…..  87 

Figure 3.5 An example of comparative IR and Raman spectra obtained from the 

analysis of blood serum ……………………………………………. 

 

…..  91 

Figure 3.6 Example of a volcano plot ………………………………………….. …..  98 

Figure 3.7 Comparison of multivariate data reduction techniques (PCA, PLS-

DA and OPLS-DA) for assessing sample groupings using non-

supervised and supervised approaches ……………………………... 

 

 

….. 100 

Figure 3.8 Combined heatmap and hierarchical cluster analysis of metabolites 

in developing zebrafish during embryogenesis via GC/MS- and 

LC/MS-based metabolomics ……………………………………….. 

 

 

….. 102 



xi 
 

 

 

Figure 3.9 Correlation analysis – an example of a situation where mean levels 

of metabolite X and metabolite Y are not significantly different 

between groups of samples but are differentially correlated within 

each group …………………………………………………………..  

 

 

 

….. 108 
   

Figure 3.10 An example of two correlation networks constructed using NMR-

based metabolomics data from samples of healthy and diseased fish 

livers ………………………………………………………………... 

 

 

….. 110 
   

Figure 3.11 Overview of the metabolomics workflow and recommended 

minimum reporting standards ………………………………………. 

 

….. 115 
   

Figure 4.1 Feature reduction analyses for candidate biomarker selection in good 

and poor quality mussel larvae ……………………………………... 

 

….. 146 
   

Figure 5.1 Metabolite variaitons in mussel larvae before and after a prolonged 

handling and water exchange process ………………………………. 

 

….. 166 
   

Figure 5.2 Metabolite variations in mussel larvae reared under low-density 

static and high-density flow through culture systems ………………. 

 

….. 167 
   

Figure 5.3 Multivariate pattern recognition of metabolic profiles in mussel 

larvae reared under low-density static and high-density flow through 

culture systems ……………………………………………………... 

 

 

….. 169 
   

Figure 5.4 Hierarchical cluster analysis of metabolites and mussel larvae reared 

under different culture condition …………………………………… 

 

….. 170 
   

Figure 6.1 Metabolite variaitons in oyster larvae infected with Ostreid 

herpesvirus microvariant vs. non-infected controls ………………… 

 

….. 195 
   

Figure 6.2 Unsupervised multivariate cluster analyses of metabolite profiles in 

oyster larvae infected with Ostreid herpesvirus microvariant vs. non-

infected controls ……………………………………………………. 

 

 

….. 196 

 

 

 

 



xii 

Figure 6.3 Supervised multivariate classification analyses of metabolite profiles 

in oyster larvae infected with Ostreid herpesvirus microvariant vs. 

non-infected controls ……………………………………………….. 

 

 

….. 197 

Figure 6.4 Multivariate machine learning and predictive modelling of oyster 

larvae infected with Ostreid herpesvirus microvariant …………….. 

 

….. 199 

Figure 6.5 Pathway enrichment and network topology analysis of metabolite 

profiles in oyster larvae infected with Ostreid herpesvirus 

microvariant ………………………………………………………... 

 

 

….. 201 

Figure 6.6 Metabolite–metabolite Pearson correlation heatmaps of virus-

infected oyster larvae and non-infected control larvae ……………… 

 

….. 204 

Figure 6.7 Correlation network analysis of metabolites in virus-infected oyster 

larvae and non-infected control larvae ……………………………… 

 

….. 204 

Figure 6.8 Summary of metabolic alterations in oyster larvae during an OsHV-

1 µVar infection…………………………………………………….. 

 

….. 206 

Figure 7.1 Effects of copper exposure on embryo/larval survival, larval 

development and larval swimming behaviour ….…………………... 

 

….. 263 

Figure 7.2 Heirarichical cluster analysis of mussel embryos exposed to a lethal 

dose of copper vs. non-exposed controls …………………………… 

 

….. 265 

Figure 7.3 Toxicological effects of lethal level copper on the embryonic 

metabolome after 3 and 18 hrs exposure ……………………………. 

 

….. 267 

Figure 7.4 List of altered metabolites in mussel embryos exposed to a lethal 

dose of copper for 3 and 18 hours vs. non-exposed control embryos  

 

….. 268 

Figure 7.5 Pathway enrichment and network topology analysis of metabolites 

in mussel embryos exposed to a lethal dose of copper for 3 and 18 

hours vs. non-exposed control embryos ……………………………. 

 

 

….. 269 

Figure 7.6 Examples of differentially enriched pathways (extracted from the 

KEGG database) in embryos exposed to a lethal dose of copper ….. 

 

….. 270 



xiii 

Figure 7.7 Metabolic trajectory analysis of mussel embryos exposed to 

sublethal doses of copper during 72 hours of embryonic development 

vs. non-exposed control embryos …………………………………... 

 

 

….. 271 

Figure 7.8 Phenotype normalised metabolic trajectory analysis of mussel 

embryos exposed to sublethal doses of copper during 72 hours of 

embryonic development vs. non-exposed control embryos ………… 

 

 

….. 272 

Figure 7.9 Heatmap and cluster analysis of metabolite foldchanges in mussel 

embryos exposed to sublethal doses of copper during 72 hours of 

embryonic development vs. non-exposed control embryos ………… 

 

 

….. 274 

Figure 7.10 Stylised schematic representation of Cu-induced oxidative stress and 

ROS-regulatory mechanisms in a D-stage mussel larva ……………. 

 

….. 336 

Figure 7.11 Production of ROS in embryos and larvae reared in different 

concentrations of bioavailable copper for 66 hours ………………… 

 

….. 337 

Figure 7.12 Targeted analysis of oxidative stress biomarkers in response to 

copper exposure ……………………………………………………. 

 

….. 338 

Figure 7.13 General effects of Cu-induced oxidative stress on mussel larval 

physiology ………………………………………………………….. 

 

….. 340 

Figure 8.1 Venn diagram of the different metabolomic approaches and 

applications for each PhD Thesis case study …….…………………. 

 

….. 362 

Figure 8.2 Modern adaption of the ‘blind men and the elephant’ parable to 

illustrate how biases can blind us, preventing us from seeking a more 

complete understanding of the nature of things …………………….. 

 

 

….. 368 



xiv 

Attestation of Authorship 

“I hereby declare that this submission is my own work and that, to the best of my 

knowledge and belief, it contains no material previously published or written by another 

person (except where explicitly defined in the acknowledgements), nor material which to 

a substantial extent has been submitted for the award of any other degree or diploma of a 

university or other institution of higher learning.” 

Signed: 

28.10.2016 Date: 



xv 

Co-author contributions 

The co-authored literature reviews in this Thesis have been broken down into five task 
components, each of which have been given a weighting (% time) to produce the 
completed output: 

Concept & structure =  5% 
Article retrieval = 10% 
Article assessments = 20% 
Writing = 60% 
Reviewing & editing =  5% 

Chapter 2: Literature Review 1 (Alfaro & Young 2016) 

Author Contribution Contribution Total Signature 

T. Young Concept & structure 50%

83.5% Article retrieval 100% 
Article assessments 100% 
Writing 85% 

A.C. Alfaro Concept & structure 50%
16.5% Writing 15% 

Review/edit 100% 

Chapter 3: Literature Review 2 (Young & Alfaro 2016) 

Author Contribution Contribution Total Signature 

T. Young Concept & structure 100%

95% Article retrieval 100% 
Article Assessments 100% 
Writing 100% 

A.C. Alfaro Review/edit 100% 5%



xvi 
 

 

The co-authored experimental manuscripts in this Thesis have been broken down into 
five task components, each of which have been given a weighting (% time) to produce 
the completed output: 

 
 
Experimental design   =  5% 
Sample collection & analysis = 20% 
Data analysis & interpretation = 20% 
Writing      = 50% 
Reviewing & editing   =  5% 
 
 
 
 
 
Chapter 4: Case Study 1 (Young et al. 2015) 

Author Contribution Contribution Total  Signature 

T. Young Experimental design 100% 

95%  

 Sample analysis 100% 
 Data analysis 100% 
 Data interpretation 100% 
 Writing 100% 

 
A.C. Alfaro Review/edit 50% 2.5% 

S.G. Villas-Bôas Review/edit 50% 2.5% 
     

 
 
 
 
Chapter 5: Case Study 2 (Young et al. 2016) 

Author Contribution Contribution Total  Signature 

T. Young Experimental design 100% 

95%  

 Sample analysis 100% 
 Data analysis 100% 
 Data interpretation 100% 
 Writing 100% 

 
A.C. Alfaro Review/edit 50% 2.5% 

S.G. Villas-Bôas Review/edit 50% 2.5% 
     

 

 

 

 

 



xvii 
 

 

 

Chapter 6: Case Study 3 (Young et al. 2017) 

Author Contribution Contribution Total Signature 

T. Young Experimental design 100% 

92%  

 Sample analysis 95% 
 Data analysis 100% 
 Data interpretation 100% 
 Writing 98% 

 A. Kesarcodi- Sample analysis 5% 
3% Watson Writing 2% 

 
A.C. Alfaro Review/edit 50% 2.5% 

S.G. Villas-Bôas Review/edit 50% 2.5% 
     

 
 
 
 
 
Chapter 7: Case Study 4 (Young et al. in prep) 

Author Contribution Contribution Total  Signature 

T. Young Experimental design 50% 

80% 
 

 Sample analysis 50% 
 Data analysis 100% 
 Data interpretation 100% 
 Writing 95% 

S.G. Gale Experimental design 50% 
15%   Sample analysis 50% 

 Writing 5%  

A.C. Alfaro Review/edit 50% 2.5% 
 

S.G. Villas-Bôas Review/edit 50% 2.5% 
     

     
     

 

 

 



xviii 

Acknowledgments 

Thank you Andrea for being such a fantastic primary supervisor! 

My PhD buddies – ugggggh, thaaaankyou!! Paul McBride and Jarrod Cussens for being 

there when I needed you and for being my flatties, Dr Rebecca Jarvis for always making 

me smile and feel happy, Carine Bourgois for the honesty and laughs. And lastly to my 

partner in crime, Dung Viet Le, what fun we had driving to the hatchery every morning, 

working through the nights, cheeky coldies after work on Friday’s, hiking in the forest, 

and travelling the West Coast. Couldn’t have done it without you mate!   

To the Nelson crew. I am specifically thankful to my friends Nicola Hawes, Sarah 

Cumming, Dan McCall and Rodney Roberts from SPATnz for providing great 

chinwags, broodstock, technical expertise, physical assistance, and for truly enabling 

my research. I also am greatly indebted to Samantha Gale, Norman Ragg, Zöe Hilton, 

and Helen Mussely from Cawthron Institute for empowering and supporting me, for 

fostering the close relationship that we have between our research groups, providing 

expert knowledge and advice, working late with me in the cold, and most of all, for 

being such great mates. I would also like to thank my friends Aditya Kesarcodi-Watson, 

Hannah Mae, and Ellie Watts from Cawthron Institute for helping me to get the job 

done, I owe you one. Thank you Archim Jenkin for your kind hospitality, your 

inescapable bearhugs, and your friendship. Catherine, you are a star and a legend! 

To Silas Villas-Bôas, Margarita Markovskaya, Francesca Casu, and Erica Zarate from 

the Metabolomics Laboratory at the University of Auckland – thank you so much for 

training me and providing guidance with the technical aspects of my research.  



 

xix 
 

Finally, to some of the most important people in my life. Lynda Young, Patrick Tanner, 

Paula Luthardt, Smokee Young, and Jodi Hale – I could never have done it without you, 

at times it was a challenge for all of us for which I am sorry, I am eternally grateful for 

your support, and I love you all so very much! XOX 

 

This research was supported by the Cawthron Cultured Shellfish Programme (NZ 

Ministry of Business, Innovation and Employment contracts CAWS0802, CAW1315), 

and a Faculty Research Grant to A.C. Alfaro. Logistical and technical support was 

provided by Spat Production and Technology Ltd., the Auckland University of 

Technology’s School of Science, and the University of Auckland’s Metabolomics 

Laboratory. A stipend was supported by an AUT Vice Chancellors Doctoral Scholarship.  

 

 
Arial sunset photo of the Cathwron Aquaculture Park where all animal experiments were conducted for 
this Thesis. Sunny Nelson, Sth Island, New Zealand. 

 

   

 



 
 

 

Chapter 1 Scope 

Introduction and Thesis 
framework 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1 

2 | P a g e  
 

1.1 General introduction 

 

 

 "My mollusc! What's a mollusc?” – Terry Pratchett, Men at Arms: The Play 

 

 

Mollusca is a large phylum of invertebrates with ~85,000 extant species currently 

recognised. They are also the largest marine phylum with ~50,000 described species, and 

comprising around 23% of all known marine animals (Appeltans et al. 2012). From an 

ecological perspective, marine molluscs serve many important roles (reviewed by NRC 

2010; Dame 2011). They are crucially positioned within lower trophic levels of marine 

food webs, and they are key to providing substrate complexity of benthic environments 

to support entire marine communities, increase species diversity, and reduce erosion. 

Many molluscs are filter feeders which help to lower levels of water eutrophication, and 

influence the nutrient and organic coupling of benthic and pelagic systems through 

biodeposition. Molluscs also contribute to biogeochemical processes through shell 

formation, carbon sequestration and providing an important source of sedimentary 

carbonate content. Some groups (e.g., mussels, oysters) act as excellent indicators of 

ecosystem health, and some may also be useful to gauge the conservation needs of other 

taxa (Hellou & Law 2003). Aside from their ecological roles, marine molluscs also deliver 

important socioeconomic services. 

      Mollusc fisheries and aquaculture combined provide around 24 million tonnes 

of shellfish per year (FAO 2016), and directly or indirectly support the livelihoods of 

many millions of people globally (Valderrama et al. 2010). Most of the revenues 

generated are accounted for by the demand for seafood. However, farmed molluscs are 

also valuable for the production of consumer items (e.g., pearls, jewellery), and are 

instrumental in providing a wide range of specific biotoxins and other metabolites used 
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in drug development and medical research (e.g., medications to prevent pain, accelerate 

recovery from nerve injury) (Lewis et al. 2012). Compared with other aquaculture sectors, 

such as fish farming, molluscs are generally considered to be a more environmentally 

sustainable source of food and income. Being major primary consumers in shallow 

marine ecosystems, many groups (e.g., mussels, oysters, clams) do not require provision 

of feed input, they help to keep coastal waters clean, and are well-suited for integrated 

multi-trophic aquaculture (Reid et al. 2010). So long as careful choices are made (e.g., 

avoiding introductions of unwanted organisms and high density/intensive farming 

practices), bivalve mariculture in particular can even be viewed as a paradigmatic 

example of a sustainable economy safeguarding the environment (Parisi et al. 2012; 

NOAA 2013; Baker et al. 2015). 

1.1.1 Mollusc aquaculture 

Mollusc aquaculture has a long history, with ancient Romans being well-practiced in the 

cultivation of oysters over two thousand years ago. These techniques have been gradually 

refined and expanded over the centuries. Today, over 70 marine species are widely farmed 

around the world. With annual harvests of almost 16 million metric tonnes, molluscs 

account for over 60% of global animal mariculture production by weight (Figure 1.1), 

and the industry is valued at around $19 billion USD per annum (FAO 2016). This is 

dominated by the cultivation of bivalves. The bivalve sector has steadily been growing at 

a rate of approximately 5% each year for the past couple of decades, and is expected to 

increase substantially in the coming years due to expansion of current markets via 

globalisation, establishment of new production areas, intensification of advanced farming 

practices (e.g., hatcheries), applications of innovative research technologies (e.g., 

advanced molecular techniques), and cultivation of new species (Pawiro 2010; Alfaro et 

al. 2014a). 
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Figure 1.1. Breakdown of global marine aquaculture production in 2014 (including brackish water and 
excluding plants). Information was extracted from the FAO (2016) global capture fisheries and aquaculture 
production databases.  
 

1.1.1.1 Aquaculture in New Zealand 

The New Zealand aquaculture industry is working hard towards sustainably expanding 

various sectors to achieve a revenue goal of $1 billion NZD in annual sales by 2025; more 

than doubling its current value (MPI 2012). Aquaculture exports are dominated by 

GreenshellTM mussels (Perna canaliculus) which account for 81% of exports, followed 

by Chinook salmon (14%) and Pacific oysters (5%) (Allison & Destremau 2015). To 

achieve this goal, an increase in both production volume and product value will be 

required. The New Zealand aquaculture industry is thus aiming to further develop its 

marine mollusc sectors through establishing commercial scale mussel and oyster 

hatcheries, and advancing its selective breeding programmes. With these strategies well 

underway, their success will enable farms to be supplied with high quality stock which 

have strong marketable traits, and also produce family lines which are resilient to 

problematic diseases caused by ubiquitous marine pathogens. 

1.1.1.1.1 Mussels 

The New Zealand mussel sector currently relies entirely on wild-caught spat for stocking 

farms. However, successful spatfalls are extremely dependant on local weather conditions 
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and other natural environmental fluctuations (Alfaro & Jeffs 2003; Alfaro et al. 2010, 

2011a). In addition, the ‘quality’ of wild-caught animals is highly variable, and the 

available sources of this spat can no longer supply demand (Smith et al. 2016). Thus, 

there is considerable interest and investment to develop the ability and capacity for full-

lifecycle culturing techniques, and to implement a selective breeding programme to 

provide farms with high quality juveniles that have desirable traits (e.g., shell coloration, 

biochemical/nutritional composition, high post-deployment retention, growth and 

survival) (Allison & Destremau 2015). 

 To achieve this technological development, a Primary Growth Partnership (PGP) 

was established in 2012 between the New Zealand Ministry for Primary Industries (MPI) 

and the country’s largest seafood company Sanford Ltd. The PGP programme resulted in 

the formation of a Sanford Ltd subsidiary company, Spat Production and Technology Ltd 

(SPATnz), based in Nelson, New Zealand. Equal initial co-investments totalling $26 

million NZD was provided for the development of a large scale mussel hatchery to be 

operated by SPATnz. The first phase of the project ensued in construction of the hatchery 

which began operations in 2015. With 15+ years of prior broodstock conditioning, larval 

rearing, and selective breeding research (initially pioneered by the Cawthron Institute 

[Nelson, New Zealand] and with an on-going collaboration), SPATnz is now successfully 

producing large quantities of selectively bred mussel larvae/spat.  

 The hatchery is currently set to begin its Phase II expansion to increase production 

in 2017 with the capacity to supply industry with around 30,000 tonnes a year equivalent 

of adult mussels (Smith et al. 2016). However, although proof of concept has been 

successfully realised, consistency of larval quality is a persistent challenge with 

variability in larval growth and settlement rates, and the occasional occurrence of entire 

‘batch crashes’ for which causation has not yet been established (Smith et al. 2016; 

personal communication, R. Roberts; SPATnz, 2015). Thus, to support expansion of the 
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sector it is crucial that the reason/s for cases of high mortalities (up to 100%) and poor 

larval quality are identified, and for new tools to be developed in order to better 

understand and monitor larval health. 

1.1.1.1.2 Oysters 

Oyster farms in New Zealand similarly rely on wild-caught spat for stock, although this 

is currently being supported by a small-scale commercial hatchery. A hatchery, a nursery, 

and a selective breeding programme have been under development by the Cawthron 

Institute for around 10 years. The nursery and spat growing operations were taken over 

by Aotea Fisheries Ltd in 2013, but Cawthron Institute maintains the hatchery component 

under contract, and continues to direct the breeding programme and perform associated 

research. 

 Pacific oysters are a relatively high-value product compared to mussels. However, 

with a revenue of around $20 million NZD in 2015, oysters are currently one of the 

smallest contributing sector to New Zealand’s main aquaculture exports. Furthermore, 

overall production volume has declined by around 30% during the past decade due to the 

recent emergence of an extremely pathogenic marine herpesvirus, ostreid herpesvirus 

micro-variant (OsHV-1 µVar) (Barrat-Boyes 2012). The virus was first detected in France 

in 2008 and has since been responsible for killing massive volumes of oyster stock around 

the world, resulting in huge socio-economic consequences. The true costs associated with 

the virus is difficult to establish, but with global oyster aquaculture representing a multi-

billion dollar sector and mass mortalities exceeding 80% of stock in many cases, negative 

repercussions are undoubtedly great. 

 Adult oysters do not demonstrate mortality upon OsHV-1 µVar exposures, and 

can manage viral infections by controlling its replication (Segarra et al. 2014). However, 

early lifestages are particularly vulnerable to the pathogen and substantial commercial 

losses arise when outbreaks occur during larval culture in hatcheries, and on farms with 
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juvenile stock (Mortensen et al. 2016). Because invertebrates generally lack an acquired 

immune response, controlling diseases is a considerable challenge. Many of the 

therapeutic strategies that can benefit diseased fish are ineffective for marine molluscs, 

and there are no effective vaccines available for OsHV-1 µVar (Dégremont et al. 2015a; 

DoA 2015). Thus, selectively breeding oyster families/strains for viral resistance have 

been identified as a key long term strategy to overcome the consequences linked with 

widespread infections (Camara & Symonds 2014). 

 A number of research organisations, industry partners and funding agencies in 

New Zealand and around the world (e.g., Australia, France, Ireland, United Kingdom) are 

investing heavily in research to collaboratively identify heritable traits associated with 

viral susceptibility and develop selectively bred families which are resistant to the virus 

across all lifestages (Prado-Alvarez et al. 2016). However, most of the research conducted 

thus far has focused on post-metamorphic lifestages (i.e., spat and juveniles <1 year old), 

and considerable knowledge gaps exist for earlier larval lifestages when oysters are most 

susceptible to viral infection.    

1.1.2 Early lifestage molluscan research 

With the many services that marine molluscs provide, it is perhaps unsurprising that their 

adult biology is well-researched through academic and commercial investigative interests 

that have spanned many centuries. However, most molluscs have complex biphasic life-

cycles and much less is known about their early ontogenic development, including their 

fundamental requirements in many cases. The great diversity of molluscan taxa is 

mirrored by various life strategies and ecologies of the larval stage. Some species are 

direct developers without a planktonic phase, but most have a free-swimming stage that 

lasts from days to months prior to settlement and the beginnings of a sedentary lifestyle.  

The pelagic larval period enables them to disperse over long distances, colonise new 

territory, and move away from overcrowded or unsuitable habitats. Very little is known 
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about the fate of larvae during this time due to the difficulties in tracking such tiny 

organisms in the vast seascapes of the open ocean. However, we have learned by culturing 

particular species in the laboratory that their nutritional requirements, physical tolerances 

(e.g., pH, salinity, temperature, oxygen availability), susceptibilities to toxins and 

pathogens, and the environmental cues which regulate their behaviours and 

developmental timing is often highly species specific.  

 As previously mentioned, marine molluscs are good indicators of ecosystem 

health. Furthermore, their embryonic and larval forms have particular relevance in this 

area. These early lifestages are extremely sensitive to environmental influences and are 

used widely as standard sentinel organisms for marine pollution and ecotoxicology 

studies (Losso et al. 2007; Fabbri et al. 2014; Gamain et al. 2016), and, more recently, for 

investigating potential consequences of global climate change scenarios, such as ocean 

acidification (Waldbusser et al. 2015; Cole et al. 2016; Dineshram et al. 2016). Thus, 

molluscan embryos and larvae present a unique opportunity to monitor the effects of 

anthropogenic impacts, help guide environmental management decisions, and ultimately 

keep our marine ecosystems healthy. 

 Within aquaculture, early lifestage molluscan research is varied with efforts being 

focused on maternal provisioning and offspring quality (de Sousa et al. 2015; Myrina et 

al. 2015; Joaquim et al. 2016), nutritional requirements and dietary preferences (Aarab et 

al. 2013; Sánchez-Lazo & Martínez-Pita 2014; Gui et al. 2016; Southgate et al. 2016), 

understanding the genetic basis for developmental variation (Pace et al. 2006; Francis Pan 

et al. 2015), optimisation of culture conditions or rearing systems (Kamermans et al. 

2013; Turini et al. 2014; van Hung et al. 2015; Gale et al. 2016), disease management and 

pathology (Kesarcodi-Watson et al. 2012a,b; Rojas et al. 2015; Sohn et al. 2016), 

improving rates of larval settlement and metamorphosis (Mesías-Gansbiller et al. 2013; 

Young et al. 2015a; Çelik  et al. 2015; Protopopescu & Beal 2015), and development of 
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cryopreservation capabilities for selective breeding purposes (Paredes et al. 2013; Suquet 

et al. 2014; Rusk et al. 2017b). Many advances in these areas have been made over the 

past couple of decades, thus providing significant opportunities for full lifecycle culture 

of certain taxa. Yet, many questions still remain to be comprehensively investigated; even 

for species with long culture histories. Until recently, this was partially due to limited 

application of advanced molecular and biochemical tools/techniques, or their lack of 

availability. However, over the past decade, numerous breakthroughs have been made in 

analytical and computational technologies and state-of-the-art instrumentation is 

relatively easier to access, and analysis costs are typically much lower.  

 We can now separate very complex biological matrices (e.g., cells, tissues, whole 

organisms) and characterise their composition in high detail and in a high throughput 

fashion. Many of these analytical developments owe themselves to efforts and advances 

made during the Human Genome Project (Venter et al. 2001), and largely to the needs 

which have followed its completion in 2001 to better understand gene function. Now, 15 

years into the ‘post-genomic era’, global untargeted analysis of all gene transcripts 

(mRNA), their protein products, and metabolites which are not encoded in the genome 

(but are functionally modified by proteins) is possible. Rather than measuring one or a 

few target genes, proteins or metabolites of interest in a single assay, hundreds to 

thousands of biomolecules can be analysed simultaneously. The large sets of data can 

then be mined to discover often unexpected and novel information. Different strategies 

are used to assess these three levels of biological organisation, and have evolved into their 

own disciplines coined transcriptomics, proteomics, and metabolomics (reviewed by 

Schneider & Orchard 2011); collectively known as ‘omics’-based approaches. The advent 

of omics technologies has brought about a major change towards the systematic analysis 

of biological processes at many different scales, and has triggered a revolution in 

exploratory based research. Used alone or in conjunction with one another, these 
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untargeted analytical strategies have recently proved incredibly valuable for functional 

genomic investigations and numerous other applications in various animal models, 

including marine molluscs. 

1.1.2.1 Application of ‘omics’-based approaches 

 Omics-based approaches controversially represent a paradigm shift in the way 

science is being conducted towards non-hypothesis driven research. However, it is 

important to note that the ‘scientific method’ based on empiricism is by no means 

violated, and with the shift rather signalling a change from primarily hypothesis-driven 

to data-driven research, the concept that omics-based approaches are ‘hypothesis-free’ is 

not really true. Indeed, for any omics investigation, the underlying hypothesis is that 

genes, proteins and/or metabolites are responsible for the phenotypic trait being studied, 

and that the omics data will find them. It is hypothesis-free only in the sense that we do 

not have to specify in advance which genes/proteins/metabolites/pathways we think are 

responsible. Thus, whether omics is considered as a paradigm shift or not, the approach 

is undoubtedly a transformation in the way biologists ‘do business’. Omics-based 

approaches have evolved to better-understand the complexity of biological systems and 

organisms’ responses to environmental disturbances, and signifies an exciting new era in 

modern biology.  

 Omics-based analyses of early lifestage invertebrates is still in its infancy, but a 

few examples do exist which demonstrate applications of transcriptomics and proteomics 

in molluscan embryos and larvae. For example, global analysis of gene and/or protein 

expressions have revealed the complex mechanisms in pre-metamorphic stages which are 

involved in developmental timing (Huan et al. 2012, 2015), intraspecific growth variation 

(Meyer & Manahan 2010), larval quality and health (Bassim et al. 2015), metal toxicity 

(Navarro et al. 2011), and environmental stress responses (Dineshram et al. 2013, 2015; 

2016). Each of these studies have applications which are relevant for enhancing full 
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lifecycle mollusc aquaculture capabilities, and together have set a precedent for omics-

based research within the general field of larval biology. Furthermore, by very broadly 

scanning multiple biomolecules, results from these studies also show that omics-based 

approaches are incredibly useful for generating novel hypotheses which would have been 

difficult or highly time-consuming, if not impossible, to devise through targeted 

analytical strategies based on current a priori knowledge. However, metabolomics-based 

analyses have not thus far been applied to such early lifestage investigations which is 

perhaps surprising considering the unique benefits that metabolomics has proven to 

deliver in other disciplines, such as medicine and human health, microbiological research, 

plant physiology, and agricultural sciences, among others (reviewed by Nadella et al. 

2012; Aldridge & Rhee 2014; Tenenboim & Brotman 2016; Wishart 2016).   

1.1.3 Moving forward 

To further develop the mollusc aquaculture sectors in New Zealand, and around the 

globe, full lifecycle hatchery culture is vital. However, reasons for variability in larval 

quality will need to be identified and remediated to achieve optimal production 

capacity, and strategies to combat or circumnavigate problems associated with disease 

and poor health will need to be devised. These issues can only be solved through 

gaining in-depth understanding of the physiological functioning of embryos and larvae. 

To achieve this, transcriptomic and proteomic research will certainly continue to 

contribute in the future, and foreseeably with much greater usages. But these approaches 

alone cannot provide the complete picture of any biological system since they do not 

fully capture metabolic processes responsible for energy conversion and repartitioning, 

and also are removed to some extent from certain environmental influences. Thus, to 

complete the picture, it is necessary to include detailed analyses of general metabolism, 

downstream of genes and proteins, through incorporation of metabolomic-based 

approaches into early lifestage molluscan research.   
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1.2 Thesis motivation  

 

“The sea, once it casts its spell, holds one in its net of wonder forever” 
– Jacques Yves Cousteau 

 

I grew up in the Shetland Islands, a small isolated and rugged outcrop of rock bordered 

on three sides by the convergence of the North Sea, the Norwegian Sea, and the Atlantic 

Ocean; a place where it is impossible to be more than three kilometres from rolling swells, 

and equally impossible to stand up straight in the face of a ‘light breeze’. I spent most of 

my free childhood days at the beach or along the clifftops, mostly wet and mostly very 

cold – but always happy. My friend’s dads were fishermen or aquaculture farmers, mine 

worked at sea on the oil rigs. Skimming stones, whistling for seals, counting limpets, 

picking periwinkles, catching fish, feeding them in seapens, or scooping them from inside 

when no one was looking – those were the days! I have always had an affinity for the sea 

and the creatures which inhabit its shores and depths – apart from sharks, I am not very 

fond of sharks.   

 I have spent almost the last ten years of my life dedicated towards studying early 

ontogenic development of marine molluscs, albeit mostly in the warmer climes of 

subtropical New Zealand. During these years I have worked on various fundamental 

biology projects investigating pre- and post-metamorphic stages of many species, 

including the Mediterranean mussel (Sánchez-Lazo et al. 2012), the Chilean ribbed and 

blue mussels (Alfaro & Young 2010), the Pacific oyster (Suneja et al. 2014; Hilton et al. 

2016; Young et al. 2017), the Japanese abalone (Young & Alfaro 2012), the New Zealand 

abalone (Alfaro et al. 2014b), the New Zealand pipi clam (Young et al. 2007), the New 

Zealand geoduck (Le et al. 2016a,b), the New Zealand scallop (de Jong 2013), the New 

Zealand ribbed mussel (Alfaro et al. 2011b), and the New Zealand green-lipped mussel 
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(Ganesan et al. 2008, 2012a,b; Young et al. 2008a,b,c 2009, 2011, 2015a,b, 2016; Gale 

et al. 2016; Ragg et al. 2016; Rusk et al. 2017a,b). 

 During my Masters thesis (2007–2009) I conducted research working closely with 

the founding team of what was to become SPATnz. The aim was to enhance mussel (P. 

canaliculus) settlement rates at the final stages of larval development immediately prior 

to metamorphosis. Excellent results were obtained in laboratory experiments using 

pharmacological agents to induce the behaviour by targeting particular receptors, and also 

providing substrates with different physicochemical properties (Young et al. 2009). 

 I then spent the next year or so working in collaboration with SPATnz and AUT 

at the Cawthron Institute’s aquaculture facility to upscale laboratory results in a pilot 

hatchery using commercial practices, and to investigate the role of bacterial biofilms in 

promoting settlement and providing nutrition (Ganesan et al. 2012a,b; Young et al.  

unpublished data). It became apparent that the laboratory results were not as scalable as 

predicted when conducted over longer durations and under different culture conditions. 

The methods I had developed with my collaborators could significantly enhance larval 

settlement rates over the first few days of ‘setting’, but these rates could not be maintained 

due to subsequent post-settlement mortalities and/or poor larval retention on the 

settlement substrates. 

 Thus, with evidences of unpredictable variability in embryo and larval quality 

(i.e., differential developmental timing, growth rate, health, survival) prior to the 

settlement and metamorphic events, it became clear to me that a much better 

understanding of earlier ontogenic stages and larval condition should ideally be obtained 

due to likely carryover effects. This was really the original motivation behind my PhD 

Thesis which percolated with a strong vision for incorporating modern research 

techniques into early lifestage molluscan studies, and subsequently developed into a 

defined proposal and candidacy in 2012. 
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 The newly-developing field of metabolomics was gaining its stronghold in the 

medical research arena, with a number of proven applications in human embryonic and 

stem cell research, and for a myriad of toxicology, pathology and general health studies. 

At that time, transcriptomic and proteomic approaches were also just starting to be applied 

to investigate early development of marine molluscs with great success, as previously 

outlined. Thus, I felt strongly that the addition of metabolomics (i.e., the ‘final’ omics 

approach in the genotype-to-phenotype cascade [see Chapter 2 Figure 2.1]) would 

significantly expand the scope of early lifestage molluscan research and serve a number 

of highly beneficial, as well as crucial, roles: 

 
1. Unlike transcriptomics and proteomics, metabolomics is easily performed on non-

model organisms with little or no genomic information (ideal for certain cultivated 

marine mollusc species). 

 
2. Metabolomics is generally a low-cost analytical strategy compared to other omics 

approaches and data analysis is relatively quick (ideal for industry applications). 

 
3. The metabolome is highly sensitive and fast-reacting to both genetic and 

environmental influences (providing a central link between genotype and 

phenotype).   

 
4. Metabolomics can deliver additional information at a different level of biological 

organisation (to provide novel stand-alone findings). 

 
5. Metabolomics can provide complimentary information on other levels of 

biological organisation (to lend support for hypotheses and to fully reconstruct 

complex molecular and metabolic networks when integrated, thus providing a 

good overview of the entire biological system). 
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1.3 Thesis aims 

The primary aim of this Thesis is to pioneer the use of metabolomics-based approaches 

in early lifestage investigations of marine molluscs, and demonstrate that such approaches 

can deliver novel and valuable insights into their biology’s with broad applications in 

aquaculture, immunology and toxicology. The secondary aim of this Thesis is to provide 

the general aquaculture research community with resources to incentivise and enable 

them to incorporate a metabolomics-based component into their existing or future 

research projects.  

1.4 Thesis structure 

This Thesis comprises of two literature reviews (Chapters 2 & 3), four experimental case 

studies (Chapters 4–7), and a final Thesis synthesis, discussion and conclusion (Chapter 

8). The primary research chapters (Chapters 4–7) are classified into three general themes 

to experimentally demonstrate unique applications of metabolomics in mollusc 

aquaculture and early lifestage health and development: 

  

• Mollusc larval quality:    Chapters 4 & 5 

• Mollusc host-pathogen interaction:  Chapter 6 

• Mollusc toxicology :    Chapter 7 (Parts A & B) 

 

Particular aspects of these case studies were developed in collaboration with our external 

research and industry partners (Cawthron Institute and SPATnz Ltd) to provide 

information with commercial relevance and value. The case studies were also designed 

to utilise different sampling regimes, organisms, lifestages, and data analysis approaches 

where appropriate to provide broad exemplars for different situations. 

 Chapter’s 4–6 utilise metabolomics in isolation with each of these case studies 

being presented as they would appear for publication, with minor modifications. Chapter 

7 combines metabolomics with a targeted analysis of selected biomarkers as a validatory 
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exercise, and is thus presented in two sections. The first section (Part A), primarily 

contextualises the body of work and reports on untargeted metabolomics-derived data and 

their interpretations. Taking this research further, some of these interpretations and 

hypotheses are subsequently tested in Part B through a targeted analysis of enzymes and 

other macromolecules to gain additional information at different levels of biological 

organisation.  

 

1.5 Chapter contents and rationales 

 
Chapter 2 – Literature Review 1: Metabolomic applications in aquaculture research 

Overview: What is metabolomics, what can it tell us about cultured aquatic organisms, 

and how might it be used constructively in the future? 

 

 Very few aquaculture researchers have heard of the term ‘metabolomics’. This is 

probably because the field is relatively new and has not yet been widely applied to gain 

knowledge with commercial potential – or at least it might not have been recognised. 

However, over 100 published studies have been conducted which incorporate a 

metabolomics component that are directly or indirectly relevant to the industry. 

Therefore, with the timely need for a first formal review of metabolomics as applied to 

aquatic biology and aquaculture, this chapter set out to provide such a review and 

showcase some unique applications of the approach. The rationale of providing this 

chapter content is to educate aquaculture scientists, and other interested parties, as to the 

benefits that metabolomics can deliver, to identify research gaps where metabolomics can 

advance knowledge in areas with commercial value (e.g., hatchery production of mollusc 

larvae), and to motivate interest and future inclusions of the approach into aquaculture 

research projects around the globe. 
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Chapter 3 – Literature Review 2: Metabolomic strategies in aquaculture research  

Overview: How are metabolomics studies performed, what techniques are used, and how 

can researchers access the necessary facilities and expertise? 

 

 This chapter provides information on how metabolomics investigations are 

conducted by describing the different experimental, analytical and statistical strategies 

which are typically employed, and outlines some special considerations for samples 

derived from aquatic environments. For each of the strategies described, specific 

examples of primary research involving aquatic organisms are given. The rationale for 

this content is to act as a primer/tutorial for researchers who are new to the field to enable 

them to carry out metabolomic-based projects in aquaculture, or within any aquatic 

biology context, and encourage wider applications.   

 

Chapter 4 – Case Study 1: Assessment of larval quality  

Objective: To determine whether visually observable phenotypic traits in mussel larvae 

can be characterised and discriminated by metabolomic-based approaches. 

 

 To investigate this objective as a first test, metabolomics was applied to determine 

if mussel larvae of the same age and life experience but expressing different growth rates 

could be discriminated based on their metabolite profiles. Growth rate is a currently-used 

proxy for larval quality in shellfish hatcheries, with slow-growing organisms generally 

being considered inferior in quality (Helm et al. 2004). Slower growing larvae often 

reflect organisms with poor health due to disease and/or with structural abnormalities, 

and their presence can contribute towards decreasing the population health of the entire 

larval batch and reducing settlement success (Loosanoff & Davis 1963; Taris et al. 2006). 

Maintaining a tight bell curve on growth and development is also important to 

synchronise and hasten settlement and metamorphic competency which enhances 

production efficiency, and larvae with slow growth rates may produce slow growing spat 
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or juveniles which is undesirable for subsequent growout phases (Collet et al. 1999; 

Tanyaros & Tarangkoon 2016). The primary rationale of this study is simply to ascertain 

whether metabolomics can distinguish larval samples to the same effect as currently used 

techniques (i.e., microscopy, sieving/grading), and to perform the first appraisal of the 

sensitivity of the larval metabolome. This was an important step to reinforce the value of 

assessing further applications. 

 

Chapter 5 – Case Study 2: Assessments of handling stress and culture conditions 

Objective: To determine whether visually non-observable traits can be characterised and 

discriminated by metabolomic-based approaches. 

 

 The rationale of this case study was to better-understand the sensitivity and 

variability of the larval metabolome by establishing whether non-observable traits in 

larval samples could be distinguished via profiles of metabolites. With the successful 

outcome of the first case study, this second case study sought to establish if handling 

stress (i.e., sieving during a water exchange) and different rearing conditions (i.e., 

flowthrough vs. static culture) have influences on the mussel larval metabolome. Using 

larvae from a single cohort with different life experiences but expressing similar growth 

rates, this study also sought to verify the results of the first case study by re-analysing the 

larval quality metabolite biomarkers that had previously been identified.  

 

Chapter 6 – Case Study 3: Assessment of larval health during viral infection 

Objective: To determine if analysis of the larval metabolome can provide novel insights 

into mechanisms of disease and poor health caused by pathogens. 

 

 To investigate metabolomic applications in larval health and disease, the Pacific 

oyster (Crassostrea gigas) and its relationship with OsHV-1 µVar was selected as a 

model case example. Larval forms are most susceptible to OsHV-1 µVar infections, and 
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although it has been recognised that more of a research focus should be placed on early 

development stages (Dégremont et al. 2016), the host-virus interaction has not yet been 

investigated in larvae. This developmental stage has crucial importance for the production 

of commercial hatcheries, as well as explaining the abundance of natural spatfall. 

Selective breeding efforts have recently produced families which are resistant to OsHV-

1 µVar (Dégremont et al. 2015b, 2016), but the underlying genetic and metabolic 

mechanisms responsible for resistance are wholly unknown. To further enhance selective 

breeding programmes and monitor their success, it is vital we understand precisely how 

larval host metabolism is modulated by the virus to proliferate, characterise which 

mechanisms are being activated by the host in efforts to counter the infection, and define 

the heritabilities of mechanistic components/traits for future genetic improvements. This 

particular early lifestage disease model represents the most important yet challenging 

obstacle that the global oyster aquaculture sector has ever faced (Castinel et al. 2015).    

 
Chapter 7 – Case Study 4: Assessment of embryo health during toxin exposure 

Objective: To determine if analysis of the embryonic metabolome can provide novel 

insights into mechanisms of toxicity and poor health caused by heavy metal exposure.  

    

 To test whether metabolomics can similarly be applied to assess poor mussel 

embryo and larval health in the final case study, a semi-commercial scale trial was 

developed to provide industry-relevant information. To experimentally induce poor 

health, consultation with our industry partner (SPATnz) and collaborating scientists at 

Cawthron Institute led to the decision to use copper toxicity as the experimental stressor. 

We chose to use copper in this study because it is commonly used as a reference toxicant 

for marine invertebrate embryotoxicity assays (Novelli et al. 2003; Fabbri et al. 2014; 

Libralato et al. 2013), it is very stable under a range of environmental conditions, its 

toxicological effects and biological fate are reasonably well-characterised in marine 
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molluscs (Fitzpatrick et al. 2008; Al-Subiai et al. 2011; Zhang et al. 2011; Giacomin 

2014), dosing parameters are easily controlled, it is a highly relevant contaminant in New 

Zealand waters (Gadd & Cameron 2012), and there are some concerns regarding negative 

influences of potential trace metal pollution in the local seawater used during hatchery 

culture of mussel larvae (personal communication, R. Roberts; SPATnz, 2015). Selection 

of copper as the health stressor for this case study additionally provides a unique 

ecotoxicology context which broadens the scope of metabolomics-based applications in 

marine mollusc development for future researchers within the field of marine toxicology. 

This final case study also incorporated very early embryonic lifestages for the first time, 

involved a temporal aspect to the sampling design, and sought to validate interpretations 

gained from the metabolomics data through targeted analyses of a suite of oxidative stress 

biomarkers. 
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1.6 Research outputs arising from this thesis  

1.6.1 Conference presentations  

Young T., Alfaro A.C., Villas-Bôas S.G., Robertson J., Duxbury M., Higgins C., 

Brooks J., Pook C. 2013. Omics in Aquaculture: Research Trends and Future 

Directions. Presented Oct 24th at the New Zealand Aquaculture Conference. 

Nelson, New Zealand.   
 

Young T. Alfaro A.C., Villas-Bôas S.G., Robertson J. 2014. Muscling in on Mussels 

with Systems Science. Presented Oct 23rd at the New Zealand Aquaculture 

Conference. Nelson, New Zealand. 
 
Young T. Alfaro A.C., Villas-Boas S.G., Robertson J. 2014. Metabolomic 

Applications in Marine Invertebrate Development and Aquaculture. Presented 

Aug 11th at the New Zealand Marine Sciences Society Conference. Nelson, 

New Zealand. 
 
Young T. Alfaro A.C., Villas-Bôas S.G., Gale S. 2015. Shifting Paradigms towards 

Non-Hypothesis Driven Research in Marine Molecular Biology. Presented July 

6th at the New Zealand Marine Sciences Society Conference. Auckland, New 

Zealand. 
 
Young T., Gale S.L., Burritt D., Sander S., Ragg N.L.C., Le D.V., Benedict B., 

Watts E., Taylor J., Alfaro A.C., Villas-Bôas S.G. 2015.  Identification of 

Health Biomarkers in Marine Mussels: An Integrated, Multi-disciplinary 

Approach. Presented Aug 25th at the International Society for Environmental 

Toxicology and Chemistry Conference. Nelson, New Zealand. 
 

Adams S.L., Young T., Ragg N.L.C., Hilton Z. 2015. An Overview of Current 

Research to Enhance Shellfish Aquaculture in New Zealand. Presented Sept 

17th at the 6th International Symposium for Marine Biology and Biotechnology: 

The Omics in the Ocean. Pintung, Taiwan 
  
Young T., Kesarcodi-Watson A., Alfaro A.C., Merien F., Nguyen T.V., Mae H., Le 

D.V., Villas-Bôas S.G. 2016. Disturbance of Larval Host Metabolism in 

Response to OsHV-1 Virus Exposes Novel Immunological Biomarkers. 

Presented July 4th at the New Zealand Marine Sciences Society Conference. 

Wellington, New Zealand. 
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Young T., Gale S.L., Ragg N.L.C., Burritt D., Le D.V., Watts E., Taylor J., Benedict 

B., Alfaro A.C., Sander S., Villas-Bôas S.G. 2016. Metabolic Regulation of 

Immunotoxicity during Marine Invertebrate Embryogenesis. Presented July 5th 

at the New Zealand Marine Sciences Society Conference. Wellington, New 

Zealand. 
 
Gale S.L., Young T., Burritt D., Ragg N.L.C., Le D.V., Sander S., Benedict B., 

Watts E., Mae H., Hawes N., Berry J., Currie K.I., Alfaro A.C., Villas-Bôas 

S.G., King N., Hilton Z. 2016.  Piloting Biochemical Tools to Assess Bivalve 

Early Life Health in Response to Ecologically Relevant Coastal Stressors. 

Presented July 7th at the New Zealand Marine Sciences Society Conference. 

Wellington, New Zealand. 
 
Alfaro A.C., Young T., Nguyen T.V. 2016. Novel Diagnostics to Boost Aquaculture 

Production. Presented Sept 27th at the New Zealand Aquaculture Conference. 

Nelson, New Zealand.  
 
Young T., Kesarcodi-Watson A., Alfaro A.C., Merien F., Nguyen T.V., Mae H., Le 

D.V., Villas-Bôas S.G. 2016. OsHV-1 Hijacks Host Metabolism in Oyster 

Larvae. Presented Sept 27th at the New Zealand Aquaculture Conference. 

Nelson, New Zealand.   
 
Hilton Z., Young T., Gale S.L., Dunphy Burritt D., Ragg N.L.C., King N., Adams 

S., Mae H., Alfaro A.C. 2016. Understanding Mechanisms of Herpes Virus 

Resilience in Pacific Oysters. Presented Sept 27th at the New Zealand 

Aquaculture Conference. Nelson, New Zealand.   

 

1.6.2 Industry portal publications 

Alfaro A.C., Young T. 2015. Metabolomics: An innovative and powerful tool that 

will revolutionize aquaculture. World Aquaculture, 46(2): 21–22. 
 

Alfaro A.C., Young T. 2015. Metabolomics approaches to improve mussel larval 

production. Global Aquaculture Advocate, 18(6): 78–79. 
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1.6.3 Peer-reviewed journal publications 

 
Chapter 2 

Alfaro A.C., Young T. 2016. Showcasing metabolomics in aquaculture: A review. 

Reviews in Aquaculture, DOI: 10.1111/raq.12152 

Chapter 3 

Young T., Alfaro A.C. 2016. Metabolomic strategies for aquaculture: A primer. 

Reviews in Aquaculture, DOI: 10.1111/raq.12146 

Chapter 4 

Young T., Alfaro A.C., Villas-Bôas S.G. 2015. Identification of candidate 

biomarkers for quality assessment of hatchery-reared mussel larvae via 

GC/MS-based metabolomics. New Zealand Journal of Marine and Freshwater 

Research, 49(1): 87–95. 

Chapter 5 

Young T., Alfaro A.C., Villas-Bôas S.G. 2016. Metabolic profiling of mussel larvae: 

Effect of handling and culture conditions. Aquaculture International, 24(3): 

843–856. 

Chapter 6 

Young T., Kesarcodi-Watson A., Alfaro A.C., Merien F., Nguyen T.V., Mae H., Le 

D.V., Villas-Bôas S.G. 2017. Differential expression of novel metabolic and 

immunological biomarkers in oysters challenged with a virulent strain of 

OsHV-1. Developmental & Comparative Immunology, 73: 229–245. 

Chapter 7 

Young T., Gale S.L., Alfaro A.C., Ragg N.L.C., Le D.V., Sander S.G., Burritt D.J., 

Benedict B., Villas-Bôas S.G. Assessing health of early life stage marine 

molluscs: Application of a multiresolution, multidisciplinary biomarker 

toolkit. In prep. 
 

Young T., Gale S.L., Alfaro A.C., Ragg N.L.C., Le D.V., Sander S.G., Burritt D.J., 

Benedict B., Villas-Bôas S.G. Metabolic regulation of copper toxicity during 

marine mussel embryogenesis. In prep. 
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Abstract 

Aquaculture production is currently challenged to meet the growing demands for seafood 

protein throughout the world. To achieve this growth in an efficient, safe and sustainable 

manner, novel tools and applications will need to be incorporated at each step of the 

production line. A variety of ‘omics’ (e.g., transcriptomics, proteomics, metabolomics) 

applications have already begun to emerge in aquaculture research with extreme success. 

A promising new ‘omics’ approach is metabolomics, which aims to use metabolite 

profiles to identify biomarkers indicative of physiological responses of living samples 

(e.g., whole organism, tissues, cells) to environmental or culture conditions. One of the 

benefits of this approach is that it uses a broad scan of biological conditions to identify 

often unexpected problem or risk areas to focus management attention. In this 

contribution, relevant research examples have been selected to showcase the applications 

of metabolomics in aquaculture in four major areas: hatchery production, nutrition and 

diet, disease and immunology, and food safety and quality. The novelty of this approach 

is highlighted by the fact that the majority of published papers in this field have been 

cited, and these are all recent contributions. 
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 2.1 Global aquaculture 

We live in a world of increasing environmental impacts and diminishing food resources. 

In addition, our growing population places more and more demands on food supplies, 

including animal-based protein. Undoubtedly, seafood supplies and demands have 

increased exponentially in recent years, and are expected to continue to grow in the years 

to come. This growth is mainly focused on aquaculture, since global wild-caught fish 

resources have declined due to overexploitation, and are unlikely to recover in the near 

future. Thus, over 50% of fish and seaweed food supplies currently come from 

aquaculture, amounting to about 90 million tonnes and worth US$144 billion in 2012 

(FAO 2014). It is estimated that production will need to almost double by 2050 if we are 

to meet the growing demands (Waite et al. 2014). There have been many suggested 

scenarios as to how this growth could be achieved, but it is clear that future production 

will need to improve in efficiency, safety, sustainability and environmental performance. 

Regardless, technological innovation will be required to enhance reproduction and 

conditioning, larval rearing, disease diagnostics and immunology, nutrition and feed 

formulation, cultivation systems performance, and food safety and quality. Recent 

biotechnological advances have produced improvements in all of these areas, and new 

tools and approaches proliferate in the literature daily. One of the most promising 

biotechnological areas is that of ‘omics’ approaches. With rapidly expanding capabilities 

and diversity of analytical platforms and computational analysis, ‘omics’ applications are 

likely to revolutionise aquaculture research and development in the near future. 

2.2 ‘Omics’ approaches  

During the last century, biological research has benefited from the knowledge generated 

around the genome and a myriad of applications. A strong emphasis was placed on the 

idea that genes direct all processes within a cell, and thus the organism, is based on the 
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assumption that proteins, via mRNA, and then metabolites are synthesised in a 

hierarchical manner when genes are activated. However, this idea has now been 

superseded by the knowledge that many metabolic processes are controlled by complex 

feedback mechanisms and regulatory networks involving post-translational protein 

modifications and metabolite fluxes, which are de-coupled from gene expression (Suarez 

& Moyes 2012; Chubukov et al. 2013). At the heart of this new thinking are a range of 

newly created fields under the ‘omics’ banner, which promise to revolutionise 

biotechnological research across all life-base investigations. ‘Omics’ is a term which 

refers to the collective technologies used to explore the structures, functions, relationships 

and dynamics of various biomolecules within the cells of organisms. Recent advances in 

technology now enable us to use non-targeted ‘omics’-based approaches to identify the 

global set of gene products (transcripts, proteins and metabolites) within a biological 

sample, rather than single products at a time. The exploratory nature of these approaches 

means that novel hypotheses are often generated rather than validated. At the same time, 

one of the advantages of ‘omics’ is that usually unexpected information is revealed, 

leading to high innovation and discovery in a very efficient manner. 

 New ‘omics’ fields are continually being generated, but the bulk of research from 

genotype to phenotype falls within genomics, transcriptomics, proteomics and 

metabolomics  (Figure 2.1). Genomics aims to sequence, assemble and analyse the 

structure and function of a given genome. The DNA sequence provides information about 

what could potentially happen in the organism if they were to express particular genes. 

Transcriptomics focuses on sequencing the RNA transcripts that are produced by the 

genome and identifies which genes are actually being expressed under specific biological 

circumstances. This knowledge provides information about what appears to be happening 

in the organism at a given time. Proteomics is the study of proteins as a way to elucidate 

the structure, function and regulation of biological systems. This includes proteins which 
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are constructed by the direct instruction from genes, but also the functions of proteins 

which occur due to post-translational protein modifications. Since enzymes are involved 

in the operation and regulation of metabolic pathways in every living organism, their 

expressions reflect accurate responses to cellular and environmental conditions in real 

time. This information provides understanding about what makes cellular processes 

happen. Metabolomics (the study of metabolites) is often reported to represent a better 

picture of an organism’s phenotype, since metabolites are very sensitive to environmental 

changes and provide information about what is actually happening on a metabolic and 

physiological level. 

 

 

Figure 2.1. Diagram of ‘omics’ cascade defining genomics, transcriptomics, proteomics and metabolomics, 
and depicting their position along the genotype to phenotype continuum.  
 

 

The rapid expansion in capabilities and applications within these fields owes a great deal 

to recent advances in analytical platforms (e.g., Nuclear Magnetic Resonance, Mass 

Spectroscopy) and bioinformatics, which allow us to obtain and mine huge amounts of 

data previously unattainable (reviewed in Chapter 3 [Young & Alfaro 2016]). These 

changes are reflected in the widening of scope of biological studies from simple 
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biochemical analyses of individual genes, proteins or metabolites to measurements of 

complex component mixtures within biological systems. This type of research is possible 

with the use of new sophisticated multi-platform technology that allows high-throughput 

analysis. The constant generation of new algorithms for software and search engines 

ensures maximum data production. These data can then be compared to gene and protein 

sequences and chemical fingerprints of metabolites stored in the public domain and 

proprietary databanks that continue to grow exponentially. 

 There is a wealth of information related to ’omics’ research in the literature, 

especially for genomics and transcriptomics. However, newer ‘omics’ fields, such as 

metabolomics are represented by fewer publications, especially with regards to 

aquaculture applications. Indeed, there are comprehensive reviews for genomics (Quinn 

et al. 2012; Huete-Pérez & Quezada 2013), transcriptomics (Saroglia & Liu 2012; Qian 

et al. 2014) and proteomics (Rodrigues et al. 2012; Zhou et al. 2012; Carrera et al. 2013; 

Peng 2013) in aquaculture and seafood-related research. However, there is no such review 

for metabolomics as yet. To date, there are over 150 papers published that use 

metabolomics to address a range of issues with direct or indirect relevance to aquaculture 

(Figure 2.2). 

 

Figure 2.2. Trends in metabolomics-based research with applications to the aquaculture sector. The bar 
chart displays the number of publications from 2000-2014 within various categories. The pie chart displays 
the proportion of those publications, which involve relevant aquaculture organisms. 
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 The majority of these papers are in the area of toxicology and risk assessment, 

although many other areas of aquaculture production are represented. Not surprising, over 

50% of all papers have focused on fish, followed by shellfish and crustaceans. It is 

envisaged that publications in this field will continue to increase in the coming years, 

especially as more streamline workflows are generated. As a starting point, Chapter 3 

comprises a companion review paper (Young & Alfaro 2016) that deals with the 

mechanics of how metabolomics projects can be carried out. This primer presents easy to 

follow metabolomics strategies, including sample collection and preparation, choice of 

analytical platforms, and statistics and bioinformatics for data analysis and interpretation. 

 Thus, the aim of this contribution is to highlight the potential applications of 

metabolomics to aquaculture by showcasing relevant papers within four general areas of 

aquaculture production: hatchery production, nutrition and diet, disease and immunology, 

and post-harvest product quality. It is important to note that the goal of the current chapter 

is not to discuss all publications in these areas, but rather papers have been carefully 

selected which clearly illustrate the metabolomics potential. At the end of this chapter, a 

list of future directions and implications for metabolomics in aquaculture are provided. 

2.3 What is metabolomics? 

Metabolomics is the study of chemical processes involving metabolites. Metabolite 

profiles can be obtained and investigated to find chemical signatures that reflect specific 

cell activities, such as a metabolic response to an environmental stimulus. This field does 

not use DNA, RNA or proteins, but only metabolites that are produced as a result of 

genetic coding specific to that cell or organism or as a response to environmental 

perturbation. In simple terms, it is possible to say that metabolomics is a ‘physiological 

snapshot’ of a living cell or tissue. This approach can then be used to identify 

physiological differences between cells, tissues, organs or organisms that have been 
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exposed to different environmental conditions (or culturing conditions). Thus, analytical 

techniques are used to search within the metabolomes (the total inventory of metabolites) 

of biological samples. Then, statistical examination of the metabolite profiles is 

performed to look for differences among samples. From such differences we can identify 

metabolite signatures that serve as biomarkers for that specific condition and identify the 

activities of particular metabolic pathways (e.g., glycolysis, TCA cycle, fatty acid 

biosynthesis, amino acid metabolism). Within experimental trials, metabolomics can be 

used to identify effects of water temperature, oxygen levels, dietary manipulations, and 

pathogen or toxin exposures, among others. 

2.4 Advantages of metabolomics 

Although other ‘omics’ approaches have their own unique benefits, there are a number of 

advantages to conducting metabolomics-based research. Compared to proteomic and 

transcriptomic analyses, metabolomics generally involves less sample preparation, has 

much shorter turnaround times from sample collection to data interpretation, and a typical 

experiment can be conducted for a fraction of the costs. Metabolomics can be performed 

using non-invasive body fluids/solid, such as plasma and faeces, which may be of 

particular value for studies involving fish. In addition, a number of analytical techniques 

(e.g., NMR and infrared spectroscopy) can be used without destruction of samples. This 

is extremely useful when biological material is limited and/or when multiple analyses are 

to be conducted on a single sample with the aim of data integration. Another 

distinguishing characteristic beneficial for aquaculture researchers is that the majority of 

metabolites are not species-specific, unlike genes and proteins. Consequently, the 

analytical assay does not need to be redeveloped for every animal model. Furthermore, 

metabolomics can easily be applied to the study of non-model organisms without prior 

knowledge of their genome. This makes the approach particularly well-suited to research 



Chapter 2 

40 | P a g e  
 

involving new and emerging aquaculture species, but also organisms with long culture 

histories. 

2.5 Metabolomic research 

Two main avenues exist for researchers who wish to conduct metabolomics investigations 

or add a metabolomics component to an existing research project. There are a number of 

commercial metabolomics laboratories throughout the world which offer streamlined 

services. Core facilities at various universities and centres house a unique combination of 

infrastructure and expertise to carry out a range of advanced metabolomics studies. These 

organisations can provide excellent support from consultation on experimental design to 

data analysis and interpretation of results. Inevitably, significant costs are usually 

associated with such commercial services. Alternatively, access to metabolomics 

facilities can be gained through academic institutions for substantially reduced charges 

based on collaborative agreements. For scientist wanting to conduct metabolomics 

research for the first time, it is important to note that running a successful metabolomics 

project requires an adequate experience in chemistry, statistics, bioinformatics and the 

advice from a metabolomics expert on hand. For researchers with sufficient chemistry 

knowledge and access to appropriate equipment and facilities, extraction and initial 

identification of metabolites may be relatively easy. However, there are some specific 

constraints in sample collection/preparation and experimental design that need to be 

considered. In addition, the bioinformatics required for data analysis and interpretation 

are significantly complex and may require the involvement of a bioinformatics expert. 

Regardless of the approach, new metabolomics projects should incorporate the 

appropriate expertise from the start. Furthermore, scientists are urged to give appropriate 

consideration to the expected results and implications of findings, since this approach is 

exploratory by nature. 
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 The scope of this contribution is not to provide details of how metabolomics 

projects are undertaken or to describe the analytical and statistical strategies employed; 

these details are provided in Chapter 3. In this review, focus is limited to the application 

of metabolomics in aquaculture research, with specific examples in the areas of hatchery 

production, nutrition and diet, disease and immunology, and post-harvest product quality 

control. 

2.6 Metabolomics applications in aquaculture research 

2.6.1 Hatchery production 

Successful larviculture of fish and marine invertebrates presents one of the foremost 

challenges in the development of full life-cycle rearing practices. Advances in hatchery 

technology are often incremental and directed by technical managers. Unfortunately, 

technical developments are poorly captured in the primary scientific literature and often 

not shared due to concerns over losing commercial advantage (Allan & Burnell 2013). 

While significant improvements in hatchery production technology have been made over 

the past two decades, considerable opportunities exist for optimising the quality of 

broodstock, feeding regimes and culture systems (Hamre et al. 2013). For many species, 

production yields are greatly hampered by high (>90 %) mortality rates during larval 

rearing (Salze et al. 2011; Purcell et al. 2012; Sørensen et al. 2014). In some cases, this 

appears to be due to inadequate culture practices for new species and a lack of knowledge 

regarding their fundamental requirements. In other cases, low success can be attributed 

to known environmental, genetic, nutritional or disease-related factors. However, 

unexpected batch crashes are routinely observed in some hatcheries and causation is often 

not identified. Metabolomics could be employed within various frameworks to help solve 

some of these issues by providing mechanistic and functional biochemical information, 

and to support development of remedial strategies for poor hatchery performance.  
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 There are few reports on the application of metabolomics-based approaches to 

investigate the larval biology of aquatic organisms. However, recent inroads have been 

made with research on developmental biology using Zebrafish (Danio rerio) as a model 

organism (Papan & Chen 2009). The Zebrafish larval metabolome is highly dynamic 

through embryogenesis and can be used to successfully predict development stage 

(Hayashi et al. 2011), identify provisional requirements for energy acquisition and growth 

(Huang et al. 2013; Raterink et al. 2013), reveal coordinated flux in gene and protein 

expressions (Soanes et al. 2011), and characterise mechanisms of drug action and toxicity 

(Akhtar et al. 2016; Brox et al. 2016; Chai et al. 2016; Huang et al. 2016; Wang et al. 

