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Abstract- Clustering time course gene expression data (gene 
trajectories) is an important step towards solving the complex 
problem of gene regulatory network (GRN) modeling and 
discovery as it significantly reduces the dimensionality of the 
gene space required for analysis. This paper introduces a novel 
method that hybridizes Genetic Algorithm (GA) and 
Expectation Maximization algorithms (EM) for clustering with 
the mixtures of Multiple Linear Regression models (MLRs). The 
proposed method is applied to duster gene expression time 
course data into smaller number of classes based on their 
trajectory similarities. Its performance and application as a 
generic clustering method to other complex problem are 
discussed. 

Index Terms- Gene trajectory clustering, Microarray data; 
Genetic Algorithm, Expectation Maximization, Gene regulatory 
networks. 

I. INTRODUCTION 
NA microarray provides a snapshot of the expression 
level of thousands of genes in a particular cell type. The 
technology has enhanced our understanding of the 

complicated biological systems at the molecular level and has 
been particularly useful in medical applications. By 
comparing the expression of these genes in normal and 
diseased tissues for example, we can identify the set of genes 
that may he causing the disease. For example, in [I] 
microarray gene expression data taken from Diffuse large B- 
cell lymphoma tissues is used to identify a set of genes that 
can be used to predict the outcome of treatment of this 
disease for individual patients. The significance of this 
technology is shown also by its substantial market growth at 
150% per annum over from 1997 to 2000 [2]. 

However, the problem of predicting the behavior of 
tumor or other type of cells requires more than analyzing 
static expression values of the genes from the RNA. As genes 
may vary in their expression level over time manifesting the 
dynamics of the cell processes, by measuring the expression 
of all genes over time, we can make a step towards finding 
some relationships between the genes and inferring Gene 
Regulatory Networks (GRN) that govern the underlying 
interaction between the genes. 

D 

In a single cell, the DNA, the RNA and the protein 
molecules interact in a continuous way during the process of 
the RNA transcription from DNA (genotype), and the 
subsequent RNA to protein (phenotype) translation [31. A 
single gene interacts with many other genes in this process, 
inhibiting, directly or indirectly, the expression of some of 
them, and promoting others at the same time. This interaction 
can be represented as a GRN (see Fig. I). A significant 
challenge for information scientists and biologists is to create 
computational models of GRN from both dynamic data (e.g. 
gene expression data of thousands of genes over time, and 
also from protein data) and from static data (e.g. DNA), 
under different external inputs (diseases, drugs, etc.). A large 
amount of both static and dynamic gene expression data is 
available from public domain databases. Collecting both 
static and time course gene expression data from up to 30,000 
genes is now a common practice in many biological, medical 
and pharmaceutical laboratories. 

Several generic information methods for modeling and 
for the discovery of GRN have been investigated so far [4]. 
Among them are: statistical methods, that include correlation 
techniques, linear regression, Bayesian networks, hidden 
Markov models; neural networks and evolving connectionist 
systems; evolutionary computation, and genetic algorithms in 
particular; directed graphs; Petri nets; ordinary and partial 
differential equations 15-71 . 

An important problem with inferring GRN is the large 
problem dimension (thousands of genes) relative to the small 
number of ohservations (several to tens of time points). For 
this reason, many clustering algorithms @-I31 are developed 
to reduce the problem dimensi9n. After filtering out genes 
that are considered inactive or contain missing values, these 
algorithms cluster the remaining useful genes into a small, 
manageable number of representative groups (genes that 
cluster together are expected to be co-regulated and have 
similar functions), which are then used to infer the GRN that 
represents the relationship between them [ 141. Clustering is 
thus an important tool for analyzing GRN. A simple example 
of such network is given in Fig. I.  
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FIG. I~ A SlMPl.liTED GENE RFCIIJI.ATORV NETWORKGRN. WHERE 
~ ~. ~~ ~ ~. .~ ~ 

IHt: NOlXS KEI'RESF.NT RllllFR GENE CI .USTRRS, SIKGl.C GPNES 
OR PROTEIN LINKS KEIWSENTTHE RELATIOWHIP 

BETWEEN THE CLUSTERS IN CONSECUTIVE TIME MOMENTS. 

