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Abstract 
Reliable empirical models such as those used in software 
effort estimation or defect prediction are inherently 
dependent on the data from which they are built. As 
demands for process and product improvement continue to 
grow, the quality of the data used in measurement and 
prediction systems warrants increasingly close scrutiny. In 
this paper we propose a taxonomy of data quality 
challenges in empirical software engineering, based on an 
extensive review of prior research. We consider current 
assessment techniques for each quality issue and proposed 
mechanisms to address these issues, where available. Our 
taxonomy classifies data quality issues into three broad 
areas: first, characteristics of data that mean they are not 
fit for modeling; second, data set characteristics that lead 
to concerns about the suitability of applying a given model 
to another data set; and third, factors that prevent or limit 
data accessibility and trust. We identify this latter area as 
of particular need in terms of further research. 

Keywords: data quality; provenance; commercial 
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I. BACKGROUND AND MOTIVATION 
Measurement data are used to support many aspects of 
software development and management, but effort 
estimation and defect classification are particularly prevalent 
uses of such data. The empirical software engineering (ESE) 
community is unfortunately not immune to studies that have 
used questionable or poor quality measurement data in 
model-building [1–4]. Quality is defined here as being "fit 
for purpose" [5] and we expect, we need ESE data to be of 
high quality – to be fit for the modeling task at hand, be it 
for classification or prediction.  

A study conducted by Bobrowski et al. [6] presented what 
they described as a software engineering view of data 
quality, comprising three perspectives: data quality metrics, 
data testing and data quality requirements. Their work 
considered quality in terms of the data used or accessed by 

software systems. In contrast, in this paper we propose a 
taxonomy that addresses data quality from the point of view 
of the data used in modeling phenomena concerning the 
software process or product. Of course, data quality 
problems are not limited to the software engineering 
domain, and our taxonomy has been informed by relevant 
work in other disciplines. Du & Zhou [7], for instance, 
created a taxonomy of data quality problems for online 
financial data and proposed an ontology-based framework to 
improve the quality of online-financial data. Three elements 
of their framework (unreliable data, inconsistent 
representation and missing data) [7] can be mapped to three 
elements of the accuracy class of our taxonomy (described 
in detail in section III). 

The taxonomy is intended to be useful to both researchers 
and practitioners by bringing to the attention of the entire 
ESE community the potential problems that can exist in the 
data sets we work with, or that are derived from our work, 
along with some current treatments or solutions. As the 
taxonomy captures the major data quality challenges that 
affect ESE data sets, empirical software engineering 
researchers and practitioners alike can benchmark their data 
quality assessment against it, to identify any potential 
sources of error or unsuitability for modeling and 
management. Considering the fact that ESE researchers 
work predominantly with secondary data it is essential to be 
aware of the nature of the data that exists, especially in the 
public domain. The quality of ESE data sets cannot be taken 
for granted, as data collected even by highly mature 
organizations can have issues. This is evident in the 
discovery by Gray et al. [8] of several data quality problems 
with the NASA Metrics Program data sets that are used 
widely for defect prediction research. The issues evident in 
these data sets are several, and include redundant data, 
inconsistencies, constant attribute values, missing values and 
noise.  

In a more general commentary Liebchen & Shepperd [9] 
bemoan the lack of interest by the software engineering 
community in addressing the issue of data quality. They 
looked in depth at the data quality dimension of accuracy, 



with accuracy being defined as the absence of noise. They 
were surprised by the few studies in ESE that had 
considered data quality explicitly [9]. Due in part to this lack 
of interest there have been many instances where models 
have been built without any form of preprocessing or quality 
checks on the data. Thus, while much attention has been 
given to the development of prediction systems, the same 
cannot be said regarding the quality of the data used in 
generating those systems. We therefore set out to identify all 
of the data quality issues associated with the collection and 
use of ESE data sets. Our goal is to first improve awareness 
and understanding of the diverse data quality issues that can 
arise in ESE, so second we may improve both the quality of 
ESE research and the practice of software engineering. 

The taxonomy presented here therefore captures the many 
challenges associated with data typically used in ESE 
modeling. Although some of the elements of the taxonomy 
might not be peculiar to ESE data sets, to the best of our 
knowledge they have not been addressed sufficiently in 
other domains to enable ESE researchers to readily borrow 
solutions developed in those domains. 

The rest of the paper is organized as follows. In section II 
we present background information on ESE data. In section 
III we present the taxonomy based on a comprehensive 
review of prior research in ESE, but also informed by 
considerations of data quality in other disciplines. In section 
IV we consider the implications for research in a discussion 
of the taxonomy, and we then conclude the paper in section 
V with recommendations for research and practice. 

