

Bluetooth Information Exchange Network

Xiaoning (Linda) Liu

A thesis submitted to AUT University

In partial fulfilment of the requirements for the degree of

Master of Engineering (ME)

October 2008

School of Engineering

Primary Supervisor: Prof. Adnan Al-Anbuky

Acknowledgement

First and foremost, I would like to thank my supervisor, Prof. Adnan Al-Anbuky, for his

constant guidance, valued advice and continuous support during the time of my thesis

study. He has been highly available and highly supportive throughout the whole process

of writing this thesis.

I also want to thank my family for the endless love, invaluable support and

encouragement through the years.

Many thanks go out to Dr Ching Lin for his helpful advice, understanding and

encouragement when he was working as my co-supervisor during the first part of this

study.

I am grateful for the research environment and the substantial resources provided by the

Engineering school of AUT University that enabled me to gain extensive practical

experience through the experimental work performed.

My thanks also go out to Dr Guy Littlefair and Dr. John Collins for their help during the

hard time of this study.

Abstract

Bluetooth is a low cost and low power wireless technology for connecting portable and /

or fixed Bluetooth enabled devices to form short-range wireless ad hoc personal area

networks (PANs). As the Bluetooth specification does not specify a protocol to form ad

hoc Bluetooth networks, a method for forming an efficient Bluetooth network under a

practical networking scenario is still an open research problem.

This thesis introduces an approach to implement an indoor ad hoc Bluetooth wireless

network, Bluetooth information exchange network (BIEN). This network formation is

based on Bluetooth and Java technologies. A set of Bluetooth enabled devices

configured with the BIEN software application are able to spontaneously establish a

dynamic multi-hop wireless network using Bluetooth technology without the need of

formal network infrastructure, centralized administration, fixed routers or access points.

In this study, the performance evaluation focuses on the relation between network

capacity and topology by testing end-to-end performance in terms of throughput and the

latency of communication links with various parameters, including the hop number

between nodes and the number of slaves in piconets. The evaluation results show that

the throughput reduces with the increased length of a path, and with an increase in the

number of slaves in a piconet in the network. The latency also increases with path

length, and with the number of slaves in a piconet in the different experimental BIENs,

whether if there is traffic or not in the networks. Experimental results have further

confirmed the necessity to minimize the number of bridge nodes in the Bluetooth

networks due to their traffic bottleneck effect.

This work is an attempt at implementation of a distributed multi-hop scatternet with an

integrated routing protocol in the practical environments, while most of the literature

focuses on covering the modelling of it. It intends to demonstrate how Bluetooth

technology with Java technology can be used to design, develop and deploy ad hoc

Abstract iv

wireless networks with the commercial Bluetooth devices, and examine how well

Bluetooth technology supports ad hoc multi-hop wireless network technology.

Table of contents

Title page .. i

Acknowledgement... ii

Abstract .. iii

Table of contents………………………………………………………………………...v

List of figures .. vii

Statement of originality ... x

Abbreviation ... xi

1 Introduction ... 1

1.1 Bluetooth technology ... 1

1.1.1 Overview ... 1

1.1.2 Radio technology .. 2

1.1.3 Bluetooth protocols stack .. 4

1.1.4 Bluetooth profiles .. 5

1.2 Bluetooth network technology ... 6

1.2.1 Bluetooth network formation .. 6

1.2.2 Metrics for assessing Bluetooth scatternets .. 10

1.3 Study objectives ... 11

1.4 Structure of the thesis ... 12

2 Literature review ... 13

2.1 Previous solutions to Bluetooth scatternet formation 13

2.2 Evaluation of the previous solutions .. 17

2.3 Ad hoc wireless routing protocols .. 19

2.4 Wireless mesh network .. 24

2.5 Conclusion .. 26

3 Development platforms ... 27

3.1 Bluetooth device ... 27

3.2 Software development tools ... 29

3.2.1 Java technology ... 29

3.2.2 Bluetooth API ... 30

3.2.3 Eclipse ... 31

3.3 Summary .. 31

4 Bluetooth information exchange network ... 32

4.1 System Architecture ... 32

4.1.1 Bluetooth information exchange network (BIEN) 32

4.1.2 BlueNode .. 33

4.1.3 Routing mechanism ... 35

4.2 BIEN formation schema ... 36

4.2.1 BIEN topology design ... 37

4.2.2 BIEN formation protocol .. 38

4.3 Summary .. 41

Table of Contents vi

5 BIEN software implementation .. 42

5.1 Overview .. 42

5.2 Network formation application... 44

5.2.1 BlueNode discovery .. 44

5.2.2 Connection management ... 44

5.2.3 Communication management.. 50

5.3 RIP routing protocol implementation application .. 54

5.3.1 Implementation of the routing table .. 54

5.3.2 Routing Computation .. 55

5.3.3 Routing update .. 60

5.4 BIEN function and GUI implementation application 61

5.4.1 Implementation of the information exchange function 62

5.4.2 Implementation of BIEN system GUI .. 63

5.5 Summary .. 68

6 Experiment and performance evaluation .. 69

6.1 Experimental Deployment .. 69

6.1.1 Experimental methods ... 69

6.1.2 Test Bed .. 74

6.2 Performance evaluation .. 79

6.2.1 Throughput evaluation .. 79

6.2.2 RRT latency evaluation ... 85

6.3 Summary .. 91

7 Conclusions and future work .. 92

7.1 Summary .. 92

7.2 Future work .. 93

References ... 95

Appendix A: Conference paper ... 99

Appendix B: UML class diagram of BIEN software application 100

Appendix C: Thesis on CD-ROM ... 101

List of figures and tables

Figure 1.1 A Bluetooth ad hoc network ... 2

Figure 1.2 Bluetooth Protocol Stack .. 5

Figure 1.3 Bluetooth Profiles ... 6

Figure 1.4 Piconet structures .. 8

Figure 1.5 FHSS/TDM communication between master and slaves on

corresponding slots in a piconet ... 9

Figure 1.6 Bridge structures ... 9

Figure 1.7 A scatternet with three piconets .. 10

Figure 2.1 A blueroot grown bluetree .. 14

Figure 2.2 BlueStars - Phase 2: Piconet formation .. 16

Figure 2.3 BlueStars – Phase 3: Piconets’ interconnection to a scatternet 16

Figure 2.4 Categorization of ad hoc wireless routing protocols 20

Figure 2.5 An example of a routing table in the DV protocol 21

Figure 2.6 Two wireless mesh network layouts ... 24

Figure 3.1 Two-Processor Architecture of Bluetooth Protocol Stack........................ 27

Figure 3.2 XH8880 DSE Bluetooth USB Dongle .. 28

Figure 3.3 EA0021 Bluetooth USB Dongle ... 28

Figure 3.4 The Family of the Java Platform .. 30

Figure 4.1 Architecture of an experimental BIEN ... 33

Figure 4.2 Configuration of a BlueNode.. 34

Figure 4.3 Piconet formation in a set of 17 BlueNodes ... 39

Figure 4.4 Piconets interconnection ... 40

Figure 4.5 Network expansion through three new nodes joining the network 40

Figure 5.1 Block diagram of BIEN software application .. 43

Figure 5.2 UML class diagram of BIEN software application 43

Figure 5.3 Execution procedures of master and slave applications 46

Figure 5.4 Implementation of master-slave connection ... 47

Figure 5.5 Example of the implementation of a piconet with three slaves 47

Figure 5.6 Application implementation of piconets connection via a S/S bridge 48

Figure 5.7 Application implementation of piconet connection via a M/S bridge 49

Figure 5.8 UML class diagram of BIEN messaging system 50

Figure 5.9 Basic BIEN Message pattern .. 50

Figure 5.10 Control Message process .. 53

Figure 5.11 Application Message process ... 53

List of Figures and Tables viii

Figure 5.12 Structure of a routing table ... 54

Figure 5.13 Implementation of routing table ... 55

Figure 5.14 Example of a hop count computer .. 56

Figure 5.15 Example of initial routing tables of three free BlueNodes 56

Figure 5.16 Routing table computing when two nodes are connected together 57

Figure 5.17 Node_2 modifies the routing table received from Node_1 58

Figure 5.18 Example of routing computation .. 59

Figure 5.19 Routing table held by each node after routing table exchange in the example

given above .. 60

Figure 5.20 Format of a FileMessage object ... 62

Figure 5.21 Format of a DataMessage object .. 62

Figure 5.22 Frame of BIEN system GUI ... 63

Figure 5.23 BIEN GUI of a master node ... 64

Figure 5.24 Role selection panel .. 65

Figure 5.25 Connection panel .. 66

Figure 5.26 File selection dialog .. 66

Figure 5.27 BIEN GUI of a slave node .. 67

Figure 5.28 Operation procedure of a BlueNode ... 68

Figure 6.1 UML class bolck diagram of test messaging system 72

Figure 6.2 Basic pattern of Test Messages... 72

Figure 6.3 Format of log file and an example of a log file .. 73

Figure 6.4 The computer lab used for setting up the test bed 75

Figure 6.5 Structures of three experimental BIENs ... 76

Figure 6.6 The layout of the test bed ... 77

Figure 6.7 Testing operation panel .. 77

Figure 6.8 End-to-end throughput measurement ... 78

Figure 6.9 RRT ping latency measurement.. 79

Figure 6.10 Application throughput versus path length in the BIEN shown in Figure 6.4

(a) ... 80

Figure 6.11 Application throughput versus path length in the BIEN shown in Figure 6.4

(b) ... 81

Figure 6.12 Application throughput versus path length in the BIEN shown in Figure 6.4

(c) ... 82

Figure 6.13 Throughput of 2-hop path versus the number of slaves of a piconet in

BIENs ... 82

Figure 6.14 Throughput of 3-hop path versus the number of slaves of a piconet in

BIENs ... 83

Figure 6.15 Throughput of 4-hop path versus the number of slaves of a piconet in

BIENs ... 84

Figure 6.16 Comparison of average throughputs by different path length 84

Figure 6.17 Comparison of traffic-free latency by path length in the BIEN shown in

Figure 6.4 (a) .. 86

Figure 6.18 Comparison of traffic-free latency by path length in the BIEN shown in

Figure 6.4 (b) .. 86

Figure 6.19 Comparison of traffic-free latency by path length in the BIEN shown in

Figure 6.4 (c) .. 87

Figure 6.20 Comparison of average traffic–free latency in the experimental BIENs . 87

Figure 6.21 Comparison of traffic-dependent latency by path length in the BIEN shown

in Figure 6.4 (a) .. 88

Figure 6.22 Comparison of traffic-dependent latency by path length in the BIEN shown

in Figure 6.4 (b) ... 89

List of Figures and Tables ix

Figure 6.23 Comparison of traffic-dependent latency by path length in the BIEN shown

in Figure 6.4 (c) .. 89

Figure 6.24 Comparison of average traffic-dependent latency in the experimental BIENs

 .. 90

Figure 6.25 Comparison of average latency by different path length and the varying

number of slaves in a piconet in the BIENs ... 91

Table 6-1 Decrease of throughput of a path with increase in the number of slaves in

piconets……………………………………………………………………………….85

Statement of originality

‘I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which to a substantial extent has been accepted for the qualification

of any other degree or diploma of a university or other institution of higher learning,

except where due acknowledgment is made in the acknowledgments.’

 _____________________ (signed)

 ____________________ (date)

Abbreviation

BIEN Bluetooth information exchange network

FHSS Frequency–hopping spread spectrum

GUI Graphic user interface

HCI Host Controller Interface

RFCOMM Radio Frequency Communication

ISM Industrial-Scientific-Medical

J2ME Java 2 Platform Micro Edition

J2EE Java 2 Platform Enterprise Edition

J2SE Java 2 Platform Standard Edition

JVM Java virtual machine

L2CAP Logical Link Control and Adaptation Protocol

PC Personal computer

PDA Personal digital assistant

PAN Personal area network

QoS Quality of Service

RFCOMM Radio Frequency Communication

RRT latency Round trip time latency

SIG Bluetooth Special Interest Group

SPP Serial Port Profile

TDD protocol Time Division Duplex protocol

TDM protocol Time Division Multiplexing protocol

1 Introduction

This chapter introduces Bluetooth technology, Bluetooth networking architecture and

the associated metrics for evaluating Bluetooth networks. The study objectives of the

thesis are then described. Finally, the structure of the thesis is outlined.

1.1 Bluetooth technology

1.1.1 Overview

Bluetooth is a short-range wireless communication technology that allows Bluetooth

enabled portable and / or fixed devices to connect and exchange information with each

other without any infrastructure, such as cables, connectors, infrared, and other

connection media, being required [1]. It uses the slotted Time Division Duplex (TDD)

protocol and fast frequency–hopping spread spectrum (FHSS) technology on the

unlicensed 2.4GHz Industrial-Scientific-Medical (ISM) band for communication. This

facilitates better security in terms of information interception than when a fixed

frequency is used.

The major features of Bluetooth technology are its wireless connection, robustness, low

power requirements, and low cost. The applications include peripheral connectivity,

transferring files, forming ad hoc networks, the transferring of mobile payments, and so

on. Since Bluetooth is intended as a replacement for cable, infrared, and other

connection media, it provides a way to connect Bluetooth enabled portable and fixed

devices; such as personal digital assistants (PDAs), cell-phones, personal computers

(PCs), laptops, digital cameras and printers; in order to form wireless networks

spontaneously for information exchange between such devices without requiring fixed

networking infrastructure (Shown in Figure 1.1).

Chapter 1: Introduction 2

.

Figure 1.1 A Bluetooth ad hoc network

where Bluetooth devices spontaneously connect for communication with each other

This technology was initially conceived by the telecommunications equipment supplier

Ericsson in 1994 and was then developed and promoted by the Bluetooth Special

Interest Group (SIG). This was established by Ericsson, IBM, Intel, Nokia and Toshiba

in 1998, and to date has more than 2000 members, including all telecommunications

manufacturers. The objectives of this SIG are to make, evolve, and enhance Bluetooth

into a royalty-free, open, and common specification as a global standard for short-range

wireless communication, with the objective that any Bluetooth devices conforming to

the Bluetooth specification [2] can communicate to each other worldwide.

The Bluetooth specification consists of two sections: The Core Specification (Volume

I); and the Profile Definitions (Volume II). Version 2.1 + Enhanced Data Rate (EDR)[3]

is the current Core specification, updated as at July, 2007.

According to the Bluetooth specification, Bluetooth technology comprises three parts;

being radio technology, the Bluetooth protocol stack, and interoperability profiles. The

first two parts are described in the Core specification and the interoperability profiles

are described in the Profile Definitions.

1.1.2 Radio technology

Bluetooth radio technology operates on the unlicensed 2.4 GHz industrial-Scientific-

Medical (ISM) band, which ranges from 2.402 to 2.480 GHz. This frequency band is

divided into 79 channels, with a channel spacing of 1 MHz. The frequency of all the

channels can be represented by the following formula:

Chapter 1: Introduction 3

 fk = (2,402 + k*1) MHz (Equation 1.1)

where k is the channel number within the range of 0 to 78

During a connection, radio transceivers employ the FHSS approach to hop from one

channel to another at a rate of 1600 hops/sec. That is the length of the time slot that it

stays in every channel is 625µs and each slot matches a hop frequency [4]. This allows

for the minimisation of interference from other devices that work in the same frequency

band and reduces the possibility that data transmission may be intercepted. In the

connection, once a packet is sent on a channel, the two devices retune their frequencies

to send the next packet on a different channel (i.e., frequency hop). If the transmission

meets an interruption because of interference, the devices simply resend the packet on a

different channel.

The Bluetooth specification defines two types of physical links, Synchronous

Connection Oriented (SCO) links, and Asynchronous ConnectionLess (ACL) links. The

SCO link is used for audio transmission while the ACL link is used for data

communication. The SCO link provides a Quality of Service (QoS) guarantee, while the

ACL link provides error-free transmission of data through which a lost, or erroneous,

packet will be re-transmitted, but without a QoS guarantee.

It supports the full-duplex communication, with slotted Time Division Multiplexing

(TDM) protocol for processing of both data and voice transmissions. The signal

transmission is Omni-directional, which means that there is no blocking from walls,

briefcases, and so on.

The radio wavelength range depends on the device class. The most mobile devices are

commonly class 2 devices with a radio range of 10 metres, while the mainly industrial-

used devices are class 1 devices with a range of up to 100 metres [5]. Two Bluetooth

devices that are within the radio range of each other must tune their transceivers to the

same RF frequency at the same time in order to use a shared physical channel to

communicate [4].

The transmission data rate varies with the Bluetooth specification version that the

device supports. A device that supports Version 1.2 has a data rate of 1 Mbps, with up

to 3 Mbps if a device supports Version 2.0 + EDR[5]. Therefore, Bluetooth deals with

connecting small devices for communication at slower speeds (currently at a maximum

rate of 3Mbps) within a short range (up to a maximum of 100 metres), but is poor for

transmitting large files between devices and cannot be used in long-range

communication [6].

Chapter 1: Introduction 4

1.1.3 Bluetooth protocols stack

The core of the Bluetooth specification is the Bluetooth protocol stack that controls a

Bluetooth device. This protocol stack provides well-defined layers of functionality so

that the Bluetooth specification guarantees interoperability of Bluetooth enabled devices

and promotes acceptance of Bluetooth technology [7].

The architecture of the Bluetooth protocol stack is shown in Figure 1.2. This stack

consists of two components; the Bluetooth Host, and the Bluetooth Controller. These

two components are separated, and connected by the Host Controller Interface (HCI).

All protocol layers above the HCI implemented in software belong to the Bluetooth

Host, while those protocol layers below the HCI are firmware and hardware called

Bluetooth Controller [5].

The functions of each layer are described as follows:

� The HCI layer is the interface between the Bluetooth host and the Bluetooth

controller;

� The radio layer is the physical wireless channel for transmitting and receiving

packets;

� The Baseband Link Controller (LC) layer controls and sends data packets over the

radio link;

� The Link Manager Protocol (LMP) is used to set up connections between devices,

examine service quality, and authenticate and secure services;

� The Logical Link Control and Adaptation Protocol (L2CAP) are responsible for

collecting application data and changing it to the Bluetooth format;

� RFCOMM is the abbreviation for Radio Frequency Communication, also known as

the virtual serial port protocol, which allows a Bluetooth device to simulate a serial

port;

� OBEX is the Object Exchange Protocol that is used to transfer data as an object;

� SDP is the Service Discovery Protocol used for discovery services on other

Bluetooth devices.

Chapter 1: Introduction 5

 Figure 1.2 Bluetooth Protocol Stack

1.1.4 Bluetooth profiles

Bluetooth profiles depict cross-platform interoperability and consistency requirements

necessary for various Bluetooth devices from different manufacturers and vendors to

interoperate [8]. They define the roles and capabilities for applications of the Bluetooth

devices. The Bluetooth profiles are arranged into a hierarchy of groups. Figure 1.3

shows the overall relation of the Bluetooth profiles.

Bluetooth devices that have a Bluetooth stack, and also conform to a particular profile,

can communicate with each other. The four basic profiles are the Generic Access Profile

(GAP), the Serial Port Profile (SPP), the Service Discovery Application Profile

(SDAP), and the Generic Object Exchange Profile (GOEP). These four profiles interact

directly with the Bluetooth protocol stack layers, with the other profiles are built on top

of these basic profiles. Currently, all Bluetooth devices in the market must support one,

or more of these profiles. More details about the profiles can be found in the Bluetooth

Specification [2].

