
Full citation: Buchan, J., Li, L., & MacDonell, S.G. (2011) Causal Factors, Benefits and Challenges of 
Test-Driven Development: Practitioner Perceptions, in Proceedings of the 18th Asia-Pacific Software 
Engineering Conference (APSEC 2011). Hochiminh City, Vietnam, IEEE Computer Society Press, 
pp.405-413.  
doi: 10.1109/APSEC.2011.44 
 

Causal Factors, Benefits and Challenges of Test-Driven Development:  
Practitioner Perceptions 

Jim Buchan, Ling Li, Stephen G. MacDonell 
SERL, School of Computing and Mathematical Sciences 

AUT University, Private Bag 92006 
Auckland 1142, New Zealand 

jim.buchan@aut.ac.nz, angela.linz@gmail.com, stephen.macdonell@aut.ac.nz

 
 

Abstract 

This report describes the experiences of one organization’s 
adoption of Test Driven Development (TDD) practices as 
part of a medium-term software project employing Extreme 
Programming as a methodology. Three years into this 
project the team’s TDD experiences are compared with 
their non-TDD experiences on other ongoing projects. The 
perceptions of the benefits and challenges of using TDD in 
this context are gathered through five semi-structured 
interviews with key team members. Their experiences 
indicate that use of TDD has generally been positive and the 
reasons for this are explored to deepen the understanding of 
TDD practice and its effects on code quality, application 
quality and development productivity. Lessons learned are 
identified to aid others with the adoption and 
implementation of TDD practices, and some potential 
further research areas are suggested. 
 

Keywords: test-driven development (TDD), TDD 
benefits, TDD challenges, causal network 

 
I.  INTRODUCTION 

Test-driven development (TDD), which emphasizes a mind-
set that functional code should be changed only in response 
to a failed test, is considered “proven practice” by many 
contemporary software development practitioners and text-
book writers. Although it is a technique that has been 
practiced for decades [1], it has recently gained more 
visibility with the rise in use of Agile methodologies such as 
Extreme Programming (XP), where it is a core practice [2]. 

Proponents of TDD have reasoned that its use should result 
in improvements to code quality [3], testing quality [4], and 
application quality [5], compared to the traditional Test-Last 
(TL) approach. It has also been claimed to improve overall 
development productivity, encourage early understanding of 
the scope of requirements (user stories), as well as 
potentially leading to enhanced developer job satisfaction 
and confidence [3].  

In contrast, critics claim that the frequent changes to tests in 
TDD are more likely (than in TL) to cause test breakages, 
leading to costly rework and loss of productivity [6]. Boehm 
and Turner [6] also note that with TDD the consequences of 
developers having inadequate testing skills may be 
amplified, compared to the consequences for a TL approach. 
Other critics note that TDD may not be appropriate for all 
application domains [7]. 

While these claims and criticisms provide some basis for 
evaluating the possible utility of TDD, practitioners and 
researchers have recognized the need for stronger evidence 
as a basis for investing – or not – in the effort to adopt and 
implement this set of practices. Recently, empirical 
researchers have been investigating the claimed benefits, 
constraints, and applicability of TDD in a variety of 
industrial and academic settings to build up a body of 
evidence. This empirical evidence is mixed in its results 
regarding the benefits of TDD (covered in more detail in 
Section VI). 

This report adds further evidence regarding TDD in practice 
by describing the experiences of a software development 
team that has used TDD for three years in a specific project. 
This project (referred to as the “TDD project”) adopted 
Extreme Programming (XP) as a development methodology. 
This was the first project to adopt TDD in this organization 

http://dx.doi.org/10.1109/APSEC.2011.44�


and the first experience of TDD for most of the team 
members (apart from the project leader) when the project 
began. 

The aim of our study was to identify the benefits and 
challenges of using TDD in the experience of this project 
team. Further than this, the study aimed to deepen the 
understanding of these benefits and challenges by exploring 
what the team members perceived to be contributing TDD-
related factors. The identified benefits and challenges and 
their perceived underlying causal factors add to the body of 
qualitative empirical evidence related to TDD practice in 
industrial settings. 

We next provide a short description of the key aspects of 
TDD leading into some of the claimed benefits of the 
approach.  The industry setting and data collection approach 
are described in Sections III and IV, followed by the 
presentation and discussion of our results in Section V. We 
then consider our results in the context of prior work and 
summarize the lessons learned in our study. We conclude our 
paper in Section VIII with consideration of further avenues 
for research. 

 

II. TDD BACKGROUND 

TDD is a core practice in Extreme Programming (XP) 
involving Test-First (TF) development, closely intertwined 
with the complementary XP practices of automating testing, 
continuous testing and refactoring [8]. Any benefits and 
challenges attributed to any combination of these practices 
with a TF approach have been considered in this study. 