II. EMPIRICAL SOFTWARE ENGINEERING 
DATA 

‘Software metrics’ is the collective term commonly used to 
describe the wide range of activities concerned with 
measurement in software engineering. These activities range 
from producing numbers that characterize properties of 
software code (these are the classic software metrics) 
through to models that help predict software resource 
requirements and software quality. The subject area also 
includes the quantitative aspects of quality control and 
assurance - and this covers activities such as recording and 
monitoring defects during development and testing [10]. The 
use of software metrics is generally accepted as a means of 
supporting rational decision making during software 
development and maintenance [11][12], with broader goals 
of increased productivity and quality and reduced cycle time 
[13]. Metrics have been designed and are used to measure a 
diverse set of product, process and resource characteristics, 
including system size, software quality, development 
schedule, developer effort and code complexity [12]. The 
quality of software engineering data has been questioned 
due to known problems with the collection of the data (as 
detailed below), but its trustworthiness is also at issue as 
there are perceptions that data are usually massaged by 
managers so that it appears better than the true reality [10]. 

The quality of data used in empirical software engineering 
can be improved at multiple points in the process, including 
at the collection stage. Johnson & Disney [1] questioned the 
quality of data collection related to the personal software 
process (PSP). PSP data in their study was recorded 
manually by students and then verified – also manually – by 
instructors for accuracy. Upon examining the data the 
instructors identified errors that represented impossible 
combinations of data. Their results raised questions about 
the accuracy of (their) manually collected and analyzed PSP 
data. They proposed the use of integrated tool support for 
higher quality PSP data. The challenge inherent in the PSP 
is that the developer collects data about his/her own work 
practices, such as effort expended on tasks. This has a 
distinct advantage over other approaches such as collection 
or estimation by others (perhaps managers), or automated 
collection, in placing the responsibility for correct collection 
with the developer. On the downside, this can lead to work 
overload for the developer, and there is also the question of 
developer honesty. Errors of omission, addition and 
transcription were identified by Johnson & Disney as 
occurring at the data collection stage. Such errors were 
noted as being the most difficult to reproduce and resolve 
because time has generally passed before they are detected 
(if indeed they are detected at all). 

Software engineering (SE) is a technical domain, but those 
who submit or provide data to improve the practice of SE 
might not necessarily be SE professionals such as 
programmers, and so could submit data without 
understanding its implications. These submitters, lacking 
domain knowledge, might not even be in a position to check 
the validity of the data they submit. For instance, bug reports 
are often submitted by users who are unlikely to be in a 
position to assess the quality or veracity of their reports, 
and/or they may not be aware of other reports that have 
reported the same or similar issues.  Yet we use metrics such 
as numbers of bug reports, sometimes without question, in 
our quality modeling. 

In their study gauging the acceptance of software metrics in 
a large multinational organisation, Umarji & Seaman [14] 
identified various challenges in relation to the use of metrics 
from the perspective of developers and managers, noting in 
particular the inflexibility of the metric tool and the lack of 
expertise within the team. In this instance the tool had very 
limited functionality as well as poor support for fixing bugs 
and adding new features - it was basically a time reporting 
tool and was not flexible enough to be tailored to different 
types of metrics (to the extent that new measures had to be 
collected in a separate spreadsheet). According to the 
managers involved, lack of expertise affected the 
appropriate definition and identification of risks and 
increased the resistance to the adoption of common 
terminology, meaning that the data collected was not 
understood in a consistent way. 

This can be contrasted with the approach reported by Staron 
et al. [15] in relation to the introduction of a framework for 
developing measurement systems at Ericsson. A dedicated 



person/role was assigned responsibility to present data and 
to prevent it from being biased; that person was able to 
explain in detail how the data were collected, processed and 
presented to ensure that the numbers reflected reality. 

In order to make the auditing of the data collection stage 
more transparent and so increase the trustworthiness of the 
data, we propose the use of a provenance system to record 
and potentially replay collection procedures when 
discrepancies are identified. Provenance is addressed in 
detail in the next section. 

III. DATA QUALITY TAXONOMY 
We surveyed a decade of recent literature on data quality in 
ESE and identified a range of quality issues. We then 
grouped these issues into three main classes in the proposed 
taxonomy. First is the group of characteristics of data that 
mean the observations are not fit for model-building 
(accuracy); second are data set characteristics that lead to 
concerns about the suitability of applying one model to 
another data set (relevance); and third is a set of factors that 
limit data accessibility and trust (provenance). Our intention 
is to use this taxonomy to bring to the attention of the wider 
ESE community the challenges associated with data used in 
modeling and the techniques that have been proposed to 
identify and/or resolve some of these problems.  We do not 
provide detailed coverage of all relevant studies here due to 
the fact that some of the studies grouped under the 
individual elements of the taxonomy have similar themes. 
Rather, we present in this section a representative set of 
studies that serve to illustrate the elements of the taxonomy. 
(All studies reviewed have been considered in the 
Discussion, however (section IV).) Figure 1 depicts the 
proposed taxonomy. 
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Figure 1.  Taxonomy of Data Quality in ESE. 