Because of the large problem dimension, the search 
space is highly multi-modal. Clustering methods that use 
local-learning algorithms such as K-means algorithm and 
Expectation Maximization algorithm (EM) are susceptible to 
finding locally optimal solutions and are unable to reach the 
global optimum. Moreover, local learning algorithms reach 
different local optima in each run (from different initial 
solutions), yielding inconsistent performance. In this paper to 
we propose a framework that hybridizes Evolutionary 
Computation, in particular Genetic Algorithm (GA), with a 
local-learning algorithm to perform optimal clustering of 
time-course gene expression data to alleviate this problem. 
CA is a robust, global optimization algorithm capable of 
finding gluhal uplimum in a multi-modal search space, yet it 
is inefficient in local-hill climbing. The hybrid algorithm 
combines the strengths of GA and the local-learning 
algorithm (in our case, EM) by using the former to select 
subset of data as initial cluster centers and the later to perform 
fast local optimization to achieve the final centers from these 
initial centers. In this way, the optimality of the final centers 
returned by the local-search algorithm can be used as the 
objective function for GA, which searches for the globally 
optimal subset of data as initial cluster centers. In other 
words, rather than beginning the local optimization from data 
points that are randomly chosen, the hybrid algorithm begins 
the local optimization from data points that are globally 
optimal, therefore increasing the consistency of the final 
clustering solution. 

As a demonstration of this framework, we hybridize GA 
and EM for optimal clustering with mixture of Multiple 
Linear Regression Models (MLRs). In the experiment, the 
hybrid algorithm is applied to the human fibroblasts time- 
course data that requires clustering of 512 useful genes and 
shows superior performance over using EM alone. Results 
show that although the hybrid algorithm requires higher 
computational cost, it performs consistently better in 
clustering accuracies. The hybridization framework is 
feasible to incorporate any local optimization methods to 
enhance the overall performance, for example, GA with the 
Scaled Conjugate Gradient method. 

In Section 11, 
literature on the problem of gene trajectory clustering, genetic 
algorithm and its application to clustering is reviewed. In 
Section 111, the proposed hybrid algorithm is described in 
detail. Experiment is performed in Section IV, in which the 

This paper is organized as follows. 

hybrid algorithm is applied to cluster the human fibroblasts 
data. Finally, conclusions and discussions are made in 
Section V. 

11. BACKGROUND 

A. Clustering of Gene Expression time-course data 
The clustering of gene expression time-course data or gene 
trajectories is central to GRN analysis. It involves extracting 
a small number representative gene series from thousands of 
gene series. The clustering algorithms have been mainly non- 
model-based methods such as K-means clustering [15], Tree- 
based clustering [IS]. hierarchical clustering [16], graph- 
based CAST algorithm [ I  I ]  and self-organizing map [lo]. In 
recent years, model-based methods such as Autoregressive 
models [171, B-splines [XI, cubic-splines [13] and mixture of 
Multiple Linear Regression Models (MLRs) [12, 181 are 
gaining popularity. The advantages suggested for the later 
are threefold: first, they can handle missing and irregularly 
spaced measurements; second, they can adjust model- 
smoothness and third, their out-of-sample predictive power 
can be evaluated. In this work, gene clustering is performed 
with the mixture of MLRs proposed in [12, 18). All these 
methods use local optimization method for clustering, which 
are ineffective when the search space is highly multi-modal. 
For this reason, we employ Evolutionary Computation and in 
particular, Genetic Algorithm (CA) to overcome these local 
optima. 

B. Evolutionary Computation and Genetic Algorithm 
Evolutionary Computation (EC) [ 191 represents a general 
class of global optimization algorithms that imitate the 
evolutionary process explained by Darwinian Natural 
Selcction. Its branches include Evolutionary Strategies, 
Genetic Algorithm and Genetic Programming.. EC searches 
with a set of multiple points and requires only the evaluation 
of the function value of the points. It is therefore robust for 
complex, black problems that lack derivative information and 
contain multi-modality - the problems that defeat classical, 
derivative-based search methods. However, the evaluation of 
multiple search points causes EC to be computationally 
intensive. Therefore, although some earliest forms of EC 
have existed since the mid 1960s, EC received research 
attention only after the availability of high-speed computers 
in the last two decade. 

