
Full citation: Gray, A.R., Sallis, P.J., & MacDonell, S.G. (1998) IDENTIFIED (Integrated Diction-
ary-based Extraction of Non-language-dependent Token Information for Forensic Identification,
Examination, and Discrimination): a dictionary-based system for extracting source code metrics for
software forensics, in Proceedings of Software Engineering: Education & Practice (SE:E&P'98).
Dunedin, New Zealand, IEEE Computer Society Press, pp.252-259.
doi: 10.1109/SEEP.1998.707658

IDENTIFIED (Integrated Dictionary-based Extraction of Non-language-

dependent Token Information for Forensic Identification, Examination, and
Discrimination): A Dictionary-based System for Extracting Source Code

Metrics for Software Forensics

Andrew Gray, Philip Sallis and Stephen G. MacDonell
Department of Information Science

University of Otago, PO Box 56
Dunedin, New Zealand

agray@commerce.otago.ac.nz

Abstract

The frequency and severity of computer-based attacks
such as viruses and worms, logic bombs, trojan horses,
computer fraud, and plagiarism of software code have
all become of increasing concern to many of those
involved with information systems. Part of the difficulty
experienced in collecting evidence regarding the attack
or theft in such situations has been the definition and
collection of appropriate measurements to use in models
of authorship. With this purpose in mind a system called
IDENTIFIED is being developed to assist with the task
of software forensics which is the use of software code
authorship analysis for legal or official purposes.
IDENTIFIED uses combinations of wildcards and
special characters to define count-based metrics, allows
for hierarchical meta-metric definitions, automates much
of the file handling task, extracts metric values from
source code, and assists with the analysis and modelling
processes. It is hoped that the availability of such tools
will encourage more detailed research into this area of
ever-increasing importance.

1. SOFTWARE FORENSICS
1.1. Introduction

Source code is the textual form of a computer program
that is written by a computer programmer in a computer
programming language. These programming languages
can in some respects be treated as a form of language
from a linguistic perspective, or more precisely as a
series of languages of particular types, but within some
common family. In the same manner as written text can
be analysed for evidence of authorship, as in [10],
computer programs can also be examined from a

forensics or linguistics viewpoint [11] for information
regarding the program’s authorship. The goals of
computer program authorship are also often similar to, or
even identical to, those encountered in forensic linguis-
tics and computational linguistics.

Figure 1 (from [3]) shows two small code fragments that
were written in C++ by two separate programmers. Both
programs provide the same functionality (calculating the
mathematical function factorial(n), normally written as
n!) from the users’ perspective. That is to say, the same
inputs will generate the same outputs for each of these
programs.

// Factorial takes an integer as an input and returns
// the factorial of the input.
// This routine does not deal with negative values!

int Factorial (int Input)
{

int Counter;
int Fact;

 Fact=1; // Initalises Fact to 1 since factorial 0 is 1
for (Counter=Input; Counter>1; Counter=Counter-1)

 {
Fact=Fact*Counter;

 }
return Fact;

}

int f(int x){
int a, y=1;
if (!x) return 1; else return x*f(x-1);}

Figure 1. Program segments in C++

As should be apparent, each programmer has solved the
same problem, that of calculating the factorial of an
input, in both a different manner (algorithm) and with a
different style exhibited in his or her code. These
stylistic differences include the use of comments,
variable names, use of white space, indentation, and the
levels of readability in each function.

http://dx.doi.org/10.1109/SEEP.1998.707658�

These fragments are obviously far too short to make any
substantial claims about the feasibility of using source
code characteristics to make statements regarding the
author(s). However, they do illustrate the fact that
programmers writing programs will often do so in a
significantly different manner to another programmer,
without any instruction to do so. Both of these functions
were written in the natural styles of their respective
authors.

1.2. Flexibility in writing source code

While source code is certainly much more formal and
restrictive than spoken or written languages in terms of
acceptable grammar, computer programmers still have a
large degree of flexibility when writing a program to
achieve a particular purpose. This flexibility includes:

 the manner in which the task is achieved (the algo-
rithm used to solve the problem),

 the way that the source code is presented in terms
of layout (spacing, indentation, bordering charac-
ters used to set off sections of code, standard head-
ings, etc.), and

 the stylistic manner in which the algorithm is im-
plemented (the particular choice of program state-
ments used where there is a choice, variable
names, etc.).