A. Accuracy 
The Oxford English Dictionary defines accuracy as the state 
of being accurate; precision or exactness resulting from care; 
hence precision …exactness, correctness. In ESE, accuracy 
as it relates to data means the correctness of the data or the 
absence of noise. Data accuracy is essential to ESE research 
in particular but also to the broader discipline of software 
engineering practice, since researchers rely on data to design 
and create classification and prediction models to improve 
the practice of software engineering. If there are underlying 
quality problems with the inputs to a model, then the 
resultant model cannot be expected to provide outcomes that 
software practitioners will use. 

1) Noise 
Noise – erroneous data – has been identified in several 
software measurement data sets [1], [2], [16] and the ESE 
community has responded with a number of studies that 
seek to address the incidence and effects of noise. 

Liebchen et al. [3] conducted classification experiments to 
assess the effect that noise has on predictive accuracy and to 
evaluate the robustness and accuracy of techniques for 
handling noise in ESE data sets. Three noise correction 
techniques were employed: robust algorithms, filtering, and 
polishing. Their results demonstrated that polishing 
improves classification accuracy more effectively compared 
to noise elimination and robust algorithm approaches. 

Khoshgoftaar et al. applied several noise detection and 
correction procedures to ESE data sets across a range of 
studies [4], [16–18], with varying degrees of success. Noise 
detection techniques including Bayesian multiple 
imputation, a clustering-based noise detection approach 
using the k-means algorithm, an Ensemble-Partition filter, a 
technique to detect noise relative to an attribute of interest 
(AOI), rule-based noise detection and Closest List Noise 
Identification were applied to various ESE data sets. 
However, variations in noise characteristics mean that it is 
difficult to settle on a technique that can be said to be a best 
fit for all noise types. Furthermore, while the removal of 
noisy instances or the application of robust algorithms has 
been shown to improve model performance [19–21], these 
various studies also highlight the relative immaturity of the 
community’s work on noise detection and correction, in that 
all manner of filters and algorithms are being tried with little 
clear dominance of any particular approach. 

2) Outliers 
Outliers have been noted as a frequent phenomenon in 
software measurement data [1], [3], [22], a consequence of 
the skewed distributions that often result from metric data 
collection efforts. An outlier is an observation that lies 
outside the overall pattern of a distribution [23]. Usually, the 
presence of an outlier indicates some sort of problem: this 
can be a case that does not fit the model under study or an 
error in measurement. 

In this paper, we adopt the definition of outlier attributed to 
Yoon & Bae who define an outlier as a project instance with 



one or more abnormal attributes [24]. Yoon & Bae proposed 
a pattern-based outlier detection method that identifies 
abnormal attributes in software project data: after 
discovering reliable and frequent patterns that reflect the 
typical characteristics of software project data, outliers and 
their abnormal attributes can be detected by matching the 
software project data with those patterns [24]. The Yoon & 
Bae study is significant in the sense that the abnormality of 
outliers is determined and acted upon relative to other data, 
in contrast to many studies that classify all outliers as noise 
and simply remove them. Although pattern-based outlier 
detection holds some promise, we do not have underlying 
theories that tell us what patterns to expect, and at times we 
may be vulnerable to the use of heterogeneous data sets that 
mask patterns relevant to particular subsets. 

Statistical analysis is also commonly used to identify 
outliers [25], [26]. Three mechanisms have been frequently 
employed to deal with outliers (or not) in ESE. First is a do-
nothing approach that leaves the outlier instance in the data 
set - this could be due to the fact that removal of the instance 
might mean the model would not be statistically significant. 
This in itself is not a sound reason for ongoing inclusion and 
this approach is not recommended. Second, and the 
predominant practice, is the removal of outliers with the 
justification being that they are extreme observations. Again 
this is not ideal as outliers may well be valid, albeit unusual, 
observations. Third, robust algorithms such as least-median 
squares regression [27] and Bayesian nets, which are 
resistant to outliers, have been employed to mitigate the 
above two situations [28].  For instance, Lavazza & Morasca 
[29] used a robust regression method – a generalization of 
the Least Median of Squares – in order not to discard too 
many data points due to outliers, because as much as 57% of 
the data points in one of their data sets were determined to 
be outliers from a Least Squares perspective. Outliers have 
been a constant source of problems in the analysis of ESE 
data [27]. In some cases, outliers are due to corrupted data, 
while they may be the result of highly unlikely 
circumstances in others. Outliers may significantly bias 
regression coefficients when using standard least squares 
regression methods. In order to prevent this condition, 
Abrahamsson et al. [30] also employed robust regression 
techniques when they performed iterative effort prediction. 
Another approach that could be used to address outliers is to 
allow the outlier instance(s) to remain in the data set but to 
model the data as two (or more) distinct distributions.  

Such an approach was appropriate in the study of commits 
in source control repositories reported by Hindle et al. [31]. 
Although large commits are often considered as outliers, the 
authors demonstrated that in many cases they were 
fundamentally important to the resulting software 
architecture. In short, outliers may or may not be 
problematic in any given case, and therefore analysis is 
needed to confirm their existence, the cause of their 
existence, and their potential effect on any models 
generated.  Blanket discarding of unusual data points is ill-
advised. 

