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Abstract

Rare itemsets are likely to be of great interest be-
cause they often relate to high-impact transactions
which may give rise to rules of great practical signifi-
cance. Research into the rare association rule mining
problem has gained momentum in the recent past. In
this paper, we propose a novel approach that cap-
tures such rare rules while ensuring that redundant
rules are eliminated. Extensive testing on real-world
datasets from the UCI repository confirm that our
approach outperforms both the Apriori-Inverse(Koh
et al. 2006) and Relative Support (Yun et al. 2003)
algorithms.

Keywords: Rare Association Rule Mining, Apriori-
Inverse, Non-Redundant Itemset

1 Introduction

Association rule mining (Agrawal et al. 1993) is used
to find common or frequent patterns within datasets.
In the classical association rule mining process, all
frequent itemsets are found, where an itemset is said
to be frequent if it appears above a minimum fre-
quency threshold s, called minimum support. Associ-
ation rules are then derived from frequent items and
are represented in the form A — B where AB is a
frequent itemset. Strong association rules are those
that meet the minimum confidence c threshold (the
percentage of transactions containing A that also con-
tain B).

The minimum support threshold is used as a noise
filter to eliminate itemsets that do not appear often
within the dataset. This threshold has to be suffi-
ciently strong to reduce frequent itemsets to a man-
ageable level. However, in some data mining appli-
cations relatively infrequent associations are likely to
be of great interest as they relate to rare but crucial
cases. Application domains that benefit from rare
association mining include the diagnosis of rare dis-
eases, the prediction of telecommunication equipment
failure, and the identification of associations between
infrequently purchased supermarket items.

For example in a supermarket transactional
dataset, most purchasing behavior follows a very
regular and predictable pattern,which is related to
daily household items such as bread, butter, and
milk. However, there also exists behavior which is un-
characteristic in respect to the volume of items sold
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when compared to the staple items mentioned ear-
lier. Such behavioral patterns are potentially useful
to the retailer as they could involve associations be-
tween items that are highly profitable. However, be-
cause of the relative infrequency with which such as-
sociations manifest, traditional frequent association
mining techniques would be unable to capture the
patterns involved. This is due to the combinatorial
explosion in the number of candidate itemsets gener-
ated by setting the minimum support to a low enough
value to capture the rare associations. Such an explo-
sion in the search space renders traditional algorithm
such as Apriori unusable. This problem was first high-
lighted by Cohen et al. (2000) , showing that asso-
ciation between expensive items such as vodka and
caviar are likely to be infrequent but interesting due
to their high value.

Current rare itemset generation techniques suffer
from three issues. Firstly, their rule generators pro-
duce a mix of both frequent and infrequent rules (Liu
et al. 1999, Szathmary et al. 2007). Furthermore, the
rule bases they produce contain rules that could be in-
ferred from other rules, thus making them redundant.
In our experimentation we noticed the occurrence of
such redundant rules when we did a comparative anal-
ysis with the Apriori-Inverse rule generator. Thirdly,
they generate rules having only infrequent items in
their rule terms, which represents only a sub class of
rare rules (Koh et al. 2006). Such rule generators do
not produce rare rules that consist of frequent items
in their rule terms. Such rare rules are valuable as
they represent scenarios where individual rule terms
in rule antecedents are frequent on their own but rare
in combination with each other. Such rules capture
very specific but hard to detect detect events in their
rule consequents, on account of their rarity. Up until
now there has been no effective solution to the prob-
lems referred to earlier and this research represents
an attempt to address each of these issues.

In this paper we introduce a novel approach called
Non-Redundant Itemset Generation (N-RIG) which
seeks to capture rare patterns by using an efficient
pruning strategy, without the need for pre-processing
the dataset by partitioning it. The non-redundant
generator ensures that only itemsets that lead to an
improvement in rule prediction accuracy are ever con-
sidered for rule generation. Pruning of redundant
items is achieved by the introduction of a constraint
that we introduce, known as Cumulative Productive
Confidence (CPC).