There are several key characteristics of TDD described in the 
literature. Firstly there is the test orientation of TDD. TDD 
starts with thinking about how to test a small piece of 
selected functionality. The first coding task is the planning 
and writing of automated (unit) tests that would test if the 
functional requirement is met. Developers write a few tests 
for each small piece of functionality before starting the code 
for that functionality. These tests break the system and each 
test failure drives the activity of writing just enough 
production code to pass the failed test. This is in contrast to 
Test-Last development where tests are written after the target 
product features exist and are for verification and validation 
purposes. As emphasized by Lui and Chan [9], the tests in a 
TTD approach are used as the specification and scope for the 
functionality to be implemented, as well as being used for its 
verification and validation. TDD is therefore often described 
as a design technique rather than a testing technique since the 
test cases define what is required of each unit and this drives 
the design of the application [3]. 

Another key characteristic of TDD is the incremental and 
iterative nature of the process. Tests are added gradually 
during the development process. Typically the unit of testing 
is smaller than a user story, in contrast to TL development. 

Figure 1 shows a clear comparison of the TF approach of 
TDD and the TL approach. 

 

 
Figure 1.  Test-first versus test-last development [10]. 

Using TDD, according to Beck [8], a developer: 

1. quickly writes a new test for a small piece of 
functionality that is part of a user requirement (e.g. part 
of a user story) 

2. runs all the tests to watch the new test fail 

3. makes small changes to the production code (that are 
expected to pass the tests) 

4. runs all tests to watch them all succeed (i.e. runs a 
regression test) 

5. refactors the production and test code to improve their 
internal structure and remove redundancy if all tests 
pass (otherwise re-works the code until the tests are 
passed). 

6. checks in both test and production source code at end of 
the day. 

This cycle is repeated and the features and design of the 
product evolve incrementally. Typically steps 1-3 are done 
on a minute-by-minute time scale and steps 4 and 5 done 
periodically throughout the day. 

Another notable aspect of TDD is the automation of the unit 
tests using frameworks such as xUnit. This means that the 
frequent regression testing that is an integral part of TDD is 
automated, and this set of automated tests is an increasingly 
important asset throughout the project and beyond, into 
maintenance. 

As mentioned in the Introduction, there are a number of 
claimed beneficial outcomes that are said to accrue as a 
result of adopting TDD practices correctly. Within the TDD 
literature these benefits are generally implicated as 
contributing to one or more of the following high level gains: 
(1) improved code and design quality, implying that the code 
is easier to change and maintain; (2) enhanced application 
quality, resulting in a (more) reliable application that delivers 



the expected value to the client; and (3) better productivity, 
resulting in cost- and time-effective development. The 
intention of this study was to categorize the perceived 
benefits and challenges and causes factors identified by 
practitioners using TDD as contributing to one or more of 
these three high level benefits, enabling us to link the results 
of this study to prior TDD literature. 

 

III. INDUSTRIAL SETTING 

The organization in focus here, based in Auckland, New 
Zealand, had spent around 15 years developing a software 
product, mainly in a 4GL development environment. A 
traditional Waterfall software development process, 
involving a Test-Last approach in particular, was used by the 
organisation. The ongoing maintenance, extension and 
customization of this legacy code to meet the needs of new 
markets and customers was becoming increasingly 
challenging. The decision was made to re-write the code in 
Java using a more modern technology stack with the specific 
aim of addressing this challenge. Management decided to 
adopt an Agile software development approach for this new 
project. Since there was little existing expertise in this area 
within the organization, a new project leader was hired, with 
specific experience in implementing XP practices. This 
project leader became the champion of XP, and in particular 
TDD, within this project team, based largely on his previous 
positive experiences using XP. 

The re-write project was expected to take several years, 
involving millions of lines of legacy code. The project was in 
its third year at the time of this study. The size of the project 
team varied from 12 to 35 people at different times 
throughout the project, with staff at a range of experience 
levels including junior, intermediate and senior team 
members. The project team was split into several 
development teams typically comprising 5-6 members 
including a team leader. Pair programming was also 
practiced in the development teams, and so TDD was often 
undertaken in pairs. Some team members were moved into 
and out of the project team to work on other projects 
involving maintaining or extending the existing (legacy) 
product, as the need arose. 

Most of the team members had little or no experience with 
TDD in practice prior to their involvement with this project 
and none had any formal training in TDD. Many of the 
project team members were initially skeptical about the 
benefits of TDD and so at first TDD was implemented with 
varying degrees of commitment. 

A Business Analyst (BA) acted as a client proxy for the team 
and provided clarification of requirements to the 
development teams. Eclipse was used as the integrated 
development environment for all coding and jUnit for 
automated unit testing. Selenium was used to automate some 
aspects of acceptance testing. 

IV.  DATA COLLECTION APPROACH 

Experiences and views regarding the use of TDD compared 
to a non-TDD approach were gathered by interviewing five 
key team members who had been heavily involved in the 
TDD project. The five participants were interviewed 
separately using a semi-structured interview approach, and 
each interview lasted between 1.5 and 2 hours. Extensive 
interview notes were taken by two of the authors of this 
paper and the interviews were all audio recorded for 
transcription and later reference. 