2016; Xu et al. 2016; Yan et al. 2016). While the zebrafish is not a commercially cultured 

species, such research provides an exemplary application and highlights the potential for 

studying the early life-stages of other organisms. Thus far, the only studies with specific 

applications of metabolomics in hatchery production of invertebrate larvae are those 

stemming from this thesis and involve investigation of mussel larval quality (Chapter 4 

[Young et al. 2015]), the effects of handling stress and culture conditions during mussel 

larval rearing (Chapter 5 [Young et al. 2016]), characterisation of host-virus interactions 

in oyster larvae infected with ostreid herpesvirus (Chapter 6 [Young et al. 2017]), and 

analysis of mussel embryonic and larval health in response to trace metal contamination 

in seawater (Chapter 7 [in review]). 

 Our limited knowledge of exogenous and endogenous regulation of early 

development in different marine invertebrate and fish species restricts rapid 

advancements in larviculture practices. It is crucial that we mature our understanding of 

the factors that influence developmental timing, energy acquisition and allocation, 

nutritional requirements and preferences, and immunological and toxicological response 

mechanisms. With the imminent likelihood of an expansion in the diversity of farmed 

marine species, it becomes especially urgent that we develop solutions to address the 
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problem of larval nutrition and disease. Use of metabolomics could also be applied to 

other areas of hatchery production to help close the loop on full life-cycle culture for 

many species. For example, routine production of high-quality gametes for successful 

fertilisation and on-growing could be achieved through better broodstock management 

and understanding of maternal provisioning, paternal effects and factors associated with 

high fecundity. While not yet realised within the aquaculture industry, metabolomics has 

benefitted other areas of developmental biology to investigate reproductive disorders 

(Courant et al. 2013), identify biomarkers for assessment of sperm fertility (Kumar et al. 

2015), to assess oocyte quality and predict embryo viability (Bertoldo et al. 2013; 

Cortezzi et al. 2013), and to identify the coordination of metabolic traits during selective 

breeding for stress resistance and longevity (Malmendal et al. 2013). Metabolomics will 

undoubtedly be a useful tool in the progression of future hatchery technologies. 

2.6.2 Nutrition and diet 

Nutritional research in aquaculture aims to improve the health of cultured species through 

diet. Providing the appropriate nutrition quality and quantity is likely to have broad 

ramifications into other cultivation aspects, such as individual performance improvement, 

disease prevention, enhancement of broodstock and gamete quality, development of 

sustainable and high-quality feed alternatives and mitigation of environmental impacts, 

among others. Optimal nutritional requirements for many new and emerging aquaculture 

species are unknown. Thus, there is an urgent need to determine peak dietary conditions 

for these organisms to support sector expansion and diversification. Even for many well-

established species, the complex interactions between nutrition, health and environment 

is poorly understood. Furthermore, efforts to maximise production yields are inhibited by 

limited knowledge of larval dietary preferences and nutritional requirements for a number 

of species. Thus, considerable scope exists to boost full life-cycle culture productivities. 
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Metabolomics is uniquely suited to assess metabolic responses to nutritional deficiencies 

or excesses, and can provide in-depth mechanistic insights to assist development of 

optimised feeding regimes. 

 Currently, nutritional metabolomics research in aquaculture is an emerging field. 

Thus far, metabolomics-based approaches have proved useful for assessing: positive and 

negative effects of food deprivation in mussels, trout and salmon (Tuffnail et al. 2009; 

Kullgren et al. 2010; Baumgarner & Cooper 2012; Thunathong et al. 2012; Cipriano et 

al. 2015), interactions between diet, environment and disease in abalone and seabream 

(Rosenblum et al. 2005; Silva et al. 2014), effects of nutrient supplementation in 

seabream, salmon and carp (Cajka et al. 2013; Robles et al. 2013; Anderson et al. 2014; 

Wagner et al. 2014), effects of dietary protein substitution and utilisation in salmon and 

carp (Bankefors et al. 2011; Jin et al. 2015), effects of using reduced fishmeal-based feed 

alternatives in cobia and charr (Schock et al. 2012; Abro et al. 2014), effects of newly 

introduced plant-derived contaminants in salmon feeds (Søfteland et al. 2014), and 

development of non-invasive dietary inspection techniques in various finfish species 

(Asakura et al. 2014). 

 To illustrate the use of metabolomics to investigate dietary performance we 

highlight a study by Abro et al. (2014) who tested the use of a protein-rich zygomycetes 

fungus (Rhizopus oryzae) as a substitute for the traditional fish meal protein in Arctic 

charr (Salvelinus alpinus) diets. The authors produced metabolite profiles of fish fed a 

commercial diet of unknown composition, a diet with mostly fish meal protein, and a diet 

with mostly zygomycetes protein. Analysis of metabolite profiles from liver samples 

indicated that the zygomycetes protein diet did not differ from the fish meal protein diet, 

and suggests similar physiological responses to these diets. However, significant 

metabolite differences were observed between fish fed the commercial diet and fish fed 

each of the other two protein-based diets, with the former being an inferior diet. The study 
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used liver samples to extract metabolite signatures since this organ is actively involved 

in metabolism of absorbed nutrients, such as proteins. The combination of a nuclear 

magnetic resonance (1H-NMR) analytical platform and statistical analyses, including 

orthogonal projection to latent squares discriminate analysis (OPLS-DA), provided a 

powerful pathway to identify differences and similarities among the metabolite profiles 

to test for diet effects. In addition, the study highlights the possibility of using alternative 

protein sources, which may prove to be more sustainable for fish cultivation practices in 

the future. 

In another study of fish diets, Robles et al. (2013) used the short-chain fatty acid 

butyrate as a diet supplement to increase body weight and enhance intestinal tract activity 

in sea bream (Sparus aurata). Using a high performance liquid chromatography mass 

spectroscopy (LC-MS) platform, the authors measured over 80 metabolites from fish 

intestine samples before and after feeding with the butyrate supplement diet. Initial 

samples were taken after a 12-h starvation period to obtain a basal metabolite profile with 

a non-active intestine. Three hours after the initial feeding, intestine samples were 

collected from fish that were fed the butyrate supplemented diet and fish fed diets without 

the supplement. Growth measurements of the remaining fish within each treatment were 

taken after 8 weeks. Results showed significant improvements with butyrate diets, 

including weight gains, increases in several essential amino acids and nucleotide 

derivatives, and potential increases in cell energy provisions through glucose and amino 

acid oxidation pathways. Based on these results, it appears that butyrate may be a good 

natural supplement to enhance fish growth and metabolic activity. 

 As an emerging tool in nutrition research, metabolomics offers a unique potential 

to unravel the complex intertwining mechanisms involved in nutrient utilisation, 

reproduction, growth and disease progression. Through the catabolic breakdown of 

macromolecules in foods and direct incorporation of smaller components, the 
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metabolome is the receiving depot for the raw materials required by cells to synthesise 

new products. These materials are essential for the formation and repair of body tissues, 

and the production of energy to support and maintain life. As signalling molecules and 

enzymatic cofactors, metabolites are involved in the synthesis, degradation and 

modification of proteins, which regulate gene expression and metabolic pathways. It is 

the intricate combination of these multifaceted processes which are required for 

biological systems to maintain homeostasis. Metabolomics can provide important 

mechanistic insights to identify how regulation of homeostatic control is disturbed in the 

early phases of diet-related diseases. This knowledge could be used to identify new 

metabolic biomarkers for health and nutritional status and to develop strategies for the 

dietary prevention and intervention of diseases. Future nutrition research in aquaculture 

will undoubtedly be radically advanced through application of metabolomic approaches. 

2.6.3 Disease and immunology 

The successful management of health and diseases is a major challenge for aquaculturists. 

Health is characterised by the optimal functioning of biological systems. Within this 

framework, disease can simply be defined as the lack of health. However, disease is 

commonly associated with interactions between host organisms and pathogens (bacterial, 

viral or parasitic). Disease outbreaks can arise due to transmission from wild-stocks, 

accidental transfer of diseased animals between farms, use of pathogen-infected feeds, 

poor water quality, lack of sanitary barriers, failure to identify and isolate unhealthy 

organisms, and impaired animal welfare as a result of overstocking and inadequate 

nutrition, among others. It is estimated that up to 20% of potential aquaculture production 

in China, which is responsible for over two thirds of the world’s production, is lost due 

to the occurrences of diseases (Li et al. 2011). In some cases, mass mortalities as a result 

of severe disease epidemics have decimated certain sectors, leading to complete collapse 
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of the industry and having huge socioeconomic impacts (e.g., herpesvirus infections in 

oysters and white spot syndrome virus in shrimp) (Sánchez-Martínez et al. 2007; Peeler 

et al. 2012). 

 It was previously thought that diseases had single causes with single diagnostic 

targets. However, considerable research has established tight links with intricate 

metabolic imbalances. Subtle changes in entire metabolic pathways can be responsible 

for the onset and development of particular health conditions. Imbalances caused by 

genetic, nutritional or environmental factors can lead to suppression of immune function, 

which in turn can make organisms more susceptible to pathogen exposure than they might 

normally be. Host organisms may maintain healthy lives in the continuous presence of 

pathogens, and only when they experience stressful conditions will the equilibrium shift, 

favouring the dominance of the pathogen. Alternatively, the encounter of a healthy 

organism with a highly virulent pathogen can quickly overwhelm the immune system, 

leading to major instability in metabolic homeostasis and ultimately resulting in death. 

Due to the involvement of metabolic networks in the initiation and proliferation of 

diseases, metabolomics can provide unique insights into the effects of pathogen exposure 

and the mechanisms of resistance. Furthermore, metabolomics can be applied as a 

valuable tool to determine the efficacy of disease treatments and management. 

 Practical applications of metabolomics in aquaculture research to investigate host-

pathogen interactions are developing rapidly. In general, these findings are revealing that 

pathogen exposure tends to cause severe disturbances to host energy metabolism, osmotic 

regulation, oxidative stress, cell-signalling pathways and respiratory mechanisms. A suite 

of recent metabolomics-based investigations on the immunological responses of bivalves 

to infections with various bacterial pathogens have also revealed that the molecular 

response-mechanisms are differentially regulated depending on bacterial strain (Ji et al. 

2013; Wu et al. 2013; Liu et al. 2013a, 2014a,b), the host species and pedigree (Liu et al. 
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2013b; Wu et al. 2013), the sex of the host (Liu et al. 2014a), and between different tissues 

(Ji et al. 2013; Wu et al. 2013; Liu et al. 2014b). These results highlight and reinforce the 

importance that different disease management strategies may need to be developed for 

particular conditions. Metabolomics also has been used to investigate the interactions of 

nutrition, temperature, withering syndrome disease and disease treatments in abalone 

(Rosenblum et al. 2005, 2006), to discover metabolite biomarkers associated with 

enhanced host defence against bacterial infection in carp (Guo et al. 2014), to evaluate 

the effect of superintensive aquaculture systems on the health of shrimp (Schock et al. 

2013), to identify metabolic responses of crabs to vibrosis (Schock et al. 2010), to 

characterise metabolic demands of hepatic tumors in flatfish (Southam et al. 2008), to 

enhance the health of cobia through dietary manipulation (Schock et al. 2012), and to 

develop nutritional and non-nutritional treatments for enhancing survival of diseased 

tilapia (Cheng et al. 2014; Zhao et al. 2015). 

 A good example of metabolomics applications to assess health parameters in 

cultured marine invertebrates is a study by Schock et al. (2013). In this case, the authors 

used NMR-based metabolomics to monitor health factors along the production line of 

shrimp (Litopenaeus vannamei) from nursery to harvest. Shrimp were grown in a 

superintensive aquaculture system with minimal water exchanges and a biofloc system to 

promote growth of beneficial bacterial communities. The aim of this superintensive 

system was to increase production (year-round high density farming) while reducing 

disease susceptibility and enhance water quality (via reduction of waste products). 

Weekly shrimp samples were collected throughout the nursery (about 2 months) and 

growout raceways (about 4 months) periods, snap frozen in liquid nitrogen and then 

stored at -80°C until analyses could be performed. A robust quality control procedure was 

performed to evaluate experimental biases in extraction process and timing with the use 

of standard reference material, extractions of different tissues from the same animal, and 
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various pooled and blank replicates as controls. Such protocols for verification of sound 

data collection procedures are essential for metabolomics project, and reporting on these 

results should be common practice in the literature, although seldom encountered. 

Comparison of NMR spectra of biological samples from nursery and raceway phases 

resulted in important differences that could be interpreted as stressful conditions to 

shrimp. Specifically, the compounds iosine and trehalose were found to be good 

biomarkers for stress in this species. From an industry perspective, these physiologically 

stressful conditions were attributed to three main events – a total ammonia nitrogen spike 

in the nursery, a period of reduced feeding due to surface scum build-up in raceways, and 

the transition of stock from the nursery to raceways. Clearly, this metabolomics-based 

study identified specific areas where the industry could focus to improve production 

efficiency. Such results are likely to have required considerably more time and financial 

investment with traditional experimental approaches. 

 Another study of health evaluation using metabolomics is provided by Guo et al. 

(2014). In this study crucian carp (Carassius auratus) were investigated for their ability 

to survive infections caused by the bacterium Edwardsiella tarda. Using a GC-MS 

platform, the authors compared metabolite profiles from infected fish that survived and 

died, and their respective controls (not infected). The results not only identified 

biomarkers that could be used to signal infection in the fish, but also biochemical 

pathways likely to be involved in immune responses to infections by E. tarda. Secondary 

bioinformatics analysis involved the use of the web-based MetaboAnalyst pipeline (Xia 

et al. 2015) for metabolomics data analysis and the pathway library of zebrafish (surrogate 

for carp) to identify biochemical pathways that were indicative of infections. The 

identified biomarkers for this infection include increased levels of palmitic acid and 

decreases in the amount of D-mannose. Relevant pathways included elevated unsaturated 

fatty acid biosynthesis and decreases in fructose and mannose metabolism. The broader 
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implications of these results are that metabolomics may be an effective approach to 

identify early signs of pathogens and infections that could be mitigated at the onset of a 

crisis. In addition, the improved understanding of biochemical pathways involve in 

immunological responses may be extremely valuable when selecting optimal conditions 

for growth of cultured species. It is important to re-iterate that the strength of 

metabolomics is that is provides a wide scan of physiological activities and identification 

of areas where problems may be encountered. Thus, this is a powerful approach to inform 

more detailed studies of production issues such as health threats. 

The deleterious effects of pathogens and viruses are enhanced by exposure of 

aquatic organisms to immunotoxic contaminants, which supress the immune system and 

hasten the onset of disease (Morley 2010; Girón-Pérez 2010). Poor water quality is a 

major problem for the aquaculture industry in many regions. Rapid industrialisation and 

urbanisation has resulted in various organic and synthetic pollutants being introduced into 

aquatic ecosystems which pose serious threats to the health of cultured organisms (Li et 

al. 2011). The number of new and emerging contaminants being released into the 

environment is increasing and their biological fate and effects are often unknown. 

Metabolomics is progressively being used to characterise mechanisms of toxicity and 

develop novel methods to assess environmental contamination using fish and shellfish. 

For example, metabolomics-based studies have proven useful for: identifying 

physiological responses of various molluscs to heavy metals and endocrine disruptors 

(Wu et al. 2013; Hanana et al. 2014; Ji et al. 2014; Leonard et al. 2014; Zhou et al. 2014; 

Ji et al. 2015a), characterising the consequence of pesticide exposure in carp (Kokushi et 

al. 2015), assessing the effects of petrochemical contamination at industrialised sites 

harbouring caged mussels (Fasulo et al. 2012; Capello et al. 2013, 2015), detecting 

freshwater locations which have multi-contaminant sediment loadings (Watanabe et al. 

2015), identifying new and highly sensitive bioindicator species of clams for monitoring 
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environmental contamination (Ji et al. 2015b), and developing non-invasive methods for 

pollution assessment by profiling metabolites in the excreted mucus of fish skin (Ekman 

et al. 2015). The results of these studies clearly demonstrate promising application. It is 

expected that metabolomics will be used extensively in the future to monitor the health 

of sentinel species, deliver forensic capabilities for evaluating pollution exposure, 

enhance the sensitivities of ecotoxicological assessments, and to provide authorities with 

information to set new regulatory guidelines. The exposure of aquatic organisms to 

environmental contaminants and disease-related factors during their cultivation has major 

implications for biosecurity, market opportunity, product quality, product value, and more 

importantly food safety. 

2.6.4 Post-harvest product quality 

One of the biggest challenges for the aquaculture industry is to achieve and maintain a 

high quality product from farm to market, and into the hands of consumers. One person’s 

view of quality may be different from another’s and numerous factors are normally 

involved in its classification. Nutritional value is an objective aspect based on the 

presence of essential amino acids, highly digestible proteins, vitamins, minerals and a 

high content of polyunsaturated fatty acids (e.g., omega-3 fatty acids). Meat quality is 

also defined by other compositional features, such as the lean to fat ratio and water 

content. Consumers’ perception of quality is perhaps one of the most important aspects 

of aquaculture, and involves palatability factors, which can be highly subjective. These 

include visual appearance, smell, firmness, juiciness, tenderness and flavour. Product 

quality is a multifaceted term and there is still much to learn about how the various indices 

are perceived and interact. 

 In order to achieve a quality product prior to harvesting, it is critical that culture 

conditions are optimised and well-managed to enhance animal welfare and improve 
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nutritional and compositional traits. On the other hand, post-harvest processes, such as 

transport, storage and packaging have major impacts on product freshness and food 

safety. Due to the involvement of metabolites in flavour and aroma profiles, nutritional 

value and degradation processes, metabolomics provides an exciting opportunity for food 

quality assessment and development of new strategies for quality preservation and 

enhancement. Examples of metabolomics-based analysis in food quality, post-harvest 

processing and storage are growing rapidly. For instance, metabolomics has thus far 

proved useful for: identifying degradation of specific nutrients, flavours and aromas in 

cold-stored fish (Castejón et al. 2010; Leduc et al. 2012), examining interactions between 

culture conditions, post-harvest quality and storage (Savorani et al. 2010; Picone et al. 

2011), development of rapid assessment techniques and discovery of biomarkers to 

determine fish meat freshness and quality during extended freezing (Duflos et al. 2010; 

Leduc et al. 2012; Heude et al. 2014), and investigating compositional changes in salmon 

during and after irradiation processing to reduce foodborne infection and enhance product 

safety (Villa et al. 2013). 

 A rapid and straightforward method to assess fish freshness and quality was used 

by Heude et al. (2014), based on indicative metabolite quantification using high resolution 

magic angle spinning (1H HR-MAS) NMR spectroscopy. The procedure was aimed at 

quantifying two well-known indicators of fish freshness and quality (K value and 

trimethylamine nitrogen [TMA-N] content) in fish samples that had been stored at 0°C. 

The K value is a measure of autolytic process (spontaneous disintegration of cells or 

tissues that occurs after death) and TMA-N content is indicative of bacteria spoilage. 

These parameters are based on measurements of metabolite concentrations, which were 

recorded in fish from four commercially important species (sea bream, sea bass, trout, 

and red mullet). Both the NMR approach and traditional methods were compared, and 

produced similar results. However, NMR had the advantage that it could be used directly 
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on unprocessed fish without prior extraction procedures with an average time of 40 min 

per sample. Conversely, traditional analytical methods require extensive and complex 

extraction procedures that are time-consuming. Another advantage of this new approach 

is that small sample sizes (about 10–15 mg) are needed for metabolite analyses, and these 

amounts can be collected with a biopsy, thus, affording considerable benefits to the 

producer. 

The same platform (1H HR-MAS NMR) was used to test the effects of irradiation 

treatment on cold-smoked Atlantic salmon (Salmo salar) as a means to prevent bacterial 

and parasite infections (Villa et al. 2013). The authors used white salmon mussel samples 

from live fish from three irradiation treatments (0, 1, and 4 kGy) and non-irradiated 

controls to obtain NMR spectra that were statistically analysed (principal components 

analysis [PCA] and analysis of variance [ANOVA]) to identify differences in degradation 

of fish samples during storage. In this study, several compounds, including creatine, 

trimethylamine oxide and the sum of phosphorylcholine and glycerophosphorylcholine 

were found to be diagnostic of irradiation treatment. A huge advantage of this approach 

is that this is a non-destructive analysis to evaluate food processing and physiological 

changes (e.g., bioactive compounds) due to fish storage prior to market delivery. 

 Traceability is another important aspect of food quality control. Regulatory 

authorities may ask aquaculture producers to identify the origin of their product and 

stipulate the culture methods to prevent fraudulent activities and ensure food safety. 

Responsible farmers are concerned with protecting their market share with regards to 

products from unknown sources and of inferior quality. Methods for food authentication 

and traceability have been advanced through application of metabolomic-based 

approaches (reviewed by Castro-Puyana & Herrero 2013; Cubero-Leon et al. 2014). For 

example, metabolomics has been useful for discriminating between wild and farmed sea 

bream reared in different culture locations and conditions which are of various qualities, 
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but marketed as the same high-quality product (Melis et al. 2014). Similar techniques 

were also successfully used to classify wild-caught and cultured salmon and seabass and 

expose fraudulent labelling of seafood products (Aursand et al. 2007, 2009; Mannina et 

al. 2012). In Sardinia, Italy, dried and salted mullet row is processed using special 

methods which result in a unique high-value product. Metabolomics has been shown to 

be extremely valuable for distinguishing this locally-produced roe from other sources to 

protect Sardinia’s market (Locci et al. 2011).  

 Indeed, the study by Locci et al. (2011) perfectly illustrates the use of 

metabolomics in product traceability. In this case, 1H-NMR was used to obtain metabolite 

signatures that could differentiate salted and dried mullet (Mugil cephalus) roe samples 

from Sardinia (Italy) and those produced in other geographical regions. The study found 

that the different storage and manufacturing procedures from different mullet sources 

could be identified by several metabolites (e.g., free amino acids, organic acids) found in 

the aqueous phase extracted from samples. This traceability technique is crucially 

important to Sardinian communities who have a long tradition of processing a high quality 

roe from this species, called ‘bottarga’. The uniqueness of this study is that it shows that 

this approach can be used not only to identify the providence of the fish samples 

(previously possible only with DNA and protein analyses), but also the manufacturing 

and processing style of this traditional Italian artisans. In today’s global food markets, 

this rapid and straightforward metabolomics approach can be used effectively to provide 

authentication and traceability for the industry and consumers. 

2.7 Future applications and directions 

As we have discussed, improving nutrition to enhance larval production, animal health 

and meat quality will be important for the future of aquaculture. In order to advance 

research in feed formulation and discovery of alternative feed sources for improved 
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sustainability, an in depth understanding of nutrient requirement and utilisation is needed. 

Metabolomics is uniquely suited to this task. Individual molecules within test diets can 

be chemically labelled and traced during the digestive breakdown, uptake and the 

redistribution and energy conversion processes. Incorporation of comprehensive 

metabolomics-based tracer studies in nutritional research is an area which should be 

explored. Other nutrition-based challenges which require attention include enhancing low 

carbohydrate utilisation in fish, replacement or elimination of antibiotic and chemical use 

in feeds, improving flesh quality in some species, and lengthening the shelf life of fish 

and shellfish meat (Tincy et al. 2014).  

 Successful management of diseases is also a major challenge. Although 

development of vaccines to remediate many diseases have been indispensable for the 

successful expansion of the finish sector (Ringø et al. 2014), there are no effective 

treatments as yet for other organisms (e.g., viral infections in shrimp and oysters [Seibert 

& Pinto 2012]). Incorporation of metabolomics-based approaches to better-understand 

the reasons for disease susceptibility, and to develop methods for enhancing 

immunodiagnostics and host resistance, is an area which requires further exploration. 

New advances in invertebrate immunology is radically challenging the concepts of innate 

and adaptive immunity, and the line between them is starting to blur (Sun et al. 2014; 

Wang et al. 2015). Furthermore, large inter- and intraspecific variations in immune 

function and responses to pathogen exposure exist. Metabolomics has recently been 

shown to be extremely useful for investigating mechanisms of immunity and the 

physiological impacts of pathogen exposure in mammals (Dorrestein et al. 2014; Noto et 

al. 2014; Grey et al. 2015) and could easily be applied more widely to focus on cultured 

aquatic species.  

 Other relevant areas in which metabolomics could be applied in the future include 

climate change research, cryopreservation and selective breeding. The threats of global 
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warming and ocean acidification are increasingly becoming a major concern for 

aquaculture producers and stakeholders (Reid & Jackson 2014). Changes in sea surface 

temperatures and water pH can enhance the frequency of harmful algal blooms, alter 

primary productivity, escalate incidences of marine infectious diseases, and reduce 

growth rates and survival of cultured organisms (Burge et al. 2014; Gilbert et al. 2014; 

Richards et al. 2015). Metabolomics has recently been used successfully to investigate 

the effects of ocean acidification on oysters (Wei et al. 2015a,b), thermal stress on sea 

cucumbers (Shao et al. 2015) and the interactions between red-tide forming 

dinoflagellates and other phytoplankton species (Poulson-Ellestad et al. 2014). We 

anticipate there will be substantial growth in the application of metabolomics to this 

research area. Cryopreservation of gametes and embryos provides a means to preserve 

genetic material for future use. While there have been many successes in this field for 

some species and/or certain types of biological material, a number of challenges remain. 

For example, cryopreservation of fish and shellfish sperm has been achieved; however, 

cryopreservation of oocytes is still highly problematic (Herráez et al. 2011; Wang et al. 

2014; Hassan et al. 2015). In molluscs, cryopreservation of fertilised embryos can be 

accomplished, but survival rates are often extremely low (Wang et al. 2011; Parades et 

al. 2012) and the reasons for poor success are unknown. Metabolomics could be used to 

better understand the physiological mechanisms involved in cellular damage during the 

cooling and warming processes, and help develop remedial strategies for cryoinjury 

(Koštál et al. 2011). Selective breeding in aquaculture has a long history based on 

morphological and, more recently, genetic traits. Recent applications of metabolomics in 

agriculture have resulted in the identification of new phenotypes for selective breeding of 

crops and animals to enhance production, disease resistance and product quality 

(Buitenhuis et al. 2013; Kushalappa et al. 2013; Pushpa et al. 2014; Sundekilde et al. 
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2014). This provides an exciting new avenue of research, which could be transferred to 

the aquaculture sector.  

2.8 Conclusions 

Metabolomics is a powerful newly emerging field that has huge application potential in 

aquaculture. Recent advances in analytical capabilities and bioinformatics have made it 

possible to acquire and analyse large amounts of metabolite data more effectively and 

efficiently. These procedures are now being applied successfully to identify biomarkers 

to detect a range of cultivation problems and issues in areas such as, larval production, 

nutrition, health and food safety and quality. Since this is a recently evolving approach, 

few examples are available to illustrate the relevance of metabolomics in aquaculture. 

However, these recent publications clearly highlight the benefits of this evolving field. It 

is envisaged that metabolomics will play an increasingly more important role in all 

aspects of aquaculture research. Indeed, metabolomics is well-placed to provide the 

biotechnological advances needed to meet our expected aquaculture growth in the coming 

years. 
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Abstract 

Metabolomics is a fast-evolving field that provides qualitative and quantitative analyses 

of metabolites within cells, tissues or biofluids. The recent applications of metabolomics 

approaches in aquaculture research reviewed in Chapter 2 have highlighted the huge 

potential for solving problems within all aspects of the production line, from hatchery 

production to post-harvest quality control. To assist with the growing application of 

metabolomics in aquaculture research, this contribution provides a review of techniques 

and steps necessary to conduct metabolomics research, from experimental design to data 

interpretation. Specifically, we target scientists who are new to the field of metabolomics, 

and we offer simple, but comprehensive steps and strategies to conduct this type of 

research. We conclude this primer and review with some advice on how to access relevant 

expertise and facilities for metabolomics-based aquaculture research. 
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3.1 Introduction 

Within the last decade, the field of metabolomics has expanded, with a number of 

applications across the life sciences. In aquaculture alone, metabolite patterns have been 

successfully used to identify and resolve issues related to hatchery production (Young et 

al. 2015, 2016), nutrition and diet (Castro et al. 2015; Cheng et al. 2015), disease and 

immunology (Liu et al. 2015; Peng et al. 2015), and post-harvest quality control (Melis 

2014; Chen et al. 2015), among others. There are some reasons why this approach has 

been so successful in such a relatively short amount of time. To begin with, metabolomics 

is an approach that can generate comprehensive datasets of metabolites to describe 

complex biological systems. Furthermore, the same analytical and computational tools 

used to generate and interpret data can be performed on any living organism, since 

metabolites are highly conserved in structure and function across species (in contrast to 

genes). With recent advances in analytical techniques and computational analysis, 

complete datasets that describe changes and/or differences in biological systems can be 

carried out in a rapid and cost-effective manner. However, results stemming from this 

approach do not necessarily provide mechanistic and/or causal information regarding the 

patterns observed. In other words, the exploratory nature of this approach is likely to 

generate new hypotheses, and further targeted experiments may lead to validation of the 

resultant biological markers. This process allows for unexpected information to be 

revealed, leading to innovation and discovery in a very efficient manner. 

 Compared to other areas of research, such as agriculture, food science, and medical 

science, the application of metabolomics to aquaculture research has only recently been 

realised. These applications have been reviewed in Chapter 2 (Alfaro & Young 2016). 

Thus, the scope of this Chapters’ contribution is limited to a review of the techniques and 

steps necessary to conduct metabolomics research in aquaculture. Specifically, the 

purpose of this review is to provide aquaculture researchers and other aquatic scientists 
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who are new to the field of metabolomics with a simple, but comprehensive, primer on 

the various strategies that are involved in conducting a metabolomics-based investigation 

for the first time. This primer summarises information on experimental design, sample 

collection and preparation, choice of analytical platform, bioinformatics processing, 

statistical analyses, biological interpretation of the data, and reporting guidelines. Several 

aspects are outlined which require careful consideration, specifically for experiments 

involving aquatic organisms, and readers are directed to a range of specific aquaculture-

related research studies to showcase the relevance of these topics. This review is 

concluded with some advice on how researchers can access the relevant expertise and 

facilities for conducting a metabolomics-based project, and we provide some perspectives 

on the development of future technological strategies for assessing the health and welfare 

of wild and cultured aquatic organisms. 

3.2 Metabolomic Strategies 

There are generally six steps involved in a metabolomics study: (i) robust experimental 

design, (ii) sample collection and preparation, (iii) analytical measurement and data 

acquisition, (iv) bioinformatics (data integrity checking and metabolite identifications), 

(v) statistical analyses, and (vi) biological interpretation and/or biomarker validation 

(Figure 3.1). Due to the wide range of fields encompassed by metabolomics studies 

(biology, biochemistry, analytical chemistry, bioinformatics and statistics), it is highly 

recommended that consultation with a metabolomics specialist is carried out in the early 

stages of experimental design. 
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Figure 3.1. General workflow involved in a metabolomics study outlining the six main steps.  

 

3.2.1 Experimental design and sampling 

Along with good standard experimental design practices, there are a number of special 

considerations to keep in mind when planning a strategy for a metabolomics 

investigation. There are particular requirements, which mandate that samples be taken 

only after an experiment has been specifically designed and performed with a 

metabolomic-based analysis in mind. Samples which have previously been collected and 

stored for another purpose will unlikely be suitable for incorporation into a metabolomics-

based study. 

 Collected samples must reflect and represent the biology in question, and be 

appropriate for the particular research questions of the study. It is critical that biological, 

technical and experimental variability be minimised, since the metabolome can change 

very rapidly in response to subtle changes in the environment. For example, the metabolic 

signatures of aquatic organisms can be affected by handling stress and air exposure 

(Karakach et al. 2009; Connor & Gracey 2012; Young et al. 2016), so this should be kept 

to an absolute minimum - even experimentally characterised if possible. The acute stress 
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of transferring fish and crustaceans between culture or storage tanks is reflected in the 

metabolome and, if not controlled, may influence results of a study (Schock et al. 2013; 

Mushtaq et al. 2014a). In the case of shellfish, metabolic responses to treatments can be 

masked when organisms are taken from their natural environments and into the laboratory 

for a period of acclimatisation (Hines et al. 2007). Therefore, sampling and tissue 

dissections should be performed in situ, when possible. Furthermore, in the case of time-

course experiments, sampling at the same time of day can be important due to inherent 

effects associated with circadian rhythms (Gooley 2014; Li et al. 2015).  

 Selection of adequate control animals is crucial in all omics-based investigations. 

In most cases, controls and treatment groups should have the same genetic background 

and should be matched for gender, age, size-class and/or development stage. For example, 

male and female mussels from a homogenous population can easily be discriminated 

based on their metabolite profiles (Cubero-Leon et al. 2012), and have sex-specific 

physiological responses to environmental stressors, toxin exposures and pathogen 

infections (Ji et al. 2013; Liu et al. 2014a; Ellis et al. 2014). The metabolome is so 

sensitive that differences in the age of fish larvae can be detected within samples that are 

only a few hours apart in developmental stage (Huang et al. 2013), and marine 

invertebrate larvae of the same age but different size-class can be discriminated based on 

their metabolite profiles (see Chapter 4 [Young et al. 2015]. Thus, these features should 

be carefully managed to avoid potential experimental bias, unless they are the specific 

biological aspect under investigation.  

 Correct selection of sample material is also important. Different tissues (e.g., 

muscle, gills, liver, and pancreas) undergo specific metabolic processes by virtue of their 

distinct functional purpose. Recent studies of tissue-specific metabolism in aquatic 

organisms include digestive gland vs. gill response differences during pathogen infection 

in mussels, and differences measured under future climate change scenarios in oysters 
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(Liu et al. 2014b; Wei et al. 2015). In the case of biofluids, the serum and plasma 

components of blood contain significant chemical differences due to the way in which 

they are prepared (Yin et al. 2015). Thus, prior knowledge of the biological system is 

favourable in order to assess the suitability of particular tissues or biofluids for a given 

experiment.  

 Once the sample type has been decided, protocols for sampling should be 

developed. While there is limited information on how the speed of sampling affects the 

metabolite profile, we suggest that samples be taken rapidly and in a highly reproducible 

manner to minimise biological and technical variation. For example, if liver samples are 

to be taken from a number of fish, it would be prudent to make sure that the timing and 

procedures used to immobilise the organisms and to dissect the tissue be very similar 

between each animal. Application of anaesthetics during this process should be used with 

caution since they may disturb the metabolic baseline signature (Bando et al. 2010). The 

highly dynamic state of the metabolome continues in tissues and biological fluids even 

after they have been extracted from the organism. Therefore, in almost all metabolomics 

investigations it is vital that metabolic processes within samples be stopped, or quenched, 

as soon as possible during collection (reviewed by van Gulik et al. 2012). While other 

options exist, a typical method to quench metabolism in animal tissues involves snap-

freezing samples in liquid nitrogen. Special considerations may need to be made for this, 

especially if sampling in the field. Furthermore, it is recommended that samples be stored 

at or below −80°C until metabolite extraction in order to maintain inactivation of 

enzymatic and chemical processes, which may influence the metabolite profile. 

Immediate access to appropriate facilities for sampling and storage is essential. The 

choice of containers in which the samples will be stored also requires attention due to 

potential introduction of contaminants, such as surfactants and plasticisers, which may 

cause severe interferences during analysis (Courant et al. 2014). See Álvarez-Sánchez et 
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al. (2010a) for additional information regarding appropriate selection of biological 

samples and a review of some practical aspects, which require consideration prior to 

sample preparation. 

 Techniques for preparing samples for analysis strongly depend on the type of 

biological material collected, and the analytical platform to be employed. Regardless of 

the approach, the metabolite extraction process should be rapid and robust, while 

minimising the potential for sample degradation and metabolite modification (Allwood 

et al. 2013). Special considerations may also be required for processing marine samples 

due to potential interferences from salts within the sample matrices (Keller et al. 2008), 

or presence of complex polysaccharides in the case of macroalgae (Goulitquer et al. 

2012). Approaches are numerous and constant method development by chemists provide 

an array of options. These range from simple one-step solvent extraction processes to 

more complicated procedures involving multiple stages and/or organic synthesis 

reactions (derivatisation). 

 In general, the most commonly applied solvent extraction methods include: 1) 

extraction of polar and/or non-polar metabolites with a mixture of methanol, water and 

chloroform, 2) extraction of polar metabolites with methanol alone or in combination with 

water, and 3) extraction of polar metabolites with perchloric acid. There are many 

variations as to the solvent ratios which can be used, the temperature of extraction, the 

extraction duration, and the mechanical techniques used to disrupt tissue samples and lyse 

cells. Due to the diversity of possible techniques and wealth of excellent information 

already available in the literature, method particulars regarding sample preparation are 

outside the scope of this review. However, we have provided a sizeable table (Table 3.1) 

containing references to primary literature which have an aquatic metabolomics-based 

focus, and we highlight the various strategies employed by each study, including the 

extraction technique used. These studies may be useful to readers as guiding exemplars 
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for many of the strategies discussed in this article. For further details on the preparation 

of biological samples prior to metabolite detection, see Álvarez-Sánchez et al. (2010b). 

For comprehensive information on platform-specific sample preparation techniques for 

general biofluids and animal tissues, see Beckonert et al. (2007), Nováková & Vlčková 

(2009), Liebeke & Bundy (2012), Römisch-Margl et al. (2012), Vuckovi (2012) and 

Mushtaq et al. (2014b). For sample preparation techniques with a particular focus on fish 

and marine invertebrates, see Lin et al. (2007), Wu et al. (2008), del Carmen Alvarez et 

al. (2010), and Fernández-Varela et al. (2015). 

3.2.2 Analytical platforms 

A clear understanding of the analytical platform/s to be used is necessary before starting 

an experiment. Certain platforms have special requirements and may or may not be able 

to deliver the desired data/information. For example, to obtain broad metabolite coverage, 

including low abundance compounds, some procedures may require a tissue sample of 

only 2 mg wet weight, whereas others may require > 100 mg. Unfortunately, there is not 

yet a single platform which can analyse all metabolites within a sample, and some 

instruments are better-suited for the analysis of particular metabolite classes than others. 

Hence, multiple platforms may need to be used depending on the aims and scope of the 

investigation. The costs associated with employing different analytical platforms vary 

widely, and access to appropriate facilities for sample analysis may limit the decision 

making process. Therefore, selection of the most appropriate instrument for a given 

metabolomics-based study will depend largely on the type of sample material collected, 

the available sample mass, the accessibility of analytical platforms, the end-goals of the 

researchers, and the budget of the project.  

The most commonly applied, high-throughput and high-resolution platforms to 

analyse samples in metabolomics studies are nuclear magnetic resonance (NMR) and 
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mass spectrometry (MS). In certain circumstances, lower resolution vibrational 

spectroscopy can also be used. See Figure 3.2 for usage trends of the various platforms 

employed over the past decade. The selection of which platform to apply for a particular 

metabolomics study is always a compromise between cost, sensitivity, speed, chemical 

selectivity, and metabolite coverage (Table 3.2). However, realistically, the choice of 

platform most-often comes down to the availability of analytical facilities and technical 

expertise through commercial or academic collaborations. 

 

 

 Figure 3.2. Bibliometric analysis in SciVerse Scopus abstract and citation database (March 24th, 2015). 
“Metabolom*” was used as a primary keyword in all searches and was combined with keywords for each 
analytical platform. Searches were limited to terms found within ‘abstracts, titles and keywords’, between 
the years 2006–2014, and to research articles only. The bar graph shows the cumulative number of peer-
reviewed articles which performed metabolomics-based analyses using various analytical platforms. The 
inset line graphs show the general usage trends for each platform. These trends also reveal how quickly 
metabolomics has evolved into such a well-established field of biological research over this short period of 
time. 

 

3.2.2.1 Nuclear magnetic resonance 

Nuclear magnetic resonance (NMR) detects the characteristic spin properties of atomic 

nuclei. When nuclei with particular magnetic attributes are immersed in an external 

magnetic field, they align themselves with (low energy state) or against (high energy 

state) that field. Application of very specific radio frequency pulses to the nuclei induces 

a change in the energy state called a ‘spin flip’ (Savorani et al. 2013). The presence of 
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other nuclei and chemical bonds in the immediate vicinity of a nucleus changes the 

intensity of the applied magnetic field by a small amount called nuclear shielding. As a 

result of this shielding, nuclei within a metabolite will absorb energy at slightly different 

frequencies, known as a chemical shift. The combination of all of these different 

frequencies produces a characteristic spectrum, or ‘fingerprint’ of the sample (Figure 

3.3A–D). In addition, more complex interactions of the spins under various pulse 

conditions can provide rich sets of information about the chemical bonding and 

composition of a molecule or mixture. 

 All isotopes that contain an odd number of protons and/or neutrons can 

theoretically be assessed by NMR approaches. However, if they are not found in 

biological molecules, or have low NMR sensitivities or low natural abundances, they are 

not often used for metabolomic studies. 1H NMR is frequently applied in metabolomics 

investigations to probe the molecular arrangements of hydrogen atoms. The 1H isotope is 

highly abundant in nature (> 99.98%) and has a very high NMR sensitivity. See Schock 

et al. (2012) for an applied example of how 1H NMR was employed to monitor the health 

of cobia in response to reduced fishmeal-based protein diets, and to identify differential 

regulation of metabolism indicative of thyroid disruption and variations in the 

composition of gut microflora. 13C NMR can also be used, but is much less abundant 

(1.1%) and less sensitive. However, 13C NMR has special applications in tracer studies to 

investigate metabolite transformations and metabolic flux (Tikunov et al. 2014). For 

example, molecules can be chemically labelled, or enriched, with the 13C isotope and 

traced through metabolic processes, such as protein catabolism and lipid synthesis, to 

investigate the uptake and conversion of nutrients in fish (Conceição et al. 2007; Eckman 

et al. 2013). 
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Figure 3.3. Multi-platform metabolomics-based analysis of fish (Danio rario) liver samples showing sex-
specific differences in spectral fingerprints obtained from three platforms (NMR, CG-MS and LC-MS). 1H 
NMR spectra of non-polar extracts from male (A) and female (B) fish. 1H NMR spectra of polar extracts 
from male (C) and female (D) fish. GC-MS total ion chromatograms of non-polar extracts from male (E) 
and female (F) fish. LC-MS spectra of non-polar extracts from male (G) and female (H) fish. Numbered 
peaks represent reliably assigned metabolites after bioinformatics processing. Reprinted with permission 
from Ong et al. (2009).  
  



 

 

Table 3.1. A selection of studies using metabolomics-based approaches with relevance to aquaculture. Although not a complete list of all the available literature, a broad range of references are 
provided which we think may be of interest to aquaculture researchers, and may be useful resources as guiding exemplars for the various strategies which can be employed, including: 1) methods 
for metabolite extraction in diverse organisms, tissues and biofluids; 2) use of different analytical platforms; 3) a range of primary bioinformatics software to process raw spectral data and assign 
metabolite identities; 4) a variety of databases for matching spectral signatures; 5) various pre-treatment techniques to prepare data for statistical analysis; 6) an array of univariate and multivariate 
statistical methods to identify sample group differences; and 7) some secondary bioinformatics software to aid interpretation of metabolite profiles within biologically meaningful contexts 
through use of global a priori knowledge stored in biochemical information databases. 
 

Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 

General 
approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Fish Embryos Baseline developmental 
metabolism: Multiplatform 
metabolomics  

MeOH P MSTFA GC-MS, LC-MS Fingerprinting 
& profiling 55+ Autoscaled MZmine, SIMCA-P, MEV 

PCA, OPLS-DA, HCA, 
Kruskal-Wallis test 
heatmap 

NIST library, HMDB Huang et al. 2013 

Larvae Nutritional & thermal influence 
on larval physiology & growth MeOH/H2O P - 1H NMR Fingerprinting 

& profiling 
28 Spectral area normalisation, 

mean centered 
TopSpin, Chenomx NMR 
Suite, MATLAB, PLS Toolbox PCA CRL  Chauton et al. 

2015 
Flesh/muscle Nutrition & alternative feed 

development MeOH/CHCl3 P, NP - 1H NMR Profiling 45 Spectral intensity normalisation, 
Pareto scaled 

TopSpin, AMIX, SAS, SIMCA-
P PCA, OPLS-DA, ANOVA HMBD, literature search Cheng K. et al. 

2015 
Culture conditions & post-
harvest storage HClO4 P - 1H NMR Fingerprinting 

& profiling 11+ Spectral intensity normalisation, 
mean centered MestReC, R PCA, t-test Undefined Picone et al. 2011 

Optimisation of sample 
preparation techniques 

HClO4, MeCN/H2O, 
MeOH/H2O/CHCl3, 
MeOH/H2O 

P, NP - 1H NMR Fingerprinting 
& profiling 26 Bin area normalisation, glog 

transformation, mean centered 
XWINNMR, Chenomx NMR 
Suite, MATLAB, PLS Toolbox PCA Chemical shift data from 

the literature, CRL Lin et al. 2007 

Effects of salmon farming on 
wild fish populations HClO4 P - 1H NMR Fingerprinting 

& profiling 23 Undefined MATLAB RPCA, PLS-LDA Chemical shift data from 
the literature 

Marhuenda-Egea 
et al. 2015 

Nutritional history prediction 
& alternative feeds C6H12/H2O P, NP  DART-MS Fingerprinting 

& profiling 59+ Spectral area normalisation, log 
transformation, Pareto scaling MassCenter, SIMCA, Excel PCA, OPLS-DA Undefined Cajka et al. 2013 

Monitoring compositional 
changes in fillets during post-
harvest cold-storage 

TCA P - 1H-13C NMR Profiling 51 Untreated TopSpin, MestReC N/A 
Chemical shift data from 
the literature, HMDB, 
BMRB, YMDB, ECMDB 

Shumilina et al. 
2015 

Food authentication, forensics, 
providence MeOH/H2O/CHCl3 NP - 13C NMR Fingerprinting N/A Peak maximum normalisation, 

vast stability scaling AI Trilogy, Tiberius PNN, SVM N/A Aursand et al. 
2009 

Liver Nutrition & alternative feed 
development MeOH/CHCl3 P, NP - 1H NMR Profiling 49 Spectral intensity normalisation, 

Pareto scaled 
TopSpin, AMIX, SAS, SIMCA-
P PCA, OPLS-DA, ANOVA HMBD, literature search Cheng K. et al. 

2015 
Nutrition & alternative feed 
development MeOH/H2O/CHCl3 P, NP - 1H NMR Profiling 23+ Spectral area normalisation, 

Pareto scaled 
TopSpin, Chenomx NMR 
Suite, AMIX, SIMCA-P PCA, OPLS-DA, ANOVA CRL, HMBD, 

literature search 
Wagner et al. 
2014 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH P MSTFA GC-MS Profiling 60 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, SIMCA-P, SPSS, 
Prism, MetaboAnalyst 
(MetPA) 

HCA, heatmap, PCA, 
ICA, MPEA KEGG, NIST library Peng et al. 2015 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH P MSTFA GC-MS Profiling 60 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, SIMCA-P, SPSS, 
Prism 

PCA, OPLS-DA, 
heatmap  KEGG, NIST library Cheng Z. et al. 

2015 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH P MSTFA GC-MS Profiling 58 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, SIMCA-P, SPSS, 
Prism, MetaboAnalyst 
(MetPA) 

PCA, OPLS-DA, MPEA, 
HCA, heatmap KEGG, NIST library Ma et al. 2015 

Nutrition & alternative feed 
development MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 12+ Centered (undefined), Pareto 
scaled TopSpin, AMIX, SIMCA-P PCA, OPLS-DA, ANOVA CRL, BMRB, HMDB Abro et al. 2014 

Enhancing disease resistance 
via simple metabolic 
modulation 

MeOH, MeCN/H2O P MSTFA GC-MS, LC-MS Profiling 64+ 
Peak height normalisation, 
median centered, quartile range 
scaled, log transformed 

AMDIS, R, MarkerLynx, 
SIMCA-P, SPSS, Prism, 
MetaboAnalyst (MetPA) 

PCA, ICA, MPEA,  
HCA, heatmap, KEGG, NIST library Zhao et al. 2015 

Optimisation of extraction 
methods 

MeOH/H2O/CHCl3 
(various protocols) P, NP - 

1H NMR, FT-
ICRMS 

Fingerprinting 
& profiling 8+ 

Bin or spectral area 
normalisation, glog 
transformation, mean centered 

TopSpin. Chenomx NMR 
Suite, PLS Toolbox, MATLAB PCA, ANOVA Chemical shift data from 

the literature, CRL Wu et al. 2008 

Utilisation of dietary protein: 
Growth-metabolic interactions  HClO4 P ECF GC-MS Profiling 12+ Peak height normalisation SPSS, SIMCA-P PLS-DA, t-test NIST library, in-house 

library Jin et al. 2005 

Health biomarkers & stress 
evaluation: Multi-platform, 
large n features 

MeOH P  
LC-MS, LC-
MS/MS, FI-
MS/MS 

Profiling 95+ Mean centered, Pareto scaled MetaboAnalyst PCA, PLS-DA, Mann-
Whitney U test N/A Benskin et al. 

2014 

Health biomarkers: Tumor 
diagnostics 

MeCN/H2O, 
MeOH/H2O/CHCl3 P - FT-ICRMS Fingerprinting 4+ Bin area normalisation, glog 

transformation, mean centered 
MIDAS, MSCalc, MATLAB, 
PLS Toolbox PCA, PLS-R, t-test N/A Stentiford et al. 

2005 
Kidney Symptoms of anaemia & health 

biomarker identification  MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 37+ Spectral area normalisation, 

mean centered, Pareto scaled 

TopSpin, MestReNova, 
Chenomx NMR Suite, AMIX, 
SPSS 

PCA, t-test, Mann-
Whitney U test, 
Wilcoxon test 

HMDB, BML Allen et al. 2015 

Intestine Feed additives to enhance 
growth & metabolism MeCN/CHCl3 P - LC-MS Profiling 78+ Biomass normalised, autoscaled Chemstation, EasyLCMS, 

SPSS, Metaboanalyst 
PCA, HCA, heatmap, 
ANOVA, t-test,  Undefined Robles et al. 2013 
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Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 
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approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

 Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Fish 
(cont.) 

Gut contents & 
faeces 

Effects of diet on microbial 
symbiosis & co-metabolism 
+ non-invasive sampling 

MeOH P - 1H-13C NMR Fingerprinting 
& profiling 

25+ Spectral area normalisation  TopSpin, SpinAssign, R, 
Gephi  

 
PCA, PLS-DA PRIMe DB, BMRB, 

in-house library 
Asakura et al. 2014 

Humoral fluid Mechanism of vaccine action 
against disease H2O P MSTFA GC-MS Profiling 65 

Median centered, interquartile 
range scaled, Pereto scaled or 
autoscaled 

XCalibur, NIST MS search, 
SPSS, SIMCA, MetaboAnalyst 

 OPLS-DA, Heatmap, 
Mann-Whitney U test, 
MPEA 

NIST library, KEGG Guo et al. 2015 

Haemolymph: 
Plasma (p) or 
serum (s) 

Toxicological biomarkers & 
environmental monitoring  

None required (p), 
MeOH/CHCl3 for lipid 
fraction (p) 

P, NP - 1H NMR 
Fingerprinting 
(some limited 
profiling) 

7+ Bin integral normalisation, mean 
centered, pareto scaled 

NMR Processor, VNMR, 
SIMCA-P 

 
PCA, PLS-DA Chemical shift data 

from the literature 
Sammuelsson et al. 
2006 

Metabolic effects of food 
deprivation None required (p) P, NP - 1H-13C NMR 

Fingerprinting 
(some limited 
profiling) 

4+ Bin integral normalisation, Pareto 
scaled NMR Processor, SIMCA-P 

 
PCA, OPLS-DA 

Chemical shift data 
from the literature, 
HMDB 

Kullgren et al. 2010 

Utilisation of dietary protein: 
Growth-metabolic interactions  None required (p) P BSTFA GC-MS Profiling 16+ Peak height normalisation SPSS, SIMCA-P  PLS-DA, t-test NIST library, in-

house library Jin et al. 2005 

Spawning-induced inappetence 
& stress: High resolution 
platform, large n features  

MeCN (s) P MSTFA 2D GCxGC-MS Profiling 137 
Log transformed, autoscaled, 
quartile range filtering, KNN 
(missing variables) 

ChromaTOF, MetPP, 
MetaboAnalyst 

 PCA, PLS-DA, t-test, 
MPEA 

In-house MS library, 
KEGG Cipriano et al. 2015 

Health & immunology: 
Predicting survival None required (s) P, NP MSTFA GC-MS Profiling 67 Peal area normalisation, log 

transformation, autoscaled 
XCalibur, SPSS, SIMCA, 
MetaboAnalyst  

 Kruskal-Wallis test, 
Mann-Whitney U test, 
OPLS-DA, MPEA,  

NIST library, KEGG Guo et al. 2014 

Health, nutrition & alternative 
feed development None required (s) P, NP - 1H-13C NMR Fingerprinting 

& profiling 34 Spectral area normalisation, 
mean centered, Pareto scaled 

Chenomx NMR Suite, AMIX, 
Excel 

 PCA, Kruskal-Wallis test, 
ANOVA 

CRL, BMRB, 
in-house library Schock et al. 2012 

Primary cell 
culture: Cells (c), 
media (m) 
 

Effects of plant-derived 
contaminants in fish feeds: A 
multiplatform study (c) 

MeOH/H2O/CHCl3 P, NP - FT-ICR-MS, 
1H NMR 

Fingerprinting 
& lipid profiling 40+ 

Probabilistic quotient 
normalisation, glog 
transformation, mean centered 

ProMetab, MATLAB, PLS 
Toolbox, MI-Pack 

 
PCA, PLS-DA, ANOVA KEGG Søfteland et al. 

2014 

Nutritional supplementation & 
diet optimisation (m) None required P, NP - 1H NMR Fingerprinting 

& profiling 17 Pareto scaled Chenomx NMR Suite, 
SIMCA-P, Statistica 

 PCA, OPLS-DA, ANOVA Undefined Andersen et al. 
2014 

Fin tissue Identifying animal providence None required P, NP - FT-IR Fingerprinting N/A Undefined Undefined  PCA N/A Nurdalila et al. 
2015 

Skin mucus Minimally-invasive sampling & 
ecotox: Large n features MeOH/H2O P - LC-MS/MS Profiling 204 Peak height normalisation, 

autoscaled SIEVE, SIMCA-P, Excel, Systat  PCA, PLS-DA, ANOVA, 
t-test 

HMBD, Metlin, 
LipidMaps Ekman et al. 2015 

Fish oil capsules Food authentication, forensics 
& quality control None required NP - 13C NMR Fingerprinting  N/A Peak maximum normalisation Undefined  PCA, KNNA, GTM, PNN, 

GRNN 
Chemical shift data 
from the literature Aursand et al. 2007 

Canned fish 
packing oil 

Food authentication, forensics 
& quality control None required P, NP - FT-IR Fingerprinting N/A Undefined MATLAB, PLS Toolbox  PCA, PLS-DA N/A Dominguez-Vidal et 

al. 2016 
               

Molluscs Larvae Identification of larval quality 
biomarkers during hatchery 
culture 

MeOH/H2O P MCF GC-MS Profiling 29 
Peak height normalisation, 
metabolite ratios, log 
transformation, autoscaled 

R, AMDIS, MetaboAnalyst 
 PLS-DA, HCA, heatmap, 

volcano plot, EBAM, 
SAM 

In-house MS library Young et al. 2015 

Handling stress & culture 
conditions MeOH/H2O P MCF GC-MS Profiling 27 Peak height normalisation, 

autoscaled 
R, AMDIS, MetaboAnalyst, 
SPSS 

 PCA, PLS-DA, HCA, 
heatmap, t-test, In-house MS library Young et al. 2016 

Adductor muscle Organ function & physiology: A 
multi organ study HClO4 P - 1H NMR Profiling 37+ Peak area normalisation NMR Processor, SpinWorks  N/A HMBD Tikunov et al. 2010 

Optimisation of extraction 
methods & animal providence: 
A multi organ study 

HClO4, MeCN, Ringer’s 
solution P - 1H NMR Fingerprinting 

& profiling 32 Bin integral normalisation, Pareto 
scaled 

TopSpin, NMR Processor, 
Chenomx NMR Suite, JMP, 
Excel 

 
PCA, t-test HMDB, BMRB Hurley-Sanders et 

al. 2015a,b 

Mantle 
Sex discrimination MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 16+ 
Spectral area normalisation, 
biomass normalisation, glog 
transformation, mean centered 

TopSpin, MATLAB, Chenomx 
NMR Suite, Excel 

 
PCA, LDA, t-test CRL Hines et al. 2007 

Ocean acidification, disease, 
thermal stress & sex 
differences 

MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 25 

Probabilistic quotient 
normalisation, glog 
transformation 

MATLAB, PRIMER 
 PERMANOVA, MDS, 

SIMPER Undefined Ellis et al. 2014 

Hepatopancreas Health & immunology: Host 
responses to bacterial 
pathogens 

MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 27 

Spectral area normailisation, 
biomass normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR 
Suite, MATLAB, PLS Toolbox, 
Minitab 

 PCA, PLS-DA, OPLS-DA, 
ANOVA 

Chemical shift data 
from the literature Wu et al. 2013 

Ocean acidification: Integrated 
metabolomics & proteomics  MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 32 Spectral area normalisation, glog 
transformation 

TopSpin, Chenomx NMR 
Suite, MATLAB, SIMCA-P 

 PLS-DA, OPLS-DA CRL Wei et al. 2015 

Foot Health: Biomarkers for 
toxicology, hypoxia & food 
limitation  

MeCN/H2O P - 1H NMR Fingerprinting 
& profiling 20 Box-Cox transformation SpecManager, Excel, 

Minitab, GenStat 

 
PCA, LDA, ANOVA HMBD Tuffnail et al. 2009 

Gonad 
Sex discrimination & 
reproductive physiology SPE & fractionation P, NP - LC-MS Fingerprinting 

& profiling 21+ Spectral area normalisation, 
mean centered 

MarkerLynx, MassLynx, 
SIMCA-P 

 
PCA, PLS-DA, OPLS-DA, 
Mann-Whitney U test 

HMBD, KEGG LDB, 
BiGG DB, PubChem, 
NLDB, MBDB 

Cubero-Leon et al. 
2012 
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Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Molluscs 
(cont.) 

Gills Identification of thermal 
stress biomarkers MeOH/H2O P Undefined GC-MS Profiling 52 Biomass normalisation JMP DFA Undefined Dunphy et al. 2015 

Toxicology: Integrated 
metabolomics & proteomics MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 28 Spectral area normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR Suite, 
MATLAB, SIMCA-P PLS-DA, OPLS-DA Chemical shift data 

from the literature Ji et al. 2013 

Toxicology: Integrated 
metabolomics & proteomics MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 25+ glog transformation TopSpin, Chenomx NMR Suite, 
SIMCA-P, MATLAB  PCA, PLS-DA, OPLS-DA CRL, KEGG Song et al. 2016 

High resolution NMR: Coastal 
marine pollution & toxicology  MeOH/H2O/CHCl3 P - HR-MAS 

1H NMR 
Fingerprinting 
& profiling 27+ Spectral area normalisation, glog 

transformation, mean centered 

XWIN-NMR, Chenomx NMR 
Suite, MATLAB, Unscrambler X, 
Excel 

PCA, t-test HMBD, CRL Cappello et al. 2013 

Toxicology: Integrated 
metabolomics & proteomics MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 9+ Spectral area normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR Suite, 
MATLAB, SIMCA-P PLS-DA, OPLS-DA Chemical shift data 

from the literature Ji et al. 2016 

Central nervous 
system & glands 

Baseline molecular 
phenotyping: Multiplatform 
metabolomics 

MeOH/H2O/CHCl3 P, NP BF3MeOH 
(lipids) 

GC-MS, LC-MS 
(RPLC & HILIC)  

Fingerprinting 
& profiling 73+ Selected peak normalisation, 

total protein content normalised  
DataAnalysis, ProfileAnalysis, 
SPSS, Excel, SIMCA-P 

PCA, PLS-DA, OPLS-DA, 
HCA, ANOVA Undefined Tufi et al. 2015a 

Neurotoxicity of pesticides in 
aquatic environments: 
Multiplatform metabolomics 

MeOH/H2O/CHCl3 P, NP BF3MeOH 
(lipids) GC-MS, LC-MS Profiling 73 Total protein content normalised  

Compass DataAnalysis, 
DataAnalysis, PathwayScreener, 
ProfileAnalysis, IMPaLA, SPSS, 
Metamapp, Cytoscape  

ORA, BNM, t-test 
Reactome, EHMN, 
KEGG, Wikipathways, 
SMPDB, HumananCyc  

Tufi et al. 2015b 

Gastrointestinal 
tract and/or 
digestive gland 

Bioindicator species for 
pollution monitoring MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 19+ Spectral area normalisation, glog 
transformation, mean centered MATLAB, PLS Toolbox ANOVA, PCA, PLS-DA Chemical shift data 

from the literature Liu et al. 2011 

Metabolic effects of food 
deprivation & extraction 
method optimisation  

MeOH/H2O/CHCl3 P - 1H NMR Profiling 28 Log transformation, median 
centered 

Chenomx NMR Suite, TopSpin, 
R, Unscrambler 

PLS-DA, Mann-Whitney U 
test CRL Sheedy et al. 2016 

Whole soft tissue Dual platform metabolomics: 
Toxicological mechanisms MeOH/H2O/CHCl3 P MSTFA GC-MS, 1H NMR Fingerprinting 

& profiling 
NMR: 17+ 

GC-MS: 24+ 

Spectral area normailsation, 
autoscaled (GC-MS), mean 
centered & Pareto scaled (NMR)  

SpecManager, SIMCA-P PCA, PLS-DA 
Chemical shift data 
from the literature, 
NIST library 

Spann et al. 2011 

Toxicological mechanisms MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 
& profiling 25+ Bin integral normalisaiton, glog 

transformation, mean centered TopSpin, MATLAB, PLS Toolbox PCA, PLS-DA, ANOVA Undefined Wu & Wang 2010 

Unique extraction & platform: 
Method assessment SPME P, NP - 2D GCxGC-MS Fingerprinting 

& profiling 63+ Fourth root transformation ChromaTOF, PRIMER PERMANOVA, PCoA, 
HCA WMSL, NIST library Rocha et al. 20013 

Coastal marine pollution & 
toxicology MeOH/H2O/CHCl3 P - 1H NMR Fingerprinting 

& profiling 24 Pareto scaled Chenomx NMR Suite, MATLAB, 
SIMCA-P, R PCA, OPLS-DA, PLS-DA CRL Kwon et al. 2012 

Haemolymph: 
whole blood (wb) 
or plasma (p) 

Mechanical shaking & salinity 
stress None required (wb) P, NP - FT-IR Fingerprinting N/A Undefined Undefined MANOVA, PCA, CVA N/A Bussell et al. 2008 

Developing strategies for 
identifying stress None required (wb) P, NP - FT-IR Fingerprinting N/A Untreated Undefined MANOVA, PCA, CVA N.A Gidman et al. 2007 

Health/stress biomarkers: 
Toxicology None required (p) P, NP - 1H NMR Fingerprinting 

& profiling 18 Spectral area normalisation, glog 
transformation, mean centered 

MATLAB, PLS Toolbox, 
Chenomx NMR Suite ANOVA, PCA CRL Zhou et al. 2015 

              

Crustaceans Claw muscle Nutritional composition & 
quality assessment, 3 spp. MeOH/H2O/CHCl3 P, NP - 1H NMR Fingerprinting 

& profiling 24+ Spectral area normalisation, 
mean centered, areto scaled TopSpin, AMIX, SIMCA-P PCA, PLS-DA Chemical shift data 

from the literature Zotti et al. 2016 

Tail muscle & 
other 

Identification of health & 
stress biomarkers in shrimp 
during intensive culture 

MeOH/H2O/CHCl3 P - 1H-13C NMR Fingerprinting 
& profiling 50+ Spectral area normalisation, 

mean centered, Pareto scaled 
AMIX, Chenomx NMR Suite, 
Excel  PCA, t-test HMDB, BMRB, CRL, 

in-house library Schock et al. 2013 

Hepatopancreas Mechanisms of white spot 
virus syndrome in shrimp Undefined Undefined - 1H NMR Fingerprinting 

& profiling 27+ Undefined TopSpin, SIMCA-P PCA, OPLS-DA Chemical shift data 
from the literature Liu et al. 2015 

Haemolymph Pathogen-induced oxidative 
stress responses in crabs: New 
biochemical insights 

None required P, NP - 1H-13C NMR Fingerprinting 
& profiling 20 Spectral area normalisation, 

mean centered 
AMIX, SIMCA-P PCA, sPCA, PLS-DA, 

ANOVA 

Chemical shift data 
from the literature, 
in-house library 

Schock et al. 2010 

              

Echinoderms Muscle 
Thermal stress responses  MeOH/H2O/CHCl3 P - 1H NMR 

Fingerprinting 
& profiling 

31 Spectral area normalisation, glog 
transformation, mean centered 

TopSpin, Chenomx NMR Suite, 
MATLAB, SIMCA-P PCA, OPLS-DA 

Chemical shift data 
from the literature 

Shao et al. 2015  

              

Macroalgae Thallus Effects of food processing on 
nutrient composition 

MeCN/H2O P - 1H NMR Fingerprinting 
& profiling 

32+ Bin integral normalisation AMIX, SIMCA-P, MATLAB, SPSS PCA, OPLS-DA, heatmap, 
t-test 

Chemical shift data 
from the literature 

Ye et al. 2014 

New insights into metabolism MeOH, H2O P - 1H NMR Profiling 27 N/A Chenomx NMR Suite N/A PRIMe DB, HMDB, 
BMRB  Gupta et al. 2013 

Stipe & blades Seasonal variations in 
metabolism: Multiplatform 
metabolomics 

None required (FT-IR), 
MeOH, H2O (NMR) 

P, NP - FT-IR, 1H-13C 
NMR 

Fingerprinting 
& profiling 51 

Specific peak intensity 
normalisation (FT-IR), spectral 
area normalisation (NMR) 

Excel, TopSpin, SpinAssign, 
OMNIC, R, Amos, Gephi, Fityk 

PCA, ICA, SOMs, CNA, 
SEM, MCR-ALS 

PRIMEe DB Ito et al. 2014 

 



 

 

Table 3.1. Continued. 

