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The Eckert number phenomenon was investigated theoretically by Geropp in 1969 and describes a 

reversal in heat transfer from a moving wall at an Eckert number Ec ≈ 1. In this report the Eckert 

number phenomenon is confirmed experimentally for the first time. For that purpose the heat 

transfer from a heated, vertically rotating cylinder in a crossflow was investigated. In order to 

perform the experiments in a range where the predicted phenomenon occurs, extreme rotational 

speeds were necessary. A heating concept had to be developed which allowed an input of heating 

power independent of  the speed and which therefore had to be contact-free. The results show, 

among other things, that the temperature difference between the wall and the surrounding fluid has 

a significant effect on the predicted reversal of heat transfer at the wall. Moreover, maximum heat 

transfer occurs at an Eckert number Ec ≈ 0.3, which is of great importance for the cooling of hot 

surfaces in a gas-flow. 

Eckert number Nusselt number heat transfer  rotating 

cylinder adiabatic wall temperature boundary layer dissipation  
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List of symbols 

A Area 

cf Friction coefficient 

cp Specific isobaric heat capacity 

c1…5 Constants 

D Cylinder diameter 

Ec Eckert number 

h Heat transfer coefficient 

k Thermal conductivity 
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l Cylinder length 

Nu Nusselt number 

P Power 

Pr Prandtl number 
Q  Heat flow 

Re Reynolds number  

T Temperature 

ΔT Temperature difference 

Tu degree of turbulence 

v Velocity 

W Width of wind-tunnel 

δ Boundary layer thickness 

φ Angle 

 

Subscripts 

ad adiabatic 

corr Corrected 

cs Cross-sectional 

el Electric 

t Turbulent 

W Wall 

h Convective 

Ω Rotational 

∞ Main flow 

 

Introduction 

The title, the Eckert number phenomenon, sounds mysterious. A phenomenon is 

an appearance of something of which the cause is in question or unknown. In 

natural sciences experiments are carried out in order to identify correlations of 

physical laws. Quite often, however, the results of these experiments raise even 

more new questions than giving answers. In this case, the Eckert number 

phenomenon had its origin in experiments which took an unexpected course. 
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In the 1960s experiments were carried out to investigate the cooling of 

commutators. These devices are cylindrical parts on electric motors by which 

electric power is transmitted to the rotor. Due to friction, the commutator gets 

hotter at the slip-ring-contacts the faster the rotor spins. In order to avoid surface 

temperatures becoming too high, the commutator has to be cooled. However, 

since rotation in quiescent air does not reject enough heat, the device needs to be 

cooled by forced convection.  

 

First experimental work on axial and radial cooling of commutators was carried 

out by Yildiz [1], who found out that at a fast rotating cylinder the heat transfer is 

only determined by the rotational Reynolds number, which relates in a 

dimensionless form to the peripheral velocity of the cylinder. However, he 

discovered that the heat transfer could not be increased any further above a 

rotational Reynolds number ReΩ = 2.5 x 106.  

 

This observation induced Geropp [2] to carry out a theoretical study about the 

correlations of the Nusselt, Reynolds and Eckert numbers. His main focus was on 

the high rotational speed of an infinitesimally long cylinder in quiescent air where 

the heat is created by dissipative effects and therefore the Eckert number (defined 

as the ratio of kinetic energy at the wall to the specific enthalpy difference 

between wall and fluid) becomes an important factor for the heat transfer. Based 

on the boundary-layer equations, Geropp formed a theory which supports Yildiz' 

observations in that the heat transfer stagnates at a particular rotational Reynolds 

number. Moreover, he predicted that the heat transfer even changes its direction at 

an Eckert number Ec ≈ 1. According to Geropp, this reversal will occur at a 

rotational Reynolds number ReΩ ≈ 6.9 x 106. This, then, is the actual phenomenon: 

A rotating body is not cooled any longer; it takes up heat despite the fact that its 

surface temperature is still higher than ambient temperature. 

 

The main goal of this work was to confirm the existence of the Eckert number 

phenomenon experimentally for the first time and to investigate the contributing 

heat transfer processes in the case of a heated, rotating cylinder in a crossflow. For 

this purpose extensive investigations of the influence of the fluid-dynamic 
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variables such as gas velocities, temperatures and temperature gradients (which 

are most significant for the heat transfer) were carried out and provided some 

interesting insights into the complex interactions taking place in the surroundings 

of a rotating cylinder. These results, however, will be reported in a separate paper 

[3]. Here, only the background and the fundamental conclusions of the 

experimental results will be given as an introduction to the Eckert number 

phenomenon. 