3) Incompleteness 
It is widely acknowledged that software engineering 
measurement data sets are often affected by missing values 
[2], [3], [22], [32]. Bakir et al. [33] identified missingness in 
the data sets used in studying the effect of data homogeneity 
on software cost estimation in the embedded systems 
domain.  ‘Missing’ is defined as not able to be found 
because a value is present but not in its expected place, or is 
not present or included when it is expected. The notion of 
incompleteness is broader, and can be explained as not 
complete or finished, imperfect. It may refer to lacking a 
part or parts; not whole; not full. Incompleteness is relevant 
to ESE in that small data sets might mean a model is not 
statistically significant, or lacks sufficient power. 

Imputation is one of the procedures that have been used in 
dealing with the problem of missingness. Imputation is the 
"filling-in" of missing values with one or more plausible 
values. Khoshgoftaar & Van Hulse [34] conducted a 
comprehensive study of imputation techniques using real-
world software measurement data sets. They considered the 
occurrence of missing values in multiple attributes, and 
compared three procedures: Bayesian multiple imputation, 
k-nearest neighbor imputation, and mean imputation. Their 
experimental results demonstrated that Bayesian multiple 
imputation is an effective imputation technique.  

Multinomial logistic regression (MLR) was employed by 
Seliya & Khoshgoftaar [35] in imputing categorical missing 
values in the International Software Benchmarking 
Standards Group (ISBSG) multi-organization repository. 
Comparisons of MLR with other techniques for handling 
missing data, such as listwise deletion (LD), mean 
imputation (MI), expectation maximization (EM) and 
regression imputation (RI), under different patterns and 
percentages of missing data, showed the relatively high 
effectiveness of the MLR method [35]. Bayesian multiple 
imputation and regression imputation were found to be the 
most effective noise-resistant imputation techniques 
according to a comparative analysis reported by Van Hulse 
& Khoshgoftaar [36]. The presence of noise had a 
substantial impact on the effectiveness of the imputation 
techniques [34], [37]. 

Two embedded strategies (missing data toleration and 
missing data imputation) to handle missing data when using 
naïve Bayes and EM (Expectation Maximization) 
algorithms for software effort prediction were proposed by 
Zhang et al. [38]. The missing data toleration strategy 
simply ignores missing values and makes use of observed 
values of software projects for prediction. It has the 
advantage of low computational complexity. The missing 
data imputation strategy uses observed values of variables to 
estimate missing values. Experimental results drawn from 
their analyses of the ISBSG and CSBSG data sets 
demonstrated that both strategies outperformed classic 
imputation techniques. 

Imputation techniques are a useful solution to the problem 
of missingness when the problem is not extensive, and 



researchers and practitioners must still adopt the most 
appropriate imputation techniques to resolve the varied 
conditions they might encounter, such as numerical or 
categorical values; class or attribute missing values; single 
or multiple missing attributes. Assessing the strength of 
imputation techniques under various conditions should 
enable researchers and practitioners to use the most suitable 
technique in each case. 

4) Inconsistency 
Inconsistency refers to a lack of harmony between different 
parts or elements; instances that are self-contradictory, or 
lacking in agreement when it is expected. In software 
engineering data sets it is essential that data values match 
the variables against which they have been recorded and can 
be clearly explained. Data must be appropriately recorded so 
as to ensure the integrity of any derived models. 

Inconsistencies have been noted in prior studies of software 
measurement data [4], [32], [39]. Tan et al. [39] discovered 
inconsistencies when they studied a data set said to represent 
productivity trends in incremental and iterative software 
development. These inconsistencies included size and effort 
data that did not match from report to report. Therefore, they 
had to rework the reports and refer to the development team 
to resolve these mismatches, in order to arrive at an 
appropriate data set. Chen & Cheng [32] identified 
inconsistencies, in the form of unexplained questionable and 
null values, in a NASA data set employed in a discretization 
study intending to aid data accuracy. In their productivity 
analysis of a large data set [2], Liebchen and Shepperd 
found that size was recorded using different measures; in 
lines of code (LOC), in function points (FP), or in both, 
which made it difficult to compare projects in terms of this 
attribute. In their sensitivity analysis of data quality meta-
data [40], Fernández-Diego et al. discovered Lines of Code 
(LOC) measures that were not able to be explained. The 
affected projects were therefore removed. Inexperienced 
measurers were identified as contributors of poor data 
quality in the form of inconsistencies [41]. 

Bettenburg et al. [42] used a survey and machine learning to 
predict the quality of bug reports. Problems identified in bug 
reports included poor use of language (ambiguity) and bug 
duplicates, as well as incomplete information. In their study 
of software cost modeling Zhihao et al. [43] encountered 
suspicious repeated entries in one of the data sets which 
suggested data entry errors or too few examples for 
generalization. Projects that exhibited this anomaly were 
removed from the data set. 