Other options may also be available to the programmer,
such as selecting the computer platform, programming
language, compiler, and text editor to be used. These
additional decisions may allow the programmer some
further degrees of freedom, and thus expressiveness.

Many of these features of a computer program (algo-
rithm, layout, style, and environment) can be quite
specific to certain programmers or types of programmer.
Ideally, such aspects in order to be useful for software
authorship analysis have low within-programmer
variability, and high between-programmer variability.
This is especially likely for particular combinations of
features and unusual programming idioms that generally
make up a programmer’s problem-solving vocabulary.
Therefore, it seems that computer programs can contain
some degree of information that provides evidence of the
author’s identity and characteristics [11].

Once the classification is made that program source code
is in fact a type of language that is suitable for authorship
analysis, a number of applications and techniques
emerge. In fact, as [11] note, a reasonable proportion of
the work already carried out in computational linguistics
for text corpus authorship analysis has parallels for
source code. Similarly, techniques used in forensics for
handwriting and linguistic analysis can also, in some
cases at least, be transferred in some respect to what is
referred to here as software forensics.

Here it is assumed that the term software forensics refers
to the use of measurements from software source code,
or object code, for some legal or official purpose [3].

This is similar to, but in some respects also distinct from,
the use of the term in some literature where the focus
tends to be very much on malicious code analysis. The
legal or official nature of software forensics requires a
high level of objectivity, as well as methods for calculat-
ing the degrees of evidence provided and combining that
evidence with other sources. Four broad areas of
application emerge in software forensics and are dis-
cussed next.

1.3. Applications

1.3.1. Author identification. The goal here is to
determine the likelihood of a particular author having
written some piece(s) of code, usually based on other
code samples from that programmer. This can also
involve having samples of code for several programmers
and determining the likelihood of a new piece of code
having been written by each programmer. This applica-
tion area is very similar to, for example, the attempts to
determine the authorship of the Shakespearean plays or
certain biblical passages. An example of this applied to
source code would be ascribing authorship of a new
piece of code, such as a computer virus, to an author
where the code matches the profile of other pieces of
code written by this author.

1.3.2 Authorship discrimination. This is the task of
deciding whether some pieces of code were written by a
single author or by (some number of) different authors.
This can possibly also include an estimate of the number
of distinct authors involved in writing a single piece or
all pieces of code. It is obviously necessary to distinguish
between identifying multiple authors for a series of
programs and co-authorship on a single program. This
task involves the calculation of similarity between the
two or more pieces of code and possibly some estimate
of between- and within-subject variability. An example
of this would be showing that different authors, without
actually identifying the authors in question, probably
wrote the two or more pieces of code.

1.3.3. Author characterisation. This is based on
determining some characteristics of the programmer of a
code fragment, such as personality and educational
background, based on their programming style. An
example of this would be determining that a piece of
code was most likely to have been written by someone
with a particular educational background due to the
programming style and techniques used.

1.3.4. Author intent determination. It may be possible
to determine, in some cases, whether code that has had
an undesired effect was written with deliberate malice, or
was the result of an accidental error. Since the software
development process is never error free and some errors
can have catastrophic consequences, such questions can
arise reasonably frequently. This can also be extended to
check for negligence, where erroneous code is perhaps
suspected to be much less rigorous than a programmer’s
usual code. This is a much-neglected aspect of source
code authorship analysis [3] with no other literature

found that mentions its use. While this could be seen as
the most difficult, and certainly the most subjective, of
the applications it may also be one of the most crucial in
practice.

1.4. Settings

1.4.1. Educational. The educational setting of software
forensics is generally concerned with plagiarism detec-
tion [14]. A significant amount of literature has been
produced detailing various schemes for detecting cases
where programming assignments have been plagiarised,
with or without the original author’s consent. Generally
plagiarism detection is a combination of author identifi-
cation (who really wrote the code), and author discrimi-
nation (did the same person write both pieces of code).
One significant problem that emerges when using
plagiarism detection is the effect of discouraging
collaboration between students. Other issues such as
student’s adopting tutors, lecturers, and/or textbook
author’s styles are also problematic.