 

Theoretical background 

Geropp´s theory 

Based on the fundamental equations for velocity and temperature fields in 

conjunction with empirical formulae for wall shear stress, Geropp [2] deduced the 

relations for the turbulent heat transfer of a heated, horizontal cylinder which is 

rotating freely in space. He refers to experiments of various authors, mainly of 

Yildiz. Geropp’s work was focused on high rotational Reynolds numbers, where 

the frictional heat created by dissipation and thereby the Eckert number, gains 

influence on the heat transfer. The dimensionless Eckert number 

( )∞−
=

TTc

v
2
1

Ec
Wp

2

 (1) 

therefore plays an important role, representing the ratio of kinetic energy at the 

wall to the specific enthalpy difference between wall and fluid.  

 

As a result of his calculated temperature distribution, Geropp deduced that the 

temperature gradient at the wall changes its sign and therefore will cause a change 

in the direction of the heat flow. Geropp´s deduction of the Nusselt number 

supports Yildiz´ observation that from a certain rotational Reynolds number, the 

heat transfer does not increase any further. Furthermore, the theory predicts a 

decrease of the heat transfer down to a condition at which the heat flow actually 

reverses. Geropp gives the following function for the Nusselt number 
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whereby cf is a friction-coefficient according to Dorfmann´s [4] wall shear stress 

law, Prt is the turbulent Prandtl number and c1 to c5 are constants. In this equation 

the heat transfer changes its sign once the Eckert number reaches a value around 

unity and a cooling of the cylinder wall leads to a heating despite the fact that the 

wall temperature is still above the fluid temperature. Since there was no 

experimental data available for this range of Eckert numbers, Geropp extrapolated 

the function Ec = f(ReΩ) from Yildiz´ data and specified the Reynolds number 

ReΩ = 6.9 x 106 where the Nusselt number becomes zero (Figure 1).  

Figure 1 

 

Geropp explains the so-called Eckert number phenomenon as being the result of 

dissipation created by shear stresses in the fluid at the wall. The reduction in heat 

transfer is determined by the hypothetical "adiabatic wall temperature” Tad [5] 

which the cylinder would take on if it were insulated. With a wall temperature TW 

being smaller than the “adiabatic wall temperature”, heat is being transferred to 

the cylinder even if TW is above the fluid temperature. 
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Further conclusions from Geropp´s theory 

Additional conclusions can be drawn from Geropp´s equations. Firstly, together 

with the temperature difference ΔT = (TW -T∞), an additional arbitrary parameter 

for the calculation of the rotational Reynolds number at which the reversal in heat 

transfer occurs, is hidden in the Eckert number. From this it obviously follows 

that a boundary Reynolds number, at which the Eckert number phenomenon 

should occur - as mentioned in Geropp´s publication - does not exist. However, 

there is one function of the Nusselt number dependent on the rotational Reynolds 

number for any given temperature difference (TW -T∞). In figure 2, three of these 

functions are shown on a logarithmic scale for three chosen temperature 

differences, according to Geropp´s theory (the function of the corresponding 

Eckert numbers is plotted with dotted lines). 

Figure 2 

 

It can be seen that the rotational Reynolds numbers at which the Nusselt numbers 
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All the experimental results from authors quoted by Geropp occur on the straight 
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phenomenon, all authors chose temperature differences too high for their 

experimental capabilities (Geropp´s function in figure 1 refers to a temperature 

difference of ΔT = 2165 K!). 

 

Also,  the logarithmic scale in figure 1, as used by Geropp, conceals another 

conclusion which becomes obvious in a linear scale as shown in figure 3: The line 

of the Nusselt-function is a symmetric curve to the vertical line through the 

maximum value.  

Figure 3 

 

This means that the heat transfer decreases beyond the maximum value at the 

same rate as it previously increased. A sudden drop in heat transfer therefore does 

not exist. Negative values for Nusselt numbers, as shown in figure 3, can be 

understood as a reversal of the heat-flow. 