Chapter 1: Introduction 6

 Figure 1.3 Bluetooth Profiles

1.2 Bluetooth network technology

An ad hoc Bluetooth network is a personal area network (PAN) that is a dynamic

network spontaneously established by a set of Bluetooth devices without the need for a

formal infrastructure, or centralised administration. It is limited in temporal and spatial

size and is drastically different from the existing wired networks because it is wireless,

has rapid deployment, is self-configuring and self-starting, has no administrator, each

node does not need to be within the communication range of all the other nodes, and the

topology formed is fairly dynamic, as the nodes can join and leave the network in an

arbitrary way. These features make it suitable for use when communicating in

emergency situations, such as during search and rescue operations in natural disasters,

or military conflicts. Appropriate applications also include conferences and meetings in

which people need to quickly exchange information, as well as data acquisition

operations in harsh environments.

1.2.1 Bluetooth network formation

The Bluetooth specification [3] defines a uniform structure for various Bluetooth

enabled devices to connect together in order to form an ad-hoc personal area network

(PAN) for the purposes of communication. The network formations are based on the

Chapter 1: Introduction 7

basic building block of the piconet. A group of piconets can connect in formulating a

scatternet. This section will shed light on this basic network structure.

1.2.1.1 Connection and piconets

Bluetooth has a client-server architecture, in which the client initiates the connection

and the server receives the connection.

When two Bluetooth devices want to connect together, they must be within each other’s

radio range. In a connection between two devices, one of the devices must play a role of

master and the other one performs the role of slave. Any Bluetooth devices can function

as a master and/or a slave. Before setting up a connection, a Bluetooth device has to

execute an inquiry process to discover other devices within its range by entering an

INQUIRY state if it wants to connect with other devices. At the same time, the other

Bluetooth devices that wait for connections make themselves discoverable by entering

an INQUIRY SCAN state, in order to listen and respond to the inquiries. If the inquiry

process is successful, the device that has performed the INQUIRY has obtained a list of

nearby compatible devices. The device that is going to be the master in a connection

enters into a PAGE state to make a connection request to one of the discovered devices.

At the same time, one of discovered devices (seeking to be a slave) enters into the

PAGE SCAN state to wait for, and accept a connection from a master. In this way, a

connection can be set up between the devices. Such a simple one-hop network, made up

of a master and slave connected together, is named a piconet (See Figure 1.4 (a)).

The piconet is the basic unit of a Bluetooth network, being a one-hop network made up

of a master and a number of slaves. There can be, at most, seven active slaves in a

piconet. Links only exist between the master and each slave in a piconet, with no direct

links between the various slaves as depicted in Figure 1.4(b). The master is the device

that starts the communication and the slave is the device that responds to the master.

Any Bluetooth device can act as a master, or as a slave. A Bluetooth device can join

more than one piconet at the same time, but it can only be the master in one piconet at

any one time. A piconet can have more than seven slaves, but only up to seven of them

can actively communicate with the master at any one time. The other slaves have to be

parked and share the same physical channel, but are unable to transmit data. The master

is in charge of parking and activating slaves.

Chapter 1: Introduction 8

 Figure 1.4 Piconet structures

Each Bluetooth device has a unique device address and clock. The frequency hopping

sequence of each piconet is distinctive and determined by the master’s device address

and clock. When a device joins a piconet as a slave, it has to synchronise itself with the

master clock and hopping sequence [4]. The TDD schema is used in communication

between a master and a slave in a piconet. The communication in a piconet that has one

master and one single slave is point-to-point, while point-to-multiple communication

occurs if the piconet has more than one slave. There is no direct communication

between slaves inside the piconet and all communications from one slave to another

slave must go through the master.

All of the active slaves in a piconet share the physical FHSS channel of 1Mbps

bandwidth for communication, using the Time Division Multiplexing (TDM) protocol

to divide the total bandwidth into time slots between slaves, scheduled by the master of

the piconet. The characteristics of this shared physical channel; such as the FHSS

frequency, the frequency hopping sequence, and so on, are derived from the master‘s

clock and device address, so the master controls the communication in the piconet

completely [3]. It assigns the time slots to slaves for packet transmission in such a way

that the master transmits packets to a slave in the even-numbered time slots and

transmission in the reverse direction occurs in odd-numbered time slots (Shown in

Figure 1.5). The master also determines the polling order of the active slaves, in which a

slave can communicate with it at each time slot. The slave that received a packet from

the master in the previous time slot can send a packet to the master in the next time slot.

The packet transmission is conducted on a different frequency, as the result of the FFSS

approach being used, and the slave has to synchronize itself with the frequency hop

sequence of the master when it exchanges data with the master, as only two devices

Chapter 1: Introduction 9

with the same frequency hop sequence can communicate to each other.

Figure 1.5 FHSS/TDM communication between master and slaves on

corresponding slots in a piconet

1.2.1.2 Bridge and scatternet

A bridge node is a Bluetooth device that joins two or more piconets at the same time.

By means of a bridge, two or more piconets can be connected and can transfer data

between them. A bridge node that is a slave in all of the piconets it belongs to is called a

S/S Bridge (See Figure 1.6 (a)) When a bridge node is a master in one piconet and a

slave in all other piconets it participates in, is called a M/S Bridge (See Figure 1.6 (b)).

Figure 1.6 Bridge structures

Two or more piconets can connect together via bridges to form a large ad hoc network

called a scatternet. Figure 1.7 shows an example of a scatternet, in which three piconets

are connected. Piconet 1 and Piconet 2 are connected by a M/S bridge, while a S/S

bridge is used to connect Piconet 1 and Piconet 3. By means of this approach, many

piconets can join together to form larger ad hoc wireless networks beyond the limited

Bluetooth radio range, which allows them with higher capacity and more flexibility.

Chapter 1: Introduction 10

 Figure 1.7 A scatternet with three piconets

The bridges act as gateways between the piconets and can forward data from one

piconet to another. A bridge node can, however, only communicate with one piconet at

a time by synchronizing its clock with the clock of the piconet and then waiting for the

polling from the master of that piconet in order to exchange data with other nodes

within the piconet. The bridge node communicates with all the piconets that it connects

together based on the TDM protocol, through which the bridge divides its time among

these piconets and communicates with them one by one. In order to communicate with

each connected piconet, the bridge node has to switch from one clock to another, which

causes some delay. As a result of this switching delay, the bridge node is likely to

become a bottleneck to any traffic.

1.2.2 Metrics for assessing Bluetooth scatternets

Although the Bluetooth specification defines the standard way for Bluetooth devices to

connect together to form scatternets, it does not specify a scatternet formation protocol.

Various researchers [9-12] have suggested metrics for evaluating whether a scatternet is

of a high-quality. This is specified by whether the scatternet:

� Totally relies on local information, and selects masters and bridges based on the

device resources;

Chapter 1: Introduction 11

� Minimizes the time required to generate a fully distributed and connected

scatternet with the maximum possible data throughput;

� Minimizes the number of piconets to give quicker routing and reduce the

number of packet collisions due to interference from multiple piconets existing

in the same area;

� Minimizes both the number of roles a device is assigned and the number of

bridge nodes in a scatternet, in order to avoid communication bottlenecks;

� Minimizes the number of M/S bridges to avoid communication blackout in a

piconet when the master is active as a slave in other piconets, since a bridge

node can only be active in one piconet at a time;

� Be able to handle the addition and subtraction of nodes anywhere on the

network;

� Be robust and self-healing by keeping multiple routes between nodes;

� Implements an efficient network routing mechanism to reduce the path length

between devices, the amount of control data transmitted for forming and

maintaining the network, and the response time for efficient communication;

� Minimizes the power consumption if the scatternet is formed by mobile and

portable Bluetooth devices.

1.3 Study objectives

The Bluetooth specification does not fully describe how to form a scatternet and

imposes additional restrictions; such as that a piconet can only have up to seven active

slaves, need network resilience, low cost device, and low power consumption. This has

made modelling a scatternet, in general, complex and difficult. This has generated a

significant challenge and has become an open topic of discussion among researchers in

relation to the scatternet formation algorithm, protocol, and scheduling scheme, among

other considerations. The target of this study is to develop a schema for forming an

indoor ad hoc Bluetooth scatternet for information exchange, to implement it on

commercial Bluetooth devices in real scenarios, and to evaluate its performance. The

intended scatternet has a mesh-like topology, should be reliable and efficient for

communication, and must be easily implemented on commercial Bluetooth devices,

such as PCs and laptops with Bluetooth USB dongles. The scatternet also needs to

target a dynamic environment, where devices can join or leave the network freely

without interrupting the whole network.

Chapter 1: Introduction 12

The main study objectives of this thesis are as follow:

1. Investigate Bluetooth technology and ad hoc Bluetooth network technology,

including the Bluetooth Specification and Bluetooth protocol stack;

2. Study existing solutions for Bluetooth network formation;

3. Investigate ad hoc wireless network routing protocols;

4. Investigate available Bluetooth application development platforms, Bluetooth

Application Program Interfaces (APIs) and Bluetooth hardware, for the purpose

of implementing a Bluetooth scatternet;

5. Design a schema for Bluetooth information exchange network (BIEN)

formation;

6. Select a routing protocol and design a routing mechanism for the intended

network;

7. Develop a Java based software application to configure the Bluetooth devices to

form a BIEN with an efficient routing mechanism for facilitating information

exchange over the network; and

8. Design technical measurement methods for testing and evaluating the

performance of the resultant scatternet.

1.4 Structure of the thesis

The rest of the thesis is organised as follows. Chapter 2 presents an investigation of the

previously proposed major solutions to the problem of Bluetooth scatternet formation,

the ad hoc wireless routing protocols, and the wireless mesh network. Chapter 3

describes the hardware and software tools and the platforms used in the development of

this work. The following chapters describe the work developed as part of this research

related to design, development, implementation, and testing of the Bluetooth

information network. It includes Chapter 4, which describes the system architecture of

the BIEN and the schema to form an efficient BIEN. Chapter 5 introduces the Java

based software application developed in this work for implementing the BIEN network

system, a routing mechanism, and an information exchange application. Chapter 6

presents the experiment design and the deployment for testing the implemented BIEN,

as well as the evaluation results of the BIEN’s performance. The last chapter draws

conclusions regarding this work and explores the avenues for future work in this topic

area.

2 Literature review

This chapter first reviews and discusses the existing solutions to Bluetooth scatternet

formation, and then carries out a brief investigation of the ad hoc wireless routing

protocols and the wireless mesh network. Finally, a conclusion is drawn based on the

topics discussed.

2.1 Previous solutions to Bluetooth scatternet formation

As the Bluetooth specification does not formally define a scatternet formation protocol,

the method for generating an efficient scatternet is still an open topic. As a result,

plentiful and diverse solutions related to Bluetooth scatternet formation algorithms,

protocols, and schemas have been proposed in the literature. The most promising

solutions proposed so far include tree, star, mesh, and ring algorithms.

The main tree algorithms for Bluetooth scatternet formation are proposed in [13], [14]

and [15].

Zaruba et al. [13] have proposed two algorithms to form a tree-like scatternet called

Bluetree. The algorithms presume that each node knows information regarding the root

and the information regarding its one-hop neighbours when booting up. The first

algorithm, called a blueroot grown bluetree, initiates by assigning a single node as the

“root” of the tree, termed the blueroot, which is the root of the bluetree. It is assigned

the role of master, and then obtains its direct, one-hop neighbours as slaves. Each slave

of the root is assigned an additional role of master and pages its unconnected one-hop

neighbours to try to get them as slaves. The tree expands by repeating this process

recursively at each subsequent level of the tree until the entire tree has been built.

Finally, the bluetree is reconfigured to limit the number of slaves of each master. If a

Chapter 2: Literature Review 14

master node has more than five slaves, it selects two slaves and instructs one to be the

master of the other one. The new master disconnects from the piconet to form a new

piconet, so that each master node has no more than five slaves (See Figure 2.1). In the

topology of the bluetree, each node is master of its children nodes and slave of its parent

node, except in the case of the root node and the leaf nodes.

 Figure 2.1 A blueroot grown bluetree

The second bluetree algorithm, which is called a distributed bluetree, accelerates the

process of scatternet formation by selecting some initial roots (sub-roots) to start

forming sub-trees, then merges these sub-trees to one root node to build a bluetree. The

difference between the two algorithms is that, in the first algorithm, only one node, i.e.

the blueroot, starts the formation while, in the second algorithm, several sub-roots form

several sub-trees, which are then interconnected to one root node to form a scatternet. In

the tree formation, the scatternet can be extended easily and the number of the links

between any pair of nodes is kept at one so that the tree topology can simplify message

routing due to only one path between any two nodes throughout the network. The

algorithms do not, however, prove whether this formation process will actually

terminate, or how nodes discover each other and build links between them. Moreover,

this bluetree topology will result in a bottleneck situation when the number of nodes in

the scatternet increases. In addition, the tree formation has a limitation in terms of fault

tolerance, because there is only one route between two nodes. This means that if some

links fail or nodes leave the network, the process of recovery and reformation of the tree

becomes complicated. Some adaptations to the Bluetree algorithm are introduced by

[16] to address the reformation process. Each adaptation tries to decrease the number of

slaves of any piconet that has more than five slaves by using different neighbour

Chapter 2: Literature Review 15

information. In [10], Basagni et al. provides adaptations to the Bluetrees algorithm by

putting ‘weights’ into each node to help select the masters.

In [14], a protocol for forming a scatternet with the topology of a tree, called a Tree

Scatternet Formation (TSF), has been proposed. It designates master and slave roles

when the nodes connect to tree structures. A TSF contains one, or more, rooted

spanning trees, which continually try to merge to a topology with fewer trees. During

the process of the tree formation, a free, or unconnected, node can only connect to

another free node, or to a non-root node, of the tree. A root node with more than one

child can only merge with another root node. If a slave (child) node leaves the tree, its

master (parent) must determine whether it is a master (parent) with slaves (children), or

if it has now become a free node. If it is a master node with slaves as leaves, those

slaves that have become free nodes will try to connect to the tree again. If those slaves

were in the middle of the tree with child nodes below them, then they become roots

after their master leaves, and will try to merge with other roots of the tree. The

reasoning behind this is that the TSF protocol is designed to be a self-healing protocol.

To avoid bridge nodes becoming bottlenecks, TSF ensures that any bridge node only

connects with exactly two piconets. As this algorithm is self-healing and decentralized,

it may reduce interruptions to the communication when nodes join, or disjoin, the tree.

The TSF tree topology will, however, cause bottlenecks at the root for high bandwidth

applications. Simulation results [14] show that a relatively short scatternet formation

time is needed to form a TSF, but also show that TSF does not reduce the number of

piconets.

A fully decentralized algorithm [15], developed by Law et al., forms a connected

scatternet with the objective of reducing the number of piconets and bounded degrees.

The resulting topology is tree-like and, therefore, suffers from the same drawbacks as

the other tree type solutions, i.e. there are limits to the efficiency in terms of

communication and robustness for reconstruction.

Based on such investigations, solutions for multi-hop Bluetooth scatternet formation,

that are different from the tree protocols, are proposed in [17], [18], [19], [20] and [21].

In [17] and [18], a three-phase multi-hop scatternet formation algorithm called Bluestar

has been presented. The first phase is the device discovery, through which neighbour

nodes obtain “symmetric” knowledge of each other. The second phase is piconet

formation. During this phase, the nodes with the largest weight among their neighbours

are selected as masters and create their piconets by attempting to obtain their neighbours

Chapter 2: Literature Review 16

with smaller weights as slaves, so that all of the nodes are divided into separate piconets

(Shown in Figure 2.2).

 Figure 2.2 BlueStars - Phase 2: Piconet formation

The third phase is a scatternet formation. The masters gather information from their

slaves about other masters and select nodes as bridges through which they connect with

other piconets to form a scatternet. The resulting scatternet has a mesh-like topology

with multiple routes between any pair of nodes (Shown in Figure 2.3).

 Figure 2.3 BlueStars – Phase 3: Piconets’ interconnection to a scatternet

The Bluenet [19] is also a three-phase Bluetooth scatternet formation schema, which is

similar to a BlueStars formation with the exception that the nodes are not required to

have “symmetric” knowledge of each other during the discovery phase. It generates a

mesh-like scatternet. Simulation results from this formation show that a mesh-like

scatternet can achieve higher information-carrying capacity than a tree-shaped one,

however, the Bluenet schema cannot always ensure the building of a connected

network.

Stojmenovic developed a dominating set-based three-phase Bluetooth scatternet

formation protocol [20]. The first phase is to discover all neighbours within radio range

and then build sparse connected graphs based on the unit graph. In the second phase, a

degree reduction technology is used in the graph to reduce the number of links of each

node. This limits the number of slaves in each piconet to, at most, seven. In the last

phase, a scatternet formation protocol is used in the topology to build a scatternet. This

Chapter 2: Literature Review 17

technology requires, however, each node to aware of its current geographic location,

which can be collected through applications using some extra hardware, such as a GPS.

Petrioli et al. [21] proposed a mesh scatternet formation protocol called BlueMesh,

which creates a connected scatternet with piconets having, at most, seven slaves. The

process of the scatternet formation is carried out in consecutive iterations, through

which each master selects seven slaves from its neighbours to form piconets. Gateways

are then chosen to connect other piconets, until a connected scatternet is achieved. The

resulting scatternet has a mesh-like structure.

In addition to the solutions of tree, star, and mesh, structure scatternets, [22] and [23]

respectively introduced a ring scatternet formation protocol, where the resultant

scatternets have a ring structure. This scatternet is simple and easily created, but the

efficiency of the communication may be lower compared with other scatternets, due to

the large number of hops between any two nodes and the large number of piconets in

the scatternet.

Another topology formation protocol has been introduced in [24], and relies on a leader

election to collect information about the network and assign roles to each of the nodes.

The leader controls the scatternet formation process, so it is a centralized solution. As a

result of this the scatternet is not scalable and has a maximum of 36 nodes.

An on-demand formation of the scatternet route algorithm was proposed in [25]. It

combines scatternet formation with on-demand routing, which minimizes unnecessary

links and route maintenance. In the scatternet formation process, a route request is

released, either only after a piconet is fully generated, or it is sent to each neighbour

immediately after paging it, without waiting for the piconet to be fully formed.

There are also studies that focus on special aspects of scatternet formation. Two of these

studies [26] and [27] analysed the performance of two bridge structures; the M/S bridge,

and the S/S bridge, confirming, on the basis of simulations, that the S/S bridge structure

provides better performance than the M/S bridge structure, with [27] suggesting the

minimization of M/S nodes in scatternets leads to better performance. Another study

[28] introduced a method that reduces end-to-end delays in a generated scatternet.

2.2 Discussion of the previous solutions

Although there have already been a number of Bluetooth scatternet formation

algorithms already proposed in literature, each of them has its advantages and

disadvantages.