GA was proposed by Holland in 1975 [201. It performs 
optimization in the binary domain to imitate the evolutionary 
process that occurs at the genetic level. Each solution is 
treated as a chromosome (strand of DNA code that carries 
genetic information) and each binary bit on the chromosome a 
gene. The genetic or evolutionary operators - crossover, 
mutation and selection - are direct imitations of their genetic 
counterparis. Although CA's operation seems heuristic, 
convergence to a high quality optimum (in the global sense) 
is theoretically supported by the Schema theorem developed 
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by Holland. For this reason, CA is one of the most studied 
forms of EC today and is widely applied to different 
Engineering problems. 

The basic operations of CA iterates between crossover, 
mutation and selection. Each iteration is called a generation. 
Each solution is coded as a binary string. First, a set of initial 
solutions is created and become the first parent (for 
“reproducing” new solutions called offspring) population. 
The crossover operator imitates the mixing of genetic 
information during sexual reproduction. It swaps genes 
andor segments at random positions between two parental 
strings to form two new strings, of which one becomes the 
offspring and the other abandoned to reduce statistical 
dependence between offspring. The crossover probability pc 
is usually between 0.5 and 0.9 [21]. The mutation operator 
imitates the occasional changes of genetic information on a 
chromosome due to external influences. It inverts each gene 
on the new string with a rare (between 0.001 to 0.1) but fixed 
probability pm [21]. The set of new solutions created by the 
crossover and mutation operator from the parent population 
are called the offspring population. The goodness of each 
solution is called its fitness and is evaluated by the 
optimization objective. The standard selection operator is the 
Roulette Wheel selection that assigns to each offspring 
solution a survival probability in proportion to its fitness. 
The survivors become the next generation parents. The 
process iterates until some termination criteria are met. 

C. Application of Genetic Algorithm to Clustering/Feature 
selection 

In the hybrid algorithm proposed, GA does not directly 
perform clustering but rather, complements it by selecting 
subset of data and use them as the initial cluster centers. This 
task is commonly known as feature (subset) selection, to 
which many successful GA applications have been reported 
[22-27]. In most of these approaches, each individual 
solution is encoded as an N-bit string where N is the total 
number of features. A “1” in the nth bit-position indicates 
that the nth feature is selected, whereas a “ 0  indicates 
otherwise. Conventional evolutionary operators of crossover 
and mutation are employed. The subset size may be 
restricted or self-determined, with the later requiring more 
function evaluations. Assuming that the optimal genes 
contribute to high fitness solution, this type of binary coding 
is consistent with the Schema theorem [28] that assures 
convergence towards the optimum. Our GA adapts this 
conventional solution representation and modeling. 

111. THE HYBRID CLUSTERING ALGORITHM 
The objective of the proposed hybrid clustering framework is 
to improve the exploration capability of local clustering 
algorithms in multi-modal search space with Genetic 
Algorithm (CA). As a demonstration, we apply the hybrid 
framework to gene clustering with a mixture of Multiple 
Linear Regression models (MLRs), which uses Expectation 

Maximization algorithm (EM) as the local learning algorithm. 
The hybrid algorithm consists of two levels as depicted in 
Fig. 2. At the higher level, CA searches for the optimal 
subset of genes that act as initial cluster centers. At the lower 
level, the local learning method, in this case the Expectation 
Maximization algorithm (EM), performs local clustering from 
these initial centers. The objective is to combine the strength 
of CA and EM to produce a global yet efficient clustering 
alzorithm. 

, ~ ~ ~ ~ ? > ~ & > ~  9; ~ n d ~ m m  J ... ,......,,..... .~ ..... ...... ......... ......,. . ............ ........ . .~ ....: 

FIG. 2. THE HYBRID CLUSTERING ALGORITHM. 