Organism Sample type Experimental 
theme 

Extraction 
method† 

Metabolite 
component‡ 

Derivatisation 
method§ 

Analytical 
Platform/s¶ 

General 
approach 

Metabolites 
Detected 

Data pre-treatment methods 
applied\\ 

Bioinformatics & statistical 
software used†† 

Statistical analyses & 
data visualisation‡‡ 

Databases 
used§§ 

Reference 

Microalgae Cells or extracts Screening microalgae to 
identify commercially 
useful mutants 

None required (FT-IR), 
MeOH/H2O/CHCl3 (LC-
MS) 

P, NP - FT-IR, LC-MS Fingerprinting 
& lipid profiling 

11+ lipid 
classes 

Biomass normalised  MATLAB, Xcalibur, Unscrambler PCA, PC-DFA, PLS-DA, 
PLS-R 

MMD, HMDB, KEGG, 
BioCyc, LIPIDMAPS, 
DrugBank 

Bajhaiya et al. 2016 

Profiling diatoms for bioenergy 
& feedstock MTBE/MeOH/H2O P, NP MSTFA GC-MS, LC-MS Profiling 96+ Cell density normalised, median 

scaled, log transformed 
Expressionist Refiner MS, 
ChromaTOF, R 

PCA, HCA, heatmap, 
t-test In-house MS library Bromke et al. 2015 

Dual platform metabolomics: 
Natural products research 

MeOH/H2O/CHCl3 (GC-
MS), MeOH (LC-MS) P MSTFA GC-MS, LC-MS Profiling 128 Peak area & cell density 

normalisation AMDIS, SIMCA-P, MeV PLS-DA, HCA, heatmap, 
MPEA, WGCNA KEGG Yu et al. 2015 

Photobioreactor culture 
conditions & bioresource 
development 

None required (FT-IR), 
MeOH & EtOH/H2O (LC-
MS)  

P, NP - FT-IR, LC-MS Fingerprinting 
& profiling 13+ 

Second derivative calculation 
(FR-IR), log transformed, Pareto 
scaled 

OpusLab, XCMS, Xcalibur, R, 
Spectrum Database, Statistica 
Data Miner, MetaboAnalyst, 
SIMCA-P 

Kruskal-Wallis test, HCA, 
Mann-Whitney U test, 
heatmap, PLS-DA  

In-house MS library Courant et al. 2013 

Chemical interactions between 
bacteria & diatoms 

MeOH/EtOH,CHCl3 (GC-
MS) P MSTFA GC-MS Fingerprinting 

& profiling 19+ Cell density normalised MassLynx, AMDIS, MET-IDEA, 
SigmaPlot, Excel 

RM-ANOVA, PCoA, CAP, 
heatmap NIST library, GMDB Paul et al. 2013 

              

Bacteria Cell extract Mechanisms of white spot 
syndrome virus in shrimp: 
Nutritional treatment  

MeOH, H2O P MSTFA GC-MS Fingerprinting 
& profiling 3+ Untreated Xcalibur, NIST MS search  Wilcoxon rank-sum test,  NIST library Zhu & Jin 2015 

 
Restoring pathogen 
susceptibility to antibiotics: 
Simple metabolic modulation 

MeOH P MSTFA GC-MS Profiling  Undefined Xcalibur, NIST MS Search, 
MetaGeneAlyse ICA NIST library Su et al. 2015 

 
† Extraction solvents: MeCN (acetonitrile), MeOH (methanol), EtOH (ethanol), MTBE (methyl-tert-butyl ether), H2O (water), CHCl3 (chloroform), HClO4 (perchloric acid), C6H12 (cyclohexane), TCA (trichloroacetic acid), SPME (solid phase 

microextraction), SPE (solid phase extraction) 

‡ Metabolite components: P = polar component, NP = non-polar component 

§ Derivatisation: MSTFA = silylation with N-Methyl-N-(trimethylsilyl)trifluoroacetamide, BSTFA = silylation with N,O-Bis(trimethylsilyl)trifluoroacetamide, MCF = alkylation with methyl chloroformate, ECF = alkylation with ethyl 
chloroformate 

¶ Analytical platforms: FI-MS/MS (flow injection tandem mass spectrometry), FT-IR (Fourier transform infrared spectroscopy), 1H NMR (proton nuclear magnetic resonance), 1H-13C NMR (two dimensional proton and carbon NMR for 
assisting metabolite identifications), HR-MAS NMR (high resolution magic angle spinning NMR), FT-ICRMS (Fourier transform ion cyclotron resonance mass spectrometry), DART-MS (direct analysis in real time mass spectrometry), GC-
MS (gas chromatography mass spectrometry), LC-MS (liquid chromatography mass spectrometry), RPLC (reverse phase liquid chromatography), HILIC (hydrophilic interaction liquid chromatography) 

\\ Note: Whilst not explicitly stated within the table, most metabolomics-based investigations will also include normalisation of data to an internal standard as a data pre-treatment method to compensate for potential technical variations 
(e.g., variable metabolite recoveries during sample preparation and processing). 

†† Software: AI Trilogy (Ward Systems Group Inc., US), AMDIS (Automated Mass Deconvolution and Identification System [The National Institute of Standards and Technology, US]), Amos (IBM Corp., US), AMIX (Bruker Corp., Germany), 
Chemstation (Agilent, US), Chenomx NMR Suite (Chenomx Inc., Canada), ChromaTOF (LECO Corp., US), Compass DataAnalysis (Bruker Corp., Germany), Cytoscape (Shannon et al. 2003), DataAnalysis (Bruker Corp., Germany), EasyLCMS 
(Fructuoso et al. 2012), Excel (Microsoft, US), Expressionist Refiner MS (Genedata, Switzerland), FityK (Wojdyr 2010), Gephi (Bastian et al. 2009), GenStat (VSN Internaitonal, UK), IMPaLA (Integrated Molecular Pathway Level Analysis 
[Kamburov et al. 2011]), JMP (SAS Institute Inc., US), MarkerLynx (Waters Corp., US), MassCenter (JEOL, Japan), MassLynx (Waters Corp, US), MATLAB (Mathworks, US), MestReC (Mestrelab Research, Spain), MestReNova (Mestrelab 
Research, Spain), Metaboanalyst (Xia et al. 2015), MetaGeneAlyse (Daub et al. 2003), MetaMapp (Barupal et al. 2012), MET-IDEA (Lei et al. 2012), MetPA (Xia & Wishart 2010 [now a component of MetaboAnalyst]), MetPP (Wei et al. 
2013), MEV (Multi Experiment Viewer [Howe et al. 2010]), MIDAS (Wang et al. 2014), Minitab (Minitab Inc., US), MSCalc (SoftShell International Ltd., US), MZmine (Katajamaa et al. 2006), NMR Processor (ACD/Labs, Canada), OMNIC 
(Thermo Fisher Scientific, US), PathwayScreener (Bruker Corp., Germany), PLS Toolbox (Eigenvector Research Inc., US), PRIMe DB (Platform for RIKEN Metabolomics Database, RIKEN Yokohama Institute, Japan), PRIMER (Plymouth 
Routines In Multivariate Ecological Research [PRIMER-E Ltd, UK]), Prism (GraphPad Software Inc., US), ProfileAnalysis (Bruker Corp., Germany), ProMetab (Parson et al. 2007), R (R Core Team 2014), SAS (Statistical Analysis System [SAS 
Institute Inc., US]), SIEVE (Thermo Fisher Scientific, US), SIMCA-P (MKS Unimetrics, Sweden), SpecManager (ACD/Labs, Canada), Spectrum Database (ACD/Labs, Canada), SpinAssign (Platform for RIKEN Metabolomics, RIKEN Yokohama 
Institute, Japan), SpinWorks (University of Manitoba, US), SPSS (IBM Corp., US), Statistica Dataminer (StatSoft, US), Systat (Systat Software, US), Tiberius (Tiberius Data Mining, Australia), TopSpin (Bruker Corp., Germany), Unscrambler 
(CAMO, Norway), VNMR (Varian Inc., US), Xcalibur (Thermo Fisher Scientific, US), XWINNMR (Bruker Corp., Germany). 

‡‡ Statistical analyses: ANOVA (analysis of variance), RM-ANOVA (repeated measures ANOVA), MANOVA (multivariate ANOVA), PERMANOVA (permutation MANOVA), BNM (biochemical network mapping), CAP (canonical analysis of 
principal coordinates), CNA (correlation network analysis), CVA (canonical variates analysis), DFA (discriminant function analysis), EBAM (empirical Bayes analysis of metabolites), GRNN (general regression neural networks), GTM 
(generative topographic mapping), HCA (hierarchical cluster anlaysis), ICA (independent component analysis), KNNA (Kohonen neural network analysis), MDS (multi-dimensional scaling), MCR-ALS (multivariate curve resolution-
alternating least squares), MPEA (metabolite pathway enrichment analysis), ORA (over-representation analysis), PNN (probabilistic neural networks), PCA (principal components analysis), SPCA (supervised PCA), RPCA (robust PCA), PC-
DFA (principal component discriminant function analysis ), PCoA (principal coordinate analysis), PLS-DA (projection to latent structures discriminant analysis), OPLS-DA (orthogonal projection to latent structures discriminant analysis), 
PLS-LDA (projection to latent structures linear discriminant analysis), PLS-R (projection to latent structures regression), SAM (significant analysis of metabolites), SEM (structural equation modelling), SIMPER (Similarity Percentage 
analysis), SOMs (self-organising maps), WGCNA (weighted gene correlation network analysis). 

§§ Databases: BiGG DB (Database for Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions), BML (Birmingham Metabolite Library), BMRB (Biological Magnetic Resonance Data Bank), 
CRL (Chenomx Reference Library), ECMDB (E. coli Metabolome Database), EHMN (Edinburgh Human Metabolic Network), GMDB (Golm Metabolome Database), HMDB (Human Metabolome Database), KEGG (Kyoto Encyclopaedia of 
Genes and Genomes), KEGG LDB (KEGG Ligand Database), NIST (The National Institute of Standards and Technology) library, MBDB (Massbank Database), MMD (Manchester Metabolomics Database), NLDB (Nature Lipidomics Database), 
SMPDB (The Small Molecule Pathway Database), WMSL (Wiley Mass Spectral Libraries), YMDB (Yeast Metabolome Database).  
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 A range of other NMR-based techniques are also available which have various 

applications and levels of analytical sensitivity, such as two-dimensional and hyphenated 

platform approaches (reviewed by Simpson & Bearden 2013; Bharti & Roy 2014; Larive 

et al. 2014). NMR was originally the workhorse of metabolite profiling in the early days, 

but recent advances in mass spectrometry based approaches offer alternative methods of 

analyses. These platforms are often used in combination, since they have their own 

individual merits (Ong et al. 2009; Zhang et al. 2012). For example, NMR is a non-

destructive technique and acquires highly robust and reproducible measurements. 

Separation of metabolites prior to detection is not necessary and minimal sample 

preparation is required. NMR is generally cheaper to perform, but unfortunately has 

comparatively low sensitivity in relation to MS-based platforms, which means only 

metabolites that are present in significant quantities can be detected.  

3.2.2.2 Mass spectrometry 

Mass spectrometry (MS) is a method which involves the measurement of molecular 

weights of molecules (reviewed by El-Aneedet al. 2009; Viant & Sommer 2013). There 

are three components to a mass spectrometer: the ion source, the mass analyser, and the 

detector (Glish & Vachet 2003). There are many different types of these components (see 

Dettmer et al. 2007; El-Aneed et al. 2009; Junot et al. 2014). At the ion source, 

metabolites within a sample are ionised by a variety of processes. For metabolomics work, 

the most commonly used ionisation techniques are electron ionisation and electrospray 

ionisation (Lei et al. 2011). In most cases, the molecules become sufficiently excited to 

fragment into a number of electrically charged ions. These ions move into the mass 

analyser where they are separated based on their mass to charge (m/z) ratio by 

accelerating them and subjecting them to various combinations of electric, magnetic or 

electromagnetic fields or in a ‘time of flight’ mass spectrometer which assesses how fast 

they are travelling. Fragments with different m/z ratios travel at different speeds and are 
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deflected from their forward trajectory to different degrees; lighter ions deflect more than 

heavier ions, and the higher the ionic charge, the greater the deflection. This allows the 

various types of mass analysers to filter the ions. The ions are then directed into a device 

that counts the number of ions at each different mass. This information is plotted in a 

spectrum of the ion abundance as a function of the m/z ratio. The identity of a metabolite 

can be putatively elucidated by comparing the fragmentation patterns against open access 

and/or proprietary databases which contain mass spectra of known compounds. 

Depending on the particular instrument, some (high resolution mass spectrometers) are 

capable of determining the actual elemental composition of each ion, thus providing an 

extra dimension of information for validation of metabolite identity. 

 MS-based methods are becoming highly sophisticated and newly-developed 

platform variations are increasingly being showcased in the scientific literature. MS can 

be performed directly on samples without pre-separation of metabolites (reviewed by 

Ibáñez et al. 2014). While direct MS techniques are rapid, they also suffer from low 

ionisation efficiencies and ion suppression. Thus, to decrease the complexity of the 

sample matrix and enhance the sensitivity and selectivity of the analysis, MS-based 

metabolomic approaches usually involve separation of metabolites via chromatography 

or electrophoresis prior to MS detection. The benefits of pre-separation are that a 

significant amount of information is available from the pre-separation process, and 

metabolites with the same mass can easily be distinguished since they are introduced into 

the MS system at different times. In addition, higher quantitative accuracies can be 

achieved since problems associated with ion suppression and other interferences are 

greatly reduced. Gas chromatography (GC), liquid chromatography (LC), and capillary 

electrophoresis (CE) are the most commonly applied methods for this purpose. When 

coupled, these instruments are called hyphenated platforms (GC-MS, LC-MS and CE-
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MS). Each of these platforms have their own unique advantages, and can be used in 

combination to obtain very broad coverage of the metabolome (Lei et al. 2011). 

3.2.2.2.1 Gas Chromatography Mass Spectrometry 

Gas Chromatography (GC) separates metabolites which are volatile and thermally stable, 

or which become volatile and thermally stable after functional group modifications (e.g., 

alkylation or silylation via chemical derivatisation [Villas-Bôas et al. 2011]) (reviewed 

by Garcia & Barbas 2011). Once the sample extract has been prepared, it is injected into 

a hot gas stream flowing through a long and very small diameter tube in the GC 

instrument. The inside walls of the tube, called a column for historical reasons, are coated 

with material that has some affinity for the various components in the mixture. The 

different interactions of the metabolites with the gas stream and the column walls result 

in differential flow speeds through the column and they exit the column at different times 

(producing a chromatogram [Figure 3.3 E–F]); thus entering the mass spectrometer in a 

unique sequence. This combination of unique entrance times and associated information 

on the physicochemical properties of metabolites provides an enhanced means of 

profiling and identification. See Figure 3.4 for an illustrated overview of the analytical 

processes involved using pre-separation techniques combined with MS for the 

metabolomic analysis of complex sample matrices. GC-MS has the advantage that it 

produces very stable metabolite retention times within the column, does not have 

drawbacks associated with ion suppression, and generates highly reproducible 

fragmentation patterns. These features mean that metabolite identifications can more 

easily be authenticated by matching spectra against those contained within numerous 

open-access spectral libraries. However, if samples need to be derivatised, are thermally 

unstable, or have too high a molecular weight, GC-MS may not be suitable. See Zhao X. 

et al. (2015) for an applied example of how GC-MS was used to identify biomarkers for 
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temperature stress in tilapia, and to discover that an exogenous supply of L-proline into 

the culture water led to higher disease resistance against bacterial pathogens. 

 

 

Figure 3.4. Overview of the processes involved using pre-separation techniques combined with mass 
spectrometry. Gas chromatography, liquid chromatograph or capillary electrophoresis is used to separate 
metabolites in the sample extract to produce a chromatogram. Compounds within the peaks are then 
sequentially analysed by mass spectrometry, and their ion m/z ratios are compared to those stored in mass 
spectral databases for identification. In some cases, peaks may comprise multiple metabolites with similar 
physicochemical properties which are unable to be separated by the pre-separation device and 
deconvolution of the spectra is required. 
 

 

3.2.2.2.2 Liquid Chromatography Mass Spectrometry 

High Performance Liquid Chromatography (HPLC or LC) is based on similar 

chromatographic principals as GC, but the sample is not heated to high temperatures 

(reviewed by Xiao et al. 2012). The most important distinction between GC and LC is 

that GC largely separates metabolites based on their boiling points with secondary 

retention by polarity, whereas metabolite size or polarity are the main mechanisms of LC. 

The column in this case is a tube a few millimetres wide and a few centimetres long and 

packed with extremely fine powder coated with material that has some affinity for the 

various metabolite components in the sample. A suitable solvent mixture is pumped at 
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very high pressure through the column. The sample is introduced into the column as a 

solution and, like GC, the various components of the mixture travel through the column 

at different speeds and exit in sequence to produce a chromatogram (Figure 3.3 G–H). 

From there the outlet stream is directed into a suitable detector which, for metabolomic 

work, is typically a high-resolution mass spectrometer. Therefore, LC-MS can analyse a 

wider range of metabolites since non-volatile and thermally sensitive compounds can be 

separated in the liquid phase. However, LC-MS suffers from greater ionisation and matrix 

effects, and lower chromatographic reproducibility. These features make assigning 

metabolites through spectral library matching considerably more difficult. Nevertheless, 

LC-MS is a very popular metabolomic platform and the analytical technology, spectral 

libraries, and software for processing spectra are continually being updated to improve 

metabolite identifications. See Yan et al. (2012) for an applied example of how LC-MS 

was used to identify species-specific metabolic stress responses of fish immediately after 

a tropical cyclone at various cage-farming sites, and to determine the physiological 

mechanisms which resulted in high mortalities during the following month of grow out. 

3.2.2.2.3 Capillary Electrophoresis Mass Spectrometry 

Capillary electrophoresis (CE) is an alternative pre-separation technique which separates 

metabolites based on their ionic charge characteristics, or electrophoretic mobility 

(reviewed by Ramautar et al. 2009). In many respects this technique is similar to LC, but 

molecules are separated based on their ionic affinities and size rather than on their solid 

phase solubilities (Hiryama et al. 2014). In CE, sample extracts enter a column which 

contains electrolytes. Charged metabolites migrate through the column and exit at 

different times under the influence of an electric field, and can be further concentrated 

using gradients in conductivity and pH. CE-MS is an efficient platform that does not 

require rigorous sample pre-treatment, is useful for small samples, is good at separating 
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highly polar metabolites, has separation power and sensitivities which are comparable to 

GC-MS and LC-MS, and can quantify certain metabolites that other hyphenated MS 

platforms cannot. On the other hand, CE is unable to separate non-charged compounds, 

and suffers more than GC or LC from poor reproducibility. However, recent advances in 

CE-MS technologies are contributing to the increasing usage of the technique in 

metabolomics studies (Ramautar et al. 2015). See Koyama et al. (2015) for an applied 

example of how CE-MS was used to gain detailed metabolic insights into salinity 

adaption of brackish-water clams from four commercial fishery grounds in Japan with 

different water chemistries. 

 The sensitivity, or at least the detection limits, of MS techniques can be extremely 

high. As long as a substance can be separated, detection limits in parts per million or even 

better are possible. If pre-concentration techniques are used, molecules can easily be 

detected in concentrations of parts per trillion or better. 

3.2.2.3 Vibrational spectroscopy 

The analysis of complex sample matrices can also be performed using lower resolution 

instruments which measure the vibrational signatures of broad metabolite functional 

groups (Moore et al. 2014). Such analyses generally do not provide detailed information 

for identifying particular metabolites, but can still be very useful for obtaining an overall 

‘metabolite fingerprint’ of a sample. This fingerprint is based on the holistic composition 

of functional group chemistries across all metabolites within the sample, and can be used 

to classify samples from different conditions when significant variations are observed. 

However, the drawback is that biological interpretation of spectra can be difficult because 

of this non-specificity. The application of vibrational-based technologies, such as Fourier 

transform infrared (FT-IR), near infrared (NIR), and Raman spectroscopy are growing in 
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popularity due to their rapid and high through-put analysis capabilities, their ability to 

work with very small samples, and their very low cost compared to other platforms. 

3.2.2.3.1 Infrared Spectroscopy 

Infrared techniques work on the principal that when a sample is exposed to light, or 

electromagnetic radiation, the different chemical bonds within metabolite functional 

groups absorb energy at different wavelengths and vibrate in characteristic ways. A plot 

of the absorbance or transmittance of light at different wavelengths produces a spectrum 

which represents the overall metabolite composition of the sample to provide a snapshot, 

or fingerprint, of the organism’s metabolome (Figure 3.5). Infrared platforms are 

categorised into Near-Infrared (NIR) 0.78–3 µm and Mid-Infrared (MIR) 3–50 µm 

depending on the wavelength of light used to analyse the samples. Modern instruments 

commonly use Fourier transform techniques (a mathematical process which converts the 

raw data from the instrument into a spectrum) so the expression FT-IR is often seen when 

discussing MIR spectroscopy. MIR analysis examines the absorptions of bond vibrations 

and other molecular movements, whereas NIR evaluates the overtones and combinations 

of strong MIR absorptions, which, while not as specific as the sharper, stronger MIR 

absorptions, can be characteristic and more easily quantified for a range of biologically 

important functional groups such as sugars, fats, and proteins. Unlike MIR, NIR can 

penetrate many millimetres through water and the instruments can use glass optics. 

Infrared platforms have proven useful for a range aquaculture-related purposes. For 

example, to identify pathogenic bacteria responsible for disease in farmed salmon 

(Wortberg et al. 2012), to determine the causation for post-harvest variations in shrimp 

quality based on the methods used for culling (Fu et al. 2014), to identify fraudulently 

marketed fish from different origins (Vidal et al. 2014), to assess the meat quality of 

various fish species (Cheng et al. 2013; Qu et al. 2015), to develop new food safety and 
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authentication techniques for classifying shelled shrimp based on their post-harvest 

storage conditions (Qu et al. 2015), and to develop fast and cost-effective methods for 

proximate chemical analysis of cultured shellfish for the purposes of monitoring animal 

condition and assisting in selective breeding programs (Brown et al. 2012), among others. 

 

Infrared spectra Raman spectra 

 
 

Figure 3.5. An example of comparative IR and Raman spectra obtained from the analysis of blood serum 
(reproduced with permission from Ellis & Goodacre 2006). 
  

3.2.2.3.2 Raman Spectroscopy 

Raman spectroscopy is a technique closely related to MIR. When a laser beam hits a 

molecule, approximately 1 in 107 photons will interact with electrons in the chemical 

bonds resulting in the scattered laser light having extra wavelengths (a few nm) added to 

it and subtracted from it which correspond to the vibration frequencies of the bonds in the 

molecule. These shifts in photon wavelengths are called the ‘Raman effect’. The original 

laser colour can be subtracted using filters and the remaining frequencies provide 

information about the vibrational, rotational and other low frequency transitions within 

metabolites. Raman spectra are closely related to MIR spectra and look very similar 

(Figure 3.5). The principal difference is that the sorts of chemical bonds that give weak 

MIR absorptions are usually very strong in the Raman spectrum, and vice versa, so the 

two techniques are complementary. Although its big drawback is the very weak Raman 

signal, Raman spectroscopy has several major advantages. Glass optics can be used and 
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since Raman spectroscopy is based on the scattering of incident light rather than on 

absorption, it does not suffer from interferences caused by water. Thus, measurements 

can be made directly on biofluids and aqueous extracts, minimal to no sample preparation 

is required, and spectra can be obtained very quickly. See Ishigaki et al. (2014) for an 

applied example of how non-invasive Raman spectroscopy was used on live fish eggs to 

predict and monitor their quality and viability to ensure successful fertilisations. 

 

Table 3.2. Comparisons between different analytical platforms for processing metabolomics samples.  

Platform Advantages Disadvantages Processing Cost† 
 

NMR 
 

Rapid analysis time (5–10 mins) 
Simple sample preparation 
No derivatisation needed 
Provides detailed structural information 
Low chemical bias 
Very reproducible 
Can be high resolution 
Excellent metabolite recovery (no suppression) 
Highly quantitative (without standards) 
 

 

Low sensitivity 
Convoluted Spectra 
Libraries of limited use due to complex 
matrix 
More than one peak per component 
Peak overlap common 
pH adjustment required 
 

 

Cheap 
 

$30–100 USD 
per sample 

GC-MS Very sensitive 
Very robust 
Large linear range 
MS provides some structural information 
Many available libraries for metabolite 
identification 
Pre-separation provides additional information 
Does not suffer from ion suppression 
Reproducible retention times 
Quantitative (with appropriate standards) 
 

Slow analysis time (30–60 mins) 
Extensive sample preparation 
Derivatisation required 
Destructive to sample 
Some metabolites cannot be made 
volatile 
Some metabolites are too large for 
analysis 
Cannot detect some thermally unstable 
metabolites 
 

Expensive 
 

$100–200 USD 
per sample 

LC-MS Very sensitive 
Can detect a very wide range of metabolites  
MS provides some structural information 
High mass accuracy 
Many modes of pre-separation available 
Pre-separation provides additional information 
Quantitative (with appropriate standards) 
 

Analysis time can be slow (10–60 mins) 
Lack of comprehensive spectral libraries 
Ion suppression & adduct formation 
problems 
Destructive 
Metabolite identification is difficult 
Low retention time reproducibility  

Very expensive 
 

$150–400 USD 
per sample 
 

FT-IR, 
NIR, 
Raman 

Very rapid analysis time (10–60 secs) 
Low chemical bias 
Can be used directly on samples 
No derivatisation required 
Complete fingerprint of sample composition 
Useful for identifying functional groups 
 

Extremely convoluted spectra 
More than one peak per component 
Metabolite identification almost 
impossible 
Often requires sample drying 

Very Cheap 
 

$10–50 
per sample 

 
† Per sample processing costs vary between service providers and depend highly on the number of samples to be analysed within 

a particular project, and the resolution of the specific platform to be employed. The price ranges displayed are not strictly defined 
limits but are typical of the current rates charged for commercial samples, and generally will include metabolite extraction (and 
derivatisation when required), instrumental analysis, and some primary bioinformatics processing. Additional statistical analysis, 
secondary bioinformatics processing and/or biological interpretation of the data can usually be provided as an extra service by 
most facilities (e.g., $50–200 USD per hour for a metabolomics specialist). Academic-based metabolomics service providers may 
offer discounted rates for collaborative projects. 
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3.3 Metabolite fingerprinting vs. profiling 

There are generally two approaches to generation and examination of metabolomics data 

– metabolite fingerprinting and metabolite profiling. The approach utilised depends 

largely on the objectives of the investigation and the facilities available.  

 Metabolite fingerprinting compares the overall nature of samples based on the 

entire set of signals generated by the analytical platform. These signals, or features, are 

analysed using statistical techniques to discern patterns in the data for the purpose of 

sample classification. This approach usually involves the analysis of a very large number 

of signals, which represents the total compositions of metabolites, and does not 

necessarily require metabolite identification. Data obtained from NMR and vibrational 

spectroscopy platforms are particularly well-suited for metabolite fingerprinting. 

However, interpretations of results within particular biological frameworks are limited 

unless further analyses of relevant features within the fingerprints are performed. 

Nevertheless, metabolite fingerprinting can be convenient for situations when only 

sample-class discrimination is required. For example, Aursand et al. (2007) used 

metabolite fingerprinting to reliably identify fraudulently mislabelled fish oil products to 

ensure food safety and develop novel techniques for food traceability and quality 

assurance. 

 Metabolite profiling evaluates all of the signals generated by the analytical 

platform so that they may be characterised and matched to spectra of known metabolites 

in reference libraries. Once identified, data analyses are then performed on the 

abundances of the metabolites within the samples. This approach provides data which can 

be more easily interpreted across various biological frameworks since features are 

ascribed an identity with often well-known biochemical roles. Metabolite profiling 

frequently leads to discovery of biomarkers and development of novel and testable 

hypotheses. For example, Guo et al. (2014) used metabolite profiling to identify early-
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warning biomarkers to predict fish health, and to better-understand the mechanisms of 

defence against bacterial infection.  

 Metabolite fingerprinting combined with profiling is sometimes used when very 

large numbers of signals are present within the raw spectral data so that only those 

features statistically different between samples, or otherwise deemed important, are 

subsequently identified. This approach can be used to reduce the computational and 

resource demands of processing noisy or large and complex datasets. In most metabolite 

fingerprinting applications, signals that are different between samples are usually 

identified to aid interpretation of the data. For example, Savorani et al. (2010) and Picone 

et al. (2011) used combined approaches to identify factors responsible for meat quality 

variation in fish reared under different culture environments, and stored under different 

post-harvest conditions. 

 NMR-based metabolomics usually involves fingerprinting as an initial step, 

whereas use of MS-based hyphenated platforms may involve profiling only. It is 

important to note that the definitions and term usage for these two approaches tend to be 

flexibly applied in the literature and as yet there are no standardised descriptions. 

3.4 Data Analysis 

Although metabolomic datasets are often very large and complex, recent advances in 

bioinformatics and streamlined statistical workflows provide simple strategies for coping 

with the high dimensional data (Johnson et al. 2015). Bioinformatics is an 

interdisciplinary field incorporating computer science, database management, 

mathematics and statistics. Primary bioinformatics processing involves analysis of the 

raw data obtained from the analytical platform and incorporates all procedures which are 

required to generate a list of features or metabolites. The resulting data can then be 

analysed by a range of classical and applied statistical procedures.  
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 A number of steps are involved in the primary bioinformatics processing and 

usually includes data conversion, spectral processing (e.g., deconvolution, alignment, and 

noise reduction), feature selection, metabolite identification via database matching, 

metabolite quantification, and quality control procedures. Although a variety of freely or 

commercially available software packages exist to perform these tasks, many laboratories 

employ their own proprietary programs and algorithms, which have been custom 

designed for their unique situations and analytical set-ups. The methods used for primary 

bioinformatics processing vary widely and depend on data type and the analytical 

platform employed. Thus, it is impossible to provide general advice. However, at the end 

of this section we direct readers to a wide range of relevant literature, which covers these 

topics in more depth. 

 Prior to statistical analysis of metabolite profile/fingerprint data, data scaling, 

normalisation and/or transformations are often performed to enhance extractability of 

biologically relevant information from the dataset. Metabolite concentrations have huge 

dynamic ranges, and variance is typically larger at higher concentrations. Because many 

statistical procedures rely on homoscedasticity or distributional assumptions, it is 

important to alleviate the dependency of the variance on the concentration through 

variance-stabilising transformation or transformation to normality. Furthermore, the 

relative abundances of different metabolites are not proportional to the biological 

importance that they may represent, and many data analysis techniques fail to take this 

into consideration. Some of the more commonly applied pre-treatment methods for 

metabolomics data include centering, autoscaling, pareto scaling, range scaling, log 

transformation, and power transformation (reviewed by van den Berg et al. 2006). The 

pre-treatment method chosen may vary between different metabolomics datasets; hence, 

a solid understanding of how the implemented method affects the outcome of subsequent 

statistical analyses is essential for reliable interpretations. 
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 Statistical data analysis can be achieved using general statistical software (e.g., 

Minitab [Minitab Inc.: PA, USA], SIMCA [Umetrics, Umea, Sweden], SPSS [IBM Corp.: 

NY, USA], STATISTICA [Statsoft Inc.: OK, USA]) or dedicated metabolomics-based 

data analysis packages (e.g., DeviumWeb [Grapov 2014], MeltDB [Kessler et al. 2013], 

Metaboanalyst [Xia et al. 2015]). A basic knowledge of programming is useful for 

employing, modifying, or writing script in certain data analysis environments (e.g., 

Matlab [Mathworks Inc.: MA, USA], R [R Core Team 2014]). However, recent 

development of easy-to-use graphical user interfaces for these environments have 

substantially reduced the need for advanced programming skills. See Mishra and Van der 

Hoot (2016) for further information regarding the latest advances in available 

computational tools and resources for the analysis of metabolomics data. OMICtools 

(http://omictools.com/) is also a useful and growing online repository of web-accessible 

tools related to omics-based data analysis.  

 Similar to other –omics disciplines, it is common for the number of measured 

variables (genes, proteins or metabolites) within each sample to far exceed the number of 

samples analysed. Metabolomics data are by their very nature multivariate in design and 

lend themselves particularly well to multivariate statistical analyses. However, univariate 

techniques can also be employed to extract valuable information from the data. Use of 

both approaches in combination is routinely performed and recommended because they 

can expose different characteristics of the samples (Sugimoto et al. 2012).  

3.4.1 Univariate methods 

Univariate methods involve analysis of single variables (metabolites) at a time. The t-test 

and ANOVA (analysis of variance), or their non-parametric equivalents (e.g., Mann-

Whitney U test, Kruskal-Wallis test), are the most commonly applied univariate 

techniques to identify differences in metabolite abundances between samples. However, 
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due to the high number of variables, it is important to correct for multiple hypothesis 

testing to protect against the likelihood of identifying false-positives (Broadhurst & Kell 

2006). 

SAM (Significant Analysis of Microarrays/Metabolites) and EBAM (Epirical 

Bayes Analysis of Microarrays/Metabolites) (Xia et al. 2009) are examples of univariate 

methods which are able to account for correlations between metabolites and do not 

assume independence, unlike the t-test and ANOVA. These algorithms were originally 

developed for examining large sets of gene expression data and are of particular value for 

the analysis of datasets where n features are considerably greater than n samples; as is 

usually the case with data from transcriptopmic, proteomic and metabolomic studies. 

SAM is designed to address false discovery rate problems (FDR) when running multiple 

tests on high-dimensional metabolomics data. The algorithm first assigns a significance 

score to each variable, based on its change relative to the standard deviation of repeated 

measurements. Then, it selects variables with scores greater than an adjustable threshold 

and compares their relative difference to the distribution estimated by random 

permutations of the class labels. For each threshold, a certain proportion of the variables 

in the permutation set will be found to be significant by chance. The proportion is used 

to calculate the FDR. EBAM is a variation of the SAM algorithm based on moderated t-

statistics. The advantages of EBAM are that it also addresses FDR and is well-suited to 

analysis of data where n samples or biological replication is low (e.g., n = 3–8).  

Volcano plots are often used for the univariate analysis and visualisation of gene, 

protein and metabolite expression data (Li 2012). Volcano plots are scatterplots which 

incorporate a measure of statistical significance (e.g., t-test p-values) with information 

about the magnitude of metabolite change (fold-change) (Figure 3.6). Volcano plots allow 

quick identification of metabolites, which are not only statistically different between two 

sample conditions, but which also co-display large variations in abundance. See Young 
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et al. (2015) (Chapter 4) for an applied example of how a volcano plot and SAM was used 

to assist construction of a multivariate classification model for assessing the quality of 

hatchery-reared mussel larvae.  

 

 

Figure 3.6. Example of a volcano plot. Solid yellow circles represent metabolites which are significantly 
different between sample groups (p < 0.05), as well as have large variation (> 1.2 fold-change) in their 
mean abundances. 
 
 

Univariate methods are attractive because they are generally simple to apply and the 

results are easily interpreted and communicated across various levels of expertise. 

However, they cannot detect group differences when only minor variations exist on a 

single molecule level. Associations between metabolites and low variations in abundance 

can be highly important on a systems level due to the orchestrated flux of metabolites 

within common biochemical networks.  

3.4.2 Multivariate methods 

Since univariate techniques may not account for interrelations between metabolites, 

multivariate methods are applied to compensate, and to provide additional and 

complementary information for assisting interpretation of the data. Multivariate 
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techniques can be used to reduce complexity and identify patterns, group structure, and 

relationships among metabolites and samples (Worley & Powers 2013). Commonly 

applied procedures include Principal Components Analysis (PCA), Projection to Latent 

Structures Discriminant Analysis (PLS-DA), and clustering. 

3.4.2.1 Principal Components Analysis 

PCA is a mathematical procedure that aims to capture and extract most of the important 

information in a high-dimensional data matrix and re-express it in fewer dimensions 

(Abdi & Williams 2010). In doing so, the data can be more easily visualised, described 

and analysed. PCA does this by combining the multiple correlated variables into a number 

of smaller uncorrelated variables called principal components. A different data matrix is 

constructed in which the first 2–3 new variables account for the vast majority of the total 

variance in the original data. The samples can then be projected and visualised on a 2D 

or 3D score-plot (Figure 3.7). PCA is an unsupervised statistical technique which 

incorporates only the independent metabolite information. Dependant variables are not 

required for modelling and information of sample class membership is not included in the 

analysis. As an unsupervised technique, patterns among the independent variables are 

discerned and groups of samples are formed based solely on the structure of the 

metabolite data. The PCA algorithm therefore achieves unbiased dimensionality 

reduction and only exposes group structure when within-group variation is substantially 

less than between-group variation. PCA is very useful for visualising multi-dimensional 

data, identifying outliers, conducting classification studies, identifying a subset of 

original variables which explain most of the variation between samples, and for 

exploratory data analysis before building predictive models. See Kokushi et al. (2015) for 

an applied example of how PCA was used to identify differential regulation of metabolic 

pathways due to insecticide exposure in freshwater carp. 
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                            PCA                                     PLS-DA                                       OPLS-DA 

 
 
Figure 3.7. Comparison of multivariate data reduction techniques for assessing sample groupings using 
non-supervised principal component analysis (PCA) and supervised projection to latent structures 
discriminant analysis (PLS-DA), and its orthogonal extension (OPLS-DA) (reproduced from Grapov 2014 
with permission). Discrimination power: PCA < PLS-DA < OPLS-DA.  
 

3.4.2.2 Projection to Latent Structures Discriminant Analysis 

Similar to PCA, PLS-DA is a technique, which can be used to reduce dimensionality and 

help visualise and analyse multivariate data (Worley & Powers 2013). However, PLS-

DA is a supervised statistical technique, which incorporates information about the sample 

classes. Using this information, PLS-DA rotates the data within the newly created latent 

variable subspace in a way that maximises separation between groups of samples. This 

can result in much clearer separations than when PCA is applied (Figure 3.7). PLS-DA 

can be very useful for identifying and ranking metabolites which contribute most towards 

sample group separations and, when applied correctly, to assist construction of predictive 

classification models. Orthogonal PLS-DA is a related technique, which can further 

enhance separations due to its ability to distinguish between predictive and non-predictive 

(orthogonal) variation (Bylesjӧ et al. 2006) (Figure 3.7).  

 PLS-DA and its extensions have a tendency to over-fit the model to the data. 

Therefore, validation is important when using these algorithms in predictive capacities. 

Model validation is the process of defining a model’s performance and is a critical 

requirement for predictive modelling (Szymańska et al. 2012). This ensures that the 

model’s internal variable rankings are truly informative. Commonly used methods to test 

a model’s performance include permutation-based tests and cross validation (Worley & 
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Powers 2013). The ideal scenario involves the use of a training dataset to build the model, 

and a separate validation dataset to assess its predictive capacity. See Liu et al. (2015) for 

an applied example of how PLS-DA and OPLS-DA were used to identify metabolites 

associated with white spot syndrome virus infection in shrimp, and provide preliminary 

information for developing biomarkers for diagnosing the pathophysiology of the disease.  

3.4.2.3 Clustering 

Clustering is a collection of statistical procedures, which aims to group samples together 

that are most similar in their metabolite profile (reviewed by Andreopoulos et al. 2009). 

Like PCA, most clustering techniques involve unsupervised approaches to group samples 

and the goal of clustering is to identify the actual groups based on the underlying structure 

of the data. Where PCA selects the variables with the most variation to form a reduced 

data matrix for partitioning samples, cluster analysis algorithms do not lose variance 

through dimensionality reduction in the same way and generally use all variables equally 

to display sample similarity/dissimilarity. Although clustering can be used to discover 

structures within the data irrespective of sample-class membership, it does not explain 

why they exist. Nevertheless, clustering is a very useful exploratory technique for 

uncovering patterns, finding natural groupings, confirming known groupings, identifying 

outliers, and discovering groups of metabolites with similar expression patterns across a 

wide range of biological conditions by clustering the variables rather than the samples. 

The most commonly applied clustering algorithms in metabolomics-based investigations 

are Hierarchical Cluster Analysis (HCA) and k-means clustering. 

HCA is a method which seeks to construct a hierarchy of clusters and arrange 

them into a binary tree-structured graph called a dendrogram (Meunier et al. 2007). HCA 

does this by successively merging comparable groups based on the 

similarity/dissimilarity, or distance, between them. Visualising this tree provides a useful 
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summary of the data. HCA can be combined with data visualisation techniques to provide 

new ways of looking at the data, and to enhance the extraction of important information 

(Figure 3.8). See Courant al. (2013) for an applied example of how HCA was combined 

with heatmap analysis to assist visualisation of metabolite-group expressions, and to 

identify biomarkers for fine-scale monitoring during continuous culture of microalgae 

under different nitrogen regimes. 

 

 
 

Figure 3.8. Combined heatmap and hierarchical cluster analysis of metabolites in developing zebrafish 
during embryogenesis via GC/MS- and LC/MS-based metabolomics (reproduced with permission from 
Huang et al. 2013). Each column represents a sample (five biological replicates for each of the five 
development stages). Each row represents the abundance of a particular metabolite (red = high abundance, 
green = low abundance). Metabolites cluster naturally into groups which, in this case, have functional 
relationships (labelled metabolite classes in dotted boxes).  
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K-means clustering (k-MC) is a non-hierarchical unsupervised vector quantisation 

and partitional clustering approach (Verma et al. 2012). Although sample class 

membership information is not incorporated into the analysis, the researcher must initially 

define how many clusters (k number of clusters) into which the samples are to be 

partitioned. Like other clustering techniques, the aim of k-MC is to gather samples into 

groups so that those in the same group are most similar to one another, and those in 

different groups are as different as possible. Working within an n-dimensional subspace 

of true vectors (number of variables), the algorithm performs this task through an iterative 

sequence of minimising the sample distances to a centroid point within each of the k 

number of clusters, and reallocating the samples to the cluster with the closest centroid 

so as to minimise the within-cluster sum of squares. Initially, the first centroid points are 

randomly placed and samples are assigned to a cluster. Then, the true centroid points of 

those clusters are calculated and repositioned, samples are reassigned, and the clusters are 

redefined. This is performed repeatedly until convergence is found and effectively results 

in a partitioning of the data space into Voronoi cells. 

Use of k-MC in aquaculture-related metabolomics research is limited thus far. 

However, see Yu et al. (2013) for a relevant example of how k-means was used to identify 

groups of genes with similar expression profiles in fish which had been fed a diet 

contaminated with the persistent organic pollutant BDE-47, and to determine potential 

enzymatic and metabolic mechanisms of toxicity defence. k-MC (combined with HCA 

and PCA) is also used in Chapter 6 as an independent unsupervised measure to discern 

natural sample groupings of oyster larvae infected with Ostreid herpesvirus microvariant 

and thus help identify mechanisms of the host-virus interaction.   
 

 While three widely used multivariate techniques to analyse metabolomics data 

have been discussed, one should be aware that an array of other procedures are available 
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which may be better-suited for the analysis of particular datasets in some cases. These 

include: multivariate analysis of variance, linear discriminant analysis, partial least 

squares regression, support vector machines, k-nearest neighbour, random forests, soft 

independent modelling of class analogies, and self-organising maps, among others. For 

further information on these alternative data analysis approaches, see Steuer et al. (2007), 

Liland (2011), and Xi et al. (2014). For platform-specific reviews on various 

bioinformatics processes see Smolinska et al. (2012), Sugimoto et al. (2012), Du & Zeisei 

(2013), Engel et al. (2013), and Wei et al. (2012 & 2014).  

3.5 Biomarker discovery and validation 

The aim of many metabolomics-based investigations is to discover novel metabolite 

biomarkers, which correlate with specific diseases or health states. These molecules can 

then be used as early diagnostic tools, or in conjunction with other assessments for 

confirmation of pathology. Metabolite biomarkers are also very useful within the 

aquaculture industry to assist in the evaluation of pre- and post-harvest meat quality, and 

for food safety and traceability purposes (reviewed in Chapter 2 [Alfaro & Young 2016]). 

Biomarkers may be single metabolites, multiple metabolites, ratios of metabolite pairs, 

particular features (e.g., ion fragments), or entire unannotated spectral fingerprints. 

 The initial step in biomarker discovery is often to perform an exploratory 

experiment with different treatments or animal conditions, and to identify features which 

are substantially different between the sample groups using one or more statistical 

procedures outlined in the previous section. Once determined, these features can be 

considered as ‘candidate biomarkers’. The purpose of initial biomarker discovery is to 

identify the most salient features for further investigation, and may involve low biological 

sample replication (n < 10), although higher replication is usually preferred. The results 

of these studies can be very useful for generating hypotheses, and gaining preliminary 
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mechanistic insights into metabolic factors responsible for, or involved in, particular 

health states or other conditions. However, when the ultimate goal is to develop practical 

biomarkers with useable applications and minimal risks for Type II errors occurring, they 

must have extremely reproducible performances. Thus, in order to ensure that the 

identified candidate biomarkers have high sensitivity and specificity for the particular 

condition under investigation, it is important to validate them. 

The process of biomarker validation was born from the medical research field 

where the misdiagnosis of a health condition might result in a disastrous outcome for a 

patient. Biomarker validation is a quality assurance process of defining the performance 

of a biomarker within acceptable limits, whilst understanding and minimising the rate of 

false discovery. Biomarker validation usually involves one or more additional 

experiments where the candidate metabolite/feature is targeted more specifically for 

quantification using complementary or alternative analytical platforms with a high 

selectivity for that analyte. Such experiments will typically also involve much higher 

sample replication (n = 100–1000), experimental replication, a broadening of scope in 

some cases (e.g., incorporation of multiple sexes, development stages, and environmental 

conditions), and rigorously refined statistical approaches (e.g., permutation based cross-

validation or using different sub-sets of the samples to construct, validate, and test the 

performance of a predictive model [Westerhuis et al. 2008; Szymańska et al. 2012; Xia 

et al. 2013]). Accordingly, biomarker validation within the framework of a high-quality 

clinical study can involve substantial costs and time, which may not be viable for an 

environmental study or commercial aquaculture exercise. However, what constitutes 

validation is a subjective measure and is scalable within the confines of the researcher. 

 In a practical scenario where time and funds are limited, an alternative approach 

might be to employ a particular candidate biomarker whilst accepting its potential 

vulnerability, and continually adding new data to the predictive model as it becomes 
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available. In this way, quality control limits on the model’s performance can be set and 

monitored as it is updated. Thus, expenses are diluted over time and performance-based 

milestones can be implemented based on cost-benefit analyses to guide management 

decisions in an empirically data driven context. Validation is an important concept when 

identifying and implementing new biomarkers, and should be a carefully considered 

component within the general strategy of a metabolomics-based biomarker discovery and 

development project. For further information on biomarker discovery and validation 

procedures, see Xia et al. (2013). 

3.6 Biological interpretation and secondary bioinformatics 

The discovery and identification of biomarkers do not always necessitate in-depth 

functional explanations for their presence and/or roles. For example, a simple 

metabolomics-based study using nuclear magnetic resonance and a fingerprinting 

approach combined with pattern-recognition tools (e.g., PCA, PLS-DA) could be used 

for food authentication purposes to identify biomarkers to classify an adulterated product, 

or determine its provenance (reviewed by Cubero-Leon et al. 2014). However, for many 

investigations, more detailed insights into the reasons for sample group separations are 

required, and the procurement of mechanistic biochemical explanations are highly 

desirable. In such cases, it becomes necessary to interpret the data within biologically 

meaningful frameworks.  

 The past 100 years of biological research has provided us with an amazing wealth 

of knowledge concerning cellular metabolism across a wide range of taxa. Rigorous 

empirical experimentation by a multitude of pioneers during this period has established 

the major biochemical pathways. Not only do we know which genes, enzymes, cofactors, 

substrates, products, and intermediates are involved in these pathways, in many cases we 

also know about individual enzyme kinetics and have detailed information about vast 
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arrays of endogenous and exogenous factors which influence their pathway flux (German 

et al. 2005). Information such as this provides us with a rich source of knowledge which 

can be used to assist the interpretation of biochemical data. Nevertheless, interpretation 

of metabolite expression data can be one of the most challenging aspects of a 

metabolomics study.  

In many cases, concentrations of particular metabolites within a tissue, biofluid, 

or organism may correlate very well with our current understanding of biochemical 

networks and the functional relationships among metabolites, enzymes, and genes within 

normal or perturbed systems. For example, classic signs of stress caused by pathogen or 

toxin exposure in aquatic animals include increased levels of reactive oxygen species 

(ROS), and differential co-expression of metabolites (e.g., glutathione, NADPH) and 

enzymes (e.g., glutathione reductase, superoxide dismutase, catalase) involved in 

regulating excess ROS production in order to maintain redox homeostasis (Parrilla-Taylor 

et al. 2013; Macías-Mayorga et al. 2015). The results of recent omics-based investigations 

provide data which corroborate the presence of such mechanisms in various taxa, as well 

as offer new information on associated regulatory pathways (Srivastava et al. 2013; Barth 

et al. 2014; Shi et al. 2015). On the other hand, a number of studies (particularly those 

containing metabolomics-based components) are providing data which are shedding light 

on unfamiliar biochemical associations which cannot be explained by our current theses 

of molecular biology and biochemistry (Steuer 2006). For example, unlike genes and 

proteins, it is relatively common for metabolite levels within a particular pathway to be 

highly correlated with metabolites from other pathways for which a mechanistic 

connection is not currently known. Furthermore, in some cases precursor-product 

metabolites in enzyme-linked reactions may correlate well, whereas in other cases they 

do not. It is intriguing and unexpected results like these that are starting to deliver new 

information that is helping to push forward our understanding of metabolic networks at 
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an astonishing rate, and also highlights the usefulness and efficiency of omics-based 

approaches for generating novel data to assist new interpretations. The continual 

development of metabolomic techniques to characterise larger and larger sets of 

metabolites requires new methods to analyse these data in order to obtain biologically 

meaningful information. Here, we briefly outline a few methods that can be used to help 

researchers interpret their metabolomics data beyond more conventional scenarios, 

involving assessments of single metabolite variations based on a priori biochemical 

knowledge.  

 If biological replication is sufficient, a simple method involves correlation 

analysis in which construction of a correlation matrix of pairwise metabolite level 

comparisons are made. Such matrices can be useful for identifying potentially important 

relationships requiring further investigation. For example, consider the following 

hypothetical situation where levels of metabolite X and metabolite Y are not significantly 

different between control and treatment groups. However, metabolite X is positively 

correlated with metabolite Y in the control group, and negatively correlated in the 

treatment group (Figure 3.9).  

 

 

Figure 3.9. An example of a situation where mean levels of metabolite X and metabolite Y are not 
significantly different between groups of samples (A), but are differentially correlated within each group 
(B & C).  
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Such a scenario would indicate that some major perturbation of the underlying network 

was taking place, and would have gone undetected had the correlations not been 

investigated. Differential non-linear correlation patterns may also be present which would 

require alternative methods of detection. For further information on the interpretation of 

linear and non-linear correlations in metabolomics data, see Camacho et al. (2005) and 

Steuer (2006).  

While our knowledge is relatively comprehensive compared to only a few decades 

ago, much of our understanding to date has come from highly targeted analyses of specific 

pathway components, and it is increasingly becoming clear that there are many gaps to 

be filled. With more of a focus on the interconnections between pathway components, we 

are starting to uncover new insights into metabolism which are much more integrated 

than ever before. An alternative method for identifying metabolite association patterns is 

called correlation network analysis. 

 Correlation networks are increasingly being used in omics-based applications to 

visually capture the overall network of interconnections between biomolecules and to 

describe the correlation patterns, to identify relationships between entire biochemical 

pathways, to discover new modules or clusters of relationships, and to assist data 

interpretation (Langfelder & Horvath 2008; Hero & Rajaratnam 2015). Applied to 

metabolomics, correlation network analysis is a technique that maps the relationships 

between every metabolite pair onto a metabolite network. Lines between metabolites 

typically are descriptive of the relationship between them (e.g., a solid line for a positive 

correlation and a dotted line for a negative correlation), and may also be quantitative (e.g., 

defined by the width of the line). The positions of the metabolites within the network map 

may be placed manually to enhance visualisation, or for additional interpretive purposes 

they may be positioned using algorithms to identify and define metabolite modules that 
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cluster together. For an applied example of a study involving an aquatic organism, see 

Southam et al. (2008), who used a combination of correlation analysis techniques to 

identify key metabolic differences in hepatic tumors of flatfish compared to control 

tissues, and to assist detection and interpretation of the underlying mechanisms involved 

in the diseased phenotype (Figure 3.10). 

 

 

 
Figure 3.10. An example of two correlation networks constructed using NMR-based metabolomics data 
from samples of healthy and diseased fish livers (reproduced with permission from Southam et al. 2008). 
Solid lines represent positive correlations between metabolites, and dotted lines represent negative 
correlations. Grey lines represent similarly shared relationships between the healthy and diseased 
phenotypes, and coloured lines represent those which are dissimilar. Clear differences in the underlying 
biochemical networks are easily visualised using this technique.  
 

 
Correlation network analysis can additionally be used to integrate transcriptomic, 

proteomic and metabolomic datasets to help identify functional roles at different 

biochemical levels (e.g., gene–gene/protein interactions and relationships between 

enzymes and metabolites) (Higashi & Saito 2013). There are a number of software 

packages available to perform correlation network analysis, such as DPClus (Altaf-Ul-

Amin et al. 2006), Metscape (Karnovsky et al. 2012), COVAIN (Sun & Weckworth 



Chapter 3 

111 | P a g e  
 

2012), 3Omics (Kuo et al. 2013), and MetaMapR (Grapov et al. 2015). For further 

information on correlation network analysis and various applications, see Steuer (2006), 

Adourian et al. (2008), Hüning et al. 2013, and Kotze et al. (2013). 

 Other procedures useful for supporting data interpretation include a variety of 

‘pathway enrichment analysis’ techniques. Rather than focusing on individual 

metabolites which may be responsible for discriminating groups of samples, pathway 

enrichment analysis techniques aim to discover predefined metabolic pathways or 

biological networks that are altered in an orchestrated manner. Such analyses make use 

of large amounts of biochemical information collated over decades and stored in publicly 

accessible depositories, such as the Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) (Kanehisa et al. 2000), and can be considered as secondary bioinformatics 

processes. There may be cases where levels of individual compounds are not identified 

as being statistically different between samples using conventional statistical approaches. 

However, when analysed together as functional groups, or metabolite sets within their 

known pathways, it might be revealed that particular pathways as a whole are being 

differentially regulated under certain experimental conditions. The recent development of 

secondary bioinformatics tools (reviewed by Booth et al. 2013) to analyse biochemical 

data within the context of predefined metabolite sets are changing the way that the results 

of metabolomics projects are interpreted. Pathway Activity Profiling (PAPi) is one 

example of such a technique (Aggio et al. 2010).  

 PAPi is an algorithm developed into an R package which can be used to analyse 

sets of functionally-related metabolites, and quantitatively compare the activity of 

metabolic pathways between different groups of samples. PAPi performs this task by 

calculating ‘activity scores’ based on the number of metabolites identified from each 

pathway and their relative abundances. Pathways for which each detected metabolite is 

involved in is collected from KEGG, and each is given a score based on the absolute 
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abundance/relative abundance of the metabolite to which it is linked. The pathways are 

ranked by the total number of metabolites they comprise, and the percentage of detected 

compounds within them are calculated. The sum of the scores for each pathway are then 

calculated and normalised (dividing by the proportion of metabolites detected from within 

the respective pathway) (Aggio et al. 2010). This simple yet effective method can be used 

to help determine the likelihood of a particular biochemical process being up- or down-

regulated under certain circumstances. To our knowledge, PAPi has not yet been applied 

to studies involving aquatic organisms. However, it has been successfully applied in a 

number of other biological systems (Han et al. 2012; Portella et al. 2014; Zhao C. et al. 

2015). 

 Another useful pathway analysis tool is called Metabolite Set Enrichment 

Analysis (MSEA) (Xia & Wishart 2010; Kankainen et al. 2011; Persicke et al. 2012). 

MSEA is an algorithm designed to detect subtle, but consistent changes among groups of 

metabolites within the same biological pathway. Using an analysis package with MSEA 

capabilities (e.g., MarVis-Pathway [Kaever et al. 2014], MeltDB [Kessler et al. 2013], 

Metaboanalyst [Xia et al. 2015]), a quantitative dataset of annotated metabolites can be 

cross-referenced with information in the KEGG database, and metabolite sets belonging 

to reference pathways from various model organisms (e.g., human, mouse, zebrafish, 

drosophila, nematode) can be analysed together as a group. The ability to examine 

biochemical information for different animal models is a key advantage of MSEA, and 

options also exist to use proprietary/customised background sets of data from any 

organism. Pathway enrichment analysis techniques, which use software to interrogate 

databases that contain global biochemical knowledge, are tremendously powerful data 

interpretation tools. For applied examples in the literature, see Zhao X. et al. (2015) and 

Ma et al. (2015) who utilised MSEA to identify differentially enriched pathways in 

Tilapia infected with two pathogenic Streptococcus species, and to develop remedial 
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strategies to enhance disease resistance. MSEA-type techniques are also applied in 

Chapters 6 and 7 of this thesis to help identify perturbed biochemical pathways of early 

life-stage bivalves in response to pathogen infection and toxic heavy metal exposure, 

respectively. 

3.7 Reporting guidelines in metabolomics 

The final stage of a metabolomics project is to disseminate the findings, either internally 

through technical reports, or externally through peer-reviewed publication. Whichever 

route is taken, it is advised that researcher’s follow to the best of their abilities a number 

of ‘minimum reporting standards’ which have been developed over the past decade by 

the wider metabolomics community (the Metabolomics Standards Initiative [Fiehn et al. 

2007a]). These readily available standards are ‘highly recommended’ guidelines for the 

reporting of various aspects of a metabolomics project, and provide a framework to ensure 

scientific rigour, allow study replication, support data sharing, and enable a better-

informed process of assessment and interpretation. In accordance with other biological 

science investigations, typical areas of focus include detailed descriptions of the 

biological sample/s involved in the study, descriptions of the environment/s involved in 

the study, and descriptions of biologically-relevant processes involved in the study (Table 

3.3) (see Morrison et al. 2007).  

  

  



Chapter 3 

114 | P a g e  
 

 
 
Table 3.3. Summary of sample-specific topics (prior to chemical analysis) which should be described in 
detail when reporting the results of a metabolomics project. 

 

 

Additional aspects to consider when reporting metabolomics-derived information include 

prescribing to the use of specific standard terms (ontology), providing particular details 

of a wide range of platform-specific instrumental parameters and data processing methods 

(computational, bioinformatics, statistical), quality-scoring metabolite identifications, 

and, among others, participating in the standards initiative to advance the future of the 

field by reporting and exchanging various levels of metadata with others. We strongly 

advise that all metabolomics researchers, from aspiring to seasoned investigators, become 

familiar with the recommended reporting guidelines for each component of a 

metabolomics project (summarised in Figure 3.11). 