Chapter 2: Literature Review 18

Compared with other algorithms, the Bluetree topologies [13] use the smallest possible

number of links to establish the connected scatternets and costs the least of the available

network resources to maintain the scatternets, however, the resulting network has

serious drawbacks because of its hierarchical topology. First, the structure is not

reliable. Once one parent node disconnects from the tree, all its offspring nodes will

also be split from the tree, meaning that they will not be able to communicate with the

rest of the tree. Hence, the scatternet has to be reconfigured in order to maintain a

connected network, but the algorithms only describe the initial scatternet formation and

do not mention the requirement of rebuilding the scatternet when nodes connect and

disconnect from the tree dynamically. This omission makes the Bluetree scatternet very

vulnerable, as the breaking of routes will occur frequently under an environment of

mobile networking. Furthermore, the Bluetree scatternet may have inefficient

communication routing, because a message must go across the tree in upward and

downward directions to get to its destination [19]. In addition, the root of the tree and

the parent nodes can easily become bottlenecks for communication which will result in

problems for the network traffic, since a great amount of piconet traffic must pass

across them. Although the TSF protocol [14] states that the TSF tree scatternet is self-

healing when a change occurs on the network, there is actually no way to overcome the

problem of a bottleneck at the root due to the hierarchical tree structure. As for the

Bluestar algorithm [17, 18], the scatternet formation process is simple compared with a

tree scatternet when there are only a few piconets in the scatternet and each of the

piconets has a few nodes. As there is no limit to the size of the piconets in the Bluestar

topology scatternets, however, there will be a potentially large number of slaves in a

piconet, which results in a large overhead for parking and reactivating slaves where the

number of slaves in the piconet is greater than seven. This makes network

communication scheduling complicated when there are many piconets and each piconet

has many nodes. A vital problem of the Bluering scatternet [23] is the low efficiency of

communication, since the communication between nodes in different piconets has to go

through the whole ring network.

Moreover, most of the proposed algorithms are designed to be conducted in a static

environment, with no node entering or leaving the scatternet. They focus on studying

the initial formation of the scatternets and do not deal with maintenance of the network,

especially in situations where devices are added or subtracted, which may often happen

under a mobile environment. Therefore, the resulting networks cannot be considered as

robust and self-healing. One study [27] holds that most of the proposed solutions do not

Chapter 2: Literature Review 19

satisfy the required list of desirable properties, and that actual implementations and

comparisons are relatively few.

Another study [29] made a comparison between Bluetree[13], Bluestar[17, 18],

Bluenet[19] scatternet formation protocols and another proposed protocol [30].

Simulation results showed that the device discovery stage is the most time-consuming

operation. It was concluded that scatternet formation is still a formidable task, due to the

limitations of device discovery and the additional complexity imposed by Bluetooth

technology on the implementation of distributed algorithms.

Furthermore, even though many papers discuss the issue of Bluetooth scatternet

formation, most of these studies have not directly addressed the implementation in real

scenarios. They are based on simulation results. In addition, most solutions only discuss

the initial scatternet formation, without considering routing issues in real traffic

conditions. Some papers [31-37] have discussed the implementation of Bluetooth

networks, but they have not considered multi-hop scatternets with integrated routing,

but either only localized in piconet implementation without interconnections between

piconets or do not consider the routing issue for communication between piconets.

Paper [38] discussed a implementation of a table driven routing protocol for Bluetooth

ad hoc network based on Java. This however does not state how to perform multiple

connections for each node working as different roles in scatternet formation. The paper

also does not discussed how to process the routing traffic and communication data in

each node. This is vital for efficient routing updates and network convergence in real

scatternet operation. Performance of the implementation and experimental results to

evaluate the implementation were not discussed.

It could be expected that, in the near future, some adaption could be made to Bluetooth

specifications to achieve solutions that comply with a number of desirable properties

and make these solutions suitable for being implemented in commercial scenarios[27].

Therefore, based on current Bluetooth technology, developing an approach to form a

Bluetooth scatternet that can be easily implemented on commercial Bluetooth devices

under a practical networking environment for exchanging information has emerged as

the target of this thesis.

2.3 Ad hoc wireless routing protocols

An ad hoc routing protocol is a standard, or protocol, that is used to discover

appropriate routes between nodes for data transmission in an ad hoc wireless network.

The main goal of these protocols is to build a correct and efficient route between any

Chapter 2: Literature Review 20

pair of nodes so that messages may be transmitted between them opportunely. Such a

routing protocol also controls how nodes share information with each other and report

changes, which allows the network to adjust dynamically to differing situations.

Ad hoc routing protocols may be generally classified into two categories, namely table

driven (proactive) routing protocols and source initiated on-demand (reactive) routing

protocols [39, 40], which are described in the following sections.

 Figure 2.4 Categorization of ad hoc wireless routing protocols

• Table driven (proactive) protocols

These protocols maintain consistent and fresh information on the routes from each node

to all of its destination nodes in the network, which requires each node to; use routing

tables to store the lists of destinations and the routes to every other node, update these

routing tables once there is a change in the network topology, and distribute them

throughout the network regularly. As the routing information is continuously updated

and propagated all over the network, the shortest paths to all other nodes are always

available, whether they are needed or not. This is the significant advantage of these

protocols, because it results in fast routing decisions and minimum delays in message

sending. As a result, it improves the communication efficiency of the network.

Maintaining up to date routing information and distributing it regularly throughout the

network will, however, incur a great amount of signalling traffic, and the consumption

of power and bandwidth. Moreover, if the size of the network is large and has a large

number of nodes, each node needs a large memory for holding the routing table, which

is also a limitation for resource-limited mobile devices. It also has a slow reaction to

network reconstruction and failure. Hence, it is suited for use in small networks.

These table driven protocols include two types of protocols; the Distance Vector routing

protocols, and the Link State routing protocols.

Chapter 2: Literature Review 21

The Distance Vector routing protocol (DV) [41] uses the Bellman-Ford routing

algorithm [42] to calculate the best route, including the direction and the distance, to

every destination in the network. It assigns a number, called the metric cost, to each link

between the nodes in the network. The total cost of getting to a destination is achieved

by means of mathematical calculations. This cost is the distance to a destination, such as

the metrics of the route, or the hop count to the destination.

 Figure 2.5 An example of a routing table in the DV protocol

This DV routing protocol requires that each node stores a direction and cost pair for

each destination in a routing table (See Figure 2.5) and simply informs its neighbours of

its routing table regularly, or when a change in the topology of the system is detected.

Once having received the routing tables from its neighbours, the receiving node checks

for each network path on the received routing table to determine whether there is a

better path than the current one in its own routing table. If there is, it picks the lowest

cost from the neighbour routing tables received. It then adds this entry into its routing

table for re-propagation to its neighbour nodes. Eventually, all the nodes throughout the

network will discover the best next hop as being the direction and the route with the

smallest total cost; that is, the shortest path for all destination nodes.

This operation of the DV routing protocol is very simple and efficient in small

networks. If there are no changes in the topology of the network, the DV algorithm

converges to its optimum condition. If the costs of some paths have changed, or a new

node joins the network, this algorithm can re-converge to the new optimum condition. If

nodes or links have been broken, however, the problems respectively called routing

loops and counting to infinity can occur, as the Bellman-Ford routing algorithm does

not stop routing loops and undergoes the counting to infinity problem.

The Destination Sequenced Distance Vector routing protocol (DSDV) [43] is a typical

example of an ad hoc wireless DV routing protocol.

Chapter 2: Literature Review 22

DSDV improves upon the conventional Bellman-Ford routing algorithm to avoid the

problem of routing loops, but keeps its simplicity. It requires each node to maintain a

routing table, which holds a list of route entries for all other nodes in the network. Each

entry holds the routing information for a destination node, marked with a sequence

number assigned by the destination node. Each node increases its sequence number

when a change happens in the neighbourhood, which allows the nodes to distinguish the

new routes from out of date ones, in order to prevent the formation of routing loops. To

keep the routing table consistent, the table updates are propagated all over the network

periodically, rather than just to the neighbouring nodes no matter what the number of

changes in the topology of the network. This increases the computation complexity and

makes it inefficient in the area of route updating. As a result, the size of the network

able to be supported by the DSDV protocol is limited.

Another well-known dynamic DV routing protocol that has been widely used in

spontaneous networking systems is the Routing Information Protocol (RIP) [44]. It uses

the hop count as the routing metric to calculate the distance to any nodes in the network.

RIP employs a split horizon with poison reverse technique to avoid routing loops. The

split horizon is a routing broadcasting rule which forbids a router from sending route

information back to the sender. A variation of the split horizon is that with poison

reverse. A router here advertises updated routings with unreachable destinations back to

the sender for every received update to stop routing loops. RIP also uses a maximum

number of hops, which is 15, for each path from the source to a destination, in order to

deal with the count to infinity problem. The limit on the hop number, however, also

limits the size of the network that RIP can support.

The Link State routing protocol (LS) [41] is another type of the table driven routing

protocols, which uses a different method to produce the routing table from that of the

DV routing protocol. It requires that each node flood information about other nodes it

can connect to throughout the network, and then each node separately creates a map

based on this information. With this map, each node can then independently use a

shortest path algorithm, such as Dijkstra’s algorithm [45], to calculate the best path

from itself to every possible destination. The routing table is made up of the collection

of the best paths. Once a change happens on the network, a notification is flooded

through the whole network. Consequently, all of the nodes will recalculate the best

routes. This approach is more reliable and uses less bandwidth consumption than the

DV routing approach. Compared with the DV protocol, however, it has much more

complex procedure and more computations. It also requires more memory for the link

Chapter 2: Literature Review 23

state database and the routing table, while DV protocols also have slower convergence

time than it does.

• Source initiated on-demand (Reactive) protocols

This type of routing protocol creates routes only when required by a source node. When

a node requires a route to a destination node, it starts a route discovery procedure by

flooding the entire network with a routing request packet, which travels from one node

to another until the destination node, or an intermediate node that has a route to the

destination node, is reached. This procedure is terminated when a route is found, or all

possible paths have been checked. The route stays valid until the destination has

become unreachable to the source, or it is no longer required.

The on-demand protocols are very efficient, as they reduce the control overhead and

power consumption through creating routes only when needed. The source node is,

however, unable to start sending messages before the route to the destination has been

found. The latency time in route discovery is so high that it might not be acceptable for

real time communication. In addition, the extreme packet flooding for routing discovery

may cause traffic congestion in the network.

The ad hoc On Demand Distance Vector protocol (AODV) [46] and the Dynamic

Source Routing protocol (DSR) [47] are two types of on-demand protocols used in

wireless networks.

The AODV protocol is based on the DSDV protocol previously described, but has

improved the DSDV protocol by reducing the number of route broadcasts through

creating routes on-demand. As the nodes that are not located on the on-demand route

do not keep the routing information, or do routing table exchanges in the AODV

protocol and, therefore, it does not produce extra traffic for the communication. Hence,

it is classified as a pure on-demand route acquisition system. Nonetheless, it needs more

time to build a connection and the route discovery to initiate communication is more

difficult than for other protocols.

DSR protocol is a loop-free on-demand routing protocol based on the idea of source

routing, where a data packet brings the full path to the transmission. It requires each

node to keep a route cache holding the source routes known by this node. The routes in

this cache are updated when new routes are learned. Although it does not need to

broadcast the table update messages periodically throughout the network, in comparison

with the table driven protocols, the delay to connection creation is high. It also has

significant routing overhead because of the source routing process used. Thus, it is

Chapter 2: Literature Review 24

suitable for static and low mobility networks, and its performance will quickly worsen

with growth in mobility of the network nodes.

Compared with AODV, DSR uses source routing in which a data packet takes the entire

path to be transmitted, while in AODV, the source nodes and the intermediate nodes

keep the next hop routing related to each flow for data transmission.

Performance comparisons between the table driven routing protocols and the on-

demand routing protocols have been made [48], which show that the table driven

protocols perform better on throughput and in terms of the end to end delay than do on-

demand protocols. On the other hand, on-demand protocols work better in the area of

routing loads than do table driven protocols.

2.4 Wireless mesh network

A wireless mesh network [49-51] is an ad hoc multi-hop network with a mesh topology.

It is formed by wireless nodes, in which all nodes are connected to each other directly,

or through multiple hops, with there being more than one path for communication

between any pair of nodes. It includes two connection types, namely full mesh topology

(See Figure 2.6 (a)) and partial mesh topology (See Figure 2.6 (b)). In the full mesh

network, every node directly connects to all of the other nodes while, in the partial mesh

network, some nodes only connect to those with which they exchange the most

information. This mesh network topology was initially developed at MIT for industrial

control.

(a) Full mesh topology (b) Partial mesh topology

 Figure 2.6 Two wireless mesh network layouts

In a mesh network, each node acts as a router with, usually more than one path to the

other nodes, using special routing protocols to forward packets to these nodes via its

neighbours, so that all nodes can communicate with each other directly, or via one or

more intermediate nodes, without manual configuration. Hence, it is considered to be a

self-configuring and self-organizing network.

Chapter 2: Literature Review 25

As each node is connected to multiple nodes, the mesh network is a fully connected

network and there are multiple communication paths between nodes throughout the

network. Hence, it is reliable. When a node disconnects from the network, or a

connection breaks down, the messages can be rerouted automatically via other paths by

‘jumping’ from node to node around the broken paths until they reach the destination

node, meaning that the rest of the network can still communicate with each other. Also,

due to the multiple links between nodes in the mesh network, the distance between them

is shortened, which increases the link quality without increasing the transmitter power

in single nodes. Hence, the links will be more reliable. As a result, the mesh topology

improves the whole reliability of the network so that the mesh network is known as a

reliable and self-healing network, as the failure of one or more nodes does not

essentially affect the operation of the network. These characteristics are especially

suitable for operation in the Bluetooth environment, where nodes join and leave the

network frequently at arbitrary times.

In addition, since the operation of the wireless mesh network does not need a system

administrator, or a central control point, it is convenient to connect more nodes to

enlarge the range and the capacity of the network. Therefore, it is scalable and is

capable of dealing with a large network containing hundreds, or even thousands, of

nodes.

These characteristics of self-configuration, dynamic self-organization, and self-healing

make the wireless mesh network able to be rapidly implemented and easily maintained

in highly changing environments. As a result, the wireless mesh networks are more

robust than other networks and are generally thought of as a mode of ad hoc networking

[52]. Currently this type of network is filling a more and more important role in the

wireless mobile networks. It is well suited for the scenarios of office and campus

environments, residential spots, military applications, public access spots; such as

airports, shopping centres, and sport situations; emergency situations; such as disaster

rescue and recovery; and so on [53]. The following are real-life examples of wireless

mesh network applications:

On 3 June 2006, Strawberry Fair in Cambridge, Britain, used a mesh network to provide

mobile live television, radio, and internet services to approximately 80,000 people [54].

The Meraki Mesh [55] is an intelligent wireless mesh router developed by the Meraki

Company in early 2007. It is intended for large-scale, high-capacity network formation

for a distance communication with coverage of 250 metres. The speed of the wireless

mesh network formed is claimed to be up to 50 Mbps.

Chapter 2: Literature Review 26

Smesh [56] is a wireless mesh network that offers peer-to–peer connectivity, internet

connectivity, and fast handoff to mobile users throughout the network. It is mainly

designed for carrying out research on real-time wireless network implementations.

In addition, in view of the characteristics of the wireless mesh network mentioned

previously, many researchers on Bluetooth scatternet formation have developed

different algorithms, protocols, and schemas for Bluetooth mesh network formation,

such as Bluestar [17], Bluenet [19], BlueMesh [21], and MTSF [57] as well as the

dynamic and distributed mesh-like network protocol proposed in reference [58]. These

scatternet formation protocols provide the resulting networks with characteristics of

robustness and self-healing.

2.5 Conclusions

Although there are plenty of existing solutions for Bluetooth scatternet formation in the

literature, most of the evaluation studies are based on simulation results only, which rely

on the Bluetooth environment provided by the simulators. The software-based

Bluetooth network simulators cannot, however, currently provide a complete Bluetooth

scatternets environment, as they are unable to accurately capture many real-world radio

signal propagation effects, such as non-uniform path loss, interference, and distance

fading. Thus, evaluation results based on simulations cannot faithfully reflect the

performance of Bluetooth networks and indicate how well the Bluetooth technology

supports ad hoc wireless networks. This limitation can be overcome by an

implementation of physical Bluetooth networks in a realistic experimental environment.

Moreover, most of the proposed algorithms on scatternet formation are too large and

complex to be implemented in real commercial Bluetooth devices, and few real

implementations under realistic scenarios are done based on those proposals. Therefore,

developing an algorithm for forming an efficient Bluetooth scatternet that can be

implemented in a practical networking environment is still an open issue. This is the

target of this project, i.e., to conduct research on real-time ad hoc Bluetooth network

implementation, by developing a schema and application for setting up a Bluetooth

scatternet with mesh-like topology and an efficient routing mechanism in a test bed, for

exchanging data between any participated Bluetooth devices in an indoor interactive

scenario; such as conferences, or meetings in offices or homes; in which the network

nodes can exchange information instantly, evaluating the performance of the network

developed, and investigating how well Bluetooth technology supports ad hoc multi-hop

wireless networks.

3 Development platforms

This chapter presents the hardware and software platforms used for developing the

BIEN application and implementing the BIEN networks during the course of this work.

3.1 Bluetooth device

The Bluetooth device used in this work consists of a personal computer (PC) with a

Bluetooth USB dongle, in which a Bluetooth protocol stack is implemented.

This protocol stack is implemented with a standard two–processor architecture (Shown

in Figure 3.1).

 Figure 3.1 Two-Processor Architecture of Bluetooth Protocol Stack

In this implementation, the lowest three layers of the Bluetooth stack known as the

Bluetooth controller are embedded in the Bluetooth USB dongle, while the higher layers

Chapter 3: Development Platforms 28

above the HCI of the stack known as Bluetooth host are built in the operating system on

the PC. These two parts compose the full Bluetooth protocol stack.

In this work two models of Bluetooth dongles are adopted, namely the XH8880 DSE

Bluetooth USB dongle (See Figure 3.2) and the EA0021 DSE Bluetooth dongle (See

Figure 3.3). These two dongles have similar functions, but are sourced from different

manufacturers. Both of them are compliant with Bluetooth specification V2.0 + EDR,

with a data transmission rate of up to 3Mbps. They are class-1 Bluetooth devices, with a

radio range of up to 100 metres and use the fast frequency hopping approach to operate

in the 2.4GHz – 2.4835GHz ISM band. The Bit Error Rate (BER) for these devices is -

80dbm at 0.1%. With a full speed USB V2.0 interface, they can be plugged in a PC via

a USB port and work with the operating systems of Windows 2000/XP, MacOS 10.2.8

or above, and Linux 2.4.6 or above.

 Figure 3.2 XH8880 DSE Bluetooth USB Dongle

 Figure 3.3 EA0021 Bluetooth USB Dongle

As both types of dongle support multiple connections, they are selected as the Bluetooth

devices for PCs or laptops, and take on different roles in the BIEN scatternets of this

project (See the Test bed in Section 6.1.2).

Chapter 3: Development Platforms 29

The Microsoft Bluetooth stack is adopted as the Bluetooth host. It is built in Service

Pack 2 for Windows XP, as part of the operating system for supporting Bluetooth

wireless technology natively in Windows XP. It can interface with most Bluetooth

adapters and dongles on the market to form a complete Bluetooth protocol stack. All of

the PCs that form the Bluetooth devices in this work are Intel Pentium IV 3GHz

standard PCs, with 1.00 GB of RAM based on Windows XP SP2.

The experimental network environment is described in Section 6.1.2.

3.2 Software development tools

This section introduces the Java-based BIEN software development tool and

environment used in this work.

3.2.1 Java technology

Java [59] is a high-level, object-oriented programming language with high performance.

It is developed by Sun Microsystems in 1995, but it is available through the open source

community and has become more and more independent of Sun. Although the Java

language was influenced in diverse ways by C and C++, it is easy to learn and use,

unlike C and C++. As Java code is portable, object orientated, intended for running in a

distributed environment, and supports a combination of large numbers of object classes

it is suitable for developing large applications for big projects. Java program platforms

are independent and can be run on any computer systems with the Java virtual machine

(JVM) installed; including Microsoft Windows OS, Solaris OS, Linux and Mac OS;

regardless of the computer architecture on which the program was initially developed.