The objective of the GA at the top level is to select the 
optimal subset of genes as the initial cluster centers. Let n 
denote the total number of genes and G denote the number of 
clusters. Each solution is encoded as an n-bit string with the 
ith bit position corresponding to the ith gene for ;=[I, 2, ..., 
n ] .  A “ I ”  in the ith bit position indicates that the ith gene is 
selected and a “ 0  indicates otherwise. Thus for selecting G 
optimal genes as the initial centers, all feasible solutions must 
have G number of “1”s and (N-G) number of “Os. The 
evolutionary operators include uniform crossover and 
mutation. Uniform crossover selects two random parents and 
at the crossover probability pc, swaps the bits between the 
parents at the same hit position with 50% probability to create 
two new solutions. One of them is then taken as the 
offspring. It has the important function of passing on high 
fitness schema from the parents to the offspring. Uniform 
crossover has the advantage over traditional k-point crossover 
that it eliminates biases in the crossover search [29]. 
Mutation simply inverts each bit of the offspring at the 
mutation probability pm to diversify to the search. It has the 
important function of preventing premature convergence. 
Finally, a repair operator is applied to the final offspring to 
ensure that the offspring is a feasible solution, i.e. it has G 
number of “1”s. If the solution has more than G number of 
“I” ,  the “1”s are randomly inverted, whereas if it has less 
than G number of “l”s, the “Os are randomly inverted. The 
repair continues until the solution has exactly G number of 
“1”s. Fig. 3 summarizes the operation of these three 

&pair 

FIG. 3. THE OPERATION OF THE UNIFORM CROSSOVER, 
MUTATION AND REPAIR OPERATOR (FOR 6 3  CLUSTERS). 
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The fitness function of each solution is measured as the 
maximum log likelihood of the EM-optimized model 
(described later). For selection method we use the elitist 
scheme of w1) that selects the hest-fit .U solutions out of the 
joint pool of .U parents and 1 offspring to he the next 
generation parents. The elitist scheme ensures that the best 
solutions always stay in the population and thus yield faster 
convergence. Since the search relies only on the population 
information and not on gradient information, it is less 
susceptible to getting trapped in local optima. 

The clustering model is a mixture of G MLRs (one for 
each cluster), each of which represents a single gene 
trajectory cluster given by 

Y , = s w , + ~ , ) + E ~  7, - N ( o . ~ )  E , - N ( o , R )  ( 1 )  
where Y; =bi.1, yi2, ... yi,ilt is the ith gene trajectory of length 
I, S is the lx@+l) regression matrix (or hasis matrix) where p 
is the regression order, ,n+ is the @+I)-vector of regression 
coefficients, 1~ and ei are uncorrelated Gaussian noises for the 
regression coefficients and the trajectory respectively. The 
regression matrix S can adapt Vandermonde, spline basis 
function or even time-series functions. Here we use the 
Vandermonde function given by 

where (r,,rZ,.,.,rl]are the times at which the points in the 
trajectory are observed. Let z; =(z;,. .... z j G )  be the cluster 
membership vector for the ith trajectory where z p l  if the ith 
trajectory belongs to the kth cluster and 0 otherwise. The 
standard method for mixture model learning is to treat zi as 
missing variables and apply Expectation Maximization (EM). 
See [IS, 301 for implementation details. Here we only 
provide all the necessary iterative equations. EM performs 
parameter estimation through maximizing the complete data 
log likelihood I ( . )  given by 

\ wt .r ,oz,pt)  

The maximization is achieved by iterating (4)-(7), 

(3) 

'. ;=I ti, 

where 

(7) 

f(Y I z i k )  3 N(s,u,, &I + srss') (11) 
ni is the prior probability for the kth cluster. The initial 

regression coefficients .U: of the kth cluster are computed 
from G randomly sampled curves Y, 

,U; = ( s l s r ' s l Y i  (12) 
The initial variance a2 has lesser effect to the final 

solution and is simply set to an arbitrarily small value (0.1 in 
our case). 

The choice for initial regression coefficients makes 
significant difference to the quality of the final solution. It is 
because the search space is multi-modal and EM is a local 
optimizer, the initial values determine which local optimum 
the leaming leads to. In standard EM, the initial centers are 
randomly chosen subset from the data or computed with K- 
means algorithm. The later may not he suitable in this 
application as we find that its objective leads to a different 
solution from that of the EM. 