The remainder of the paper is organized as fol-
lows. Section 2 provides a review of related research
in the area of rare association rule mining. In Section
3 we give a brief overview of our new approach to
finding rare association rules. In Section 4 we discuss
the redundant itemset problem. In Section 5 we in-
troduce the notion of an adaptive support threshold
which further enhances the quality of the rules pro-



duced. Experimental results of applying the method
on several real-world datasets is presented in Section
6. The paper concludes in Section 7 with a summary
of the contributions made in this research.

2 Related Work

The efficient detection of rare association rules with
low support but high confidence is a difficult data
mining problem. To find such rules with traditional
approaches such as the Apriori would require the min-
imum support (minsup) threshold to be set very low,
resulting in large computational overhead while pro-
ducing a large rule base, parts of which contain re-
dundant rules. As a specific example of the prob-
lem, consider the association mining problem where
we want to determine if there is an association be-
tween buying a food processor and buying a cooking
pan (Liu et al. 1999). The problem is that both items
are rarely purchased in a supermarket. Thus, even if
the two items are almost always purchased together
when either one of them is purchased, this association
may not be found. Modifying the minsup threshold
to take into account the importance of the items is
one way to ensure that rare items remain in consid-
eration. To find this association minsup must be set
low. However setting this threshold low would cause
a combinatorial explosion in the number of itemsets
generated. Frequently occurring items will be associ-
ated with one another in an enormous number of ways
simply because the items are so common that they
cannot help but appear together. This is known as
the rare item problem (Liu et al. 1999). It means that
the application of Apriori-like approaches are unlikely
to yield rules that indicate rare events of potentially
dramatic consequence.

Liu et al. (1999) note that some individual items
can have such low support that they cannot con-
tribute to rules generated by Apriori, even though
they may participate in rules that have very high con-
fidence. They overcome this problem with a technique
called MSApriori whereby each item in the database
can have a minimum item support (MIS) given by the
user. By tailoring the MIS value for different items, a
higher minimum support is tolerated for rules that
involve frequent items and a lower minimum sup-
port for rules that involve less frequent items. Yun
et al. (2003) proposed the RSAA algorithm to gener-
ate rules in which significant rare itemsets take part,
without the need for any user specified thresholds.
This technique uses relative support measure, RSup
in place of support. The RSup measure serves to
decrease the support threshold for items that have
low frequency and to increase the support threshold
for items that have high frequency. In common with
Apriori and MSApriori, RSAA is exhaustive in its
generation of rules, and will generate rules which are
not rare (i.e. rules with high support and high confi-
dence).

Szathmary et al. (2007) presented an approach for
rare itemset mining from a dataset that splits the
problem into two tasks. The first task, the traver-
sal of the frequent zone in the space, is addressed by
two different algorithms, a naive one, Apriori-Rare,
which relies on Apriori and hence enumerates all fre-
quent itemsets; and MRG-Exp, which limits the con-
siderations to frequent generators only. They consider
computation of the rare itemsets that approaches
them starting from the bottom of the itemset lat-
tice and then moving upwards through the frequent
zone. They defined a positive and the negative border
of the frequent itemsets, and a negative lower border
and the positive lower border of the rare itemsets, re-
spectively. An itemset is a maximal frequent itemset

(MFI) if it is frequent but all its proper supersets are
rare. An itemset is a minimal rare itemset (mRI) if it
is rare but all its proper subsets are frequent. If the
minimum-allowable relative support value is set close
to zero, MRG-Exp takes a similar amount of time to
that taken by Apriori to generate low-support rules
due to the need for sifting through the high-support
rules.

Koh et al. (2006) proposed an approach to find
rare rules with candidate itemsets that fall below a
maxsup (maximum support) level but above a mini-
mum absolute support value. They introduced an al-
gorithm called Apriori-Inverse to find sporadic rules
efficiently: for example, a rare association of two com-
mon symptoms indicating a rare disease. They used
a maximum support threshold to prune out any items
that may be frequent. They then use a minimum ab-
solute support (minabssup) threshold value derived
from an inverted Fisher’s exact test (Weisstein 2005)
to prune out noise. At the low levels of co-occurrences
of candidate itemsets that need to be evaluated to
generate rare rules, there is a possibility that such co-
occurrences happen purely by chance and are not sta-
tistically significant. The Fisher test provided a sta-
tistically rigorous method of evaluating significance of
co-occurrences and was thus an integral part of their
approach. The main drawback of this method is that
it cannot detect rare rules that embed frequent items
in their rule terms.