The five interviewees had all been involved in both Test-Last 
and Test-First practices within the company and so had a 
basis on which to compare and contrast the two approaches. 
The participants had between 7-15 years of experience 
related to software development and so were all quite 
experienced in their development roles. The interviewees all 
participated in day-to-day development work in the TDD 
project, four in a team leader role and one in a business 
analyst role. They contributed regularly to TDD-based 
coding and testing tasks, as well as having these key roles in 
the project team. These individuals were selected for 
interview because they not only had personal experience 
with TDD and non-TDD approaches in projects but also they 
had a wider appreciation of the views of the other team 
members because of their leadership role. In addition the 
nature of their roles made it more likely that they would be 
aware of the high level quality and productivity dynamics. 

 

V.  RESULTS 

This section summarizes the main results obtained from 
analyzing the interviews. It is structured to highlight the 
benefits and challenges of using TDD and their causes, along 
the dimensions of the high level benefit categories of code 
quality, application quality, and developer productivity. 

 

A. Positive Perceptions 
The experience in using a TDD approach as part of their 
software development process was reported by all five 
interviewees as generally positive to them personally. They 
also observed that the view of TDD throughout the 
development teams had moved from skepticism at the start 
of the project to general support as providing tangible 
benefits. One interviewee noted that there was never strong 
criticism of TDD practices during team retrospectives as 
evidence of this.  

When asked what they thought the main benefit of TDD was 
the participants’ answers included: 

 



• throughout the development process the engineers think 
more widely 

• higher quality code-it does what it is supposed to do 

• increased test coverage 

• confidence in the quality of code delivered to the client 

• more client and developer confidence that the code will 
do what we said it will do 

These high level benefits show an emphasis on perceiving 
improvements to code and application quality, resulting in 
increased confidence in the application for developers and 
clients. 

When questioned further about benefits, the interviewees 
identified a range of what they believed to be beneficial 
outcomes related specifically to TDD practices. These are 
summarized in the next three sub-sections. The interviewees 
attributed these benefits to changes in practice, attitude and 
behavior as a result of following TDD, compared to their 
non-TDD experiences.  

 

1) Code Quality 

Participants were unanimous in their perception that the use 
of TDD improved the quality of code compared to their 
experiences with traditional TL software development. They 
claimed that the use of TDD encouraged the development of 
simple, clean and meaningful code, more so than TL 
encouraged these outcomes. There was the perception that 
the discipline of following TDD would naturally develop 
habits that lead to better code as part of developers’ everyday 
practice. The implication was that it was easier to be “lazy” 
and get away with developing messy or untested code using 
a TL approach. As one interviewee put it: 

TDD helps developers towards simple designs; keeps 
things typically OO [Object Oriented] structured; 
pushes developers towards separated components. 

TDD was also viewed as guarding against the pressure of 
management to deliver code more quickly and compromising 
code quality, since this was not an option with TDD. 

Participants identified several underlying factors that are 
consequences of following TDD practice, which they viewed 
as strongly contributing to the improvement of code quality. 
Interviewees perceived that a deeper understanding of the 
functionality required of a piece of code was a consequence 
of writing tests first. They stated that often, while trying to 
write a test for a piece of specified functionality (as part of a 
user story), they uncovered uncertainty in the meaning or 
scope of that functionality and sought clarification from the 
(proxy) client.  

They viewed this benefit of test writing as being amplified 
when the test is written before the functional code because: 

(1) better understanding triggered by the test-writing did not 
have the potential to require changes to the associated 
functional code, as it did with a TL approach; (2) there was 
no opportunity to defer (or omit) writing the test, in contrast 
to TL; (3) the extra effort invested into understanding what 
the functional code had to do before writing it, compared to 
TL, more often resulted in a clear idea of the objects and 
methods required in the functional code, making it easier to 
avoid cluttered code and have a simple design; (4) the tests 
and functional units tended to be smaller in scope than those 
written using a TL approach, making it easier (cognitively) 
to simplify the design, with fewer factors in the code to 
consider. 

Another major contributor to good code design that 
interviewees identified with TDD was developers’ increased 
confidence and willingness to put effort into improving the 
design of “perfectly good working code” through 
refactoring. This benefit was attributed to two main 
outcomes of TDD that are less “front of mind” in TL 
development: (1) refactoring is part of “how we do things” in 
TDD but was not emphasized to the same degree in the 
participants’ TL experiences (2) the set of automated tests, 
also inherent to TDD, increased developer confidence to 
refactor code or try out new ideas because they could 
immediately run a set of automated tests to see if they 
“broke” existing code. They contrasted this with the “if it 
isn’t broke, don’t touch it” mentality they tended to have 
with a TL approach. They claimed that this increased 
confidence to change code, together with the fact that the 
“chunks” of code tended to be smaller using TDD, increased 
their willingness to refactor the code to improve design 
during the implementation process, resulting in better code 
design compared to using TL practices. 