Consistency in meaning of data labels and recorded data 
values is one of the essential factors in achieving good 
quality data. As a community we use terms that we assume 
are collectively understood, but we do not have an ontology 
of issues that might better support shared understanding. 
ESE researchers and practitioners should ensure that the 
variables and values in data sets are easy to explain (and are 
explained), and should put in place mechanisms (e.g. 
variable definitions, range-checking for values) to resolve 

problems associated with the recording and interpretation of 
data. 

5) Redundancy 
Redundant and duplicate data in ESE data sets [8], [42] 
might lead to misleading results and can also detrimentally 
affect the performance of classifiers. Anh et al. [44] 
identified redundant data in the stakeholder name and 
nickname fields in their study of human factors for 
predicting issue lead time in open source projects. Prifti et 
al. [45] found that in their analysis of the Firefox bug 
repository there were 748 bugs that had been described in 
two or more groups when they applied a method that 
detected duplicates through local references.  If effort 
modeling is based on such data then clearly there is scope 
for over-estimation of the actual effort required.  Moreover, 
the building of classification models using data mining 
methods will be slowed by the additional processing needed 
to parse and consider the redundant values. 

Another facet of redundancy that can lead to modeling 
problems is input data item dependence, or more generally, 
multicollinearity. Chidamber et al. [46] discovered that 
certain object-oriented metrics (Response for a Class, 
Weighted Methods Per Class and Coupling Between Object 
Classes) were highly correlated and so suggested that a 
subset be used in a linear regression model, otherwise the 
results generated could be unstable and difficult to interpret. 
The results obtained by El Eman et al. [47] when they 
studied the confounding effects of size on the validity of 
object-oriented design metrics confirmed that many of the 
metrics are highly correlated with class size.  

Several ESE data sets, along with many automated data 
collection tools and environments, contain numerous 
measures. It is important that researchers and practitioners 
check for, and adjust for, any multicollinearity among these 
variables prior to their use in modeling. 

B. Relevance 
The Oxford English Dictionary defines relevance, our 
second major class of quality attributes, as the quality or fact 
of being relevant – bearing upon, connected with, pertinent 
to, the matter in hand. In the context of ESE, relevance 
refers to having and using appropriate data to develop a 
model, normally for the purpose of classification or 
prediction. For instance, it would be inappropriate to use 
data collected from real-time systems development to build 
a model to predict development effort for banking systems. 
Relevance highlights the importance of the characteristics of 
the data being used in modeling, and an extensive body of 
literature has considered in particular the utility of single 
company data sets or multi-organization data sets in this 
regard. 

1) Heterogeneity 
Models generated from heterogeneous multi-organization 
data sets have been employed in estimating effort or 
predicting defects of software projects in a single company 
[42], [43], [48–51]. Results to date have been inconclusive 



as to whether single organization data sets are superior to 
those representing multiple organizations. Kocaguneli et al. 
[52] proposed the use of relevancy filtering when generating 
estimates using data from another project in their study of 
when to use data from other projects for effort estimation. 
Their results demonstrated that the use of cross-organization 
data usually results in estimation accuracies as high as those 
achieved through the use of within-organization data, 
provided that a relevancy filter is applied to the data prior to 
making estimates. Bakir et al. [33] studied the effect of data 
homogeneity on software cost estimation in the embedded 
systems domain and observed that all estimators performed 
better when they are trained on cross-domain data sets than 
when trained only on the within-domain (embedded 
software) data sets. The conclusion was that cross-domain 
data sets should be used for training estimators in embedded 
software cost estimation. (We note here that the single-
company/multi-organization distinction may be in itself an 
over-simplification – some single organizations undertake 
hugely diverse projects.) 

2) Amount of Data 
The amount of data available for model building contributes 
to the likely statistical significance of generated models and 
so is another factor of relevance in terms of goal attainment. 
Small data sets are an acknowledged problem in ESE as 
they do not lend themselves to the generalization of results. 
The range of suitable analysis techniques is also constrained 
[53], [54] as some approaches assume the availability of a 
certain volume of data.  Naturally, this issue is particularly 
pertinent to organizations that are just beginning a 
measurement programme, or that embark on projects that 
are substantially different to those undertaken in the past. To 
retain as much data as possible for software development 
effort modeling, Deng & MacDonell [55] employed an 
approach that systematically addressed the formalisation of 
data sets and employed domain-informed refinement to 
achieve a final usable data set drawn from the ISBSG 
repository. 

Data pre-processing can also affect the amount of data 
available for modeling. A data set might initially comprise a 
large number of data points, but the application of 
stratification schemes or feature set selection strategies 
could result in data (sub)sets with too few data points to 
support significance testing. It is imperative for researchers 
to ensure that the pre-processing of data sets does not 
produce data subsets that lead to questionable 
generalizations of results, because the data sets are too small 
and/or because the modeling methods employed are not 
appropriate for the number of data instances. 