 

 

Focus area Descriptions 
 

Sample 
 

Taxonomic classifications, common name/s, genotype/s, ecotype/s, sample composition, sample type, 
specimen condition (phenotypic characteristics, weight, age, sex, development stage, health) 
 

Environment Any field environment: Geographic location, habitat, depth, meteorological conditions (e.g., precipitation, 
wind speed/direction, humidity), lunar/solar phase, other measured parameters (e.g., pollutant 
concentrations) 
 

Any aquatic environment: Water temperature, tidal phase (or submergence/emergence information), other 
measured parameters (e.g., salinity, pH, dissolved inorganic/organic content, oxygen concentration)  
 

Any laboratory environment: Details not covered elsewhere, laboratory address and contact information 
 

Process 
(biological) 

Maintenance and acclimation of organisms: Procedure and means (e.g., cage, aquaria, static/flowthrough 
tanks, continuous culture), reasons for maintenance/acclimation, other parameters (e.g., feeding regime, 
lighting regime, tank/cage dimensions) 
 

Manipulation of organisms/samples: Controlled manipulation as part of the study (e.g., exposure to a 
toxicant, environmental perturbation or dietary manipulation etc.), dissection of a specific organ/tissue, 
capture/sampling means and procedures (e.g., netted, electrically stunned, anaesthetised, razor cut), reason 
for capture, other capture parameters (e.g., handling/stress aspects, time to capture, air exposure duration) 
 

Sample handling and storage/preservation: Procedure and means (e.g., snap frozen and stored in liquid 
nitrogen or on dry ice, sample container material), reasons for storage/preservation, temperature and 
duration of storage 
 

Organism/sample transportation: Procedures and means (e.g., live/dead, submerged/emerged, refrigerated 
container, dry shipper, temperature, transport duration) 
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Figure 3.11. Overview of the metabolomics workflow showing the different components for which the 
Metabolomics Standards Initiative (MSI) have developed recommended minimum reporting standards 
(modified with permission from Goodacre 2014). 
 

3.8 Incorporating metabolomics 

Two main avenues exist for researchers who wish to conduct metabolomics 

investigations, or add a metabolomics component to an existing research project. There 

are a number of commercial metabolomics laboratories worldwide that offer streamlined 

services. Core facilities at various universities and centres house a combination of 

infrastructure and expertise to carry out a range of advanced metabolomics studies. These 

organisations can provide excellent support from consultation on experimental design to 

data analysis and interpretation of results. Inevitably, significant costs are usually 

associated with such commercial services. Alternatively, access to metabolomics 

facilities can be gained through academic institutions for substantially reduced charges 

based on collaborative agreements. For scientists wanting to conduct metabolomics 

research for the first time, it is important to note that running a successful metabolomics 

project requires an adequate experience in chemistry, statistics, bioinformatics and the 

advice from a metabolomics expert on hand. For researchers with sufficient chemistry 

knowledge and access to appropriate equipment and facilities, extraction and initial 
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identification of metabolites may be relatively easy. However, there are some specific 

constraints in sample collection/preparation and experimental design that need to be 

considered. In addition, the bioinformatics required for data analysis and interpretation 

are significantly complex and may require the involvement of a bioinformatics expert. 

Regardless of the approach, we suggest that new metabolomics projects incorporate the 

appropriate expertise from the start. Furthermore, we urge scientists to give appropriate 

consideration to the expected results and implications of findings, since this approach is 

exploratory by nature. 

3.9 Summary 

In summary, metabolomics is a relatively new approach that has the potential to make a 

huge contribution to the field of aquaculture. With a wide range of analytical platforms 

available today and the rapidly evolving computational and bioinformatics capabilities, 

we are likely to see a growing number of studies using metabolomics in all aspects of 

cultivating aquatic organisms. However, it is important to be aware of the potential 

limitations of this approach, especially with regard to sensitivity to external influences 

during sample collection and complex bioinformatics procedures required to obtain 

meaningful biological interpretations.  
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Abstract 

To ensure environmental and economic sustainability of future aquaculture growth, large-

scale hatchery production of mollusc larvae is required. However, variation in larval 

quality currently limits potential maximum yields. Identification of biomarkers which 

reflect the immediate physiological condition of larvae during hatchery production could 

help monitor and determine causes of variation. Metabolomics is well-suited to this task 

due to its capacity for providing an instantaneous snapshot of the physiology of an 

organism through analysis of its metabolite profile. As a first test, GC/MS-based 

metabolomics was applied in this chapter to characterise the larval metabolomes of 

mussel larvae displaying differential growth rates. Using a variety of univariate and 

multivariate feature selection methods, we identified four metabolite–metabolite ratios 

involving levels of succinate, glycine, alanine, pyroglutamate and myristic acid as 

candidate biomarkers for assessing mussel larval quality. These metabolites are known to 

have roles in energy metabolism, osmotic regulation, immune function and cell–cell 

communication. We anticipate that further investigation of these metabolites and their 

associated biochemical pathways will yield a more complete understanding of the factors 

responsible for larval production variability. 
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4.1 Introduction 

Global mollusc production is rapidly increasing and is one of the largest aquaculture 

activities in the world. Most of the seed requirements are obtained from wild populations 

where seasonal and regional reliability of quality and quantity is inconsistent. 

Furthermore, these natural stocks are approaching, or have exceeded, maximum 

sustainable yields for some species (Helm et al. 2004). In recent years considerable 

attention has been placed on the production of hatchery-reared juveniles for natural stock 

enhancement and grow-out (O'Connor et al. 2012). However, a number of bottlenecks 

present problems for commercial viability, such as broodstock management and gamete 

quality, mass production and variable quality of microalgal diets, establishment of 

successful and reproducible larval rearing practices, improvement of settlement rates and 

metamorphosis synchronisation, and identification of causes and development of 

remedial strategies for poor larval health and growth. 

 In New Zealand, mussel (Perna canaliculus) exports represent the largest 

aquaculture sector by value and volume. Small-scale hatchery production of spat 

currently contributes only marginally towards industry's seed requirements. However, 

substantial research over the past decade has led to the ongoing development of selective 

breeding lines (MacAvoy et al. 2008), establishment of a cryopreservation programme 

(Paredes et al. 2012), optimisation of microalgae culture and larval rearing procedures 

(Ragg et al. 2010; Kaspar et al. 2014) and future strategies for extensive growth and 

upscaling of hatchery facilities (Roberts 2013). The ability to provide consistency in 

larval quality and quantity is an important step towards reaching the commercial goal of 

successful large-scale production. 

 ‘Larval quality’ is a term which refers to the physiological condition of larvae and 

is related to growth and survival during different developmental stages and under various 

environmental conditions (Racotta et al. 2003). For marine invertebrates, factors 
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responsible for variation in larval quality may include parental genetics (Meyer & 

Manahan 2010), maternal size and life-history experience (Marshall & Keough 2004, 

2006), level of maternal provisioning (Smith & Bolton 2007), sperm environment prior 

to fertilisation (Ritchie & Marshall 2013), sperm/egg ratios during fertilisation (Marshall 

& Keough 2003), embryo and larval rearing densities (Galley et al. 2010; Deng et al. 

2013), availability of food (Aarab et al. 2013), presence of pathogens (Kesarcodi-Watson 

et al. 2009) and physical environmental parameters (Sánchez Lazo & Martínez-Pita 

2012). However, even with attempts to control such factors within hatcheries, inter- and 

intra-cohort variation in larval quality is still commonly observed. The effects of this 

variation have far-reaching implications for mollusc aquaculture due to difficulties in 

predicting larval production volumes and potential carry-over effects on post-

metamorphic survival, growth and reproduction (Emlet & Sadro 2006; Przeslawski & 

Webb 2009). Thus, continual monitoring of larval quality is critical to provide 

information for determining causation of poor production levels, which may lead to better 

management decisions. Identification of biomarkers which reflect the immediate 

physiological condition of larvae has the potential to provide industry with valuable tools 

to improve the commercial viability of hatchery operations. 

 Metabolomics is a non-targeted approach to comprehensively profile a broad 

range of metabolites within biological samples, such as cells, tissues and whole 

organisms. Presenting unique opportunities for novel biomarker discovery, metabolomics 

is one of the latest fields gaining a stronghold in the various approaches towards 

molecular biology. Since metabolites are end products of gene and protein expression, 

and are exceptionally sensitive to genetic and environmental perturbations, metabolomics 

offers a revolutionary framework for phenotyping organisms at the molecular level 

(Kuehnbaum & Britz-McKibbin 2013). Using such a hypothesis-free approach has 

yielded excellent information without a priori knowledge of biological processes. 
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Furthermore, this approach routinely demonstrates value in corroborating data from gene 

and protein expression studies, as well as providing additional and complimentary 

evidences (e.g., Wilmes et al. 2013). Examples of applications are widespread across 

diverse areas of research from human medicine (Jin et al. 2014) to deep-sea microbial 

ecology (Kimes et al. 2013). 

 While only limitedly applied to aquaculture research thus far, specific 

metabolomics-based investigations are starting to provide useful information for various 

sectors within the aquaculture industry (reviewed in Chapter 2). For example, 

identification of biomarkers and development of new techniques for monitoring health 

(Schock et al. 2012, 2013; Ji et al. 2013a), growth (Almli 2012), nutritional condition 

(Cajka et al. 2013; Liu et al. 2013; Abro 2014; Wagner et al. 2014), culture environment 

(Savorani et al. 2010; Picone et al. 2011) and meat quality (Erikson et al. 2012) in fish, 

shellfish and crustaceans are now available. However, despite its wide applicability, the 

use of metabolomics in mollusc larval culture has not yet been realised. Here, we utilise 

GC/MS-based metabolomics to identify candidate biomarkers for assessing mussel larval 

quality using differential growth rates as a quality measure. 

4.2 Methods 

4.2.1 Broodstock spawning 

Mussel (Perna canaliculus) broodstock (~60 individuals) from a selectively bred family 

line (F2) maintained at the Cawthron Institute Aquaculture Park (CAP; Nelson, New 

Zealand) in collaboration with Spat Production & Technology New Zealand Ltd 

(SPATnz; Nelson, New Zealand) were transferred from a nursery facility to a specialised 

CAP breeding laboratory 24 hrs prior to spawning. Mussels were kept dry overnight under 

a damp cloth ~16°C ready for spawning the next day. Spawning was induced via thermal 

cycling; broodstock were fully immersed in warm seawater (20–24°C) for 2 hrs, before 
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30 min cycles of cold seawater (8–9°C) changes were initiated. Spawning began after 2.5 

to 3 hrs.  

4.2.2 Gamete collection and fertilisations 

Upon oocyte release, female mussels were removed from the spawning trays, briefly 

immersed in freshwater and then placed in 1 L plastic containers filled with 8°C 1 µm 

filtered seawater (FSW). The seawater was exchanged several times during the first 10 

min to remove potential sperm contamination. Newly released oocytes were subsequently 

collected and held in 4°C FSW in 70 mL plastic containers (Labserv – Thermo Fisher; 

NZ). In order to protect organisms from unnecessary stress and damage, wide bore pipette 

tips (Axygen, USA) were used wherever oocytes, embryo or larvae were pipetted during 

this sampling, and throughout the experiment. Each oocyte collection was assessed via 

microscopy (Olympus CR30, ×10, ×20 objective) to ensure quality, and that no oocytes 

were fertilised. Accepted quality oocyte collections were pooled in a 250 mL glass Schott 

bottle and held for 1 hr at 4°C whilst oocyte counts were undertaken in BD FalconTM  

24-well Tissue Culture Plates (BD Biosciences: NSW, Australia) via microscopy 

(Olympus: model CK-X31). The pool consisted of gametes from 20 individual females. 

 Upon sperm release, male mussels were collected from the spawning tray, blotted 

dry, and individually placed (vertically-orientated) into 50 mL plastic containers at 

ambient room temperature (~16°C). Sperm was collected every half hour and stored at 

~4°C. The final pool consisted of sperm from 14 individual males. In order to calculate 

the volume of pooled sperm required for subsequent fertilisations, sperm counts were 

performed using a Neubauer counting chamber via microscopy after immobilising the 

gametes with 10% Lugol’s solution. Male and female gametes were distributed among 

eight fertilisation tanks containing 15 L of FSW incorporating 4 µM EDTA (according to 

recommended protocols [Buchanan 1999; Gale et al. 2016]) at an approximate density of 
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3500 oocytes mL−1 and 50 sperm egg−1. Successful fertilisation was confirmed via 

microscopy after 1 h by the presence of polar bodies.  

4.2.3 Larval production and sampling 

Newly fertilised zygotes were pooled and transferred to a large cylindrical static tank 

containing 5000 L of continuously aerated FSW. Embryos were reared at 17–18°C to the 

D-larval stage (2 days post-fertilisation [dpf]), then graded on an 80 µm sieve to retain 

healthy individuals from dead or undeveloped embryos and trochophores. A portion of 

these larvae were equally distributed among three 150 L conical flow-through tanks and 

fed ad libitum with a mixed diet of Chaetocerous calcitrans and Isochrisis galbana (at a 

4:1 ratio) for two days. Umbo-stage larvae (4 dpf) were then separated on a mesh screen 

based on their relative sizes (> or < 120 µm in diameter) to divide poor quality (slow 

growing) and high quality (fast growing) larvae. Six samples including pooled individuals 

(about 80,000) from each of the two size fractions and three replicate rearing tanks were 

transferred to BioStorTM 2.0 mL cryovials (National Scientific Supply Company: CA, 

USA), snap frozen in liquid nitrogen, and stored at −80°C until metabolite extraction.  

4.2.4 Metabolite extraction and derivatisation  

Metabolites were extracted using a cold methanol-water method (Villas-Bôas et al. 2011), 

with modifications for marine invertebrate embryo and larval tissues. The cryovials 

containing the frozen larvae were placed on dry ice and 1000 µL of a cold (–20°C) 1:1 

MeOH:H2O solution was added (MeOH [Merck: Darmstadt, Germany]; Milli-Q filtered 

H2O), followed by 20 µL of internal standard (10 mM L-alanine-2,3,3,3-d4 [Sigma-

Aldrich: St. Louis, MO, USA]). Samples were partially thawed and vortexed for 1 min, 

then placed through a series of three freeze-thaw cycles with vortexing in between. 

Samples were cold-centrifuged (2–4°C) at 20,800g for 10 min. Supernatants were 

transferred to 15 mL Falcon tubes and cold-stored on dry ice. A second extraction was 



Chapter 4 

140 | P a g e  
 

performed on the leftover pellets by adding 800 µL of cold 4:1 MeOH:H20, followed by 

two further freeze-thaw cycles. Samples were centrifuged as previously described and the 

paired supernatants were combined from both extractions. Remaining biological 

materials were re-frozen and stored at −80°C for subsequent protein analysis. The total 

volume of the methanol-water extracts were brought up to 6.5 mL with cold Milli-Q 

water, vortexed briefly to mix, and then frozen at −80°C. Sample extracts were 

lyophilised in a 12 L freeze dryer (Labconco Corporation: Kansas city, MO, USA) at 

−80°C and 0.03 mbar for 24 hrs, then derivatised by alkylation. 

 Methyl chloroformate (MCF) derivatives were prepared to convert amino and 

non-amino organic acids into volatile carbamates and esters. Lyophilised samples were 

re-suspended in 400 μL of 1 M sodium hydroxide (Merck: Darmstadt, Germany) and 68 

μL of pyridine (Sigma-Aldrich: St. Louis, MO, USA). Mixtures were transferred to 

KimbleTM silanized borosilicate glass tubes (12 × 75 mm) (ThermoFisher: Auckland, NZ) 

containing 334 μL of methanol. 20 μL of MCF reagent (Sigma-Aldrich: St. Louis, MO, 

USA) were added and samples were vortexed for 30 sec. Another 20 μL of MCF was 

added, followed by vortexing for 30 sec. To separate the MCF derivatives from the 

mixture, 400 μL of chloroform (Merck: Darmstadt, Germany) were added, vortexed for 

10 sec, then followed by addition of 400 μL of 50 mM sodium bicarbonate (Merck: 

Darmstadt, Germany) solution and vortexed for a further 10 sec. The upper aqueous layer 

was discarded and a small amount of anhydrous sodium sulphate (BDH Chemicals: 

Poole, UK) was added to remove residual H2O. The chloroform phase containing the 

MCF derivatives was transferred to 2 mL amber CG glass vials fitted with inserts (Sigma-

Aldrich: St. Louis, MO, USA). A sample blank containing 20 μL of L-alanine-2,3,3,3-d4 

was similarly derivatised for QC purposes, along with a separate standard amino acid mix 

(100 µl, 20 mM [Merk: Darmstadt, Germany]). 
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4.2.5 GC-MS analysis 

Immediately after derivatisation, the MCF derivatives were injected into a GC-MS system 

(GC7890 coupled to a MSD5975 [Agilent Technologies], with a quadrupole mass 

selective detector [EI] operated at 70 eV). The system was equipped with a ZB-1701 GC 

capillary column (30 m × 250 μm id × 0.15 μm with 5 m stationary phase [86% 

dimethylpolysiloxane, 14% cyanopropylphenyl]) (Phenomenex: Torrance, CA, USA). 

The instrumental setup parameters were conducted according to Smart et al. (2010). 

Samples (1 µL) were injected under pulsed splitless mode with the injector temperature 

at 260°C. The helium gas flow through the GC-column was set at a constant flow of 1 ml 

min-1. The GC-oven temperature was initially held at 45°C for 2 min, and then raised with 

a gradient of 9°C min-1 to 180°C; after 5 min the temperature was increased at 40°C  

min-1 to 220°C. After a further 5 min, the temperature was increased at 40°C min-1 to 

240°C and held for 11.5 min. Finally, the temperature was increased at 40°C min-1 until 

it reached 280°C where it was held for a further 2 min. The interface temperature was set 

to 250°C and the quadrupole temperature was set at 200°C. The mass spectrometer was 

operated in scan mode (starting after 6 min; mass range 38–650 a.m.u. at 1.47 scans  

sec-1). A derivatised sample blank containing the internal standard, a derivatised standard 

amino acid mix, a non-derivatised standard alkane mix, and a sample of pure chloroform 

solvent were also injected and analysed for QC purposes.  

4.2.6 Data pre-processing and metabolite identification 

Deconvolution of raw chromatographic data was performed using the Automated Mass 

Spectral Deconvolution and Identification System (AMDIS v2.66) software (online 

software distributed by the National Institute of Standards and Technology, USA—

http://www.amdis.net/). Metabolite identifications and peak integrations (relative 

quantification) were conducted using Chemstation Software (Agilent Technologies) and 

customised R xcms-based scripts (Aggio et al. 2011) to interrogate an in-house mass 

http://www.amdis.net/
http://www.amdis.net/
http://www.amdis.net/
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spectral library of MCF derivatised commercial standards. Analyses were carried out in 

‘R’ platform version 2.15.0 (http://www.r-project.org/). Compound identifications were 

based on matches to both the MS spectrum of the derivatised metabolite and its respective 

chromatographic retention time. The values are generated from the maximum height of 

the reference ion for the compound peak. The reference ion used as a measure of 

abundance for each compound is usually the most abundant fragment, and is not the 

molecular ion. 

A Microsoft® Excel file containing peak height data for each metabolite was 

generated and manually checked for the presence of contaminants (e.g., MCF derivative 

artefacts and plasticisers). Aberrant records were removed and the resulting QC-filtered 

peak intensity values were normalised by the internal standard (D4-alanine) to 

compensate for potential technical variations (e.g., variable metabolite recoveries). 

Twenty-nine metabolites from different chemical classes (e.g., amino acids, fatty acids, 

organic acids, cyclic alcohols, vitamins) were reliably identified. Relative metabolite 

abundances (Σpeaksi–j/peaki) were calculated for each sample. Six metabolites with low 

abundance values (< 0.1%) were manually filtered and removed as a data integrity 

precaution, and every possible remaining pair-wise metabolite level ratio (n = 253) was 

determined. All ratios were log-transformed to ensure independence of the metabolite 

order in which they were calculated. The dataset matrix was converted to a comma-

separated values (.csv) file and subjected to a variety of feature selection methods to 

identify potential biomarkers for discrimination of larval quality classes.  

4.2.7 Statistical analyses 

All statistical analyses were performed using Metaboanalyst 2.0, a comprehensive web-

based analytical pipeline for high-throughput metabolomics studies (Xia et al. 2013), and 

ROCCET, a web-based tool for common receiver operating characteristic (ROC) curve 

http://www.r-project.org/
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analyses on metabolomics datasets (Xia et al. 2013). Each of the statistical approaches 

applied here have previously been described in Chapter 3. To visualise feature differences 

between larval quality classes, the top 50 metabolite ratios (ranked by their t-test 

statistics) were used to perform agglomerative hierarchical cluster analysis (distance = 

Pearson's correlation; aggregation = Ward's criterion). The constructed dendrogram is co-

displayed with the results of heat map analysis to reveal metabolite ratio differences and 

assist conception of between-class/-feature clusters. Four methods of feature reduction 

were used independently to minimise selection bias and provide robust criteria for 

assisting candidate biomarker identification: 

 
1. Volcano plot analysis was performed to simultaneously display fold-change and t-test 

statistics to maximise utilisation of statistical information from the data. Since the aim 

of this study is to identify low numbers of accurate biomarkers with potential for 

commercial applicability, the t-test significance level and fold-change cut-off 

thresholds were set at 0.01 and 3, respectively. 

 
2. Supervised projection to latent squares discriminant analysis (PLS-DA) was 

performed to help identify features which contribute most towards the class separation 

in the PLS-DA model. Leave-one-out cross-validation (LOOCV) was used to assess 

the performance of the PLS-DA model. Feature selection was based on the variable 

importance in projection (VIP) scores (a weighted sum of squares of the PLS loadings 

taking into account the amount of explained class-variation in each dimension). 

Features displaying VIP scores > 1.2 were considered as potential biomarkers of larval 

quality. 

 
3. Significant Analysis of Microarrays/Metabolites (SAM) was performed to supply 

supportive evidence for the selection of features identified by PLS-DA. A delta value 
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of 2.0 was selected after analysis of FDR versus the number of significant features as 

a function of various delta values. An acceptable biomarker selection criteria was 

considered when the FDR q-value < 0.05. 

 
4. Empirical Bayesian Analysis of Microarrays/Metabolites (EBAM) was used as a final 

independent feature selection method. The default delta value of 0.9 was used and 

metabolite ratios with FDR q-values < 0.05 were considered for further analysis.  

 
 
To establish the best candidate biomarkers of larval quality, multivariate ROC analyses 

were performed (PLS-DA algorithm) using the common metabolite ratios identified from 

the four feature selection methods. ROC analyses which employ Monte-Carlo cross-

validation with multiple iterations are generally considered the method of choice for 

evaluating the performance of potential biomarkers. Using the ROC Explorer module to 

carry out repeated model testing, the two most robust predictive models were determined 

which incorporated the minimum number of the most stable features.  
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4.3 Results 

Unsupervised hierarchical clustering (Figure 4.1A) revealed that the metabolite ratio 

profiles of the samples (shown on the y-axis) can be distinguished clearly and robustly. 

Furthermore, the three biological replicates from each of the two larval quality classes are 

clearly clustered. Clustering of the features (shown on the x-axis) revealed several groups 

of ratios that were either substantially higher or lower in the poor quality group compared 

with those in the high quality group. 

 The results of the hierarchical clustering were confirmed in the PLS-DA model 

(Figure 4.1B), with the first two components explaining 73.5% and 4.1% of the variation, 

respectively. The performance of the model was assessed via LOOCV, which showed a 

good level of predictive ability (Q2 = 0.80; R2 = 0.95). The metabolite ratios with the 

greatest influence on the clustering in the PLS-DA plot were identified by their first 

component VIP scores, resulting in selection of 47 features. 

 SAM analysis (Figure 4.1C) identified 25 ratios, with an FDR of 3.2%, that were 

significantly different between the larval quality classes. Of these features, 20 were lower 

in the poor quality group and five were higher. Using a variation of the SAM algorithm, 

EBAM analysis (Figure 4.1D) identified 26 ratios with an FDR of 4.2%, 20 of which 

were the same as those identified by SAM. Volcano plot analysis (Figure 4.1E) identified 

29 ratios that satisfied the stringent criteria placed on feature selection (i.e., ratios having 

a fold-change of > 3 and simultaneously having a t-test statistic of < 0.01). The inclusion 

of this test removed potentially less biologically relevant features (i.e., those with small 

between-class differences) that may otherwise have been selected due to very low within-

class variation. Of the metabolite ratios independently selected from the four methods, 19 

ratios were commonly identified (Figure 4.1F), all of which were lower in the poor quality 

cohort. 
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Figure 4.1. Feature reduction analyses for candidate biomarker selection: A) Hierarchical clustering and 
heat map of poor (■) and high (■) quality larvae based on the top 50 features ranked by their T-test statistic 
(samples on the y-axis, features on the x-axis); B) PLS-DA scores plot of poor (●) and high (●) quality 
larvae; C) SAM plot of significantly different features (○) between quality classes (upper right = ratios that 
were higher in poor quality group; lower left = ratios that were lower); D) EBAM plot of significantly 
different features (○) between quality classes (all lower in the poor quality group); E) Volcano plot of 
features (●) with a between-class fold-change >3 and a t-test statistic <0.01 (upper left = ratios that were 
higher in the poor quality group; upper right = ratios that were lower); and F) Venn diagram displays the 
counts of commonly identified ratios by the four independent feature selection methods. 
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 Multivariate ROC analyses (Table 4.1) of the 19 selected features resulted in 

identification of four candidate biomarkers. Using balanced subsampling, two thirds of 

the samples were used to evaluate and rank the important features, which were then used 

to build classification models. These models were validated on the samples that were left 

out and the procedure was repeated multiple times to construct a series of most stable n-

feature PLS-DA models. Although the proportions that the features were selected for in 

the iterated models differed (i.e. their rank frequencies), the four ratios identified were 

similarly incorporated in the two- and three-feature models. Candidate biomarker ratios 

and associated relative metabolite abundances for each larval quality class are presented 

in Table 4.2. 

 

Table 4.1. Degree of importance and rank frequency of candidate biomarkers in models for larval class 
separation. 
 

 
 

 

Table 4.2. Candidate biomarker ratios and associated relative metabolite abundances in high and poor 
quality larvae. 
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4.4 Discussion 

Of the initial 253 metabolite ratios analysed, we used four independent feature selection 

methods (Volcano plot, PLS-DA, SAM and EBAM) to identify candidate biomarkers for 

assessing mussel larval quality. These methods resulted in the selection of between 25 

(SAM) to 47 (PLS-DA) potentially important features. The 19 common features selected 

by the four tests were subjected to ROC-based analyses to reduce the number of final 

candidate biomarkers and assess their performance. Four metabolite ratios were identified 

as being good candidates for assessing larval quality: alanine/succinate, 

glycine/succinate, myristic acid/succinate and pyroglutamate/succinate. The use of ratios 

can have the advantage of relying on fluctuations of two metabolites rather than one, 

thereby substantially increasing biomarker sensitivity when these changes occur in 

opposite trajectories (Budczies et al. 2012). Ratios of reaction-linked metabolites within 

a biochemical pathway can also help to identify functional changes not immediately 

apparent by revealing important associations at the enzyme level, which can be very 

useful in hypothesis-free studies (Petersen et al. 2012). Each of the identified ratios were 

substantially lower in the poor quality larvae. Comparing this group with the faster-

growing cohort, the trend is characterised by elevated levels of succinate and 

simultaneous reductions in relative metabolite abundances of alanine, glycine, 

pyroglutamate and myristic acid. 

 Succinate is a tricarboxylic acid (TCA) cycle intermediate and is common across 

all candidate biomarkers. Although many of the 19 potential biomarkers initially 

identified by the four feature selection methods did not contain succinate, incorporation 

of this metabolite into all ratios within the most stable two- and three-feature PLS-DA 

models highlights its significance in predicting larval quality. Furthermore, the 

approximate 10-fold difference in succinate abundance with concomitant ≤ 2-fold 

differences in the other four metabolites suggests that succinate is primarily responsible 
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for the variation in biomarker ratios between larval quality classes. The accumulation of 

succinate in the poor quality larvae may indicate overall metabolic repression and lower 

energy production (Müller et al. 2012). Many marine molluscs have evolved well-adapted 

strategies for coping with dynamic environmental fluxes and stressful conditions, such as 

variations in salinity, pH and oxygen availability. For example, the capacity to easily 

convert between aerobic and anaerobic respiration under duress provides a mechanism 

for molluscs to produce enough energy to preserve critical metabolic function without 

wasting energy on other non-critical processes, such as growth. Under aerobic conditions, 

succinate is readily oxidised to fumarate by succinate dehydrogenase/ respiratory 

complex II (SDH/CII). Interestingly, the fumarate/succinate ratio was identified as a 

potential biomarker candidate during our initial statistical screening in all four of the 

feature selection methods applied. As a classic example of a metabolite ratio with a direct 

substrate–product link, further integrated analysis of this reaction and its associated 

pathways at the transcript and/or protein level may provide important mechanistic insight 

into the physiological basis for intraspecific growth variation in mussel larvae. 

 Myristic acid is a C:14 fatty acid and is found in high concentrations (13–15% of 

lipids) in the microalgae diet fed to larvae during the rearing process (Ragg et al. 2010). 

The mean relative abundances of free myristic acid in the poor quality larvae were lower 

than in the high quality larvae (0.49% versus 0.65% respectively). This may reflect slight 

differences in lipid digestive abilities between the two classes. The fact that this 

discrepancy was small shows that the variation in the myristic/succinate ratios were 

dominated by large differences in succinate content, providing strong support for the 

potential importance of the TCA cycle intermediate as a marker of larval quality. 

 The free amino acid glycine was one of the most abundant metabolites found 

across all samples, which is consistent with its role as a common osmolyte in marine 

bivalves (Kube et al. 2006). Our findings reveal that glycine content was significantly 
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reduced in the poor quality cohort. Recent metabolomic and gene expression studies have 

demonstrated that glycine content is related to the health state of oysters and clams, with 

reductions of this amino acid occurring after infection with pathogens (Liu et al. 2013), 

exposure to arsenic (Ji et al. 2013b) and under hypo-osmotic conditions (Meng et al. 

2013). Levels of alanine (also serving osmolytic function) in the poor quality larvae 

mirrored the lower relative abundance of glycine. These observations may indicate the 

occurrence of stress-induced disruption in osmotic regulation. 

 Pyroglutamate is the cyclic lactam of glutamic acid and, despite its existence 

being known for over a century, its functions remain poorly understood. When protein-

bound, the inclusion of a terminal pyroglutamate residue stabilises proteins by making 

them resistant to degradation by amino peptidases (Kumar & Bachhawat 2012). In its free 

form as a cellular metabolite, pyroglutamate is an intermediate in glutathionine 

degradation, can act as an osmoregulator and is also readily interconverted to glutamate, 

which itself serves various biological roles (Kumar & Bachhawat 2012). For example, 

glutamate is a molluscan neurotransmitter (Hatakeyama et al. 2010), a common osmolyte 

in marine bivalves (Kube et al. 2006) and the precursor to proline and alanine (Wang et 

al. 2012). Thus, variations in pyroglutamate levels between larval quality classes may 

indicate differential immune function and capacities for protein stabilisation, 

osmoregulation and cell–cell communication. 

4.5 Conclusion 

In conclusion, the results of this study demonstrate the potential application of 

metabolomic-based approaches in aquaculture research to: 1) classify mollusc larvae 

based on their quality; 2) construct prediction models for larval quality assessment; and 

3), identify biochemical pathways which may be under differential regulation to reveal 

important mechanistic insights for future investigation. Indeed, it is anticipated that 
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further analysis of the single metabolites and their ratios will reveal additional 

information and, when integrated with gene and protein expression data, could provide 

new avenues for selective breeding programmes to consistently yield high quality larvae. 

Supplementary experiments incorporating metabolomics-based approaches to investigate 

other measures of larval quality (e.g., health after immunological or toxicological 

challenges) and in response to different culture conditions and other stresses have the 

potential to offer industry with a suite of biomarkers for monitoring the physiological 

state of larvae throughout the rearing process. Such a toolkit could help identify causes 

of larval batch failures and develop remedial strategies to enhance overall larval 

production within hatcheries. In the next chapter, metabolomics is applied to characterise 

potential differences in mussel larval physiology during a hatchery production run, before 

and after a water exchange (handling stress), and between two larval rearing conditions 

(flowthrough vs. static tank culture).  
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Abstract 

Gas chromatography mass spectroscopy was applied to characterise the metabolic 

profiles of hatchery-reared mussel (Perna canaliculus) larvae before and after a 

prolonged handling and water exchange process, and to investigate the effect of culture 

conditions. A decrease in succinate and an increase in alanine were observed after the 

water exchange, which indicated alterations in energy production and osmotic balance. 

However, these variations were subtle and it is unlikely that the water exchange practice 

had any lasting negative effects on larval physiology and performance. Multivariate 

pattern recognition tools (hierarchical clustering, principal component analysis and 

projection to latent squares discriminant analysis) were used to assess metabolite 

variations in larvae reared in low-density static and high-density flow through systems 

and to construct a culture condition classification model. Twelve metabolites contributed 

most towards the model, which indicated differences in energy, protein and lipid 

metabolism. The clear group separations were not represented by observable variations 

in morphological traits. This suggests that growth performance is metabolically buffered 

through an adaptive physiological mechanism to provide similar developmental 

characteristics under these conditions. 
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5.1 Introduction 

Increased hatchery culture of marine molluscs is necessary to reduce the industry’s 

dependence on wild populations for stocking farms, to provide a reliable high-quality 

source of spat for on-growing, and to meet future global requirements for marine-based 

food protein in an environmentally sustainable manner. Mussel aquaculture represents 

one of the fastest growing seafood sectors, but current product supplies are unable to meet 

market demands. Unfortunately, inconsistent sources of juveniles have hindered industry 

development (Martell et al. 2013; Carrasco et al. 2014). The vast majority of mussel 

farms around the world are dependent on wild-caught spat either by collecting juveniles 

attached to seaweed which has been washed onshore, or by deploying spat-catching ropes 

within the water column which free-swimming larvae settle on. However, accurate 

predictions of the location, timing, and size of any spat-fall is practically impossible, since 

a large number of complex and poorly understood environmental variables need to be 

accounted for (Wilson 2008). Furthermore, the effect of spat-catching on natural 

population dynamics for many species is unknown. Hatchery production of larvae can 

provide an alternative supply. While higher production overheads are generally 

associated with hatchery-reared juveniles compared to wild-caught spat, such expenses 

can be offset by using ultra-high-density larval rearing practices, seeding ropes with more 

spat, incorporation of selective breeding programs to achieve higher-value products, and 

the possibility for growing triploids to enhance meat yields, among others (Kamermans 

et al. 2013). 

 Many regions with high mussel production, such as Europe, China and Chile, have 

not yet invested significantly in the development of mussel hatchery technologies. 

However, clear global interest is growing among producers and stakeholders 

(Kamermans et al. 2013; Carrasco et al. 2014). Small-scale hatchery production of larvae 

for commercial research purposes has recently been conducted with a number of 
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important advances coming from the west coast USA, Canada, South Australia and New 

Zealand (SARF 2014). These ventures are providing solid working foundations for the 

up-scaling of production, and highlight the effectiveness of such facilities. For example, 

in New Zealand, strong government support and highly successful R&D by two leading 

aquaculture research organisations (Cawthron Institute and SPATnz; Nelson, New 

Zealand) has led to the current development of the world’s largest mussel hatchery, which 

is set to provide industry with substantial quantities of Greenshell™ mussel (Perna 

canaliculus) spat (Capson and Guinotte 2014). 

 As with other bivalves, numerous challenges face the successful larval production 

of mussels, which include factors associated with broodstock conditioning, gamete 

quality, larval nutrition, disease (bacterial, viral and parasitic pathogens), water quality, 

variations in growth, and synchronisation of developmental timing (e.g., settlement and 

metamorphosis). While many advances have been made over the past decade, such as 

optimised feeding regimes (Ragg et al. 2010), use of probiotics (Kesarcodi-Watson et 

al. 2012a,b), and identification of larval settlement inducers (Young et al. 2011, 2015a), 

high mortality events during larval culture and variable spat production yields are 

commonly experienced for some species. Undoubtedly, there is still much to learn about 

the fundamental biology and requirements of marine bivalves during early development, 

and considerable scope exists to further optimise and fine-tune the larval rearing 

conditions. 

 Metabolic profiling, or metabolomics, is a newly emerging approach for studying 

biological systems. With foundations in other post-genomic fields, such as 

transcriptomics and proteomics, metabolomics aims to capture and characterise the 

profile of small metabolites in cells, tissues and organisms (Villas-Bôas et al. 2007). 

Metabolites reflect the final products of gene expression, but they are also tightly 

regulated by external environmental influences and thus more closely represent the 
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phenotype of an organism (Patti et al. 2012). As the molecules of metabolism, differential 

metabolite profiles can provide important insights into how an organism actually 

responds metabolically to different situations, such as temperature changes (Dunphy et 

al. 2015), variations in salinity (Koyama et al. 2015), exposure to poor water quality (Ji 

et al. 2015), dietary manipulation (Jin et al. 2015), long-term handling stress (Karakach 

et al. 2009), and super-intensive culture conditions (Schock et al. 2013), among others. 

Use of metabolomics-based approaches in aquaculture research is starting to gain tract 

(reviewed in Chapters 2 & 3). However, thus far, only one other early life-stage 

investigation during hatchery culture of shellfish larvae has been performed (Young et 

al. 2015b). 

 In Chapter 4, metabolic profiling was used to identify a suit of candidate 

biomarkers for assessing mussel (P. canaliculus) larval quality, based on growth 

variations (Young et al. 2015b). Results demonstrated that the quality of larvae could be 

modelled using multivariate pattern recognition tools, and provided good evidence that 

visually different phenotypes within a larval cohort are represented by the composition 

of the identified metabolites. In the current study, metabolic profiling is used to 

investigate whether physiological larval traits, which are not morphologically observable, 

can be distinguished as a result of short-term handling stress during prolonged water 

exchanges, and when organisms are reared under different culture conditions. The 

development and incorporation of new methods to assess and monitor the physiological 

condition of larvae, which cannot be measured with currently-used microscopic 

techniques would be highly valuable for the developing mussel industry. 
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5.2 Methods 

5.2.1 Larval rearing 

D-stage larvae were reared to 10 days post-fertilisation (dpf) (veliger stage) under two 

culture conditions (low density static vs. high density flow through) using standard 

industry protocols developed by Spat Production & Technology New Zealand Ltd 

(SPATnz). Briefly, Perna canaliculus zygotes were produced at the Cawthron 

Aquaculture Park (CAP; Nelson, New Zealand) as described in Chapter 4, but using 

different F2 broodstock individuals. Zygotes were pooled and equally distributed between 

two large cylindrical static tanks containing 5000 L of continuously aerated 1 µm filtered 

seawater (FSW). After 2 days incubation at 17–18°C, embryos had developed into D- 

stage larvae and the first water exchange was performed. Organisms were filtered through 

an 80 µm mesh screen and the bulk of them were placed back into clean 5000 L tanks 

containing fresh FSW. A portion of larvae (n ≈ 60 million) were removed from the static 

culture system and equally distributed among three 150 L flow through conical tanks 

containing 100 L of continuously aerated FSW. Larvae were fed ad libitum (routinely 

checked via fluorimeter) with a mixed diet of Chaetocerous calcitrans and Isochrisis 

galbana and reared for a further 8 days under the two different culture regimes. Larval 

rearing conditions are summarised in Table 5.1. 

5.2.2 Larval sampling 

To test the effects of handling stress, pooled samples of larvae (n ≈ 100,000 individuals) 

were taken from each of the 5000 L tanks at 10 dpf, before and after a 100 % water 

exchange. Draining of the tanks took approximately one and a half hours, during which 

time larvae were collected on mesh screens positioned at the outflows. Once finished, 

larvae were placed back into tanks containing fresh FSW and left to equilibrate for 1 h 

before being re-sampled. 

 

http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#Tab1
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Table 5.1. Larval rearing parameters used during low-density static and high-density flow through culture 
 

Parameter Incubation Static system Flowthrough system 

Water volume 5000 L 5000 L 100 L 
Density 60 embryos mL-1 20 larvae mL-1 200 larvae mL-1 

Temperature 17 ± 0.5°C 18 ± 0.5°C 18 ± 0.5°C 

Continuous flowrate N/A N/A 1000 mL min-1 

100% water exchange N/A Every two days Every two days 

Water exchange duration  90 min 10 min 

Diet N/A C. calcitrans & I. galbana 
(4:1 ratio), batch fed daily 
with an increasing number 
of cells per larva to provide 
ad libitum feeding (2,000–
10,000 cells.larva.day-1) 

C. calcitrans & I. 
galbana (4:1 ratio), 
continuously introduced 
via pump to provide 
organisms with the same 
daily dietary ration as in 
the static system 

 

 

 

 To sample the larvae, 10 L of water were taken from the top of the tanks and 

concentrated on an 80 μm mesh screen. Organisms were transferred via pipette into 2 mL 

cryovials, excess water was removed, and then samples were immediately snap frozen in 

liquid nitrogen and transferred to a −80°C freezer until metabolite extraction. To test the 

effect of culture conditions, larval samples were also taken from each of the flow through 

tanks at 10 dpf. A water volume of 1250 mL was filtered through a mesh screen to provide 

equal numbers of larvae as in the samples obtained from the static system, and similarly 

processed. A vital stain, neutral red, was used to confirm that only live organisms were 

included in the larval samples. Following the protocol by Young et al. (2015a), ten 

replicate subsamples (each containing approximately 20 organisms) from every tank were 

assessed. 
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5.2.3 Metabolomics  

Metabolite extractions, derivatisations, GC-MS analysis, data pre-processing and 

metabolite identifications were conducted as previously described in Chapter 4. Twenty 

seven metabolites from different chemical classes were reliably identified by comparing 

retention times and m/z ratios against an in-house library of spectra. Metabolite peak 

intensities were normalised against the internal standard to compensate for potential 

technical variations (e.g., variable metabolite recoveries), adjusted for biomass and the 

relative metabolite abundances were calculated for each sample. The dataset matrix was 

converted to a .csv file and the data were standardised via autoscaling before being 

subjected to a variety of feature selection methods to assess group differences. 

5.2.4 Statistical analyses 

SPSS v.22.0 software (SPSS, Chicago, IL, USA) and MetaboAnalyst v.3.0 (Xia et 

al. 2015) were used to analyse data. Each of the statistical approaches applied here have 

previously been described in Chapter 3. To investigate the effect of handling stress on the 

metabolite pool, paired t-test statistics and fold-change (FC) values were calculated, 

where: FC = x̅ log2 post-handled/pre-handled (unstandardised data). To examine whether 

the culture conditions had an influence on larval metabolic profiles, unpaired t-test 

statistics, FC values, multivariate clustering, and multivariate projection-based 

techniques were employed. 

 Agglomerative Hierarchical Cluster Analysis (HCA) was initially used as an 

unbiased method to identify inherent sample groupings, based on the underlying structure 

of the data. Pearson’s correlation and Ward’s criterion were selected as the measure of 

distance and aggregation, respectively. Unsupervised principal components analysis 

(PCA) was performed to reduce dimensionality, assess the between-sample variation, and 

investigate natural sample groupings. Supervised projection to latent structures 

http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#CR35
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discriminant analysis (PLS-DA) was performed to identify metabolites which contributed 

most towards partitioning of samples between the culture conditions. 

 PLS-DA uses a multivariate regression technique to extract via linear combination 

of original variables the information that can predict the sample class membership. Leave-

one-out cross validation (LOOC) was used to assess the performance of the PLS-DA 

model. Metabolites contributing most towards the classification model were identified 

based on the variable influence on projection (VIP) scores (a weighted sum of squares of 

the PLS loadings taking into account the amount of explained class-variation in each 

dimension). To visualise differential expressions of metabolites in larvae from the static 

and flow through systems, the top 12 metabolites (ranked by their t-test statistics) were 

used to perform HCA (distance = Pearson’s correlation; aggregation = Ward’s criterion). 

The constructed dendrogram is co-displayed with the results of heat map analysis to 

reveal differences in metabolite abundances and assist conception of between-class and 

between-metabolite clusters. 
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5.3 Results 

5.3.1 Effect of handling and water exchange 

The effect of handling and water exchange on the metabolic profile of larvae after 1 h re-

acclimatisation is displayed in Table 5.2. The majority of detected metabolites before and 

after the process did not vary significantly. However, succinate decreased (FC = –1.93), 

whereas alanine showed a slight increase (FC = 0.29) (paired t-tests; p < 0.05) 

(Figure 5.1). 

 

Table 5.2. Metabolic profiles of larvae before (pre-handled) and after (post-handled) a prolonged handling 
and water exchange process. Positive foldchange (FC) values represent mean metabolite abundances which 
were higher in the post-handled samples and negative FC values represent those that were lower 
 

Metabolite 
Mean relative abundance (± SD)  Log2 

   FC 
T-test 

p-value  Pre-handled  Post-handled  

Alanine 1.60E+01 ± 5.24E-02 1.95E+01 ± 4.02E-03 0.29 0.007 
Aspartic acid 2.07E-02 ± 2.93E-02 8.55E-02 ± 1.85E-02 1.54 0.260 
Benzoic acid 4.29E-02 ± 2.48E-03 2.55E-02 ± 2.14E-02 -1.06 0.417 
Decanoic acid 1.30E-01 ± 2.87E-02 6.41E-02 ± 3.05E-02 -1.09 0.361 
Fumarate 1.06E+01 ± 3.58E+00 9.84E+00 ± 1.05E+00 -0.07 0.854 
Glycine 6.25E+01 ± 3.61E+00 6.33E+01 ± 2.11E+00 0.02 0.884 
Heptadecanoic acid 2.71E-01 ± 9.62E-02 1.89E-01 ± 1.53E-02 -0.48 0.487 
Hexanoic acid 1.68E-01 ± 1.21E-01 1.79E-01 ± 1.69E-01 -0.13 0.969 
Isoleucine 5.53E-02 ± 2.15E-02 6.76E-02 ± 1.40E-02 0.33 0.261 
Itaconic acid 3.74E-02 ± 1.67E-02 2.79E-02 ± 2.85E-03 -0.35 0.509 
Lactate 4.72E-01 ± 1.19E-01 2.44E-01 ± 6.56E-02 -0.96 0.331 
Leucine 9.45E-02 ± 4.29E-03 1.85E-01 ± 5.37E-02 0.94 0.234 
L-Norvaline 1.01E+00 ± 2.53E-01 2.02E+00 ± 4.95E-01 1.00 0.307 
Myristic acid 1.27E-01 ± 5.23E-02 1.22E-01 ± 1.45E-02 0.00 0.874 
Nicotinic acid 8.91E-02 ± 1.47E-02 9.04E-02 ± 8.47E-03 0.03 0.950 
Octadecanoic acid 8.38E-01 ± 4.89E-01 5.62E-01 ± 1.69E-01 -0.48 0.659 
Oleic acid 8.22E-02 ± 2.95E-02 6.46E-02 ± 6.11E-03 -0.30 0.481 
Oxalic acid 3.91E-01 ± 1.91E-01 2.66E-01 ± 6.86E-02 -0.49 0.620 
Palmitelaidic acid 3.74E-02 ± 7.38E-03 4.69E-02 ± 4.89E-03 0.34 0.116 
Palmitic acid 5.32E-01 ± 1.23E-01 4.12E-01 ± 5.21E-02 -0.35 0.512 
Palmitoleic acid 3.83E-02 ± 6.67E-03 6.23E-02 ± 7.11E-03 0.71 0.246 
Pentadecanoic acid 2.49E-02 ± 1.64E-02 1.33E-02 ± 4.96E-03 -0.77 0.586 
Phenylalanine 2.33E-02 ± 1.82E-03 3.82E-02 ± 1.10E-02 0.69 0.259 
Proline 3.30E-01 ± 1.07E-01 4.82E-01 ± 1.68E-03 0.59 0.291 
p-Toluic acid 3.80E-01 ± 2.15E-01 2.72E-01 ± 1.18E-01 -0.43 0.724 
Pyroglutamate 2.21E-01 ± 2.13E-02 2.81E-01 ± 9.66E-03 0.35 0.221 
Succinate 2.74E+00 ± 5.59E-01 7.89E-01 ± 4.83E-01 -1.93 0.018 

http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#Fig1
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Figure 5.1. Metabolites that were identified as being statistically different (t-test; p < 0.05) before (pre) and 
after (post) a prolonged handling and water exchange process (mean ± SD). The primary y-axis represents 
a standardised (autoscaled) data measure which places abundances of different metabolites on the same 
scale since absolute variations in abundance are not necessarily proportional to the biological relevance of 
metabolites. The secondary y-axis represents foldchange (FC) values which indicates the relative 
magnitude of difference between the sample groups in the unstandardised data 
 
 
 
Table 5.3. Metabolic profiles of larvae reared to ten days post-fertilisation in low-density static and high-
density flow through systems. Positive foldchange (FC) values represent mean metabolite abundances 
which were higher in the flowthrough system samples and negative FC values represent those that were 
lower.  
 

Metabolite 
Mean relative abundance (± SD) Log2 

       FC 
T-test 

p-value Static Flowthrough 

Alanine 1.60E+01 ± 5.24E-02 1.10E+01 ± 6.72E-01 -0.69 0.004 
Aspartic acid 2.07E-02 ± 2.93E-02 2.93E-01 ± 6.78E-02 2.33 0.014 
Benzoic acid 4.29E-02 ± 2.48E-03 1.11E-02 ± 1.02E-02 -1.62 0.068 
Decanoic acid 1.30E-01 ± 2.87E-02 5.89E-02 ± 3.56E-02 -0.72 0.267 
Fumarate 1.06E+01 ± 3.58E+00 3.26E+00 ± 2.84E+00 -1.65 0.028 
Glycine 6.25E+01 ± 3.61E+00 8.16E+01 ± 3.19E+00 0.38 0.002 
Heptadecanoic acid 2.71E-01 ± 9.62E-02 1.24E-01 ± 4.35E-03 -0.89 0.064 
Hexanoic acid 1.68E-01 ± 1.21E-01 4.83E-02 ± 3.54E-02 -1.84 0.126 
Isoleucine 5.53E-02 ± 2.15E-02 2.40E-02 ± 9.41E-03 -1.36 0.014 
Itaconic acid 3.74E-02 ± 1.67E-02 1.92E-02 ± 4.20E-03 -0.77 0.092 
Lactate 4.72E-01 ± 1.19E-01 1.71E-01 ± 1.89E-02 -1.06 0.091 
Leucine 9.45E-02 ± 4.29E-03 4.14E-02 ± 3.14E-02 -1.76 0.042 
L-Norvaline 1.01E+00 ± 2.53E-01 7.30E-01 ± 8.91E-02 -1.05 0.099 
Myristic acid 1.27E-01 ± 5.23E-02 1.02E-01 ± 1.09E-02 -0.29 0.253 
Nicotinic acid 8.91E-02 ± 1.47E-02 1.05E-01 ± 2.35E-02 0.23 0.381 
Octadecanoic acid 8.38E-01 ± 4.89E-01 3.36E-01 ± 6.15E-02 -1.06 0.119 
Oleic acid 8.22E-02 ± 2.95E-02 6.51E-02 ± 1.57E-02 -0.17 0.564 
Oxalic acid 3.91E-01 ± 1.91E-01 1.80E-01 ± 1.39E-01 -0.86 0.227 
Palmitelaidic acid 3.74E-02 ± 7.38E-03 4.24E-02 ± 9.81E-03 0.01 0.979 
Palmitic acid 5.32E-01 ± 1.23E-01 2.92E-01 ± 3.35E-02 -0.69 0.034 
Palmitoleic acid 3.83E-02 ± 6.67E-03 5.71E-02 ± 1.05E-02 0.18 0.514 
Pentadecanoic acid 2.49E-02 ± 1.64E-02 3.03E-02 ± 1.02E-02 0.66 0.244 
Phenylalanine 2.33E-02 ± 1.82E-03 2.42E-02 ± 3.06E-03 -0.35 0.317 
Proline 3.30E-01 ± 1.07E-01 1.06E-01 ± 3.82E-02 -1.93 0.007 
p-Toluic acid 3.80E-01 ± 2.15E-01 1.45E-01 ± 6.91E-02 -1.17 0.101 
Pyroglutamate 2.21E-01 ± 2.13E-02 3.47E-01 ± 3.30E-02 0.47 0.017 
Succinate 2.74E+00 ± 5.59E-01 3.10E-01 ± 3.47E-01 -2.51 0.090 
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5.3.2 Effect of culture system 

The effect of culture system on assigned metabolites is displayed in Table 5.3. Univariate 

analysis identified nine metabolites with significantly altered (unpaired t test; p < 0.05) 

expression patterns (Figure 5.2). 

 

 

 

 
Figure 5.2. Metabolites that were identified as being statistically different (t-test; p < 0.05) between the 
static (S) and flow through (FT) system samples (mean ± SD). The primary y-axis represents a standardised 
(autoscaled) data measure which places abundances of different metabolites on the same scale since 
absolute variations in abundance are not necessarily proportional to the biological relevance of metabolites. 
The secondary y-axis represents foldchange (FC) values which indicates the relative magnitude of 
difference between the sample groups in the unstandardised data. 
 
 

http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#Tab3
http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#Fig2
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 HCA analysis of all metabolites showed the intrinsic clustering of samples and 

revealed two main groupings, which could be attributed to the flow through and static 

culture systems (Figure 5.3A). In addition, there was no clear clustering of the static 

samples before and after the water exchange. PCA analysis revealed that the first two 

components explained 76.7 % of the variability in the data (Figure 5.3B). Furthermore, 

samples clustered distinctly into their respective treatments with non-overlapping 95 % 

confidence intervals, which indicated that a good level of class discrimination was 

possible. The scores along PC1 were primarily responsible for this split and the PC1 

loadings (Figure 5.3C) revealed that variations in numerous metabolites contributed 

towards the separation. Since an effect of handling and water exchange was not apparent 

using the unsupervised HCA and PCA methods, these four samples were subsequently 

re-classified as ‘static system samples’ for the remaining multivariate analyses. 

 PLS-DA analysis was performed to identify and quantitatively rank the main 

metabolites accountable for the between-class variation. The 3D score plot revealed that 

the first three latent variables explained 86.7 % of the variance between the culture 

systems (Figure 5.3D). The performance of the model was evaluated using the first two 

latent variables and was assessed via LOOCV, which showed a good level of predictive 

ability (Q2 = 0.84; R 2 = 0.98). Twelve metabolites with VIP scores >1.0 were considered 

as main features, which contributed towards the classification model (Figure 5.3E). 
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Figure 5.3. Multivariate pattern recognition of metabolic profiles in larvae reared under low-density static 
(S) and high-density flow through (FT) culture systems: A) hierarchical cluster analysis of all metabolite 
data; B) principal component analysis (PCA) 2D score plot of all metabolite data (shaded ellipses represent 
95% confidence intervals); C) bar charts of PCA loadings for PC1 and PC2; D) projection to latent 
structures discriminant analysis (PLS-DA) 3D score plot of all metabolite data (shaded ellipsoids are 
arbitrarily overlaid to enhance visualisation of between-group density clusters); E) PLS-DA variable 
importance in projection (VIP) plot of metabolites which contribute most (VIP > 1.0) towards the PLS-DA 
classification model. The boxes on the right of the VIP plot represents relative expression of metabolites in 
the static and flow through systems, where red = high values, and green = lower values. 
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 HCA combined with heatmap analysis was performed to assist visualisation of 

the twelve metabolites abundances between the culture system classes (Figure 5.4). 

Cluster analysis of the metabolites identified two distinct groups with different expression 

profiles. Three metabolites generally had higher relative abundances in the flow through 

system, whereas nine metabolites were lower when compared to the static system. 
 

 

 

 

 
Figure 5.4. Two-way hierarchical cluster analysis combined with a heatmap to assist visualisation of 
between-sample and between-metabolite variations. Columns represent samples (grey = flow through, blue 
= static) and rows represent metabolites. The red/green colour scale represents standardised (autoscaled) 
abundance data, where red = higher values, and green = lower values.  
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5.4 Discussion 

The effect of handling and water exchange on the metabolic profile of larvae resulted in 

alterations of succinate and alanine. Succinate is a tricarboxylic acid cycle (TCA) 

intermediate and is capable of donating electrons to the electron transport chain via 

oxidation to fumarate by succinate dehydrogenase/ respiratory complex II (SDH/CII). 

Decreased expression of SDH/CII and increased levels of succinate are indicative of 

oxidative stress in shellfish when oxygen availability is limited (Tuffnail et al. 2009; 

Anestis et al. 2010; Connor and Gracey 2012), and when organisms are exposed to toxins 

(Wu et al. 2013a; Hanana et al. 2014) or pathogens (Ji et al. 2013; Wu et al. 2013b). 

Elevated tissue concentrations of succinate are also indicative of poor larval quality due 

to lower capacity for energy production (Young et al. 2015b). Compared to the before-

handled baseline level, our findings show that succinate levels were lower after the larvae 

were handled, which suggests increased TCA cycle activity and lack of negative impact 

on oxidative phosphorylation. 

 Alanine is a common osmolyte in marine molluscs (Deaton 2009), and the small 

increase in this metabolite may indicate a minor shift in osmotic balance after the larvae 

were screened, exposed to air and placed in fresh seawater. As osmoconformers, shellfish 

typically accumulate and reduce levels of intracellular osmolytes to maintain cell volume 

and homeostasis when exposed to higher and lower salinities, respectively. However, 

concentrations of other principal osmolytes, such as glycine and proline, did not vary after 

the water exchange. Under substantial osmotic imbalance, concomitant increases or 

decreases in these metabolites would also be expected (Carregosa et al. 2014; Koyama et 

al. 2015). These results suggest that the water exchange process has negligible lasting 

impacts on larval physiology and performance. In addition, subsequent multivariate 

analyses (HCA and PCA) of all data were supportive of a limited handling effect, since 

there was no clear treatment-based structure in the samples from the static system. 
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 Conversely, the effect of culture conditions (static vs. flow through) had a more 

pronounced influence on the metabolic profile of larvae. After 10 days of rearing, mean 

levels of fumarate and succinate were both lower in the flow through system, which 

indicates subtle differences in central carbon metabolism, aerobic respiration, and energy 

production through variations in larval activity and/or nutrient assimilation and 

conversion. Stocking density is known to affect larval bioenergetics due to changes in 

animal behaviour (Liu et al. 2006), and may partially explain the variation in TCA cycle 

intermediates between the different rearing conditions. Free amino acids (FAAs) and free 

fatty acids (FFAs) were responsible for the majority of other dissimilarities between the 

flow through and static systems. While FAAs serve osmoregulatory functions in 

molluscs, they also provide the pool of subunits required for peptide and protein 

biosynthesis. The FFA profile represents the breakdown products of digested dietary 

lipids and the available building blocks from which newly required lipids can be 

synthesised. Thus, these variations are indicative of differences in protein and lipid 

metabolism. Interestingly, growth performance was similar between the static and flow 

through systems after 10 days of culture. If protein and lipid metabolism were 

differentially regulated between the two systems, the energetics involved in ‘scope for 

growth’ must have been metabolically buffered through an adaptive mechanism. The 

mechanisms and extent to which mussel larvae can buffer particular metabolic constraints 

without compromising their developmental timing and growth is unknown, but such 

knowledge would be highly valuable for the aquaculture industry. 

 Other metabolites that contributed towards the PLS-DA classification model 

included benzoic acid and lactate, which, while not statistically different, were both 

slightly higher in the static system. Fluctuations in endogenous benzoic acid are known 

to occur in aquatic organisms when exposed to particular pollutants. For example, Spann 

et al. (2011) recently used a metabolomics-based approach to investigate the effect of 
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sediment contamination on clams (Corbicula fluminea) and found that levels of benzoic 

acid increased in response to low-level heavy metal exposure. In another metabolic 

profiling study, Ralston-Hooper et al. (2011) also found similar responses in amphipods 

(Hyalella azteca) exposed to the widely used agricultural herbicide atrazine. We did not 

measure potential contaminants in the seawater used in the current study. However, it is 

possible that the water in the static and flow through systems had different chemical 

compositions at certain intervals during the culture period since holding ponds are re-

filled daily during high tide for continuous flow through use, and 100 % water exchanges 

in the static system were performed every other day. Lactate in molluscs is an end product 

of anaerobic respiration and high levels are indicative of respiratory stress (Liu et 

al. 2014). On the other hand, low levels of lactate in molluscs are indicative of food 

limitation due to conversion to glucose during gluconeogenesis (Roznere et al. 2014). 

Although there is not yet have a reference value for lactate production in mussel larvae, 

the variability within and between each culture system suggests reasonably similar 

performance in terms of oxygen and food availability, which is in accordance with the 

employed parameters. 

 Metabolite profiling was used in Chapter 4 to identify four candidate biomarkers 

for assessing the quality of hatchery-reared larvae based on intra-cohort variations in 

growth. The biomarkers involve metabolite ratios of succinate to alanine, glycine, 

myristic acid and pyroglutamate. In the current study, analysis of these values showed no 

significant differences between larvae from the flow through and static systems 

(Table 5.4). This finding agrees with the observed similarities in shell length and further 

substantiates the use of these biomarkers for evaluating proxies for larval quality. The 

fact that metabolic profiling can be used to successfully detect variable physiological 

characteristics in hatchery-reared larvae which have both observable and non-observable 

http://link.springer.com/article/10.1007/s10499-015-9945-0/fulltext.html#Tab4
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morphological traits highlights the unique value that metabolomics-based approaches can 

deliver. 

 

 

 
Table 5.4. Statistical analyses of metabolite ratio biomarkers previously identified in Chapter 4 for 
assessing intra-cohort growth variation as a proxy for larval quality in larvae reared under low-density static 
and high-density flow through culture systems.  
 

Candidate biomarker 
Log2 Ratio ± SD T-test 

p-value Flowthrough Static 

Pyroglutamate/Succinate 1.42 ± 2.82 -2.48 ± 1.44 0.123 
Glycine/Succinate 9.30 ± 2.95 5.50 ± 1.27 0.143 
Alanine/Succinate 6.41 ± 2.88 3.67 ± 1.40 0.235 
Myristic acid/Succinate -0.35 ± 3.03 -3.52 ± 1.21 0.205 

 

 

5.5 Conclusion 

In conclusion, the current results demonstrate that the highly sensitive and dynamic larval 

metabolome can be used to construct classification models to identify the culture 

conditions under which the organisms were reared, and assist novel hypothesis generation 

for future studies. In addition, these results also support the continued use of high-density 

culture practices and indicate that short-term restrictions on the duration of screening are 

unnecessary. The combination of metabolic profiling with multivariate pattern 

recognition techniques is a powerful approach, which will undoubtedly be applied more 

widely in the future of aquaculture-related research to assist optimisation and fine-scale 

tuning of larviculture parameters. With demonstrated applications of metabolomics in 

marine mollusc development and aquaculture research (Chapters 4 & 5), the following 

case study (Chapter 6) attempts to expand on these applications to investigate aspects of 

larval health and immunology using a different model organism, the Pacific oyster 

(Crassostrea gigas), in response to viral infections.  
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Abstract 

The Pacific oyster, Crassostrea gigas, is highly susceptible to infection by OsHV-1 µVar. 