Participants also described the code written while using TDD 
practices as likely to be more “readable” and easier to 
maintain, compared to code written using TL. They saw this 
as also contributing to code quality. They explained that in 
writing the tests first they tended to use meaningful test, 
variable and class names, and that the use of meaningful 
names naturally carried over to the production code. 
Interviewees indicated that the associated tests also 
contributed to better understanding of code functionality. 
The interviewees observed that readability was further 
enhanced because fewer comments in the code were needed, 
since much of the information and semantics traditionally 
captured – or not – in comments were embodied in the 
associated tests. They also noted that the comments that were 
still required were more likely to be included (and were more 
likely to be useful), because so few were required. One 
interviewee makes this point as the following: 

There is no need to have a large bit of documentation 
outside of the code or inside it to describe the 
functionality itself, as the test class would give a good 
idea of what the relevant class should be doing. 



2) Application Quality 

Increased software reliability, as indicated by fewer defects 
in the release of an application, was attributed to higher 
quality testing during implementation. According to the 
interviewees, one result of writing breakpoint tests before 
production code was that developers spent more time 
designing the boundary cases needing to be covered by these 
tests, compared to when they were using the TL approach. 
This was described as resulting in more thorough testing and 
fewer defects at the end of the development cycle.  

Higher test density and test coverage were also perceived to 
be encouraged by the use of TDD practices. Participants 
noted that with TL development there was a higher 
likelihood that testing would be left out or restricted to 
critical functionality, particularly if time was short. They 
noted that it was quite rare to go back and write unit tests for 
production code that had no associated tests, particularly if it 
had no errors associated with its functionality during 
acceptance testing or in use by the client. TDD instituted the 
discipline of all functionality being associated with a set of 
automated unit tests. This resulted in more tests and higher 
test coverage of the code. This improved quality of testing 
was perceived as being closely associated with improved 
application quality. 

Another TDD practice that interviewees perceived as 
contributing to fewer errors propagating to the acceptance 
testing and final production code was the ability to run all 
automated tests before and after new functionality was 
implemented. The immediacy of the feedback from this 
continuous regression testing meant that appropriate rework 
of the production or test code was undertaken before 
developing additional functionality. This avoided 
compounding errors or inappropriate tests, and enabled 
developers to address issues in their context while still fresh 
in their mind. 

Interviewees noted that the team appeared more confident 
handing over a new release of the software to the client 
compared to when they were using TL techniques. They 
observed that the tension previously associated with 
uncertainty around software releases seemed to be reduced. 
Increased developer confidence in the code reliability during 
and after development was a strong recurring theme in the 
interviews. 

As noted in the subsection addressing code quality, 
participants reported that TDD encouraged better 
understanding of requirements by promoting more time spent 
early in development analyzing scenarios and business 
requirements and more frequent contact with the client or 
BA to discuss requirements and user stories. One interviewee 
described this in the following way: 

Certainly, when you write a test it makes you question. 
You have to think about certain scenarios a little bit 
more. That makes you question your functionality that 

you are developing the code for, and then the 
questioning make you understand the requirement 
better. 

The interviewees saw this early, deep requirements 
understanding encouraged by TDD as leading to a product 
release that had less unwanted or incorrect functionality, as a 
result of fewer misinterpretations of the client’s needs. This 
led to the team more frequently achieving higher levels of 
customer satisfaction. 

 

3) Productivity 

The five interviewees were categorical in their perception 
that the use of TDD had improved overall development 
productivity compared to their previous experiences with the 
TL approach. They explained that while the use of TDD may 
increase the time spent on developing tests and production 
code during early phases, as the development progressed, 
adding and testing new functionality was quicker and 
required less rework, compared to TL. They detailed a 
number of factors as contributing to improved productivity 
which they considered closely related to TDD practices. 

It was perceived by the participants that under TDD more 
errors or misunderstandings were identified and addressed 
early in the development lifecycle compared to the TL 
approach. As one interviewee put it: 

It’s a lot cheaper in terms of resources to fix the issue 
immediately rather than months down the track when 
they may be discovered. 

They observed that re-work earlier in development was less 
time-consuming than re-work due to errors picked up later in 
the development lifecycle. The errors tended to be picked up 
earlier as a consequence of the higher quality testing and 
early deep requirements understanding, consequences of 
TDD that were also discussed in relation to application 
quality. In addition, the enhanced understanding often 
resulted in less functional code being written, saving time. 
This was a result of clarity of functional scope and writing 
only sufficient code to pass the associated tests. 

Interviewees associated the use of TDD with improved 
understandability of the code, and they saw this as another 
factor contributing to improved productivity, particularly 
during application maintenance. Developers reported that 
this resulted in their being able to understand the 
implemented functionality more quickly, particularly when 
working on code that had been written by others or which 
had not been worked on for a long period of time. 

Participants also described an increase in their satisfaction 
and motivation with TDD, resulting in improved personal 
productivity. The implication from this increased motivation 
was that less time was spent “off task” and coding tasks were 
done more quickly because of this improved attitude. 



Enhanced motivation during implementation was a result of 
the improved confidence in their code working (passing 
tests), improved confidence that the code would do what the 
client wanted, a higher willingness to change code, improved 
understanding of the existing code, and early “success” when 
code passed a test. These TDD-related factors have all been 
discussed in previous sections, and are identified here by the 
participants as contributing holistically to a higher level of 
satisfaction and motivation, and consequent productivity 
gains. One interviewee expressed this view as: 

It is frustrating to write 15 tests but it’s more 
frustrating to not be able to change something or not to 
know your changes are safe. 