Koh & Pears (2008) proposed a pre-processing
mechanism, based on transaction clustering to gener-
ate rare association rules. The basic concept under-
lying transaction clustering stems from the concept
of large items as defined by traditional association
rule mining algorithms. In their approach, they par-
tition the dataset and then run the Apriori-Inverse
algorithm on each of the clusters found. They showed
that pre-processing the dataset by clustering improves
rule quality by as each cluster is able to express its
own associations without interference or contamina-
tion from other sub groupings that have different pat-
terns of relationship. The rare rules produced by each
cluster were shown to be more informative than the
rare rules found from direct association rule mining
on the original unpartitioned dataset.

We have based our approach on Apriori-Inverse.
Thus we use the minabssup threshold based on
Fisher’s exact test to filter out chance co-occurrences.
However we differ from Apriori-Inverse in that we
use the maxsup threshold only in the rule genera-
tion phase and not the candidate itemset phase. The
rationale for this is explained in Section 4. In the
next three sections we present our approach for rare
association rule generation.

3 Owur Approach

This section presents the key concepts governing the
Non-Redundant Rare Itemset Generation (N-RIG)
approach. The focus of our approach is to find rare
rules that contain rule terms that may by themselves
be frequent whilst preveting the generation of redun-
dant rules. Our approach is adapted from the Apri-
ori algorithm. Similar to Apriori, our approach is set
in two phases, the candidate generation and the rule
generation phase. We discuss the candidate gener-
ation phase below. The candidate generation phase
itself consists of two steps.

In the first step, we allow itemsets that are above
a minabssup threshold which we adopt from (Koh
et al. 2006) and which fulfil our Cumulative Produc-
tive Confidence (CPC) measure to be extended. The
minabssup threshold is calculated for every itemset
and is used to eliminate noise and is used instead of a



fixed minimum support threshold. The CPC measure
is used to eliminate redundant itemsets. We define a
redundant itemset(I) as one that gives rise to a rule
that can be inferred from a rule covered by some sub-
set of itemset I. In the next section, we discuss the
CPC measure in detail.

In the second step, use a maximum support thresh-
old to prune the set candidate itemsets further. Here
we prune out all itemsets that have support above
the maximum support threshold. This is needed as
we are only interested in rare itemsets.

Algorithm 1 N-RIG algorithm

Input: Transaction Database D, universe of items I, maximum
support (maxsup) value
Output: Non-redundant Rare Itemsets
k—1
Ry, «— {{i}|i € dom Idz,count({i}) > 1}
while Ry # 0 do
k—k+1
Cy «— {aVUy|z,y € R—1, |zNy| =k — 2}
Ry «— {c|c € Ck,supp(c) > minabssup, CPC(c) > 0}
end while
Ry, — {c|c € Ry, supp(c) < maxsup}

k—1
return |J; -, R

4 The Redundant Itemset Problem

Despite the fact that Apriori-Inverse outperforms its
rivals on performance and rule quality, there exists
two areas where its performance can be improved.
Firstly, it is possible that Apriori-Inverse generates
rules that are redundant. In its itemset generation
phase Apriori-Inverse combines itemsets A and B as
long as they pass the Fisher test (Weisstein 2005).
While the Fisher test does an excellent job of filtering
out itemsets that co-occur together by chance, it does
not guarantee rule minimality in the rule base that it
generates.