A number of recent virus outbreaks are thought to be responsible for increased incidences 

of mass mortalities around the globe, resulting in significant losses for the oyster 

aquaculture sector. Early life-stages are particularly vulnerable to the virus, but little 

information exists regarding metabolic or pathophysiological responses of larval hosts. 

Using a metabolomics approach and a variety of statistical and bioinformatics techniques, 

a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 

µVar were identified; some of which have not previously been reported in molluscs, nor 

associated with mechanisms of innate immunity. These responses included a coordinated 

disruption of the TCA cycle in accordance with mammalian macrophage stimulation via 

activation of immunoresponsive gene 1 and production of itaconic acid, induction of a 

Warburg-like effect, and production of free fatty acids for virion assembly, among others. 

Unsupervised and supervised multivariate analyses of entire metabolite profiles were 

clearly able to separate infected from non-infected control larvae. Correlation analysis 

revealed the presence of major perturbations in the underlying biochemical networks in 

exposed organisms. In addition, secondary pathway analysis of functionally-related 

metabolites identified a number of prospective pathways differentially regulated in virus-

exposed larvae, including alterations to cysteine–methionine transulphuration, 

glycolysis/gluconeogenesis, nitrogen metabolism, and lipid metabolism. These initial 

results provide new insights into the pathogenic mechanisms of OsHV-1 infection in 

oyster larvae, which may be applied to develop disease mitigation strategies and/or as 

new phenotypic information for selective breeding programmes aiming to enhance viral 

resistance.  
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6.1 Introduction 

With an estimated value of $4.17 billion USD (FAO 2016), oysters are one of the most 

commercially important groups of aquatic organisms in the world. In 2014, global 

aquaculture harvests reached 5.2 million tonnes, representing one third of all cultivated 

marine molluscs. Although total production volume remains high, growth of the industry 

has been severely hampered in recent years by extreme disease outbreaks during warmer 

summer months. Ostreid Herpesvirus (OsHV-1) is a new and emerging viral disease of 

several molluscan taxa, including oysters (Batista et al. 2015; Sanmartín et al. 2016), 

scallops (Arzul et al. 2001; Ren et al. 2013), mussels (Burge et al. 2011), and clams (Xia 

et al. 2015a). Over the past couple of decades, OsHV-1 has been widely associated with 

mass mortalities of farmed oysters around the globe. A growing number of epidemiology 

studies and experimental trials suggest that the virus is a causal factor in these events 

(Friedman et al. 2005; Burge et al. 2007; Segarra et al. 2010; Garcia et al. 2011; 

Schikorski et al. 2011a,b; Dégremont et al. 2015a,b). With stock losses of up to 100%, 

economic and social consequences due to the spread of the disease have been devastating 

in countries such as France, Ireland, USA, China, Australia and New Zealand  where 

oyster aquaculture is a vital primary industry (Burge et al. 2006; Lewis et al. 2012; 

Castinel et al. 2015). From the perspectives of many scientists, farmers and stakeholders 

alike, OsHV-1 has been articulated to represent the biggest individual threat to oyster 

production that the sector has ever faced (Lewis et al. 2012; Castinel et al. 2015).  

 First evidences for the presence of herpesvirus genetic material in bivalves was 

obtained in 1976 from samples of Ostrea edulis in the UK (Davison et al. 2005). 

However, widespread detection of herpesviruses and associations with mass mortalities 

of shellfish were not apparent until the early 1990’s (Renault et al. 1995). During the 

following decade, many occurrences of viral infections were documented around the 

world, and by 2005 molecular characterisations had led to the designation of the pathogen 
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as the OsHV-1 reference genotype (GenBank accession no. AY509253.2) (Renault & 

Arzul 2001; Davison et al. 2005). More recently, there has been an emergence of 

numerous OsHV-1 variants affiliated with mortalities in different bivalve species 

displaying different epidemiological characteristics, and it appears that OsHV-1 is 

undergoing rapid evolution (Grijalva-Chon et al. 2013; Renault et al. 2014; Bai et al. 

2015; Martenot et al. 2015). In 2008, the detection of a highly virulent new strain, OsHV-

1 µVar (GenBank accession no. HQ842610.1), was described in association with massive 

losses of oyster spat in France, Ireland and the UK (Segarra et al. 2010). By 2010, this 

new variant had reached the coasts of Australia and New Zealand, killing huge numbers 

of oyster stock within days and leading to sector collapses in certain regions over the 

following few years (Jenkins 2013; Keeling et al. 2014). Between 2011 and 2013, genetic 

analysis of cultured oysters from China, Korea and Japan revealed widespread 

herpesvirus infections from numerous genotypes across the East Asiatic region 

(Shimahara et al. 2012; Hwang et al. 2013; Jee et al. 2013; Bai et al. 2015 & 2016). High 

mortalities associated with OsHV-1 µVar were observed in Swedish and Norwegian 

hatcheries towards the end of 2014 (Mortensen et al. 2016). More recently, a new 

outbreak in Tasmania in 2016 has crippled the Australian oyster aquaculture sector and 

its selective breeding program (Davis 2016; Milne 2016; Whittington et al. 2016). Thus, 

it is clear that the extent of this new variant’s geographical reach is indeed a major global 

concern. 

 Due to the widespread prevalence and substantial socioeconomic consequences 

of OsHV-1 µVar, it is vital that knowledge of the interactions between the virus and its 

hosts are obtained to better understand pathogenesis of the disease, develop mitigation 

strategies, and guide management decisions. To provide such knowledge, a series of 

focused research themes relating to the spread of the virus and its mechanisms of infection 

have been conducted in recent years including genotyping and phylogenetics (Renault et 

http://www.ncbi.nlm.nih.gov/nuccore/AY509253
http://www.ncbi.nlm.nih.gov/nuccore/320090194/
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al. 2012; Martenot et al. 2015; Mineur et al. 2015; Burioli et al. 2016), development of 

experimental infection models (Paul-Pont et al. 2015), modes of transmission (Burge & 

Friedman 2012; Lionel et al. 2013; Petton et al. 2013; Evans et al. 2016), viral replication 

and virulence processes (Segarra et al. 2014a & 2016; Green et al. 2015; Martenot et al. 

2016), antiviral features of immunity and host responses at transcriptomic and proteomic 

levels (Renault et al. 2011; Corporeau et al. 2014; Green et al. 2014a,b; Normand et al. 

2014; Segarra et al. 2014a,b; He et al. 2015) and identification of virus-resistant traits for 

selective breeding trials (Dégremont 2013; Dégremont et al. 2015a,b). Most of these 

studies have focused on post-metamorphic life stages. However, size and age are 

significant factors in viral susceptibility and pre-metamorphic larval forms appear to be 

more vulnerable than their juvenile or adult counterparts (Oden et al. 2011; Dégremont 

2013; Paul-Pont et al. 2013; Azéma et al. 2016; Dégremont et al. 2016). 

 Many oyster farms rely on large-scale hatchery production of larvae to supply spat 

for growout, with increasing demand and stakeholder interests to enhance larval 

production capacities (Barnard 2014). Thus, it is essential that we extend our knowledge 

to characterise the pathophysiology of the disease during early ontogeny. Furthermore, 

the impacts of OsHV-1 µVar on the health of wild populations and their connectivity 

through larval mortalities, altered larval dispersal potentials, and reduced spat-falls are 

almost wholly unknown, but are likely to be substantial (Dégremont et al. 2016). In order 

to assess the ecological consequences of the disease and understand natural vectors and 

boundaries which may influence its spread, it is important to focus research across all 

developmental stages. In addition, the identification of specific genotypic and phenotypic 

traits in larvae which reflect disease susceptibility/resistance would be highly beneficial 

for monitoring early outcomes of selective breeding programs. Detailed physiological 

analysis of the host-virus interaction via use of –omics technologies (e.g., transcriptomics, 

proteomics and metabolomics) may provide fruitful for discovering such traits (Gómez-
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Chiarri et al. 2015). There are very few studies which have focused on the highly 

susceptible pre-metamorphic life-stage and, to our knowledge, none which have utilised 

metabolomic-based approaches to better understand the physiological effect of OsHV-1 

infection on homeostatic control mechanisms of metabolism and immunity.  

 Metabolomics is a newly developing and rapidly advancing field under the –omics 

banner which aims to provide global snapshots of alterations in the metabolite, or small 

molecule (<1 KDa), cellular component (Holmes et al. 2008). Metabolites are the ultimate 

end-products of gene expression and are strongly influenced by endogenous regulatory 

mechanisms, as well as by external elements (Fiehn 2002). As intermediates of 

metabolism, metabolites comprise the available biochemical depot of macromolecular 

precursors and energy transfer molecules required for optimal organismal growth and 

functioning. Thus, the composition of the metabolite pool and their flux dynamics provide 

a closer representation of an organism’s phenotype than molecular features at other levels 

of biological organisation, such as gene transcripts, which may display considerable 

temporal variations in expression compared to the final phenotypic response, or be 

entirely decoupled from downstream metabolic processes (Cascante & Marin 2008; 

Winter & Krömer 2013; Feussner & Polle 2015). With many recent applications across 

the life sciences (e.g., functional genomics [Sévin et al. 2015], selective breeding [Hill et 

al. 2015; Hong et al. 2016], aquaculture-related research [Young et al. 2015, 2016; Alfaro 

& Young 2016], toxicology [Bouhifd et al. 2013; Størseth & Hammer 2014; Chen et al. 

2016a] and disease diagnostics, monitoring and prevention [Pallares-Méndez et al. 2016; 

Wishart 2016]), metabolomics is proving extremely valuable as a highly efficient 

approach for generating new hypotheses and deciphering complex metabolic and gene 

regulatory networks of vertebrate and invertebrate models. 

 By scanning broad sets of metabolic features in whole organisms, tissues or 

biological fluids in response to environmental influences, such as bacterial or viral 
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infections, metabolomics-based approaches can provide novel information to gain 

insights into the mechanisms of disease progression, resistance and remediation in aquatic 

organisms (reviewed in Chapters 2 & 3). For example, metabolomics has recently been 

successfully applied to identify biomarkers for Vibrio spp. infections in mussels and crabs 

(Wu et al. 2013; Ellis et al. 2014; Su et al. 2014; Ye et al. 2016), to gain detailed metabolic 

information on tissue-specific host responses of shrimp and crayfish to white spot 

syndrome virus (Liu et al. 2015; Chen et al. 2016b; Fan et al. 2016), and to develop 

practical treatment methods for streptococcal disease in fish (Ma et al. 2015; Zhao et al. 

2015). Although limitedly applied to the investigation of marine invertebrate early life 

stages thus far, metabolomics has great potential to provide new insights into the 

interactions between OsHV-1 µVar and its oyster larval hosts. Thus, we have conducted 

the first metabolomics study to assess gross compositional alterations within the oyster 

larval metabolome in response to OsHV-1 infection.  

 
 
  



Chapter 6 

185 | P a g e  
 

6.2 Methods 

6.2.1 OsHV-1 µVar preparation 

OsHV-1 µVar inoculum was prepared from oysters that had been stored at −80°C and 

previously tested positive by qPCR (primers: GTCGCATCTTTGGATTTAACAA [BF] 

and ACTGGGATCCGACTGACAAC [B4], after Martenot et al. [2010]). Briefly, whole 

tissues from OsHV-1 µVar infected moribund oysters were homogenised, centrifuged 

(3000g for 10 min at 4°C) and filtered (serially to 0.22 µm) to remove particles and 

bacteria. A 0.1 mL aliquot of the filtrate was injected into the adductor muscle of naïve 

oysters to multiply the virus and create a fresh supply. After 3–4 days, newly infected 

oysters were shucked, homogenised, and filtered as previously described. Cryoprotectant 

(10% glycerol and 10% fetal calf serum) was added and the solution aliquoted to 0.5 ml 

to provide a Master Stock (MS) solution which was stored at −80°C. 

To assess virus levels in the MS, qPCR was conducted using BF and B4 primers 

in a SYBR Green assay with 10 µL reactions.  Reactions contained 5 µL of PCR Enhancer 

Cocktail 2 (DNA Polymerase Technology: St Louis, MO, USA), 1 µL of 10x Taq Mutant 

Reaction Buffer (DNA Polymerase Technology), 0.2 µL of each primer (5 µM), 0.08 µL 

of 10 µM dNTP (Invitrogen – Thermo Fisher Scientific: Auckland, New Zealand), 0.4 

µL of 100x Sybr Green (Invitrogen), 0.1 µL of Omni KlenTaq (DNA Polymerase 

Technology), 1.52 µL of ultrapure water, and 1.5 µL of DNA template. Template DNA 

was extracted using prepGEM (ZyGEM: Hamilton, New Zealand) according to the 

manufacturer’s instructions. The thermal cycling profile started at 95°C for 2 min to 

activate the enzyme, followed by 40 cycles of denaturing at 95°C for 40 sec, annealing at 

58°C for 40 sec and extension at 68°C for 60 sec. A melt curve analysis was incorporated 

in the run at the end of the PCR, starting with 72°C for 90 sec and increasing to 90°C by 

holding for 5 sec at each 1°C interval.  
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6.2.2 Larval production 

Mature oysters from Cawthron Institute’s selective breeding programme were obtained 

from oyster farm repositories in the North Island, New Zealand (AFL-Moana: Whangaroa 

and Te Matuku Bay Oysters: Waiheke Island), and were conditioned within a dedicated 

biosecure system on pond grown and monocultured algae at the Cawthron Aquaculture 

Park (CAP; Nelson, New Zealand) for a period of up to 10 weeks prior to being used. 

Gametes were acquired via strip spawning; oysters were opened and gametes were 

collected by lacerating the gonad wall with the tip of a pipette. Oocytes were gently 

scraped into 1 L glass beakers filled with 1 µm filtered UV treated seawater (FSW). 

Sperm was collected into 70 mL plastic containers (LabServ – Thermo Fisher: Auckland, 

NZ) with a small amount of FSW. Oocytes were enumerated in BD FalconTM 24-well 

Tissue Culture Plates (BD Biosciences: NSW, Australia) via microscopy (Olympus: 

model CK-X31). Sperm counts were performed on serial dilutions using a Neubauer 

counting chamber after immobilising the gametes with 10% dilute Lugol’s solution. 

 Gametes were mixed and triploidy was induced using a proprietary method 

developed by the Cawthron Institute. Triploid embryos were then transferred to a conical 

plastic incubation tank containing 170 L of continuously aerated 1 µm filtered (Arkal 

system) UV treated (30–50 mJ/cm2) seawater that had been aged with 4 uM EDTA and 

pH adjusted to 8.4. Embryos (ca. 225 embryos mL-1) were incubated at 23.0–23.5°C for 

24 hrs (until the D-larval stage) under static conditions. D-larvae were then reared for a 

further 15 days (to first signs of developmental transition from late-stage veliger to 

pediveliger larvae) in a similar tank but under flow through conditions (ca. 3 L min-1) at 

a temperature of 23.0–24.0°C. Larvae were continuously fed, via pneumatic pump into 

the header tank, a mixed microalgal diet consisting of Chaetoceros calcitrans, Isochrysis 

galbana, and Pavlova lutherii using optimised dietary ratios previously developed by 

CAP depending on development stage and growth rate. Microalgal concentrations were 

http://www.cawthron.org.nz/
http://www.cawthron.org.nz/aquaculture/services/breeding-improvements/
http://www.cawthron.org.nz/aquaculture-park/
http://www.cawthron.org.nz/aquaculture-park/
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routinely measured via chlorophyll analysis using a handheld fluorometer as described 

by Ragg et al. (2010), and rations were attuned accordingly to provide ad libitum access 

to food. Larval densities were adjusted every 1–2 days throughout the rearing period to 

provide ideal culture conditions (i.e., starting at around 150 larvae mL-1 and progressing 

down to around 30 larvae mL-1 by time of sample collection). At 16 days post-

fertilisation, approximately 150,000 larvae were transferred in FSW within a 20 L plastic 

container to a PC2 laboratory in accordance with CAP biosecurity requirements. 

6.2.3 Viral challenge and larval sampling 

Immediately prior to viral exposures, larvae were evenly distributed among 12 × 2L glass 

beakers, each containing 1.8 L of sterile synthetic seawater (Instant Ocean®, made to the 

manufacturers specifications) to provide equal densities of around 7 larvae mL-1. OsHV-

1 µVar MS solution was serially diluted (1:500) in FSW to achieve a dose/dilution level 

which had previously been determined to cause mortality (personal communication, A. 

Kesarcodi-Watson; Cawthron Institute, 2015 [unpublished data]). A 12 µL aliquot of 

OsHV-1 µVar inoculum was pipetted into six of the beakers, with the remaining beakers 

serving as negative controls. Beakers were individually aerated, maintained at 22°C (air 

temperature) in the dark. Larvae were not fed during the experiment, following 

Dégremont et al. (2016). General observations of larval behaviour were made on 

subsamples (ca. 100 larvae) every 12 hrs until signs of obvious differences between 

treatments and controls were discerned in the majority of the population (i.e., changes in 

swimming speeds, trajectories and distributions within the water column, after Burge & 

Friedman [2012]). Larvae were sampled after 48 hours. The contents of each beaker were 

filtered through a 150 µm mesh screen and larvae were carefully transferred via 

disposable pipette to a BioStorTM 2.0 mL cryovial (National Scientific Supply Company: 

CA, USA). Excess water was aspirated and samples were immediately snap-frozen in 

liquid nitrogen to rapidly quench metabolic processes. Care was taken to ensure that the 
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time to recover larvae and the handling processes used were consistent for every sample. 

Samples were stored at −80°C until metabolite extraction.  

6.2.4 Metabolite extraction & GC-MS analysis 

 Metabolite extractions were performed as previously outlined in Chapter 4. 

Derivatisations were similarly conducted, but with minor modifications for high biomass 

larval samples to enhance metabolite coverage. Briefly, the same fixed ratios of 1 M 

sodium hydroxide, pyrimidine and methanol were used but with higher volumes (500 μL 

NaOH; 85 μL pyrimidine; 418 μL methanol). Metabolite extracts were also analysed by 

a different GC-MS platform (Thermo Trace GC Ultra system coupled to an ISQ mass 

selective detector [EI] operated at 70 eV [Thermo Fisher Scientific Inc.]). Samples were 

injected using a CTC PAL autosampler into a SiltekTM 2 mm ID straight unpacked inlet 

liner under pulsed splitless mode. Instrumental parameters were the same as in Chapter 

4, with the exception of the mass spectrometer. The quadrupole temperature was set to 

230°C, and the MS was operated in scan mode starting after 5.5 min, with mass range of 

38–550 amu, and a scan time of 0.1 sec. A derivatised sample blank containing the 

internal standard, a derivatised standard amino acid mix, a non-derivatised standard 

alkane mix, and a sample of pure chloroform solvent were analysed along with metabolite 

extracts for QC purposes. 

6.2.5 Spectral processing and metabolite identification 

Deconvolution of raw spectral data and metabolite identifications were conducted using 

the same bioinformatics procedures described in Chapter 4. A Microsoft® Excel file 

containing peak height data for each metabolite was generated and manually checked for 

the presence of contaminants. Aberrant records were removed and the resulting QC-

filtered data was correctly formatted and saved as a .csv file for subsequent statistical 

analyses. 
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6.2.6 Statistics 

The data matrix of peak intensities was pre-processed for QC purposes and to meet the 

distributional requirements prior to statistical analysis using MetaboAnalyst 3.0 (Xia et 

al. 2015b). Data were normalised against the internal standard and by sample-specific 

biomass. The resulting dataset was then autoscaled to alleviate the dependency of the 

variance on the metabolite concentrations due to their large dynamic ranges and provide 

a Gaussian distribution. 

6.2.6.1 Univariate analysis 

Standard univariate student’s t-test and fold-change analyses were conducted to identify 

metabolites which were statistically different (p < 0.05) between control and treatment 

samples. To provide more robust statistical estimates of metabolite alterations, Significant 

Analysis of Microarrays/Metabolites (SAM) and Empirical Bayes Analysis of 

Microarrays/Metabolites (EBAM) were additionally applied to account for multiple 

hypothesis testing on high dimensional data, avoid assumptions of metabolite 

independence by accounting for correlations via permutation-based analysis, and provide 

False Discovery Rate (FDR) values. For SAM, a delta value of 1.3 was selected after 

analysis of FDR versus the number of significant features as a function of various delta 

values. An acceptable biomarker selection criteria was considered when the FDR q-value 

< 0.05. For EBAM, the default delta value of 0.9 was used. 

6.2.6.2 Unsupervised multivariate cluster analysis 

Three unsupervised multivariate cluster analysis methods were subsequently performed 

to gain a better understanding of the global metabolite variations among larval samples. 

Agglomerative Hierarchical Cluster Analysis (HCA) was initially used as an unbiased 

method to identify intrinsic sample groupings based on the underlying structure of the 

data, and provide data visualisation in the form of a dendrogram. Euclidian distance and 

Wards criterion were selected as the measure of distance and aggregation, respectively. 

http://www.metaboanalyst.ca/
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Non-hierarchical k-Means Clustering (k-MC) was similarly applied to discover natural 

groups in the data, where k clusters were defined by the number of sample class labels 

(i.e., k = 2). Principal Component Analysis (PCA) was further performed to reduce 

dimensionality, assess inter-sample variation, provide a measure of confidence for sample 

groupings, and to give information about which features contribute most towards the 

variance explained by the model.  

6.2.6.3 Supervised multivariate classification analysis 

Two supervised classification modelling and feature selection approaches were then 

employed to assess whether the metabolite profiles could reliably be used to discriminate 

larvae which had been exposed to OsHV-1 µVar from control samples, and, if so, to 

identify important classifiers/biomarkers for larval health condition. Projection to Latent 

Structures Discriminant Analysis (PLS-DA) was performed to detect changes in 

metabolic profiles associated with OsHV-1 µVar infection, and thus, identify the 

differential metabolites that account for the separation between groups. PLS-DA 

essentially aims to rotate PCA components using a priori knowledge of the sample classes 

such that further separation between treatment groups are obtained, and to understand and 

quantify which metabolites and directions in the multivariate space carries the class 

separating information. The PLS-DA model was validated using the leave-one-out cross-

validation (LOOCV) method. The performance and predictive capability of the model 

was evaluated by R2, the goodness-of-fit parameter, and Q2, the goodness-of-prediction 

parameter. Generally, when these two parameters are close to 1.0 they represent an 

excellent model. The significance of metabolites in the PLS-DA model was evaluated 

using the Variable Importance in Projection (VIP) method. Metabolites were considered 

to be important classifiers if their VIP scores ≥ 1.0. 

 Random Forest (RF) analysis, a more recently developed classification algorithm 

increasingly being used in metabolomics studies (Braundmeier-Fleming et al. 2016; 
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Cameron et al. 2016; Kalantari et al. 2016), was then applied using bootstrap sampling to 

identify and rank metabolites predictive of the OsHV-1 µVar diseased phenotype. RF is 

a powerful non-parametric machine learning technique based on an ensemble of 

randomly generated classification trees which are combined to vote for a decision (Touw 

et al. 2012). Within MetaboAnalyst’s ‘Biomarker Analysis’ module, multivariate RF 

Receiver Operator Characteristic (ROC) curves were generated by Monte-Carlo Cross 

Validation (MCCV) using balanced subsampling. In each MCCV, two thirds of the 

samples were used to evaluate the feature importance. The top 5, 10, 15, ...100 important 

features were then used to build classification models which were validated on the 

remaining third of the samples that were left out. This procedure was repeated multiple 

times to calculate the performance (Area Under Curve [AUC]) and confidence intervals 

of each model.  

6.2.6.4 Functional biochemical pathway analysis 

To assist with interpretation of the data beyond investigation of single metabolite 

variations, established biochemical pathways were examined via secondary 

bioinformatics procedures under the general banner of Metabolite Set Enrichment 

Analysis (MSEA) techniques to probe functional relationships among the annotated 

metabolites. Using MetaboAnalyst’s ‘Pathway Analysis’ module, various sets of 

metabolites involved in the same biochemical pathway were extracted from the 

metabolomics dataset and analysed together to determine the likelihood of entire 

pathways being impacted as a pathophysiological response to OsHV-1 µVar exposure. 

All reliably annotated metabolites were mapped into metabolic pathways using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa & Goto 2000), and 81 

pathways associated with the Danio rerio animal model were selected for further analysis. 

Two different types of pathway analyses were performed; Quantitative Enrichment 

Analysis (QEA) and Network Topology Analysis (NTA).  

http://www.kegg.jp/
http://www.kegg.jp/
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QEA is a novel way to identify biologically meaningful patterns in metabolite 

concentration changes for quantitative or semi-quantitative metabolomic studies (Xia & 

Wishart 2011). The approach has the potential to identify subtle but coordinated virus-

induced changes among a group of functionally related compounds within a pre-defined 

set of metabolites, or a biochemical pathway, which may go undetected with conventional 

statistical methods. QEA is a modified version of the popular Gene Set Enrichment 

Analysis (Tilford & Siemers 2009) which utilises the Geoman’s Global Test algorithm 

and allows different-sized sets of metabolites to be compared. The test avoids problems 

associated with multiple hypothesis testing, and provides a single p-value with an 

accompanying FDR for the group, rather than individual significance values for each 

metabolite.  

In addition to considering the variations in metabolite abundances within the pre-

defined metabolite sets, we also examined the structure of the metabolic networks 

themselves. NTA assesses the local positioning of significantly altered metabolites within 

the pathways annotated by KEGG (Nikiforova & Willmitzer 2007). A ‘Pathway Impact’ 

(PI) index is estimated using a measure of the centrality (Relative Betweenness 

Centrality) of detected metabolites in relation to all compounds within a given metabolic 

network. Centrality is a local quantitative measure of the position of a metabolite relative 

to the other metabolites by calculating the number of shortest paths going through the 

target compound, which is used to estimate a metabolite’s relative importance or role in 

network organisation (Xia & Wishart 2010). The overall pathway impact is the 

cumulative value of the importance measures of the detected/matched metabolites 

normalised by the sum of the importance measures of all the metabolites within a 

particular pathway. The results of QEA and NTA can be graphically displayed together 

in a scatterplot; where the y-axis represents QEA-derived pathway enrichment p-values, 

and the x-axis represents the NTA-derived PI scores. Biochemical pathways involving 
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two or more annotated metabolites with simultaneous QEA p-values < 0.05, QEA FDRs 

< 0.1, and with NTA PI scores > 0.1 were considered as potential primary target pathways 

of interest.  

6.2.6.5 Correlation analysis 

To further investigate interactions among metabolites beyond routine statistical data 

analysis and a priori assumptions of functional associations, correlation analyses were 

performed as a discovery approach to reveal potentially unknown relationships. Pairwise 

metabolite–metabolite Pearson correlation matrices for each treatment group were 

constructed, displayed as separate heatmaps, and cross-referenced with one another. 

Correlations with R2 coefficients > 0.7 or < −0.7 were selected and compared to determine 

particular occurrences of major differences in slopes (i.e., positive vs. negative 

relationships). Finally, Correlation Network Analysis (CNA) was performed to provide 

enhanced visualisation of metabolite relationships (correlations and sub-network clusters 

or modules) within control and virus-exposed larvae; thus exposing any major 

perturbations which may be present within the underlying metabolic networks that are 

representative of the pathophysiological conditions. For network construction, 

metabolomics data matrices were imported into Cytoscape 3.0 software (Shannon et al. 

2003), and processed using the ExpressionCorrelation plugin (Karnovsky et al. 2012). 

High and low cut-offs of the Pearson correlation coefficient of 0.9 and −0.9, respectively, 

were conservatively selected and the networks for each treatment group were visualised 

using Cytoscape. The relative positioning of metabolite nodes within the networks were 

arranged using default settings.   

 
  

http://www.cytoscape.org/
http://www.baderlab.org/Software/ExpressionCorrelation


Chapter 6 

194 | P a g e  
 

6.3 Results 

General observations of larval behaviour were made every 12 hrs during the trial until 

first signs of differences between virus-exposed larvae and controls were discerned, i.e., 

changes in swimming speeds, trajectories and distributions within the water column. 

After 48 hrs, organisms that had been challenged with OsHV-1 µVar tended to be 

aggregated in the lower 30–50% of the water columns compared to control larvae which 

were more evenly distributed. When examined under the microscope, virus-exposed 

larvae also displayed slower motility and abnormal swimming patterns (i.e., horizontal 

planar circular motions rather than random) characteristic of OsHV-1 infections (Renault 

2008; Burge & Friedman 2012; OIE 2016; personal communication, A Kesarcodi-

Watson, Cawthron Institute, 2015). However, larval coloration (a commonly used crude 

assessment which can indicate severe poor health status [personal communication, N. 

Hawes, SPATnz, 2014]) generally appeared to be visually similar between treatments. 

Mortality assessments revealed that 100% of oyster larvae in all beakers were alive at the 

time of sampling for metabolomics, making direct comparisons between sample classes 

acceptable.  

6.3.1 Univariate analysis 

GC-MS analysis of larval extracts detected a total of 105 unique metabolites after QC 

filtering of the data. Of these, 75 were attributed specific chemical identities by matching 

chromatographic and mass spectral information against our in-house metabolite library. 

The remaining 30 features are currently listed as ‘unknowns’ since no matches were 

found. Univariate statistical analyses showed a number of differences in the metabolite 

profiles between control and virus-infected larvae (Figure 6.1). SAM identified 30 

metabolites as being differentially (p < 0.05) expressed between larvae exposed to OsHV-

1 µVar and control larvae with an FDR of 3.1% (Figure 6.1A), whereas EBAM identified 

28 metabolites as being differentially expressed with an FDR of 4.7% (Figure 6.1B). The 
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summarised results of SAM and EBAM are displayed in Figure 6.1C, along with their 

relative fold changes. Taking the results of these analyses together, the abundances of 

nine metabolites were likely under expressed in virus-infected larvae compared to the 

metabolic baseline of control organisms, and 20 metabolites were likely over expressed.  

 

 

Figure 6.1. Metabolites detected as being significantly different (p < 0.05) between control and OsHV-1 
µVar-infected larvae: A) Significant Analysis of Metabolites (SAM) plot; B) Empirical Bayes Analysis of 
Metabolites (EBAM) plot; C) Summary of statistically different metabolite levels between treatment groups 
with their respective Log2 fold change values (virus-infected [red circles] / control [green circles] larvae), 
and assembled into general biochemical classes. 
 

6.3.2 Unsupervised multivariate cluster analysis 

Unsupervised multivariate analyses of entire metabolite profiles revealed that good 

separation between control and virus-infected larvae could be obtained based on the 

underlying structure of the data (Figure 6.2). HCA correctly positioned samples into two 

main groups (group 1, controls n = 6; group 2, treatment n = 6) (Figure 6.2A), indicating 

that the within-class variation was considerably lower than the between-class variation.  
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 kMC corroborated this by also correctly assigning larval samples into groups 

based on the treatment that they received (Figure 6.2B; inserted table). PCA produced a 

2-D score plot containing two distinct clusters of samples which appropriately reflected 

their class labels and with no indication of sample outliers (Figure 6.2C). The two clusters 

are separated along PC1 with the relative abundances of around 40 metabolites explaining 

much of the divide. Although the calculated 95% confidence interval ellipses overlapped, 

the accumulative variation among all samples explained by PC1 and PC2 was only 46.0%. 

It is therefore possible that the OsHV-1 µVar-infected larval samples may be separated 

from control samples along other PC vectors not discernible in the 2-D score plot which 

might be revealed via supervised multivariate techniques. 

 

 

 

 

 

 

Sample partitioning 

Group 1: C1, C2, C3, C4, C5, C6 

Group 2: V1, V2, V3, V4, V5, V6 

Accuracy: 100 % 

 
 
Figure 6.2. Unsupervised multivariate cluster analyses of metabolite profiles from larvae infected with 
OsHV-1 µVar vs. control larvae: A) Hierarchical Cluster Analysis (Euclidian distance; Ward’s method); 
B) Table of results from k-Means cluster analysis where k clusters = 2 (Cn = control sample n; Vn = virus-
infected sample n); C) Principal Component Analysis (PCA) score plot; D) PCA scree plot showing 
variation explained by n PC (blue line), and the cumulative variance explained in n PCs (green line).  
 

A 

B 
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Supervised multivariate classification analysis 

Supervised multivariate classification analysis was clearly able to discriminate larval 

samples based on the treatment they received (Figure 6.3). Compared to PCA, the 2-D 

PLS-DA score plot better separated virus-infected from control larval samples along the 

x-axis (Figure 6.3A), with good cross-validated model performance using the first two 

latent variables (Accuracy = 100%; R2 = 96.9%; Q2 = 79.6%) (Figure 6.3B). PLS-DA 

additionally informed upon which metabolites were most important for the classification 

model via their VIP scores (Figure 6.3C).  

 
 
 

 

Figure 6.3. Supervised multivariate classification analyses of metabolite profiles from larvae infected with 
OsHV-1 µVar vs. control larvae: A) Projection to Latent Structure Discriminant Analysis (PLS-DA) score 
plot with accuracy of 100%, multiple correlation coefficient (R2) of 96.9%, and cross-validated R2 (Q2) of 
79.6%; B) PLS-DA model performances with n components; C) Variable Importance in Projection (VIP) 
scores for the PLS-DA model.  
 

 

A 

B 

C 
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 Significant classifiers for the separation between virus-infected and control 

groups were ranked, yielding 43 metabolites (35 annotated and 8 unannotated) with VIP 

scores > 1.0 (Figure 6.3C). In addition to the 30 differing metabolite abundances 

identified via SAM and/or EBAM (Figure 1C), PLS-DA also recognised 2-aminobutyric 

acid, glycine, hexanoic acid, homocysteine, putrescine, valine, and four additional 

unannotated metabolites as being important classifiers.  

 The RF machine learning algorithm was further employed as a complimentary 

feature selection method to similarly rank the most salient metabolite features responsible 

for class separation via a different statistical approach more resistant to over fitting than 

PLS-DA (Figure 6.4). A default RF classification model was first constructed using ten 

features (i.e., ~ √n) and 500 permutations, which correctly classified all samples. A series 

of ROC curve analyses were then performed to generate various n-feature classification 

models which were validated using MCCV sub-sampling to assess predictive accuracies 

(Figure 6.4A). The predictive accuracies of the 5-, 10-, and 15-feature RF models were 

94.5, 98.0, and 100%, respectively, with AUC’s of 0.985, 1.0, and 1.0, respectively 

(Figure 6.4B). ROC curve analysis of the 5-feature model with corresponding confidence 

intervals is shown in Figure 6.4C, and the predicted class probabilities of the model is 

shown in Figure 6.4D. The average importance and selected frequencies of metabolites 

in the 5-feature RF model are shown in Figures 6.4E and 6.4F, respectively. Most 

metabolites identified as potential biomarker candidates via SAM, EBAM and PLS-DA 

were also selected to some degree by RF which further corroborates their significance as 

key classifiers of larval health condition. The most frequently selected compounds (> 

20%) with high measures of average importance (> 1.0) were fumaric acid, 4-

hydroxyphenylacetic acid, glutamine, glutaric acid, myristic acid, 2-aminoadipic acid, 

and two unannotated metabolites. As indicated by RF, a low error of classification could 

be obtained with few compounds.  
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Figure 6.4. Multivariate machine learning and predictive modelling of larval sample classes via Random 
Forest (RF) analysis with Monte-Carlo Cross Validation (MCCV): A) Predictive accuracies of RF models 
with different n features; B) Area Under Curve (AUC) generated from Receiver Operating Characteristic 
(ROC) curve analysis of RF models with 5, 10, 15, 25, 50 and 100 features; C) AUC of the 5-feature RF 
model; D) Predicted class probabilities (average of the MCCV) for each sample using the best classifiers 
(based on AUC) of the 5-feature RF model; E) The average importance of metabolites in the 5-feature RF 
model based on ROC curve analysis, with the most discriminating feature in descending order of 
importance; F) The selected frequencies of metabolites in the 5-feature RF model based on ROC curve 
analysis.  
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6.3.3 Functional biochemical pathway analysis 

Based on the profiles of annotated metabolites, metabolic pathway analyses were 

performed to reveal the most relevant pathways related to the pathophysiology of oyster 

larvae exposed to OsHV-1 µVar (Figure 6.5; Table 6.1). A total of 43 biochemical 

pathways were recognised from within the KEGG database which contained one or more 

of the annotated metabolites detected. Pathways involving two or more detected 

metabolites and with simultaneous QEA p-values < 0.05, QEA FDR values < 0.1, and 

NTA Pathway Impact (PI) values > 0.1 were screened as potential primary target 

pathways of interest relating to the treatment effect. According to these selection criteria, 

12 biochemical pathways were identified with evidence of metabolic disturbances in 

virus-exposed larvae (Figure 6.5A), comprising of: glycolysis/gluconeogenesis; pyruvate 

metabolism; tricarboxylic acid cycle; glyoxylate and dicarboxylate metabolism; 

aminoacyl-tRNA biosynthesis; tyrosine metabolism; alanine, aspartate and glutamate 

metabolism; arginine and proline metabolism; glycine, serine and threonine metabolism; 

cysteine and methionine metabolism; D-glutamine and D-glutamate metabolism; 

butanoate metabolism; and nicotinate and nicotinamide metabolism. Nine further 

pathways that were identified statistically via QEA (p < 0.05 with FDRs < 0.1) but did 

not meet our ideal NTA impact assessment criteria (i.e., PI values < 0.1) were screened 

as potential secondary target pathways of interest, comprising of: purine metabolism; 

pyrimidine metabolism; lysine degradation; nitrogen metabolism; fatty acid biosynthesis; 

fatty acid elongation in mitochondria; and fatty acid metabolism.  

  



 

 

Figure 6.5. Secondary bioinformatics of annotated metabolites: A) Topology-based pathway analysis showing metabolic networks in oyster larvae potentially affected by OsHV-1 
µVar. The most impacted metabolic pathways are specified by the volume and the colour of the spheres (yellow = least relevant; red = most relevant) according to their statistical 
relevance and pathway impact (PI) values resulting from Quantitative Enrichment Analysis (QTA) and Network Topology Analysis (NTA), respectively; B–E) Examples of four 
pathways containing relatively high metabolite coverages: B) Tricarboxylic acid cycle (p < 0.001, FDR < 0.000, PI = 0.26); C) Alanine, aspartate and glutamate metabolism (p < 0.001, 
FDR = 0.002, PI = 0.72); D) Glutathione metabolism (p = 0.057, FDR = 0.107, PI = 0.48); E) Cysteine and methionine metabolism (p = 0.033, FDR = 0.076, PI = 0.60). Boxes which 
vary from yellow to red represent metabolites (KEGG ID codes) that were detected and annotated with our methods. Their colour indicates the level of significance (light yellow: p > 
0.05, light orange to red: p < 0.05) from unpaired t-tests (control vs. treatment). Light blue boxes/compounds in the pathways were not detected, but were used as background information 
for QEA to calculate the proportion of identified compounds within each pathway, and in NTA to determine the position (relative-betweenness centrality) and importance of each 
metabolite.   
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Table 6.1 List of altered metabolic pathways in larval hosts during viral (OsHV-1 μVar) infection. 

 

 

 

 

  

Pathways Match Status Raw p 1-LOG (p) FDR Impact (PI) 

Tyrosine metabolism                         PRIMARY INTEREST 3/44 0.001 13.630 0.000 0.137 
Citrate cycle (TCA cycle) 7/20 0.001 11.190 0.000 0.261 
Pyruvate metabolism 4/22 0.001 9.011 0.002 0.174 
Alanine, aspartate and glutamate metabolism 9/24 0.001 8.318 0.002 0.719 
D-Glutamine and D-glutamate metabolism 2/5 0.001 7.275 0.004 1.000 
Arginine and proline metabolism 8/43 0.003 5.831 0.013 0.427 
Glyoxylate and dicarboxylate metabolism 4/18 0.003 5.799 0.013 0.444 
Glycolysis/Gluconeogenesis 3/26 0.003 5.676 0.013 0.204 
Aminoacyl-tRNA biosynthesis 19/67 0.015 4.229 0.044 0.103 
Nicotinate and nicotinamide metabolism 3/14 0.016 4.135 0.044 0.128 
Glycine, serine and threonine metabolism 7/31 0.016 4.111 0.044 0.570 
Cysteine and methionine metabolism 6/29 0.033 3.401 0.076 0.601 
       
       
Fatty acid metabolism                 SECONDARY INTEREST 1/38 0.041 3.203 0.087 0.000 
Fatty acid biosynthesis 2/38 0.026 3.655 0.065 0.000 
Biosynthesis of unsaturated fatty acids 7/42 0.034 3.393 0.076 0.000 
Fatty acid elongation in mitochondria 1/27 0.044 3.135 0.089 0.000 
Tryptophan metabolism 1/39 0.005 5.393 0.016 0.153 
Pyrimidine metabolism 3/41 0.006 5.165 0.019 0.000 
Nitrogen metabolism 5/9 0.001 8.414 0.002 0.000 
Purine metabolism 1/66 0.001 7.714 0.003 0.000 
Lysine degradation 1/18 0.001 7.468 0.004 0.000 
       
       
Glutathione metabolism                   NON-SIGNIFICANT 9/26 0.057 2.863 0.107 0.477 
Glycerolipid metabolism 1/18 0.052 2.957 0.102 0.000 
Butanoate metabolism 5/22 0.065 2.727 0.108 0.029 
Propanoate metabolism 2/20 0.060 2.811 0.108 0.000 
Arachidonic acid metabolism 1/31 0.065 2.727 0.108 0.329 
Methane metabolism 2/9 0.074 2.609 0.113 0.400 
Cyanoamino acid metabolism 2/6 0.074 2.609 0.113 0.000 
Valine, leucine and isoleucine biosynthesis 5/13 0.088 2.425 0.131 1.000 
Pantothenate and CoA biosynthesis 3/15 0.095 2.351 0.137 0.000 
Phenylalanine, tyrosine and tryptophan biosynthesis 2/4 0.138 1.980 0.181 1.000 
Phenylalanine metabolism 2/11 0.138 1.980 0.181 0.407 
beta-Alanine metabolism 2/16 0.150 1.897 0.181 0.395 
Porphyrin and chlorophyll metabolism 2/27 0.151 1.889 0.181 0.000 
Sphingolipid metabolism 1/21 0.151 1.887 0.181 0.000 
Biotin metabolism 1/5 0.152 1.886 0.181 0.000 
Selenoamino acid metabolism 1/17 0.186 1.681 0.216 0.000 
Sulfur metabolism 1/9 0.229 1.475 0.246 0.042 
Taurine and hypotaurine metabolism 1/7 0.229 1.475 0.246 0.000 
Thiamine metabolism 1/7 0.229 1.475 0.246 0.000 
Valine, leucine and isoleucine degradation 3/38 0.300 1.203 0.315 0.000 
Histidine metabolism 3/14 0.326 1.120 0.334 0.238 
Ubiquinone and other terpenoid-quinone biosynthesis 1/3 0.609 0.497 0.609 0.000 
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6.3.4 Correlation analysis 

Pairwise metabolite–metabolite correlation matrices of Pearson coefficients for each 

treatment group were separately constructed and displayed at heatmaps (Figure 6.6). In 

general, substantial treatment-induced differences in the relationships between 

metabolites were exposed, as demonstrated by the many contrasting colours of same cells 

between the two heatmaps. From these totals of 5565 pairwise comparisons within each 

dataset, 167 strong linear correlations (R2 values > 0.7 or < −0.7) were found to be highly 

differentially expressed (i.e., positive vs. negative relationships) between larvae infected 

with OshV-1 µVar and baseline controls. CNA with selection criteria of R2 > 0.9 or < 

−0.9 were then separately performed on control and virus-exposed larval datasets to 

summarise and reveal the major correlation differences in the metabolic networks (Figure 

6.7).  
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Figure 6.6. Metabolite–metabolite Pearson correlation heatmaps of healthy control larvae (A) vs. unhealthy 
virus-infected larvae (B). The order of metabolites are the same for each of the heatmaps so direct 
comparisons can be made for particular regions.  
 

 

 

A                                      B 

  

 
Figure 6.7. Correlation Network Analysis of control (A) vs. virus-infected larvae (B). Metabolite–
metabolite Pearson correlations > 0.9 are represented by grey solid lines, whereas those that are < −0.9 are 
represented by dashed grey lines.  
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6.4 Discussion 

The aim of this study was to evaluate changes in the C. gigas oyster larval metabolome 

induced by ostreid herpesvirus and determine whether metabolomics-based approaches 

can deliver novel mechanistic insights into immunological defense systems of early life-

stage marine invertebrates. Thus, a comprehensive determination of metabolic alterations 

in oyster larvae exposed to the newly emerging and highly virulent OsHV-1 µVar 

genotype was performed via GC/MS-based metabolomics. Our findings revealed that 

viral exposure had a strong effect on many metabolites involved in central carbon 

metabolism, across broad chemical classes with various functional roles. These virus-

induced changes in the metabolite profiles enabled us to discriminate healthy from 

unhealthy larvae via multivariate clustering and classification techniques, discern 

relationships among metabolites, identify entire biochemical pathways evidenced of 

being altered, and further focused our attention towards specific mechanisms of immunity 

characteristic of the pathophysiological condition. We identified coordinated changes in 

TCA cycle-related metabolites in virus-infected larvae indicative of abnormal energy 

metabolism and biosynthesis of antimicrobial products, and also detected subtle signs of 

potential oxidative stress, transformation or degradation of extracellular matrix 

scaffolding, and disruption of normal lipid metabolism suggestive of requirements for 

viral appropriation of host-cell biomaterial (summarised in Figure 6.8).  
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Figure 6.8. Proposed alterations in carbon metabolism during OsHV-1 µVar infection. Green metabolites 
= upregulated in virus exposed larvae (including hypothetical upregulation of Irg-1 gene), red metabolites 
= down regulated, black metabolites = no change, grey metabolites = not detected; Red double lines = 
TCA cycle breakpoints.  

 

 

6.4.1 Lipid metabolism 

Enveloped viruses, such as those from the herpesviridae family, are known to physically 

and metabolically remodel host cells during infection to create optimal environments for 

their replication by manipulating lipid signalling and metabolism (Chukkapalli et al. 

2012; Rosenwasser et al. 2016). Such viruses instructively alter host metabolism in order 

to supply the high quantities of fatty acids which are required as vital lipid envelope 

components during virion assembly (Koyuncu et al. 2013). Although the precise 

induction mechanisms have not yet been elucidated, enrichment of host fatty acid (FA) 

production is a common response of different organisms to infection by various 

enveloped viruses (Mazzon & Mercer 2014; Hsieh et al. 2015; Sanchez & Lagunoff 



Chapter 6 

207 | P a g e  
 

2015), including herpes-type viruses such as human cytomegalovirus (HMCV) (Spencer 

et al. 2011; Seo et al. 2013; Purdy et al. 2015) and Kaposi’s sarcoma-associated 

herpesvirus (Bhatt et al. 2012). An emerging theme is that these lipid-modifying pathways 

are linked to innate antiviral responses which can be modulated to inhibit viral replication 

(Chukkapalli et al. 2012). For example, HCMV stimulates free fatty acid (FFA) 

production to enable and enhance assembly of infectious virions by activating expression 

of ACC1 host mRNA, the gene encoding for the rate-limiting enzyme acetyl-CoA 

carboxylase (ACC) involved in the initial commitment stage of de novo FA synthesis 

(Spencer et al. 2011); whereas pharmacological inhibition of host ACC substantially 

limits the ability of HCMV to replicate (Munger et al. 2008). More recently, Koyuncu et 

al. (2013) reported that siRNA-induced knockdown of a suite of other enzymes involved 

in FA synthesis (fatty acyl-CoA synthetases and elongases) inhibited herpesvirus 

replications, whereas knockdown of proteins responsible for FA catabolism (the 

peroxisomal β-oxidation enzyme acetyl-CoA acyl-transferase 1) and the first step of 

triglyceride synthesis (1-acylglycerol-3-phosphate O-acyltransferase 9) enhanced viral 

replication by elevating the available FFA pool. 

 Thus, the FA synthesis pathway is currently gaining considerable attention as a 

prime target for the development of innovative therapeutics that are not dependent on 

mechanisms of adaptive immunity, and therefore resilient to emerging virus variants 

which have become resistant to anti-viral therapies (Goodwin et al. 2015). Although 

significant inroads have recently been made to better-understand FA 

synthesis/modification mechanisms in oyster larvae (da Costa et al. 2015), our knowledge 

is still highly fragmentary. Unfortunately, it has not yet been established whether larvae 

even have the ability to synthesise FAs de novo from a single precursory acetyl-CoA 

subunit, let alone determined whether larval transcripts or the activities of enzymes 

involved in pathway initiation or early FA elongation can be regulated by OsHV-1. 
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Nevertheless, whether through a similar process or otherwise, OsHV-1 does appear to 

alter host lipid metabolism to enhance production, if not de novo synthesis, of FFAs. 

Looking at the global metabolic changes in larvae induced by OsHV-1 µVar 

exposure, there was a strong signature consisting of FFAs, presumably involving either a 

change in the relative rates of production and/or breakdown. These variation patterns 

contributed towards earmarking FA pathways (FA metabolism, FA β-oxidation and FA 

elongation in mitochondria) as being candidate targets of interest in our study via 

secondary bioinformatics techniques, and also were key metabolites causative to the 

major perturbations observed within the differential metabolic correlation networks. 

Under the starvation conditions we employed during the viral challenge, an effect on basal 

lipolysis would be the most obvious potential mechanism for the FFA changes observed 

here. Compared to non-infected control larvae, the general increase in medium and long 

chain FFAs (C16:0, C18:3n-6, C20:4n-6, C20:5n-3, C22:2n6, C22:6n-3) and microalgal-

derived dietary FFAs (C14:0, C16:1n-7) in virus-infected larvae are indicative of 

enhanced catabolism of endogenous triacylglycerol lipid supplies. This pre-metamorphic 

host-response appears to be somewhat similar to that of post-metamorphic life stages. 

Proteomic-based analyses of adult Pacific oysters experimentally infected with OsHV-1 

µVar recently identified that a key enzyme involved in the first step of lipid hydrolysis, 

triacylglycerol lipase (TGL), was over-accumulated in virus-exposed animals which 

likely reflects enhanced lipolysis during initial stages of infection (Corporeau et al. 2014). 

In support of these findings, transcriptomic-based analyses revealed over-expression of 

genes encoding for TGL and phospholipase A2 (an enzyme that releases FAs from the 

second carbon group of glycerol in phospholipids) in OsHV-1 µVar-infected oysters (He 

et al. 2015), and several other studies also report triglyceride levels being substantially 

decreased in juvenile and adult oyster hosts exposed to the virus (Pernet et al. 2010, 2014; 

Tamayo et al. 2014).  
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Such reductions in energetic reserves during pathogen infections could be due in 

part to the re-allocation of stored energy to sustain immune, antioxidant and 

cryoprotection processes (Genard et al. 2013). Under high energetic demands, cytosolic 

FFAs stemming from lipid hydrolysis can undergo β-oxidation in the mitochondrial 

matrix in a series of steps to supply the TCA cycle with acetyl-CoA, and the electron 

transport chain with NADH and FADH2 coenzymes. FAs generally yield more ATP per 

unit mass than carbohydrates, and can be used to augment energy supply. In adult oysters, 

FFA accumulations do not appear to coincide with the reduced lipid contents following 

OsHV-1 µVar infection likely due to them being transitory intermediates (Tamayo et al. 

2014), for which simultaneously enhanced rates of β-oxidation could explain. However, 

infected adult oysters display a down-accumulation in fatty acid-binding protein (FABP) 

(Corporeau et al. 2014), a chaperone involved in trafficking FFAs across the 

mitochondrial membrane, and, at the height of the viral load, decreased Fabp transcription 

and expression of a gene encoding the alpha subunit of FA oxidation complex (He et al. 

2015), all of which would limit β-oxidation rather than promote it. Thus, aside from being 

used for host energy metabolism, the FFAs produced during virus-induced lipolysis in 

oysters may be used as precursor synthesis molecules for constructing the lipid envelope 

during virus assembly and proliferation; as previously reported for HCMV infections.  

Pre-metamorphic oyster larvae infected with pathogenic marine bacteria (Vibrio 

corallilyticus) similarly exhibit increased levels of FFAs compared to healthy larvae, with 

concomitant reductions in triglyceride levels (Genard et al. 2013). However, analysis of 

enzymes involved in fatty acid β-oxidation (i.e., acyl-CoA synthetase, acyl-CoA 

dehydrogenase, and enoyl-CoA hydratase) revealed they are over-expressed during the 

infection. These authors hypothesise that activation or enrichment of β-oxidation is a 

characteristic response of oyster larvae to pathogenic bacteria to provide cells with the 

energy required to mount an immunological defence strategy. The observed FFA 
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accumulations reported by Genard et al (2013) were likely due to the increased rates of 

β-oxidation being overshadowed by substantially enhanced rates of lipolysis. This 

appears to be a different mechanism from viral infections in which the cellular machinery 

is hijacked in order to provide FFAs for virion propagation by suppressing β-oxidation 

and simultaneously enhancing de novo FA synthesis and/or lipolysis.  

Although FFA levels at a particular time reflect the complex metabolic balance 

between lipolysis, β-oxidation, and any other FA production (e.g., de novo synthesis) or 

consuming processes (e.g., triglyceride synthesis and utilisation for virion assembly), the 

FFA accumulations we observed are consistent with the general findings of other studies 

which have investigated various models of herpes-type infections. Perhaps a key point of 

difference in host-virus interactions between OsHV-1 and vertebrate-infecting 

herpesviruses could be the primary source from which the FAs are derived from (i.e., 

lipolysis vs. de novo synthesis). We recommend that targeted analyses of these pathways 

are additionally conducted at transcriptional and translational levels, in combination with 

metabolite profiling, in order to tease out the mechanistic intricacies of OsHV-1 µVar-

induced modulation of host lipid metabolism in oyster larvae. With FAs being necessary 

components required for OsHV-1 replication and proliferation, establishing the precise 

viral targets of host lipid metabolism could assist in the development of antiviral 

therapeutics, and/or identification of unique disease resistant genomic or metabolic traits 

for selective breeding purposes.  

Indeed, the pathophysiological information we uncovered via a metabolomics-

based analysis of larval hosts, combined with molecular data at other levels of biological 

organisation in adult hosts (Corporeau et al. 2014; He et al. 2015), provide some 

intriguing lines of inquiry when synthesised with our current knowledge of disease 

resistant traits in C. gigas. Summer mortality, or Pacific Oyster Mortality Syndrome 

(POMS), is well-known to be associated with incidences of OsHV-1 infections (Segarra 
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et al. 2010; Jenkins et al. 2013; Keeling et al. 2014; Paul-Pont et al. 2014), and although 

causal factors are likely due to a myriad of influences with complex interactions (Petton 

et al. 2013, 2015; Green et al. 2014b; Lassudrie et al. 2015; Solomieu et al. 2015), a 

number of experimental field- and laboratory-based trials over multiple generations have 

identified families which display various levels of resistance to POMS and/or OsHV-1 

(Sauvage et al. 2010; Dégremont 2011; Fleury & Huvet 2012; Dégremont et al. 2010, 

2015b, 2016). This ongoing research is being conducted through number of dedicated 

programs (e.g., the MOREST Program and SCORE Project) aiming to selectively breed 

for disease resistance by leading organisations or consortiums, including Cawthron 

Institute, Australian Seafood Industry (ASI), Oysters Australia, French Research Institute 

for Exploration of the Sea (IFREMER), and the French Poultry and Aquaculture Breeders 

Association (SYSAAF) (Puyo et al. 2014; Allison & Destremau 2015; Dégremont et al. 

2015a; Davis 2016). The successes of these programmes are thought to be crucial for the 

oyster aquaculture sector to survive and thrive over the coming years.  

With lipid metabolism being identified as a key area of focus in the virus-host 

interaction, more specific research efforts on these FA production pathways may provide 

valuable insights into OsHV-1 resistant traits. Interestingly, oysters which have been 

selectively bred for field-resistance to POMS have 2-fold lower transcript expressions of 

a gene encoding lipase, compared to their disease-susceptible counterparts (Fleury & 

Huvet 2012). This indicates that resistant animals have a lower capacity for FFA 

production through lipolytic processes which would potentially impede viral replication 

by limiting the amount of material available for envelope assembly. Furthermore, 

resistance to POMS is also associated with higher levels of acylcarnitine carrier protein 

(ACP) in resilient oysters, compared to susceptible animals (Fleury et al. 2010). ACP 

mediates the transport of acylcarnitines of different length across the mitochondrial inner 

membrane from the cytosol to the mitochondrial matrix for their catabolism by the FA β-
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oxidation pathway (Kerner & Hoppel 2000). Thus, disease-susceptible oysters have 

reduced capacities for FA catabolism, which would potentially promote viral replication 

by enhancing the amount of material available for envelope assembly, as well as limit the 

production of lipid-derived energy for mounting immunological defense mechanisms and 

maintaining crucial cellular basal metabolic processes. In line with reduced capacities for 

energy production in POMS-susceptible oysters, significant impacts on substrate level 

and oxidative phosphorylation were also detected in virus-exposed larvae. 

6.4.2 TCA cycle and immunoresponsive gene 1 

We identified a remarkably strong and specific signature of TCA cycle-related metabolite 

changes indicative of immunoresponsive gene 1 (Irg1) activation, which directly affects 

carbon flux through the cycle and modifies energy metabolism. Irg1 is commonly and 

highly expressed in vertebrate macrophages during inflammation and infection by a 

variety of pathogens (Preusse et al. 2013). Although the gene itself was identified as an 

innate immune-related transcript over two decades ago (Lee et al. 1995), its functional 

role, downstream products, and regulators have remained almost wholly elusive until only 

very recently (Tallam et al. 2016). Irg1 encodes immune-responsive gene 1 protein/ cis-

aconitic acid decarboxylase (IRG1/CAD) which links cellular metabolism with immune 

defence by catalysing the decarboxylation of cis-aconitic acid (the citrate → isocitrate 

isomerisation intermediate in the TCA cycle) to itaconic acid (ITA) (Michelucci et al. 

2013; Vuoristo et al. 2015). 

 ITA is a metabolite with potent antimicrobial properties (Naujoks et al. 2016), and 

was identified in our study as being over-accumulated in virus-exposed oyster larvae. ITA 

being discovered as the gene product of Irg1 is arguably one of the most important 

biological insights made in recent times (Sévin et al. 2015), and was only revealed 

through taking a non-hypothesis driven metabolomics profiling approach as we have in 
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the current study. ITA is now newly recognised as a crucial regulatory metabolite 

involved in posttranscriptional mechanisms of reprogramming mitochondrial metabolism 

through modulation of substrate level phosphorylation, TCA cycle flux and succinic acid 

signalling (Mills & O’Neill 2016; Cordes et al. 2016; Németh et al. 2016), production of 

inflammatory cytokines (Lampropoulou et al. 2016) and its ability to alter cellular redox 

balance (Tretter et al. 2016).  

 Upregulation of Irg1 transcription leads to a characteristic metabolic signature of 

a “broken TCA cycle” in stimulated macrophages (O’Neill 2015; O’Neill & Pearce 2016; 

O’Neill et al. 2016). ITA accumulation represents the first of two distinctive break-points 

in the pathway due to decreased transcription of isocitrate dehydrogenase (IDH; catalyses 

isocitrate → α-ketoglutarate), and the redirection of cis-aconitic acid metabolism via 

enriched Irg1-encoded IRG1/CAD expression (Jha et al. 2015; Yanamoto et al. 2015). 

The increased production of ITA decreases citric acid oxidation through the cycle. To 

compensate for the reduced flux under such conditions, Meiser et al. (2016) showed that 

glutamine uptake is co-enhanced with Irg1 expression, serving to replenish the pathway 

with α-ketoglutaric acid through glutaminolysis, downstream of citric acid. In agreement, 

the reduction in free glutamine content that we observed in OsHV-1 µVar-exposed larvae 

is consistent with enhanced glutamine uptake into the TCA cycle, via conversion to α-

ketoglutaric acid, as an anaplerotic mechanism. Herpes-infected human cells can switch 

substrate utilisation from glucose to glutamine to accommodate the biosynthetic and 

energetic needs of the viral infection, and allow glucose to alternatively be used 

biosynthetically (Chambers et al. 2010). Virus-induced reprogramming of glutamine 

metabolism and anaplerosis of the TCA cycle at this particular point appears to be critical 

for successful replication of herpes-type viruses, as well as maintenance of cellular 

viability during latent infections (Sanchez et al. 2015; Thai et al. 2015). 
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 The second characteristic break-point in the TCA cycle occurs at succinate 

dehydrogenase/ respiratory Complex II (SDH/CII), the enzyme which catalyses the 

oxidation of succinate → fumarate, and also crucially regulates respiration in the electron 

transport chain (Mills & O’Neill 2016). ITA is a competitive inhibitor of SDH/CII 

(Cordes et al. 2016), and thus, when ITA levels increase, enzyme activity is attenuated 

leading to an accumulation of succinic acid and a concomitant decrease in oxidative 

phosphorylation (OxPhos) (Lampropoulou et al. 2016). Directly in line with this second 

TCA cycle break-point feature, oyster larvae infected with OsHV-1 µVar exhibited 

elevated levels of succinic acid. The functional purpose of reprogramming host cell 

metabolism to accumulate succinic acid in response to pathogen infections appears to 

stem in part from its ability to mediate inflammatory responses. Aside from having a 

fundamental role in the TCA cycle, succinic acid can act as a regulatory signal, via 

succinate receptor 1 (GPR91/SUCNR1), to induce production of pro-inflammatory 

cytokines (TNF-α, IL-1β) which can enhance immune-stimulatory capacity, but also can 

exasperate disease when produced in excess (Rubic et al. 2008; Tannahill et al. 2013; 

Mills & O’Neill 2014; Littlewood-Evans et al. 2016). GPR91/SUCNR1 is therefore 

involved in sensing the immunological danger exposed by Irg1/ITA-induced succinic 

acid accumulations, thus further establishing direct links between immunity and cellular 

respiration. Interestingly, our observations relate to the danger theory proposed in the 

1990s by Matzinger (1994) and later (Matzinger 2007, 2012) when an immune response 

occurs due to the perception of ‘danger’ or ‘alarm’ signals somewhere. This theory seems 

to be well supported in the domain of innate immunity in invertebrates (Pradeu & Cooper 

2012). The list of signals triggering an immune response is increasing with time and with 

damage signals (e.g., IL-1, extracellular matrix components generated after cellular injury 

and high concentrations of ATP) recently described by other investigators (Pradeu & 

Cooper 2012). 
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 Rather than downstream TCA cycle intermediates being depleted as a 

consequence of this second break at SDH/CII, the metabolic response involves 

enrichment of the aspartate-arginosuccinate shunt pathway which provides a 

compensatory mechanism to replenish the system (Jha et al. 2015), thus leading to 

significant increases in levels of fumaric and malic acids regardless of SDH/CII inhibition 

(Lampropoulou et al. 2016). In agreement, both of these TCA metabolites were over-

accumulated in virus-exposed larvae. Thus, our metabolite data suggest that larval oyster 

cells have a comparable host response to OsHV-1 µVar as mammalian macrophages 

when stimulated or infected with other viruses, including herpes-type. To the best of our 

knowledge, this is the first report of such metabolic reprogramming of the TCA cycle in 

an invertebrate with the specific metabolite signature of pathogen-induced Irg1 

transcription directly in accordance with vertebrate cell models. How OsHV-1 might 

stimulate genomic components leading to activation of Irg1 transcription in oysters is not 

known, but would likely share some parallels with mechanisms of higher taxa. 

