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 1 

ABSTRACT 2 

Nasal morphology plays an important functional role in the maintenance of upper airway 3 

health.  Identification of functional regions, based on morphological attributes, assists in 4 

correlating location to primary purpose.  The effects of morphological variation on heat and 5 

water mass transport in congested and patent nasal airways were investigated by examining 6 

nasal cross-sectional MRI images from 8 healthy subjects.  This research confirms the 7 

previous identification of functional air-conditioning regions within the nose.  The first is the 8 

anterior region where the morphology prevents over-stressing of tissue heat and fluid supply 9 

near the nares.  The second is the mid region where low flow velocity favours olfaction and 10 

particle deposition.  The third is the posterior region which demonstrates an increase in heat 11 

and water mass flux coefficients to compensate for rising air humidity and temperature.  12 

Factors identified within the congested airway that favour enhanced mucocillary clearance 13 

were also identified. 14 

 15 
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1. INTRODUCTION 2 

The mucociliary blanket in the nasal cavity provides the human airways with the first line of 3 

defence against infection, particles and airborne pollutants through entrapment in sticky 4 

mucus (Bossi et al., 2004; Cone, 2009; Widdicombe, 2002).  Within the nose, this defensive 5 

layer is continuously transported towards the pharynx, where it is cleared by swallowing 6 

(Antunes et al., 2009) or expectoration.  Mucocillary transport velocity (MTV) is 7 

significantly influenced by airway fluid hydration state (Button and Boucher, 2008) and 8 

normally ranges from 3-25 mm/min (Boek et al., 2002; Mygind and Dahl, 1998). 9 

 10 

The interior nasal mucosa also provides heat and moisture to condition inhaled air and to 11 

prevent lower airway dryness (Doorly et al., 2008a; Rouadi et al., 1999).  This air-12 

conditioning function is achieved through the combined action of anatomical features, which 13 

include complex and narrow internal geometry (Croce et al., 2006; Doorly et al., 2008b; 14 

Segal et al., 2008; Wolf et al., 2004), and vascular/cellular regulatory systems (White et al., 15 

2011). 16 

 17 

1.1. Nasal morphology 18 

Modern imaging techniques, such as computed axial tomography (CT) and magnetic 19 

resonance imaging (MRI), have enabled the capture of accurate in-vivo nasal geometric 20 

information, which goes beyond that previously obtained by acoustic rhinometry (AR).  21 

Earlier investigations comparing CT and AR cross-sectional data has a good correlation 22 

within the relatively open anterior spaces of the nose (Çakmak et al., 2003; Hilberg et al., 23 

1989).  However, AR tends to underestimate cross-sectional area (CSA) beyond the complex 24 

and sometimes obstructed turbinate region (Cakmak et al., 2005).  Post-processing of CT data 25 



also provides additional morphological information unavailable through AR techniques, such 1 

as airway perimeter and total airway volume. 2 

Previous analysis of flow trajectories has identified three functional regions within the two 3 

enantiomorphic parts of the nasal airways where nasal morphology is correlated to respiratory 4 

function (Mlynski et al., 2001): 5 

1. The anterior tract, consisting of the vestibule, isthmus and anterior cavum, which act 6 

as a curved nozzle-diffuser that stabilizes and redirects airflow across the turbinates. 7 

2. The mid functional tract, consisting of a slit-like space that presents a large mucosal 8 

surface area to the airflow. 9 

3. The posterior tract, consisting of the posterior cavum, choanae and epipharynx, which 10 

act as a curved nozzle to stabilize and redirect airflow to the lower airways. 11 

 12 

Many morphological studies have been undertaken to improve the functional understanding 13 

of geometry as well as the complex dynamic behaviour within this part of the human airway. 14 

These studies have resulted in many numerical models of heat and water mass transfer.  15 

Analysis techniques vary, but can involve direct importation of CT morphology data into 16 

computational fluid dynamics (CFD) software to provide airflow predictions within complex 17 

3-D domains (Chen et al., 2010; Croce et al., 2006; Garcia et al., 2007; Lindemann et al., 18 

2004; Pless et al., 2004).  Other methods use mathematical models derived from continuity 19 

and transport equations, which are applied to simplified anatomic based geometry to predict 20 

airway heat and water mass transfer (Daviskas et al., 1990; Hanna and Scherer, 1986; Naftali, 21 