To improve the initial estimates, the hybrid algorithm 
uses CA to select the optimal subset of data as the initial 
cluster centers and calculate their regression coefficients 
using (12). In each generation, GA produces a set of 
offspring solutions, each of which represents a subset of 
genes used for computing the initial clusters, Each offspring 
is then EM-optimized. Using maximum-likelihood given in 
(3) as the fitness function, the best offspring are selected as 
next generation parents to reproduce new offspring. The 
evolutionary operators assure the accumulation of the optimal 
gene and hence the increase of the overall fitness. 

w. APPLICATTON TO THE RESPONSE OF HUMAN FIBROBLASTS 
TO SERUM DATA SET 

The experiment compares the performance between the 
proposed hybrid algorithm and the random-initialization EM 
in the application of gene trajectory clustering of the human 
fibroblasts to serum data set. The data set was reported in 
[311. It recorded the time program at 12 time points of gene 
expression during the physiological response of fibroblasts to 
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serum using cDNA microarrays. The data consists of 8618 
genes sampled at (0, 0.25, 0.5, I ,  2, 4, 6, 8, 12, 16, 20, 24) 
hours, of which 517 genes are identified to respond 
significantly lo the serum and are clustered. The log- 
normalized data of 517 genes is shown in Fig. 4. 

Irilwc:.rmnunl "15 Uepl, l ,r  ,,1 MY"lY1 ,.i,,r,>hla*l, 1" Scrv," naia 
2 !  * \  

0 5 10 i-<*D",, IS 20 

FIG. 4. THE HUMAN FIBROBLASTS TO SERUM DATA (517 GENES). 

The order for the MLRs is chosen to be P=6 since the 
coefficients for higher orders are negligibly small (<10e-4). 
The clustering results obtained by the hybrid method and the 
random-initialization EM are visually similar and also to 
those obtained in [8, 311. We must therefore use the model 
likelihood to measure the goodness of fit. Some example 
results from clustering the data into G=7 classes are shown in 

,,-,".., ....... 
0 s 7 0  ? S  20 

as. 

FIG. 5. TWO OFTHE SEVEN CLUSTERS AND THEIR ASSOCIATED 
GENES. 

0 n *o  16 m ,&*I 4,s 
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I 
' FIG. 6. ALL SEVEN CLUSTERS OF GENE TRAJECTORIES. 

The settings for GA and EM are as follows. The binary 
coded solution is N=517 bits long with "1"s at the selected 
gene and "0"s at the rest. The population sizes are p I 0  for 
the parents and k 2 0  for the offspring, which are relatively 
small in order to limit computation time. The selection 
scheme is the elitist scheme (&A) that always keeps the best 
individuals in the population to accelerate convergence. 
Uniform crossover is applied at a high crossover rate ~ ~ 0 . 9 ,  
which is a common choice to facilitate transmission of 
optimal schema in the population. While binary mutation is 
often applied at the mutation rate p,=I/N that yields an 
average of one inversion per string, we set pm to relative high 

rate ofp,=(G/N) to yield an average of G (G is the number of 
clusters) inversions per string to increase the diversity of the 
search. Each GA runs for 20 generations (obviously, the 
larger the number the generation, the higher the solution 
quality becomes. Here we use a relatively small number of 
generations for time saving and demonstration purpose only). 
For EM, the stopping criterion is when the maximum log 
likelihood increases by less than 1. 

Performance is measured in maximum log likelihood 
(ML) obtained by the models over clustering the data into ( 5 ,  
7 ,  9 11, 13, 15) classes. Conversion from MI. to other 
performance measures like Akaike or Bayesian information 
criterion is straightforward. All results are averaged over 10 
runs. They are tabulated in Table 1. 

TABLE 1: MAXIMUM LOG UKELMOOD OFTHE MLRS WITH 
DIFFERENTNUMBER OFCLUSTERS IDENTIFED BY CA AND 

RANDOM INITIALIZATION. 

Results in Tabla I show that the hybrid algorithm scores 
higher ML with smaller standard deviation (higher 
consistency) than the random initialization EM over at all 
tested number of clusters. The improvement in ML increases 
as the number of clusters increases. This is explained by the 
increased number of gene combinations at higher number of 
clusters (2e'" combinations at G=5 versus 3e'''' 
combinations at G=15), which introduces more multi- 
modality and in turn amplifies the advantage of GA's global 
optimization capability. A typical GA run is shown in Fig. 7. 
The fitness increases uni-directionally, which is the 
characteristic of the @A) selection scheme. X [ f l  1520 __ Bes,-l'im"ar .. ~ I" Ilc p.pul""n 

8330 

3yxI i 

8280 / 
I 
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FIG. 7. EVOLUTION OF THE BEST-RTNESS FOUND IN THE 
POPULATION. 