In human and murine cell lines, Irg1 expression is regulated by the transcription 

factor Interferon Regulatory Factor 1 (IRF1) (Tallam et al. 2016). IRF1 modulates the 

production of various interferons which are non-specific inhibitors of mRNA 

transcription that can reduce rapid replication of viruses and switch on genes of the innate 

immunity pathway, such as Irg1 to eliminate pathogens (Owens & Malham 2015; 

Naujoks et al. 2016). The roles of cytokines of the interferon (IFN) family have been 

studied extensively in vertebrate models, but their functional presence is less clear in 

invertebrates. Nevertheless, a number of studies implicate IFN involvements in marine 

mollusc innate immunity (Miyazaki et al. 2000; Canesi et al. 2003; Nehyba et al. 2009; 

Bettencourt et al. 2010; Huang et al. 2013; Zhang et al. 2015, 2016), and, although there 

are uncertainties and gaps regarding the pathogen-dependant activation of IRF1 in 

molluscs, the identification of IRF1- and IFN-like sequences indicate the presence of 
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interferon-sensitive response elements in bivalve genomes (Green & Montagnani 2013; 

Wang et al. 2013a; Rosani et al. 2015; Gerdol & Venier 2015; He et al. 2015; Ertl et al. 

2016; Green et al. 2016). For example, recent identification and functional analysis of an 

IFN-like protein (CgIFNLP) in C. gigas not only confirmed the existence of IFN in 

molluscs, but also established that some invertebrates, such as oysters, have IFN-based 

antiviral responses (Zhang et al. 2015), contrary to previous expectations of the IFN 

system being a much later-evolved component of immunity in vertebrate-only lineages 

(Langevin et al. 2013). 

Only two cases of Irg1 involvement in marine mollusc immune responses have 

thus far been reported. Martín-Gómez et al. (2012) detected an up-regulation of Irg1 

transcription in the flat oyster, Ostrea edulis, exposed to Bonamiosis disease under light 

and heavy infection scenarios, which suggest that Irg1 could play a role at early infection 

stages with prolonged expression at later stages. Furthermore, although not stated nor 

discussed in their manuscript, He et al. (2015 [supplementary material]) identified via 

untargeted gene expression profiling that the C. gigas Irg1 transcript was over-expressed 

9-fold in adult oysters exposed to OsHV-1 at the height of the viral replication process. 

In combination with our findings of a classic metabolic signature for Irg1 over-expression 

and enhanced aconitase activity in virus-exposed larvae, these data are strongly 

supportive of an active role of Irg1 and its metabolic product, ITA, in the innate immunity 

of oysters, and further provide the first reports of such associated pathophysiological 

mechanisms of disease in marine invertebrates. Moreover, these data also suggest that 

this particular metabolic reprogramming mechanism develops very early in the oyster 

lifecycle, and is a conserved feature of immunity across the metamorphic boundary. 

These findings provide fresh insights into the early evolution of innate immunity. We 

suggest that a detailed characterisation of this system, including endogenous regulatory 

networks and exogenous effectors, be conducted through ontogeny which may provide 
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useful information for identifying disease resistant traits. Investigation of other 

mechanisms associated with altered host energy metabolism, such as the Warburg effect, 

may also deliver important insights into the pathophysiology of the disease.   

6.4.3 Warburg effect 

The Warburg effect is an abnormal metabolic shift that was first discovered in 

proliferating cancer cells (Ferreira 2010). It has since been detected in vertebrate cells 

infected by viruses (Delgado et al. 2010, 2012; Darekar et al. 2012; Thai et al. 2014), and 

was recently implicated as an actuated pathway during viral infections in shrimp and 

oysters (Corporeau et al. 2014; Su et al. 2014; Hsieh et al. 2015; Fan et al. 2016; Li et al. 

2016). Herpes-type viruses are known to activate oncogenes (genes responsible for 

causing cancer), thus providing a mechanistic link with cancerous cell phenotypes (Mesri 

et al. 2014). The Warburg effect is distinguished by a high rate of glycolytic flux and 

unusual aerobic fermentation of glucose to lactic acid even though there is enough oxygen 

available for OxPhos to proceed (Kelly & O’Neill 2015). It is often accompanied by the 

activation or enrichment of other metabolic pathways that provide energy and direct the 

flow of carbon and nitrogen, such as the pentose phosphate pathway, nucleotide 

biosynthesis, lipolysis, and glutaminolysis (Zaidi et al. 2013; Tannahill et al. 2013; Su et 

al. 2014; Sanchez & Lagunoff 2015; Li et al. 2016), and also with mechanisms of innate 

immunity such as Irg1 activation/ ITA over-accumulation (Kelly & O’Neill 2015). 

Metabolic alterations characteristic of the Warburg effect involves increased 

glycolysis, elevated levels of lactic acid, and changes in rates of nicotinamide adenine 

dinucleotide phosphate (NADPH) production/utilisation. These effects result from the 

diversion of glucose metabolism, glutamine oxidation, and requirements of reducing 

equivalents for FA biosynthesis and for mounting anti-oxidant responses to Reactive 

Oxygen Species (ROS) via re-oxidisation of glutathione (vander Heiden et al. 2009; 
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Weljie & Jirik 2011; Senyilmaz & Teleman 2015). Although the precise initiating 

mechanism/s responsible for reprogramming the glycolytic and gluconeogenic pathways 

that result in these metabolite changes are not yet completely understood (Vijayakumar 

et al. 2015), succinic acid accumulations act as an innate immunity regulatory signal to 

trigger a switch in core metabolism from OxPhos to glycolysis. Succinic acid stabilises 

the alpha subunit of hypoxia inducible factor 1 (HIF-1α) thereby activating transcription 

of genes which downregulates OxPhos (e.g., via indirect inhibition of pyruvate kinase to 

reduce TCA cycle flux), enhances glycolysis (e.g., via increased production of 

hexokinase and glucose transporters), and promotes lactic acid production (e.g., via 

regulation of lactate dehydrogenase and monocarboxylate transporter 4) (Ben-Shlomo et 

al. 1997; Selak et al. 2005; Semenza 2010; Palsson-McDemott & O’Neill 2013; Tannahill 

et al. 2013; Mills & O’Neill 2014). Thus, with ITA-induced inhibition of SDH/CII, 

succinic acid may be an important metabolite linking Irg1 activation with the Warburg 

effect in virus infected cells. 

Compared to baseline control larvae, lactic acid was over-accumulated in OsHV-

1 µVar-infected larvae, whereas NADPH levels were lower. Secondary bioinformatics 

analysis of the metabolomics data also recognised glycolysis/gluconeogenesis and 

nucleotide metabolism as being differentially modulated as a larval host response to the 

virus, which could reflect an active Warburg-like effect. Our findings align with those of 

Corporeau et al. (2014) who utilised a proteomic-based approach to assess global protein 

changes in adult oysters infected with OsHV-1 µVar. Altered host protein expressions 

included changes in mitochondrial membrane permeability (accumulation of voltage-

dependant anion channels [VDAC]), and enhanced glycolysis via an increase in the 

glycolytic enzyme Triose phosphate isomerase and decreases in the gluconeogenic 

enzymes Fructose 1,6-biphosphatase and Malate dehydrogenase (MDH); signatures 

which resemble induction of the Warburg effect (Chen et al. 2011; Maldonado & 
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Lemasters 2012; Corporeau et al. 2014). Supporting the findings of Corporeau et al. 

(2014), increased and decreased expressions of genes encoding VDAC and MDH, 

respectively, were detected in adult oysters exposed to the virus (Renault et al. 2011; He 

et al. 2015). Taken together, these characteristic evidences at various levels of 

organisation (i.e., gene, protein and metabolite) suggest an involvement of the Warburg 

effect as a pathophysiological feature of OsHV-1 µVar infection.  

It is thought that the Warburg effect in cancer cells is adapted to facilitate the 

uptake and incorporation of nutrients into the biomass needed to produce new cells during 

proliferation at the expense of efficient, albeit slow, ATP production via OxPhos (vander 

Heiden et al. 2009; Zhang et al. 2012). The functional purpose for selection of energy 

inefficient lactic acid fermentation over OxPhos in virus-infected oysters is less clear. 

However, it is possible that the Warburg effect is ‘strategically’ induced by OsHV-1 as a 

metabolic reprogramming mechanism beneficial to the pathogen. With the catabolism of 

glucose exceeding the bioenergetics needs of cells during Warburg activation (Thomas 

2014), the high yields of intermediates created through enriched glycolysis and a 

truncated TCA cycle could be used for production of purine and pyrimidine nucleotides 

and other components required for viral DNA synthesis and envelope assembly. Aerobic 

fermentation would also provide energy for these processes more swiftly than through 

OxPhos and with less risk of constraining glycolytic flux via ATP-induced negative 

feedback inhibition (Zhang et al. 2012; Sanchez & Lagunoff 2015), thus facilitating rapid 

and persistent viral replication.  

6.4.4 Oxidative stress 

It was hypothesised that significant changes in the abundances of metabolites reflective 

of oxidative stress would be represented in OsHV-1 Var-exposed oyster larvae. Exposure 

to invading pathogens initially triggers robust innate immune responses, and a rapid 
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release of reactive oxygen species (ROS) called an oxidative burst is usually registered 

soon afterwards (Torres et al. 2006). Some of the reactive species generated include 

hydrogen peroxide (H2O2), superoxide (O2
-), hydroxyl radical (OH), hypochlorite (OCl-

), and peroxynitrite (OONO-) (Pisoschi & Pop 2015). As strong oxidants, productions of 

ROS are beneficial since they can facilitate degradation of invading pathogen biomaterial. 

ROS also are involved in antiviral defense mechanisms by acting as signalling molecules 

to potentiate other immune responses, such as activation of IRF’s/IFN’s (Chiang et al. 

2006). However, when produced in excess, they can cause irreparable damage to crucial 

host cells through degradation of macromolecular cellular components, including lipids, 

proteins, and DNA (Pisoschi & Pop 2015). During viral infections, this can actually 

promote virus proliferation by enhancing dispersion from lysed or apoptotic cells 

(Stehbens 2004). Thus, oxidative bursts should ideally be reduced before attaining critical 

levels, and can be achieved through an intricate balance of co-regulated antioxidant 

processes. These include production of the antioxidant metabolite glutathione (GSH), and 

a number of enzymes (e.g., GSH reductase, GSH peroxidase, GSH-S-transferase, 

catalase, superoxide dismutase) which regulate GSH turnover, directly recycles ROS, or 

are involved in repairing ROS-induced damage (Knight 2000; Apel & Hirt 2004). Adult 

and juvenile oysters exposed to OsHV-1, or showing variable susceptibilities to POMS, 

display differential expression of these enzymes, and/or the genes which encode them 

(Fleury et al. 2010; Fleury & Huvet 2012; Schmitt et al. 2013; Normand et al. 2014; 

Corporeau et al. 2014; He et al. 2015). This indicates a change in ROS balance and 

induction of oxidative stress as a response to the infection, and also suggests that the 

ROS-regulatory system is an important feature which underpins disease resistance.  

We detected a relatively high coverage of metabolites within the glutathione 

metabolism pathway. However, subtle variations of metabolites central to network 

topology, such as glutathione itself, were not differentially expressed resulting in the 
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entire pathway being only marginally affected (p = 0.057). On the other hand, the 

transulphuration pathway (cysteine and methionine metabolism) which is responsible for 

supplying precursor metabolites for glutathione synthesis under low-mid stress conditions 

was altered, which indicates a mild oxidative stress response. The subtle signs of 

oxidative stress and perturbed redox balance in virus-exposed larvae indicate that the 

homeostatic control mechanisms responsible for governing the production and 

detoxification of ROS were functioning at optimal capacities and well within acceptable 

boundaries. These findings suggest that OsHV-1 either does not induce major oxidative 

stress in oyster larvae beyond the adaptive ability of the ROS-regulatory system, or that 

the level or stage of infection in our study was low or early, respectively. These results 

also may highlight a potential limitation in the exclusive use of metabolomic-based 

approaches to recognise changes in metabolic activity under circumstances where 

enzymatic regulation tightly constrains metabolite levels within the range of normal 

baseline variations. Indeed, cellular metabolism, and glutathione turnover/ ROS 

regulation in particular, is extremely well-adapted to achieve this feat. Thus, to better 

define the influence of OsHV-1 on oxidative stress parameters, further analysis of 

enzymes associated with glutathione recycling and ROS regulation would be required. 

6.4.5 Other signatures 

A number of other metabolites were considered to be important features responsible for 

larval health class discrimination in PCA, PLS-DA and RF models. These included 

elevated levels of 4-hydroxyphenylacetic acid, 4-hydroxyproline, and 2-aminoadipic 

acid, and a reduction in nicotinic acid contents. Four unannotated metabolites were also 

important in the multivariate models. Future efforts to identify these molecules may 

further complement our interpretations or provide new insights into the virus-host 

interaction.  
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4-hydroxyphenylacetic acid (4-HPA) is a tyrosine-derived metabolite with 

antioxidant activity that can scavenge reactive oxygen and nitrogen species in vitro and 

in vivo (Biskup et al. 2013), and also has an ability to reduce excessive release of 

proinflammatory cytokines which protects against inflammation and disease (Liu et al. 

2014; Ford et al. 2016). Reports of 4-HPA in invertebrates are limited. 4-HPA has been 

detected in the neuroendocrine system of larval stage locusts where it is thought to be 

derived from tyrosine via tyramine intermediate (Tanaka & Takeda 1997), and also has 

been extracted from marine sponges (Yang et al. 2012). Increased levels of 4-HPA are 

associated with various mammalian disease pathologies and inborn errors in metabolism, 

including phenylketonuria and tyrosinemia disorders (Xiong et al. 2015), pancreatic and 

lung cancers (Nishiumi et al. 2010; Hori et al. 2011), chronic renal failure (Kikuchi et al. 

2010), lysinuric protein intolerance (Kurko et al. 2016) and liver disease (Manna et al. 

2010, 2015). An accumulation of this metabolite during such disease onsets has been 

attributed to differential catabolic pathways of tyrosine (Xiong et al. 2015). In our study, 

tyrosine metabolism was identified as a pathway with signs of being differentially 

regulated. It was recently demonstrated that the mechanism by which 4-HPA reduces 

proinflammatory cytokine production involves suppression of their transcription via 

promotion of HIF-1α protein degradation (Liu et al. 2014). Thus, with a functional role 

in downregulating HIF-1 activity, 4-HPA could directly compete with Irg1/ITA/succinic 

acid-induced HIF-1α stabilisation. As a result, HIF-1 induced enrichment of pathways 

responsible for redirecting carbon and nitrogen metabolism in trajectories which support 

OsHV-1 proliferation might be moderated, whereas the negative host consequences 

associated with co-induced respiratory dysfunction and excessive inflammation may 

partially be alleviated. 

 4-hydroxyproline (4-HP) is produced via the posttranslational hydroxylation of 

proline and is formed in proteins only after peptide linkage (Cooper et al. 2008). 4-HP is 
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predominantly found in collagen, a major structural component of the extracellular matrix 

(ECM) scaffold in marine invertebrate embryos and larvae (Spiegel et al. 1989; Phang et 

al. 2010). Thus, accumulation of free 4-HP is a specific biomarker of collagen 

degradation, and indicator of cell structure damage through compositional transformation 

of the ECM (Karna & Palka 2002; Phang et al. 2008). The production of free 4-HP 

resulting from ECM degradation is thought to play a role in initiating the apoptotic 

cascade (programmed cell death) via activation of the caspase-9 protease (Cooper et al. 

2008), as well as promoting HIF-1 activity by inhibiting the degradation of HIF-1α 

(Surazynski et al. 2008). Matrix metalloproteinases (MMPs), such as collagenase, are 

responsible for degrading the ECM. MMPs play crucial roles during normal embryonic 

and larval development, such as in cell growth and differentiation, tissue remodelling, 

and mechanisms of immunological defense (Mannello et al. 2003, 2005; Mok et al. 2009). 

However, MMPs can be excessively produced in pathological situations such as 

inflammation, cancer progression and infections (Itoh et al. 2006; Phang et al. 2008). 

Physical stress, oncogenic transformation, ROS and cytokines are all inducible factors 

(Mancini & Battista 2006; Reuter et al. 2010). MMPs and their importance in 

restructuring the ECM as a response to pathogens have previously been implicated in 

OsHV-1 infections and disease resistance vs. susceptibility traits of oysters (McDowell 

et al. 2014; Nikapitiya et al. 2014; Rosani et al. 2015). The elevated levels of free 4-HP 

in OsHV-1 µVar-exposed larvae indicates that collagen degradation in the ECM was 

enhanced, although further investigation will be required to determine whether the 4-HP 

accumulations represent negative consequences for the host due to significant cell 

structure damage.  

2-aminoadipic acid (2-AAA) is a component of the lysine metabolism pathway and 

is recognised as a small-molecule biomarker of oxidative stress (Sell et al. 2007; Zeitoun-

Ghandour et al. 2011). Its presence has been linked with diabetes risk and regulation of 
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glucose homeostasis (Yuan et al. 2011; Wang et al. 2013b), and elevated levels have been 

reported as a putative biosignature of respiration chain disorders (Smuts et al. 2013). 

Production of 2-AAA in fish is associated with low oxygen transport capacity (Allen et 

al. 2015), and can be induced in shellfish by exposure to physiological stressors (Chen et 

al. 2015; Koyama et al. 2015). Accumulations of 2-AAA are also associated with 

oncogene activation and carcinogenesis, leading to its recent candidacy as a potential new 

clinical biomarker for various cancers (Hori et al. 2011; Bellance et al. 2012; Jung et al. 

2013; Rosi et al. 2015; Ren et al. 2016). Production of 2-AAA correlates with the 

bioenergetic signature characteristic of a switch in cellular respiration modes from 

OxPhos to aerobic glucose fermentation (Hori et al. 2011; Aa et al. 2012; Bellance et al. 

2012). Thus, the accumulation of 2-AAA in virus-exposed larvae is consistent with the 

global changes we detected in organic acid metabolism reflective of TCA cycle 

reprogramming, reduced mitochondrial respiration and ATP production, activation of the 

Warburg effect, and subtle signs of oxidative stress. 

Nicotinic acid (NA) plays an important role in redox reactions and can be converted 

to nicotinamide (NAM) in vivo. In invertebrates and some fish, NA and NAM, 

collectively known as niacin or vitamin B3, are important precursors for synthesis of the 

pyrimidine nucleotide coenzymes NAD+ and NADP+ which participate in many hydrogen 

transfer processes, such as fatty acid synthesis, lipolysis and glycolysis (Ng et al. 1997; 

Sauve 2008; Houtkooper et al. 2009; Cantó et al. 2015; Yuasa & Ball 2015; Yuasa et al. 

2015). NAD+ is also a substrate and signalling metabolite required for regulation of 

transcription, proteasomal function, and posttranslational protein modifications involved 

in DNA replication, recombination, repair mechanisms and maintenance of genomic 

stability (Bürkle 2001; Surjana et al. 2010; Vyas et al. 2013; Fouquerel & Sobol 2014; 

Cantó et al. 2015). Unlike most metabolic redox reactions which reversibly oxidise or 

reduce pyrimidine nucleotides to maintain constant levels of NAD+/NADP+, substrate 
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utilisation and NAD+-dependant signalling processes are highly consumptive, and 

regeneration from niacin precursors is required when such mechanisms are activated (Lin 

2007; Chiarugi et al. 2012). The reduction of free NA in virus-exposed larvae is consistent 

with its role in these processes which are upregulated during herpes-type viral infections 

(Grady et al. 2012; Li et al. 2012). Herpes-induced consumption of NAD+ as a substrate 

for enzymes involved in host DNA modifications is likely a response to DNA damage 

pathways being activated by replication of the viral genome (Grady et al. 2012). However, 

efficient virus replication itself and synthesis of viral proteins are also reliant on NAD+ 

substrate supply (Li et al. 2012). Thus, the importance of NA and NAD+/NADP+ 

metabolism in host-pathogen interactions is gaining considerable attention as targets for 

the treatment of infectious diseases in humans (Mesquita et al. 2016). Interestingly, 

activation of the Warburg effect involves the unusual overproduction of NAD+ via 

enhanced fermentation of glucose (i.e., pyruvic acid + NADH → lactic acid + NAD+) 

(Chiarugi et al. 2012), and may serve/function as a replenishing mechanism in response 

to NAD+ depletion to complement de novo synthesis from its niacin precursors. 

6.5 Conclusion 

In summary, we identified and measured the metabolic responses of oyster larvae during 

exposure to the virulent ostreid herpesvirus microvariant which has recently been 

responsible for mass mortalities of shellfish around the globe. Viruses can reshape their 

host’s metabolism to create a unique metabolic state that supports their specific 

requirements. Indeed, profiling of larval metabolites revealed virus-induced 

reprogramming of host-encoded metabolic networks, including alterations to the 

glycolytic pathway, the TCA cycle, and lipid metabolism. Intriguingly, we observed 

metabolic response parallels with a number of innate immune system mechanisms 

previously characterised in mammalian cell models, such as induction of the Warburg 
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effect and downstream metabolic consequences of immunoresponsive gene 1 activation. 

The functional genomes of OsHV-1 and its variants are mostly unknown at present, but 

it is likely that virus-encoded auxiliary genes also provide infected host cells with novel 

metabolic capabilities, and the outcomes of their transcription may be manifested within 

our results. These findings provide the first comprehensive insights into early ontogenic 

host physiology and susceptibility of oysters towards OsHV-1 µVar. Characterisation of 

host-virus interactions can provide knowledge to enable development of therapeutic 

agents and identify traits for improving the outcome of selective breeding programmes. 

Our study also highlights the value of metabolomics-based approaches in elucidating 

host-virus interactions and the metabolic networks which characterise and underpin the 

pathophysiological state, and further supports its application for investigating 

pathogenesis of disease in early life stage marine invertebrate models. 
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Abstract 

The development of new tools for assessing the health of cultured shellfish larvae is 

crucial for the New Zealand aquaculture industry, which is seeking to develop and refine 

hatchery methodologies. To this end, a large scale ecotoxicology/ health-stressor trial was 

established by exposing mussel (Perna canaliculus) embryos to copper. GC/MS-based 

metabolomics was applied to identify potential biomarkers for monitoring embryo/larval 

health, and to also characterise mechanisms of copper toxicity in these organisms for the 

first time. Cellular viability, developmental abnormalities, larval behaviour, and mortality 

were simultaneously evaluated to provide a complementary framework for interpretative 

purposes, and authenticate the biochemical data. 

 Sublethal levels of bioavailable copper resulted in coordinated metabolite profile 

changes which were dependant on development stage, treatment level, and exposure 

duration; and also had negative impacts on developmental timing and larval behaviour. 

Metabolic trajectory analysis indicated that larvae were successfully employing various 

endogenous mechanisms involving biosynthesis of antioxidants and a restructuring of 

energy-related metabolism in an attempt to alleviate the toxic effects on cells and 

developing tissues. These results suggest that regulation of trace metal-induced toxicity 

is tightly linked with metabolism during early ontogenic development of marine mussels. 

Lethal-level bioavailable copper induced severe metabolic dysregulation  after 3 hrs 

exposure which worsened with time, substantially delayed embryonic development, 

initiated the apoptotic pathway, provided many evidences for the occurrence of oxidative 

stress, and resulted in cell/organism death shortly after 18 hrs exposure. 

 In summary, this case study provides strong support for the application of 

metabolomics to assess the health status of bivalve embryos and larvae, detect early 

warning biomarkers for trace metal contamination, and identify novel regulatory 

mechanisms of copper-induced toxicity. 
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7.1 Introduction 

Copper is an essential trace element involved in many crucial biological processes, and 

is required for the survival of all living organisms (Uriu-Adams & Keen 2005). Cells use 

copper as a structural element in regulatory proteins, and due to its unique redox potential, 

copper serves as a cofactor for several enzymes which carry out fundamental functions in 

embryonic development (Lee et al. 2001), mitochondrial respiration (Madsen & Gitlin 

2007; Horn & Barrientos 2008), iron metabolism (Nose et al. 2006), antioxidant defense 

(Klotz et al. 2003), and synthesis of neurotransmitters and neuropeptides (Scheiber et al. 

2014). However, when intracellular concentrations exceed the capacity of cells to 

sequester the ion, free copper is extremely cytotoxic. Redox cycling between Cu2+ and 

Cu+ can catalyse the production of highly toxic hydroxyl radicals, known as reactive 

oxygen species (ROS) (Harrison et al. 2000). Although ROS themselves are essential for 

many biological processes at low concentrations (including embryonic development 

[Dennery 2007]), when generated in excess they can severely damage various cellular 

components via oxidative attack of lipids, proteins, DNA, and other biomolecules 

(Temple et al. 2005). Thus, to ensure that metal availability is in accordance with 

physiological needs, it is crucial that all organisms have mechanisms in place to detect 

and regulate intracellular copper levels through a controlled balance of uptake, efflux, 

and sequestration (Puig & Thiele 2002; Nose et al. 2006; Kim et al. 2008; Rubino & Franz 

2012).   

 Bivalve molluscs have high capacities to bioaccumulate dissolved and particulate-

bound metals from seawater, and are routinely used for trace metal contamination 

biomonitoring purposes around the world (e.g., the long-running US National Oceanic 

and Atmospheric Administration’s ‘Mussel Watch’ program [reviewed by Schöne & 

Krause 2016; Farington et al. 2016]). However, many bivalves are also particularly 

sensitive to copper (Arnold et al. 2009), and are absent from some coastal zones where 
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human activities are responsible for high loadings of the metal into marine environments 

(Funes et al. 2006). Dissolved copper concentrations in oceanic and coastal waters 

typically range from 0.05–1.7 µgL-1 (Neff 2002). However, concentrations as high as 20 

µgL-1 have been detected in New Zealand harbour waters (Gadd & Cameron 2012). This 

value far exceeds the Australian and New Zealand Environment and Conservation 

Council 95% protection trigger value of 1.3 µgL-1 (ANZECC & ARMCANZ 2000), and 

the EC50 embryotoxicity values reported for numerous marine invertebrate species (e.g., 

mussels [Martin et al. 1981; Rosen et al. 2005; Nadella et al. 2009; Bosse et al. 2014], 

oysters [Martin et al. 1981; Worboys et al. 2002] and sea urchins [King & Riddle 2001]). 

Contributing sources of copper in New Zealand waters include stormwater drainage, 

leachates from antifouling paints, and run-off from hard-stand activities, such as boat-

washing, scraping and repainting (Gadd & Cameron 2012). For the Auckland region 

alone, it is estimated that up to 22,000 kg of copper are leached from boat hulls every 

year (Beca Infrastructure 2012), with about half of the quantity coming from boats 

berthed in marinas (Gadd et al. 2011). Toxic levels of marine pollutants such as copper 

have the potential to adversely affect wild populations of endemic New Zealand marine 

molluscs (as already has been case for tin [Smith 1996]), and cultured species with high 

commercial value.  

 Shellfish farming is a lucrative primary industry for New Zealand, and is currently 

being targeted for expansion (reviewed in Chapter 1). In particular, cultivation of the 

endemic GreenshellTM mussel (Perna canaliculus) is a sector which is realising 

considerable investment for development. For example, recent construction of a 

commercial-scale mussel hatchery is expected to provide farms with high quality spat in 

the very near future (reviewed in Chapter 1). However, this species is one of New 

Zealand’s most sensitive endemic bivalves to heavy metal contamination (Chandurvelan 

et al. 2012), and a number of knowledge gaps exist regarding the toxicity thresholds of 
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certain metals, such as copper, and their toxicological mechanisms in different life history 

stages (i.e., embryos/larvae/adult). In addition, identification of new tools for assessing 

early life-stage health would be highly beneficial for the developing mussel aquaculture 

sector. Currently, hatchery practices rely on highly skilled personnel with significant 

experience in identifying visual signs of poor health through microscopic observations 

(e.g., larval coloration, behaviour), and general biological parameters (e.g., growth rate, 

food consumption, mortality) which may lack informative resolution (e.g., temporal 

precision of detecting poor health, causation, and predictive capacity).  

 Metabolomics-based approaches (reviewed in Chapter 3) have recently been 

applied within the field of aquatic ecotoxicology to assess health status, identify 

biomarkers of pollution exposure, and investigate mechanisms of toxicity for a variety of 

environmental contaminants in marine molluscs, such as abalone (Zhou et al. 2015), 

oysters (Chen et al. 2016; Ji et al. 2015a, 2016a), clams (Liu et al. 2011a,b; Wu et al. 

2013a,b; Hanana 2014; Campillo et al. 2015; Ji et al. 2013a, 2015b,c,d), and mussels 

(Cappello et al. 2013; Ji et al. 2013b, 2016b; Qiu et al. 2016; Song et al. 2016a,b; Yu et 

al. 2016). The results of such studies are demonstrating that the effects of toxin exposure 

on the profile of metabolites in various aquatic organisms, and their influence on 

particular metabolic pathways, are toxin-specific (Song et al. 2016a,b), species-specific 

(Liu et al. 2011a), pedigree-specific (Liu et al 2011b), sex-specific (Ji et al. 2013b, 2014, 

2016b), size-specific (Spann et al. 2011), tissue-specific (Wu & Wang 2011; Li et al. 

2014), and environment-specific (Wu et al. 2013a,b). All of the toxicological 

investigations on molluscs conducted thus far which contain a metabolomics-based 

component have focused solely on the metabolic responses of the adult life-stage. 

However, it is well-recognised that embryonic and larval stages of molluscs are far more 

susceptible to toxins than their juvenile or adult counterparts (Mohammed 2013). Indeed, 

their great sensitivity is one of the principal rationales as to why mollusc embryos are 
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routinely used as animal models for standard aquatic ecotoxicity testing  around the globe, 

such as the ‘Bivalve Acute Toxicity Test (Embryo-Larval)’ method (EPA 1996; His et al. 

1997; Rosen et al. 2005; Nadella et al. 2009; Fabbri et al. 2014). The bioassay uses first 

appearance of the characteristic D-shaped larval shell as a marker for normal 

development, and is usually performed with oyster or mussel embryos as test organisms. 

 Although the application of metabolomics in mollusc embryo ecotoxicology and 

health assessment has not thus far been realised, investigations using embryos of other 

animal models (e.g., humans, foul and fish) demonstrate that such approaches can 

successfully be applied to provide rich sets of biochemical information.  For example, 

metabolomics-based approaches have been used to detect general metabolic responses of 

embryos and embryonic stem cells to toxin exposures (Viant et al. 2005; Van Scoy et al. 

2012; Mattsson et al. 2015), characterise mechanisms of toxicity and tolerance (Viant et 

al. 2006a,b; Akhtar et al. 2016; Chai et al. 2016; Wang et al. 2016), identify biomarkers 

reflective of toxin-induced stress with predictive capacities (West et al. 2010; 

Kleinstreuer et al. 2011), and to establish biomarker assays for developmental toxicity 

screening (Palmer et al. 2013). Thus, it is expected that the transfer of these high 

resolution technologies and methodologies to the study of marine invertebrate embryonic 

models will substantially expand our available ‘toolkit’ of capabilities for characterising 

embryonic baseline metabolic processes, detecting endogenous responses to 

environmental influences such as toxin and pathogen exposures, and identifying sensitive 

and robust biomarkers reflective of health status. To test this novel application, GC/MS-

based metabolomics is used to assess the effects of copper on the embryonic and larval 

metabolomes of the commercially important New Zealand GreenshellTM mussel.  
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7.2 Methods 

7.2.1 Experimental design summary 

Fertilised mussel embryos (1 hr post-fertilisation) were exposed to various concentrations 

of copper in the presence of EDTA during a large scale hatchery trial at the Cawthron 

Institute Aquaculture Park (CAP), Nelson, New Zealand. Approximately 150 million 

embryos were evenly distributed among 15 × 170 L conical plastic tanks containing 

natural seawater and 4 µM EDTA. The addition of EDTA into the embryonic incubation 

seawater is current standard commercial practice for the first 48 hrs of development 

[personal communication, N. Hawes; SPATnz, 2015], and is important for successful 

development of P. canaliculus embryos [Buchanan 1999; Gale et al. 2016]). Volumes of 

a copper sulphate stock solution were added to the relevant tanks to provide four nominal 

levels of total copper (0.00, 0.10, 0.20, 0.30 mgL-1), with three tank replicates per 

treatment level. Samples of embryos/larvae were taken recurrently from each tank over a 

period of 72 hrs for assessments of cell viability and mortality, development rate, 

structural abnormalities, swimming behaviour, and metabolite profiling. A 

comprehensive compositional analysis of the source seawater used in the experiment was 

conducted through a variety of standard analytical methods. Due to the complexities of 

incorporating EDTA into the experimental design, analysis of copper speciation during 

the trial was essential, and thus determined via diffusive gradients in thin films, mass 

spectrometry, and a newly-established metal speciation modelling approach. The specific 

aquatic toxicology context of this chapter also prescribes that a higher level of 

methodological detail be provided to describe the seawater chemistry and laboratory 

protocols used than in previous chapters. 

7.2.2 Chemicals and seawater preparation 

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich Pty Ltd (Sydney, 

Australia). Stock solutions of CuSO4 (1000 mgL-1 dissolved in Milli-QTM H2O; Quantum 
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R Tex cartridge with Biopack polisher) and EDTA disodium salt (5 mM molecular grade 

[Scharlau: Chemie, Spain] dissolved in Milli-Q H2O, and buffered to pH 8.0 with 5M 

NaOH) were prepared using acid washed glassware and stored at 4°C three days prior to 

use. Twenty four hours before the start of the experiment, embryo incubation tanks were 

filled with 154.8 L of 16°C seawater. This seawater had been pumped from the Tasman 

Bay (Nelson) and filtered  to 40 μm (Arkal Filtration Systems CS Ltd: Jordan, Israel); 

stored in 25,000 L tanks; pumped sequentially through three in-line filters 25 μm, 5 μm 

and 1 μm; foam fractionated (PPS4 Foam Fractionator – Aquasonic: NSW, Australia); 

temperature mixed (achieved by drawing from a 10,000 L storage tank maintained at the 

target temperature via an external loop passing through a titanium plate heat exchanger); 

and end-of-line 1 µm cartridge filtered (model E1PP10-FG – Filterpure: Auckland, New 

Zealand). 

 Once all tanks were filled with seawater, 132 mL of stock EDTA solution was 

added to each tank (based on prior optimisation trials at CAP; unpublished data) to 

provide final EDTA concentrations of 4 µM, and gentle aeration was provided (500–1000 

mL min-1). At the same time, 15 × 15 L fertilisation tanks were filled with 10.2 L of 

similarly treated seawater, and 12 mL of stock EDTA was added to each tank. The bulk 

seawater and EDTA in all tanks were given 24 hours to mix and become thermally stable 

at room temperature (17°C). Two hours prior to adding the fertilised mussel embryos, 

aliquots of the CuSO4 stock solution were administered to the relevant embryo incubation 

tanks in order to give the systems time to equilibrate/stabilise (i.e., mixtures of dissolved 

organic matter, inorganic compounds, EDTA-metal complexes and various other Cu-

species). 



Chapter 7A 

254 | P a g e  
 

7.2.3 Broodstock collection and spawning 

Mussel (Perna canaliculus) broodstock (~300 individuals) were collected 24 hrs prior to 

spawning from suspended rope culture in Admiralty Bay (Marlborough Sounds, Nelson, 

New Zealand), and transported to CAP. Mussels were biosecurity treated according to 

CAP protocols (i.e., gently scrubbed clean, induced to close with a freshwater dip, and 

then treated with 0.4% [v/v] sodium hypochlorite in freshwater for 2–5 min), briefly 

rehydrated, and then maintained dry overnight under a damp cloth ~16°C ready for 

spawning the next day. According to the protocols described in Chapter 4, spawning was 

induced via thermal cycling and gametes from 50 female and 50 male mussels were 

collected, pooled by sex, and enumerated. 

7.2.4 Fertilisation and tank incubation 

Approximately 10.2 million oocytes were added to each of the 15 × 15 L fertilisation 

tanks containing 10.2 L of 24 hr aged seawater incorporating 4 µM EDTA. The sperm 

pool was diluted with FSW and aliquoted into each tank to provide a ratio of 500 sperm 

per oocyte. After 30 min, successful fertilisations were confirmed by the presence of polar 

bodies, and the total contents of each fertilisation tank were transferred into one of the 

incubation tanks (providing a total incubation seawater volume of 165 L). Ambient air 

temperature, and therefore tank seawater temperature, was maintained at 17 ± 1°C 

throughout the trial (routinely validated by spot thermometer checks of the water in the 

incubation tanks). 

7.2.5 Embryo and larval sampling 

A range of embryo and larval samples were taken from each of the incubation tanks at 3, 

18, 42 and 72 post Cu-exposure for various microscopical and biochemical analyses. To 

first determine embryo/larval densities, triplicate 2 mL samples were taken from each 

tank via pipette (whilst homogenising the seawater with a large perforated plunger), 
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transferred to individual wells of BD FalconTM 24-well Tissue Culture Plates (BD 

Biosciences: NSW, Australia), and enumerated under a microscope. To assess cell 

viability of embryos and larval survival, similar 2 mL samples were taken and 

characterised using a vital stain (neutral red) in accordance with protocols described by 

Young et al. (2015). To evaluate temporal developmental parameters, 2 mL samples were 

taken from each tank (while homogenising tank contents), pooled for each treatment 

level, gently filtered through a 15 µm mesh sieve, transferred to 1.5 mL Eppendorf tubes, 

and fixed in Davidson’s solution (according to Howard & Smith 1983) for subsequent 

microscopy.  

 To obtain high biomass samples for metabolomic-based analyses (ca. 200,000 

individuals per sample), organisms were sampled by opening valves at the bottom of the 

conical tanks (whilst homogenising) and draining a specific volume (calculated from the 

embryo/larval densities) into a 15 µm sieve immersed in seawater. Organisms were gently 

rinsed in FSW to remove debris/biofloc and treatment solutions, concentrated, transferred 

to 15 mL FalconTM centrifuge tubes using 3 mL disposable plastic Pasteur pipettes 

(LabServ – Thermo Fisher: Auckland , New Zealand), and then made up to 14 mL with 

FSW. Samples were centrifuged at 4g for 30 sec and 6 mL of seawater was removed 

before being re-homogenised. 1.5 mL aliquots were transferred to a series of BioStorTM 2 

mL RNase/DNase-free cryovials (National Scientific Supply: Claremont, CA, USA). 

Cryovials were centrifuged at 25g for 30 sec, excess seawater removed, then immediately 

snap-frozen in liquid nitrogen and stored at −80°C until metabolite extraction. Towards 

the end of the experiment (66 hrs post-treatment), samples of D-stage larvae (containing 

approximately 50 individuals) were directly taken via pipette from each incubation tank 

to assess swimming behaviour, and conduct in situ determinations of development stage, 

and presence/absence of structural abnormalities (e.g., shell deformation) by optical 

microscopy (Olympus model CK-X31).  
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7.2.6 Seawater chemistry  

To characterise the composition of the bulk seawater used for incubations during the trial 

and evaluate Cu speciation differences among the treatment conditions, an array of 

analyses were performed by an IANZ accredited laboratory (R J Hill Laboratories Ltd, 

Hamilton, New Zealand), and the Centre for Trace Element Analysis (CTEA), University 

of Otago, New Zealand. These laboratories were selected for logistical purposes since 

fast analysis (< 24 h) of the seawater was imperative to prevent sample degradation and 

analyte loss, and also for the excellent quality control/assurance procedures that they 

employ. For total metals, alkalinity and selected nutrients testing, seawater samples were 

collected prior to EDTA additions from one of the 170 L control tanks which had been 

equilibrated for 24 h after filling. Samples were chilled to 4°C in insulated polystyrene 

boxes containing ice packs, and immediately sent for analysis to the respective 

laboratories.  

7.2.6.1 Bulk seawater composition  

The composition of bulk seawater prior to EDTA additions was characterised using 

standard analytical methods, according to APHA (2005) and included: total alkalinity 

(APHA 2520 B) total organic nitrogen (APHA 4500-Norg D), total ammonical nitrogen 

(APHA 4500-NH3 F), nitrate and nitrite (APHA 4500-NO3- I), dissolved reactive 

phosphorus (APHA 4500-P G), reactive silica (APHA 4500-SiO2 F: modified from flow 

injection analysis), chloride (APHA 4500 Cl- E: modified from continuous flow analysis), 

bromide (APHA 4110 B), total organic carbon (APHA 5310 B), and concentrations of up 

to 32 metals, including total dissolved Cu via ICP-MS (APHA 3125 B). However, in 

seawater some of those 32 elements are below detection limit. pH was monitored in situ 

using a calomel glass electrode, and salinity was calculated from the total chloride 

concentration, where: salinity (ppt) = 1.8066E-3 x [Cl-] (mgL-1). Temperature and pH 

readings (recorded with both bench top Mettler Toledo and mini handheld ISFET pH 
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meters [Shindengen model KS701]) were also performed during every seawater 

collection, every embryo/larval sampling, and also during the deployment and retrieval 

of Diffusive Gradients in Thin Film (DGT) passive samplers. 

 

7.2.6.2 Cu speciation analysis 

In order to assess actual vs. nominal total dissolved Cu concentrations, and to evaluate 

potential rates of Cu loss/gain through bio-uptake and/or adhesion to the tank material 

and/or evaporation, 500 mL of seawater was sampled from every incubation tank 2 hrs 

after embryos had been added, and also at the end of the trial (72 hrs later). Trace metal 

clean plastic containers (Nalgene, LabServe – Thermo Fisher: Auckland New Zealand) 

were used during seawater sampling, and gloves were worn at all times to avoid 

contamination. Samples were obtained by immersing a clean 15 µm sieve into the tanks 

and collecting the embryo-free seawater inside. These samples were immediately chilled 

to 4°C and dispatched for analysis to CTEA within 12 hrs of collection. Total dissolved 

Cu concentrations were measured by ICP-MS using an Agilent 7500ce system with an 

ESI PFA100 micro-concentric nebuliser, following the manufacturer's recommendations 

for robust conditions. Calibration was performed with commercial multi-element 

solutions (Claritas CLMS-2) with In and Sc as reference elements. 

DGT passive samplers were also installed for the duration of the experiment to 

estimate the bioavailable Cu fraction. DGTs are a relatively new approach for in situ 

determinations of labile metal species in aquatic systems (reviewed by Zhang & Davison 

2015). The devices house a binding gel, diffusive gel, and a membrane filter, and 

passively accumulate labile species from solution while deployed in situ. Labile species 

are assimilated by the binding gel in a predictable rate-controlled manner. After recovery 

of the DGT samplers, the gel layers are leached in acid and analysed by ICP-MS which 

allows the estimation of labile copper. Duplicate DGTs were randomly deployed into one 
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incubation tank for every treatment level, two hours after embryo additions. DGTs were 

placed adjacent to the air flow to promote movement of seawater across the devices, and 

care was taken not to contaminate the membrane filters. At the end of the experiment, 

DGTs were carefully recovered, packaged at 4°C and dispatched to CTEA for ICP-MS 

analysis. 

The DGT-labile metal concentration was calculated according to Warnken et al. 

(2006), Davison & Zhang (2012) and Stewart et al. (2016). The bioavailable Cu 

concentration is assumed to be the labile fraction of dissolved Cu. Other Cu speciation 

was modelled using the Visual MINTEQ (v 3.0) program (Gustafsson 2011). While the 

inorganic-bound Cu speciation is defined by the bulk seawater composition, EDTA and 

DOC at the concentration levels quantified in the samples were used to estimate the free 

Cu concentration. A fixed humic acid to fulvic acid ratio of 1:9, as commonly assumed, 

was used to estimate the humic-bound Cu.  

7.2.7 Metabolite analysis 

Metabolites were co-extracted with an internal standard, derivatised, and analysed via 

GC-MS using the same protocols previously described in Chapter 6. Deconvolution of 

raw spectral data and primary bioinformatics were conducted in accordance with the 

protocols described in Chapter 4. An Excel file containing peak height data for each 

metabolite was generated and manually checked for the presence of contaminants. 

Aberrant records were removed and the resulting QC-filtered data was correctly 

formatted and saved as a .csv file for subsequent statistical analyses. 

7.2.8 Statistical analysis and data visualisation 

Statistical analysis of survival data was conducted using SPSS v22.0 statistical software 

(IBM Corp: Armonk, NY, USA). One-way Analysis of Variance (ANOVA) with Tukey’s 

Post-Hoc Tests was performed separately for each of the three sampling times (18, 42, 
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and 72 post Cu-exposure) across the treatment levels. Statistical analysis of the 

development and behavioural data were not conducted since its structure violated the 

required assumptions, and clear trends in the data were visually apparent. Pre-processing 

and statistical analysis of the metabolite data was conducted using MetaboAnalyst v3.0 

(Xia et al. 2015). After uploading the .csv files containing the formatted peak intensity 

tables, data were pre-processed using the same protocols outlined in Chapter 5 for QC 

purposes and to meet the distributional requirements for subsequent data analyses. 

 Lethal and sublethal effects of Cu on the embryonic/larval metabolic profiles were 

assessed separately due to the occurrence of high mortalities between 18 and 42 hrs post-

exposure of embryos to 50.3 µgL-1 bioavailable Cu. To first investigate the underlying 

structure of the data, Hierarchical Cluster Analysis (HCA) was performed as an 

unsupervised classification method to identify inherent sample groupings. Euclidian 

distance and Ward’s criterion were selected as the measure of distance and aggregation, 

respectively. Heatmap analysis combined with HCA of all metabolite features identified 

in the embryonic samples was performed to provide a simple visual summary of the data, 

and cluster metabolites with similar expression profiles across the samples. 

 For each exposure duration (3 and 18 hrs), supervised Projection to Latent 

Structures Discriminant Analysis (PLS-DA) was performed to construct sample 

classification models, and to identify metabolites which contributed most towards group 

partitioning. Metabolites contributing most towards the classification model were 

identified based on the Variable Importance in Projection (VIP) scores. Metabolites with 

VIP scores ≥ 1.0 were considered as being important to the model. The quality of the 

models were evaluated via the R2 and Q2 values of the first two latent variables (LVs), 

which indicates the total variation explained in the data and the cross-validated predicted 

variation, respectively, using the leave-one-out cross validation (LOOCV) approach. 
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 To identify the metabolite features which were significantly altered by Cu 

treatment within each timeframe of exposure, Significance Analysis of 

Microarrays/Metabolites (SAM) and fold-change analyses were performed at 3 and 18 

hrs post-treatment as univariate measures to discriminate the toxicological effects.  

 To assist interpretation of the data beyond investigation of single metabolite 

variations and examine the metabolomics profiles more comprehensively, secondary 

bioinformatics procedures were performed to extract various sets of functionally-related 

metabolites involved in the same biochemical pathways. These sets were then analysed 

together to determine the likelihood of entire pathways being differentially regulated as a 

response to Cu treatment. All reliably annotated metabolites were mapped into metabolic 

pathways using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database, and 

assessed via Quantitative Enrichment Analysis (QEA) and Network Topology Analysis 

(NTA) as described in Chapter 5. QEA and NTA were conducted on the control vs. 

treatment data for each exposure duration. In order to assess the effect of Cu exposure 

duration on the differential regulation of the enriched biochemical pathways, the results 

of the QEA and NTA analyses for each timeframe were extracted and re-plotted together 

(i.e., overlaid) so that any shifts in the significance of particular metabolic pathways could 

more easily be visualised and discerned.  

To investigate the effects of sublethal Cu exposures, PLS-DA analysis of all 

metabolomics data across development stages and treatments was first performed. Since 

some data were missing for particular development stages (due to metabolite levels being 

zero or below the detection limits), these were replaced using the k-Nearest Neighbour 

approach as recommended by Armitage et al. (2015). Mean LV1 and LV2 values (± SE) 

were plotted on a 2-D score plot to summarise general temporal trends in the developing 

embryonic/larval mussel metabolome, and expose the toxicological effect on metabolism. 
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 As the embryos developed, large phenotypic effects were clearly apparent in the 

baseline metabolic trajectory. Thus, all data were phenotypically normalised and 

subsequently re-analysed. The normalisation procedure involved division of each 

metabolite peak height by the respective mean control value for each development stage. 

This process essentially resulted in control sample values being centred on around 1.0, 

and treatment data being expressed as a relative fold-change compared to controls for 

each of the four developmental phenotypes. The produced plot revealed new information 

that was not discernible in the original plot. To provide a visual summary of the 

metabolite abundances which were responsible for the positioning of sample groups and 

the metabolic trajectories in the phenotype-normalised PLS-DA plot, Heatmap analysis 

with combined HCA of metabolites was performed. For each development stage/ 

exposure duration, mean log2 foldchange values relative to control samples were 

calculated, imported into PermutMatrix (v 1.9.3) software (Caraux & Pinloche 2005), 

then clustered using Euclidian distance and Ward’s criterion as measures distance and 

aggregation, respectively.  
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7.3 Results 

7.3.1 Seawater chemistry  

The composition of the bulk seawater used during the experiment is presented in Table 

7.1. The salinity and pH were 34.3 ppt and 8.1, respectively. Analysis of the DGT devices 

and the modelled Cu speciation data exposed large differences in the between-treatment 

composition of the Cu fractions throughout the experiment (Table 7.2). 

 
 
Table 7.1. Composition of the bulk seawater used during the experiment prior to CuSO4 and EDTA 
additions. See the methods section for details how the Cu-containing fractions were determined. 
 
Bulk seawater composition 
Copper species/fraction Concentration  Element Concentration  Element Concentration 
Total dissolved Cu 2.90 µgL-1  Aluminium <13.0 µgL-1  Magnesium 1.49 gL-1 
Humic-bound Cu 2.76 µgL-1  Arsenic <4.2 µgL-1  Manganese <1.1 µgL-1 
Free Cu2+ 0.01 µgL-1  Barium 5.9 µgL-1  Mercury <80.0 ngL-1 
Inorganic-bound Cu 0.123 µgL-1  Beryllium <0.63 µgL-1  Molybdenum 11.1 µgL-1 
Bioavailable Cu 0.133 µgL-1  Boron 4.0 mgL-1  Nickel <6.3 µgL-1 
Nutrient profile Concentration  Bromine 82.0 mgL-1  Phosphorus 22.0 µgL-1 
Total ammoniacal-N <10.0 µgL-1  Cadmium <0.21 µgL-1  Potassium 0.4 gL-1 
Nitrite-N <2.0 µgL-1  Caesium <1.9 µgL-1  Rubidium 0.12 mgL-1 
Nitrate-N 4.0 µgL-1  Calcium 0.42 gL-1  Selenium <4.2 µgL-1 
Nitrite-N + Nitrate-N 4.0 µgL-1  Carbon 24.0 mgL-1  Silver <0.43 µgL-1 
Dissolved reactive P 8. 0 µgL-1  Chloride 19.0 gL-1  Sodium 11.2 gL-1 
Other Concentration  Chromium <1.1 µgL-1  Strontium 8.7 mgL-1 
Alkalinity (CaCO3) 116.0 mgL-1  Cobalt <0.63 µgL-1  Thallium <0.21 µgL-1 
Total Kjeldahl Nitrogen <0.2 mgL-1  Fluoride 1.6 mgL-1  Tin <1.7 µgL-1 
Reactive silica (SiO2) 0.29 mgL-1  Iron 5.4 µgL-1  Uranium 3.3 µgL-1 
Dissolved non-purgeable 
organic C 

1.1 mgL-1  Lead <1.1 µgL-1  Vanadium 1.9 µgL-1 
 Lithium 0.19 mgL-1  Zinc 6.3 µgL-1 

 
 

 

Table 7.2. Concentrations of various Cu species, presented as combined fractions, in the incubation tanks 
after addition of EDTA and the three levels of Cu treatment (T1–3). Note the differences in concentration 
units. 
 

Copper species/fraction Experimental copper concentrations 
Control T1 T2 T3 

Target total dissolved Cu 0.0 µgL-1 100 µgL-1 200 µgL-1 300 µgL-1 
Measured total dissolved Cu 2.6 µgL-1 130 µgL-1 250 µgL-1 370 µgL-1 
Humic-bound Cu 26.0 ngL-1 1.6 µgL-1 9.0 µgL-1 57.0 µgL-1 
EDTA-bound Cu 2.6 µgL-1 130 µgL-1 240 µgL-1 260 µgL-1 
Free Cu2+ 0.06 ngL-1 3.2 ngL-1 83.0 ngL-1 4.3 µgL-1 
Inorganic-bound Cu 4.0 ngL-1 39.0 ngL-1 0.98 µgL-1 51.0 µgL-1 
Non-bioavailable Cu 2.6 µgL-1 130 µgL-1 249 µgL-1 310 µgL-1 
Bioavailable Cu 0.47 ngL-1 0.04 µgL-1 1.1 µgL-1 50.3 µgL-1 
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 The bioavailable Cu which was previously present in the source seawater was 

almost entirely chelated (99.6%) by the addition of EDTA in the control tanks. The 

presence of the chelator also made substantial amounts of Cu biologically unavailable in 

the treatment tanks. The ability of 4 µM EDTA to complex high levels of toxic Cu species 

became limiting when the measured total dissolved Cu was between 250 µgL-1 (96% 

EDTA-bound) and 370 µgL-1 (70% EDTA-bound). Final treatment levels of bioavailable 

Cu were determined to be 0.04, 1.10 and 50.30 µgL-1. The pH and water temperatures in 

the incubation tanks did not change significantly throughout the experiment.  

7.3.2 Survival and Development 

At sublethal bioavailable Cu levels (0.04 and 1.10 µgL-1), the proportion of surviving 

embryos and larvae at each sampling time (18, 42 and 72 hrs post-treatment) were 

comparable to those surviving in the control tanks (t-tests; p > 0.05) (Figure 7.1A). 
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Figure 7.1. Effects of copper exposure on embryo/larval survival, larval development and larval swimming 
behaviour: A) Percent of organisms surviving at 18, 42 and 72 hrs post exposure to sublethal and lethal Cu 
levels, compared to controls; B) Percent of normally developed D-larvae, abnormally developed D-larvae 
(very small and/or with shell structure deformities), and abnormal swimming behaviour (static or slowed 
movement) after 66 hrs exposure to sublethal Cu levels, compared to controls.  
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 Survival data were derived from the embryo/larval densities within each 

incubation tank and represent the proportion of organisms present in relation to the 

number of embryos each tank was initially stocked with. All organisms sampled during 

the density enumerations were confirmed to be alive via neutral red uptake cell viability 

assays. The percent difference which represents mortality is assumed to be due to 

disintegration of biological material very soon after the organisms died.  

Although exposure of embryos to 50.3 µgL-1 of bioavailable Cu resulted in high 

survival for the first 18 hrs post-treatment, it is likely that they perished soon thereafter 

since there were no visible indications of biological material remaining after a 36 hr post-

treatment spot-check. A visual assessment during the cell viability assay after 18 hrs of 

high Cu exposure revealed that those embryos were also substantially delayed in their 

development. These comprised mostly of 16 to 32-cell blastulas, some gastrulas and a 

few non-swimming trochophores with evidence of abnormal cell differentiation in 

treatments vs. normally-developed and highly mobile trochophore-stage embryos in 

control tanks. In addition, although cell membrane integrity appeared to be mostly 

maintained in embryos exposed for 18 hrs to the high Cu treatment (due to the active 

transport of neutral red across the membrane and permanent incorporation into 

lysosomes), there were some evidences of changes in cell morphology and size (mostly 

through oncosis, but with some shrinkage also observed), cellular injury and blebbing, 

and a commencing loss in cellular adhesion through signs of cellular dissociation. These 

observations are strongly suggestive that the initiation of Cu-induced mechanisms of 

cellular apoptosis and/or necrosis was starting to occur in these samples. 

 Of the surviving organisms towards the end of the experiment (66 hrs post-

treatment), prolonged exposure of embryos to the sublethal Cu levels resulted in 

significant proportions of D-larvae displaying signs of reduced swimming velocity and 

abnormal trajectories (Figure 7.1B). In addition, approximately 10% of the D-larvae 
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which had been exposed to 1.10 µgL-1 bioavailable Cu showed clear indications of 

developmental abnormalities, such as retarded growth and deformities in shell structure.  

7.3.3 Metabolomics 

7.3.3.1 Lethal exposure effects 

Exposure of embryos to 50.3 µgL-1 bioavailable Cu caused extensive metabolic 

alterations prior to cell death. Hierarchical cluster analysis (HCA) (Figure 7.2) of the 3 

and 18 hr Cu-exposed groups and their respective controls revealed that all samples were 

correctly clustered based on the underlying structure of the metabolomics data. 

 

 

 
Figure 7.2. Hierarchical Cluster Analysis (Euclidian distance; Ward’s criterion) of embryo samples 
(branches) based on global compositional changes in metabolites as a response to lethal-level Cu 
exposure.  
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 Heatmap analysis (Figure 7.3A) of the 83 metabolites detected provides a very clear 

visualisation of the global differences/similarities in the metabolite expression profiles 

which were responsible for the distinct HCA clustering of the embryonic samples. Although 

variations exist between sample replicates for some metabolites, these are mostly quite low 

considering the entire dataset, and general metabolite expression patterns are easily 

discerned. Due to the large influence of the baseline developmental phenotype on the 

embryonic metabolomes (i.e., 3 vs. 18 hr control samples), and the differential metabolic 

responses to lethal Cu levels between these groups, separate PLS-DA models were 

constructed for each development stage (Figures 7.3B & 7.3C). 

For the 3 hr Cu-exposed embryos (Figure 7.3B), LV1 accounted for 30.5% of the 

explained variation between sample groups in the PLS-DA model (R2 = 0.99; Q2 = 0.61). 

Analysis of the VIP scores (Figure 7.3D) revealed that the abundances of 35 features 

contributed most  (i.e., VIP ≥ 1.0) towards sample classification, including metabolites 

associated with energy production (succinic, fumaric and malic acids), lipid metabolism 

(free fatty acids), protein metabolism and osmotic regulation (free amino acids), among 

others. Univariate SAM analysis (Figure 7.4A) identified 17 metabolites that were 

statistically different between control and treatment groups after 3 hrs exposure, with 

varying directions of expression (+ve vs. –ve foldchanges). 

After 18 hrs exposure, the effect of lethal level Cu on the embryonic metabolome 

was far more pronounced. PLS-DA analysis of the 18 hr Cu-exposed embryos (Figure 7.3C) 

resulted in LV1 accounting for 76.3% of the explained variation between groups in the 

classification model (R2 > 0.99; Q2 > 0.99). Of the total number of metabolites detected, a 

substantial proportion (61%) contributed highly (VIP ≥ 1.0) towards the PLS-DA model 

(Figure 7.3E). After 18 hrs exposure, SAM analysis (Figure 7.4B) identified 62 metabolites, 

including 18 unannotated metabolites/ features, with abundances that were statistically 

different between control and treatment groups. 



Chapter 7A 

267 | P a g e  
 

 

 
Figure 7.3. Toxicological effects of lethal level Cu on the embryonic metabolome after 3 and 18 hrs 
exposure: A) Heatmap of metabolite levels (red > green) with combined HCA of all metabolite features 
(rows where n = 90); B–C) Projection to Latent Structures Discriminate Analysis (PLS-DA) plots of 3 and 
18 hr exposed embryos, respectively, compared to their control groups; D–E) Variable of Importance (VIP) 
scores for each of the PLS-DA models 
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Figure 7.4. Lists of altered metabolites detected via SAM analysis in embryos exposed to: A) lethal-level 
Cu for 3 hrs (FDR = 0.11); B) lethal-level Cu for 18 hrs (FDR = 0.01). Red circles ( ) indicate metabolite 
foldchanges in Cu-treated embryos relative to control embryos (green circles;  ) plotted using a log2 scale. 
 
 

 Comparing the 3 and 18 hr exposure data, the majority of metabolites that were 

differentially expressed after 3 hrs were also differentially expressed after 18 hrs (Figures 

7.4A & B). In addition, many of these metabolites displayed similar foldchange 

directions. For example, lysine, β-alanine, valine, dodecanoic acid, and an unassigned 

feature (142[100] 153[51.8]…) were all up-regulated in the Cu-exposed groups; whereas 

methionine, aminomalonic acid, glutathione, and 2-aminobutyric acid were similarly 
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down-regulated. Conversely, a number of metabolites exhibited differential expressions 

which were dependant on the duration of Cu exposure. For example, after 3 hrs, the 

abundances of some energy-associated metabolites (malic, fumaric, and lactic acids) were 

all up-regulated compared to control embryos; but after a further 15 hrs of Cu-exposure, 

the expression patterns of these functionally-related metabolites switched into a 

coordinated mode of down-regulation. Quantitative enrichment analysis and network 

topology analysis of the 3 and 18 hr metabolite datasets (treatment vs. control) exposed 

some major changes in pathway regulation, which could be compared when overlaid 

(Figure 7.5). After 3 hrs Cu exposure, 8 pathways were identified as being differentially 

regulated compared to control embryos. These comprised of networks associated with 

energy production, glutathione metabolism, biosynthesis of aminoacyl-tRNA, and various 

subsets of amino acid metabolism.  
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                                                     Pathway Impact 
Figure 7.5. Pathway enrichment and topology analysis of the effects of lethal level bioavailable Cu (50.3 
µgL-1) on embryos after 3 hrs (blue circles) and 18 hrs (red circles) exposure, compared to their respective 
controls. The y-axis represents the −log of the raw p-value (i.e., ln[x]) associated with pathway enrichment 
analysis, and the x-axis represents the Pathway Impact (PI) score associated with topology analysis (a 
measure of metabolite centrality within the pathways). The black dotted line denotes the threshold p-value 
of significance, where pathways below the line (p > 0.05) were identified as not being significantly different 
from those functioning in control embryos. The effects of Cu exposure duration on differentially enriched 
pathways are seen as vertical shifts in significance.  
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 After 18 hrs Cu exposure, all but one of these pathways (pyruvate metabolism) 

became more significantly disturbed compared to the metabolic baselines controls – as 

revealed by the pronounced vertical movement of the data. In addition, the extended 

exposure duration also resulted in a further 10 pathways displaying differential regulation 

compared to control embryos. These included networks associated with extra subsets of 

amino acid metabolism, methane metabolism, glyoxylate and dicarboxylate metabolism, 

arachidonic metabolism, and fatty acid biosynthesis. See Figure 7.6 for three examples of 

pathways identified as being differentially regulated after 18 hrs exposure of embryos to 

a lethal level of bioavailable Cu. 