In addition some interviewees noted that with TDD 
developers were able to start writing (test) code sooner and 
“guilt-free”, compared to a TL approach, where larger pieces 
of functionality tended to be analyzed and understood before 
beginning coding. The point being made was that developers 
like to write code and so this was a motivating factor. 
Finally, interviewees expressed the perception that more tests 
were re-used using TDD compared to their non-TDD 
practices, resulting in potential gains in ongoing 
productivity. 

 

B. Perceived Challenges 
While the overall perception of the five key personnel was 
that TDD provided a number of benefits in practice, the 
interviewees also identified a number of challenges to 
adopting and implementing TDD. 

Although it was noted that the large majority of developers 
could see the benefits of using TDD after a period of time, 
one interviewee noted that there was a constant need to 
(re)convince a subset of the project team of the benefits. For 
some team members doing TDD never became “natural” and 
they required reminders of the benefits of their effort.  

In addition, interviewees observed that there is a large 
overhead in learning how to implement TDD practices, 
particularly if a developer has many years of non-TDD 
experience. They noted that a critical success factor in their 
adoption of TDD practices for the project being studied was 
the fact that the project leader was very convincing in his 
description of the benefits of TDD and his own positive 
experiences. Some participants felt that the project team took 
close to 1 year of using TDD to integrate and internalize 
TDD and visibly realize the improvements in code quality 
and productivity identified in this study. Participants noticed 
that new team members could still take several months to 
“change their mindset” and use TDD effectively. One 
participant viewed the introduction of new team members 
with weak TDD skills as particularly disruptive to teams, 
sometimes causing conflict and lowering morale. 

Four of the interviewees expressed the view that realization 
of the benefits of using TDD is strongly linked to 
developers’ capabilities in refactoring and writing high 
quality tests. They saw the development of these skills as one 
of the biggest challenges of TDD. They commented that 
more formal training in these skills, as well as the TDD 
process, would have been beneficial to their productivity. 

Misunderstanding of TDD by upper management was 
viewed as a challenge by some interviewees. They explained 
that upper management often saw developers spending long 
periods of time on test writing rather than “getting on with 
the functional code”. They interpreted this, often correctly, 
as spending longer time than before (using non-TDD 
methods) on providing functionality. The benefits to 
downstream development were often not so apparent. 

One interviewee had the perception that TDD sometimes 
“gets in the way of simple, well-known code”. It was 
described as a challenge to find the motivation to go back 
and write tests for code that was being re-used and that had 
been used in production and was well tested, proven and well 
understood.  

 

VI.  DISCUSSION 

Although not without its challenges, overall, the interviewees 
described the change to using TDD as a positive move 
compared to their previous and ongoing experiences with 
traditional development methods. They perceived general 
improvements to application quality, code quality, overall 
productivity and personal satisfaction via a collection of 
contributing factors. Are these perceptions supported by 
others using TDD practices? Over the last decade a number 
of researchers have undertaken empirical studies related to 
the effectiveness of TDD and the remainder of this section 
considers these as a basis for comparison with the 
interviewees’ perceptions. 

A number of studies have investigated the quality of 
applications developed using TDD compared to using TL. 
Results are varied and inconclusive, however. One early 
study [11] involved a controlled experiment with 19 
students. The students were divided into two groups and both 
teams were tasked with developing a small Java program, 
one using a test-first approach and the other a traditional test-
after-coding approach. The quality of each final application 
was measured in terms of its reliability, in this case by the 
number of acceptance-tests failed. The result was that the 
group using TF did not produce a more reliable application. 
Furthermore, they took around the same time to produce this 
poorer quality application, despite showing signs of better 
program understanding. Similar controlled experiments [12-
15] do not show any benefit to application quality in using 
TDD compared to using various TL techniques. On the other 
hand, other controlled experiments [5, 16-17] have indicated 
that there may be a positive relationship between the use of 



TDD and application quality. In [16] an experiment was 
conducted with 24 professionals and the final applications 
developed using TDD passed 18-50% more external tests 
than the applications developed with TL. Other 
investigations involving case studies of industrial projects 
[18-21] consistently report that TDD provided significant 
improvements to application quality. It is interesting to note 
that it is the studies of industrial projects “in the wild” that 
provide the most consistent findings regarding application 
quality improvement with TDD. The industrial study 
reported in this paper aligns with these findings and adds to 
this body of evidence. This study also suggests a number of 
“causal pathways” of factors that may contribute to 
application quality. It would be useful to investigate the 
strength of these relationships in other industrial project 
settings to further deepen the understanding of the effects of 
TDD on application quality. 