1.4.2. Legal. The use of software forensics for tracking
down the authors of malicious code has been the second
most emphasised application after plagiarism detection
[7, 12, 13]. Other issues such as the intent analysis of
malicious code also appear under this heading.

1.4.3. Industrial. Within an industrial context there are
fewer applications of software forensics, but cases would
include identifying authors of code that needs to be
maintained where this information is not otherwise
recorded or may be incorrect, and checking for negligent
programming.

1.4.4. Psychological. While the above areas are mostly
practical, there are also several uses for software
authorship analysis from a theoretical perspective. It is
possible to use such metrics to examine the developmen-
tal process of programming skills, and to correlate
individual characteristics to programming ones.

1.5. Using software forensics

If software forensics, the authorship analysis of software
source code, is now accepted as possible, it remains to
justify the usefulness of the field in a practical sense. As
the incidence of computer related crime increases it will
become increasingly important to have techniques that
can be applied in a legal setting to assist the court in
making judgements. In addition it becomes more
important for academic institutions and commercial
organisations to provide sufficient justification for their
official decisions. For example, a university accusing a
student of plagiarism would be well advised to have
sufficient evidence to back up that claim should the
student take the matter higher.

Some types of these undesirable activities include attacks
from malicious code (such as viruses, worms, trojan
horses, and logic bombs), plagiarism (theft of code), and
computer fraud. It is to be expected that the frequency of

these crimes will continue to rise as increasing numbers
of people gain the requisite technical skills and as the
incentives rise. In the case of academic plagiarism the
incidence is likely to increase as more varied types of
students take degrees with some component of program-
ming, with some of these more likely to struggle with
programming.

Some of these problems are already faced with a variety
of techniques. What is proposed here is that a complete
and well-defined field is required, with its own tech-
niques and tools. Without the creation of the field of
software forensics, such issues as were just mentioned
will continue to be tackled in an ad hoc manner. As the
importance and frequency of such incidences increase,
such a strategy will not be adequate or acceptable to
participants in the process.

2. CONCEPTUAL METRICS FOR
SOFTWARE FORENSICS

2.1. Source code metrics

Expert opinion can, potentially, be given on the degrees
of similarity and difference between code fragments.
Psychological analysis of code can also be performed,
even as a simple matter of opinion. However, a more
scientific approach may also be taken (and should be
taken) since both quantitative and qualitative measure-
ments can be made on computer program source code
and object code. These measurements can be either
automatically extracted by analysis tools, calculated by
an expert, or arrived at by using some combination of
these two methods. Some metrics can obviously only be
calculated by an expert, such as the degree to which the
comments in code match the actual behaviour of that
code.

Here these measurements are referred to as metrics for
reasons of tradition and include some borrowed and
adapted from conventional software metrics and linguis-
tics. A vast number of different metrics can be extracted
from source code. Some examples of the types of
metrics that can be extracted and that may be useful for
authorship analysis purposes include, but are not limited
to, the following list.

 The number of each type of data structure used can
be indicative of the background and sophistication
of a program author. A preference for certain data
structures can also indicate a certain mental model
that they operate within.

 The cyclomatic complexity of the control flow of
the program can show the characteristic style of a
programmer and may suggest the manner in which
the code was written. For example, code tends to
appear quite different when written all at once or
over time, especially if significant new functional-
ity has been added to the original program.

 The quantity and quality of comments in the code
can provide evidence of linguistic characteristics

such as writing style, errors in spelling and gram-
mar, etc.

 The types of variable names used within the pro-
gram (capitalisation, corrupted forms, etc.) can
provide clues as to background and personality.

 The use of layout conventions such as indentation
and borders around sections of code tends to de-
pend on background and the programmer’s cogni-
tive style.

These metrics, which obviously require more formal
definition to be useful, could all be expected to exhibit
larger between-subject variation than within-subject
variation. In other words, it could be expected that a
given set of programs from one author would be more
similar in terms of these measurements than a set of
programs from a variety of authors. Many other such
metrics can also be extracted from code but this short list
hopefully provides some of the flavour of candidate
metrics.

Metrics such as these can be expressed as interval/ratio
scale variables (such as code length in terms of lines of
code or the number of uses of while statements).
Nominal variables can also be used (for example to
describe the different patterns of indentation) with binary
variables a special case (use of pointers would be an
example). Finally, it is also possible to use fuzzy
variables to describe certain aspects of code, such as how
well the comments match the behaviour of the code [5].