 

 

 

  
 

Figure 7.6. Examples of differentially enriched pathways, extracted from the KEGG database, in embryos 
exposed to lethal level bioavailable Cu (50.3 µgL-1) for 18 hrs, compared to control organisms: (A) Alanine, 
aspartate and glutamate metabolism (p < 0.001; FDR < 0.001; PI = 0.61), (B) Glutathione metabolism (p = 
0.004; FDR = 0.008; PI = 0.41), and (C) TCA cycle (p = 0.006; FDR = 0.010; PI = 0.19). Boxes which vary 
from yellow to red represent metabolites that were identified and quantified with our methods. Their colour 
indicates the level of significance (light yellow: p > 0.05, light orange to red: p < 0.05) from unpaired t-
tests (control vs. treatment). Levels of light blue compounds in the pathways were not detected, but were 
used as background information for enrichment analysis to calculate the proportion of identified compounds 
within each pathway, and in topology analysis to determine the position (relative-betweenness centrality) 
and importance of each metabolite. 
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7.3.3.2 Sublethal exposure effects 

Exposure of mussel embryos to sublethal levels of bioavailable Cu (0.04 and 1.10 µgL-1) 

revealed that even low concentrations had substantial effects on metabolism (Figure 7.7). 

These metabolic responses were dependant both on the concentration and duration of Cu 

exposure. PLS-DA analysis of the sublethal metabolomics data across all samples 

revealed that there was a clear metabolic trajectory associated with developmental timing 

(Figure 7.7). For each Cu exposure duration, deviations from this baseline trajectory was 

apparent. The positioning of treated samples within the PLS-DA score plot, relative to 

their respective controls, indicated that different metabolites were responsible for 

variations in treatment-induced trajectories along the LV1 and LV2 axes.  

 
Figure 7.7. Metabolic trajectory analysis derived from PLS-DA of control embryos (yellow circles) and 
embryos continuously exposed to 0.04 gL-1(orange circles) and 1.10 gL-1 (red circles) bioavailable Cu. Data 
are presented as means ± SD of triplicate samples. Black lines/arrows summarise the main 
trends/trajectories during baseline embryonic development and in response to sublethal Cu exposures for 
each treatment duration. 
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 Due to the large effect of developmental timing on the embryonic metabolome, 

subtleties of some treatment effects were masked; especially when their trajectories 

aligned with the metabolic path during baseline development (i.e., exposure of embryos 

to 0.04 µgL-1 bioavailable Cu after 18 and 42 hr exposures). Thus, to remove unimportant 

components of the global variation contributing towards group partitioning in the model, 

and visually capture the effects of Cu treatments without developmental-induced biases, 

phenotypic normalisation was applied and the resulting data were replotted (Figure 7.8). 

 

 

 

Figure 7.8. Phenotype normalised metabolic trajectory analysis derived from PLS-DA of control embryos 
(yellow circle) and embryos continuously exposed to 0.04 gL-1 (orange circles) and 1.10 gL-1 (red circles) 
bioavailable Cu. Control data are presented as the mean ± SD of 12 replicates (i.e., triplicate samples for 
each development stage/ exposure duration), whereas treatment data are presented as means ± SD of 
triplicate samples. Black lines/arrows summarise the main metabolic trends/trajectories in embryos/larvae 
for each exposure duration, and the coloured dashed lines summarise the metabolic trends/trajectories of 
embryos exposed to each Cu level during the experiment. 
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 The new PLS-DA score-plot (Figure 7.8) produced revealed that both the low and 

the medium bioavailable Cu treatment levels substantially perturbed embryo and larval 

metabolic signatures compared to controls. For each exposure duration, the divergent 

trajectory directions and lengths along the LV1 and LV2 axes further substantiate that the 

relative abundances of different metabolites are responsible for the observed pattern, and 

provides evidence that the toxic effect of Cu on the embryonic/larval metabolome is time-

dependant. Furthermore, there appears to be similar temporal treatment effects between 

the two Cu treatment levels (dotted lines) which could not be discerned prior to 

phenotypic normalisation. This trend is consistently offset between the two Cu treatment 

levels (with the higher dose being further from away from controls than the lower dose) 

which indicates that higher Cu exposures cause more pronounced disturbances to baseline 

metabolism than the lower Cu dose regardless of exposure duration or development stage. 

However, since the positioning of the samples between Cu treatments within each 

exposure duration are located relatively close to one another, this suggests that the 

duration of exposure causes more pronounced effects than the concentration of toxin 

tested.   

Comparing the 42 hr exposure and 72 hr exposure data in Figure 7.8, there are 

indications that some of the major metabolic changes which are induced by Cu after 42 

hrs may return more closely to the metabolic baseline, or towards earlier exposure 

duration effects, along the vertical LV2 axis after continued toxin exposure; whereas other 

metabolites become more differentially perturbed due to the horizontal shift along the 

LV1 axis. These interpretations are supported by inspection of the metabolite foldchange 

values compared to their respective controls (Figure 7.9); combined heatmap and 

hierarchical cluster analysis of the mean metabolite foldchanges for each sublethal Cu 

treatment and exposure duration provides a visual summary of the relative metabolite 

abundance data.  
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Figure 7.9. Heatmap and cluster analysis (left) of mean metabolite foldchanges in Cu-treated organisms 
relative to their respective controls, where: Tn = exposure duration (hrs); Low = 0.04 µgL-1 bioavailable 
Cu; Med = 1.10 µgL-1 bioavailable Cu. Five general treatment-averaged foldchange trends are also 
displayed (line plots on right) based on the cluster analysis.    
 

 

 Although there are some treatment concentration effect variations for some 

metabolites (e.g., within the 18 hr exposure group), many of the metabolite responses are 

similar between the two different Cu doses (e.g., within the 3 hr exposure group). This 

correlates well with the separation of samples groups in the phenotype normalised PLS-



Chapter 7A 

275 | P a g e  
 

DA model (Figure 7.8), and provides contextual rationale for their spatial positions. 

Furthermore, some clear patterns can easily be discerned between the exposure durations. 

 After 3 hrs, most metabolites increased in their relative abundances compared to 

non-Cu treated controls. After 18 hrs, many metabolite levels within the low Cu dose 

exposure remained higher than in control embryos; whereas levels of various metabolites 

in the high dose exposure group had dropped below control values. After 42 hrs, the 

majority of metabolites consistently had negative foldchange values (ca. −2.0) compared 

to control organisms. These observations suggest that the higher of the two Cu doses 

began initiating the temporal change in metabolite profiles much earlier (after 18 hrs in 

trochophore-stage embryos) than the lower treatment dose (after 42 hrs in D-stage larvae). 

Continued exposure to sublethal Cu levels resulted in differential metabolite responses 

after 72 hrs. The relative abundances of a few metabolites (e.g., succinic acid, 2-

aminobutyric acid) increased substantially above control values, many metabolites (e.g., 

glutamine, histidine, cystathionine) appeared to return to levels corresponding with those 

induced earlier after 3 hrs exposure, and a number of metabolites (e.g., asparagine, citric 

acid) had re-established back to the baseline controls. These general trends are 

summarised by plotting the mean Cu-induced foldchange values for each exposure 

duration based on the cluster analysis of metabolites which identified five broad response 

patterns (Figure 7.9 line plots).  
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7.4 Discussion 

7.4.1 Bulk seawater composition 

Most of the bulk seawater compositional features (Table 7.1) were within the range of 

expected values for nearshore waters in New Zealand. However, according to the 

Australian and New Zealand guidelines for marine water quality (ANZECC & 

ARMCANZ 2000), the total Cu level measured (2.9 µgL-1) was more than two-fold 

higher than the 95% trigger value (1.3 µgL-1). Guideline trigger values are concentrations 

that indicate a potential environmental problem if exceeded. The percentage value is the 

protection level that signifies the proportion of species expected to be protected if total 

Cu ≤ 1.3 µgL-1. Taking into consideration the concentration of dissolved organic carbon 

(DOC), speciation modelling revealed that the majority (ca. 95%) of the total Cu was 

bound to humic substances. The resulting level of bioavailable Cu in the bulk seawater 

prior to EDTA additions was 0.133 µgL-1.  

 Since the seawater had been through a treatment process and thermally 

equilibrated for 24 hrs prior to testing, it cannot be specified whether the source of the Cu 

was entirely from naturally-occurring background levels, elevated through a source of 

environmental contamination, or attributable to some aspect of the water treatment 

practices that was employed. Nevertheless, the measured level of total Cu was due to 

some inherent aspect of the seawater which would typically be used during commercial 

hatchery production of mussel larvae. This may be of concern for aquaculture operations 

at the facility; particularly for subsequent post-embryo incubation phases of larval rearing 

when EDTA additions are not normally applied (personal communication, N. Hawes; 

SPATnz, 2015). 

7.4.2 Cu speciation, toxicity and macroscopic endpoints  

Speciation and competition of trace metals in aquatic environments is complex and 

depends on a multitude of factors, including: pH, temperature, salinity, inorganic ion 
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composition, and DOC content (Deruytter et al. 2015). In seawater, the chemical 

speciation of Cu is largely dominated by the formation of organic complexes, with humic 

substances being the chief mediators (Kogut & Voelker 2001). When bound to these 

substances, Cu toxicity is greatly ameliorated since the free cupric ion is not available, or 

less available, for uptake by aquatic organisms (Lorenzo et al. 2005; Nadella et al. 2009). 

Remaining Cu comprises of free Cu2+ and an array of Cu-containing inorganic 

compounds. In these weakly-bound ionic forms, Cu is labile, bioavailable, and toxic 

(Sander et al. 2015). 

 To provide industry-relevant information in the current study, the addition of 

EDTA into the incubation tanks was included to simulate commercial hatchery conditions 

(Helm et al. 2004). Without EDTA, embryonic development and D-larval yield is 

routinely very low for this species (< 10%) with occurrences of cellular membrane 

degradation, detachment of microvilli, perivitelline space increases, changes in 

behaviour, and various enzymatic and macromolecular evidences of severe oxidative 

stress (Buchanan 1998; Gale et al. 2016). The precise reason for the consistently higher 

successes observed with EDTA supplementation during embryogenesis is not known. 

Although, it is possible that the chelator reduces toxic levels of bioavailable trace metals 

from contaminated source water (Liu et al. 2006). EDTA may alternatively be acting to 

reduce the activities of virulence factors associated with ubiquitous pathogenic bacteria 

such as Vibrio sp. (Hasegawa et al. 2008; Hasegawa & Häse 2009; Mersni-Achour et al. 

2015), may be exerting its positive effects during embryogenesis through some currently 

unknown biological role, or could be functioning in a multifaceted manner.  

 The addition of EDTA to the embryo incubation water resulted in the relatively 

high levels of nominal total Cu2+ treatments (100 and 200 µgL-1) exerting sublethal 

effects. Estimation of the bioavailable Cu fraction (free Cu2+ + ∑ inorganic labile species) 

within each sublethal treatment determined that 100 µgL-1 nominal total Cu = 0.04 µgL-1 
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bioavailable Cu, and 200 µgL-1 nominal total Cu = 1.10 µgL-1 bioavailable Cu, with the 

vast majority of total Cu in these treatments being strongly bound as Cu-EDTA 

complexes. These findings may be of interest to the developing mussel industry in New 

Zealand because such levels of total Cu are beyond those which would normally be found 

within local coastal waters, even in highly polluted zones (e.g., within the Waitemata 

Harbour, Auckland [Gadd & Cameron 2012]), and supports the continued used of EDTA 

during the hatchery culture of this species as a precautionary safety measure against heavy 

metal contamination. 

 The chemical structures and relative toxicities of the various Cu species in 

estuarine and marine waters are difficult to accurately determine and continues to be an 

extremely active area of research (Sander et al. 2015; Benedict et al. in prep.). While the 

highly labile Cu species are considered most responsible for the toxic effects in this study, 

it is possible that other Cu-bound components also contributed to the behavioural, 

developmental, and molecular responses that were observed. 

 Although most Cu-organic complexes have low toxicities, those which are lipid-

soluble can penetrate cell membranes, allowing both the Cu and the ligand to enter cells 

(Stauber et al. 1996). Indeed, stable isotope (65Cu) labelling has been used to demonstrate 

that some Cu-DOC complexes can be taken up and accumulated within tissues of juvenile 

mussels (Zhong et al. 2012), and it is likely that they contribute towards Cu toxicity in 

mussel larvae (Deruytter et al. 2015). Furthermore, although EDTA substantially reduces 

Cu toxicity (via formation of the stable Cu-EDTA complex and resultant reduction in free 

Cu2+ concentration) toxic responses to the complex itself have been observed in fish, 

water fleas, ciliates, and bacteria (Schmidt & Brauch 2004). Cu-EDTA has also been 

shown to cause dysregulation of lipid metabolism in hepatic cell cultures (Kennedy et al. 

2009), and induces differential expression of ROS-regulatory and stress-related enzymes 

in fish (Shen et al. 2004; Liu et al. 2006). Thus, it is important to highlight that the 
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concentrations of ‘bioavailable Cu’ reported herein may not fully represent the entire 

quantities of copper which were responsible for the developmental and biochemical 

effects observed. 

 The lower treatment levels were not lethal, but they did induce developmental 

retardation, behavioural abnormalities, and structural deformities in a dose-responsive 

manner. Under the experimental conditions that were employed, evidence from the larval 

development data reveal that the approximate 72hr EC10 of bioavailable Cu was around 

1.10 µgL-1. Comparative embryotoxcity information for the effects of Cu on P. 

canaliculus is thus far lacking. However, these results do fall within the ranges reported 

for embryos of other marine invertebrate species found in New Zealand. For example, the 

72 hr EC10 values for Cu are 0.7 and 2.1 µgL-1 for the gastropod mollusc Haliotis iris 

and the sea urchin Evechinus chloroticus, respectively (Rouchon 2015), and the 

approximate 48 hr EC10 for the mussel Mytilus galloprovincialis typically ranges 

between 0.5–3.1 µgL-1 (Worboys et al. 2002; Beiras & Albentosa 2004; Fabbri et al. 2014; 

Deruytter et al. 2015). The longer term implications of these sublethal effects on 

subsequent growth, larval fitness, settlement and recruitment success, and potential post-

metamorphic carryover effects are yet to be investigated. 

7.4.3 Metabolomics 

Metabolite profiling demonstrated that the embryonic and larval metabolomes of marine 

mussels are extremely sensitive to Cu-induced toxicological influences. These entire 

profiles are representative of unique ‘metabolic fingerprints’ that reflect health condition, 

and are thus in themselves biomarkers of physiological status. Based on the composition 

of metabolites within tissues, distinct metabolic trajectories associated with embryonic 

developmental timing, levels of Cu concentration, and the duration of Cu exposure were 

identified. Discrimination of treatment groups were obtained via unsupervised and 
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supervised multivariate analyses, with results showing the presence of intricate temporal 

metabolite variations.  

 One striking feature of the sublethal data was what appeared to be a general sine 

wave signal of metabolite foldchanges in Cu-exposed embryos compared to controls. This 

may suggest that an initial toxic shock, revealed by subtle accumulations of many 

metabolites in late-stage blastula embryos, was buffered via metabolic adaption, leading 

to transitional returns towards baseline levels through trochophore development. 

However, many of these metabolites fell below control levels in early D-stage larvae, 

indicating considerable metabolic dysregulation. This perturbation seemed to trigger an 

attempt to re-establish baseline metabolism during subsequent development to overcome 

possible deleterious effects of sublethal treatments.  

 Extended exposure of embryos to sublethal Cu beyond the experimental duration 

that was employed might result in further metabolic imbalances and transpire in newly 

significant departures from the metabolic baseline. Indeed, some metabolites at the end 

of the trial did appear to be on statistical trajectories which may support future 

divergences. In addition, although not explicitly illustrated in the line plots of the 

averaged metabolite foldchanges across the two sublethal treatment concentrations 

(Figure 7.9), closer inspection of the heatmap data revealed cases of treatment level-

induced offsets in the sine wave responses. This indicates that the two sublethal Cu doses 

led to particular temporal differences; in some cases with the higher treatment seemingly 

inducing faster metabolic responses within the general trend (e.g., succinate, malonic 

acid, aconitic acid, and the unknown metabolite 088(100)43(72.8). 

A lethal-level Cu dose triggered major alterations of many metabolites, and 

resulted in catastrophic metabolic failures and mortalities shortly after 18hrs of exposure. 

Pathway analysis revealed the occurrence of disturbances to a number of functionally-

related metabolites within a range of known biochemical pathways. This approach 
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enabled unique temporal profiles dependant on exposure duration to be discerned which 

might not otherwise have been identified using more conventional procedures. As might 

be expected, dysregulation of these pathways became more severe with time. Eight out 

of 19 pathways showed signs of imbalance after 3hrs of high Cu exposure, whereas 18 

out of the 19 pathways were likely affected after 18hrs exposure. Changes in metabolite 

compositions indicated dysregulation of energy production, occurrence of osmotic stress, 

potential neuro- and immuno-toxic associations, and numerous evidences for oxidative 

stress through disrupted regulation of reactive oxygen species (ROS).  

7.4.3.1 Disturbance in energy metabolism 

Under normal physiological circumstances, concentrations of TCA cycle intermediates 

remain almost constant (Sweetlove et al. 2010). When intermediates are removed to serve 

as biosynthetic precursors they are typically replenished in dynamic balance via 

anaplerotic reactions (e.g., glutamine → α-ketoglutarate) (Cheng et al. 2011). However, 

decreases in the abundance of TCA cycle intermediates can be considered indicative of 

increased pathway flux, ATP demand, utilisation for secondary biosynthesis, and/or 

reduced mitochondrial function; and vice versa (Chan et al. 2009; Aggio et al. 2010; 

Morita et al. 2013). After 42 hrs exposure, sublethal-level Cu treatments caused 

reductions in citrate, cis-aconitate, fumarate and malate. These data may suggest that low 

concentrations of Cu altered energy metabolism in early D-stage larvae through enhanced 

demands for ATP to fuel detoxification processes, such as synthesis of antioxidant 

enzymes. Indeed, sublethal trace metal exposures increase respiration rates in various 

organisms probably to account for enhanced ATP expenditure during toxin-induced 

requirements for defense and repair mechanisms whilst simultaneously maintaining basal 

metabolism (Romanowska et al. 2002; Vosloo et al. 2002; Handy 2003; Muyssen et al. 

2006). The decreased pool of free amino acids at this time may also indicate enrichment 
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in protein synthesis and/or an enhanced requirement for energy through their oxidisation 

and utilisation as TCA cycle substrates.  

 Regardless of the precise mechanism responsible for the lowered abundances of 

TCA cycle intermediates after 42 hr sublethal exposures, these responses were transient, 

with levels of all detected TCA cycle intermediates returning, or adhering, to baseline 

levels by the end of the trial. This demonstrates a capacity for metabolic regulation of 

immunotoxicity in developing D-larvae. Since metabolite levels throughout the pathway 

were simultaneously reduced after sublethal level exposures, it appears that there was no 

particular break or obstruction stemming from inhibition of one or more TCA cycle 

enzymes; this is in contrast to lethal-level treatments.  

 Cis-aconitate (positioned between citrate and aconitate in the TCA cycle) is a key 

substrate for the enzyme aconitase. Exposure of embryos to lethal-level Cu induced an 

accumulation of this metabolite, which can be attributed to reduced aconitase activity 

(Cheng et al. 2013). Iron-sulphur-containing aconitase is a well-known target of Cu 

toxicity and, being the most sensitive TCA cycle enzyme to ROS-inhibition, its activity 

can be used as a biomarker of oxidative stress (Tretter & Adam-Vizi 2000; Bota & Davies 

2002; Talbot & Brand 2005; Cherkasov et al. 2007; Lushchak et al. 2014). Enzyme 

inhibition in the case of Cu toxicity involves O2˙ 

– and OH˙ produced via the Haber–Weiss 

reaction, a process analogous to the Fenton reaction (Winterbourn 1995; Muakami & 

Yoshino 1997; Kehrer 2000). Oxidative inactivation of aconitase promotes cluster 

instability, causing the enzyme to release redox-active Fe2+ and stimulating the associated 

formation of H2O2 which encourages Fenton reaction events and further production of 

OH˙, thus creating a self-amplifying cycle if unresolved (Cantu et al. 2009; Rose et al. 

2012). Aconitase therefore forms a direct link between ROS metabolism, iron 

homeostasis, the flow of metabolite intermediates in the TCA cycle, and energy 

production (Lushchak et al. 2014). 
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Cheng et al. (2013) recently demonstrated via aconitase gene knockdown in a 

Drosophila model that reduced mitochondrial aconitase activity impairs glycolysis and 

the TCA cycle, and decreases generation of ATP. Specific markers of impaired energy 

metabolism caused by reduced aconitase activity included an increase in levels of cis-

aconitate, and substantial concomitant decreases in downstream levels of succinate, 

fumarate and malate. Results of the current study match this metabolite expression pattern 

for the group of embryos exposed to lethal-level Cu for 18 hrs, with the potential Cu/ROS-

induced inhibition of aconitase limiting the synthesis and turnover of downstream TCA 

cycle intermediates under severe oxidative stress conditions. 

7.4.3.2 Amino acid metabolism 

Compositional alterations in the free amino acid (FAA) pool in Cu-exposed embryos were 

dependant on exposure duration and level of treatment. FAAs play a number of diverse 

roles in marine organisms; they represent the pool from which new proteins can be 

synthesised during early development, and they serve as important fuels for energy 

acquisition in embryos and larvae (Rønnestad & Fyhn 1993, Rønnestad et al. 2003). The 

FAA pool is also the receiving depot for the catabolism of endogenous protein during 

embryogenesis in some bivalves (da Costa et al. 2011), as well as the proteinaceous 

components of food once feeding-competency has been attained. Total free essential 

amino acid contents can be used as a rough proxy for protein turnover (Waterlow 2006), 

and these patterns likely reflect in part differential capacities and/or requirements for 

protein production through embryogenesis, and between treatments and controls. Indeed, 

with major perturbations to most of the FAAs detected, aminoacyl-tRNA biosynthesis 

being identified as a significantly affected pathway was a likely outcome due to its pivotal 

role in delivering amino acids to ribosomes during protein synthesis. 
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FAAs also have diagnostic capabilities for early detection of various pathologies, 

and can serve as biomarkers for a number of physiological states (Combs et al. 2013). 

Particular amino acids may contribute toward antioxidant protection as small peptides 

(e.g., glutathione) (Wu et al. 2003; Elias et al. 2008), some act as signalling molecules or 

precursors for their synthesis (e.g., glutamate and tyrosine) (Hyde et al. 2003; Meijer & 

Dubbelhuis 2004), whereas others have important biochemical roles specific for the 

adaption of aquatic organisms to flourish in marine environments. For example, marine 

osmoconformers such as bivalve molluscs utilise certain FAAs as organic osmolytes to 

balance intracellular osmolality with the external medium (Kube et al. 2006).  

7.4.3.3 Osmotic disturbance 

Free glycine, alanine and β-alanine serve as organic osmolytes in bivalves and their levels 

are associated to changes in salinity (Powell et al. 1982; Sansone et al. 1987; Hosoi et al. 

2003), with sodium-dependant cotransport being responsible for their accumulation or 

release from tissues to maintain cell volume (Preston 1993; Kube et al. 2006). These 

osmolytes were differentially regulated in Cu-exposed embryos, compared to controls. 

Heavy metal toxicity appears to be strongly dependant on the abilities of some organisms 

to regulate intracellular osmolality. However, there are still many questions surrounding 

the osmoregulatory mechanistic basis for salinity-dependant Cu toxicity, and especially 

so in regards to marine osmoconformers (reviewed by Grosell et al. 2007). Nevertheless, 

exposure of marine bivalves to Cu and other metals are known to induce compositional 

variations in FAAs with osmolytic function (Wu & Wang 2010; Zhang et al. 2011; Kwon 

et al. 2012; Ji et al. 2015a,b), and some new mechanistic advances have progressed our 

understanding of Cu-induced toxicity in these organisms. Although it has been suggested 

that Cu-toxicity in marine molluscs is more related to effects on acid-base equilibrium 
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and ammonia excretion rather than on imbalances in ion regulation, intracellular ion 

regulation plays a key mechanistic role (Grosell et al. 2007).  

Exposure of marine clam mantle and gill cells to Cu results in reductions of 

intracellular Na+, K+, and Cl- concentrations, which is presumed to be associated with 

inhibition of Na+/K+-ATPase activity and competition by Cu for cell membrane ion 

transport systems, such as Na+ channels and the Na+/K+/2Cl- cotransporter (Lopes et al. 

2011; Nogueira et al. 2013). On the other hand, although hemolymph osmolality and 

concentrations of Na+ and K+ are not altered by Cu exposure in clams, Na+/K+-ATPase 

expression and total activity increases in gills and digestive glands (Boyle et al. 2013; 

Jorge et al. 2016). This suggests that increased Na+/K+-ATPase expression may be a 

compensatory physiological response to ameliorate the metal-induced inhibition of 

enzyme activity. Additional Cu-induced changes on intracellular levels of divalent 

cations (Mg2+ and Ca2+) have also been observed in clams (Jorge et al. 2016), and Ca2+ 

flux has been linked with organic osmolyte transport systems in mussels and clams 

(Bishop et al. 1994; Pierce 1994). Thus, it is becoming clearer that Cu is an ionoregulatory 

toxicant in marine bivalves, affecting ionic and volume control at the cellular level; 

although further work is needed to tease out the intricacies of Cu-induced intracellular 

ion modulation and co-dependant associations with organic osmolytes such as those 

detected in the present study. In order to fill some of these knowledge gaps, a 

comprehensive approach incorporating multiplatform metabolomics to specifically assess 

a broader range of organic osmolytes and associated metabolic features, combined with 

targeted analyses of enzyme activities/expressions and intracellular ion concentrations, 

could substantially enrich our understanding of the osmoregulatory mechanisms involved 

in Cu toxicity.  
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7.4.3.4 Neuorotoxicity 

Neurotoxicity, defined as ‘the capacity of chemical, biological, or physical agents to cause 

adverse functional or structural changes in the nervous system’ (NRC 1992), may have 

been an important mechanistic feature contributing towards deteriorating health in Cu-

exposed embryos. It has recently been established that neurogenesis in P. canaliculus 

commences early on during development, with expressions of solitary FMRF-amidergic 

cells being identifiable via immunochemical labelling at the trochophore stage (18 hrs 

post-fertilisation) (Rusk et al. 2017). By the early D-larval stage (42 hrs post-fertilisation), 

immunoreactivity patterns within neural compartments are consistent with initial 

formation of the cerebral ganglion, which quickly progresses to include the emergence of 

the peripheral system and mantle nerve within a couple of days. In the current study, a 

number of amino acids associated with neurotransmission were found to be differentially 

regulated. Pathway enrichment analysis also substantiated this with detection of 

significant network alterations to glutamine and glutamate metabolism, as well as 

phenylalanine, tyrosine and tryptophan metabolism.  

Phenylalanine and tyrosine are precursors for the biosynthesis of L-DOPA and 

the catecholamine signalling messengers, dopamine and epinephrine. These amino acids 

and/or their neuroactive derivatives can modulate larval behaviours in different mussel 

species, including P. canaliculus (Young et al. 2009; Alfaro et al. 2011; Sanchez-Lopez 

et al. 2012; Young et al. 2015). Such metabolites also have abilities to regulate larval 

swimming activities and developmental timing of other molluscan taxa through their 

actions on ciliary beat frequencies of innervated velar tissues and morphogenetic 

programmes, respectively (Alfaro et al. 2014; Young et al. 2016). Although a targeted 

analysis of neurotransmitters was not performed in the present study, levels of 

phenylalanine and tyrosine are tightly coupled with production of endogenous 

catecholamines in molluscs, and are thought to regulate neuronal processes in developing 
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embryos and larvae. For example, enhancement of tyrosine or L-DOPA concentrations in 

molluscan tissues leads to increased catecholamine synthesis (Boadle-Biber & Roth 1972; 

Pires et al. 2000; Zhu et al. 2005), and inhibition of the catecholamine re-uptake system 

in oyster embryos leads to developmental retardation, reduction in growth rate, and 

formation of shell structure abnormalities in early D-stage larvae (Di Poi et al. 2014). 

 Neurotoxic effects of heavy metals on metabolite intermediates associated with 

catecholamine biosynthesis have been described in studies using various model 

invertebrates. Exposure of the nematode Caenorhabditis elegans to sublethal Pb levels 

reduces whole animal tissue concentrations of free phenylalanine and tyrosine, and is 

suggested to contribute towards toxicity through deleterious neuronal consequences of 

atypically enhanced catecholamine production (Sudama et al. 2013). Short term exposure 

of water fleas (Daphnia magna) to sublethal levels of metals (Cu, Li and/or Cd) for 24–

48 hrs also causes a reduction in phenylalanine content, increases tyrosine hydroxylase 

gene expression, and enhances production of L-DOPA and dopamine (Poynton et al. 

2011; Nagato et al. 2013). These coordinated precursor-product alterations are highly 

supportive of a mechanistic link, and the upregulation of this pathway may be a general 

response to metal stress (Nagato et al. 2013). 

 Reductions in phenylalanine content after 48 hrs exposure of mussel embryos to 

sublethal Cu treatments were closely mirrored by levels of tyrosine. This may be 

suggestive of enriched catecholamine synthesis. Interestingly, the developmental 

abnormalities and altered swimming behaviours that were observed in approximately 

10% of the D-larval population are consistent with the effects observed by Di Poi et al. 

(2014) in oyster larvae due in part to elevated catecholamine concentrations in synaptic 

clefts, and the cilioinhibitory function of catecholamines (Carol & Catapane 2007), 

respectively. Towards the end of the trial, free phenylalanine and tyrosine contents in 

mussel larvae appeared to have gone through a period of recovery, potentially indicating 
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metabolic adaption to prolonged low-level Cu exposure. In contrast, phenylalanine 

content in embryos exposed to the highest Cu treatment for 18 hrs was greater than in 

control organisms, which may indicate disruption of baseline catecholamine biosynthesis 

in moribund embryos as one of the catastrophic metabolic failures contributing towards 

mortality.  

 Tryptophan is the precursor for the biosynthesis of the neurotransmitter serotonin. 

The role of serotonin in mollusc development is also very important early on during 

embryogenesis. Its presence, along with enzymes responsible for its production and the 

receptors to which it binds, are found in various embryonic stages of diverse molluscan 

taxa (Dickinson et al. 2000; Buznikov et al. 2003; Franchini 2005; Filla et al. 2009). 

Serotonin is involved in oocyte maturation, fertilisation, and cleavage divisions, and also 

regulates embryonic rotations, is associated with embryo/larval sensory organs, and has 

been implicated in controlling development rates and larval behaviours (Geurrier et al. 

1993; Kempf et al. 1997; Filla et al. 2009; Young et al. 2009). Cu-induced neurotoxicity 

via modulation of tryptophan metabolism and disruption of the serotonergic nervous 

system has not yet been investigated in molluscan embryonic forms. However, such 

mechanisms have been shown in other aquatic models. For example, Cu exposure reduces 

levels of serotonin in fish (De Boeck et al. 1995), whereas supplementation of fish feeds 

with tryptophan increases serotonin synthesis (Lepage et al. 2002; Morandini et al. 2015), 

and also substantially enhances resistance to the metal (Hoseini et al. 2012; Fatahi & 

Hoseini 2013). The benefits of tryptophan towards ameliorating Cu toxicity are thus 

thought due in part to its role in upholding serotonin production for normal physiological 

functioning. The lowered abundance of free tryptophan that was observed after exposure 

of embryos to lethal-level Cu after 18 hrs, and sublethal levels after 42 hrs, may have 

been due to a concerted metabolic effort to retain serotonin concentrations within 

neuronal cells and synapses, thereby reducing neurotoxic symptoms.  
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Glutamine is the common precursor for the biosynthesis of glutamate and ƴ-amino 

butyric acid (GABA). Glutamate is considered a major excitatory neurotransmitter, 

whereas GABA is a major inhibitory neurotransmitter across vertebrate and invertebrate 

taxa. However, they can act in both excitatory and inhibitory modes specifically in the 

case of particular molluscan neurons (Mathieu et al. 2014). When applied exogenously to 

seawater, these metabolites modulate larval swimming and attachment behaviours of 

molluscs (Stewart et al. 2008; Young et al. 2009; Alfaro et al. 2014), and induce fast 

synchronous metamorphosis of sea urchin larvae (Naidenko 1996; Sato & Yazaki 1999). 

Glutamatergic neurons are also identifiable in the peripheral and central nervous systems 

of ascidian and molluscan larvae, with presumed functions in mechanical and sensory 

processes (Hatakeyama et al. 2007). Together, these observations signify various 

neuroactive roles during early marine invertebrate development. 

 Glutamine and glutamate have previously been suggested as useful biomarkers of 

neurotoxicity in adult mussels exposed to heavy metal contamination (Wu & Wang 2010, 

2011). Differential regulation of glutamine and glutamate metabolism as a neurotoxic 

response to Hg, Zn and Cd has also been demonstrated in fish and clams (Liu et al. 

2011a,b; Kim et al. 2016), and Cd and/or Cu exposure influences glutamine synthetase 

mRNA expression and/or glutamate dehydrogenase activity in mussels and fish 

(Casanova et al. 2013; Ventkata & Radhakrishnaiah 2013). Excessive levels of Mn, Hg 

and Pb trigger neurotoxicity though similar disruptions of the glutamine/glutamate-

GABA cycle, which underlines a common mechanism of metal toxicity (Fitsanakis & 

Aschner 2005; Sidoryk-Wegrzynowicz & Aschner 2013). Although information 

regarding molluscan embryonic forms is thus far limited, Wirbisky et al. (2014) recently 

demonstrated that Pb exerts neurotoxicity in fish embryos by influencing the GABAergic 

system in a dose responsive and temporally variable manner through embryogenesis. Our 

results indicate that glutamine and glutamate biosynthesis in mussel embryos are 
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similarly perturbed by Cu exposure which is consistent with the findings of these studies, 

and further suggests that this system may also be a useful biomarker of metal-induced 

neurotoxicity in molluscan embryos. This disturbance from baseline metabolism may 

cause direct neurotoxic effects through altered glutamine/glutamate signalling, and/or 

indirect deleterious effects through downstream influences on GABA biosynthesis. 

7.4.3.5 Pyrimidine catabolism 

The pyrimidine nucleotides, thymine and cytosine, are catabolised in mussels to 3-

aminoisobutyric acid (BAIBA) and β-alanine through its uracil derivative, respectively 

(Awapara & Allen 1959). Both of these degradation products were found to be higher in 

mussel embryos exposed to lethal-level Cu. Since β-alanine serves osmoregulatory 

functions in marine bivalves associated with Cu-induced toxicity and sodium-dependant 

cotransport as previously discussed, tissue concentrations are likely to reflect the net 

outcome of interplay between these systems. On the other hand, BAIBA can be used as a 

rough indicator for rate of DNA and tRNA turnover (Nielsen et al. 1974). Increases in 

BAIBA have been found in humans, mice and marmosets exposed to lead poisoning 

(Farkas 1987; Tomokuni et al. 1991, 1992), and in fruit flies exposed to insecticides 

(Brinzer et al. 2015); with toxin-induced DNA/RNA damage thought responsible for the 

elevated levels observed. The higher levels of pyrimidine degradation products measured 

in our study are indicative of shifts in nucleotide metabolism, with potential adverse 

implications for DNA/RNA production, protein synthesis and organismal growth. Links 

between pyrimidine metabolism and oxidative stress have been implicated in a number 

of disease pathologies and metal toxicity responses (Van Kuilenburg et al. 2004, 2006; 

Glahn et al. 2008; Gemelli et al. 2013; Bo et al. 2014; Liu et al. 2015; Miccheli et al. 

2015), although establishing potential mechanistic associations between oxidative DNA 

damage and pyrimidine degradation will require more focused investigation. 
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7.4.3.6 Oxidative stress, redox homeostasis and metal chelation 

Generation of reactive oxygen species (ROS) and oxidative stress is one of the most well-

known mechanisms of metal toxicity in aquatic organisms (reviewed by Valavanidis et 

al. 2006; Sevikova et al. 2011). A number of amino acid metabolite signatures associated 

with oxidative stress responses and/or with roles in maintenance of redox homeostasis or 

metal chelation were identified. These included changes in aminomalonic acid levels, 

variation in histidine metabolism, alterations to the transsulferation pathway, and 

differential regulation of glutathione (GSH) metabolism.  

Aminomalonic acid (AMA) showed variable flux in embryos exposed to Cu. 

When protein/peptide-bound, AMA has possible origins stemming from errors in protein 

synthesis and oxidative damage to amino acids (Copley 1992). The moiety is generated 

by free radical oxidation of proteins, and can arise due to hydrogen atom abstraction from 

the α-position of glycine residues (Dean et al. 1997). The dicarboxylic acid can also be 

derived from metal-induced cysteine oxidation via β-elimination of the sulphur residue 

(Kang et al. 2003). Reductions in free AMA within rabbit hepatic tumors are suspected 

due to depletion of cysteine stemming from enhanced requirements for GSH to alleviate 

oxidative stress (Ibarra et al. 2014), and toxin-induced changes in the free metabolite have 

previously been recorded in water fleas exposed to polyromantic hydrocarbons 

(Vandenbrouck et al. 2010).  

 Free histidine can serve as a high affinity chelator of metals, and it has been 

suggested that elevation of histidine levels as a response to Cu toxicity may provide an 

energetically low-cost detoxification mechanism for invertebrates (Gibb et al. 1997); as 

is the case for plants (Krämer et al. 1996; Wycisk et al. 2004). However, Bundy et al. 

(2008) comprehensively tested the hypothesis that Cu exposure upregulates histidine 

metabolism in earthworms and found a weak negative correlation between levels of free 

histidine and Cu dose; which also appears to be the case for freshwater microalgae 
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exposed to Cd (Chia et al. 2015). Furthermore, Digilio et al. (2016) recently conducted a 

metabolomics-based investigation of Cu toxicity in adult mussels and found a parallel 

trend of subtle histidine reductions in haemolymph samples with increasing doses of Cu. 

Exposure of mussel embryos to lethal-level Cu in the present study similarly caused 

histidine levels to decrease in mussel embryos. 

 Although it is unascertained why Cu appears to reduce levels of free histidine, it 

is possible that the metabolite is being incorporated into histidine-rich glycoprotein 

(HRG) as a detoxification strategy against excess metal concentrations. HRGs are 

important immunoresponsive macromolecules which are widely distributed across 

bivalve taxa and have very high capacities to bind and detoxify divalent metal ions such 

as Cu (Abebe et al. 2007; Devoid et al. 2007). HRGs also serve other immune functions 

due to their antibacterial properties, and their ability to clear necrotic cells by inducing 

phagocytosis (Rydengård et al. 2007; Poon et al. 2010).  

The transsulferation pathway involves the conversion of methionine to cysteine, 

via cystathionine, and is affected by metal exposure to a range of organisms, including 

rats (Sugiura et al. 2005), nematodes (Hughs et al. 2009), and midges (Jeppe et al. 2014; 

Long et al. 2015). In the current study, cysteine and methionine metabolism was 

differentially regulated in mussel embryos exposed to Cu, with relative metabolite levels 

involved indicating depletion of methionine through enrichment in transsulferation, and 

subsequent downstream metabolism of cysteine. 

 Cysteine is an important structural component of glutathione (GSH), and also the 

rate-limiting precursor in its biosynthesis (Aquilano et al. 2014). When the demand for 

GSH is high due to generation of reactive oxygen species (ROS), the transsulferation 

pathway can act as a reserve pathway that channels methionine towards cysteine (through 

initial conversion to homocysteine, subsequent conjugation with serine to form 

cystathionine, and then final cleavage and transsulferation of the carbon-sulphur bond) 
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(McBean 2012). In its free form, cysteine’s thiol group gives it an effective capacity to 

chelate metal ions. However, when bound to redox-active metals, such as copper, free 

cysteine is quickly oxidised and the reduced metal may undergo a Fenton-like reaction to 

form highly toxic hydroxyl radicals (˙HO); thus, keeping free cysteine levels low is 

necessary to protect against these harmful oxidants (Jozefczak et al. 2012). Conversely, 

as a residue within GSH, cysteine’s amino group is blocked via conjugation with 

glutamate, and thiol oxidation by transition metals is greatly diminished so as to reduce 

deleterious Fenton-like reactions from occurring, while simultaneously providing a 

tripeptide with tremendous antioxidant properties (Jozefczak et al. 2012). 

 Other studies documenting the impact of Cu toxicity on the transsulferation 

pathway in molluscs is limited. However, Jeppe et al (2014) recently reported that 

exposure of aquatic midge larvae to Cu resulted in differential expression patterns of 

transsulferation genes, advocating that Cu induces an increased flux of cysteine into GSH 

synthesis, whilst at the same time diminishing pools of cystathionine. Our results appear 

to be consistent with these findings. 

 Lethal-level Cu treatment caused free methionine, cystathionine, and cysteine to 

decrease markedly in mussel embryos, which may have been a metabolic attempt to 

alleviate oxidative stress caused by the metal. Such responses could reduce Fenton 

reactions from occurring, and also be indicative of an enhanced requirement for GSH 

production and antioxidant activity. Interestingly, it appears that Cu, Cd and Zn may have 

quite diverse mechanisms of toxicity regarding their particular impacts on transsulferation 

pathway components (Jeppe et al. 2014; Long et al. 2015). For example, Cu and Cd 

differentially modulate transsulferation pathway metabolites, suggesting that different 

pathway components are being targeted by the toxins (Jeppe et al. 2014). Although many 

transition metals share some mechanistic similarities in regards to their toxic actions, it 

has been suggested that the transsulferation pathway could be used as a specific diagnostic 
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biomarker suite for detecting the identity of distinct metal stressors (Long et al. 2015). 

Detailed characterisation of this pathway in molluscan embryos/larvae at various 

molecular levels, and in response to different environmental contaminants, could be an 

exciting avenue for uncovering new mechanisms of toxicity, and identifying novel 

ecotoxicological biomarkers with forensic capacities.  

Pathway enrichment and topology analysis identified GSH metabolism as being 

differentially regulated after lethal-level Cu exposure. The network includes the 

metabolites cysteine, glycine, glutamic acid, GSH, ornithine, and generic collectively 

termed L-amino acids; all of which were detected by our methods. Cu exposure caused 

levels of GSH to fall which was an expected response to Cu toxicity since metals increase 

GSH oxidation; resulting in a depletion of cellular GSH under high oxidative stress 

conditions (Jozefczak et al. 2012). A number of other metabolomics-based studies which 

have incorporated pathway analyses to investigate toxicity mechanisms in aquatic 

organisms have similarly identified perturbed GSH metabolism as a key response to 

various toxins. For example, Tufi et al. (2015) combined targeted neurotransmitter 

analysis with an untargeted metabolomics-based approach to explore sublethal effects of 

a pesticide, imidacloprid, in the central nervous system of pond snails (Lymnea stagnalis). 

Similar secondary bioinformatics procedures were used to identify a number of 

differentially regulated pathways, including GSH metabolism and biogenic amine 

synthesis, to generate a novel mechanistic neurotoxicity hypothesis. 

 Lower level Cu exposures to mussel embryos caused transient responses in GSH 

pathway metabolites which were indicative of variations between oxidative stress-

induced GSH demand, biosynthesis, and oxidation. However, many of these changes 

were not statistically different and additional analyses at other levels of biological 

organisation are recommended to confirm the presence of oxidative stress at sublethal 

exposure concentrations. In Chapter 6, metabolic profiles of oyster larvae infected with 
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Ostreid herpesvirus microvariant displayed subtle indications of mild oxidative stress at 

the metabolite level in response to the virus. However, contrary to initial expectations 

based on a priori knowledge of host-virus interactions, secondary pathway analysis did 

not detect significant alterations to GSH metabolism. Thus, it was suggested that using 

only metabolomics-based approaches to characterise pathways which tightly regulate 

metabolite levels within confined ranges in well-functioning systems may be a 

methodological limitation. As such, changes in the expressions or activities of enzymes 

which regulate these processes may offer additional information. Thus, targeted analyses 

of a suite of oxidative stress biomarkers (enzymes and macromolecular oxidation 

products) in mussel embryos exposed to Cu have further been conducted in Part B of 

Chapter 7 to test the current interpretations of the metabolomics data as a validatory 

exercise.    

7.4.3.7 Lipid metabolism 

Prior to attaining feeding competency, lipids are the most important sources of energy 

during embryonic and larval development for many bivalve species (Gireesh et al. 2009; 

Matias et al. 2010; Sánchez-Lazo & Martínez-Pita 2012). When energy requirements are 

high, lipases hydrolyse triacylglycerols and release fatty acids (FAs). These free fatty 

acids (FFAs) are rapidly metabolised to acetate by β-oxidation in the mitochondria, and 

ultimately enter the TCA cycle under optimal conditions to supply ATP for various 

essential cellular process (anabolic reactions, active transport, cell division, motility, 

muscular contraction, etc.). Increased lipid catabolism, and/or enriched FA biosynthesis, 

and/or reduced FFA consumption can all lead to apparent rises in the total FFA pool, and 

vice versa. 

Bivalve oocytes and embryos contain high levels of maternally-derived FA 

desaturase mRNA for altering the degree of FA saturation during early development, and 
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can therefore perform certain fatty acid conversion tasks (e.g., C20:4[n-3] to C20:5[n-3]) 

(Liu et al. 2014; da Costa et al. 2015). However, they typically do not have appreciable 

levels of elongase activity prior to attaining feeding competency, and are therefore 

unlikely able to generate fatty acids from acetyl-CoA subunits, or from smaller fatty acid 

precursors (Pettersen et al. 2010). Thus, variations in levels of FFAs in the current study 

are more likely indicative of altered lipid metabolism, rather than being a reflection of 

changes in de novo FFA biosynthesis. 

 With increases in FFA pools and greater demands for energy under enhanced 

oxidative stress conditions, it seems reasonable to suggest that lipid catabolism was being 

upregulated in certain Cu-treated groups. At the same time, reduced TCA cycle flux due 

to extreme Cu toxicity on enzyme activities may have simultaneously blockaded FFA 

consumption, leading to extreme FFA accumulations; as was indicated under lethal-level 

Cu exposures by the relative metabolite levels of the TCA cycle intermediates previously 

discussed. However, additional lipid-based analyses and/or targeted enzymatic 

assessments would be required to qualify these premises.  

7.4.3.8 Immunotoxic associations 

 FFA accumulations are associated with mechanisms of immunotoxicity. It has 

been reported that significant increases in the FFA pool are toxic to organisms; inducing 

oxidative stress by generating ROS, and stimulating inflammation by increasing levels of 

the redox-sensitive transcription factor nuclear factor-[kappa]B (NF-κB) (Paolisso et al. 

1996; Tripathy et al. 2003a,b;). These processes are not exclusive of one another. FFA-

induced oxidative stress and harmful proinflammatory responses are inextricably linked 

since cross-talk can occur between ROS and the Nf-κB pathway. For example, while ROS 

have various inhibitory or stimulatory roles in NF-κB signalling, certain NF-κB-regulated 

genes serve major functions in mediating cellular ROS levels (Morgan & Liu 2011). The 
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NF-κB pathway is crucially involved in many biological processes, including innate 

immune responses in molluscs (Zhou et al. 2013; Li et al. 2015), inflammation (Baker et 

al. 2011), cell proliferation and differentiation (Janssen-Heininger et al. 2000; Biswas et 

al. 2004), apoptosis (Hayden & Ghosh 2011), and embryonic morphogenesis (Gilmore & 

Wolenski 2012). In addition, it has been established that Cu-induced immunotoxicity 

involves activation of the NF-κB pathway via direct or indirect ROS-mediated effects on 

the transcription factor (Persichini et al. 2006; Korashy & El-Kadi 2008). Thus, the large 

increases in the total FFA pool that was observed in moribund embryos exposed to lethal-

level Cu both indicates and promotes a high level of oxidative stress and inflammation. 

This consequence was not apparent from the metabolomics data after short-term (3 hr) 

lethal-level exposure, or significantly at any time during sublethal treatments. This may 

suggest that the response occurs due to severe failures of the system only under 

chronically high Cu dose conditions. Under sublethal conditions, FFA consumption and 

conversion through a less negatively impacted TCA cycle to deliver the required energy 

demands may have been responsible for circumnavigating such potentially damaging 

immunotoxic effects of excessive FFA accumulations. 

7.4.3.9 Lipid peroxidation 

 Particular FFAs or their derivatives can also be used as biomarkers for lipid 

oxidation. For example, dicarboxylic acids are classically derived from medium and long-

chain monocarboxylic fatty acids by ω-oxidation, followed by β-oxidation, and reflect 

the end-products of oxidative attack on both free and esterified unsaturated fatty acids 

(Ferdinandusse et al. 2004). Thus, their presence partly is reflective of the usual lipid 

catabolic pathway. However, some of these metabolites are substantially increased in 

particular situations involving ROS-induced lipid peroxidation, and their higher-than-

normal abundances can be used as biomarkers of oxidative stress/damage (Inouye et al. 
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2000; Hammond et al. 2008). For example, adipic acid (or hexanedoic acid) is a final 

product of lipid peroxidation which is nonenzymatically mediated by ROS (Jana et al. 

2013), and is found at high levels under certain pathophysiological conditions associated 

with high oxidative stress environments (He at el. 2016). This metabolite was 

accumulated in moribund embryos which supports the involvement of severe oxidative 

stress. 

7.4.3.10 Other metabolite variations 

Malonic acid levels were enhanced by lethal-level Cu exposure.  Elevated malonic acid 

levels have recently been reported in shrimps and oysters from sites contaminated by 

metals from industrial discharges (Ji et al. 2016a,c; Xu et al. 2016). Malonic acid is a C3 

dicarboxylic acid and is well-known for its role as a regulator of cellular respiration by 

competing for the active site of succinate dehydrogenase/ respiratory complex II 

(SDH/CII) which catalyses the oxidation of succinate to fumarate in the tricarboxylic acid 

cycle (Kim 2002;  Wojtovich & Brookes 2008). Inhibition of this enzyme would reduce 

the amount of fumarate being synthesised, which is in accordance with the diminished 

levels of fumarate that were detected in the Cu-exposed embryos. The induced 

mitochondrial dysfunction caused by SDH/CII inhibition can in turn trigger ROS 

production which depletes GSH and NADPH; thus overwhelming mitochondrial 

antioxidant capacity and resulting in lipid peroxidation and mitochondrial swelling 

(Fernandez-Gomez et al. 2005). Malonic acid is also associated with osmotic adjustment 

and secondary neuronal excitotoxicity, and can potentiate release of cytochrome c which 

induces apoptosis (Döbrössy et al. 2011; Fernandez-Gomez et al. 2005). 

The C5 dicarboxylic acid glutaric acid is an endogenous toxin also known to 

induce oxidative stress (de Oliveira Marques et al. 2003). Lethal-level Cu caused levels 

of glutaric acid to increase in mussel embryos, whereas sublethal exposures did not cause 
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statistically significant effects. Although the mechanisms involved are not yet fully 

characterised, increased metabolite levels have been associated with decreased GSH 

concentrations, reduced GSH peroxidase activity, depressed total antioxidant reactivity, 

and increased lipid peroxidation and protein carbonylation (Fighera et al. 2006; Latini et 

al. 2007). Glutaric acid also plays roles in apoptotic pathways (Tian et al. 2014), and can 

impair energy metabolism through inhibition of Na+/K+-ATPase and enzymes involved 

in oxidative phosphorylation (Fighera et al. 2006). 

2-aminobutyric acid (AABA) can also be considered a biomarker of oxidative 

stress (Soga et al. 2006). Under cysteine deficiency caused by considerable oxidative 

stress and high GSH demand, the first enzyme (Glutamate cysteine ligase) of the GSH 

biosynthetic pathway utilises AABA instead of cysteine (due to its similar structure) and 

causes the production of ophthalmic acid instead of GSH (Fujii et al. 2011; Dello et al. 

2013). In such circumstances, decreases in both GSH and AABA would simultaneously 

be observed. Precisely, lethal-level Cu quickly induced considerably lower co-displayed 

levels of GSH and AABA, which decreased further upon continued exposure. Thus, 

reductions in AABA provide further evidence within the metabolomics data for severe 

dysregulation of the redox system under conditions of high Cu contamination. This effect 

was not observed after sub-lethal Cu exposures, with ROS homeostasis and GSH demand 

seemingly being maintained within certain acceptable boundaries.  

7.4.3.11 Xenobiotics 

During pre-processing and integrity checking of the metabolomics data, the 

presence of two xenobiotic compounds, benzothiazole (BTH) and dibutylpthalate (DBP), 

were identified in particular data subsets. BTH and its derivatives are widely used 

chemicals in various industries for the manufacture of rubber, textiles, plumbing 

components, pesticides, and a range of household products. They are highly water 
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soluble, they have been classified as emerging organic pollutants in marine environments, 

and some are considered at ubiquitous water contaminants (Bester 1997; Herrero et al. 

2014). BTH is a common vulcaniser and major component that can leach from rubber, 

asphalt and polyethylene pipes; it is environmentally stable and can be found at relatively 

high concentrations within surface runoff and domestic wastewaters, which has led to its 

use as a tracer for aquatic pollutant inputs into urban coastal ecosystems (Spies et al. 

1987; Zeng et al. 2004; Kloepfer et al. 2005). BTH is known to cause respiratory 

dysfunction in fish larvae (Evans et al. 2000), and induces ROS production in fish gill 

cell cultures (Zeng et al. 2016). DPB is used extensively as a plasticiser in resins and 

polymers, and especially in polyvinylchloride to render it flexible. Other industrial 

applications include manufacturing of adhesives, surface coatings, cosmetics, and as a 

solvent in insecticides. DPB is a widely distributed marine pollutant, readily 

bioaccumulates in organisms due to its lipophilic properties, and is highly toxic to marine 

mollusc embryos and larvae (Mackintosh et al. 2004; Xie et al. 2007; Liu et al. 2009; 

Zhou et al. 2011).   

 The presence of BTH and DPB within the metabolomics dataset was originally 

discounted and ear-marked as potential artefacts or plastic/rubber-derived leachates from 

the incubation tanks, sample vials, pipework or water treatment system at the research 

facility, or as background contaminates within the bulk seawater that was used. However, 

closer inspection of the data revealed that the prevalence of these xenobiotics were 

associated only with moribund embryos exposed to lethal-level Cu. Thus, in combination 

with the other assessments of embryonic health and pathophysiology, further 

consideration led to the decision to retain these compounds for further analysis. Elevated 

tissue concentrations of BTH and DPB were identified as being important (but not crucial) 

during PLS-DA modelling for sample class discrimination of embryos exposed to high 

bioavailable Cu for 18 hrs. As previously outlined, moribund embryos showed strong 
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signs of commencing apoptosis with probable failures in lipid membrane stability and 

permeability (i.e., high incidences of cellular budding, shrinkage and cellular 

dissociation, and metabolite markers for oxidative lipid damage). The presence of such 

xenobiotics only within these specific embryo samples are thus telling of a decreased 

capacity to maintain selective exclusion of exogenous compounds across the cellular 

membrane through deteriorating membrane transport systems and/or disruption of the 

lipid bilayer prior to sampling and cell death. This is in line with the detrimental effects 

of severe Cu-induced oxidative damage to membrane integrity and permeability (Wong-

Ekkabut et al. 2007; Repetto et al. 2012), resulting in a gateway for BTH and DPB in the 

seawater to penetrate cells and form xenobiotic-contaminated embryos. Assessment of 

cellular viability through the neutral red uptake assay showed that although these cells 

were in poor condition, they were indeed live. Unfortunately, due to logistical constraints, 

this analysis was not extended to characterise membrane stability by measuring the 

lysosomal retention of the stain over time which would have provided additional 

information on lipid bilayer integrity.  

It was surprising to have detected BTH and DPB in some of the samples since the 

aquaculture research facility where the experiment was conducted is not adjacent to 

sources of urban run-off. Although the origins of these compounds are unascertained, it 

appears they were derived from some aspect of the experimental set-up or as 

environmental pollutants in the source seawater rather than from downstream 

contamination during sample processing. Being found in moribund-only samples 

suggests that low background levels of BTH and DPB unlikely poses any immediate 

threat to healthy embryos or larvae during development in culture or in the wild. 

However, it is possible that deteriorating health condition and/or cell membrane 

instability induced by other factors which cause oxidative stress, such as heavy metal 
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contamination or attack by ubiquitous marine pathogens, may be exasperated due to 

enhanced cellular penetration and bioaccumulation of organic marine pollutants.  

7.4.4 Metabolomics as a health assessment tool  

The capacity of metabolomics to discriminate larval groups in this study was far more 

powerful than using routine visual assessment methods. The lowest sublethal-level 

copper exposure caused some (~10%) changes in D-larval swimming behaviour (i.e., 

slowed swimming and altered motion trajectories) towards the end of the trial (66 hrs post 

exposure), but did not impact the rate of embryonic development. On the other hand, 

metabolomic analysis of these samples identified significant compositional changes in 

embryonic metabolite profiles after only 3 hrs exposure, and similarly could discriminate 

treated embryos/larvae at every subsequent sampling point from non-treated controls. 

This fact highlights the exceptional sensitivity that metabolomics can offer to detect 

changes in metabolic processes days before organisms display any visually observable 

phenotypic traits of altered health state. 

 It could be argued that the metabolic shifts detected after very short term toxin 

exposure were not representative of the subtle signs of ‘poor health’ (i.e., altered 

swimming behaviours) that were observed almost three days later. However, these initial 

deviations that were detected in embryonic metabolism may well have been reflective 

and/or responsible for the cascade of subsequent metabolic shifts that ultimately 

concluded in altered behaviour, and the delayed developmental timing in other 

treatments. Regardless of the precise mechanism, these findings also suggest that 

metabolomic approaches can be used for the early detection of poor larval health, as well 

having potential capacities for prognosis and diagnosis. 

 Within the context of mollusc aquaculture, there is certainly positive scope for the 

application of metabolomics to monitor larval health during hatchery culture, and also to 
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identify precise temporal points during production runs when external factors first start 

influencing larval physiology; thus helping to determine causation for poor health and 

occurrences of mass mortality (reviewed in Chapter 1). Metabolomics is clearly useful 

for characterising mechanisms of toxicity (e.g., this study; Bando et al. 2011; Go et al. 

2014; Brandão et al. 2015; Boyles et al. 2016), but there is also scope for the approach to 

be incorporated into ecotox test methods to provide information earlier than traditional 

biological endpoints, such as ‘% D-larval yield’ and mortality. With further development 

and biomarker validation, this could provide additional measures of toxicity, enhance test 

sensitivity, and reduce test duration.  
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Abstract 

In Chapter 7 Part A, an untargeted metabolomics approach was successfully applied to 

characterise the metabolic basis of copper toxicity during marine mussel embryonic and 

larval development. Among a range of toxin-induced effects (e.g., developmental 

retardation, initiation of apoptosis, cell membrane degradation, changes in glutathione 

metabolism, osmotic disturbance) a substantial number of metabolite variations pointed 

strongly towards the occurrence of oxidative stress. Herein Chapter 7 Part B, a 

comprehensive and targeted survey of nine traditional oxidative stress biomarkers have 

subsequently been performed to test the previous interpretations and validate the 

metabolomics data. To this end, a novel assay was developed to monitor levels of reactive 

oxygen species (ROS) in vivo, the activities of five enzymes involved in ROS regulation 

and glutathione turnover were measured, and ROS-induced oxidative damage to lipids, 

protein, and DNA were assessed. Effects of copper on the oxidative stress biomarkers 

were dose-dependent, with results confirming oxidative stress as a key mechanism of 

copper toxicity in developing embryos, thus validating the metabolomics data.  
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7.6 Introduction 

Oxidative stress is caused by an imbalance between oxidants and antioxidants in 

biological systems. When the system favours production of oxidants, such as reactive 

oxygen species (ROS), the cellular redox balance is disrupted and oxidative damage to 

cellular components can occur (Sies & Jones 2007). Reactive oxygen species (ROS) is a 

collective term used to describe various chemical species with high oxidative capacities. 

These include the hydroxyl radical (OH˙), singlet oxygen (1O2), superoxides (compounds 

containing the superoxide anion O2˙ 

–), and peroxides (H2O2 and compounds containing 

an oxygen–oxygen single bond or the peroxide anion O2
2–) (Valavanidis et al. 2006; 

Lushchak 2011). Cellular ROS are generated during the process of mitochondrial 

oxidative phosphorylation, and play important roles in enzymatic reactions, signal 

transduction, activation of nuclear transcription factors, gene expression, and the 

antimicrobial action of macrophages (Frädrich et al. 2016). Thus, maintaining a certain 

level of basal ROS is crucial to normal physiological functioning. 

 Regulation of ROS is controlled by nonenzymatic mechanisms, such as the major 

cellular redox buffer glutathione (GSH), which has a high antioxidant capacity to 

scavenge excess ROS levels (Schafer & Buettner 2001). A number of enzymatic ROS 

scavenging mechanisms also facilitate ROS detoxification, and include superoxide 

dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) (Apel & Hirt 2004). 

SOD is the first line of defense against excess ROS by dismutating O2˙ 

– into either 

ordinary molecular oxygen or H2O2. The H2O2 can subsequently be detoxified directly by 

CAT, or indirectly by GPx, through conversion to H2O and O2. GPx catalyses the 

oxidation of GSH to glutathione disulphide (GSSG) and simultaneous reduction of H2O2 

(Forman et al. 2009). When this system is functioning optimally, GSSG can then be 

recycled via glutathione reductase (GR) to replenish GSH levels. However, when ROS is 

generated beyond the capacity of cells to maintain homeostatic control, the excess ROS 



Chapter 7B 

327 | P a g e  
 

can oxidise and critically damage lipids, proteins, and DNA (Temple et al. 2005). Under 

moderate oxidative stress conditions, repair mechanisms are activated to alleviate the 

resulting cellular damage. For example, GPx also serves to reduce toxic lipid 

hydroperoxides (formed through ROS-induced lipid oxidation) to their corresponding 

non-toxic alcohols (Knapen et al. 1999). Under high oxidative stress conditions, both the 

ROS regulatory system and the repair mechanisms involved in ameliorating ROS-induced 

lipid, protein, and DNA damage are overwhelmed. This can lead to cell death, and expiry 

of the organism under severe conditions.   

 Oxidative stress is one of the most well-known mechanisms of metal toxicity. 