The effects on code quality of using TDD have also been 
investigated. In one controlled case study [22] teams of 
students undertook four different software projects for real 
customers, two using TDD and two using iterative TL 
approaches. The TDD teams produced higher code quality, 
as measured using a suite of well-defined traditional metrics 
for code quality (although the code quality was still quite 
high for the TL teams). A similar study of students doing 
projects for industry clients [17] showed that TDD teams 
tended to produce code with smaller, less complex classes 
than teams using TL (although cyclomatic complexity was 
very similar in both cases). Another experimental pilot study 
using students [23] is not conclusive but does indicate that 
the use of TDD seemed to result in higher design quality 
compared to using TL. In the post-experiment survey of the 
study done by [16] 79% of the participants perceived TDD 
as promoting simpler code design and 92% as resulting in 
higher quality code, compared to their use of TL. Other 
experiments [11, 13, 15, 24-25] show either no change or 
even a decrease in code quality with the use of TDD 
practices. The uncertainty in the conclusion to draw from 
these mixed results is in direct contrast to the apparent 
certainty of the study reported in this paper, where all five 
interviewees had very strong perceptions that the change to 
TDD had resulted in improved code quality. This suggests 
that further study of the effects of TDD on code quality in 
industrial projects would be a fruitful area for investigation, 
particularly given that other industrial case studies [18-21] 
did not consider code quality specifically. 

Related to quality is the notion of testing quality and 
improvements to testing quality is an outcome of several 
experiments involving the use of TDD. For example in the 
study by [16], TDD use produced very high test coverage 
(98% code, 92% statement and 97% branch coverage). 
Improvements to test coverage, test effort, test volume, or 
testing frequency are also reported by [12, 14, 26]. These 
findings align well with the findings of this study where 

participants noted increased test density and coverage with 
TDD as a contributing factor of application reliability. 

Several recent empirical studies also investigated TDD-
related effects on aspects of productivity. In one controlled 
experiment employing 24 students [10], the group 
undertaking TDD practices show improved developer 
productivity, reduced debugging effort and reduced rework, 
compared to the control group using iterative TL  
development. Several other controlled experiments [17, 23-
24] also support higher developer or overall productivity 
with TDD compared to TL approaches. There is no clear 
conclusion, however, since several other experimental 
studies [11, 15, 27] and the two industrial case studies that 
have considered productivity [18, 28] all suggest that the use 
of TDD either has no measurable effect on productivity or 
even reduces productivity by between 15% and 35%. 
Interestingly, in the post-experiment survey of the subjects in 
[16] 78% of the respondents indicated an improvement to 
overall productivity, 95.8% perceived a reduction in 
debugging time, and 50% felt there was a reduction in 
coding time. This is despite the TDD groups being measured 
as taking 16% longer to complete the assignment than the TL 
group. The perceptions of the interviewees in our study are 
closely aligned with this survey data [16]. The interviewees 
described improvements to overall productivity as being due 
to, among other factors, reduced debugging effort (since 
errors were caught and fixed early). It would have been 
useful also to have had access to quantitative measures of 
productivity for our study. 

In light of the mixed results reported by previous empirical 
studies, the findings in our study generally support many of 
the positive findings reported, particularly in the industrial 
case studies. Moreover, this study deepens the understanding 
of this evidence by identifying influencing factors. This adds 
to the body of evidence with which practitioners can base the 
decision to use TDD or not and provides some guidance on 
areas to continue researching. It is only by building up such 
evidence over many projects that a clear picture of the 
benefits and constraints of TDD use will be formed. 

 
VII.  LESSONS LEARNED 

The interviewees identified a number of lessons and 
recommendations as a result of reflecting on their 
experiences on TDD within this project. The main points are 
summarized as follows. 

Each team leader should be a champion of TDD. Members 
of development teams that had team leaders who were less 
committed to the practices of TDD tended to be inconsistent 
in their use of TDD in their code development. This 
sometimes resulted in untested code, incomplete test-suites, 
and tension within the team. It would also be of benefit if the 
team leader had sufficient previous experience with TDD 



that they could mentor other team members and recognize 
when TDD practices were not being followed. 

TDD should be followed strictly to realize the benefits. There 
are a number of misconceptions and common mistakes in 
implementing TDD into daily development practice; it is 
more than just writing tests first! In [29], 9 common mistakes 
are self-identified by 218 TDD practitioners. Incorrect 
implementation of TDD may mean that the benefits 
evidenced and reasoned in the literature are not realized. It 
was felt that a common base level of TDD training and inter-
team reviews of practice could help to ensure that TDD is 
practiced correctly. It was the experience of some teams that 
pair programming afforded a level of quality assurance on 
the TDD process also, provided the pairs had sufficient 
knowledge.  Ensuring good access to the client or suitable 
proxy was also seen as important.  

Management should be made aware of the characteristics of 
software development using TDD. This was not a lack of 
management “buy-in”, but rather a lack of understanding of 
the implications of using a TDD approach. Management was 
supportive of using Agile methods and TDD in principle. 
But they were a source of tension when the coding of 
functionality took longer than expected based on 
management’s previous non-TDD experiences. 

The benefits of TDD should be made more visible. It was felt 
that the costs of TDD were more visible than the benefits 
generally, and this contributed to variable levels of 
commitment to TDD among team members, as well as 
pressure from upper management. At an individual level the 
outcomes of TDD accumulate over a period of time and may 
never be shared with the rest of the project team or get 
“forgotten” over time. Team leaders and project managers 
are in the best position to proactively capture and 
disseminate both qualitative and quantitative indications of 
the benefits of using TDD. Measures of the most valuable 
benefits related to TDD should be tracked and monitored and 
integrated into the daily process. These can then be displayed 
and shared among the project team members. 