Many of the structural type metrics can be obtained,
perhaps with modifications to definitions, from the
software metrics literature. Software metric definitions,
and also extraction tools, are available for such aspects
of computer programs as complexity, comprehensibility,
the degree of reuse made from other code, and various
measures of size. The customary uses of these metrics
are in managing the software development process, but
many are transferable to authorship analysis.

In any case, the fundamental concepts that have emerged
within the field of software metrics are very useful as
starting points for defining authorship metrics. In
addition, the metrics extracted from source code can
often be similar, or even identical, to stylistic tests used
in computational linguistics, especially where sufficient
quantities of comments are available.

2.2. Object code metrics

While not part of source code analysis itself, some
environmental measurements can sometimes also be
extracted from executable code such as the hardware
platform and the compiler employed for its production.
Executable code can also be decompiled; a process
where a source program that could then be compiled into
the executable is created by reversing the compiling
process. Since many source programs can be written to
create the same executable there is considerable informa-
tion loss, but some of the source code metrics can still be
applicable.

2.3. Metric models of authorship

Once these metrics have been extracted, a number of
different modelling techniques, such as cluster analysis,
logistic regression, and discriminant analysis, can be
used to derive models. The form of the model, the
technique used, and the metrics of use all depend greatly
on the purpose of the analysis and on the information
available. In most respects the particular technique used
for the modelling process is less important than the
variables selected and their coding.

3. THE FEASIBILITY OF SOFTWARE
FORENSICS FOR PRACTICAL USE

The fundamental assumption of software forensics is that
programmers tend to have coding styles that are distinct,
at least to some degree. As such these styles and features
are often recognisable to their colleagues, or to experts in
source code analysis who are provided with samples of
their code [11].

However, as [11] note, the issue of how well this
individuality can be hidden, or mimicked, is also of
obvious importance when ascribing authorship to an
individual. In [13] it is commented that, in their opinion,
there might still be evidence of identity remaining after
the author’s attempts to disguise their identity. In other
words, some aspects of a programmer’s style cannot be
changed if they are to program in an effective manner.
Another important question is whether or not authorship
can be sufficiently accurately recognised in itself, even
without masking attempts.

These points lead to the fundamental question of whether
or not there is in fact sufficient information available
using these techniques to provide adequate authorship
evidence for use within a legal context. In other words,
the question is whether authorship identification or
characterisation can be performed at levels of sufficient
certainty for these results to then be presented as legal
argument. Such evidence could be statistical or expert-
opinion based.

If the argument, as presented here, that there is such
information is accepted then certain requirements from a
legal perspective need to be met before such evidence is
admissible. In addition, a means of quantifying the
strength of the evidence is necessary, as is a method for
presenting such evidence to laypersons.

The focus in this paper is on software forensics, which
has already been defined as the general field of analysing
computer program authorship for legal reasons.
However, in order to indicate the place of this area
within the entire range of authorship analysis activities
for source code Figure 2 shows the relationship between
some of these areas.

Author
Discrimination

(Plagarism)

Author
Identification

Authorship
Characterization

Software
Forensics

Author Intent
Analysis

Figure 2. Software forensics

4. MALICIOUS CODE ANALYSIS
4.1. Introduction

This section looks at malicious code analysis since this is
the area that best fits the label software forensics. In
order to ascertain the circumstances that lead to a defect
in code or a malicious application, a series of questions
need to be answered:

1. What does the code do? While this may appear
trivial, in complex real-world systems determining
the effect of a piece of code can involve consider-
able effort, or may even be impractical. This is
especially likely for legacy systems where the
original programmers have since left the organisa-
tion. This question is not an authorship question
per se, and should be left to software engineers.

2. Who wrote the code? This is the authorship ques-
tion that is the focus of this section. As noted in
[13], the anonymous nature of computer crimes
such as viruses, worms, and logic bombs makes
the attack more attractive. Identifying the author
of the malicious code is not necessarily the same
as identifying the author of the system. Since
many systems involve a large number of develop-
ers the identification of the most likely author can
be difficult, even more so if the code could have
been written by non-members of the programming
team. In the case of standalone systems such a vi-
ruses, code may be matched to viruses already at-
tributed to a certain author.