Consider the following example with a dataset con-
taining 50 transactions. Suppose that we have 3 item-
sets A,B and C with support 20, 30 and 25 respec-
tively. If supp(AB) = 18 and if AB co-occurs with ev-
ery transaction with C, then we have supp(AC) = 18.
With these statistics the Fisher test determines that
items A and B do not occur by coincidence, thus
Apriori-Inverse will record itemset AB as a candidate
itemset for rule generation. If the minimum confi-
dence threshold is set to 0.8 then the rule A — B will
be generated as the rule confidence at 18/20 = 0.9
exceeds the confidence threshold set.

Since supp(AC) = 18 it follows that this itemset
too will pass the Fisher test, thus producing AC as
another itemset. In the next level of itemset gener-
ation Apriori-Inverse will consider the generation of
ABC from the candidate pairs AB and AC. Now
supp(ABC) = supp(AB) since A always co-occurs
with C and hence it follows that ABC will also pass
the Fisher test. This in turn leads to the following
rule:

AC — B This rule too meets the confidence
threshold as its confidence is:

supp(ABO) . supp(AB)
supp(AC) B supp(AC)

since supp(AB) = supp(AC).

However, it is clear that Rule 2 is redundant in the
presence of Rule 1. Rule 1 captures the minimal con-
ditions required to predict the occurrence of B given
A. This example illustrates that Apriori-Inverse is
vulnerable to the redundant rule generation problem.
Whilst it is possible to apply a post rule generation
filter to remove such redundant rules, a more efficient

=1

approach would ensure that itemsets such as ABC
are never generated in the first place. The gener-
ation of itemset ABC has the potential to lead to
even more redundancy as all pairs of itemsets such
as (ABC, ABD) with a common prefix of AB propa-
gates the redundancy of ABC with other items such
as D, leading to many more itemsets such as ABC'D
that give rise to redundant rules. This is clearly un-
desirable since the candidate generation phase is the
performance bottleneck in the association rule mining
process.

Our approach avoids this problem by pruning
itemsets such as ABC from the set of candidates, thus
ensuring that redundancy is eliminated at its source.
We use an improvement measure called C'PC, that
ensures that any given itemset will only be extended
if its extension produces an increase in the C'PC mea-
sure over the improvement value when the itemset it-
self was being formed. In section 4.1 we show that
no itemset that passes the improvement test will be
redundant.

The second issue with Apriori-Inverse is that it
uses a fixed threshold for determining rarity. The use
of a fixed threshold inhibits the discovery of rules for
items whose support is above the threshold but who
co-occur together with support less than the thresh-
old set. Consider for example items X and Y with
support 0.2 and 0.3 respectively. Suppose that the
support of XY is 0.08, and the maximum support
threshold is set at 0.10. Apriori Inverse only com-
bines items that meet the maximum support thresh-
old constraint and thus X and Y will not be combined
together, although their combination gives rise to a
rare rule with support 0.08. This simple example il-
lustrates that it would be desirable to explore items in
the neighborhood of the maximum support threshold
with a view to expanding Apriori-Inverse’s rule base
to capture rare rules that contain one or more terms
that are frequent. Such types of rules are of inter-
est in many types of applications. Such applications
include disease diagnosis where certain symptoms oc-
cur on their own commonly but whose co-occurrence
points to a specific disease that occurs rarely in the
population

We now turn our attention to the issue of prevent-
ing the occurrence of redundant rules.

4.1 Redundancy Removal

As mentioned above Apriori-Inverse is vulnerable to
the problem of redundant rules. Such redundant rules
contain terms in the rule antecedent that do not con-
tribute to an increase in the rule confidence. Such
rules not only increase the size of the rule base unnec-
essarily, but also tend to mislead the decision maker
into thinking that certain terms need to be satisfied
in the antecedent when in reality they do not.

We first give a formal definition of rule redundancy
from Bayardo (Bayardo 1998). Consider a generic
rule X — Y. The improvement, I, of such a rule is:

I(X —>Y)=conf(X - Y) — (conf(Z — Y)),max(Z C X)

A redundant rule can now be defined as one whose
improvement is less than zero. We prevent the oc-
currence of such rules by defining a metric called Cu-
mulative Productive Confidence (CPC) that measures
whether an extension to a given itemset will ensure
that all rules that can be produced as a result of
the extension have greater confidence than the rules
produced with the original non extended version the
itemset.