 

The linear display in figure 3 allows an additional discovery. It is striking that the 

maximum Nusselt number at a given temperature difference roughly occurs at a 

constant Eckert number. From Geropp´s theory another functional relation can 

therefore be deduced: There is one function for the maximum Nusselt number and 

the respective Eckert number dependent on the temperature difference (TW -T∞). 
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difference. This value for the Eckert number approaches 0.3 for large temperature 

differences (> 1000 K).  

Figure 4 

 

Finally it can be concluded from Geropp´s equations that the “self-heating-

temperature” Ts is only a function of the rotational Reynolds number. This means 

that the heating of the cylinder by dissipation is independent of the temperature 

difference (TW -T∞) and therefore is a process of its own without a direct influence 

on the heat transfer. Only the interaction of  the temperature differences (TW -T∞) 

and ΔTs = (TS –TW) determine an increase or decrease in heat transfer. The 

increase in “self-heating” is shown in figure 5 for the range of rotational Reynolds 

numbers in the previous graphs. 

Figure 5 
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Experimental apparatus 

Overall setup 

The goal was to obtain experimental confirmation of the Eckert number 

phenomenon. If successful, this would show that the rotation of a heated cylinder 

has a supportive effect on the heat transfer initially, followed by a decrease and 

finally a reversal of the heat flow between the cylinder wall and the surrounding 

fluid as the rotational speed increases. In order to understand the complex fluid-

dynamic and thermodynamic processes occurring at a heated rotating cylinder, 

extensive experiments were necessary. 

Figure 6 
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The experiments were carried out in a closed-circuit with a rotating cylinder 

vertically mounted in the test-section (figure 6). The wind-tunnel was gas-tight up 

to a pressure of 2 bar, and air velocities of 70 m/s could be reached at ambient 

pressure. The circulating gas (air in this case) could be kept at a constant 

temperature by means of a heat exchanger [6]. The cylinder was driven by an 

electric asynchronous motor, which was designed originally for high-speed 

aluminium milling, allowing speeds up to 30,000 rpm. The motor was mounted at 

the bottom of the test-section, while a highly precise optical glass-window was let 

into the top, allowing access for optical measurements. Above the test-section, a 

four-axes traversing unit with stepping motors was mounted in order to position 

the measuring devices, mainly optical equipment.  

 

In order to examine the influence of rotation on the flow conditions in the 

surroundings of the cylinder, a knowledge of the characteristic flow parameters is 

of great importance. Gas velocities were therefore measured with a two-

dimensional Laser-Doppler-velocimeter (LDV) which is a highly complex optical 

measuring technique, but offers the advantage of accurate measurements without 

disturbing the sensitive flow. The driving force for heat transfer is temperature 

gradient. To determine the gradients, an optical measuring technique was 

developed, based on the deflection of a light beam in a temperature field 

according to Schmidt´s analysis [7]. Furthermore, the real-time observation of 

temperature fields in selected areas should allow insights into the actual processes 

around the cylinder. With a Michelson interferometer, a third optical method was 

employed, with which the fluctuations of isothermals could be recorded on video. 

Finally, in order to determine the heat transfer in terms of Nusselt numbers as a 

function of the Eckert number (including rotational speed and temperature 
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difference), the electrical heating supply and the surface temperature of the 

rotating cylinder were measured.  

 

Rotating cylinder 

The centrepiece of the apparatus was the rotating cylinder which spanned 

vertically the total height of the test section. Because of the high centrifugal 

acceleration of more than 25,000 g at the circumference, the cylinder was made of 

high strength aluminium (AlCuMg2) licensed for aeronautical applications. The 

surface was machined to a concentricity of ± 1 µm and was polished. The cylinder 

could therefore be regarded as hydraulically smooth.  

 

High rotational speeds demanded high mechanical strength of the rotating system, 

especially of the heating supply. The development of  a new concept was 

necessary to provide both high mechanical stability and meet the demand of good 

and reliable control accuracy. Therefore, the complete heating supply was moved 

from the rotating to the non-rotating side, and the rotating system was designed to 

be as simple as possible. The solution was to heat up the cylinder via radiation 

from inside by means of a high-performance heating cartridge, while the relevant 

wall-surface temperatures were measured from outside by infrared thermometers. 