The Java platform (Shown in Figure 3.4) that sits on the operating systems is a

collection of related software programs with two components, there being the JVM and

the Java application programming interface (API) [60]. The API includes libraries of

associated classes and interfaces that contain a number of off the peg software programs

and give many functional capabilities.

The Java platform has three different editions, namely Java 2 Platform Standard Edition

(J2SE), Enterprise Edition (J2EE), and Micro Edition (J2ME). Each of them is a

combination of a language version, a Java Compiler, a set of APIs, and a JVM (See

Figure 3.4).

Chapter 3: Development Platforms 30

 Figure 3.4 The Family of the Java Platform

J2SE is the core of Java technology and is also the base for J2EE. It is used in all classes

of Java programming, from desktop applications to J2EE applications. J2EE is J2SE,

along with diverse functional APIs for enterprise applications, such as multi-tier, client-

server, Web services, and so on. It can be considered to be a superset of J2SE, because

any J2EE application uses the J2SE libraries, with J2EE and J2SE using an identical

language. J2ME provides a group of APIs for developing mobile applications targeted

at small embedded devices with limited resources, such as mobile phones, pagers,

PDAs, and automobile navigation systems.

JSR-82 [61] is the office standard Java API for Bluetooth wireless technology that

enables Java applications to communicate with each other in Bluetooth environments.

Hence, Java is a suitable programming language for developing the BIEN application

for this project.

3.2.2 Bluetooth API

The Bluetooth API used for the software application to communicate with the Bluetooth

protocol stack is the free third party software product known as BlueCove [62]. This is

an implementation of the JSR-82 for J2SE. It provides a Java library for Java

applications to interface with the Bluetooth protocol stack underneath, including Service

Discovery Application Profile (SDAP), Serial Cable Emulation Protocol (RFCOMM),

Logical Link Control and Adaptation Protocol (L2CAP), and Generic Object Exchange

Profile (OBEX). As it supports J2SE based applications communicating with Microsoft

Chapter 3: Development Platforms 31

Bluetooth stack built in the Windows XP SP2 and is open source software, it is selected

as the Bluetooth API for supporting the BIEN application to communicate the

underlying Bluetooth protocol stack.

3.2.3 Eclipse

Eclipse [63] is an open source integrated development environment (IDE) with the aim

of building an open development platform consisting of extensible software

frameworks, tools and runtimes for creating, deploying and maintaining software during

its lifecycle. It is mainly developed in Java and can be extended by plug-ins built for

this framework by any user to enhance its capabilities.

 Eclipse provides essential tools for Java programmers; including a Java IDE, Java

Development Tools (JDT), and the built-in Eclipse Compiler for Java (ECJ); to develop

Java applications, including J2SE and J2EE applications. Integrated with the EclipseMe

plug-in [64], it enables J2ME programmers to develop applications for mobile devices.

As the Eclipse IDE provides Java developers with everything needed for creating Java

applications, it is believed to be the best Java development tool available. Therefore,

Eclipse is selected as the BIEN application development platform for this project.

3.3 Summary

This chapter described both the hardware and software platforms for developing the

BIEN application and deploying the BIEN networks in this work.

4 Bluetooth information exchange network

This chapter describes the system architecture of a Bluetooth information exchange

network (BIEN) developed by this research. This includes a schema for the BIEN

topology design and network formation protocol.

4.1 System Architecture

4.1.1 Bluetooth information exchange network (BIEN)

This thesis presents an indoor ad hoc Bluetooth wireless scatternet, namely a Bluetooth

information exchange network (BIEN). This is an ad hoc personal area network (PAN),

based on Bluetooth and Java technologies. It is developed using a set of Bluetooth

enabled devices. These devices can spontaneously establish a dynamic multi-hop

wireless network using Bluetooth technology without the need for a formal network

infrastructure, centralized administration, fixed routers, or access points. Each Bluetooth

device, termed a BlueNode, has an identical configuration and acts as a router with,

usually, more than one path to the other nodes. An implementation of an efficient

dynamic routing protocol forwards data to all other nodes in the network via its

immediate neighbours, so that all BlueNodes can communicate with each other directly

or via one or more intermediate nodes without the need for manual configuration, and

regardless of whether they are in radio range of each other. Hence, BIEN is considered

to be a distributed multi-hop, self-configuring, and self-organizing network.

The key function of the BIEN is information exchange between BlueNodes in the

network by means of file or image transfer or chatting by text with each other.

Although the experimental BIEN created in our study has a special topology (See

Figure 4.1), a number of different topologies and the sizes of BIENs that BlueNodes can

form can be assumed. As an efficient table-driven routing protocol implemented in each

BlueNode maintains network-wide route information for fast route setup, BIEN can be

Chapter 4: Bluetooth Information Exchange Network 33

implemented in dynamic environments where devices can freely join or leave the

network at any time without interrupting the communication of the whole network.

Master:

S/S Bridge:

Slave:

P1 P2

P3

S1

S2

S3

S4

S5

S6

S7
S8

S9

M1
M2

M3

B1

B2 B3

 Figure 4.1 Architecture of an experimental BIEN

As every BlueNode in BIEN can freely exchange information with any other

BlueNodes in the network, BIEN can be used to quickly exchange information and

instantly acquire data between any Bluetooth devices configured as BlueNodes for

indoor interactive scenarios, such as conferences, or meetings in offices or homes. It can

also be easily adapted to a mobile version (J2ME based), which will be able to be used

in emergency conditions; such as search and rescue operations in natural disasters, or

military conflicts; where data acquisition operates in harsh environments.

4.1.2 BlueNode

The design structure of its configuration consists of four parts (Shown in Figure 4.2),

which are the Bluetooth controller, the Bluetooth host, the Bluetooth application

programming interface (API), and the Java based software application for forming and

using scatternets. The first two parts comprise the Bluetooth Protocol Stack. The

Bluetooth Controller, which includes the lowest layers of the stack, comes from the

Bluetooth dongle, while the Bluetooth host, including the higher layers of the stack, is

built-in to the operating system on a PC or laptop; such as Windows XP SP2, MacOS,

or Linux. This is a standard two–processor structure used to implement a Bluetooth

protocol stack for a BlueNode. The Bluetooth APIs used for the BIEN software

application’s communication with the Bluetooth protocol stack is free third party

Chapter 4: Bluetooth Information Exchange Network 34

software, BlueCove. It is an implementation of the standard Java APIs for Bluetooth

wireless technology (JABWT), i.e., JSR-82, for J2SE. The Java-based software

application is an implementation of the Bluetooth network formation, a routing

protocol, and BIEN networking applications. The network formation is responsible for

connecting Bluetooth devices to form a network. The routing protocol provides an

effective routing mechanism for each BlueNode to determine and maintain the best

routes to any other nodes in the BIEN. The networking applications offer user

information exchange utilities and a graphical user interface (GUI). Both the software

application and the Bluetooth API sit on top of the RFCOMM layer of the stack. The

data is transferred between the applications and the firmware, working its way down the

stack.

Figure 4.2 Configuration of a BlueNode

Chapter 4: Bluetooth Information Exchange Network 35

Bluetooth devices configured as BlueNodes, as shown in Figure 4.2, have an identical

ability to connect to each other to form a BIEN and perform the information exchange

function within the network.

4.1.3 Routing mechanism

The task of the routing mechanism is to discover the best path, with the minimum

length and termed hop count, from a source node to any other nodes in a BIEN. This

routing mechanism is deployed in each BlueNode, so that each node can act as a router

to determine and maintain routes to all possible destinations within the network with the

purpose of providing efficient communication. The routing protocol used in BIEN is the

best known and most widely used Distance Vector routing protocol (DV), referred to as

the Routing Information Protocol (RIP) (Referred to in Section 2.3). RIP is based on the

Bellman-Ford algorithm with the purpose of computing the best routes to all

destinations in networks. Each node maintains a routing table that holds the routes to all

other nodes in the network. It uses a hop count, which is the number of hops that a

packet has to travel through to the destination from a source in a network, as a routing

metric to measure network path length. This hop count will increase by one every time

the packet crosses a node. The maximum hops in a path from the source to the

destination are limited by 15. This is to prevent the routing hops from continuing

indefinitely. It sends its full routing table out to all its immediate neighbours, which are

the directly connected nodes, every 30 seconds and when there are changes in the

network for routing updates. Based on the information in the tables received from its

neighbours, each node uses the Bellman-Ford algorithm to calculate the distance; i.e.,

hop count; and determine the direction; i.e., next hop; for the shortest path to each

destination node in the network. Although limiting the maximum number of hops to 15

can prevent routing loops from continuing indefinitely, this also reduces the size of

networks it can support.

The reason for choosing RIP for routing in BIEN is that it is one of the most durable of

all routing protocols and is the most commonly used protocol for managing routing

information within an internal network or autonomous system. Also, because it works

well with small networks with a maximum of 15 hops allowed in a path from a source

to a destination, it is an effective solution for routing in ad hoc Bluetooth wireless

scatternets. As the Bluetooth characteristics preclude it from forming very big networks,

the maximum 15 hops in a path from a source to a destination can cover around a

Chapter 4: Bluetooth Information Exchange Network 36

thousand destinations for a network with a hierarchical topology, so it is sizable enough

to build a large ad hoc Bluetooth wireless network. Moreover, the advantages of the

availability of the routes to all destinations with minimum latency time compared with

other routing protocols; such as source initiated on-demand routing protocols; the

simplicity of the computation and operation compared with DSDV, easy configuration

and administration, and the ability to dynamically adapt to network changes, mean that

it meets all of the requirements for routing in BIEN. In addition, as the size of Bluetooth

networks is small compared with other wireless networks, the routing table held by each

node is small, so they do not occupy large amounts of memory and the traffic caused by

routing maintenance is not significant. In BIEN, each BlueNode maintains a routing

table containing the routes with the shortest distance; i.e., smallest hop count; and

direction; i.e., next hop; to all other BlueNodes, based on their unique Bluetooth

addresses in the network. Each BlueNode sends the entire routing table to its immediate

neighbors every 30 seconds as well as when there are changes in the network topology.

BlueNodes calculate the best routes that have smallest hop count value throughout the

network, based on the routing tables received, and update their own routing tables to

reflect the new routes so that data packets can be directly forwarded to their destinations

with minimum latency of routes.

In BIEN, RIP is implemented on the top of network formation applications and runs at

the network layer of the Internet Protocol Suite. In order to improve its performance,

the split horizon and triggered update mechanisms are used to prevent incorrect routing

information from being propagated and to speed up the network convergence when

there are changes in a network’s topology. Although RIP by default limits the maximum

number of hops in a path from the source to a destination to 15 to prevent routing loops

from continuing indefinitely, it is still too big for an ad hoc Bluetooth network.

Therefore, considering the Bluetooth environment, reducing the maximum number of

hops in a path is reasonable and practical, and it can provide better stability features for

networks. In this study, 10 is the maximum number of hops in a path. As the topology

of the BIEN in our experiments is mesh-like, this is high enough to create a large

Bluetooth network.

4.2 BIEN formation schema

Although there are no restrictions regarding the topology and size of a BIEN created by

BlueNodes, in order to optimize network performance, a schema for constructing

Chapter 4: Bluetooth Information Exchange Network 37

efficient BIENs with a mesh-like topology is proposed. This schema includes rules for

topology design and a protocol for network formation.

4.2.1 BIEN topology design

Based on the metric for assessing Bluetooth scatternet discussed in Section 1.2.2, rules

for designing BIEN topology are described as follows:

1) There are at most seven slaves in a piconet.

This limit is imposed to avoid the overhead of parking and un-parking slaves for

masters in the piconets, in order to save intra piconet resources for communication, as

each piconet only allows seven active slaves to communicate with their master and any

Bluetooth activities consume bandwidth.

2) Only S/S bridges are used for piconet interconnection.

The reason why M/S bridges are not included in the BIEN is to avoid communication

blackouts in a piconet when its master is active as a slave in other piconets because a

bridge node can only be active in one piconet at a time and has to switch between

different piconets it is participating in, using a time multiplexing protocol to

communicate with them one by one. Therefore, the communication in a piconet will

suffer a blackout if the master is active as a slave in other piconets, since all

communication between slaves in a piconet has to go through the master. In addition,

based on some studies in [27] and [26], it is preferable to avoid using the master node

as a slave node in other piconets to avoid communication bottlenecks.

3) Each bridge node only interfaces two piconets.

As discussed above, bridge nodes have to exchange data with all the interfaced piconets

one-by-one, based on time division. They present a bottleneck to the traffic through the

piconets in which they participate. Minimizing the number of piconets that a bridge

interfaces with can reduce the bridge switch overhead time, reduce resource

consumption caused by switching overheads, and improve the data rate a bridge can

perform between the piconets, so that the bottleneck effect to traffic can be decreased.

This is helpful to improve network performance in areas such as throughput and

latency.

4) There is only one bridge between any two piconets.

This is adopted to reduce redundant links between the same pair of piconets, in order to

keep network resources as much as possible only for communication. It is also helpful

to reduce the bridge overhead, in order to improve communication efficiency.

5) Each piconet may connect to more than one piconet.

Chapter 4: Bluetooth Information Exchange Network 38

This is adopted to improve the reliability of a BIEN, as setting up links between a

piconet and other piconets can build a network with a mesh-like topology. This provides

multiple paths between nodes in the network, which improves the level of network

connectivity and increases the fault tolerance capacity, so that it is resilient to changes

in the network topology.

Maintaining good connectivity through multiple links does, however, unavoidably cost

some network resources. This has an impact on the communication efficiency of the

network. Thus, a compromise will be made on the number of piconets that each piconet

may connect to when forming a stable and efficient BIEN with a reasonable level of

connectivity and enough network resources for communication.

4.2.2 BIEN formation protocol

Based on the rules of scatternet topology design, outlined above, a simple and fast

protocol to form BIEN is proposed, which is carried out in three steps, namely piconet

formation, piconet interconnection and network expansion.

1) Piconet Formation

First, all BlueNodes begin as free nodes, without any knowledge of each other. There

are no masters or slaves. Each node determines its own role. To initialize a piconet, the

most important step is role selection. Normally, in real life indoor scenarios; such as in

conference or meeting rooms; it is easy to collect information regarding all of the

currently available nodes in order to estimate the number of masters required to initiate

a BIEN. Therefore, the control of role selection for each node is given to the user of the

node. The master nodes may be determined based on their available resources, as the

master role consumes the most resources.

In order to reduce interference from inquiry train collisions, which can result in an

increase in the time required for device discovery, only master nodes perform device

discovery to pinpoint nearby available BlueNodes. This will improve the efficiency of

device discovery. At the same time, the remaining nodes that assigned themselves the

slave role enter the inquiry scan and page scan modes to await their discovery and

connection by a master. Once a master has acquired a list of nearby nodes by their

Bluetooth device addresses, friendly name, and device class, it will begin to connect

them one by one as slaves to form a piconet. Each initial piconet is limited to having at

most five slaves to reserve at least two connections for the master to connect bridge

nodes for piconet interconnection. Once a node has become a slave of a master, it

instantly stops inquiry scanning and page scanning to make it unavailable to the other

Chapter 4: Bluetooth Information Exchange Network 39

masters. At the end of this step, several independent piconets have been formed with the

currently existing nodes (See Figure 4.3 below).

 Figure 4.3 Piconet formation in a set of 17 BlueNodes

2) Piconet Interconnection

The master of each initial piconet selects at least two of its slaves to perform the bridge

role, based on the device resources, by instructing them to re-enter the inquiry scan

mode in order to be discovered and connected to by the masters of other piconets, which

ensure piconets’ interconnection by S/S bridges. When the slave has received a new

connection from one of the other masters, it becomes a slave for both masters in

connecting these two piconets as a S/S bridge. This bridge node then immediately

makes itself unavailable to avoid more connections from other masters, which then

guarantees that one bridge node only connects two piconets. The bridge sends its master

list to both of its masters to avoid multiple connections being set up between the same

pair of piconets. At the same time, the master of each piconet performs device discovery

continuously to find the slaves of other piconets and connect them as its slaves. This is

to build connections with different piconets through S/S bridges, until each master has

at most seven slaves. Thus, all piconets are interconnected via S/S bridges and a BIEN

with a mesh-like topology is formed (Shown in Figure 4.4).

Chapter 4: Bluetooth Information Exchange Network 40

M

master & slave

nodes

M

M

M

(a) bridge node selection
(b) piconets connecting

via S/S bridges

P1

P2 P3

M

M

M

P1

P2 P3

M

M

M

P1

P2 P3

S/S bridge

node

selected

bridge node

(c) piconets interconnection

 Figure 4.4 Piconets interconnection

Each master node in BIEN does not perform an inquiry scan or a page scan to avoid

becoming a M/S bridge when other masters discover and connect it as a slave.

3) Network expansion

After the initial BIEN has formed, the masters that do not have seven slaves can

perform device discoveries regularly to look for new nodes to join into their piconets.

On the other hand, if a new free BlueNode wants to join an existing BIEN, the user can

select the role of being either a slave or a master. As a slave it waits for a connection

from a master of one of existing piconets. As a master it will connect with slaves from

existing piconets to form a new piconet (See Figure 4.5).

Figure 4.5 Network expansion through three new nodes joining the network

A BIEN created with BlueNodes compliant with the formation protocol discussed above

Chapter 4: Bluetooth Information Exchange Network 41

has at most seven slaves in each piconet. Each piconet has multiple connections with

different piconets via the S/S bridges. Each bridge only connects two piconets and there

is only one bridge between a pair of piconets. With the exception of the bridge nodes,

which participate in two piconets, all nodes including the master and slaves only belong

to one piconet. This means the average number of roles each node is assigned is very

small, which ensures that the network resources are spread evenly through the network

to avoid bottlenecks in communication. With a few more links set up between different

piconets, it has a very balanced network topology, with multiple paths between any pair

of nodes in the network. This makes its routing robust and resilient to disconnections

within the network.

4.3 Summary

This chapter presented the system architecture of the BIEN network proposed in this

thesis. A schema for generating an efficient BIEN was also discussed. This is followed

by a detailed description of the software application implementation of the BIEN.

5 BIEN software implementation

This chapter describes the BIEN software application implemented in this work. The

first section outlines the architecture of the software application implementation. This is

followed by a description of each software component. Finally, the chapter concludes

with a short summary of the main points presented.

5.1 Overview

BIEN application is developed using Java technology with the BlueCove library. It sits

on the top of the RFCOMM layer of the Bluetooth protocol stack and runs on the

Windows XP, or Linux, operating system (Refer to Figure 4.2). BIEN is applied to

configure Bluetooth devices as BlueNodes with the ability to connect to a network,

route computations, and exchange information with others in the network. This is to

enable the nodes to autonomously form a dynamic Bluetooth network for sharing data,

or transferring files, without the requirement of a network infrastructure and

administration. The J2SE-based BIEN software application consists of three software

entities, namely a Bluetooth network formation application, a routing protocol

application, and a BIEN function and GUI application (Shown in Figure 5.1).

The Bluetooth network formation application performs the utility of connecting the

other Bluetooth devices to form a multi-hop Bluetooth wireless network. The routing

protocol application performs the routing mechanism by implementing the RIP routing

protocol to compute routes and update routing tables for forwarding packets to any

other nodes in the network. It is above the network formation application, with both of

them being located within the network layer of the Internet Protocol Suite. The BIEN

function and GUI application is an implementation of the information exchange

function. It also provides a graphical user interface (GUI) panel to enable users to use

the function.