Suppose that we have itemsets X and Y that have
passed the Fisher test. Itemset X will be merged with



Y and extended to XY if it satisfies the condition
below:

CPO(XY) = supp(X UY) supp(Y) >0
supp(X) arg miny; —y supp(W)

Theorem 1 below offers a formal proof that the
CPC measure inhibits the production of redundant
rules.

Theorem 1. All rules produced from an extension of
an itemset that satisfies the CPC constraint defined
above will be non redundant.

Proof. Itemsets X and Y to be merged need to have
a common prefix so we will represent X as AB and Y
as AC. We now have X UY = ABC. For ABC to be
a legitimate itemset, itemset Z = BC must also exist
and have passed the Fisher test, since ABC' can also
be produced by Y U Z and thus we cannot have ABC
without Z passing the Fisher test as well. In order to
produce ABC, it then follows that we must have

CPC(X,Y) >0 (1)
CPC(X,Z)>0 (2)
CPC(Y,Z) >0 (3)

From 1 we have:

supp(AB U AC)
supp(AB)

B supp(AC) >0
arg miny, - 4 o supp(W)

This implies that:
supp(ABC _ supp(AC)

>0 4
supp(AB)  supp(A) @
since
supp(AC) supp(AC)
supp(A4) ~ argminy, - 4c supp(W)

From 4 it follows that

conf(AB — C) > conf(A — C)

By substituting C' instead of A in 4 above we also
have: conf(AB — C) > conf(C — A). Thus the rule
AB — C is non redundant. From 2 we have:

supp(BC U AC)
supp(BC)

supp(AC) >0
arg miny, - 4o supp(W)

From this we derive:

supp(BCA _ supp(AC)

()

supp(BC)  supp(A)
As with 4 above we have:
supp(AC) supp(AC)
supp(A4) ~ argminy - 4¢ supp(W)

From 5 it follows that:

conf(BC — A) > conf(A — C)

By substituting C' instead of A in 5 above we also
have:
conf(BC — C) > (conf(C — A)

We thus have the rule BC — C non redundant and
lastly using 3 above we have:

supp(AC U BC)
supp(AC)

supp(BC) >0
arg miny; - 4o supp(W)

which leads to: conf(AC — B) > conf(A — C)and
conf(AC — B) > conf(C — A) which means that
rule BC' — C'is also redundant. We have thus shown
that all rules produced by the extension are non re-
dundant and this proves the theorem.

5 Adaptive Thresholding

Although N-RIG dispenses with a maximum support
threshold during itemset generation it still uses such
a threshold during the rule gneration phase to es-
nure that only rare rules are generated. However, the
use of such a threshold can have undesirable effects
if its value is set arbitrarily. For example, by set-
ting a threshold at 0.10 on a dense dataset, we would
be letting through more itemsets when compared to
setting the threshold at the same value on a sparse
dataset. To find a suitable cut off point we use an
adaptive threshold based on a modified version of a
hill climbing algorithm. We inspect the support of
the candidate itemset. Using a list of itemsets sorted
in ascending order of support, we compare the sup-
port of itemset x to the support of itemset x + 1. If
the difference of the support is less than k%, the new
support threshold is set as supp(z + 1). The process
is repeated until the difference between two consecu-
tive itemsets is more than k%, and we consider that
we have reached a partition in the itemset support
distribution that defines a suitable threshold value.

In the next section, we present the results from our
approach and compare them with those produced by
the Apriori-Inverse algorithm.

6 Evaluation and Results

In this section, we compare the performances of the
standard Apriori-Inverse and RSAA algorithms with
our proposed algorithm. The experiments were per-
formed on a Windows Vista machine with Intel Duo
Core having 3.0GHz CPU and 2.68 GB of RAM. Test-
ing of the algorithms was carried out on 5 different
datasets from the UCI Machine Learning Repository
(Newman et al. 1998). Table 1 represents the sum-
mary of the results found using Apriori-Inverse, N-
RIG, and RSAA algorithms. For Apriori-Inverse and
N-RIG we set the maximum support threshold (max-
sup) to 0.10 for all datasets. In all of the experi-
ments, we set the minimum confidence threshold to
0.90. For a comparison have reported the number
itemsets found by RSAA which fell below the 0.10
threshold.