Normal and elevated levels of O2˙ 

– and H2O2 can interact with transition metals, such as 

copper and iron, to form more-toxic OH˙ radicals via metal catalysed Haber–

Weiss/Fenton reactions (Birben et al. 2012). In addition, high levels of metals can also 

indirectly cause intracellular ROS to accumulate through its inhibitive effect on 

antioxidant enzymes involved in ROS regulation (e.g., SOD, CAT, GPx, GR) (Pigeolet 

et al. 1990; Nzengue et al. 2011). Targeted analysis of these enzymes and/or the 

degradation products of macromolecule oxidation (e.g., lipids → lipid hydroperxides, 

proteins → protein carbonyls, DNA → 8-hydroxy-2'-deoxyguanosine) can provide a 

means to specifically measure and characterise the level of oxidative stress in an organism 

exposed to metal contamination (Valavanidis et al. 2006). Indeed, copper toxicity and 

oxidative stress in marine molluscs has been fairly well studied for post-metamorphic life 

stages of shellfish, such as mussels (Regoli & Principato 1995; Company et al. 2008; 

Maria & Bebianno 2011; Trevisan et al. 2011), oysters (Jing et al. 2006), clams (Geret et 

al. 2002; Peng et al. 2015), and scallops (Regoli et al. 1997). However, much less is 

known about the regulatory mechanisms of toxicity in early life-stage embryonic and 

larval forms. 
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 In Chapter 7 Part A, a broad discovery-based untargeted analysis of metabolites 

was conducted in newly-fertilised mussel embryos exposed to various level of 

bioavailable copper. Among many other metabolic and physiological toxin-induced 

consequences, the metabolomics-based analysis identified a number of metabolite 

alterations, which indicated the occurrence of an oxidative stress response to the metal. 

These included signatures of nucleotide degradation, lipid peroxidation, xenobiotic 

uptake via cell membrane destabilisation, changes in fatty acid composition, enrichment 

of the transulphuration pathway, perturbation to glutathione metabolism, and effects on 

tricarboxylic acid cycle intermediates likely due in part to ROS-induced inhibition of the 

enzyme aconitase. Together, these findings provided multiple and complimentary 

evidences at the metabolite level for Cu-induced oxidative stress. 

Although the specific signatures of metabolite changes in Part B were not 

hypothesised in detail, the general results were not entirely surprising considering that 

copper tends to promote ROS production in various animal models (Ercal et al. 2001; 

Valko et al. 2005; Rhee et al. 2013; Regoli & Giuliani 2014; Atli & Grosell 2016; Periera 

et al. 2016). However, it has been advocated that oxidative stress should not be universally 

quantified by any single biomarker nor level of biological organisation since various 

degrees of oxidative stress are represented by different molecular and biochemical 

perturbations, which can have diverse physiological outcomes (Dotan et al. 2004). Thus, 

particular types or severities of oxidative stress should ideally be evaluated using different 

indices. Indeed, in Chapter 6, metabolite signatures which were potentially indicative of 

low-level oxidative stress in oyster larvae as a response to Ostreid herpesvirus infections 

were identified; but these biochemical changes were so subtle (hypothetically due to a 

well-functioning redox balance system) that additional analyses of ROS-regulatory 

enzymes was needed to obtain more concrete evidences. Taking this into consideration in 

the current chapter, we have further applied a targeted analysis of nine different known 
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measures of oxidative stress in an attempt to compliment the metabolomics data and 

validate our interpretations.  

7.7 Methods 

7.7.1 Experimental design summary and sampling 

Newly fertilised mussel (Perna canaliculus) embryos were exposed to four levels (0.0, 

0.04, 1.10, 50.3 µgL-1) of bioavailable Cu in the presence of 4 µM EDTA and sampled 

repeatedly during a 72 hr exposure trial, as detailed in Chapter 7 Part A. Samples for Part 

B of this chapter were obtained simultaneously with the embryo and larval samples taken 

for metabolomics analysis in Part A using exactly the same methods to obtain similar 

amounts of biomass (one sample for DNA extraction and analysis, and one sample for 

sequential lipid and protein extraction and analysis). Samples were immediately snap 

frozen in liquid nitrogen and stored at −80°C until analysis.    

7.7.2 Protein, lipid and DNA analysis 

Prior to extraction, embryo and larval samples (each containing approximately 200,000 

individuals) were thawed in a 20°C water bath for 1 min. Total protein was extracted on 

ice by adding 500 µL of ice-cold enzyme extraction buffer (50 mM potassium phosphate 

[pH 7.2], containing 0.1 mM Na2EDTA, 1 mM EGTA, 125 mM KCl and 1 mM 

phenylmethylsulfonyl fluoride) to the samples, followed by mixing with a vortex-mixer 

and homogenising for 1 min using a Mini-Beadbeater-1 and Zirconia/Silica beads 

(Biospec Products: Bartlesville, OK, USA). The homogenate was centrifuged (Ependorf 

5417R: Eppendorf South Pacific Pty. Ltd.: North Ryde, NSW, Australia) for 15 min at 

20,800g and 4°C.  The supernatant, now referred to as the protein extract, was then 

transferred to a 1.5 mL microcentrifuge tube. The pellet of cell debris was retained for 

lipid extraction and the protein extract was subjected to ultrafiltration using Vivaspin® 

500 Centrifugal Concentrators with 10,000 MWCO membranes (Sartorius Stedim 
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Biotech Gmbh: Goettingen, Germany) according to the manufacturer’s instructions. The 

ultrafiltered protein extract was reconstituted with ice-cold 100 mM potassium phosphate 

(pH 7.2) and protein contents were determined using the Lowry protein assay (Fryer et 

al. 1987). Samples were then diluted as required with 100 mM potassium phosphate (pH 

7.2) prior to targeted enzyme analyses. Protein carbonyls levels in the reconstituted 

protein extracts were determined via reaction with 2,4-dinitrophenylhydrazine (DNPH) 

according to Reznick and Packer (1994) and expressed as nmols of carbonyls per mg 

protein.   

 Lipids were extracted from the pellet of cell debris (remaining after protein 

extraction) by adding 500 µL of methanol-chloroform solution (2:1 v/v) to the tube.  Each 

sample was left to stand for 1 min and then 200 µL of chloroform was added and vortex-

mixed for 30 sec. Deionised water (200 µL) was added and the extract mixed again for 

30 sec. To separate the phases, the resulting homogenate was centrifuged (Eppendorf 

5417R) twice for 1 min at 20,800g at ambient temperature. Lipid hydroperoxide levels 

were determined using the ferric thiocyanate method described by Mihaljević et al. 

(1996), adapted for measurement in a microtitre plate reader. Lipid hudroperoxide levels 

were determined by measuring the absorbance at 500 nm. A calibration curve with t-butyl 

hydroperoxide was used and the lipid hydroperoxide content was calculated as nmol of 

lipid hydroperoxide per sample. 

 The above assays were carried out using a multilabel counter (Wallac Victor 1420, 

Perkin Elmer: San Jose, California, USA) controlled by a PC and fitted with a temperature 

control cell (set to 25°C) and an auto-dispenser. Data were acquired and processed using 

the WorkOut 2.0 software package (Perkin Elmer).      

 DNA was extracted using an ISOLATE II Genomic DNA Kit (Bioline: N.S.W, 

Australia) following the manufacturers’ instructions for standard samples, but with minor 

modifications. After addition of the pre-lysis buffer, samples were homogenised for 1 min 
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using a Mini-Beadbeater-96 and Zirconia/Silica beads (Biospec Products). In addition, 

the pre-lysis was supplemented with 5 mM deferoxamine and 20 mM EDTA, and the 

lysis buffer was supplemented with 5 mM deferoxamine. All solutions were 

deoxygenated by gently bubbling with nitrogen gas for 5 min. 

 Digested DNA samples were analysed using high-performance liquid 

chromatography (HPLC) followed by UV detection of guanine and coulometric detection 

of 8-hydroxy-2'-deoxyguanosine (8-OHdG). The procedure was performed using a C18 

reverse-phase column (5 mm, 4.6 mm × 250 mm) (JASCO: Tokyo, Japan), an HPLC 

system (PerkinElmer: Boston, USA) and an electrochemical detector (5100 Coulochem, 

ESA: MA, USA). Separation of DNA was achieved using an isocratic mobile phase (50 

mM potassium phosphate [pH 5.5] and 10% methanol) at a flow rate of 1 mL min-1 with 

the column being maintained at 30°C. The analytical cell oxidation potentials of the 

electrochemical detector were set to 150 mV and 350 mV for electrodes 1 and 2, 

respectively, with the guard cell potential set at 400 mV. Unmodified nucleosides were 

detected by their absorbance at 260 nm. Peak data were collected and analysed using a 

DataCenter 4000 (DataworkX: Brisbane, Australia) general-purpose laboratory data 

interface, and Delta 5.0 chromatography data acquisition and analysis software 

(DataworkX). The retention times for guanine and 8-OHdG were 12 and 17 min, 

respectively. Pure solutions of 8-OHdG and guanine (Sigma-Aldrich: St Louis, MO, 

USA) were prepared in HPLC-grade water (Merck: Darmstadt, Germany) and sterilised 

by passage through 0.22 mm filters (Millipore: Bedford, MA, USA) to be used as 

standards. The amount of DNA injected onto the column for each sample was estimated 

using the signal for guanine, and 8-OHdG was quantified by comparison to external 

standards. 
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7.7.3 Antioxidant enzyme analysis 

Total protein was extracted as previously described for protein carbonyl measurements, 

and followed by enzymatic antioxidant assays for superoxide dismutase (SOD: EC 

1.15.1.1), catalase (CAT: EC 1.11.1.6), glutathione peroxidase (GPx: EC 1.11.1.9), 

glutathione reductase (GR: EC 1.8.1.7), and glutathione-S-tranferase (GST: EC 2.5.1.18) 

activity using a Perkin Elmer Wallac Victor 1420 multilabel counter. 

SOD activity was determined using the microplate assay (Banowetz et al. 

2004), with minor modifications. A 50 μL of protein extract or standard (prepared from 

bovine liver SOD [Sigma-Aldrich] where one unit of SOD corresponded to the amount 

of enzyme that inhibited the reduction of cytochrome c by 50% in a coupled system with 

xanthine oxidase at pH 7.8 and 25°C) was mixed with 125 μL of freshly prepared reaction 

solution containing PIPES buffer, pH 7.8, 0.4 mM of o-dianisidine, 0.5 mM of 

diethylenetriaminepentaacetic acid, and 26 μM of riboflavin. Absorbance at 450 nm was 

measured immediately (t = 0 min), then samples illuminated with an 18 W fluorescent 

lamp placed 12 cm above the plate for 30 min and  measured again (t = 30 min). A 

regression analysis was used to prepare a standard line relating SOD activity to the change 

absorbance. Superoxide dismutase activities in the extracts, calculated with reference to 

the standard line, are expressed as units SOD per mg of total protein. 

CAT activity was determined using the chemiluminescent method, adapted for 

96-well microplates (Janssens et al. 2000). A 50 μL of extract or standard (purified bovine 

liver CAT [Sigma-Aldrich] in homogenisation buffer) was mixed with 100 μL of 100 mM 

phosphate buffer (pH 7.0) containing 100 mM of Na2EDTA and 50 μL of 1 μM H2O2. 

Samples were then incubated at 25°C for 30 minutes, after which 50 μL of a solution 

containing 20 mM luminol and 11.6 U/ml of horseradish peroxidase (Sigma-Aldrich) was 

injected into each well. Light emission, the intensity of which was proportional to the 

amount of H2O2 remaining in the mixture, was measured. A regression analysis was used 
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to prepare a standard line relating standard CAT activities to the intensity of light 

emission. CAT activities in the extracts were calculated with reference to the standard 

line and expressed as µmol of H2O2 consumed per min per mg of total protein. 

GPx activity was determined using the spectrophotometric method (Paglia & 

Valentine 1967), adapted for a microplate reader. A 20 μL of extract or standard was 

mixed with 170 μL of assay buffer containing 50 mM of Tris-HCl buffer (pH 7.6), 5 mM 

of Na2EDTA, 0.14 mM of NADPH, 1 mM of GSH, and 3 U/mL of wheat germ 

glutathione reductase (EC 1.6.4.2) (Sigma-Aldrich). The reaction was initiated by the 

addition of 20 μL of t-butyl hydroperoxide to give a final concentration of 0.2 mM.  The 

consumption of nicotinamide adenine dinucleotide phosphate was monitored at 340 nm 

every 30 sec for 3 min, with the plate shaken automatically before each reading. The GPx 

activities in the extracts were calculated with reference to a standard line constructed with 

GPx purified from bovine erythrocytes (Sigma-Aldrich) in extraction buffer. Data are 

expressed as nmol per min per mg of total protein. 

GR activity was determined using the method of Cribb et al. (1989), with minor 

modifications. Briefly, 50 μL of extract (diluted extract or standard GR from wheat germ 

[Sigma-Aldrich] in homogenisation buffer) was mixed with 150 μL of 100 mM sodium 

phosphate buffer (pH 7.6) containing 0.1 mM 5,5′-dithiobis(2-nitrobenzoic acid) and 

10 μL of 12 mM NADPH. The reaction was initiated by the injection of 10 μL of 

3.25 mM oxidised glutathione and the absorbance was measured at 415 nm every 30 sec 

for 3 min, with the plate shaken automatically before each reading. The rate of absorbance 

increase per min was calculated and a calibration curve relating standard GR activities to 

the change in absorbance was constructed. GR activities in the extracts were calculated 

and expressed as nmol of oxidised glutathione reduced per min per mg of total protein at 

pH 7.6 and 25°C.   
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GST activity was determined using the photometric 1-chloro-2,4-dinitrobenzene 

(CDNB) method according to Habig et al. (1974), with minor modifications. The 

absorbance at 340 nm was measured every 30 sec for 3 min, with the plate shaken 

automatically before each reading. The change in absorbance per minute was calculated 

and converted into nmol of CDNB conjugated to GSH per min per mg of total protein 

using the extinction coefficient (E340 = 9.6 mM−1 cm−1) of the resulting S-2,4-

dinitrophenylglutathione. 

7.7.4 Reduced glutathione analysis 

Glutathione (GSH) was extracted and identified during untargeted metabolomics-based 

analysis in Chapter 7 Part A. Due to it high relevance in mechanisms of oxidative stress, 

all glutathione data are presented herein Part B, along with the other biomarkers that were 

targeted. GC/MS-derived peak intensity values were normalised against the L-Alanine-

d4 internal standard (i.e., [glutathione peak height / int. std. peak height] x int. std. 

concentration) to obtain semi-quantitative GSH data. 

7.7.5 ROS analysis 

ROS production was measured in vivo using the cell-permeant ROS-detecting fluorescent 

dye 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) (Invitrogen – Molecular 

Probes, D399: Eugene, OR, USA). Upon cleavage of the acetate groups by intracellular 

esterases and oxidation, the non-fluorescent H2-DCFDA is converted to the highly 

fluorescent 2',7'-dichlorofluorescein (DCF), which can be measured via fluorescence 

spectroscopy. At 18, 36 and 66 hrs post-fertilisation, approximately 60,000 embryos or 

larvae from each of the 15 incubation tanks were concentrated on a 15 µm mesh screen, 

transferred via pipette to a 50 mL FalconTM tube, and made up to 25 mL with FSW. Six 

210 µL subsamples (technical replicates) of each larval solution, containing 

approximately 500 larvae, were then transferred to wells of a 96-well microplate. Blank 
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seawater controls contained 210 µL of FSW. Immediately prior to performing each ROS 

assay, a pre-frozen stock of the H2-DCFDA probe (1 mM in DSMO) was thawed and a 

20 × dilution was prepared in FSW. 40 µL of this diluted H2-DCFDA working solution 

was pipetted into all wells and the plates were incubated in the dark at 19 ± 0.5°C for 120 

min. ROS production was assessed by measuring the DCF fluorescence intensity on a 

Perkin Elmer microplate reader (Ex/Em: 490/520 nm). Variations in intensity values are 

reflective of relative differences in ROS production among treatments. 

7.7.6 Statistics and data presentation 

To identify differential expressions/activities of targeted oxidative stress biomarkers in 

Cu-exposed larvae compared to control organisms, each biomarker was assessed 

separately via t-test analysis for each development stage and treatment level using SPSS 

v22.0 (IBM Corporation: Armonk, NY, USA). To facilitate visualisation of the trends on 

a common scale, data have been autoscaled and each biomarker presented separately in 

line plots. In addition, a summary of results is also displayed in the form of a table with 

colour coding; where up/down arrows represent statistically different (p < 0.05) 

biomarker expressions/activities in the Cu-exposed embryos and larvae compared to non-

exposed control organisms.   
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7.8 Results 

Exposure of mussel embryos to various levels of copper induced a number of significant 

changes in the oxidative biomarkers assayed. These changes were dependant on both the 

dose and duration of exposure. To contextualise the following results, an overview of the 

relationships between the oxidative stress biomarkers analysed in this study and the ROS-

regulatory system is provided in Figure 7.10 as a visual summary.  

 

 

 

 
 
Figure 7.10. Stylised schematic representation of Cu-induced oxidative stress and ROS-regulatory 
mechanisms in an early D-stage mussel larva.  
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 ROS production in recently fertilised mussel embryos after 18, 42 and 66 hrs post-

exposure to Cu treatments is shown in Figure 7.11. There was a positive linear trend in 

the generation of ROS during progression of baseline ontogeny from trochophore through 

to D-stage development (control values in Figure 7.11A–C). Significant increases (t-test; 

p < 0.01) in Cu-induced ROS production were detected after 36 hrs exposure to sub-lethal 

Cu concentrations, compared to controls (Figure 7.11B).  

 

 

Figure 7.11.  Production of reactive oxygen species (ROS) in embryos and larvae reared under different 
levels of bioavailable Cu.  A) 18 hrs post-exposure, B) 36 hrs post-exposure, and C) 66 hrs post-exposure.  
ROS levels are expressed as % H2O2 micro equivalents per individual. Asterisks denote significant 
differences compared to controls (t-test, p < 0.05). 
 
 

 The effects of Cu exposure on the suite of targeted oxidative stress biomarkers 

(and glutathione from Chapter 7 Part A) are displayed in Figure 7.12 and Table 7.3. 

Exposure of embryos to low bioavailable Cu (0.04 µgL-1) for 42 hrs resulted in very subtle 

signs of lipid damage (ca. 13% higher LOOHs than control values). However, after 72 

hrs exposure, levels of lipid peroxidation products were comparable to those in control 

organisms. This demonstrates that the low dose treatment did not result in lasting negative 

effects associated with the characteristic mechanism of heavy metal toxicity via ROS-

induced oxidative damage to DNA, proteins and lipids. Evidenced by the slight response 

of the ROS-regulatory system via GSH, it appears that the embryos/larvae were able to 

alleviate any substantial adverse effects, either solely through this system, or in 

combination with other unknown metabolic regulatory mechanisms.   
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Figure 7.12. Targeted analysis of oxidative stress biomarkers in response to Cu exposure over time. Data 
are autoscaled and the width of the coloured lines (grey = controls; green = 0.04 µgL-1 bioavailable Cu; 
orange = 1.10 µgL-1 bioavailable Cu; red = 50.3 µgL-1 bioavailable Cu) are bounded by the standard error 
of the means of triplicate samples. 
 
 
 
 
Table 7.3. Relative temporal changes in oxidative stress biomarkers across Cu treatments, compared to 
controls. Up/down-arrows represent statistical differences (t-test; p < 0.05) between treatments and controls 
displayed in Figure 7.12 at different time points; hyphens represent no statistical difference. 
 

Biomarker 
0.04 µgL-1 1.10 µgL-1 50.3 µgL-1 

3h 18h 42h 72h 3h 18h 42h 72h 3h 18h 
DNA damage - - - - -      
Protein damage - - - - -      
Lipid damage  -  - -      
GSH - - - - - - - -   
CAT - - - - - -     
SOD - - - - - -     
GR - - - - - -     
GST - - - -  -   -  
GPx - - - -     -  
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 In contrast, exposure of larvae to the medium level Cu dose (1.10 µgL-1) resulted 

in the fast upregulation of GST and GPx after 3 hrs exposure. By 18 hrs post Cu exposure, 

evidence of oxidative damage to all three macromolecule biomarkers had occurred. After 

42 hrs exposure, DNA, protein and lipid damage persisted and further modulation of the 

ROS regulatory system was apparent, supported by additional inputs from the increased 

co-expressions of GR, SOD, and CAT. These strong indications of Cu-induced oxidative 

stress continued to 72 hrs post-exposure. GSH levels were more variable than other 

biomarkers, but were not statistically different compared to control values at any time.  

 The high dose Cu treatment (50.3 µgL-1) quickly induced extensive damage to 

DNA, protein and lipids in embryos after only 3 hrs exposure. Unlike the sublethal data, 

down-regulation of other enzymatic oxidative stress biomarkers (i.e., GR, SOD, and 

CAT) at the first sampling point was detected, indicating severe toxicological effects. By 

18 hrs post-exposure, these negative impacts had worsened and included simultaneous 

reductions in levels of GST and GPx, providing clear evidence of a disrupted/failing ROS 

regulatory system.   
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7.9 Discussion 

Production of pro-oxidant reactive oxygen species (ROS) and antioxidant glutathione 

(GST) were assessed, and the activities of key enzymes involved in the regulation of ROS 

homeostasis were measured (i.e., glutathione S-transferase [GST], glutathione peroxidase 

[GPx], glutathione reductase [GR], superoxide dismutase [SOD], and catalase [CAT]). 

Oxidative damage to lipids, proteins and DNA were also evaluated to investigate 

consequential cytoxic and genotoxic effects via analysis of macromolecular oxidation 

products (i.e., lipid hydroperoxides [LOOHs], protein carbonyls [PCs], and 8-hydroxy-

2'-deoxyguanosine [8-OHdG]). In general, it appears that oxidative stresses caused by 

sublethal Cu treatments were able to be mostly alleviated by homeostatic control 

mechanisms of the redox balance system, whereas lethal-level Cu resulted in severe 

cellular damage beyond the adaptive metabolic abilities of developing embryos. These 

toxin-induced consequences are summarised in Figure 7.13. 

 

 

 
 
Figure 7.13. General effects of Cu-induced oxidative stress on mussel larval physiology.   
 
 
   

7.9.1 Reactive oxygen species 

 Baseline ‘steady-state’ ROS production during mussel embryogenesis increases 

with development to the D-stage larval phenotype; at least in terms of the relative ROS 

quantities produced per individual. Normal embryonic development is highly dependent 

on redox status due to its wide-ranging influence on multiple cellular processes, including 
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cell proliferation, differentiation, and signalling (Dennery 2007). A certain level of ROS 

production is crucial for controlling apoptosis and cell elimination, and for regulating key 

transcription factors that alter embryonic gene expression. The inability to increase 

oxidative stress at specific phases can lead to abnormal developmental sequences and 

metabolic dysregulation during embryogenesis (Dennery 2007). 

The particular redox status at a given embryonic stage alters the fate of cells 

towards proliferation, differentiation, apoptosis, or necrosis; where a reduced state leads 

to proliferation, mild oxidation leads to differentiation, and further oxidation to cell death 

(Schafer & Buettner 2001). Thus, the pattern of ROS production that was detected in 

control embryos is in accordance with early embryonic cell proliferation, followed by 

differentiation of shell field and retractor muscle cells in emerging D-stage larvae, and 

commencement of organogenesis during subsequent larval development (Rusk et al. 

2016).     

 In the case of the sublethal ROS data, there was evidence of acute oxidative stress 

occurring at 36 hrs post-exposure with increased spikes in ROS being detected, compared 

to controls. By 66 hrs of exposure, ROS levels were again similar to control values, 

revealing high cellular antioxidant potential during this period and a certain ability to limit 

oxidative damage. This is supported by the increased activities of ROS-regulatory 

enzymes that were detected shortly thereafter (72 hrs post-exposure), and the enhanced 

but static levels of lipid peroxidation and protein carbonylation between 42 and 72 hrs 

post-exposure. 

 ROS levels after 18hrs of lethal-level Cu exposures were surprisingly similar to 

control levels. This could be indicative of oxidative stress having previously occurred and 

then being re-established towards the baseline by ROS-regulatory enzymes and 

antioxidant metabolites. Alternatively, in extreme circumstances and after initial 

oxidative stress-induced spikes, decreased levels of ROS may occur due to initiation of 
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cell death. The mitochondrial apoptotic pathway primarily responds to internal insults 

such as oxidative stress and DNA damage (Aronis et al. 2003). During Fas-mediated 

apoptosis (a common mechanism of programmed cell death during embryonic 

development), reduced ROS production occurs early on in the death cascade before 

significant cell death has occurred (Zou et al. 2000; Aronis et al. 2003). Considering the 

collective results across the many biological endpoints that were assessed in Chapter 7 

Part A (i.e., embryo/larval mortality, cellular viability, microscopical observations 

showing signs of cellular budding, and the various metabolite changes) and Chapter 7 

Part B (i.e., decreased activities of ROS regulatory enzymes indicative of severe oxidative 

stress, and increased oxidative DNA damage), initiation of apoptosis and necrosis is a 

plausible explanation for the lower-than-expected ROS levels observed at this time. 

7.9.2 Glutathione 

GSH is an efficient antioxidant and provides protection against oxidative stress by 

conjugating with electrophiles and reducing ROS (Wang & Ballatori 1998). During this 

process, GSH is converted into its oxidised form (GSSG) via catalysis by GPx (Forman 

et al. 2009). GSH is also involved in the formation of GSH-S conjugates with ionic forms 

of Cu (forming linear II covalent complexes) (Rabenstein et al. 1988), and acts as an 

intracellular chelator to prevent the nuceophilic interaction of Cu with the main cellular 

structures (Maracine & Segner 1998). In the current study, levels of GSH were minimally 

disturbed by sublethal-level Cu exposures (as previously discussed in Chapter 7 Part A). 

 Under low-to-moderate oxidative stress conditions, GSH concentrations may be 

replenished through biosynthesis from precursor metabolites and/or through the NADPH-

dependant reduction of GSSG (Lu et al. 2009; Marí et al. 2009). Indeed, maintenance of 

basal-level GSH flux during sublethal Cu treatments is indicative of a well-functioning 

GSH homeostatic control mechanism. Unfortunately GSSG was not detected via GC-MS 
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in Chapter 7 Part A, which could have provided empirical evidence for GSH utilisation 

under sublethal Cu treatments had accumulations of the oxidised form been observed. 

During lethal-level exposure, GSH levels decreased substantially and very 

quickly. Such a response was not surprising since excessive metal-induced oxidative 

stress is well-known to cause rapid GSH depletion in molluscs (Regoli & Principato 1995; 

Regoli et al. 1998; Canesi et al. 1999; El-Gendy et al. 2009; Zhu et al. 2011; Nugroho & 

Frank 2012). The decrease in GSH indicates increased utilisation to stabilise Cu in its 

oxidative state (thus preventing redox cycling and free radical generation), and an 

inefficient GSH regeneration capacity resulting in a reduced ability to scavenge free 

radicals, and raising the general cellular oxidative potential (Elia at al. 2003). For further 

discussion of GSH and its metabolism, refer to Chapter 7 Part A since differential network 

alterations were also detected via pathway enrichment analysis of functionally-related 

metabolites. 

7.9.3 Enzymatic biomarkers of oxidative stress 

ROS homeostasis and GSH turnover is regulated by an elaborate system of enzymes, 

antioxidants, and pro-oxidants. Cu-induced toxicity responses of different biochemical 

components accountable for controlling redox balance in aquatic organisms can vary 

widely depending on the duration of Cu exposure, the Cu concentration, the type of tissue 

assessed, the cellular localisation of the biomarkers themselves, and also the particular 

enzyme isoform/s being considered (Geret et al. 2002; Bigot et al. 2010; Maria & 

Bebianno et al. 2011; Zhang et al. 2012; Atli & Grosell 2016). 

 Although different studies have employed various experimental designs that make 

comparing results difficult, effects of low-dose or short-term Cu exposures in adult 

bivalves frequently include increased antioxidant enzyme activities as a detoxification 

strategy, whereas inhibition of antioxidant enzymes are typically characteristic of 
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prolonged exposure durations or higher Cu doses (Regoli et al. 1998; Matozzo et al. 2001; 

Jing et al. 2006; Sabatini et al. 2011; Gomes et al. 2012; Lewis et al. 2016). Similar 

activity patterns of GSH regulatory enzymes in response to Cu have also been observed 

(Doyotte et al. 1997; Canesi et al. 1999; Sabatini et al. 2011; Jorge et al. 2013). Our 

findings in mussel embryos are consistent with these general trends, revealing that such 

mechanisms of Cu toxicity are highly conserved through ontogeny from fertilisation. 

 GPx serves to detoxify H2O2 (oxidising GSH to GSSH in the process) and also 

plays an important role in ameliorating ROS-induced lipid damage (Pisoschi & Pop 

2015). GPx was the only ROS-regulatory enzyme that was affected very quickly to any 

appreciable degree by sublethal-level Cu exposures. The increased GPx activity after 3 

hrs Cu exposure indicates an initial over production of H2O2 during early embryogenesis. 

It is uncertain as to the exact effectiveness of the GPx-GSH couple to remove ROS at this 

time, but other biomarkers were not affected suggesting a reasonable level of efficiency, 

and ROS levels themselves were similar to control levels 15 hrs after this point. However, 

it is possible that this particular system was under pressure and latent effects were being 

realised between sampling times since at 18 hrs post Cu-exposure, some damage to lipids, 

proteins and DNA were detected. Activities of other ROS-regulatory enzymes seemed to 

subsequently react to these damages as a potential counter measure, albeit with a 

significant lag phase.  

    Embryonic GR, GST, CAT and SOD generally responded similarly to one another 

during the Cu exposure period, and in a dose-responsive manner. The higher sublethal Cu 

treatment increased enzyme activities, but the response was delayed and a plateau was 

reached around 42 hrs post-exposure which indicates stabilisation or re-equilibration of 

the ROS-regulatory system. On the other hand, a lethal-level Cu dose inhibited enzyme 

activity very quickly during the first few hours of cleavage (4- to 16-cell stage embryos) 

indicating severe oxidative stress which intensified with time.  
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 Superoxide (O2˙ 

–) is among the most abundant and toxic ROS produced by the 

mitochondria, but is involved in important cellular signalling pathways (Landis & Tower 

2005). Under moderate-to-high oxidative stress scenarios, SODs are usually the first 

defence against oxygen radicals and are essential for eliminating excess O2˙ 

– via catalytic 

breakdown into less toxic H2O2 and water to protect cells from damage (Fridovich 1995). 

SODs also play a critical role in inhibiting oxidative inactivation of nitric oxide, thereby 

reducing formation of the strong oxidant peryoxynitrite, and preventing mitochondrial 

dysfunction (Fukai & Ushio-Fukai 2011). Paradoxically, some SODs (Cu/ZnSOD) 

require Cu to function effectively, and Cu deficiency can lead to oxidative stress and 

DNA damage (Gaetke & Chow 2003). However, low level oxidative stress caused by 

excess Cu increases Sod gene expression through redox-sensitive transcription factors 

such as NF-κB (Miao & Clair 2009), whereas higher dose exposures are inhibitive 

potentially due to a direct effect on the Sod gene or indirect effect mediated via an increase 

in superoxide radicals themselves (Khatun et al. 2008). The H2O2 produced during O2˙ 

– 

detoxification by SOD is further eliminated by CAT through conversion into water and 

O2. Relative SOD and CAT activities thus tend to accompany one another (Warner 1994), 

which is consistent with our findings. 

 GSTs function to detoxify electrophiles, such as by-products of ROS activity and 

certain xenobiotics, by conjugating them to GSH (Hayes & Strange 2000). However, in 

the case of Cu, conjugation to the thiol group on the cysteine residue within GSH occurs 

spontaneously, and participation of GST is apparently not required (Dierickx 1986). 

Nevertheless, Cu exposure does modulate GST activities in marine molluscs to varying 

degrees (Regoli & Principato 1995; Canesi et al. 1999; Moreira & Guilhermino 2005; 

Cunha et al. 2007). Many GST isoenzymes also exhibit GPx activity and catalyse the 

reduction of hydroperoxides (e.g., fatty acid, phospholipid, and DNA hydroperoxides) to 

their corresponding alcohols via nucleophilic attack by GSH on electrophilic oxygen 
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(reviewed by Hayes & Pulford 1995). Since these are generated by lipid peroxidation and 

oxidative damage to DNA, GSTs therefore additionally have roles in combating 

downstream effects of oxidative stress. GSTs are relatively well-studied, and some 

mechanisms have been put forward which may explain the differences in embryonic 

enzyme activites that were detected (Tang et al. 1996; Salazar‐Medina et al. 2010; Letelier 

et al. 2006, 2010; Ahmed et al. 2016). 

 The enhanced embryonic GST activity in response to low-level Cu exposure 

likely reflects ROS-induced upregulation of Gst gene transcription, as demonstrated for 

marine polychaetes (Rhee et al. 2007a,b). These authors also demonstrated that Gst gene 

(and presumably GST) expression increases in a dose responsive manner. However, at 

high Cu concentrations, metal-induced enzyme inhibition can reduce total GST activity 

regardless of the higher transcription. The mechanism of Cu-induced GST inhibition in 

molluscs has been proposed to occur in two steps; Cu first binds to the enzyme, and then 

locally generated free radicals modify amino acid residues within the active centre, thus 

reducing its activity (Tang et al. 1996). More recently, Ahmed et al. (2016) reported that 

non-specific and irreversible binding of Cu to thiol groups on the enzyme also can 

accelerate inter- and intra-disulphide bond formation, leading to major conformational 

changes and inactivation; but potentially also acting to detoxify free Cu2+ (Tang et al. 

1996). These primary ROS-induced oxidation and secondary non-specific Cu2+ binding 

mechanisms cause more severe effects on GST activity and are different from that of 

other metals (e.g., cadmium, which occupies the GSH-binding site and prevents the 

enzyme-substrate complex from forming through stearic hindrance with the γ-carbon of 

the glutamic side chain of GSH) (Letelier et al. 2006; Salazar‐Medina et al. 2010; Ahmed 

et al. 2016). 
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7.9.4 Macromolecular biomarkers of oxidative damage 

Oxidative stress caused by Cu induces structure modifications and functional modulation 

of nucleic acids, proteins, and lipids. Lipid peroxidation changes the physiological 

functions of cell membranes. If the process cannot be terminated by antioxidants such as 

GSH, GPx and CAT, major cellular damage occurs. LOOHs are formed as first stable 

primary products from ROS-initiated lipid oxidation of polyunsaturated fatty acids (Ayala 

et al. 2014). Lipid peroxidation decreases bilayer thickness, increases permeability, and 

alters fluidity of most cellular membranes, including mitochondria, microsomes, 

peroxisomes and plasma membrane (Wong-Ekkabut et al. 2007; Rapetto et al. 2012). 

Furthermore, various products of severe lipid oxidation (e.g. hydroperoxides or their 

aldehyde derivatives) can also inhibit protein synthesis, and alter enzyme activity and 

chemotactic signalling (Ayala et al. 2014). 

 At the lowest sublethal Cu treatment, a very subtle but statistical increase in lipid 

peroxidation was transiently detected after 42 hrs exposure, which was completely 

alleviated upon continued exposure. Higher sublethal Cu treatment intensified lipid 

peroxidation after 18 hrs. However, LOOH levels thereafter remained relatively constant 

upon continued exposure. In accordance with the patterns of ROS production, these 

findings indicate that the endogenous antioxidant potential was high enough to re-

equilibrate the system and terminate the peroxidation process with minimal membrane 

damage. Indeed, levels of antioxidant GPx and CAT were simultaneously enhanced, 

providing a protective capacity. Conversely, lethal Cu treatment more than doubled 

generation of LOOHs very quickly, and resulted in levels reaching >450% of control 

values in moribund embryos, with a high likelihood of substantial membrane damage 

occurring. These findings draw a parallel with the behavioural, cellular morphology, and 

other biochemical (e.g., increased lipid peroxidation metabolites) endpoint assessments 

reported in Chapter 7 Part A. Lipid damage was mirrored very closely by evidences of 
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protein and DNA damage, which also correlates well with the microscopical and 

metabolomics data in Part A, and the enzyme data in Part B. 

 ROS promotes primary protein carbonylation via direct oxidation of side chain 

amino acids, such as lysine, arginine, proline, and threonine residues, to form reactive 

ketone or aldehyde groups (Suzuki et al. 2010). Oxidative damage can lead to protein 

fragmentation, unfolding, and misfolding; all of which results in activity loss (Pisoschi & 

Pop 2015). Indeed, the activity loss of the ROS-regulatory enzymes measured herein as 

a response to the high Cu dose exposure is due in part to this process. Such major 

influences on protein function will clearly have detrimental impacts on most enzyme 

mediated reactions, resulting in catastrophic failures of all cellular processes. Similarly, 

at a lethel-level Cu dose, substantial DNA oxidation was quickly induced, which 

undoubtedly contributed to the failing embryonic system. Interestingly however, the level 

of DNA damage did not worsen with time, which may suggest that considerable repair 

efforts were being made.   

7.10 Conclusion 

Simultaneous profiling of a suite of targeted enzymatic biomarkers associated with 

maintenance of ROS homeostasis, and non-enzymatic biomarkers associated with the 

effects of oxidative damage to key cellular components, clearly demonstrated the 

occurrence of oxidative stress in mussel embryos as a response to Cu. These data also 

verify some of the interpretations gained from the metabolomic analysis in Chapter 7 Part 

A, and demonstrate that untargeted and targeted analytical strategies can be used very 

effectively to gain highly complementary information. Metabolomic analysis was more 

sensitive at discriminating copper-exposed embryos/larvae from non-exposed organisms 

compared to analysis of oxidative stress biomarkers, since the lowest Cu dose altered the 

embryonic metabolome, but not the ROS-regulatory system. This indicates that metabolic 
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processes can be affected by Cu as a first consequence in the absence of an oxidative 

stress mechanism. This also suggests that metabolic regulation of low-level Cu toxicity 

can be achieved effectively without significant inputs from the primary redox balance 

system. Although Cu-induced oxidative stress has previously been studied at the protein 

level in adult marine molluscs, such comparative comprehensive analyses have not yet 

been conducted during embryonic or larval development. Thus, this work additionally 

provides the first such investigation to deliver novel information regarding oxidative 

stress mechanisms of the innate immune system during early ontogenic development of 

a molluscan model. In conclusion and corroborating the metabolomics data, oxidative 

stress does indeed play a critical role in the mechanism of copper toxicity for greenshell® 

mussel embryos and larvae. ROS imbalance is a consequence of various internal and 

external influences, and can be used as a non-specific stress indicator. Metabolomics is a 

useful approach to characterise oxidative stress mechanisms and associated metabolic 

dysfunction reflective of poor health status. 
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8.1 Thesis background 

 

 

“With earth's burgeoning human population to feed we must turn to the  
sea with understanding and new technology. We need to farm it as we  

farm the land” – Jacques Yves Cousteau 

 

 

Global aquaculture production, a long-recognised source of economic sustenance and a 

more recently sought solution to future food shortages, has expanded greatly in the past 

two decades, and recently overtook capture fisheries in terms of annual harvestable 

biomass. However, if we are to continue this growth to meet projected demands, we must 

do it right, and we must do it sustainably. Bivalve mariculture is key to this success. 

Context-dependant, Jacques was wrong about one thing – we distinctly need not to farm 

the seas as we have the land; raped with unwanton destruction of the terrestrial 

environment through naivety and greed! But he was right about turning towards the sea, 

and doing it with understanding and new technology – precisely so that we do not make 

the same mistakes again. We need to comprehensively understand how we as a species 

influence marine ecosystems, and how marine organisms interact with their physical 

environments and with one another. It is important that we gain this knowledge so that 

we can further develop and promote sustainable and environmentally beneficial 

aquaculture practices. We need to embrace not only new technologies, but also some new 

conceptual changes in the way we think about the functioning of biological systems and 

the way we approach and conduct scientific research.  
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 Compared to other biological research fields, such as agriculture and even general 

marine biology, aquaculture research has in the past tended to lag behind in terms of 

applied technologies towards understanding animal physiology. But this is changing. 

With shared needs to solve global issues, more acceptance towards collaborative 

relationships, and less of a focus on the potential for losing commercial advantages, 

multinational and multidisciplinary research teams from industry and academia are 

coming together around the world to progress the future of aquaculture. This includes 

incorporation of advanced molecular technologies, such as omics-based approaches. 

However, there is much room for improvement. 

 An essential step forward is to work on bridging the gap between farmers, industry 

managers, aquaculture researchers, molecular biologists, biochemists, and funding 

decision makers. For progress to be made efficiently, it is crucial that this bridge is broad-

spanning and with information flowing in all directions. Academic-based researchers 

need to know about the specific problems industry are suffering from in order to 

investigate and provide best possible advice and outcomes, and industry-based 

researchers need to be aware of what tools and technologies are available and they need 

to be informed as to how they can be used to solve particular issues. This Thesis was 

developed to assist in bridging the technological knowledge gap which exists among 

researchers and those with industry-affiliated interests (Chapters 2 & 3), and also to 

expand current applications and usages of omics-based approaches in aquaculture 

research and general larval biology (Chapters 4–7). 
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8.2 Core chapter philosophies   

 

 

Chapter 2 

 

“It is the framework which changes with each new technology and not just 
the picture within the frame” – Marshall McLuhan 

 

 

This is certainly the case for recent advances in mass spectrometry and bioinformatics. 

The ability to quickly analyse very complex biological matrices has evolved into the new 

metabolomics approach to study biochemistry, and the advent of such omics-based 

approaches also brings along a new conceptual framework to interrogate and understand 

biological systems. This framework has been extensively incorporated into aquaculture 

research through various transcriptomic and proteomic efforts, thus receiving 

considerable attention. However, although metabolomics is a burgeoning field in 

aquaculture, very few seem to be aware of its existence, let alone value. To facilitate 

awareness, a survey of the published literature was conducted to identify metabolomics-

based investigations which have applications to the global aquaculture industry in various 

sectors (e.g., fish, molluscs, crustaceans) and categories (e.g., hatchery culture, nutrition, 

health). The purpose of this was to construct a timely first formal review of metabolomics 

in aquaculture research, identify the knowledge gaps, and provide some suggested lines 

of enquiry for the future. This review also aimed to broadly disseminate and educate 

aquaculture scientists and other interested parties about the advantages of incorporating 

metabolomics into an existing or upcoming research programme in the hope that more 

investigators will start taking on the approach. 
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Chapter 3  

 

“Information about the package is as important as the package itself” 
– Frederick W. Smith 

 

 

We’ve all been there, putting together flatpacked furniture or attempting to program a 

new washing machine without instruction or in a foreign language with uninterpretable 

diagrams… all too easy to give up and walk away. We live in a sea of information. 

Information is a source of learning. But unless it is well-organised, processed, simple to 

understand, and available to the right people in a format for decision making, it is not 

useful. To supplement the first ‘applications’ review, a second companion literature 

review was conducted in Chapter 3 to assess various metabolomics strategies (e.g., 

analytical platforms, statistical analysis techniques, interpretation tools) which are 

typically used for such studies. The purpose of this second review was two-fold. Firstly, 

to identify which strategies would be most-suitable for the case studies that were 

conducted in this Thesis, and secondly to provide an easy-to-read primer for aquaculture 

scientists to educate and facilitate them in conducting a metabolomics-based investigation 

for the first time. Only time will tell, but I sincerely hope that these two reviews will have 

a significant impact on the future of aquaculture research and lead to an increase in the 

number of studies incorporating metabolomic-based components.  
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Experimental case studies 

 

 

The primary research of this PhD Thesis was specifically developed into four case studies 

with differing applications and incorporating different strategies, with some overlaps 

(Figure 8.1). The purpose of designing these case studies in this manner was to 

demonstrate that metabolomics could successfully be used for wide-ranging research 

questions/problems in larval biology and aquaculture. To this end, different taxa (i.e., 

mussels and oysters), lifestages (i.e. embryos and larvae), sampling regimes (i.e., single 

point and temporal), research themes (e.g., baseline development, growth variation, 

culture conditions, health, immunology, toxicology), data formats (i.e., metabolite ratios, 

single metabolites), and research goals (e.g., sample classification, candidate biomarker 

identification, predictive modelling, biochemical mechanism characterisation) were 

investigated or employed. In addition, different data analysis/visualisation/interpretation 

techniques were used when appropriate (e.g., univariate and multivariate analysis, 

heatmap analysis, correlation analysis, pathway analysis), and a validation-of-

interpretation exemplar was incorporated (i.e., targeted enzyme/biomarker analysis). 

Each of these case studies delivered unique biological insights in their own rights, and 

together provide broad scope examples for how metabolomics can be used for a variety 

of different resolutions.   
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Figure 8.1. Venn diagram of the different metabolomic approaches and their applications for each case 
study conducted within this Thesis. 
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Chapter 4 

“What?! I'm not small! It's the world that's too big!!” 
– Hiromu Arakawa: Fullmetal Alchemist 

 

Sometimes your perspective of the world is not what matters; unfortunately it is the 

perspective of others who make the rules. Slow-growing larvae are considered inferior in 

quality and are typically screened from the population every two days during commercial 

larval culture since they increase the bell curve of development which can cause 

subsequent production problems and inefficiencies (e.g., through delayed settlement and 

metamorphosis). This provided an excellent opportunity to examine if currently used 

quality indices could be discriminated at the metabolite level, and was the first test of 

metabolomics as an approach to study early lifestages of marine molluscs. Matrices of 

metabolite ratios were thus compared based on data from slow- vs. fast-growing larvae. 

Four separate feature reduction techniques were employed and only those features which 

were identified by all methods were selected for further analysis. Four metabolite ratios 

were ultimately identified which were best able to discriminate larval classes. Based on 

the composition of metabolites, this case study demonstrated that larvae from the same 

cohort and age but with different size phenotypes are metabolically different, and 

provided provisional insights into energetic roots. Extending the scope, the results of this 

particular case study also has significant relevance within an evolutionary development 

framework. The precise mechanisms responsible for intraspecific variations in larval 

growth and development of marine invertebrates have not yet been fully elucidated, but 

is a widely-researched and controversial topic (Pechenik et al. 1996; Pace et al. 2006; 

Hedgecock et al. 2007; le Cam et al. 2009; Meyer & Manahan 2010; Pan et al. 2016). 

With further metabolomics-based focus and careful control of parental genetics, teasing 

apart the physiological basis for larval growth variation could be achieved.  
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Chapter 5 
 

 

“Future shock is the shattering stress and disorientation that we induce in 
individuals by subjecting them to too much change in too short a time” 

– Alvin Toffler: Future Shock 
 

 

In this case study, alterations in the mussel larval metabolome were assessed in response 

to potential handling stress and after being reared under different culture conditions. What 

constitutes stress and disorientation, what ‘too much change’ is, and how to define ‘too 

short a time’ is challenging, but are key questions/considerations for shellfish hatchery 

managers. Initial expectations were that a harsh water exchange process with aerial 

exposure would induce undue stress which would be reflected by changes in key 

anaerobic metabolites. However, this was not the case and it seems that the highly 

turbulent process did little to disorientate larval metabolism given a little time to re-

equilibrate. On the other hand, different culture conditions resulted in quite different 

metabolic profiles indicative of altered lipid and protein metabolism, but did not produce 

visually different phenotypes. This suggests that larvae can metabolically buffer ‘scope 

for growth’ reasonably well. Further efforts to evaluate influencing factors, determine the 

precise tipping point where this adaptive strategy becomes compromised, and 

characterise the mechanism/s which buffer growth could help to improve and model 

larval performance under different scenarios and culture conditions. This study also 

demonstrated that metabolomics can evaluate visually non-observable traits which 

reveals the high sensitivity of the larval metabolome to particular environmental 

influences.  
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Chapter 6 
 
 

“Indeed, I cannot think why the whole bed of the ocean is not one solid mass 
of oysters, so prolific the creatures seem” 

– Arthur Conan Doyle: Sherlock Holmes 
 
 

And prolific they indeed once were, detective! But now we are facing a global epidemic 

of marine virus infections, and the successful future of the oyster aquaculture sector is in 

jeopardy. This case study sought to investigate early lifestage responses of the oyster 

metabolome during an ostreid herpesvirus (OsHV-1) infection to inform upon 

mechanisms of the host-virus interaction. Larvae are excellent models for this purpose 

since they are the most susceptible lifestage to OsHV-1. Results revealed unique insights 

into how the virus hijacks host metabolism for its benefit, and how the larval host attempts 

to counter the viral attack. Distinct links were able to be drawn between larval physiology 

and that of mammalian macrophages and cancer cells. Personally, the most exciting 

finding for me was a strong implication for the involvement of immunoresponsive gene 

1 (Irg1) through the observed metabolic consequences which result from an upregulation 

in its transcription. Being able to draw previously unknown parallels between invertebrate 

and vertebrate immunity, and especially in early lifestages, offers exciting new avenues 

of research. It is hypothesised that Irg1 is crucially involved during infections, and is 

central to immunometabolism in oyster larvae. The various hypotheses which were 

constructed during data interpretation can now be put to the test, and there is considerable 

scope for this initial work to pave the way for improving the outcomes of selective 

breeding programs. We, as a global scientific community, will find a solution to secure 

the future of the oyster aquaculture sector, and we will strive to ensure that the losses 

suffered by farmers and their families over the past decade do not occur again. 
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Chapter 7   

 

“The best way to detoxify is to stop putting toxic things into the body and 
depend upon its own mechanisms” – Andrew Weil 

 
 

Organisms have evolved over hundreds of millions of years, during which time they have 

had many opportunities to trial various adaptive strategies which enable them to exist in 

hostile and changing environments. Oxygenation of our early atmosphere was a 

catastrophic event for most living organisms and led to a loss of iron bioavailability and 

the oxidation of insoluble Cu(I) to soluble/bioavailable Cu(II) (Chrichton & Pierre 2001). 

The presence of dioxygen, the increase in attacks by oxygen radicals, and the loss of iron 

presented a need for a new redox active metal – copper was ideally suited! This event 

coincided with the arrival of multicellular organisms and a new iron-copper biochemistry/ 

redox balance system. Copper is now an essential trace element for all living organisms, 

but is also highly toxic. Special detoxification mechanisms have thus evolved; some are 

taxon-specific and some are poorly understood. Metabolomics was applied in this case 

study to investigate applications in early lifestage mollusc toxicology. Results revealed 

that mussel embryos and larvae successfully employed various strategies to detoxify the 

metal. First, as revealed by the metabolomics data, through a form of metabolic regulation 

at very low dose concentrations or short exposure durations; then, at higher exposure 

levels, through coordinated assistance of the ROS-regulatory system which involved 

typical antioxidants and enzymes associated with characteristic oxidative stress 

mechanisms of metal toxicity in post-metamorphic stages. This study provided novel 

insights into the metabolic consequences of copper toxicity in developing embryos, and 

validated the metabolomics data interpretations through targeted analysis of oxidative 

stress biomarkers. Metabolomics is a very powerful tool for toxicological studies. 
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8.3 Study limitations  

The replication of n = 3–6 may appear to be low in this research, but sample availability 

was restricted and the Metabolomics Standards Initiative (reviewed in Chapter 3) have 

proposed a minimum of triplicate biological sampling with n = 5 preferred (Sumner et al. 

2007). Broodstock and embryos were kindly provided in-kind by SPATnz and the 

Cawthron Institute, depending on the specific study. Early on during the research, the 

hatchery was operating at low production capacity with very high relative value placed 

on biomaterial, and with other commercial objectives. Thus, for Case Studies 1 (Chapter 

4) and 2 (Chapter 5), relatively low total biomass could be obtained. However, each 

sample analysed was composed of 80,000+ pooled individual organisms (from 

phenotypically homogenous cohorts) which was considered a good representation of the 

larval population, and variability between biological tank replicates was low compared to 

between-class variation in most cases. In Case Studies 3 (Chapter 6) and 4 (Chapter 7), 

sample biomass availability was higher due to larger animals being used or up-scaling of 

culture facilities, respectively. Thus, higher replication could be achieved and was 

implemented in Case Study 3. For Case Study 4, although higher initial biomass was 

available, the incorporation of a temporal sampling design across different development 

stages and multiple treatments restricted biological replication. However, between-

replicate variability was again relatively low and we are confident that the data obtained 

reflects real group differences. In future studies, it is strongly recommended that 

biological replication is maximised when possible, or experimentally evaluated via power 

analysis if budget and sample availability allows.  

 Another potential limitation of the research conducted in this Thesis regards the 

general strategy of employing metabolomics in isolation. However, this is not restricted 

to the specific case studies which were investigated herein, and it is important to note that 

this is more of a paradigmatic consideration for omics-type research in general (and also 
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for many targeted analytical investigations). Due to the inherent nature of biological 

organisation, ‘things’ happen on different time scales, at different relative levels, with 

different inducing factors, and with different final consequences. Inter-relationships with 

known and unknown regulatory feedback mechanism further complex how well the 

expression of particular cellular components (e.g., genes, proteins, metabolites) correlate 

with one another or influence each other, and how well they might correlate with, or more 

importantly be responsible for, an observable phenotypic trait at a particular point in time. 

Thus, any single omics approach (e.g., transcriptomics, proteomics, metabolomics, 

lipidomics [an extension of metabolomics], fluxomics [the study of metabolic fluxes]) in 

isolation will not, and cannot, provide a complete picture. Albeit a slight exaggeration, 

this is perhaps best metaphorically summarised as depicted in Figure 8.2 by our modern 

adaption of the ancient Indian parable of ‘The Blind Men and the Elephant’.  
 
 
 

 
 
Figure 8.2. ‘The Blind Men and the Elephant’. Adaption of an ancient Indian parable to illustrate how 
biases can blind us, preventing us from seeking a more complete understanding of the nature of things. 
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 However, it is important to point out that there have been many thousands of cases 

in the published literature where metabolomics (and other omics-based approaches) have 

been used in isolation to gain very important biological/mechanistic insights, to construct 

hypotheses which have been rigorously tested and confirmed, to identify biomarkers 

which have gone through scrutinising validation procedures, and for predictive modelling 

purposes regardless of biological understanding. It is also important to reiterate here that 

each of the omics approaches also have their own unique applications and advantages. 

Without the intention to detract from the power and application of metabolomics, the 

integration and synergy of multiple omics-based techniques undoubtedly offers the most 

powerful progression forward. 

8.4 Future metabolomics research 

There are many potential avenues for future metabolomics-based research in early 

lifestage investigations of marine molluscs (and other invertebrates). One of the principal 

rationales for investigating mussel embryos and larvae in this Thesis was due to the urgent 

need for a better understanding of how these organisms function, what their fundamental 

requirements are, and what factors may be responsible for variations in larval growth, 

health, and settlement/metamorphic success during hatchery culture. These broad 

questions are ‘big topics’ and although the specific case studies investigated in this Thesis 

did not set out specifically to provide answers to these questions, the results of the current 

research undoubtedly provides positive scope for metabolomics-based approaches to help 

find solutions to various industry-related problems. 

 In terms of the New Zealand mussel sector, causation for larval batch crashes 

during hatchery culture needs to be identified and remediated. We have demonstrated that 

the mussel larval metabolome is dynamic and sensitive to both endogenous and 

exogenous influences, and we believe this sensitivity can be harnessed to identify reasons 
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for production variability. We suggest that a dedicated and long term biobanking 

programme be initiated at the SPATnz hatchery to consistently collect temporal 

embryo/larval samples from every batch. Indeed, dissemination of the findings in this 

Thesis has sparked significant interest from concerned parties within the New Zealand 

aquaculture industry, which recently led to a substantial commercial contract for the AUT 

Aquaculture Biotechnology Group. Routine biobanking of embryo and larval samples is 

now being conducted at the SPATnz hatchery every two days over numerous production 

runs, during different seasons, and with different selectively bred families. 

 Metabolomics-based analysis of carefully chosen larval samples from multiple 

good vs bad batches will commence soon, with the ultimate aim to identify causation for 

poor health and performance. Samples are also being taken for gene, protein, and bacterial 

community analysis with the intention to conduct an integrated omics-based analysis. It 

is our expectation that these data will be able to inform precisely when a larval population 

begins to deviate from the ‘optimal’ metabolic baseline trajectory well before phenotypic 

traits are visually observable, thus providing temporal point accuracy for managers to 

investigate possible process-derived causes (e.g., variations in physical parameters, water 

quality, handling procedures) and/or biological influences (e.g., variations in genetics, 

nutrition, maternal investment, pathogen prevalence). 

 In addition, with the success of Case Study 3 (Chapter 6: mollusc host-pathogen 

interaction) and a suspected role of bacterial pathogens (i.e., Vibrio spp.) during mussel 

larval mortality events (personal communication, R. Roberts, SPATnz, 2016), 

experimental infection trials have recently been completed with the aim to identify 

specific host metabolite biomarkers to use as a reference for Vibriosis disease (Young et 

al. unpublished data). One of the next key questions we aim to investigate is to determine 

whether incidences of high bacterial loading is a cause of poor larval health or an 

opportunistic consequence of metabolic deficiencies (i.e., a pre-existing condition) in 
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larvae which favours pathogen infection and subsequent proliferation. Such knowledge 

could be used to focus remedial attention towards external factors or more inherent 

aspects of larval physiology.  

 In terms of a successful future for global oyster aquaculture, incidents of 

herpesvirus infections in larvae, spat and juveniles needs to mitigated. We view Case 

Study 3 (Chapter 6) as a first pilot investigation for metabolomic-based applications in 

this area, and foresee wider usages of metabolomics by other research groups to advance 

the state of knowledge in the near future. Our study provided a brief snapshot of the host-

virus interaction, and while this led to some unique insights and intriguing findings, a 

more detailed analysis is advised to determine precisely which mechanisms are activated, 

at which time, and in which sequence. We recommend that fine-scale temporal 

assessments be conducted (e.g., at 30–60 min intervals) during the infection process with 

multiple samples being taken for integrated omics-based analyses (i.e., transcriptomics, 

proteomics, multi-platform metabolomics, lipidomics). A comprehensive and temporal 

survey would promote the use of highly advanced bioinformatics and statistical 

procedures to identify relationships within and between various levels of biological 

organisation. A wide range of targeted analytical assays should then be developed and 

conducted to validate particular implications of the data (e.g., focussing on Irg1 

activation, the Warburg effect, fatty acid metabolism, ROS regulation, and/or other 

mechanisms).  

 Another avenue for further OsHV-1 work should involve identifying mechanisms 

of viral resistance by assessing molecular and biochemical responses of selectively bred 

families which display varying susceptibilities to infection. A few omics-based studies 

have already progressed this area, but we believe metabolomics should also be 

incorporated as part of the general strategy. As a first step to advance metabolomics-based 

utilisation, we have recently performed two experiments in collaboration with Cawthron 
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Institute, University of Auckland, and University of Otago in New Zealand. From 40+ 

selectively bred families (3rd generation), 10 new families were created based on virus 

susceptibility and growth performance of their parents. A large number of spat were 

reared under different feeding regimes and subjected to virus and hypoxia challenges to 

investigate differences in the host-virus interaction and determine the effect of growth 

phenotype and anaerobic capacity on virus susceptibility. A range of physiological 

assessments were made to calculate a basic energy budget to determine Scope for Growth, 

and numerous samples taken for omics-based analysis and targeted enzyme work. 

Samples are currently being processed. As a final comment on promoting and advancing 

OsHV-1 research, we also recommend more synergy be developed between primary 

research groups in this area (e.g., teams from New Zealand, France, Italy, UK, Australia), 

and start looking towards integrating omics data. 

 How metabolomics might be further applied and developed to assist the 

aquaculture industry in general is an exciting unknown. However, the future of 

biotechnology in aquaculture will undoubtedly benefit from building upon the knowledge 

which is starting to come from comprehensive exploratory metabolomics-based studies. 

Due to its infancy, we are still well within the discovery phase of research and the full 

extent in which metabolomics will be applied is yet to be realised. We suggest three 

avenues in which metabolomics should be applied in the future of aquaculture to enhance 

production, increase efficiency and help supply the global demand for food.  

 
• Knowledge discovery: Use of highly sensitive and precise analytical 

platforms/technologies within specialised laboratories should be enhanced in 

order to continue the expansion of knowledge in aquatic biology and the 

discovery of new applications. This high-level research requires broad 

expertise and access to state-of-the art equipment, and it is likely to be 



Chapter 8 

373 | P a g e  
 

performed in collaboration with academic institutions. We are currently 

facilitating this goal by collaborating with other aquaculture and capture 

fishery sectors (e.g., salmon, abalone, clams) and industry partners (King 

Salmon Ltd, OceanNZ Blue Ltd, Cawthron Institute) to provide a 

metabolomics-based service to industry, and we are expanding the range of 

available analytical tools by developing an NMR-based capability.    

 
• Development of biochemical assays: By building upon the knowledge gained 

from ‘knowledge discovery’, the identity of single or multiple biomarkers 

which reflect the physiological condition (nutritional status, stress, health, 

disease) of cultured organisms can be used to develop simple assays for 

monitoring organism status and for forensic purposes. These assays will 

ideally be accurate, cheap, easy to use, require low user skills, be applicable 

in field and hatchery environments, and deliver immediate results. For 

aquaculture, this goal is a long way off due to requirements for 

comprehensive validation studies. However, the medical field is already 

reaping the rewards from simple biomarker assays which have been validated 

and commercially developed due to exploratory-based metabolomic studies 

conducted in the last decade. The road to commercialisation for aquaculture 

may very well be sooner.  

 
• Incorporation of alternative metabolomics-based platforms: Presently, 

metabolite fingerprinting/profiling is performed in well-equipped 

laboratories. However, new technologies are continually emerging. Use of 

lower resolution platforms (e.g., IR spectroscopy) with proven application, 

sensitivity and robustness are being made accessible for field measurements 

at a fraction of the costs of current systems. We believe that with development 
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and validation of multivariate predictive classification models and advanced 

forecasting algorithms, IR instruments could be the technology which brings 

metabolomics-based platforms from the hands of scientists and into the hands 

of farm workers. This will also pave the way to provide and support a unique 

opportunity for method development and knowledge discovery to be 

performed in-house with minimal training and expenditure. In order to 

progress this concept, we have recently put together a multidisciplinary team 

of researchers from various institutes and are currently assessing IR 

capabilities and developing novel data analysis procedures and pipelines. This 

work is providing data to support a large funding proposal to the New Zealand 

Ministry of Business, Innovation and Enterprise.  

8.5 Conclusion 

Metabolomics was successfully applied to investigate early lifestages of marine molluscs, 

with demonstrated applications in aquaculture, immunology and toxicology. We are still 

at an early stage in the application of metabolomics in aquaculture, and it is envisioned 

that more streamlined procedures and strategies will be generated in the coming years to 

facilitate implementation of this powerful approach. Some of those advances will involve 

the development of extensive metabolite biomarker libraries, easy-to-use bioinformatics 

packages, small robust analytical platforms for use in the field, improvements in 

analytical sensitivities and metabolite coverage, and integration with other omics-based 

approaches. But more importantly, our future challenge will no doubt be to translate the 

clear potential of this approach into practical solutions to significantly improve the 

commercial aquaculture sector. 
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