Chapter 5: BIEN Software Implementation 43

Master Application:
Connect to slaves

Slave Application:
Wait for Connections

Routing Protocol Application:
Implementing routing table

Computing routes
Updating routing-table

BIEN Function and GUI:
Implementing Information Exchange Function

Providing User Graphic Interface Panel

Network Formation Application:

Data

Message

Processor

Data

Message

Queue

Control

Message

Processor

Control

Message

Queue

Connector :
Sending & Receiving Messages

Control

Message

Application

Message

BlueNode

Discovery

Send Receive

Routing

Timer

Figure 5.1 Block diagram of BIEN software application

The architecture of the application implementation is illustrated by a UML class block

diagram in Figure 5.2 (The complete UML class diagram of this system is located in

Appendix II). The features and technical details of how each software entity was

implemented into executing their responsibilities are explained in the following

sections.

 Figure 5.2 UML class block diagram of BIEN software application

Chapter 5: BIEN Software Implementation 44

5.2 Network formation application

This application implements the functions of BlueNode discovery, connection

management and communication management for a Bluetooth device.

5.2.1 BlueNode discovery

This performs device discovery in order to find nearby Bluetooth devices that are

configured as BlueNodes, with the purpose of forming a BIEN. In the Bluetooth

specification, the operation of device discovery is referred to as an inquiry. To

spontaneously form an ad hoc BIEN network, each Bluetooth device must be able to

discover nearby BlueNodes. A MyListener class is developed in which a standardized

way of device discovery, provided by JSR-82, is implemented to perform device

discovery using the inquiry procedure. During the inquiry process the Bluetooth

address, friendly name, and device class of the nearby discoverable devices will be

received. The unique Bluetooth address of each Bluetooth device received is used to

identify different Bluetooth devices in the BIEN network.

When a new Bluetooth device is discovered, the MyListener class continues to perform

a service discovery to look for the BIEN service, by locating its unique service

Universally Unique Identifier (UUID) in the device, to determine whether the device is

a BlueNode that is able to form a BIEN. Once the procedure of BlueNode discovery is

complete, the node that performed the procedure holds information regarding nearby

BlueNodes addresses, friendly names, and device classes.

5.2.2 Connection management

5.2.2.1 Connection architecture

This function allows the local node to take on the role of master, slave, or both states at

the same time, in order to set up connections with any other BlueNodes to form a BIEN.

Bluetooth has a client-server architecture, in which a client initiates a connection and a

server receives the connection when they are trying to connect together. Based on the

BIEN formation protocol, the client application is assigned the role of master.

Meanwhile, the server application is assigned the role of slave in the implementation.

Here, the node which initiates a connection is the master (the client), and the one who

receives a connection is the slave (the server). In order to enable a BlueNode to act as

the master or the slave, a peer-to-peer architecture is adopted in which both master

(client) and slave (server) applications are implemented and incorporated into the code.

Chapter 5: BIEN Software Implementation 45

The master role disables the inquiry scan and the page scan, and performs BlueNode

discovery, BIEN service discovery, and makes a connection request to the other

BlueNode performing the slave role. When a master node completes the device

discovery and tries to connect to a node it has found as a slave, it uses the slave node’s

Bluetooth address to make a connection request to the slave. This method being referred

to as Connector.open(masterURL) in the master application. The parameter of the

method, the string masterURL, has the pattern:

 masterURL=”btspp://[SlaveBTAddress:Channel_identifier];master=true”

It includes the Bluetooth Serial Port Profile (SPP); that sets up an RFCOMM

connection for communication; the slave’s Bluetooth address and the channel identifier

rather than the BIEN service UUID, as the slave node has been identified as a BlueNode

in the stage of BlueNode discovery. This allows for the time required for a service

search to be skipped while a master is connecting to a slave, so that it is more efficient

in reducing connection delays. It also claims itself as a master in the connection by the

inclusion of “master =true” in the URL string.

On the other hand, the slave role registers the BIEN service with the unique UUID for

the application, enables inquiry scan and page scan to allow it to be discovered by

master nodes and waits for an incoming connection request from a master node by

calling the Connector.open(slaveURL) method to obtain a StreamConnectionNotifier.

This then uses the StreamConnectionNotifier with the acceptAndOpen() method to wait

for masters to discover this node and connect to it. The parameter used in the

Connector.open() method is:

slaveURL=”btspp://localhost: [BLEN_UUID] ;master=false”

It uses a SPP profile to accept and open a RFCOMM connection. The “BIEN_UUID”

part of the URL shown above is used to set up a service for BIEN on a slave (i.e.,

server). The parameter “master=false” is used to request that a node trying to connect to

this slave node must be the master in this connection. Once it receives a connection

from a master it immediately exits from the inquiry scan mode by making itself

undiscoverable to other masters. It may, however, re-enter the inquiry scan state at a

later point to wait for other masters if it receives an instruction from the master to be

ready to act as a bridge.

The execution procedure of the master application and the slave application can be

separately summarized by the following flow charts (Shown in Figure 5.3).

Chapter 5: BIEN Software Implementation 46

Slave Application
Master Application

BlueNode Discovery

Disable inquiry scan

&page scan

Connect to a slave node

Register BIEN service

Inquiry scan &Page scan to

waiting for a connection

Connected

undiscoverable

Received a bridge

instruction?

Yes

(a) Procedure executed by a master application (b) Procedure executed by a slave application

Communication

Communication

Figure 5.3 Execution procedures of master and slave applications

5.2.2.2 Connection construction

As master and slave applications are implemented in separate threads, they allow a

BlueNode to be capable of the role of master, slave, M/S bridge or S/S bridge to

connect other BlueNodes to form scatternets, by means of the multiple threading

techniques of Java technology. This section explains how the application performs

connections between BlueNodes to form scatternets.

� Master-Slave connection

 If a BlueNode selects the role of master and tries to connect to a node performing the

slave role, a thread of a new master application object is created in this master node,

which makes a connection request to the slave node. On the other hand, if a BlueNode

decides to be a slave, a thread of a slave application object is created and runs in the

slave node to wait for connections from masters. When the slave thread of the slave

node receives a connection from a master application thread in a master node, both

nodes connect together as a slave and master respectively. Figure 5.4 shows a

connection set up between two BlueNodes, in which one is a master application thread

running in a master node, (i.e., BlueNode_1), and the other is a slave application thread

Chapter 5: BIEN Software Implementation 47

running in a slave node, (i.e., BlueNode_2). These two nodes connect together to form a

piconet in which a master node has only one slave node.

 Figure 5.4 Implementation of master-slave connection

Every time a master node wants to connect to a new slave node, the application will

create a new master application thread to connect to the new slave node, so that there

are multiple master threads running in the master node, with the number of master

threads being equal to the number of the slave nodes. Each one is connected to the slave

application thread running in one of its slave nodes. Thereby, a piconet with one master

node and multiple slave nodes has been formed. Figure 5.5 shows an example of how

the application implements a piconet with a master node (BlueNode_1) connecting three

slave nodes (i.e., the BlueNode_2, the BlueNode_3 and the BlueNode_4). There are

three master application threads running in the master node, each one of them

connecting to the slave application thread in a slave node.

 Figure 5.5 Example of the implementation of a piconet with three slaves

� Piconet connections

If the master node of a piconet wants to connect to one of the slaves of another master,

it just creates a new master application thread to connect to the slave application thread

in the slave node, as discussed above. At the same time, if the slave node has received

an instruction from its master to be a bridge, the slave application thread running in it

Chapter 5: BIEN Software Implementation 48

makes it discoverable and waits for a new connection from other masters. This is

possible as the slave application is a server application, which allows the node to accept

and open more than one connection from multiple Bluetooth clients. Once the slave

application thread receives a connection from another master, the slave node has

become a bridge for its two masters. Here the two piconets have joined together via a

S/S bridge to form a scatternet (See Figure 5.6). In Figure 5.6, master node M2

(BlueNode_5) has connected to the slave node (BlueNode_3) of the master node M1

(BlueNode_1). As a result, the slave node (BlueNode_3) is a S/S bridge for both

masters.

If a slave application receives more than one connection from different masters of the

multiple piconets, it has become a multiple S/S bridge, by which all the masters can

interconnect these multiple piconets.

Figure 5.6 Application implementation of piconets connection via a S/S bridge

Chapter 5: BIEN Software Implementation 49

If the master node of a piconet wants to be a slave in other piconets, it will create a slave

application thread running with the master application threads in the node. The slave

thread will make the node enter an inquiry scan and page scan mode to wait for

discovery by and connection with other master nodes. Once it receives a connection

from a master, it has become a slave of the master node in the other piconet but at the

same time it is still the master in its own piconet. This means that it has become a M/S

bridge via which the two piconets are connected together to form a scatternet (See

Figure 5.7). In Figure 5.7, there are multiple master application threads and a slave

application thread running in BlueNode_1, so BlueNode_1 is the master of

BlueNode_2, BlueNode_3, and BlueNode_4 in Piconet_1. At the same time, it is also a

slave of a master node (BlueNode_5) of Piconet_2. Hence, BlueNode_1 is a M/S bridge

joining the two piconets together.

Figure 5.7 Application implementation of piconet connection via a M/S bridge

Chapter 5: BIEN Software Implementation 50

5.2.3 Communication management

5.2.3.1 Messaging system

The structure of the messaging system implemented for communication in the BIEN

network is shown by a UML class diagram in Figure 5.8. The basic pattern of a BIEN

message contains the fields of source address and destination address (See Figure 5.9).

They ensure that the sending node and the destination node of the message are

addressed while the content data it carries depends on the type of message.Two types of

messages are adopted for communication in the BIEN network system, namely Control

Messages and Application Messages.

Figure 5.8 UML class diagram of BIEN messaging system

Source address Destination address Message Content

Figure 5.9 Basic BIEN Message pattern

A Control Message is used for carrying messages of routing information from the layers

of the BIEN network formation and the RIP routing mechanize between the nodes for

the purpose of network construction and maintenance. Since the routing information is

only exchanged between a local node and its neighbors in the RIP routing protocol, each

Control Message must be either from the local node to its neighbors or from its

neighbors to the local node. It includes the messages types, ConnectMessage,

MasterInstructionMessage, RoutingInformationMessage,

Chapter 5: BIEN Software Implementation 51

TriggeredUpdatedRoutingMessage and DisconnectMessage, which are described as

follows:

� ConnectMessage is only used by a master node when it has connected to a slave

node. It is used to inform the slave of master information;

� MasterInstructionMessage is use by master nodes instructing some of their slaves

to be ready to be bridges. Once a slave receives this message from its master, it

makes itself discoverable, and waits to being discovered and connected to by other

masters. Hence, this message is only used by master nodes;

� RoutingInformationMessage carries a message of routing information for regular

routing table exchange with neighbouring nodes;

� TriggeredUpdatedRoutingMessage is used for BlueNodes sending updated routing

information to their neighbors when a change on the network topology, such as a

node joining or leaving the network, is detected, which triggers routing updating

and exchange; and

� DisconnectMessage carries messages from nodes leaving the network for a

purposeful disconnection of a node. As Java application can only detect a

connection loss by a failing read or write operation, there is no immediate way to

detect a connection loss. In the BIEN application, the approach adopted for a node

that intended to disconnect from the network is to send a DisconnectMessage to its

immediate neighbors to inform other nodes of its departure, so that they can update

their routing tables and trigger routing information updating in their neighbors by

sending the TriggeredUpdatedMessage.

The Application Messages carry user application data from the application layer of the

BIEN network for use in information exchange between nodes, whereby:

� FileMessage carries different patterns of files, such as text files, PDF files and so

on, images, such as jpg, png and gif images, and music files, such as mp3 files and

so on;

� DataMessage is used to carry Strings that represent data when users chat by text;

� HelloMessage is used by the system to inform the sender of a received message

when the destination that the message is forwarded to is unreachable and the

message is undeliverable; and

� MailingListMessage is used for exchanging user information in the network,

including their friendly names and Bluetooth addresses.

Chapter 5: BIEN Software Implementation 52

5.2.3.2 Communication and message process

Every connection that a BlueNode receives is processed in a separate thread. A

BlueConnector.java class is implemented to deal with communication with one

immediate neighbour node. Every time a BlueNode, as a master, is connected to a new

BlueNode, as a slave, the master or the slave application manages the incoming

connection by creating a new BlueConnector object that holds the new connection. Each

BlueConnector uses the related connection that it holds to independently deal with all

communication, including message sending and receiving using an ObjectOutputStream

or ObjecInputStream object respectively, between the local node and its neighbour node

that are at each end of the connection.

The two types of messages, the Control Message and the Application Message, are

processed in two separate threads. This allows for fast routing information updating and

exchange in the network. The two types of messages are separately held by two

synchronized Message Queues for processing. All messages, whether they are outgoing

from the local node or received by all BlueConnectors from neighbouring nodes, have

to go into these two Queues according to their type before being processed. Two

Message Processors are implemented to respectively process the queued messages.

Both message processors can concurrently access the synchronized BlueConnector

objects in order to send messages.

Each processor is essentially a state machine that processes the queued messages (See

Figures 5.10 and 5.11). For each message type, each of them first checks whether the

local node is the destination of the message or not. If it is, they will perform relevant

message processes in regards to the message content and type. Otherwise, the

Application Message Processor will look for a route to the destination in the routing

table for forwarding the message. If there is a route available in the routing table, the

processor simply forwards the message to the next hop; otherwise, it will discard the

message and send a HelloMessage back to the sender of the message to inform the

sender that the message is undelivered. In the case of the Control Message Processor, if

the destination of the message is not a local node, the message must be sent to one of

the neighboring nodes from the local node. Hence, it just gets the BlueConnector object

related to the destination of the message and simply uses it to send the message to the

neighbouring node.

The following flow charts summarize the operations of the two Message Processors

when they process each queued message (See Figures 5.10 and 5.11). Whenever the

Chapter 5: BIEN Software Implementation 53

BlueNode application starts running, these two Message Processors start their message

process and run it until the application is terminated.

 Figure 5.10 Control Message process

 Figure 5.11 Application Message process

Chapter 5: BIEN Software Implementation 54

5.3 RIP routing protocol implementation application

This is a software implementation of the RIP routing mechanism and runs on the top of

the network formation application. It provides an effective routing mechanism for the

BIEN network. The main functions of this application are implementation of a routing

table, routing computation, and routing table updates, based on the RIP routing

protocol.

5.3.1 Implementation of the routing table

Each BlueNode holds and maintains its own routing table. The routing table

implemented in the application contains routing information to every other BlueNode in

the BIEN network. The unique Bluetooth MAC address of each Bluetooth device is

used to identify different BlueNodes in the network. Each entry in the routing table

includes the Bluetooth address of a destination node, the number of hops to that

destination, and the Bluetooth address of the next hop node via which messages can be

forwarded to the destination along the shortest path (See Figure 5.12).

 Figure 5.12 Structure of a routing table

Figure 5.12(a) illustrates an example of a routing table held by Node_1, with an address

of 001060E3BA62, in the network shown in Figure 5.12(b). The routing table includes

all routes from the node to other nodes in the network. The first entry is a destination

node, listing its address of 001060E3BA62, the address of the next hop node to the

destination; which is the same as the destination address; and the hop count to the

destination; which is 0. This shows that the destination is the local host node itself that

is the owner of the routing table, Node_1. The second and third entries contain routes to

two neighbours of the local node, i.e. Node_2 and Node_3. This is due to the next hops

Chapter 5: BIEN Software Implementation 55

to these destinations are themselves and the hop count to them from the local node both

being 1, respectively. The fourth and fifth entries, respectively, contain two routes to

Node_4 (001060E16B4C) and Node_5 (001060E31B44) through the neighbouring

nodes in the second entry, or third entry, with a hop count of 2.

The routing table is implemented by two ConcurrentHashMap structures. One holds the

next hops to all destinations from a local node and the other holds the number of hops to

those destinations. As both the HashMaps use the same Bluetooth address of destination

nodes as keys of the HashMap structure, they can work together to form a complete

routing table. Figure 5.13 illustrates an implementation of the routing table given as an

example in Figure 5.12.

 Figure 5.13 Implementation of routing table

5.3.2 Routing Computation

5.3.2.1 Routing metric

Based on the RIP routing protocol, the metric used to measure a path length from the

source to the destination is a hop count, which is the number of hops in the path

between the source and the destination. Each hop in a path is assigned a constant value

of 1, so the distance between a node and any one of its immediate neighbours is 1. For

example, in Figure 5.14, the path length between master node M1 or M2 and each of its

slaves is 1. The hop count value will increase by one every time a packet crosses a node

from a source to its destination, so the hop count between two slaves in the same

Chapter 5: BIEN Software Implementation 56

piconet; such as slave node S1 and bridge node S/S in piconet_1 in Figure 5.14; is 2.

The path length from slave node S1 to another master node M2 in piconet_2 is 3.

 Figure 5.14 Example of a hop count computer

The maximum number of hops in a path is limited to 10 for the reasons discussed in the

section 4.1.3. Any destination with a hop count value more than 10 is treated as infinite,

which means the destination is unreachable.

5.3.2.2 Routing table computation

Based on the Bellman-Ford algorithm, a DVRoutingTable.java class is developed to

perform the routing table computation in the application, which is described in the

following:

� When a BlueNode first starts, its initial routing table contains only one entry. This

is the destination, and the next hop node to the destination is itself, with the hop

count to the destination being 0. Figure 5.15 illustrates an example of initial routing

tables held, respectively, by three free BlueNodes; i.e., Node_1, Node_2 and

Node_3. Each one has one entry of itself, as they have not connected together.

 Figure 5.15 Example of initial routing tables of three free BlueNodes

� When it has connected with other nodes, new entries with these new immediate

neighbours as the destinations will be inserted into the routing table. Each of the

Chapter 5: BIEN Software Implementation 57

new entries uses the destination node as the next hop and has a hop number of 1.

This is because these neighbours are directly connected to the node and there is

only one hop from it to each of them. Thus, the next hops of the best path from the

local node to these destinations are themselves.

For example, when Node_1 and Node_2 in Figure 5.14 have connected together, their

routing tables have been updated by adding a new entry for the new immediate

neighbour (See Figure 5.16(a)). The same process occurs on the routing tables of

Node_1 and Node_3 when they connect together later (See Figure 5.16 (b)). The routing

table of Node_1 shows that both Node_2 and Node_3 are its immediate neighbours.

Figure 5.16 Routing table computing when two nodes are connected together

Chapter 5: BIEN Software Implementation 58

� When the BlueNode receives a routing table from one of these neighbours, it first

adds 1 to the hop count of each entry indicated in the received routing table to get a

new length for each path from itself to the destination of the entry via the routing

table sender, as the distance from itself to the sender is 1 hop.

For the same example discussed above, when Node_2 received a routing table from

Node_1 in Figure 5.16 (b), it modified the received routing table by adding 1 to the hop

count of each entry indicated in the received routing table, in order to get a new length

of a path from itself to all destinations. Figure 5.17 shows the process of modifying the

routing table received from Node_1.