We compare the time taken to produce the rare
itemsets. Overall our approach generated more item-
sets when compared to Apriori-Inverse. On the av-
erage, we generated 1229 itemsets as compared to
Apriori-Inverse which generated an average of 682.
The N-RIG approach is not merely confined to gen-
erating itemsets that contain only infrequent items,
unlike Apriori-Inverse. This explains the difference
in the overall number of itemsets produced between
the two approaches. Despite the greater effort ex-
pended by N-RIG in expanding the scope of rare item-
sets produced its run time compares well with that
of Apriori-Inverse. The number of rare itemsets pro-
duced by RSAA was consistently higher than with the
other two algorithms. In line with the greater number
of itemsets produced RSAA runtime were also much
higher than with the other two algorithms. In the
case of the Soybean dataset, RSAA performed very



Table 1: Summary of Experimental Results

Dataset Apriori-Inverse N-RIG RSAA

Rare Time (s) Rare Time (s) Rare Time (s)

Itemset Itemset Itemset

Flag 72 0.51 260 7.60 1210 98.2
Hepatitis 31 0.08 51 2.42 398 19.53
Soybean-Large 135 0.45 1289 88.16 6226 2388.67
Audiology 123 0.51 239 12.30 N/A N/A
Mushroom 3051 55.76 4305 349.00 5804 360.56

poorly with respect to the runtime. As for the Au-
diology dataset, RSAA did not terminate after two
hours and hence we decided to exclude it from the
comparision.

6.1 Comparative Analysis

Table 2 shows clearly that both Apriori-Inverse and
N-RIG both produce rules with high lift with the top
20 Lift values being identical for the larger datasets,
Soybean and Mushroom. However, the lift values for
RSAA was significantly smaller for these datasets.
For the two smaller datasets, Flag and Hepatitis
Apriori-Inverse generated just 3 and 7 rules respec-
tively and so a meaningful comparison with N-RIG
was not possible. RSAA produced mixed results for
two smaller datasets, giving a higher lift for Hepatitis
while producing a lower lift value for the Flag dataset.

Table 2: Rule Lift across selected UCI datasets

Dataset Apriori- N-RIG RSAA
Inverse

Flag - 12.3 5.5

Hepatitis - 6.70 11.0

Audiology 100 34.7 N/A

Soybean-Large 51.2 51.2 15.4

Mushroom 1015.5 1015.5 6.3

Table 3 illustrates a clear difference in behavior
between the algorithms. While the top 20 rule sup-
port and overall rule support values are broadly simi-
lar for the Apriori-Inverse and N-RIG algorithms, the
rule term support for N-RIG was significantly higher,
particularly for the Soybean and Mushroom datasets.
As shown in Table 3 the average antecedent rule sup-
port for the Mushroom dataset at 2.6% is a factor
of 26 times higher than the corresponding value for
Apriori Inverse. The same trend holds true for the
smaller datasets, albeit on a smaller scale. We chose
to exclude RSAA from further analysis as its lift val-
ues were smaller than with the other two approaches.

These results suggests that N-RIG is better able
to capture rare rules where individual terms are fre-
quent. As pointed out in Section 1 such rules are of
great practical significance.

Such rules manifest with N-RIG as it is not re-
stricted by a maximum support constraint in its
candidate itemset generation phase, unlike Apriori-
Inverse, thus enabling the former to produce rule
terms of higher support than the latter. We next ex-
amine some of the rules discovered by N-RIG which
Apriori-Inverse was unable to generate.