Figure 7 
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Figure 7 shows the set-up of the cylinder heating system. Mounted to the bottom 

of the electric motor is a massive flange which serves both for holding and leading 

a stainless steel tube through the hollow shaft of the rotor with a clearance of 2 

mm. The heating device is soldered to the top end of the tube, whilst the 

respective supply and sensor cables are led down through the tube. Since the 

freely standing section of the tube is relatively long, the top of the heating device 

had to be positioned by a bolt which was inserted into the center of the glass-plate, 

to avoid swinging of the tube caused by vibrations. The heating cartridge was 

designed for 500 W and could be kept at constant temperature by a self-

optimising controller. A thermocouple inside the heating cartridge measured the 

inner temperature and forwarded it to the controller. Since the thermal resistance 

between the thermocouple and the outside of the cylinder is relatively high and 

the heat control therefore reacts slowly, it was more convenient to run the device 
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at constant voltage and to wait for temperature equilibrium. Temperature 

fluctuations could be tolerated, since only the temperature difference between the 

cylinder and the fluid was relevant, and this difference was optically measured 

instantaneously (in real time).  

 

Three infra-red thermometers were set into the wall of the test-section to measure 

the mean wall temperature of the bottom, middle and top sections of the cylinder. 

With a focal length of 15 mm and a distance of half the test section width from the 

cylinder, each of the three thermometers covered exactly a third of the height of 

the cylinder. The three measured areas at the top, the middle and the bottom 

served to detect any temperature variation across the cylinder wall. By entering 

the absorptivities, the devices could be set to the surface to be measured. The 

calibration was performed with a certified Pt100 platinum resistance thermometer. 

The reliability of the sensors was confirmed in that all three devices had to be set 

to the identical absorptivity in order to return the reference temperature and the 

deviation of the sensors never exceeded 0.1 °C.  

 

Experimental strategy 

Geropp´s theory was the keystone for the design of the experiments. Since it was 

the goal to confirm the Eckert number-phenomenon in practice, i.e. the decrease 

or even reversal in heat transfer, the experiments had to be carried out at Eckert 

numbers around unity. In order to reach this value, it was of critical importance to 

know that apart from the circumferential velocity of the cylinder, which was high 

but limited, an additional parameter was available in the form of the temperature 

difference between the cylinder wall and the fluid. For experimental reasons it 

was advantageous to choose this temperature difference to be as large as possible, 

which consequently meant operating at the maximum rotational speed of the 

experimental apparatus. With a maximum rotational speed of 30,000 rpm, the 

temperature difference between cylinder wall and surrounding fluid should not 

exceed 5 K according to Geropp's theory, in order to show the dependence of the 

Nusselt numbers on the rotational Reynolds number. The disadvantage of this 

procedure was that the absolute error of the temperature measurements was larger; 
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however, the advantage was that the temperature dependency of fluid properties 

could be neglected at these small temperature differences. 

 

Usually, the heat transfer at a standing surface is described by the Nusselt number 

 

k
hD:Nu =  , (3) 

 

defined by the heat transfer coefficient h according to Newton's law of cooling. 

However, Newton´s approach does not provide a reversal of the heat flow Q  

being 

( )∞= T-ThAQ W
  (4) 

 

at a constant temperature difference (TW -T∞), as both the area A has a positive 

sign and the heat transfer coefficient h is positively defined as the thermal 

conductivity of the boundary layer thickness δ by 

 

δ
k:h = . (5) 

 

However, in the case of a moving wall the definition of the Nusselt number as 

 

( )∞
=

T-Tlπd
Q

:Nu
W



 (6) 

 

by means of the heat flow Q , as can be derived from a dimensional analysis, also 

allows negative Nusselt numbers, since the heat flow Q  can now change its 

direction and therefore its sign. With the definition by the heat flow Q  in which 

dissipative effects of rotation are accounted for, now not only a local but also a 

global change of direction can be described. For the determination of the Nusselt 

number, therefore, three variables have to be measured with the heat flow Q  and 

the two temperatures TW and T∞. Although the temperatures were able to be 
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measured with infrared thermometers, the heat flow Q  could only be determined 

indirectly. 

 

This was because, in the experiments, the waste heat of the electric motor played a 

non-negligible role. The axial conductive heat flow along the shaft on which the 

cylinder was mounted increased with rising speed and contributed additionally to 

the heating of the cylinder. Since only a few Watts were necessary for the desired 

small temperature differences, the contribution of this waste heat had to be taken 

into account. However, the problem was that this amount of heat could not be 

measured or isolated with comparative reference measurements since an 

additional speed-dependent effect was involved, namely the “self-heating” caused 

by dissipation in the boundary layer. 