The results obtained when Bakir et al. [33] assessed the 
effect of training data set size on the prediction performance 
of software cost estimation models was not consistent across 
all data sets used, which led to the conclusion that optimum 
training data set size depends on the method or algorithm 
used as well as the quality of data. Scarcity of data was 
noted as a great challenge to software engineering by 
Abrahamsson et al. [30] because it has serious implications 

for model validation and generalization. The leave-one-out 
(LOO) cross-validation procedure, often employed as a 
remedy to the limited data set size problem, was used when 
they [30] iteratively predicted development effort using an 
incremental approach. Naive Bayes and Random forest 
algorithms have also been proposed to increase the 
performance of prediction models based on small data sets 
and large data sets, respectively [56], [57]. 

3) Timeliness 
The timeliness or currency of data is another issue of 
potential concern in regard to relevance, although it has 
received only limited attention to date in the ESE research 
literature. A survey of the data sets employed in software 
effort modeling reported by Mair et al. [58] in 2005 noted 
that many studies relied on data sets collected decades 
earlier. A perusal of ESE conference and journal 
publications today reveals ongoing use of these data sets. 
The characteristics of data sets should be constantly 
reviewed to ensure that changes in context and operation do 
not significantly reduce the relevance of the data to 
contemporary settings. While there is nothing inherently 
‘wrong’ with the data sets in themselves, questions might 
well be asked about the appropriateness of the data in the 
context of present-day software development practice.  If the 
intent is to build models for current use then data collected 
more recently would generally be preferable, other issues 
notwithstanding. 

Timeliness has an additional impact in the context of real 
software development in that data are accumulated over 
time, as activities and projects are completed. In [59], 
MacDonell and Shepperd demonstrated empirically that 
failure to take the temporal nature of data accumulation into 
account leads to unreliable estimates of development effort. 
While much ESE research utilizes ‘complete’ data sets this 
represents an artificial scenario. Moreover, few such data 
sets comprise records of time.  This is a characteristic that 
needs to be included in future data collection endeavors if 
the data are to be used in good faith – which leads usefully 
into our third class of quality issues. 

C. Provenance 
The Oxford English Dictionary defines provenance as the 
fact of coming from some particular source or quarter; 
origin, derivation. It also refers to the history of ownership 
of a valued object or work of art or literature. Assurance of 
provenance, while especially significant for such objects, is 
also important in relation to digital artifacts or results that 
are generated by scientific applications. Information 
regarding provenance constitutes the audit trail, the proof of 
correctness of scientific results and in turn, can directly 
influence the extent of trust one might place on those results. 
For these reasons, the provenance of a scientific result is 
typically regarded to be as important as the result itself [60]. 

Considered broadly, provenance is related to the issue of 
experimental replication. Replications play a key role in 
empirical software engineering (as they do in other fields) 
by enabling the community to build cumulative knowledge 



about which results or observations hold under which 
conditions. Shull et al. [61] highlighted the importance of 
producing adequate documentation for an experiment to 
allow for replication. This echoes remarks made previously 
by Wieczorek [62], who indicated that few empirical 
software engineering studies were replicated, and even when 
the same data sets were used across different studies the 
results were not always comparable because of different 
experimental designs. She contended that studies in the ESE 
domain were difficult to replicate because they were not 
reported in a form that allowed for such comparisons. While 
this observation was made in 2002 the problem has 
persisted: in their replicated study of cross-company and 
single-company effort models using the ISBSG database 
Lokan and Mendes were unable to employ the same 
experimental procedure used previously because the 
procedure had not been fully documented [63]. Provenance 
systems have the potential to provide a more effective way 
of supporting replication as well as providing transparency 
regarding discrepancies in the results obtained from a 
replicated study and an original study. 

1) Commercial Sensitivity 
Commercial sensitivity is one of several constraints on 
provenance in ESE. Organizations that hold data that they 
believe gives them competitive advantage might not be 
willing to release the data to independent researchers, for 
fear of proprietary data being accessible to competitors. 
Similarly, they may be reluctant to release data if they 
believe it could be used to portray them in an unfavorable 
light. Even if researchers are able to have access to data, 
they are often required to sign non-disclosure agreements 
which prevent them from publishing the data with their 
results [2], [58], thus rendering such studies non-replicable.  

The COCOMO-II data used in the pruning experiments of 
Zhihao et al. [43] was not published because it was collected 
on condition of confidentiality with the companies that 
supplied the data. Zhihao et al. [43] also did not disclose the 
details of locations, tasks and projects for the NASA data set 
due to confidentiality; however they provided general 
information about the data. While such precautions do lend 
some protection to the organizations involved, it has a 
consequent effect of limiting what can be learnt from the 
data analysis. 