6.1.1 Mushroom Dataset

N-RIG produced a number of very rare and very high
lift rules involving different combinations of the same
terms appearing together. One such rule is given be-
low with support 0.1% and Lift of 1015.5. Such ex-
tremely rare rules in the occurrence of a relatively
dense dataset such as Mushroom tends to boost the

Table 3: Rule Support and Rule Term Support Com-
parison

Dataset Apriori-Inverse

Support Antecedent| Consequent Support

(Top 20 Rule Rule (Entire

Rules) Support Support Rule

Base)

Flag 2.1% 5.2% 2.1% 4.1%
Hepatitis 3.9% 3.9% 3.9% 7.1%
Audiology 1.0% 1.2% 3.3% 1.2%
Soybean-Large 2.0% 2.0% 2.3% 5.2%
Mushroom 0.1% 0.1% 0.3% 0.4%
Dataset N-RIG

Support Antecedent] Consequenf Support

(Top 20 Rule Rule (Entire

Rules) Support Support Rule

Base)

Flag 2.1% 6.1% 25.4% 5.6%
Hepatitis 3.9% 4.3% 4.3% 16.1%
Audiology 1.0% 2.7% 8.1% 2.7%
Soybean-Large 2.6% 3.9% 22.8% 3.9%
Mushroom 0.3% 2.6% 32.5% 2.5%

Lift value to such heights and the Lift factor taken
by itself is not indicative of the rule interestingness.
Indeed, the other two rules given below appear to be
more interesting, despite the fact that their Lift val-
ues are much smaller.
stalk-color-below-ring:y
— stalk-surface-above-ring:y
veil-color:y

population:c,

stalk-color-above-

ring:y

NRIG was also able to discover subclasses of the
two varieties of Mushrooms, namely the edible and
poisonous species. Two such rules are given below.

edible:p,
— stalk-shape:e,
stalk-surface-below-ring:k

stalk-color-above-
ring:n

The above rule, with Lift 6.3, is interesting as it
covers only 5.3% of the dataset and it applies to a
subclass of poisonous mushrooms that cover only 11%
of the total poisonous variety.

gill-attachment:a — cap-color:n, edible:e

The above rule (with Lift 5.9) is even more in-
teresting as it covers only 2.3% of the dataset and
applies to a subclass of edible mushrooms that cover
only 4.9% of the edible variety.

6.1.2 Audiology Dataset

The Audiology dataset also produced some rare rules
of interest. Two such examples are given below:

history_dizziness:t
history_fluctuating:t

The above rule, with support 2.2% and Lift 25
identifies a histories of dizziness and fluctuating hear-
ing levels as being strongly associated with a disorder
of the inner ear that can affect hearing and balance.

— class:possible_menieres

tymp:as

class:conductive_fixation —
ar_c:absent



This rule, having support 2.6 % and Lift 18.2 indi-
cates that hearing disorder conductive fixation occurs
in the absence of a condition coded as “tymp:as ar_c”.

6.1.3 Adapative Threshold

Table 4: Results for Adaptive Threshold

Dataset N-RIG with Adpative Threshold

Rare Increment from Time (s)
Ttemset normal N-RIG

Flag 393 39.6% 8.0

Hepatitis 4 -92.1% 2.39

Soybean-Large 2775 115.3% 88.95

Audiology 308 28.9% 12.7

Mushroom 5005 16.2% 351.25

Table 4 displays the effect of using an adaptive
threshold with N-RIG. Out of the five datasets tested,
four of the datasets produced more rare itemsets when
compared to the arbitrary threshold set at 0.10 as
given in Table 1. This denotes that the partition
was set at a higher level than the 0.10 support value,
whereas for one of the datasets the adaptive threshold
value did not reach the 0.10 mark. This is due to the
fact that the adaptive threshold value is dependent
on the dataset that is being analysed.

7 Conclusion

In this research we have shown that the Non Redun-
dant Itemset Generation (N-RIG) approach produces
rules of practical significance that could not be dis-
covered efficiently by the two other methods that we
compared our approach with. By dispensing with
an arbitrary maximum support during the candidate
generation phase and replacing it with the Cumula-
tive Productive Confidence measure we were able to
generate rare rules with high frequency terms whilst
keeping run time down to reasonable bounds.
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