Planned induction and training needs to be provided for 
developers new to TDD. It was identified that new team 
members with low TDD experience could be disruptive. In 
addition, while they improved their understanding of TDD 
practices in an ad hoc manner with on-the-job training, they 
were generally below the average productivity of the team. 
To expedite this induction of new team members, a planned 
programme of both formal training and on-the-job training in 
applying TDD was suggested. It was noted that this 
programme should include training on writing high quality 
tests and refactoring. 

Training should be provided to up-skill developers in their 
test writing and refactoring capabilities. Since these two 
skills are so critical to successful TDD in practice, it was felt 

that knowledge sharing and training in these areas should 
support continuous improvement and learning. 

Tools and techniques for supporting TDD should be 
integrated into the everyday development environment.  One 
of the challenges of implementing TDD identified by all 
interviewees was the lack of tool support for TDD practices 
provided by their development environment (Eclipse in this 
case). An integrated development environment (IDE) as well 
as other relevant specialized tools that provide TDD support 
could overcome this frustration and improve productivity. 

Figure 2 summarizes the benefits of TDD as well as the 
causal factors that contribute to those benefits, as identified 
by the interviewees, in the form of an interconnected 
network. This network is based on an analysis of the 
interview field notes and transcripts into themes and 
concepts, and their causal relationships. This provides a 
concrete overview of our learning about the relationships 
between the quality and productivity benefits and 
contributing factors related to TDD practice. An important 
learning is the complex nature of the interactions of different 
factors that can influence productivity and quality outcomes. 
This implies that it cannot be reasonably expected that 
specific outcomes will be totally predictable over a wide 
range of organizational and project contexts. It also provides 
further motivation for studying the phenomenon in a realistic 
setting, where understanding the richness of these 
interactions can be used to interpret experiments and suggest 
new hypotheses to test. 

 
VIII. CONCLUSIONS AND FUTURE WORK 

We set out to understand how TDD was adopted and 
implemented in an organization more familiar with TL 
approaches to development, with a particular focus on how 
and when TDD-related benefits could be achieved.  Our 
analysis, based on interviews with five key personnel, 
highlights that benefits in terms of improved code quality, 
application quality and productivity can be achieved in time 
if certain factors are addressed and particular conditions put 
in place.  This has enabled us to derive a network of factors 
that interact and together influenced the outcomes for those 
practicing TDD in our industrial partner organization. While 
it cannot be claimed that the proposed network of factors is 
generalisable to other projects, it does provide a starting 
point for future hypothesis generation and testing that could 
provide deeper understanding and add to the body of 
empirical evidence related to TDD. 

Our analysis relies on an assumption that the organization 
was indeed practicing TDD correctly. The participants 
seemed to have internalized the main concepts of TDD as 
described in Section II, however their actual practices were 
not observed. 



Also, it could be contended that the perceived benefits 
actually derived from the organization’s use of XP and 
iterative incremental development, and not specifically from 
TDD.  We therefore encourage future industry-based 

research studies that consider specific aspects of 
organizational processes, and that test the derived 
relationships and pathways through our causal network. 

 
 

 
Figure 2.  Causal network of TDD benefits and contributing factors. 

 
ACKNOWLEDGMENT 

We thank our industrial partner and in particular the willing 
interviewees. Ling Li was employed by the partner 
organization when the TDD project was undertaken. 

 

REFERENCES 

[1] C. Larman and V. R. Basili, "Iterative and incremental 
developments. a brief history," Computer, vol. 36, pp. 
47-56, 2003. 

[2] K. Beck, Extreme Programming Explained: Embrace 
Change. Reading, Massachusetts, USA: Addison 
Wesley, Longman, 2000. 

[3] K. Beck, "Aim, fire [test-first coding]," Software, IEEE, 
vol. 18, pp. 87-89, 2001. 

[4] Test-Driven Development: A Practical Guide, 2003. 

[5] L. Crispin, "Driving Software Quality: How Test-
Driven Development Impacts Software Quality," 
Software, IEEE, vol. 23, pp. 70-71, 2006. 

[6] B. Boehm and R. Turner, Balancing Agility and 
Discipline - A GUide to the Perplexed. Boston: 
Addison-Wesley, 2004. 

[7] M. Stephens and D. Rosenberg, Extreme Programming 
Refactored: The Case Against XP. Berkley: Apress, 
2003. 

[8] K. Beck, Test Driven Development: By Example. 
Reading, Massachusetts, USA: Addison Wesley, 
Longman, 2003. 

[9] K. M. Lui and K. C. C. Chan, Software Development 
Rhythms : Harmonizing Agile Practices for Synergy. 
Hoboken, N.J: Wiley-Interscience, 2007. 



[10] H. Erdogmus, et al., "On the effectiveness of the test-
first approach to programming," Software Engineering, 
IEEE Transactions on, vol. 31, pp. 226-237, 2005. 