 Figure 5.17 Node_2 modifies the routing table received from Node_1

� It then compares the modified routing table with its own routing table to compute

the best routes to all destinations in the network in order to update its routing table:

• If the received routing table contains new entries to destinations that do not

exist in its own one, it simply adds these new entries into its own routing table

and marks the sender of the routing table as the next hop to those destinations

for those entries (See the third entry of the updated routing table of Node_2 in

Figure 5.18);

• If the received routing table has an entry where a hop count to a destination is

smaller than the existing value in its own routing table, it replaces the hop count

in its own routing table with the smaller one and marks the sender of the

received routing table as the next hop to the destination for this entry;

• If an entry of a destination exists in both routing tables and the next hop to the

destination in its own table is the sender of the received routing table, but the

hop counts are different in the two routing tables, it uses the hop count value in

the received routing table to replace the old one for the entry in its table; and,

Chapter 5: BIEN Software Implementation 59

• If the new hop count of an entry is more than 10, it will remove the entry for the

destination from its routing table.

Figure 5.18 shows the process by which Node_2 computes routing in the example

discussed above. Node_2 checks each entry in the received routing table and compares

it with its own entries. The first two entries in the received table also exist in its own

table but the hop counts are bigger than those in its own table, meaning that, currently,

the paths to these two destinations in the two entries are better than those in the received

table. Thus, it does not change the current path to the destinations in the two entries in

its own routing table. The third entry of the received table, however, does not currently

exist in its own table, so it inserts the new entry in its table and marks the sender, i.e.,

Node_1, as the next hop. It shows that the length of the best path from the local node

(Node_2) to the destination (Node_3) via the next hop (Node_1) is 2.

Destination Next Hop Hop Count

Node_1Node_1 1

Modified Received Routing

table from Node_1

Node_2 Node_2 2

Node_3Node_3 2

Destination Next Hop Hop Count

Node_2Node_2 0

Routing table of Node_2

Node_1 Node_1 1

Comparison

Destination Next Hop Hop Count

Node_2Node_2 0

Updated Routing table of Node_2

Node_1 Node_1 1

Node_3 Node_1 2

Add new entry

Do not change

 Figure 5.18 Example of routing computation

Chapter 5: BIEN Software Implementation 60

 Figure 5.19 Routing table held by each node after routing table exchange in the example given

above

At the same time, the other nodes i.e., Node_1 and Node_3 in the example; also use the

same procedure to calculate routings when they received routing messages from their

neighbours. Eventually, each of the nodes knows the best routes to each other node in

the network (See Figure 5.19).

5.3.3 Routing update

A Timer is implemented to regulate the routing updating operation. The interval

between periodic routing updates is set to 30 seconds so that a BlueNode may send its

full routing table by a RoutingInformationMessage to all of its immediate neighbours

every 30 seconds and update its routing table based on the routing information received

from those neighbours. Whenever the BlueNode application begins running, the routing

table update process runs until users terminate the application. Since each BlueNode

starts running at a different time, this does not result in traffic congestion caused by all

of the nodes simultaneously attempting to send routing information to their neighbours.

The application also implements the split horizon and triggered updates mechanism to

perform instant routing updates whenever any changes are detected on the network.

Hence, when a BlueNode has detected any changes on the network; including receiving

a ConnectMessage or a DisconnectMessage informing it of a neighbour joining or

leaving the network, or detecting a connection loss whenever a BlueConnector fails a

read or write operation; it updates its routing table and immediately sends the table via a

Chapter 5: BIEN Software Implementation 61

TriggeredUpdatedRoutingMessage to all of its neighbours to inform them of the

change. On the other hand, when a BlueNode receives a

TriggeredUpdatedRoutingMessage, it checks the received routing table to determine

whether there are any differences from the one it currently holds. If there are, it updates

its routing table based on the received routing information and immediately sends

another TriggeredUpdatedRoutingMessage to all its neighbours, with the exception of

the sender of the original TriggeredUpdatedRoutingMessage. This is the adoption of the

split horizon mechanism, which reduces the probability of routing loops, so as to

prevent incorrect routing information from being propagated.

This triggered update is separate from the regular routing table updates. As it is

performed immediately after any change of a routing table entry is detected, and there is

no need to wait until the next regular update, it is helpful in spreading changes of

topology throughout the network faster than would otherwise be possible through the

regular update cycle.

In addition to the split horizon and triggered update mechanisms, the application also

limits the maximum number of hops allowed in a path to 10, based on the Bluetooth ad

hoc environment. Any destination entry with a hop count of more than 10 is treated as

infinite and will be removed from a routing table, which prevents routing loops from

continuing indefinitely, and accelerates network convergence. This stability feature

works with split horizon and triggered update mechanisms together and can quickly

propagate routing updates throughout the network. This has greatly improved the

stability of the BIEN network.

Whenever the BIEN application begins to run, the routing table update process runs

until users terminate the application. This routing mechanism is deployed in each

BlueNode, so that each node can act as a router to determine and maintain routes to all

possible destinations in the BIEN network, no matter what role it undertakes.

More detailed information about the RIP routing protocol and its stability features can

be found in [44].

5.4 BIEN function and GUI implementation application

The application is implemented at the application layer of the Bluetooth Protocol Stack

to provide the information exchange function for BIEN users, when exchanging data

with anyone else in the network. A BIEN system graphical user interface (GUI) is also

developed for users to perform BIEN formation operations and access the information

exchange function.

Chapter 5: BIEN Software Implementation 62

5.4.1 Implementation of the information exchange function

The information exchange function includes the file transfer service and communication

by text. The files that can be transferred include most types of files, including text,

document, script, image, and music files.

In the implementation of the file transfer service, a file is transferred by a type of byte

array carried by a FileMessage. In addition to a source address and a destination

address, a FileMessage object also has two another fields, namely a File name, which is

a String object that holds the name of the transferred file, and a File data bytes, which is

a byte array object that holds the data bytes of the file (See Figure 5.20). Each time a

BlueNode wants to send a file to another node in the network, the application first

converts the file to bytes in a byte array using a FileInputStream object. Then it creates

a new FileMessage object that carries the name and the data bytes of the file and puts

the message into the Application Queue for sending.

Source address Destination address File name File data bytes

 Figure 5.20 Format of a FileMessage object

At the other end, when the destination node receives the FileMessage, the application

takes the file name and data bytes parts off the message and uses a FileOutputStream

object to convert the data bytes to a file with the same name.

When communicating by text, the application creates a DataMessage object (See Figure

5.21) for each text string that users enter in the EnterMessage panel of the GUI (Shown

in Figure 5.22), and then puts the message into the Application Queue for sending. Once

the destination node receives the DataMessage, it simply takes the text string from the

message and displays the string in the Conversations panel of its BIEN system GUI

(See Figure 5.22).

Source address Destination address Text String

 Figure 5.21 Format of a DataMessage object

Chapter 5: BIEN Software Implementation 63

5.4.2 Implementation of BIEN system GUI

The GUI allows the BIEN users to perform operations of role selection, in terms of

being a master or slave before joining a BIEN, connecting to other BlueNodes to join

the BIEN, and accessing these information exchange services after joining a BIEN.

Figure 5.22 displays the main frame of the system GUI when the BIEN application

starts running. The GUI consists of seven major display areas, labeled by the names

with red circles. These panels are the LocalHost Panel, the RemoteDevicesTracking

Panel, the Neighbour Nodes Panel, the BIEN Scatternet panel, the EnterMessage Panel,

the Conversations Panel, and the System Events panel.

 Figure 5.22 Frame of BIEN system GUI

The LocalHost panel displays the information regarding the local BlueNode, including

the friendly name, Bluetooth address, and the device class of the Bluetooth device. The

master node of this device after it has joined a BIEN network is also displayed here. The

LocalHost panel in Figure 5.22 shows that the local node is a desktop, with the name

WD 307-65719 and a Bluetooth address of 001060E31B44. It does not have master

displayed, as it is a free node at that moment.

The RemoteDevicesTracking panel displays a list of the nearby BlueNodes that the local

node has discovered after finishing device inquiry step.

Chapter 5: BIEN Software Implementation 64

When a BlueNode has connected with other BlueNodes, these nodes are its immediate

neighbours and are listed in the Neighbour Nodes panel in which each one has a format

of:

 “Device name: Bluetooth address / hop count“

This shows the neighbour node’s device name, the Bluetooth address, and the hop count

from the local node to the neighbour node; which is 1, as they are immediate

neighbours. At the same time, because of the underlying routing updates with these

neighbouring nodes, its routing table holds the routes to all other nodes in the network,

which are listed in the BIEN Scatternet panel by device name, Bluetooth address, and

hop count from the local node to the related node. All nodes are listed with the same

format as those displayed in the Neighbour Nodes panel (See Figure 5.23).

Figure 5.23 is the system GUI of a master node, namely WS316-18 with the address

001060E3BA8E. There are five immediate neighbours listed in the Neighbour Nodes

panel, which are the slave nodes of the node, as it is a master node. All nodes that are

connected to the network at that moment are listed in the BIEN Scatternet panel. For

example, there is a node WS 316-14 with an address of 0009DD60107E in the list,

which shows that there are 3 hops for the path from the local master node to this

particular node.

 Figure 5.23 BIEN GUI of a master node

Chapter 5: BIEN Software Implementation 65

The EnterMessages Panel allows BIEN users to type text in when they communicate via

the text service to communicate with anyone else in the network. When a user selects a

node from the BlueNode list of the BIEN Scatternet panel for message sending and

presses the Enter button under the EnterMessages panel, the text that the user typed in

will be sent to the selected node and displayed on the Conversations panel of both the

sender and the receiver, with the address of the sender and the time of sending or

receiving also displayed. This utility of talking via a text service is similar to the

Windows Live Messenger that provides an Internet messaging service developed by

Microsoft. It is, however, implemented for short range conversations using ad hoc

Bluetooth wireless network technology without the need for cables or central

administration, and the communication is free.

The System Events panel displays all system events related to the local BlueNode, such

as the time when the node starts running, role selection, node connections and

disconnections, application exceptions, and so on (See Figures 22 and 23).

There is also a tool bar on the top of the GUI, which has buttons by which users can

perform the operations of a BIEN network formation in order to access this information

exchange service.

When a BlueNode starts running, the initial BIEN system GUI displays on the screen

(Refer to Figure 22). As a free node, all display areas are empty. The user can perform

device discovery by pressing the Search button on the tool bar to look for nearby

BlueNodes, or make it discoverable by other nodes by pressing the Discoverable button.

The user, however, has to press the Role Button to display a role select panel (See

Figure 5.24) in order to make a role selection, before the BlueNode can connect with

other nodes to form or join a BIEN.

Figure 5.24 Role selection panel

If the BlueNode takes on the role of master, the user can press the Search button to find

other BlueNodes to connect to. The user may then connect them one-by-one by

selecting one at a time from the list of the discovered nodes in the

RemoteDevicesTracking panel and pressing the Connect button. A connection panel will

Chapter 5: BIEN Software Implementation 66

pop up, in which the address of the selected node and a default hop number of 1 is filled

in (Shown in Figure 5.25).

Figure 5.25 Connection panel

By pressing the Connect button on the connection panel, the local master node will

connect to the selected node automatically. The user can also type in the address of a

selected BlueNode in the field Bluetooth Address in the connection panel to connect to

this particular node.

By pressing the M_Instruction button, the master node can automatically send

MasterInstructionMessages to some of its slaves, selected from the Neighbour Nodes

panel. This will inform them to get ready to be a bridge and wait for new connections

from other masters. This master node can continue to perform piconets’

interconnections by finding slaves of other piconets and connecting to them.

When sending files, the user only needs to select a destination for the file send to from

the BIEN Scatternet panel and press the SendingFile button to select a file from a

JFileChooser dialog (shown in Figure 5.26), and then click the Open button on the

dialog. The selected file will be automatically sent to the receiver.

Figure 5.26 File selection dialog

Chapter 5: BIEN Software Implementation 67

On the other hand, if the BlueNode selects to be a slave, it will automatically start an

inquiry scan and a page scan to ensure its discovery by, and connection with, a master.

The Search button, Connect button, and M_instruction button are disabled in the system

GUI (See Figure 5.27). This is because they are only designed for use by masters on the

basis of the BIEN formation protocol. The SendFile button will be enabled once the

node has been connected by a master node.

 Figure 5.27 BIEN GUI of a slave node

The following flow chart (Figure 5.28) summarizes the operation of a BlueNode for

users. To summarize, Bluetooth devices configured with a set of these software

applications can work as BlueNodes, with an identical ability to connect with other

BlueNodes to form a BIEN of any topology and any size within aforementioned

constrains .

Chapter 5: BIEN Software Implementation 68

Free Node

Role Selection

BlueNode

Discovery

Wait for

Connection

Connect to slaves

to form piconet

Send Bridge

Instructions

Connect to slaves

of other piconets

Connected

Received bridge

instruction?

Slave
Connected

(Bridge Node)

BIEN formed

Communication with each other

Master Slave

Yes No

 Figure 5.28 Operation procedure of a BlueNode

5.5 Summary

This chapter has discussed the BIEN software application implemented in this work,

including the network formation application, RIP routing mechanism implementation,

and the BIEN network application and GUI implementation application. A Bluetooth

device configured with the BIEN software application can work as a BlueNode that has

the ability to connect with other BlueNodes and compute routing to autonomously form

a dynamic Bluetooth network for information exchange with other nodes in the network

without the requirement of any network infrastructure or network administration.

6 Experiment and performance evaluation

This chapter presents the experiment deployment and experimental results, which were

used to measure and evaluate the performance of the BIEN networks set up in this

work.

First, the experimental methods used to test the BIEN software application developed

and acquire the data in order to evaluate the performance of the BIEN networks set up

in this work are described. This is followed by an evaluation of the network behaviour

and performance. Finally, this chapter concludes with a short summary of the main

points discussed in the chapter.

6.1 Experimental Deployment

This section describes the experiments deployed and conducted to construct BIENs and

to evaluate their performance in a computer classroom at AUT University. These

experiments were used to test the BIEN software application and confirm its correct

behaviour, as well as to collect data to evaluate the performance of BIEN networks and

investigate how well Bluetooth technology supports the ad hoc multi-hop wireless

network technology.

6.1.1 Experimental methods

As a research project, the experiments deployed focus on evaluating the relation

between network capacity and topology by testing end-to-end performance in terms of

throughput and the latency of communication links with various parameters, including

the hop number between nodes and the slave number in piconets. The following

outlines the methods used to test the BIEN network capacity in this work.

Chapter 6: Experiment and Performance Evaluation 70

6.1.1.1 Measurement metrics

The metrics used to test the developed application and evaluate the performance of the

BIEN network are throughput and latency.

� Throughput

Throughput is used to measure the capacity that a path can provide to an application

when there is no traffic load. Here it refers to the rate of data delivery over a path

between two BlueNodes; i.e., end-to-end throughput. It is a measure of the amount of

data bytes that are transferred between the two nodes over a period of time, in kilobits

per second (Kbps).

The method used to perform the measurement was to continuously send files from a

source node to the destination node and measure the time taken for each file to reach the

destination. The throughput for a transferred file was obtained by dividing the file size

by the time taken by the file to reach the destination (See Equation 6-1). The average

throughput for all of the transferred files was calculated by dividing the sum of the bytes

of all files by the time taken by these files to reach the destination (See Equation 6-2).

1000

8

×

×
=

T

T

t

S
Throughput (Kbps) (Equation 6.1)

∑

∑
×

×
=

1000

8
_

TK

TK

t

S
ThroughputAverage (Kbps) (Equation 6.2)

 Where ST is the size of a file transferred in bytes, tT is the time taken to transfer the file,

measured in seconds, and K is the sample number.

The measured time for a file transfer includes the time required for the sender to send

the file, the time required for the file to pass through a certain path from the sender to a

receiver across multiple hops, and the time required for the receiver to receive the file.

In fact, as the throughput is measured by means of application file transfer, the results

are actually the application level throughput; i.e., the goodput. This is lower than the

maximum throughput, because it does not consider some overheads, such as packet

frames, protocol overheads, and collisions.

� Latency

This is a measure of how fast the BIEN network runs. This depends on transmission

delays determined by the physical properties of Bluetooth, the behaviour of the software

applications, the performance of the routing protocol and network topology, and the

processing delays when passing through multiple hops. It refers to the time taken for a

Chapter 6: Experiment and Performance Evaluation 71

message to be sent from the sender to the receiver through a path of the network. In this

work, the measurement is performed by measuring the round-trip time (RRT), using the

ping technique. The RRT ping latency is determined by the time during which a ping

message travels from the source node to the destination node, plus the time for the

message returning to the source node. This excludes the time that the destination node

requires to process the packet. This RRT latency is measured in milliseconds (ms).

Therefore the latency may be calculated by subtracting the sending time of the ping

message from the receiving time of the message, minus the processing time that the

destination node takes to return the message. It can be presented as:

 prsere TTTLatencyRRT −−=_ (Equation 6.3)

Where Tre is the receiving time of a ping message on the sending node, Tse is the

sending time of the ping message on the sending node, and Tpr is the processing time of

the ping message on the destination node.

6.1.1.2 Test Messages

To facilitate experimental measurement, Test Messages are implemented as a part of the

BIEN Messaging system (Shown in Figure 6.1). It consists of four message types,

namely PingMessage, TestFileMessage, TestDataMessage and TrafficMessage. As an

extension to the BIEN Message, these messages have the basic BIEN Message pattern

(See Figure 5.9), plus one more field of a Sequence Number for the purpose of data

recording and analysis (See Figure 6.2).

� A PingMessage is applied to perform a ping test in the Latency measurement and is

processed as a Control Message in the software application. The object has a size of

47 bytes.

� A TestFileMessage and a TestDataMessage have the same functions respectively as

the FileMessage and the DataMessage of the Application Message, and are used to

simulate the two messages types in the experiments. The total size of a

TestFileMessage object includes 48 bytes from the message object itself and the size

of a file that it carries, while the size of a TestDataMessage object is 47 bytes.

� A TrafficMessage carries data of 8 Kbytes and is used to randomly generate traffic

load by each BlueNode for the purpose of network performance testing. It is

processed as an Application Message.

Chapter 6: Experiment and Performance Evaluation 72

«interface»

TestMessage

TestDataMessageTestFileMessagePingMessage TrafficMessage

«interface»

BIENMessage

 Figure 6.1 UML class diagram of test messaging system

Source address Destination address Message Content Sequence Number

 Figure 6.2 Basic pattern of Test Messages

6.1.1.3 Trace mechanism

In order to collect the experimental data, a trace mechanism is developed, based on the

LogFile.java class, to perform operation tracking. This is embedded in the BIEN

software application for a BlueNode to record each communication operation, including

sending and receiving control and application data, in a text file for performance

analysis.

Whenever a BlueNode sends or receives a message, the time for the operation is

automatically recorded in milliseconds by the computer system timer, using the method

“System.currentTimeMillis()”, and written in a text file by the LogFile object in a format

of: the operation time in milliseconds, the operation type; i.e., ‘-’ for sending and ‘+’ for

receiving; the address of the message sender, the address of the message receiver, the

message type, the sequence number of a Test Message, and the file size that the

FileMessage carries. The format of the log file and an example of such a file are shown

in Figure 6.3.