3. When was the code written? Since programmers’
styles change over time it may be possible to iden-
tify roughly when the malicious code was written.
At the very least, for malicious code contained in a
larger system it may be possible to determine
whether or not the code was part of the original
system or added at a later date.

4. What is the intent of the code? In many cases this
will be obvious, but in others it may be the case
that the code could be an error or deliberate.

An application for authorship analysis that has not been
found in any literature other than that by the authors is
the answering of the fourth question above: determina-
tion of intent, malice or otherwise, once code has been
found that could have been maliciously programmed.
Certain cases, such as salami attacks and logic bombs
that are triggered by the removal of an employee from
the organisation’s payroll, are prima facie malicious.
However, there may also exist cases where undesirable
behaviour in an application could be either maliciously
programmed, or could simply be the inevitability of
defects in the code.

4.2. Cases of malicious code analysis

The two main cases where malicious source code has
been examined in detail are the WANK and OILS worms
[7] and the Internet Worm [12]. In [12] the Internet
Worm, written by Robert Morris and released onto the
Internet on November 1988 is discussed from the
perspective of authorship analysis and technical analysis.
In [7] the WANK and OILZ worms were studied. These
were released in 1989 attacking NASA and DOE
systems. The worms were both written in DCL, with the
WANK worm proceeding OILZ by about two weeks.

4.3. Metrics for malicious code analysis

In [13] the authors suggest a number of features that can
be used to analyse source code for malicious programs
and the following list of features is a subset of these, as
well as containing some additional features.

 Programming language. The language choice can
indicate a number of features about the author.
This can include their background (since they
would be unlikely to use a language that they were
not already familiar with). Not noted by [13], but
important nonetheless, are the psychological pref-
erences that some programmers may feel for cer-
tain languages.

 Formatting of code. The manner in which the
source code is formatted can indicate both author
features and some psychological information about
the author. Pretty-printers are commonly used to
automatically format source code and while this
removes author-specific features it introduces in-
formation about what pretty-printer may have been
used.

 Special features such as macros may be used that
indicate to some degree which compiler or library
was used.

 Commenting style. This can be a very distinctive
aspect of a programmer’s style. If comments are
sufficiently large then traditional textual linguistic
analysis may be appropriate.

 Variable naming conventions are another distinc-
tive aspect of an author’s style. The use of mean-
ingful versus non-meaningful names, the use of

standards (such as Hungarian notation), and the
capitalisation of variable names are all features
that programmers can adopt.

 Spelling and grammar. Where comments are
available an examination of their spelling and
grammar can be a useful indication of authorship.
Spelling errors may also be present in function and
variable names.

 Use of language features. Some programmers
prefer to use certain aspects of a language than
others.

 Size. The size of routines can indicate the degree
of cognitive chunking used by the programmer.

 Errors. As noted in the section above on executa-
ble code, programmers often consistently make the
same or similar errors.

 Also not mentioned by [13], but nonetheless im-
portant is reuse of code. If code from a previously
identified author has been reused then this could
indicate authorship or association.

 Data structure and algorithms. This can be a use-
ful indication of the programmer’s background
since they are more likely to use certain algorithms
that they have been taught or had exposure to, and
are therefore more comfortable with. Non-optimal
choices may indicate a lack of knowledge or even
that the programmer uses another language’s pro-
gramming style, perhaps indicating their preferred
or first programming language.

 Level of programming skill and areas of knowl-
edge. The degree of sophistication and optimisa-
tion can provide useful indications of the author.
Differences in sophistication within a program
may indicate a mixture of authors or an author who
specialises in a particular area.

 Use of system and library calls. These may pro-
vide some information regarding the author’s
background.

 Errors present in the code. Almost all code con-
tains errors, and any complex system will almost
certainly have defects. Programmers are often
consistent in terms of the errors that they make.

5. SPECIFIC METRICS

Specific metrics generally match one-to-many with the
conceptual metrics discussed above. While many
metrics could be listed, the purpose of this section is
simply to provide some of the flavour of such metrics.
Listing all of the possible metrics would require a
substantial volume in itself. The difficulty is not with
formulating such metrics, but rather with selecting those
necessary. Software forensics is still an empirically
young discipline and there has been only limited work
towards identifying a collection of metrics that would

provide all necessary and sufficient aspects of the
programs.