Figure 8 

 

The solution to this problem resulted from the observed axial temperature 

difference at the cylinder wall. With increasing rotational speed, a gradient in the 

wall temperature can be observed from the bottom to the top. In figure 8 the 

temperature differences between the top, middle and bottom sections of the 

unheated cylinder towards the surrounding fluid are plotted against the rotational 

speed. Additionally, the theoretical “adiabatic wall temperature” is shown which 

the cylinder would take on if it were insulated. It is striking that all three cylinder 
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temperatures resemble the theoretical curve. The increasing drift between the 

temperatures can be explained by the increased waste heat at higher speeds. The 

wanted heat flow Qh , transferred from the cylinder to the fluid, can be derived 

finally from an energy balance according to figure 9:  

Figure 9 

 
 

  Q P Q Qh el= + −
1
3 12 23 , (7) 

 

with the added and deduced heat flows 

 

( )
Q kA

T T
lcs12

1 2
1
3

=
−

  (8) 

 

and 
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( )
Q kA

T T
lcs23

2 3
1
3

=
−

, (9) 

 

with Acs being the cross-sectional area of the cylinder-ring section, l being the 

length of the cylinder and the electric power Pel being supplied to the heating 

cartridge. For the heat flow Qh it follows finally that: 

 

( )Q P
kA
l

T T Th el
cs= + − +

1
3

3
21 2 3 . (10) 

 

The strategy for the heat transfer experiments was that a constant heating rate was 

set until temperature equilibrium was reached. This solved both the controlling 

problem due to thermal inertia of the heating system, and also the case of a 

constant wall heat flux seemed to be closer to reality than a constant wall 

temperature. During the heating phase, the three cylinder temperatures and the 

fluid temperature were recorded during the approach to thermal equilibrium.  

 

Experimental results 

The heating rate was increased in 3 W steps from 0 to 12 W, and the rotational 

speed of the cylinder was increased in steps of 4000 rpm. The flow velocity was 

varied in the lower range of  cylinder speeds, in order to show that beyond a 

certain velocity ratio Ω (Ω being the ratio of circumferential velocity to the main 

flow velocity) rotation dominates the heat transfer in contrast to forced 

convection. In figure 10, the temperature difference is shown as a function of the 

cylinder speed for two different heating rates. The solid line represents a flow 

velocity of 5 m/s whereas the dotted line represents 10 m/s. It can be seen that in 

the range between 8,000 and 12,000 rpm, which is equivalent to velocity-ratios Ω 

of 2 to 3 at a flow velocity of 10 m/s, the respective measured temperature 

differences converge to the same value. This confirms the observation of various 

authors that the flow velocity loses influence on the heat transfer above a velocity 

ratio Ω = 2. All further experiments were therefore carried out at a flow velocity 

of 10 m/s.  
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Figure 10 
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Figure 11 
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Figure 11 shows the measured temperature differences for three rotational speeds 

and their linear trendlines. The respective heating rates were determined using an 

energy-balance on the middle section of the cylinder as mentioned above. It 

should also be mentioned that the negative values in figure 11 can only be realised 

with cooling the cylinder. However, it can be concluded from the form of these 

functions that an extrapolation of the data taken in the range of added heat down 

to the range of rejected heat (negative heating rate Q ) is justified. This is also 

supported by the reference case of the non-rotating cylinder, in which the function 

goes through the origin of the coordinate system as no additional heat is created 

by dissipation in this case. 

Figure 12 
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The calculated Nusselt numbers derived from the three temperature differences 

are compared with the theoretical ones in figure 12. By comparing the 

experimental results with the theory the following statements can be made: 

 

• The overall trend of the measured values is similar to the theoretically 

predicted ones, which confirms the existence of the Eckert number-

phenomenon with its reversal in heat transfer. 

• The measured values are twice as high as the theoretical ones. 

 

In order to explain this discrepancy it is useful to look at the heat transfer 

measurements of the non-rotating cylinder as a reference, to exclude any 

systematic errors in the experiments. To do so, the measured Nusselt number of 

Nu = 125 at a Reynolds number Re∞ = 1.6 x 104 has to be corrected to the 

theoretical case of an infinitely long, freely rotating cylinder in an ideal crossflow 

in order to be comparable at all.  