Note that GA's superior performance incurs higher 
computational costs, requiring a total of (A".generations) 
EM evaluations. However, with the human fibroblast data 
that has 517 genes and 12 time points, each EM evaluation 
requires less than 10 seconds (running in Matlab on a 
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Pentium IV 2.4GHz) and hence GA poses little problem with 
computation time. 

V. CONCLUSIONS 
The paper introduces a novel clustering method based on the 
hybridization of GA and EM algorithms lo mixture of MLRs 
and applies this method for clustering of gene expression time 
course data (trajectories) as a step towards the creation of 
gene regulatory networks to model the behavior of biological 
cells. The experimental results on gene expression time 
course data available on the public domain show the 
advantages of the hybrid CA-EM approach when compared 
with the standard approach of using random initialization EM 
algorithm only. The method can be applied on other complex 
problems of variable trajectory clustering, such as signal 
processing and financial data. 

The proposed hybrid GA framework can be easily 
generalized to other clustering methods, for example, the K- 
means and the multivariate Normal mixture model. By 
applying GA to optimal selection of the subset of data as 
initial clusters, the solutions obtained by these algorithms can 
be more globally optimal. 

ACKNOWLEDGMENTS 

This research is supported by the KEDRI postdoctoral fellow 
research fund. 

REWRENCES 
[ I I  M. A. Shipp. K. N. Ross. P. Tamayo, and A. P. Weng. "Diffuse large B- 

cell lymphoma outcome prediction by gene-expression profiling and 
supervised machine learning," Norrwe Medicine, vol. 8, pp. 68-74, 
2002. 

[2] 1. Strategic Directions Intemational, "Micmamy Technology: The Next 
Step in  Genomic and Proteomic Analysis." Strategic Directions 
Intemational, Inc., 2001. 

131 T. Akutsu. S. Miyano. and S. Kuhara, "Identification of genetic 
network from a small number of gene expression pattems under the 
boolean network model," presented at Pacific Symposium on 
Biocomputing, 1999. 

[4l H. de Jong. "Modeling and simulation of genetic regulatory systems: a 
literature review," Joumol of Compurorionai Biology, vol. 9, pp. 67- 
102,2002. 

[SI K. W. Kahn and D. S. Dimitrov, "Mathematical Models of Cell Cycles," 
Compurer Modeling ond Simulorion of Complex Biological Sysfems. 
1999. 

[61 J. R. Koza, W. Mydlowec, G. Lanza, J. Yu, and M. A. Keane, "Reverse 
Engineering of Metabolic Pathways from Observed Data using Genetic 
Programming.'' presented at Pacific Symposium on Biocomputing, 
2001. 

[7] N. Kasabov, Evolving connecriorrisr syslems - methods and opplicmions 
in bioinfomrics, brain srudy ond inrelligenr machines. London-New 
York Springer Verlag, 2002. 

[a] Y. Luan and H. ti, "Clustering of time-cauoe gene expression data 
using a mixed-effects model with B-splines," Bioinfonnafics, vol. 19, 

[9] M. B. Eisen. P. T. Spellman. and P. 0. Brown, "Cluster analysis and 
display of genome-wide expression patterns," Proceedings of the 

[IOIP. Tamayo. D. S h i m ,  and J. Mesimv. "Interpreting pattems of gene 
expression with self-organizing maps: methods and application to 

pp. 474-482.zoo3. 

Norionai Acodemy ofsciences LISA, V ~ I .  14, pp. 14863-14868, 1995. 

hematopoietic differentiation." Proceedings offhe Norionol Academy of 
Sciences USA, vol. 96, pp. 2907.2912. 1999. 

[ I  I]A. Ben-Dor and Z. Yakhini. "Clustering gene expression pattems," 
presented at Proceedings of the Third Annual Intemational Conference 
on Computational Molecular Biology, Lyon, France. 1999. 

[1211. Cadez, S. Gaffney, and P. Smyih, "A General Pmbabilistic 
Framework far Clustering Individuals," Depanment of Information and 
Computer Science, University of California, hivine 00-09,2000. 

[13]Z. Bar-Joseph, G. Geher, D. Gifford. T. Jaakkola, and 1. Simon., "A 
new appmach to analyzing gene expression time series data," presented 
at Proceedings of The Sixth Annual International Conference on 
ReSearch in  Computational Molecular Biology. 2002. 