The following metrics provide simple examples of
authorship related metrics, most of which can be
automatically collected using IDENTIFIED as will be
described in the next section. These are merely a small
number of the possible measurements and are intended to
provide some indication of the flavour of such metrics.

Metric 1: Mean length of source code lines in terms
of the number of characters.

Metric 2: Mean variable name length in terms of
characters.

Metric 3: Variable names are meaningful or not.

Metric 4: Pointers are used or not used.

Metric 5: Mean length of a function in lines of code.

Metric 6: Ratio of comment lines to non-comment
lines of code.

Metric 7: Ratio of blank lines to non-blank lines.

Metric 8: Ratios of use of for/repeat/while
type constructs.

Metric 9: Most commonly used indentation style
(number of characters indented by and
when used).

Metric 10: Use of global variables.

As a further example, the specific metrics suggested by
[11] for plagiarism detection are given below. As well as
illustrating some other specific metrics, these also show
how tradition software metrics can be used for authorship
analysis.

 Volume measured as Halstead’s n, N, and V [4].

 Control flow measured by McCabe’s V(G) [8].

 Structure measured by Leach’s coupling assess-
ment [6].

 Data dependency measured by Bieman and Deb-
nath’s GPG assessment [1].

 Nesting depth measured by program nesting depth
and average nesting depth [2].

 Control structure measured by Nejmeh’s (1988)
NPATH [9].

6. IDENTIFIED

6.1. Introduction

IDENTIFIED (Integrated Dictionary-based Extraction of
Non-language-dependent Token Information for Forensic
Identification, Examination, and Discrimination) is a
prototype implementation of a dictionary-based metric
extraction tool with modules for analysing the resultant
metric data. The main module is the Scan program as
shown in Figure 3. The overall structure of IDENTIFIED
is as shown in Figure 4.

Figure 3. The Scan Module of IDENTIFIED

Source Code

Combined
Source Code

Root source
code

Scan ProgramDictionary
Meta-

Dictionary

Combine
Program

Find Headers
Program

Metrics
Reports

Metrics
Data

Analysis
Program

Analysis
Reports

Figure 4. Structure of IDENTIFIED

In order to illustrate the functionality of the system, a
trivial analysis of source code will be described. The
general order of processing is to first select a root source
code file along with directories from where files included
or called can be obtained. The Find program then
constructs a list of all programs that the root source
program depends on that can be found in the specified

directories. This allows for easily omitting standard
libraries.

These files can then be merged to produce a single
source code file. Subsequent analysis can be performed
on both the separate files and the combined file.

The source code can then be analysed using a metrics
definition file which using a series of special wildcards,
special code characters, and options allows for the
creation of most metrics of interest (Figure 5 shows a
trivial example for line comment characters and lines of
code in C++). The Scan routine uses these entries to
count the number of occurrences for each metrics. This
file can then be used to extract metrics as shown in
Figure 6, or meta-metrics can be defined as shown in
Figure 7. Definitions of meta-metrics include the
standard arithmetical operations and can refer to lower
level metrics as well as other meta-metrics. Metrics can
be defined with as much hierarchy as is needed and
different meta-metric files can refer back to the same
base metrics dictionary file.

The system is not language dependent in any important
way, since new dictionary files and meta-dictionaries can
be easily created using a wizard system. The header
scanning system is however limited to supported
languages, although source code in other languages can
be combined by manually specifying the filenames.

_"_Comments
//

_"_LOC
_C!__&0__~_//_~__*_

Figure 5. Metrics Definition File

Scan results for file:
C:\scan\temp\parseequ.h

Comments
11 : //

LOC
34 : _C!__&0__~_//_~__*_

Figure 6. Metrics Count File

META-DICTIONARY

SquaredLOC
//e
+o
_C!__&0__~_//_~__*_e
*o
_C!__&0__~_//_~__*_e
+o
//e

Figure 7. Meta-Dictionary File

The results from the metric extraction can then be passed
to modules for displaying the data and carrying out
analysis such as cluster analysis, cased-based reasoning,
and discriminant analysis. In addition the results can be
exported to a spreadsheet or statistical package such as
SPSS for further analysis.