 

Using Morgan´s [8] correlation  
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for the influence of the degree of turbulence of the crossflow, an increase of the 

Nusselt number by 28 % is the result at a flow velocity of 5 m/s with  a degree of 

turbulence of 4 % measured by LDV. 

 

A cylinder diameter of D = 50 mm and a length of l = 148 mm yields an aspect 

ratio of approx. 3. Referring to Quarmby and Al-Fakhri´s [9] suggested 

correlation, the given geometry increases the heat transfer by 5 % in contrast to 

the infinitely long cylinder. 

 

Of critical influence on the Nusselt number is the blockage ratio which is defined 

by the ratio of cylinder diameter D to the width W of the test-section. Morgan [8] 

therefore proposes the correlation 
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in which vcorr and v∞ are the corrected and measured velocities respectively. 

Employing this ratio for Hiwada´s [10] approach 
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the heat transfer is improved by 27 % at a given blockage ratio of 12.5 %. 

However, these three influences are not independent of each other. As a first order 

approximation, however, it can be assumed that their influences can be added 

together. Thus, the Nusselt number is increased by 60 %. This means that the 

measured Nusselt number of 125 should be corrected down to a value of Nu = 78. 

According to Churchill and Bernstein [11], a theoretical Nusselt number of Nu = 

71 can be expected for the given Reynolds number Re∞ = 1.6 x 104. A comparison 

of the corrected Nusselt number and the theoretical one shows good agreement, 
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especially since the influence of free convection and surface-condition of the 

cylinder were neglected. 

 

This reduction of a measured value to an ideal case, which allows the comparison 

with other experiments, demonstrates quite vividly what influence each flow-

parameter has on the heat transfer. However, the application of the above 

demonstrated correction is impossible for the rotating cylinder as no 

investigations of the influence of external parameters exist in the case of rotation. 

Even so, it seems plausible that for the same reason external parameters (degree of 

turbulence, geometry etc.) contribute to an increase of Nusselt numbers, in 

contrast to theory, in the case of the rotating cylinder as they do for the non-

rotating cylinder. 

 

The scattering of the measured values also needs closer investigation. For the 

determination of the Nusselt numbers shown in figure 12, it was necessary to 

extrapolate the supplied heating rates down to lower temperature differences 

(figure 11). The relatively small scattering of the Nusselt numbers obtained at ΔT 

= 5 K indicates that part of the error is caused by extrapolation, since the 

experiments were mainly carried out temperature differences around 5 K. The 

measured values can be approximated by a polynomial function of second order. 

However, because of the scattering of the values, such functional fitting also has 

to be viewed with scepticism. In other words, a comparison of occurring maxima 

and zero-crossings of the experimentally obtained functions and the theoretical 

ones seem dubious. Despite these reservations, however, it is important to note 

that after reaching the maximum, a decrease in heat transfer occurs in accordance 

with the predictions of Geropp´s theory. 

 

A scenario for the Eckert number phenomenon 

Concluding from Geropp's considerations and the supporting experiments, the 

following scenario can be established for the heat transfer of a cylinder with 

constant temperature difference (TW -T∞) and increasing rotational speed: Initially 

rotation has a positive effect on the heat transfer. However, with increasing 

circumferential speed, the sheer stress due to viscosity of the fluid creates more 
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and more dissipation. The maximum heat transfer occurs when the latter effect is 

still small while the former continues to increase. With a further increase of the 

rotational speed, however, dissipation plays the dominating role. In this regime 

the location where most of the dissipation occurs can be regarded as a local heat 

source. Since dissipation takes place mainly where the greatest velocity gradients 

are, this location is not situated at the wall where the fluid adheres, but in the 

boundary layer. In other words, the boundary layer encloses a virtual, concentric 

area around the cylinder which takes on the " adiabatic wall temperature " Tad . 

Figure 13 illustrates radial temperature profiles at a heated cylinder. The diagram 

at the top represents the ordinary case at Eckert numbers < 1, with the temperature 

decreasing from TW and asymptotically approaching ambient temperature T∞. 

With rotation and Eckert numbers > 1, however, dissipation within the boundary 

layer acts like a heat source at the temperature Tad and creates an additional 

temperature gradient towards the cylinder wall (diagram at the bottom of figure 

13). 