2) Accessibility 
In the defect prediction study of Turhan et al. [49], they 
found it difficult to access failure logs because several large 
teams of contractors were working on projects for a single 
organization – NASA – and each viewed the failure logs as 
corporate critical. The authors note that acquisition of even 
coarse-grained information took years of careful negotiation. 
When finally provided, the data were highly sanitized by 
NASA meaning that the research team was not able to 
access project or module names. Robles [64] assessed the 
potential replicability of the experiments reported in papers 
published in the proceedings of the Mining Software 
Repositories Workshop/Conference between 2004 and 2009. 

It was discovered that only six out of 154 experimental 
papers were replicable because the data used in the other 
148 original studies were not accessible. 

To the best of our knowledge, the only work on provenance 
in the ESE domain is the Davies et al. [65] study that 
considered the provenance of software entities, specifically, 
the introduction of an anchored signature method to 
determine the provenance of source code contained within 
Java archives. This method was demonstrated successfully 
using a case study of a proprietary e-commerce application 
drawn from the Maven2 Java library repository. 
Determination of the provenance of the source code in this 
case was made possible by the accessibility of the Maven2 
library. In keeping with the intent of this paper we would 
assert that the provenance of data about the source code – 
perhaps captured in the form of metrics – is as important as 
the provenance of the source code itself.  

As noted above, Mair et al. [58] investigated the nature and 
type of data sets being used to develop and evaluate 
software project effort prediction systems. They noted at 
that time (2005) that only about 60% of all data sets were in 
the public domain. While significant growth in open source 
development over the last decade has increased the 
availability of empirical data, its utility for ESE is variable 
given the diversity of systems and development practices, 
and there are also questions over its general credibility as a 
basis for model-building. In addition, the open source model 
of development (or any particular model, for that matter) 
may not map well to other contexts. Contribution to 
generally accessible repositories such as those provided by 
the ISBSG (www.isbsg.org) and PROMISE 
(www.promisedata.org), with relevant provenance 
information, should be encouraged so that more data is made 
available to support ESE research and software engineering 
practice. If academia and industry are able to collaborate 
effectively this should increase the availability of data sets in 
the public domain, contributing to the replication of studies 
and to practice improvement. 

3) Trustworthiness 
The SE field is known for innovative work that proposes 
new tools, models, techniques and so on, but we are often 
far less effective in our evaluation of those proposals. Glass 
et al. [66] analyzed the software engineering literature prior 
to 2002 and concluded that SE was narrow in its research 
approach, with the "Formulate" approach being the 
dominant practice and few studies using evaluation as a core 
research activity. We have found similar outcomes in more 
recent reviews [67]. The extent to which research results 
hold beyond the often limited evaluations conducted and/or 
reported is therefore unknown. While this clearly applies to 
tools, techniques and methods, it is equally applicable to 
prediction and classification models. Catal & Diri [56] 
performed several experiments to assess researchers’ claims 
that their fault prediction models provided the highest 
performance, and some of the models were revealed to 
perform far less well when evaluated on public data sets. 
This may reflect problems with the models themselves; or it 



may again signal the extent to which models are tied to the 
underlying data. 

Limited access means that ESE researchers are generally ‘at 
arm’s length’ from the data source, and consequently we are 
left with little option but to work principally with secondary 
data. We therefore rely heavily on the people and systems 
used to collect and verify that data. Greater adoption of 
provenance systems should provide data users with useful 
knowledge about the origins of the data and may influence 
the trust that can be placed on that data. It should also enable 
data providers and data users to track any changes that the 
data has undergone (for instance, whether the data has been 
masked, anonymized or transformed in pre-processing), 
information that is vital to ensuring that models are built 
with integrity. 

IV. DISCUSSION 
Through this study we reviewed 57 papers that had 
addressed data quality in some way and identified 74 data 
quality issues considered in these papers. Figure 2 shows the 
distribution of these studies in terms of the three classes in 
our taxonomy. The total number of data quality issues is 
more than the number of papers because some papers 
addressed multiple issues. It is quite evident that issues of 
accuracy have received the most attention (at 65%), 
followed by relevance (with 23%) and provenance (with just 
12%). 

 
Figure 2.  Distribution of Data Quality issues considered in ESE 
studies. 

A breakdown of studies that considered accuracy issues is 
presented in Figure 3. Noise and incompleteness have 
received the most attention with each being considered in 
27% of the studies reviewed in the accuracy class. Outliers 
followed in third position with 21%, then inconsistency with 
17%, and finally redundancy which featured in 8% of the 
studies in this group. Note that even though data 
inconsistency was identified as an issue in some studies, 
mostly in relation to data preprocessing, it was not a main 
theme in any of the studies, unlike noise, incompleteness 
and outliers. 

 
Figure 3.  Distribution of elements of accuracy. 

Relevance was the second most important class of the 
taxonomy in terms of issue coverage. We present a 
breakdown of the elements of relevance in Figure 4. 
Heterogeneity has received the most attention at 47% of 
studies reviewed in this class, a not unexpected result as 
there is still contention about whether to build models with 
cross-company data sets or single-company data sets. The 
size of the data set used in modeling followed with 41% 
coverage. Size of data sets is seen as a particular challenge 
in empirical software engineering because most of the data 
sets are small and so do not lend themselves readily to 
modeling, a situation further exacerbated when some of the 
data has to be discarded due to other data quality problems 
such as missingness.  Few studies considered the timeliness 
of the data used (12%). We find this a little discouraging, 
considering the fact that many of the data sets, especially 
those in the public domain, are relatively old. The dynamic 
nature of software development practice demands new data 
to reflect current work practices. 

 
Figure 4.  Distribution of elements of relevance. 

The class of provenance was the least frequently addressed 
of those considered in the taxonomy. The distribution of the 
constituent elements of provenance is shown in Figure 5. 
Commercial sensitivity and accessibility were highlighted 
by approximately 45% each of the studies reviewed in the 
provenance class, and only 10% addressed the issue of 
trustworthiness. 



 
Figure 5.  Distribution of elements of provenance. 

Figures 3 to 5 depict the contributions of the constituent 
elements to their respective class of the taxonomy. In Figure 
6, we show the contribution of each individual element to 
the taxonomy as a whole. Noise and incompleteness 
(missingness) each contributed approximately 18% to the 
total issue coverage as classified by the taxonomy. Outliers 
made up of 14%, inconsistency 11% and redundancy 5%.  
Heterogeneity contributed 11%, amount of data 9% and 
timeliness 3%.  Commercial sensitivity and accessibility 
contributed 5% each and trustworthiness only made a 1% 
contribution. These results and their representation in Figure 
6 illustrate the diversity and uneven consideration – let alone 
treatment – of the data quality challenges relevant to ESE 
research and practice. 

 
Figure 6.  Distribution of individual elements of the taxonomy. 

According to our review it appears that the issues of 
provenance and provenance systems have received very 
limited, and  indirect, attention in empirical software 
engineering research (that is, papers have considered issues 
such as trustworthiness but not as an aspect of the broader 
topic of provenance). Devoting greater attention to 
provenance and systems that can support it has the potential 
to improve the entire procedure of data collection, 
generation and use in prediction and classification, 
facilitating the replication of studies. Given that science 
proceeds on the basis of evidence-based outcomes whose 

validity is assured through methods such as replication, it is 
imperative that researchers and practitioners devise means to 
make more data more available, to improve the broader 
practice of software engineering. Provenance has the 
potential to improve the reputation of ESE data and its use 
as, over time, we acquire a growing understanding of the 
processes and organizations that generate trustworthy data. 
To date this issue has attracted limited interest – the most 
obvious example being the quality category ratings assigned 
to observations recorded in the ISBSG repository.  While 
this is certainly a very useful starting point, it should be 
noted that these ratings are assigned by ISBSG quality 
reviewers based on their assessment of the integrity of the 
data, rather than by anyone associated directly with the 
data’s collection. Effective records of data provenance 
should also support the identification of likely problems 
with data (and any resultant models) because there will be 
provenance information against which abnormal results can 
be tracked. 

Through our review it became clear that one of the reasons 
contributing to the weaknesses identified in ESE data sets is 
the inadequate reporting of data collection procedures – 
there seems to be no standard expectation that the data 
collection process be described (let alone the data be 
included), and so it is a minority practice in ESE research 
papers [68]. Even in the few papers in which collection 
procedures are reported, problems associated with data 
collection are generally not, making it difficult for ESE 
researchers to have a clear understanding of the causes of 
any data quality issues. The necessary but unquestioning use 
of secondary data has thus contributed to the inadequacy of 
efforts towards the resolution of data quality problems. The 
most appropriate solution to these problems is to prevent 
them from occurring at the point of data capture. 

V. CONCLUSIONS 
In this study we have reviewed the relevant literature to 
identify the major data quality issues in ESE in order to 
improve the community’s awareness and understanding of 
the quality challenges (and current solutions) in ESE 
research and practice. Issues grouped under the class of 
accuracy have received the most attention from the research 
community, whilst provenance issues have received the 
least. 

The potential of provenance to assure data quality has not 
been exploited in ESE. Adopted sensibly and systematically, 
provenance should increase the reputation and 
trustworthiness of the data that is used in modeling, which 
will consequently result in higher quality models. Although 
data quality has been considered from several perspectives 
in ESE, as yet we do not have sufficient evidence on how it 
influences the practice of software engineering as almost all 
the studies considered here are drawn from academic 
institutions – more extensive collaboration with industry is 
essential in order to understand and then improve data 
quality management in practice. No single study evaluated 
all the aspects of the taxonomy, indicating that the treatment 



of data quality is not a holistic endeavor in ESE. Genuine 
practice improvement will only be possible if this currently 
piecemeal situation is collectively addressed. To that end we 
are in the process of developing a provenance software tool 
to gather provenance data during the data collection and 
processing stages of software development projects. This 
tool will be able to capture and explain the causes of data 
quality problems at source and should then inform the 
development of suitable preventive measures. 
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