Chapter 6: Experiment and Performance Evaluation 73

time operation sender receiver message type sequence number size

1211606239430 - 0009DD600A95 001060E31B44 testFile 43 56316

1211606244133 - 0009DD600A95 001060E31B44 testFile 44 56316

1211606249071 - 0009DD600A95 001060E31B44 testFile 45 56316

1211606295555 + 001060E16A90 0009DD600A95 trigRouting - 0

1211606425696 + 001060E16A90 0009DD600A95 trigRouting - 0

1211606425914 + 001060E16A90 0009DD600A95 trigRouting - 0

1211606253930 - 0009DD600A95 001060E31B44 testFile 46 56316

1211606259321 - 0009DD600A95 001060E31B44 testFile 47 56316

1211606264321 - 0009DD600A95 001060E31B44 testFile 48 56316

1211606269227 - 0009DD600A95 001060E31B44 testFile 49 56316
Figure 6.3 Format of log file and an example of a log file

For example, a line in the log file is as follows:

 “1211606239430 - 0009DD600A95 001060E31B44 testFile 43 56316”

This states that a node with the address of 0009DD600A95, at the current time of

1211606239430 milliseconds, has sent a TestFileMessage carrying a file with a size of

56.316 Kbytes to the next hop node via which to the destination node (i.e.

001060E31B44) of the message.

For the RRT ping latency testing, if a node, such as 0009DD6002F7, sent a

PingMessage to a node, such as 0009DD6002A1, at the time of 1215322842009 and

received it back from the destination node at the time of 1215322842430, these

operations will be automatically recorded in the log file of the sender node as follows:

1215322842009 - 0009DD6002F7 0009DD6002A1 ping 0

1215322842430 + 0009DD6002A1 0009DD6002F7 ping 0

Based on the RRT ping latency measurement discussed above, the RRT latency may be

calculated using Equation 6-3, as:

 RRT_Latency =1215322842430-1215322842009-ProcessTime (Equation 6.4)

At the same time, the log file of the destination node will record the ping operation as

follows:

1215322842142 + 0009DD6002F7 0009DD6002A1 ping 0

1215322842204 - 0009DD6002A1 0009DD6002F7 ping 0

Chapter 6: Experiment and Performance Evaluation 74

This states that the destination node (i.e. 0009DD6002A1) received the ping message

from the sending node (i.e. 0009DD6002F7), at the time of 1215322842142 and

forwarded the ping message back to the sender at the time of 1215322842204. Hence,

the processing time it used to forward the message back to the sender may be calculated

by subtracting the receiving time from the sending time:

 Process time=1215322842204-1215322842142=62 (ms)

Thus, the RRT latency can be obtained using Equation 6-4:

 RRT_Latency = 1215322842430-1215322842009-62= 359 (ms)

The system clock of each BlueNode is synchronized with the time of a NTP time server

at AUT University before each test is conducted. When the nodes in a BIEN network

start communicating with each other, the log file in each node concurrently records

every communication. Thus, the transfer time of a sent TestFileMessage can be obtained

by subtracting the sending time recorded in the log file of the message sending node

from the receiving time in the log file of the receiving node. It is calculated in

milliseconds. Since the size of the file carried by the message can also be obtained in

both log files, the current throughput of the message transmission path can be calculated

using Equation 6-1.

6.1.2 Test Bed

The experiments were conducted in a computer classroom, WS 316 (shown in Figure

6.4), which is on the third floor of the WS building of AUT University. This indoor test

bed provided a realistic environment for the BIEN experiments. The experiments were

conducted over one hundred times over more than 30 test days.

Chapter 6: Experiment and Performance Evaluation 75

Figure 6.4 The computer lab used for setting up the test bed

Each experiment was a combination of a deployment scenario and a test procedure.

Based on the BIEN formation schema discussed in the Section 4.2, the BIENs set up in

the experiment consisted of three piconets, with each piconet having the same number

of slaves, that varying from three to five in different BIENs. There was only one S/S

bridge interconnecting any two piconets and each S/S bridge only participated in two

piconets. There is only one bridge between any two piconets and each piconet

connected more than one piconet and the topology formed was mesh-like (Shown in

Figure 6.5(a), (b) and (c)).

Master:

S/S Bridge:

Slave:

P1 P2

P3

S1 S2

S3

M1
M2

M3

B1

B2 B3

Test Messages:

 Figure 6.5 (a) Topology of first experimental BIEN with three slaves in each piconet

Chapter 6: Experiment and Performance Evaluation 76

Master:

S/S Bridge:

Slave:

P1 P2

P3

S1

S4

S5

S3 S6

M1
M2

M3

B1

B2 B3

S2

Test Messages

 Figure 6.5 (b) Topology of second experimental BIEN with four slaves in each piconet

Master:

S/S Bridge:

Slave:

P1 P2

P3

S7

S1

S4

S2

S5

S8

S9
S3

S6

M1
M2

M3

B1

B2 B3

Test Messages:

 Figure 6.5 (c) Topology of third experimental BIEN with five slaves in each piconet

 Figure 6.5 Structures of three experimental BIENs

These experimental BIENs are formed by a set of BlueNodes, each one of which has

been configured with an identical BIEN software application. Each node consists of a

stationary PC with a Bluetooth USB dongle. All the PCs are Intel Pentium IV 3GHz

standard PCs with 1.00 GB of RAM based on Windows XP SP2. The dongles plugged

into the PCs of the master nodes and the bridge nodes are XH8880 DSE Bluetooth USB

dongles, while those used on the slave nodes are EA0021 DSE Bluetooth dongles. Both

of these types of dongles support Bluetooth specification V2.0 + EDR, with a data rate

of up to 3Mbps. The Bluetooth protocol stack used is the built-in Microsoft Bluetooth

Chapter 6: Experiment and Performance Evaluation 77

Stack in Service Pack 2 for Windows XP. The BIEN software application is run in the

Eclipse IDE, with BlueCove Java APIs. All BlueNodes were placed in three rows in the

computer classroom. Two nodes in a row were placed one-by-one spaced by one meter,

with the distance between rows being two meters (Shown in Figure 6.6).

1.0 m

2.0 m

2.0 m

 Figure 6.6 The layout of the test bed

A TestTask.java class is developed to perform the experimental task. To measure the

throughput, or latency, of a communication path, the sender may select the destination

node of the path from the BIEN Scatternet panel of the BIEN system GUI (Refer to

Figures 5.23 and 5.27) and then press the Testing button in the GUI to display a Testing

Operation panel (Shown in Figure 6.7)

+

 Figure 6.7 Testing operation panel

Chapter 6: Experiment and Performance Evaluation 78

Although the environment in which all of the experiments were conducted had been

kept as little interference as possible, there were still factors existing around the test bed

that could not be avoided and which may have affected the experimental results, such as

802.11b wireless activities and other Bluetooth activities from the cell-phones of people

outside the computer classroom.

� Throughput measurement

The measurement of throughput on a certain communications path is performed by

clicking the Throughput button in the subpanel on the top of the Testing Operation

panel, selecting the size and the number of files the sender wants to send in the left and

right subpanels, respectively, and then pressing the Start Testing button on the bottom

of the panel. Thus, the sending node has been configured by the TestTask object to start

sending the selected number of TestFileMessages one-by-one, as fast as the Bluetooth

device allows, through the path to the destination node. Each TestFileMessage carries a

file of the selected size. At the same time, the trace mechanism of the node

automatically records the sending time of each message in its log file for performance

analysis. On the other hand, while the destination node continuously receives the

messages, the receiving time for the files has also been written in its log file (See Figure

6.8).

 Figure 6.8 End-to-end throughput measurement

The different file sizes used in the throughput measurement are designed to obtain the

maximum throughput value, as throughput varies with the size of the files transferred.

� Latency measurement:

The ping testing for the RRT latency measurement is performed by clicking the Ping

button and selecting the number of ping messages in the right panel. Thus, the node has

been configured to continuously send the selected number of PingMessages to the

destination node once the Start Testing button is pressed. The destination node will

automatically forward the message back to the sender if the message it receives is a

Chapter 6: Experiment and Performance Evaluation 79

PingMessage. Both sending and receiving nodes will record the time at which the

message was sent and received (See Figure 6.9).

 Figure 6.9 RRT ping latency measurement

In the ping test experiments, only one PingMessage was sent from the sender to the

receiver for each ping test. After the sender received the message back, it started

performing another ping test.

6.2 Performance evaluation

This section presents the experimental and evaluation results of the BIEN system

behaviour and network performance. In the experiments, three BIENs had been set up

(See Figure 6.5(a), (b) and (c)). They have similar, symmetrical, topologies, with each

piconet having identical slave number that varies from 3 to 5 in the different

experiments. As the structures of these experimental BIENs are symmetrical in which

the longest paths have a length of 4 hops, the path selected for the end-to-end

performance evaluation is the one from slave node S1 of Piconet_1 to another slave

node S2 of Piconet_2; i.e., [S1→M1→B1→M2→S2]; in all experimental BIENs.

In the experiments, only the Test Messages were sent or received by each node. All the

data in this thesis are the result of measurements taken on these BIENs set up in the test

bed.

6.2.1 Throughput evaluation

This refers to measuring the end-to-end application throughput on the selected path in

the experimental BIENs and evaluating the impacts on the throughput, using varied path

lengths and different numbers of slaves in the piconets in the different BIENs.

As the throughput of a network path varies with the size of the files that are transferred

through the path, in order to obtain the maximum throughput of a path, the sizes of the

files transferred on the path were increased from 400 bytes to 255 Kbytes until the

throughput calculated based on the experiment data gradually became saturated. That is,

until there were no more significant changes in the throughput. The files carried by the

TestFileMessages included text and PDF files. The throughputs presented here are the

Chapter 6: Experiment and Performance Evaluation 80

maximum results obtained by transferring a number of files of a certain size (This data

is displayed in the following figures).

As the throughput of a network path also depends on the load of the path, in order to

obtain a reliable throughput, the load of a tested path is increased in each of the

experiments by increasing the number of the TestFileMessages transferred on the path

in each test until the throughputs no longer decrease significantly with the subsequent

increases in the number of transferred files. The experimental results show that the

throughput of a tested path has become stable when the number of the transferred files

has increased to 50. Therefore, the experimental results of the throughput presented here

are from tests in which 50 files were transferred.

6.2.1.1 Throughput versus path length

This is examined in order to evaluate the relation between throughput and path length in

each experimental BIEN. The path length was varied from 2 to 4. The selected paths are

the ones mentioned above, or a part of them. This includes a 2-hop path (e.g., [S1→ M1

→ B1]), a 3-hop path (e.g., [S1→M1→ B1→ M2],) and the 4-hop path (e.g.,

[S1→M1→B1→M2→S2]) in each BIEN (Shown in Figure 6.5 (a), (b) and (c)).

The first BIEN shown in Figure 6.5 (a) has three slaves in each piconet. The

throughputs of the selected paths with different length in the network are shown in

Figure 6.10.

Figure 6.10 Application throughput versus path length in the BIEN shown in Figure 6.4 (a)

In Figure 6.10, it can be observed that, as the hop count increases to 2, 3 and 4, the

network delivered a decreasing throughput, with averages of 461.703 Kbps, 216.685

2_hops (Avg:461.703 kbps, Std:18.554)
3_hops (Avg:216.685 kbps, Std:11.013)
4_hops (Avg:134.705 kbps, Std:9.232)

Chapter 6: Experiment and Performance Evaluation 81

Kbps, and 134.705 Kbps, respectively. This is due to the increased switching time

between piconets as a result of longer paths. The throughput decreases by 53.1% with

the increase in the path length from 2 to 3 hops ([S1, M1& B1] → [S1, M1, B1 & M2])

is reasonably larger than that of 37.8% in relation to the increase in the path length from

3 to 4 hops ([S1, M1, B1 & M2] → [S, M1, B1, M2 & S2]). This is due to the path

incorporating a bridge node B1 when the length increases from 2 to 3, which is a

bottleneck to the traffic.

The second BIEN shown in Figure 6.5 (b) has four slaves in each piconet. The trends of

throughput change corresponding to this path length are similar to those of the first

BIEN (See Figure 6.11). The average throughput of the 2-hop path is 341.216 Kbps and

that of the 3-hop path is 184.865 Kbps, which decreases by 45.8%, while the average

throughput of the 4-hop path is 125.016 Kbps, which decreases by 32.4% from the

throughput of the 3-hop path.

Figure 6.11 Application throughput versus path length in the BIEN shown in Figure 6.4 (b)

The third BIEN shown in Figure 6.5 (c) has five slaves in each piconet. The relation of

throughputs versus path length is shown in Figure 6.12. The average throughput of the

2-hop path, the 3-hop path, and the 4-hop path, respectively, are 236.035 Kbps, 143.045

Kbps, and 123.802 Kbps, with respective decreases of 39.4% and 13.45% when the path

length increases from 2 to 3 hops and from 3 to 4 hops.

2_hops (Avg:341.216 kbps, Std:23.769)
3_hops (Avg:184.865 kbps, Std:8.430)
4_hops (Avg:125.016 kbps, Std:7.674)

Chapter 6: Experiment and Performance Evaluation 82

Figure 6.12 Application throughput versus path length in the BIEN shown in Figure 6.4 (c)

6.2.1.2 Throughput versus slave number in piconets

The impact on throughput of paths with different numbers of slaves in the piconets is

also evaluated. Figure 6.13 shows the throughputs of the 2-hop path in the three BIENs

(See Figures 6.4 (a), (b) and (c)). The number of slaves in a piconet varies from three to

five.

Figure 6.13 Throughput of 2-hop path versus the number of slaves of a piconet in BIENs

It can be observed that the throughput reduces with an increase in the number of slaves

in the piconets in the different BIENs, in which the average throughput reduces from

2_hops (Avg:236.035 kbps, Std:44.174)
3_hops (Avg:143.045 kbps, Std:14.631)
4_hops (Avg:123.802 kbps, Std:4.719)

Chapter 6: Experiment and Performance Evaluation 83

461.703 Kbps to 341.216 Kbps and to 236.035 Kbps, respectively, when the number of

slaves increases from 3 to 4, and 5. This is due to the chance that a slave gets to

communicate with its master has been decreased and the overhead of the master has

increased as a result of the increase of the number of slaves in the piconet, since all

active slaves of a piconet share a common 1Mbps channel and use the TDM protocol to

communicate through the master.

The throughputs of both the 3-hop path and the 4-hop path with different numbers of

slaves of a piconet in the BIENs are shown, respectively, in Figures 6.14 and 6.15. In

both networks, the trends of the throughput of the paths versus the varied number of

slaves in a piconet are similar to that for the 2-hop path. The drop in throughputs of the

4-hop path is less than the drop of the 2-hop path and the drop of 3-hop path when

increasing the number of slaves in the piconet.

Figure 6.14 Throughput of 3-hop path versus the number of slaves of a piconet in BIENs

Chapter 6: Experiment and Performance Evaluation 84

Figure 6.15 Throughput of 4-hop path versus the number of slaves of a piconet in BIENs

Figure 6.16 makes a summary of the relation of the average throughput of a path versus

the path length, and the number of slaves in a piconet. It shows that the throughput

reduces with the increased length of the path in all BIENs. It can also be observed that

the throughput on a path with the same length reduces with an increase in the number of

slaves in a piconet in all of the BIENs (Shown in Table 6-1).

Figure 6.16 Comparison of average throughputs by different path length

 and varying slave numbers of a piconet in BIENs

Chapter 6: Experiment and Performance Evaluation 85

Table 6-1 Decrease of throughput of a path with increase in the number of slaves in piconets

Path length

(hops)

 Increase of slave number in piconets

3 → 4 4 → 5

2 hops 26.09% 30.82%

3 hops 14.68% 22.62%

4 hops 7.19% 0.98%

6.2.2 RRT latency evaluation

This part of the test evaluation focuses on measuring the end-to-end RRT ping latency

on selected paths in the experimental BIENs in order to evaluate the network’s

underlying performance related to the BIEN software application behaviour, the RIP

routing protocol, and the network topology.

In the experiments, the RRT ping latency of the paths in the three BIENs mentioned

above is tested in two traffic situations; one where the networks are free, and another

one where networks are moderately loaded. The paths selected for the tests were the

same paths used in the throughput tests.

� Traffic-free latency

In the tests of traffic-free latency, there is no other traffic in the network except for the

PingMessages travelling from a sender (i.e., the node S1 in the experimental BIENs) to

the receiver and then back to the sender.

For the first experimental BIEN with three slaves per piconet (See Figure 6.5 (a)), the

impact of the varied path length on the RRT latency of the selected paths is shown in

Figure 6.17. It has been observed that the latency increases with the increase of path

length. This is mainly due to the increase in transmission delays and processing delays,

as the ping messages pass through multiple hops as the path length increases. The

average latency increases from 136.18 ms to 262.43 ms when the path length increases

from 2 hops to 3 hops, while it increases to 348.45 ms when the path length becomes 4

hops. The corresponding latency percentages increase by 92.71% and 32.78% with the

path increases from 2 to 3 hops and 3 to 4 hops, respectively. The reason for the large

latency rise of 92.71% is due to the path incorporating bridge node B1 when the length

increases from 2 to 3 hops, which creates bottlenecks for the traffic.

Chapter 6: Experiment and Performance Evaluation 86

Figure 6.17 Comparison of traffic-free latency by path length in the BIEN shown in Figure 6.4 (a)

The RRT latencies of the same paths with varied path length in the second experimental

BIEN and the third experimental BIEN are shown in Figures 6.18 and 6.19,

respectively. Similar trends in the latency with an increase of the path length to that of

the first BIEN have been, respectively, observed in the two figures. In the second

experimental BIEN, which has four slaves in each piconet, the average latency rises

from 155.50 ms to 279.40 ms, and to 380.90 ms when the path length increases from 2

to 3 hops and then to 4 hops, respectively, while the average latency of the third BIEN

changes from 162.93 ms to 284.35 ms, and then to 386.40 ms, with a respective

increase in the path length. The latency in these two BIENs also has a large increase

when the path goes through bridge node B1; i.e., 79.68% and 74.45%, respectively.

Figure 6.18 Comparison of traffic-free latency by path length in the BIEN shown in Figure 6.4 (b)

Chapter 6: Experiment and Performance Evaluation 87

Figure 6.19 Comparison of traffic-free latency by path length in the BIEN shown in Figure 6.4 (c)

Figure 6.20 shows a comparison of the average traffic-free latency by varying the path

length and the different numbers of slaves in the different experimental BIENs. As well

as showing the trend that the latency increases with increases in the path length in all of

the BIENs, it can also be observed that the latency of a path with the same length rises

with the number within slaves of a piconet in the experimental networks. This is due to

the increased switching overhead inside a piconet when the number of slaves of the

piconet increases.

Figure 6.20 Comparison of average traffic–free latency in the experimental BIENs

Chapter 6: Experiment and Performance Evaluation 88

� Traffic-dependent latency

The methods used to test the traffic-dependent latency were the same as those used in

the tests of the traffic-free latency. In these tests of traffic-dependent latency, however,

all the nodes in the experimental BIEN, except the sender of the PingMessages,

automatically kept generating traffic loads through the network by continuing to send

random numbers of TrafficMessages to randomly selected destination nodes in the

network at random time intervals.

Figure 6.21 Comparison of traffic-dependent latency by path length in the BIEN

shown in Figure 6.4 (a)

Figure 6.21 shows a comparison of the traffic-dependent latency by varying the path

length in the first experimental BIEN. It can be seen that, similarly to the traffic-free

latency results, the traffic-dependent latency increases with an increase in the path

length. The average latency increases from 152.65 ms to 269.88 ms when the path

length increases from 2 hops to 3 hops, and it increases to 358.58 ms when the path

length increases to 4 hops. The corresponding percentages of the latency increases are

76.80% and 32.87% with path increases from 2 to 3 hops and from 3 to 4 hops,

respectively. As seen in the tests of the traffic-free latencies above, there is a large

latency rise of 76.80% when the path passes through bridge node B1, which is the

traffic bottleneck that causes the increase in the latency.