 

For the heat transfer, the consequence is that the cylinder does not "see" the 

temperature of the surroundings, that is T∞, but the thin annular area around the 

cylinder with the " adiabatic wall temperature " Tad. With this temperature 

increasing, the effective temperature difference becomes smaller and so does the 

heat transfer. Once the " adiabatic wall temperature " reaches the value of the 

cylinder wall (at an Eckert number Ec ≈ 1), the temperature gradient reverses and 

the cylinder is heated by the locally-created entropy production rate caused by 

friction within the boundary layer. At the same time, a temperature difference (Tad 

-T∞) exists for the surrounding fluid. Therefore a portion of the dissipation being 

produced within the boundary layer is also transferred to the fluid. 

Figure 13 
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As a result of these considerations, it becomes clear why Eckert numbers greater 

than unity have never been reached in experiments. If one wants to keep the 

chosen temperature difference (TW -T∞) at a constant level, one has to start 

rejecting the entropy-rate transferred to the cylinder from Ec ≈ 1 on, which is 

impossible without an active cooling system. 
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Conclusions 

1. Geropp´s theory describes the turbulent heat transfer at a rotating, 

infinitely long cylinder in quiescent air. It can be concluded from his 

equations that a reversal of the heat transfer can be expected at an Eckert 

number Ec ≈ 1, which is defined as the ratio of the specific kinetic energy 

and the specific enthalpy. Geropp suggests a boundary Reynolds number 

of ReΩ ≈ 6.9 x 106 for the Nusselt number to change its sign. From his 

analysis further conclusions can be drawn: 

2. With the temperature difference ΔT = (TW -T∞), an additional parameter is 

hidden in the Eckert number. This means that a general boundary 

Reynolds number does not exist, but there is an individual function of the 

Nusselt number for each temperature difference.  

3. There is one function for the maximum Nusselt number and the respective 

Eckert number dependent on the temperature difference (TW -T∞). For 

practically relevant temperature differences, the maximum heat transfer 

occurs at Eckert numbers Ec ≈ 0.3.  

4. The “self-heating” is a process of its own and is only a function of the 

rotational Reynolds number. In other words, the creation of dissipation is 

independent of the temperature difference between cylinder wall and fluid, 

but the interaction of ΔT = (TW -T∞) and the “adiabatic wall temperature 

difference” ΔTad = (Tad –TW) determines the heat transfer. 

5. The definition of the Nusselt number via the heat flow Q as opposed to the 

heat transfer coefficient h, takes account for a change of the direction of 

the heat flow. Thus, not only a local but also a global change of the heat 

flow direction can be described. 

6. Experiments qualitatively confirm Geropp´s theory and the existence of 

the Eckert number-phenomenon, although the measured values are nearly 

twice as high as the theoretical ones. However, looking at the non-rotating 

case as a reference, this discrepancy can be explained by well known 

effects like the degree of turbulence, blockage and aspect ratio which each 

increases the heat transfer. 
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Captions to figures 

Figure 1:  The Nusselt number as a function of the rotational Reynolds number according 

to Geropp´s theory 

Figure 2: Nusselt and Eckert numbers for ΔT = 1, 10 and 100 K according to Geropp´s 

theory 

Figure 3: The functions Nu(ReΩ) and Ec(ReΩ) of figure 2 in a linear scale 

Figure 4: The maximum Nusselt and Eckert number as a function of the temperature 

difference (TW -T∞) 

Figure 5: The “adiabatic wall temperature” ΔTad of the cylinder against the rotational 

Reynolds number 

Figure 6: The wind-tunnel 

Figure 7: Principle set-up of the heating system 

Figure 8: The measured wall temperature of the cylinder dependent on the rotational speed 

Figure 9: Energy balance at the middle section of the cylinder 

Figure 10: The influence of the velocity ratio on the heat transfer 

Figure 11: The measured temperature differences against the determined heating power for 

three rotational speeds at a crossflow Reynolds number Re∞ = 1.6 x 104 

Figure 12: The measured Nusselt numbers with their trendlines (solid) at a crossflow 

Reynolds number Re∞ = 1.6 x 104 and the theoretical Nusselt numbers according 

to Geropp (dotted) 

Figure 13: The temperature profile at a wall at Ec < 1 and Ec > 1 
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