[14]N. Kasabov and D. Dimitrov, "A method for gene regulatory network 
modelling with the use of evolving connectionist systems." presented at 
ICONP2002 - International Conference on Neum-Information 
Processing, Singapore, 2002. 

[ I  SIM. B. Eisen, "Softwares at htio:Nrana.lbl.eovlindex.ht~~~:' 2003. 
[161P. T. Spellman, G. Sherlock. M. Q. Bang, and V. R. lyer, 

"Comprehensive Identification of Cell Cycle-regulated Genes of the 
Yeast Saccharomyces cerevisiae by Micraarray Hybridization." 
Moleculor Biology ofrhe Cell, vol. 9, pp. 3273-3297, 1998. 

[17]M. F. Ramani, S. P., and K. 1. S., "Cluster analysis of gene expression 
dynamics," Proceedings ofrhe Norionol Academy of Sciences USA, vol. 
99,pp.9121-9126, 1999. 

[18]S. Gaffney and P. Smyth, "Curve Clustering with Random Effects 
Regression Mixtures," presented at Praceedings of the Ninth 
International Workshop on Allificial Intelligence and Statistics. Key 
West, Florida, 2003. 

[19]T. Baeck, G. Rudolph, and H. Schwefel, "Evolutionary programming 
and evolution strategies: Similarities and differences," presented at the 
Second Annual Conference an Evolutionary Pmgramming, San Diego 
CA, 1993. 

[20]J. H. Holland, Adoprorim in norural and onificiol sysrems: The 
University of Michigan Press, Ann Arbor, MI, 1975. 

1211T. Baeck, D. B. Fogel, and 2. Michalewicz. E v o l u t i o n o ~  Compurnrion 
I. Basic olgorifhm ond operorors, vol. 1. Bristol: Institute of Physics 
Publishing. 2000. 

[22]J. Yang and V. Honavar. "Feature Subset Selection Using a Genetic 
Algorithm," IEEE Inreiligenr Syslems, vol. 13, pp. 44-49, 1998. 

[23]E. Yom-Tov and G. F. hbar, "Feature Selection for the Classification of 
Movements From Single Movement-Related Potentials." IEEE 
Transacrions on Neural Sysrem ond Rehobilirorion Engineering. vol. 
10,pp. 170~177, Sept 2002. 

[24]F. 7.. Brill, D. E. Brown, and W. N. Marlin, "Fast Genetic Selection of 
Features far Neural Network Classifiers," IEEE Tronsocrions on Neurol 

[2S]M. L. Raymer, W. F. Punch, E. D. Goodman. L. A. Kuhn, and A. K. 
Jain, "Dimensionality reduction using genetic algorithms," IEEE 
Transactions on Evolutionary Compurarion. vol. 4. pp. 164-171, Jul 
2000. 

[26]L. B. Jack and A. K. Nandi, "Genetic algorithms for feature selection in 
machine condition monitoring with vibration signals,'' IEE Proceedings 
of Vision, Image and Signoi Processing, vol. 147, pp. 205-212. Jun 
2000. 

[27]1. Inza, P. Larranaga, R. Etrebemia, and B. Sierra, "Feature Subset 
Selection by Bayesian network-based optimization," Artificial 
lnrelligence, vol. 123, pp. 157-184,2000. 

[28]D. E. Goldberg, Generic Algorithm in Seorch, Oprimimlion and 
machine Laming.  Reading, M A  Addison-Wesley. 1989. 

[29]L. J. Eshelman, R. A. Caruana, and I. D. Schaffer, ''Biases in the 
Crossover Landscape," presented at the Third lntemation Conference on 

[30]A. P. Dempster, N. M. Larird, and D. B. Rubin, "Maximum likelihood 
for incomplete data via the EM algorithm." Joumol of Slarisrics 

[3 IIV. R. lyer. M. B. Eisen. D. T. Ross, and G. Schuler, "The mnscriplional 
program in the response of human fibmblasts to serum," Science, vol. 
283, pp. 83-87, 1999. 

~ e ~ . ~ ~ k r ,  "01.3, pp. 324.328, M ~ C  1992. 

Genetic Algorithm, 1989. 

sociery, WI. B, pp. 1-38.1977. 

1674 