7. CONCLUSIONS

It appears that software forensics has the potential to
become both an important area of practice in computer
security, computer law, and academia as well as an
exciting new area of research. As part of this develop-
ment in the field there is the necessity for more formally
defined methods and metrics. It is hoped that the
IDENTIFIED system will provide one of these steps
towards the creation of a new scientific discipline.

More work is continuing on the analysis routines for
IDENTIFIED, along with more powerful pattern
matching options for the Scan program. Once this is
complete then a large scale empirical study of source
code will begin with the goal of identifying useful
models of authorship.

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the
assistance of Mr. Grant MacLennan with the designing
and programming of the IDENTIFIED system.

REFERENCES

[1] Bieman, J.M., and Debnath, N.C. (1985). An
Analysis of Software Structure Using a Generalized
Program Graph. Proceedings of COMPSAC’85 254-
259.

[2] Dunsmore, H.E. (1984). Software Metrics: An
Overview of an Evolving Methodology. Information
Processing & Management 20:183-192.

[3] Gray, A.R., Sallis, P.J., and MacDonell, S.G. (1997)
Software Forensics: Extending Authorship Analysis
Techniques to Computer Programs. Presented at The
Third Biannual Conference of the International Associa-

tion of Forensic Linguists, 4-7 September 1997, at Duke
University, Durham, North Carolina, USA.

[4] Halstead, M.H. (1977). Elements of Software
Science. Elsvier North-Holland. New York.

[5] Kilgour, R.I., Gray, A.R., Sallis, P.J., and
MacDonell, S.G. (1997) A Fuzzy Logic Approach to
Computer Software Source Code Authorship Analysis.
Accepted in The Fourth International Conference on
Neural Information Processing - The Annual Conference
of the Asian Pacific Neural Network Assembly
(ICONIP'97), 24-28 November 1997, at the University of
Otago, Dunedin, New Zealand.

[6] Leach, R.J. (1995). Using Metrics to Evaluate
Student Programs. ACM SIGCSE Bulletin 27:41-43,48.

[7] Longstaff, T.A., and Schultz, E.E. (1993). Beyond
Preliminary Analysis of the WANK and OILZ Worms: A
Case Study of Malicious Code. Computers & Security.
12:61-77.

[8] McCabe, T.J. (1976). A Complexity Measure. IEEE
Transactions on Software Engineering 2(4):308-320.

[9] Nejmeh, B.A. (1988). NPATH: A Measure of
Execution Path Complexity and its Applications.
Communications of the ACM 31:188-200.

[10] Sallis, P. (1994). Contemporary Computing
Methods for the Authorship Characterisation Problem in
Computational Linguistics, New Zealand Journal of
Computing, 5, 85-95.

[11] Sallis P., Aakjaer, A., and MacDonell, S. (1996).
Software Forensics: Old Methods for a New Science.
Proceedings of SE:E&P’96 (Software Engineering:
Education and Practice). Dunedin, New Zealand, IEEE
Computer Society Press, 367-371.

[12] Spafford, E.H. (1989). The Internet Worm Pro-
gram: An Analysis. Computer Communications Review.
19(1):17-49.

[13] Spafford, E.H., and Weeber, S.A. (1993). Software
Forensics: Can we track Code to its Authors? Computers
& Security. 12:585-595.

[14] Whale, G. (1990). Software Metrics and Plagiarism
Detection. Journal of Systems and Software. 13:131-
138.

	IDENTIFIED (Integrated Dictionary-based Extraction of Non-language-dependent Token Information for Forensic Identification, Examination, and Discrimination): A Dictionary-based System for Extracting Source Code Metrics for Software Forensics
	Abstract
	1. Software forensics
	1.1. Introduction
	1.2. Flexibility in writing source code
	1.3. Applications
	1.4. Settings
	1.5. Using software forensics

	2. Conceptual metrics for software forensics
	2.1. Source code metrics
	2.2. Object code metrics
	2.3. Metric models of authorship

	3. The feasibility of software forensics for practical use
	4. Malicious code analysis
	4.1. Introduction
	4.2. Cases of malicious code analysis
	4.3. Metrics for malicious code analysis

	5. Specific metrics
	6. IDENTIFIED
	6.1. Introduction

	7. Conclusions
	Acknowledgements
	References