Chapter 6: Experiment and Performance Evaluation 89

Figure 6.22 Comparison of traffic-dependent latency by path length in the BIEN

shown in Figure 6.4 (b)

In the tests of traffic-dependent latency for the second and third experimental BIENs,

the impact of path length on latency in these two BIENs is shown in Figures 6.22 and

6.23, respectively. It has been observed that the latency in both networks increases with

path length, as it does in the first BIEN. In Figure 6.22, the average traffic-dependent

latency in the second BIEN increases from 169.45 ms to 285.03 ms, and to 394.93 ms

when the path length increases from 2 hops to 3 hops and then to 4 hops, respectively,

while the corresponding latencies in the third BIEN are 180.85 ms, 307.65 ms, and

434.90 ms (See Figure 6.23). The latency in both networks also increases greatly, by

70.11% and 68.2%, respectively, in the second and third BIENs, when the path length

passes through bridge node B1.

Figure 6.23 Comparison of traffic-dependent latency by path length in the BIEN

shown in Figure 6.4 (c)

Chapter 6: Experiment and Performance Evaluation 90

Figure 6.24 shows a comparison of the average traffic-dependent latency by the varying

path length and the varied number of slaves in the three experimental BIENs. As

discussed above, latency increases with path length in all of the BIENs. It can also be

seen that the latency of a path with the same length increases with the number of slaves

in a piconet in the networks due to increased overheads inside a piconet when a piconet

has a greater number of slaves.

Figure 6.24 Comparison of average traffic-dependent latency in the experimental BIENs

Figure 6.25 presents a summary of the relation of the average RRT latency in both

traffic-free and traffic-dependent situations, versus the path length and the number of

slaves in a piconet discussed above. In Figure 6.25, latency increases with path length

whether or not there is traffic in all of the networks. It is also found that the latency of a

path gradually increases with the number of slaves in a piconet in the different BIENs,

in both traffic situations. The average traffic-dependent latencies of the paths are,

however, slightly bigger than those of the traffic-free of the same paths in the networks,

due to the increased processing time as a result of the increased traffic load. In this

figure, the trend of the latencies, in terms of path length and the number of slaves of a

piconet in all of the experimental BIENs have confirmed the correct behaviour of the

BIEN software application, high efficiency of the implemented routing protocol, and

stable performance in the latency of the BIEN network.

Chapter 6: Experiment and Performance Evaluation 91

Figure 6.25 Comparison of average latency by different path length and the varying number of

slaves in a piconet in the BIENs

6.3 Summary

This chapter presented the experimental deployment, the three experimental BIEN

networks set up in the experiments, and the measurement methods used in testing and

evaluating the performance in terms of the throughput and RRT latency of the networks.

These BIENs have delivered reliable throughput and low latency over the multiple hops

with varying numbers of slaves within the piconets. Although some graphs shown

above contain instances of sharp increases or significant troughs as a function of the x-

axis parameter, this is due to overhead of the traffic of routing update and data

transferring from the rest of the networks when the experiments were conducting.

Additional contribution comes from the unavoidable interference around the

experimental environments. The experimental results have confirmed a clear and strong

association between the performance for throughput and latency, in relation to path

length and the number of slaves in a piconet. They have also further proved the

necessity for minimizing the number of the bridge nodes in the scatternets due to their

traffic bottleneck effect in such networks. Therefore, in order to achieve good

performance in terms of throughput and latency, a maximum of three to four hops in a

transmission path in Bluetooth wireless network is recommended.

7 Conclusions and future work

This thesis presented the Bluetooth information exchange network (BIEN), an indoor ad

hoc Bluetooth wireless network designed to support information exchange between

Bluetooth devices. This last chapter summarizes the achievements of this work and

discusses possible directions for future work.

7.1 Summary

The BIEN developed here is an approach to implement an ad hoc Bluetooth multi-hop

wireless network, using commercial Bluetooth devices for short-range communication.

It demonstrates the feasibility of Bluetooth technology supporting a spontaneous

wireless network for short-range communication.

The thesis initially introduced the background and current knowledge regarding

Bluetooth technology, Bluetooth ad hoc wireless network technology, the existing

solutions to Bluetooth scatternet formation, wireless network routing protocols, and the

hardware and software tools used for developing the BIEN application. This was very

important for the efficient design of the BIEN system and the BIEN formation schema,

and the development of the BIEN application.

The BIEN application developed in this work allows Bluetooth devices to connect to

each other to spontaneously form a BIEN of any topology and any size. Through the

implementation of the RIP routing protocol, each Bluetooth device within the network

works as a router and freely exchanges information with any other device in the network

by means of file and image transfer, and communicating by text.

The developed BIEN application was evaluated in a test-bed in which three BIENs were

built. These experimental BIENs were created in conformation to the developed BIEN

formation schema, using a group of Bluetooth devices that were configured with the

Chapter 7: Conclusions and Future Work 93

BIEN application. They had similar topologies, but the number of slaves in a piconet in

these networks varied from three to five. The performance evaluation was made with a

focus on the throughput and latency of the communication paths. The positive

associations of performance in throughput and latency with path length and slave

number in a piconet have confirmed the correct behaviour of the BIEN application, the

high efficiency of the RIP routing protocol by the availability of routes with the

minimum latency time, and the steady performance in the throughput and latency of the

BIEN networks. The experimental results have also further confirmed the necessity for

minimizing the number of bridge nodes in Bluetooth networks.

Overall, although the principal tool used for developing the Bluetooth network

application, Bluetooth APIs (e.g. JSR-82), is still under development, this thesis

demonstrated how Bluetooth technology can be used to design, develop, and deploy ad

hoc wireless networks, using commercial Bluetooth devices for communication. Most

current research on the topic of Bluetooth network formation is based on simulation

results. Due to this, the most important contribution of this thesis is that it presents a

practical proof of how well Bluetooth technology supports ad hoc wireless network

technology. It also demonstrated how well the RIP routing protocol can be used to

perform routing in an ad hoc Bluetooth wireless network. All these results are helpful in

designing Bluetooth scatternet formation algorithms and in the development of routing

mechanism for such networks.

7.2 Future work

Due to time limitations, some aspects of the BIEN have not been numerically

investigated in this research. The developed application can continue to operate as an

evaluation tool for Bluetooth networks of differing topologies, sizes and varying

coverage in terms of distance for the node spacing. Based on the current work, future

work could focus on enhancing the application functionality and improving the

performance of BIEN:

� Mobility issue: This could be tested by adapting the BlueNode application to

Bluetooth mobile devices, such as Cell phones and PDAs, to form outdoor ad hoc

Bluetooth mobile BIENs for information exchange.

� Alternative ad hoc routing protocols: An investigation of the possibility of

improving the routing efficiency of the BIENs by implementing other ad hoc

wireless routing protocols, such as DSDV and AODV.

Chapter 7: Conclusions and Future Work 94

� Facilitating a Bluetooth-Zigbee interface for connecting Bluetooth networks to low

power processing networks.

� Security issue: An implementation of security features to the BIEN, such as

authentication and encryption of usage of the network, could prevent bogus users, or

information interception.

References

[1] Mahmoud QH. Wireless application programming with J2ME and bluetooth.

2003 February, 2003 [cited 2006 October 10]; Available from:

http://developers.sun.com/mobility/midp/articles/bluetooth1/

[2] Bluetooth SIG. Specification of the Bluetooth system. 2004 [cited 2006 25

June]; Available from:

http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/

[3] Bluetooth SIG. Specification of the Bluetooth system. 2007 [cited 2007

October 25th]; 2.1 + EDR:[Available from:

http://bluetooth.com/Bluetooth/Learn/Technology/Specifications/

[4] Bluetooth SIG. Architecture - data transport. How Bluetooth technology works

 2007 [cited 2007 17th March]; Available from:

http://www.bluetooth.com/Bluetooth/Technology/Works/Data_Transport_Architecture.

htm

[5] Bluetooth SIG. Core system architecture. How Bluetooth technology works

2007 [cited 2007 Jan 5th]; Available from:

http://www.bluetooth.com/Bluetooth/Technology/Works/

[6] Hopkins B. Wireless J2ME application with Java and Bluetooth. 2002 [cited

2007 July 5]; Available from: http://java.sys-con.com/node/37089

[7] Hopkins B. Getting started with Java and Bluetooth. 2004 [cited 2006 July 5];

Available from: http://today.java.net/pub/a/today/2004/07/27/bluetooth.html

[8] Enrique Ortiz C. Using the Java APIs for Bluetooth wireless technology. part 1 -

API overview 2004 [cited 2007 May, 8th]; Available from:

http://developers.sun.com/mobility/apis/articles/bluetoothintro/

[9] Miklos G, Racz A, Turanyi Z, Valko A, Johansson P. Performance aspects of

bluetooth scatternet formation. MobiHoc 2000; 2000 August 2000; Boston; 2000. p.

147-8.

[10] Basagni S, Bruno R, Petrioli C. A performance comparison of scatternet

formation protocols for networks of Bluetooth devices. First IEEE International

Conference on Pervasive Computing and Communications (PerCom'03); 2003: IEEE

Computer Society; 2003. p. 341.

[11] Misic J, Misic VB. Performance modeling and analysis of Bluetooth networks:

Auerbach Publications 2006.

[12] McDermott-Wells P. Bluetooth scatternet models. IEEE Potentials. 2004:36-9.

[13] Zaruba GV, Basagni S, Chlamtac I. Bluetrees-scatternet formation to enable

bluetooth-based ad hoc network. ICC 2001. 2001 11-14 June;1:273-7.

References 96

[14] Tan G, Miu A, Guttag J, Balakrishnan H. Forming scatternet from bluetooth

personal area networks. 2001 [cited 2006 October 20th]; Available from:

http://publications.csail.mit.edu/

[15] Law C, Mehta AK, Siu KY. Performance of a new bluetooth scatternet

formation protocol. Proc 2nd ACM Symposium on Mobile Ad Hoc Network and

Conputing (MobiHoc' 01); 2001; Long Beach , USA; 2001. p. 182-92.

[16] Dong Y, Wu J. Three Bluetree formations for constructing efficient scatternets

in Bluetooth. the 7th Joint Conference on information sciences; 2003; 2003. p. p 385-3.

[17] Petrioli C, Basagni S, Chlamtac I. Configuring bluestars: multihop scatternet

formation for bluetooth networks. IEEE Transactions on Computers. 2003;52(6):779-

90.

[18] Basagni S, Bruno R, Petrioli C. Performance evaluation of a new scatternet

formation protocol for multi-hop bluetooth networks. 5th International Symposium on

WPMC; 2002; 2002. p. 208-12.

[19] Wang Z, Thomas RJ, Haas Z. Bluenet-a new scatternet formation scheme. The

35th Annual Hawaii International Conference on System Sciences (HICSS-35'02);

2002; Hawaii; 2002. p. 273-7.

[20] Stojmenovic I. Dominating set based Bluetooth scatternet formation with

localized maintenance. The Workshop on advances in Parallel and Distributed

Computational Models; 2002 April 2002; Ford Lauderdale, FL; 2002.

[21] Petrioli C, Basagni S, Chlamtac I. BlueMesh: degree-constrained Multi-hop

scatternet formation for Bluetooth networks. Mobile Networks and Applications.

2004;9:33-47.

[22] Cgun-choong F, Kee-chaing C. Bluerings - Bluetooth scatternets with ring

structure IASTED Wireless and Optical Communications WOC; 2002 July; Banff,

Canada; 2002.

[23] Lin TY, Tseng YC, Chang KM, Tu CL. Formation, routing, and maintenance

protocols for the bluering scatternet of Bluetooths. The 36th Hawaii International

Conference on System Sciences (HICSS'03); 2003 January; Hawaii, USA; 2003. p. 313-

22.

[24] Salonidis T, Bhagwat P, Tassiulas L, Lamaire R. Distributed topology

construction of bluetooth personal area networks. IEEE INFOCOM 2001; 2001 April

22-26, 2001; Alaska, US: IEEE; 2001. p. 1577-86.

[25] Liu Y, Lee MJ, Saadawi TN. A Bluetooth scatternet-route structure for multihop

ad hoc networks. IEEE journal on selected areas in communications. 2003

February;21(2).

[26] Misic VB, Misic J. Performance of Bluetooth bridges in scatternets with limited

service scheduling. Moblie Networks and Applications. 2004 Feburary 2004;9(1):73-87.

[27] Misic J, Misic VB. Performance modelling and analysis of Bluetooth networks.

Boca Raton, Florida: Auerbach Publications, Taylor & Francis Group, LLC 2006.

[28] Misic VB, Misic J. Minimizing end-to-end delays in Bluetooth scatternet with a

slave/slave bridge. Computer Communications and networks; 2002 14-16 October;

2002. p. 634-9.

[29] Basagni S, Bruno R, Mambrini G. Comparative performance evaluation of

scatternet formation protocols for networks of Bluetooth devices. Wireless Networks.

2004 March 2004;10(2).

[30] Li XY, Stojmenovic I, Wang Y. Partial Delaunay triangulation and degree-

limitedlocalized Bluetooth scatternet formation. IEEE transactions on parallel and

distributed systems. 2004 March 8th;15(4):350-61.

[31] Cano J-C, Ferrandez-Bell D, Manzoni P. Evaluation Bluetooth performance as

the support for context-aware application. Telecommunication Systems. 2005

2005;28(3,4):333-47.

References 97

[32] Cano J-C, Manzoni P, Toh C-K. UbiqMuseum: a Bluetooth and Java based

context-aware system for ubiquitous computing. Wireless Personal Communications.

2006;38:187-202.

[33] Cano J-C, Cano J, Manzoni P. On the design of pervasive computing

applications based on Bluetooth and a P 2 P concept. IEEE. 2006.

[34] Gpnzalez-Castano FJ, Garcia-Reinoso J, Gil-Castineira F, Costa-Montenegro E,

Pousada-Carballo JM. Bluetooth-assisted context-awareness in educational data

networks. Computers & Education. 2005;45:105-21.

[35] Krco S. Bluetooth based wireless sensor networks-Implementation issues and

solutions. Telecommunication Forum (Telfor). 2002.

[36] Cuomo F, Pugini A. A linux based Bluetooth scatternet formation kit: from

design to performance results. IEEE ICPS Workshop on Multi-hop Ad Hoc Networks:

From Theory to Reality (REALMAN); 2005; 2005.

[37] Forno F, Malnati G, Portelli G. Design and implementation of a Bluetooth ad

hoc network for indoor positioning. IEE Proceedings- Software. 2005 7

October;152(5):223-8.

[38] Inayatullah M, Shah SW, Khan Z, Raza SS, Suhail A. Implementation of table

driven routing protocol for small sized MANET using Bluetooth in Java. Emerging

Technologies ICET 2007 2007 12-13 November; 2007. p. 27-30.

[39] Royer E, Georgia C-K. A review of current routing protocols for ad hoc wireless

networks. IEEE personal communication 1999 April.

[40] Mir NF. Computer and communication networks: Prentice hall 2006.

[41] Tanenbaum AS. Computer networks. 4th ed: Prentice Hall 2003.

[42] Black PE. Bellman-Ford algorithm. 2006 [cited 2007 15th July]; Available

from: http://www.nist.gov/dads/HTML/bellmanford.html

[43] Perkins CE, Bhagwat P. Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers. ACM SIGCOMM'94; 1994 Sept, 1994;

London, U.K.; 1994. p. 234-44.

[44] CISCO. Routing Information Protocol (RIP). Internetworking Technology

Handbook [cited 2007 Oct 20]; Available from:

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/RIP.html

[45] Black PE. Dijkstra's algorithm

 2006 [cited 2007 15th July]; Available from:

http://www.nist.gov/dads/HTML/dijkstraalgo.html

[46] Perkins CE, Royer EM. Ad-hoc on-demand distance vector routing Mobile

Computing Systems and Applications, WMCSA '99 Second IEEE Workshop on; 1999

25-26 Feb 1999; New Orleans, LA, USA; 1999. p. 90-100.

[47] Johnson D. The dynamic source routing protocol (DSR) for mobile ad hoc

networks for IPv4 Rice University, Microsoft Research; 2007 February 2007.

[48] Jayakumar G, Gopinath G. Ad hoc mobile wireless networks routing protocols -

a review. Compurer Science. 2007;3(8):574-82.

[49] Poor R. Wireless mesh networks. 2003 [cited 2007 25th September]; Available

from: http://www.sensorsmag.com/articles/0203/38/main.shtml

[50] Eagles D. Wireless mesh networks. Australia; 2007 5th January, 2007.

[51] Held G. Wireless mesh networks: Auerbach Publications

Taylor & Francis Group, LLC 2005.

[52] Akyidiz IF, Wang X, Wang W. Wireless mesh networks: a survey. Computer

Network. 2005;47:445-87.

[53] Hiertz GR, Max S, Weib E, Berlemann L, Denteneer D, Mangold S. Mesh

technology enabling ubiquitous wireless networks. WICON'06, The 2nd Annual

International Wireless Internet Conference 2006 August 2-5, 2006; Boston, MA, United

States; 2006.

References 98

[54] cambridgeshiretouristguide.com. Cambridge strawberry fair. 2006 [cited 2008

15th January]; Available from:

http://www.cambridgeshiretouristguide.com/Articles/Article_55.asp

[55] Meraki.com. Meraki Mesh 2007 2008 [cited 2008 20th January]; Available

from: http://meraki.com/oursolution/mesh/

[56] smesh.org. SMesh. [cited 2008 19th January]; Available from:

http://smesh.org/

[57] Sunkavalli S, Rarnalmurthy B. MTSF: a fast mesh scatternet formation

algorithm for bluetooth networks. Global Telecommunications Conference, 2004

GLOBECOM'04 IEEE; 2004 29 November- 3 December. 2004; 2004. p. 3594-8.

[58] Jayanna D, Zaruba GV. A dynamic and distributed scatternet formation protocol

for real-life Bluetooth scatternets. the 38th Hawaii International Conference on System

Sciencs-2005; 2005; Hawaii, US: IEEE; 2005.

[59] Sun Microsystems I. Java technology overview. Java technology [cited 2003

December 11th]; Available from: http://java.sun.com/overview.html

[60] Sun Microsystems I. About java technology. The Java technology phenomenon

[cited 2003 November 20th]; Available from:

http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html

[61] Process JC. JSR 82: Java APIs for Bluetooth. 2006 [cited 2006 May 10th];

Available from: http://www.jcp.org/en/jsr/detail?id=82

[62] Intel Research, Volunteers. BlueCove. 2004-2008 [cited 2007 10 September];

2.0.3:[Available from: http://sourceforge.net/project/showfiles.php?group_id=114020

[63] Foundation E. Eclipse. 2004 [cited 2006 June 25]; Available from:

http://www.eclipse.org/

[64] EclipseMe. EclipseMe. 2008 [cited; Available from:

http://eclipseme.org/docs/index.html

Appendix A:

Conference paper

The paper attached to this appendix has been published in the proceedings of the

Australasian Telecommunications Networks and Applications Conference (ATNAC

2008), Adelaide, December 7-10 2008.

Appendix B:

UML class diagram of the BIEN software application

This UML class diagram attached in this appendix was generated by Borland®

Together® 2006 Release 2 for Eclipse.

Appendix C:

Thesis on CD-ROM

The CD-ROM attached to the back cover contains most of the files related to the

research, including an electronic copy of this thesis and the conference paper in the

appendix B, and the source codes of the BIEN software application. The structure of the

CD contents is shown below:

