

Effort-based Re-estimation During Software Projects

Stephen MacDonell, AUT Martin Shepperd, Bournemouth Uni

Agenda

- Rationale for re-estimation
- Industry data and analysis approach
- Results of analysis to date
- Outcomes and limitations
- Conclusions and next steps
- Preliminary insights...

Rationale and background

- Accurate estimation is a challenge!
 - -Estimation is not (always) rational
 - -Managers tend to be optimists
 - There has been a reluctance to move from early estimates
 - Global models, built based on unstable product factors, are widely used

Rationale and background (ctd)

I STARTED BY REASONING
THAT ANYTHING I DON'T
UNDERSTAND IS EASY
TO DO.

PHASE ONE: DESIGN A
CLIENT-SERVER ARCHITECTURE FOR OUR WORLDWIDE OPERATIONS.
TIME: SIX MINUTES.

Copyright © 1994 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited.

Rationale and background (ctd)

- Alternatively we could (should?):
 - Use local models, based on process/resource factors

- -Harness growing certainty in data
- -Leverage managers' expertise
- Compare with the plan during (not just after) the project and then re-estimate

Industry data set

- We had access to one data set:
 - Software developed for a large test equipment manufacturer
- -Single organisation, multi-national
- Sixteen development projects over an 18 month period
- Effort range: 500-7800 person-hours
- Consistency in technology, process, people

Industry data set (ctd)

- For each of the sixteen projects:
 - Effort for each phase had an original estimate (OE) and many had an adjusted, current estimate (CE)
 - Actual effort expended was also recorded at the project phase level
 - There was high confidence in the accuracy of the recorded effort data

Feasibility analysis

- Waterfall-like process, dominated by planning (PP), design (DES), implementation (IMP) and testing (TEST)
- Model fitting of effort per phase based mainly on process measures using leastsquares linear regression
- Note: the entire data set was used main aim was to assess feasibility

Model fitting of effort per phase • Focused on design, implementation

 Focused on design, implementation and testing phases (median 77% of project effort):

- Design effort from planning effort
- Implementation effort from design effort
- -Testing effort from design effort
- Testing effort from implementation effort

Model fitting of effort per phase (ctd)

- Each model was built with and without a dummy variable indicating the intended deployment environment
 - runtime or non-runtime
- Three baseline models also built
 - (a) 'predicting' zero for every phase;
 - (b) taking the mean phase effort;
 - (c) taking the median phase effort

Model fitting of effort per phase (ctd)

- We also built simple combined models

 the mean of the regression value and the manager's estimates (OE and CE)
- Each model was assessed using sum of error and sum of absolute error indicators, and compared to the error of manager estimates

Results against OE (sum of error)

- Minimal improvements in fitting design effort (DES) based on planning effort (PP)
- Substantial improvements in fitting implementation (IMP) from DES, and testing effort (TEST) using DES or IMP (14%, 21% and 21% respectively)
- For specific project phases, fitting both IMP and TEST from DES resulted in improved values in 19 of 32 cases

Results against OE (sum of absolute error)

- Managers' original estimates were more than 17,000 person-hours out
- Regression models reduced error to just over 6,000 person-hours
- Models produced improved values in 29 of 48 cases
- Again, there were minimal gains in fitting DES using PP values

Results against CE (sum of error)

- Managers' current estimates were generally worse than the originals
- In particular, managers significantly underestimated DES and IMP effort
- Our models avoided gross errors (reducing error by 6,500 personhours), but led to improved phase values in fewer than half the cases

Results against CE (sum of absolute error)

- Managers' estimates outperformed the regression models in fitting DES using PP
- However, an improvement of more than 3,000 person-hours of effort was achieved in fitting IMP and TEST, with 20 of 32 phase values improved

Overall results of feasibility test

 In minimizing sum of error, the multivariate regression models were most effective

- In minimizing sum of absolute error, the combined regression/manager approach worked best
- Modelling implementation and testing effort using design effort appears to be particularly fruitful

 In this case there was little gained in fitting design effort from planning effort

Limitations

- This was a specific data set general applicability of the results is unknown
- The whole data set was used for fitting and assessment of accuracy
- We were unable to utilize manager knowledge about other factors
- Clearly this does not address the ongoing need for early estimates

Conclusions and next steps

- steps
 Managers' estimates can be improved upon using simple models based on prior-phase effort data
- Use of multiple methods appears fruitful
- Next steps:
 - predicting projects in sequence;
 - predicting projects using a moving sample;
 - combining product and process factors

Predicting projects in sequence: preliminary

- All observations in a 'growing' data set...
 - Against OE, sum of error:15% reduction, improved 9 of 22 predictions
 - Against OE, sum of absolute error:
 11% reduction, improved 12 of 22 predictions
 - Against CE, sum of error:15% reduction, improved 9 of 22 predictions
 - Against CE, sum of absolute error:
 10% reduction, improved 12 of 22 predictions

Predicting projects in sequence: preliminary

- Outcomes (ctd)
 Moving window using last five projects...
 - Against OE, sum of error:
 24% reduction, improved 8 of 22 predictions
 - Against OE, sum of absolute error:
 14% reduction, improved 14 of 22 predictions
 - Against CE, sum of error:
 24% reduction, improved 8 of 22 predictions
 - Against CE, sum of absolute error:
 13% reduction, improved 14 of 22 predictions