[11] M. M. Muller and O. Hagner, "Experiment about test-
first programming," Software, IEE Proceedings -, vol. 
149, pp. 131-136, 2002. 

[12] A. Geras, et al., "A prototype empirical evaluation of 
test driven development," in Software Metrics, 2004. 
Proceedings. 10th International Symposium on, 2004, 
pp. 405-416. 

[13] A. Gupta and P. Jalote, "An Experimental Evaluation of 
the Effectiveness and Efficiency of the Test Driven 
Development," in Empirical Software Engineering and 
Measurement, 2007. ESEM 2007. First International 
Symposium on, 2007, pp. 285-294. 

[14] L. Huang and M. Holcombe, "Empirical investigation 
towards the effectiveness of Test First programming," 
Information and Software Technology, vol. 51, pp. 182-
194, 2008. 

[15] M. Pancur, et al., "Towards empirical evaluation of 
test-driven development in a university environment," 
in EUROCON 2003. Computer as a Tool. The IEEE 
Region 8, 2003, pp. 83-86 vol.2. 

[16] B. George and L. Williams, "A structured experiment 
of test-driven development," Information and Software 
Technology, vol. 46, pp. 337-342, 2004. 

[17] J. H. Vu, et al., "Evaluating Test-Driven Development 
in an Industry-Sponsored Capstone Project," in 
Information Technology: New Generations, 2009. 
ITNG '09. Sixth International Conference on, 2009, pp. 
229-234. 

[18] T. Bhat and N. Nagappan, "Evaluating the efficacy of 
test-driven development: industrial case studies," 
presented at the Proceedings of the 2006 ACM/IEEE 
international symposium on Empirical software 
engineering, Rio de Janeiro, Brazil, 2006. 

[19] K. M. Lui and K. C. C. Chan, "Test Driven 
Development and Software Process Improvement in 
China," in Extreme Programming and Agile Processes 
in Software Engineering. vol. 3092, J. Eckstein and H. 
Baumeister, Eds., ed: Springer Berlin / Heidelberg, 
2004, pp. 219-222. 

[20] E. M. Maximilien and L. Williams, "Assessing test-
driven development at IBM," presented at the 
Proceedings of the 25th International Conference on 
Software Engineering, Portland, Oregon, 2003. 

[21] L. Williams, et al., "Test-driven development as a 
defect-reduction practice," in Software Reliability 
Engineering, 2003. ISSRE 2003. 14th International 
Symposium on, 2003, pp. 34-45. 

[22] M. Siniaalto and P. Abrahamsson, "Does Test-Driven 
Development Improve the Program Code? Alarming 
Results from a Comparative Case Study," in Balancing 
Agility and Formalism in Software Engineering, M. 
Bertrand, et al., Eds., ed: Springer-Verlag, 2008, pp. 
143-156. 

[23] R. Kaufmann and D. Janzen, "Implications of test-
driven development: a pilot study," presented at the 
Companion of the 18th annual ACM SIGPLAN 
conference on Object-oriented programming, systems, 
languages, and applications, Anaheim, CA, USA, 2003. 

[24] D. S. Janzen and H. Saiedian, "On the Influence of 
Test-Driven Development on Software Design," 
presented at the Proceedings of the 19th Conference on 
Software Engineering Education \& Training, 2006. 

[25] M. Müller, "The Effect of Test-Driven Development on 
Program Code," in Extreme Programming and Agile 
Processes in Software Engineering. vol. 4044, P. 
Abrahamsson, et al., Eds., ed: Springer Berlin / 
Heidelberg, 2006, pp. 94-103. 

[26] C. D. Thomson, et al., "What Makes Testing Work: 
Nine Case Studies of Software Development Teams," in 
Testing: Academic and Industrial Conference - Practice 
and Research Techniques, 2009. TAIC PART '09., 
2009, pp. 167-175. 

[27] G. Canfora, et al., "Productivity of Test Driven 
Development: A Controlled Experiment with 
Professionals," in Product-Focused Software Process 
Improvement. vol. 4034, J. Münch and M. Vierimaa, 
Eds., ed: Springer Berlin / Heidelberg, 2006, pp. 383-
388. 

[28] L.-O. Damm, et al., "Introducing Test Automation and 
Test-Driven Development: An Experience Report," 
Electronic Notes in Theoretical Computer Science, vol. 
116, pp. 3-15, 2005. 

[29] M. F. Aniche and M. A. Gerosa, "Most Common 
Mistakes in Test-Driven Development Practice: Results 
from an Online Survey with Developers," in Software 
Testing, Verification, and Validation Workshops 
(ICSTW), 2010 Third International Conference on, 
2010, pp. 469-478. 

 


	I.  Introduction
	II. TDD Background
	III.  Industrial Setting
	IV.  Data Collection Approach
	V.  Results
	A. Positive Perceptions
	1) Code Quality
	2) Application Quality
	3) Productivity

	B. Perceived Challenges

	VI.  Discussion
	VII.  Lessons Learned
	VIII. Conclusions and Future Work
	Acknowledgment
	References