1998; Tawhai, 2003; Tsu et al., 1988).  In this case, the internal forced-convection 22 

coefficients for heat and water mass transfer are predicted by the non-dimensional Nusselt 23 

(Nu) and Sherwood (Sh) numbers, determined from two components: 24 



1. Momentum to thermal diffusivity ratio to yield a Prandtl number (Pr) for heat transfer 1 

or momentum to mass diffusivity to yield a Schmidt number (Sc) for mass transfer. 2 

2. Airflow character, such as laminar or turbulent, predicted by Reynolds number (Re) 3 

(Cengel, 2006). 4 

Under conditions of constant fluid properties Pr and Sc remain unchanged meaning airflow 5 

character effectively governs the heat and water mass transfer coefficients.  Airflow regime 6 

state is normally identified by the magnitude of the Re, which expresses the ratio of inertia to 7 

viscous forces as: 8 

Re=VD/ ν      (1) 9 

where V and D represent the mean fluid velocity and pipe diameter respectively, and ν 10 

represents the fluid kinematic viscosity.  When considering non-circular ducts, such as those 11 

found within the nose, D is replaced with a hydraulic diameter (Dh) to account for interaction 12 

between the moving fluid and boundary surfaces (Fox and McDonald, 1994; Sabersky et al., 13 

1999).  This parameter describes the ratio of flow sectional properties, expressed 14 

mathematically as: 15 

Dh=4xCSA/Perimeter      (2) 16 

 17 

Through use of the continuity equation, air volume flow rate (Q) can be written as: 18 

Q=V x CSA      (3) 19 

In reality, the inhaled air physical properties do not significantly change during passage 20 

through the nose.  Given this, variation in CSA and Dh correspond to geometrical changes, 21 

which directly influence the magnitude of Re and hence the heat and water mass transport. 22 

 23 

1.2. Nasal Cycle 24 



It is well known that 20 – 40 % of the population (Davis and Eccles, 2004; Hanif et al., 2000) 1 

experience periodic congestion/decongestion of the erectile tissue in each side of the nose 2 

(Druce, 1988; Lindemann et al., 2003).  This ‘nasal cycle’ results in alternating patent and 3 

congested passages within the two enantiomorphic parts of the airway for periods ranging 4 

from 1 – 7 hours (Kennedy et al., 1988).  This time span is made up from combinations of 5 

discrete ultradian periods spanning 1-1½ hours (Atanasov et al., 2003).  The nasal cycle 6 

usually goes unnoticed since the total nasal airflow resistance remains unaffected (Eccles, 7 

1982; Wolf et al., 2004). 8 

 9 

In this study, the nasal morphology of eight individuals was investigated using MRI 10 

techniques.  Unlike previous work, morphological analysis was used to identify functional 11 

regions within the nose.  To the best of our knowledge, no one has considered the distribution 12 

of CSA and Dh throughout the two enantiomorphic parts of the nasal airway in terms of its 13 

physiological significance to local heat and water flux.  The difference in airflow between 14 

patent and congested airways was also examined with regards to the nasal cycle. 15 

 16 

2. MATERIALS AND METHODS 17 

2.1. Morphology acquisition 18 

Four male and four female healthy non-smoking participants, of mixed ethnicity and ages 19 

ranging from 21 – 51 years and with no prior history of upper airway disease, volunteered for 20 

the study.  Ethical approval was granted by The Auckland University of Technology Ethics 21 

Committee, application number 10/121, with each participant giving informed consent.  Each 22 

participant also undertook a visual nasal internal examination to ensure the absence of 23 

morphological abnormalities such as significantly displaced septum, mucosal inflammation 24 

or other nasal pathological conditions.  All participants had not received any form of 25 



medicine and had not consumed food for 2 hours, or alcohol for 24 hours, prior to 1 

undertaking the MRI scan.  They also undertook a maximal voluntary nasal ventilation test, 2 

measured simultaneously from the nares, to determine the status of their nasal cycle 3 

immediately prior to scanning.  This test was repeated directly upon conclusion of scanning 4 

to ascertain if changes in nasal cycle had occurred during testing.  Participants were studied 5 

in the supine position within a 3-Tesla MRI scanner (Siemens Magnetom Skyra) using a head 6 

array coil.  The region of interest within the nose spanned from the anterior isthmus to the 7 

posterior choanae.  Morphologic image acquisition used T1-weighted sagittal slices of 8 

repetition time (TR) 700 ms, and echo time (TE) of 12.0 ms.  Slice thickness was 0.78 mm, 9 

echo spacing 4.05 ms and duration of each scan was approximately 5 minutes. 10 

 11 

2.2. Airway measurement 12 

Post processing of acquired DICOM format MRI images was undertaken using 3 D-Doctor 13 

™ (Able Software Corp) to define airway boundaries using 0.78 mm coronal slices orientated 14 

perpendicular to the floor of the nose.  Nasal airway geometric properties for each participant 15 

were compiled and plotted using MatLab ™ (MathWorks, Natick, MA, USA). 16 

 17 

3. RESULTS 18 

3.1 Geometry comparisons 19 

Figure 1 shows the distribution of morphological CSA and perimeter data along the nasal 20 

airway vs. non-dimensional airway position (X/L), where X is the distance from the vestibule 21 

and L is the total distance from the vestibule to posterior region of interest.  Figure 1 presents 22 

data for both patent and congested airways and demonstrates magnitudes and distribution 23 

within the normal physiological range (Hilberg et al., 1989; Lang et al., 2003; Yokley, 2009).  24 

Non-dimensional airway position is used to account for inter-participant variation in nasal 25 

X/L=1 



passage length.    The solid curve in each of these figures represents the line of best fit for 1 

each parameter recorded and trends change in nasal morphology along the nasal passages.  2 

The data in Figure 1 assumes uncorrelated residuals.  While this is a questionable assumption, 3 

and indeed a lag plot shows appreciable correlation between consecutive residuals, a formal 4 

analysis using a Gaussian process (Hankin, 2005) shows that the effect of assuming 5 

uncorrelated residuals is likely to be negligible.  There is no information to support gender as 6 

being a significant factor in the distribution of this data. 7 

 8 

4. DISCUSSION AND ANALYSIS 9 

4.1 Cross sectional area distribution 10 

Comparison of morphological properties between patent and congested airways (Figs. 1A to 11 

1D) shows CSA as the only parameter that varies.  The distribution of CSA (Figs. 1a & 1b) 12 

correlates well with other data obtained by both AR and MRI techniques (Çakmak et al., 13 

2003; Cheng et al., 1996; Hilberg et al., 1989; Philip and Renato, 1996; Subramaniam et al., 14 

1998; Wen et al., 2008) and demonstrates the same variation occurring between patent and 15 

congested airways (Lang et al., 2003).  One participant demonstrated uncharacteristically low 16 

CSA and perimeter results within their congested airway. 17 

 18 

4.2. Hydraulic diameter distribution 19 

Figure 2 shows Dh vs. X/L and indicates that Dh in both human patent and congested airways 20 

follows a similar trend; however, the former has relatively higher values than the latter.  Both 21 

of these compare poorly to patent and congested airways, measured using the AR techniques 22 

(Lang et al., 2003), which ranged from 30-60 mm measured at the anterior head of the 23 

inferior turbinate (not shown in Figure 2).  Unlike imaging techniques used in this research, 24 

rhinoresistometry measures flow and pressure in order to calculate Dh which may account for 25 



this poor correlation.  For comparison purposes, results previously obtained from human 1 

cadaver mouldings (Hanna, 1983) are shown in Figure 2.  These demonstrate slightly higher 2 

values than the data obtained in this research which is probably due to unavoidable tissue 3 

shrinkage and the absence of perfusion within cadaveric erectile tissue.  Dh values measured 4 

using MRI in live canine nasal airways (Craven et al., 2007) (also shown in Figure 2) over 5 

the same region demonstrate similar results, both in terms of magnitude and distribution.  6 

These close results may be attributed to both human and canine airways having similar 7 

heating and humidifying functional requirements using similar tidal volumes. 8 

 9 

4.3. Functional regions 10 

Examination of the Dh distribution along the non-dimensional airway (Figure 2) suggests the 11 

presence of three distinct function regions (Mlynski et al., 2001).  The first 20% (X/L=0.2) of 12 

the anterior region of the airway is characterized by a reduction in which corresponds to a 13 

progressive narrowing of CSA.  The mid functional portion, covering a further 60% of the 14 

airway is characterized by a constant minimum Dh value.  Over this region, fluctuation in 15 

CSA (Figs. 1 A & 1B) is counterbalanced by change in perimeter (Figs. 1 C & D).  The 16 

posterior portion, commencing approximately 80 % (X/L=0.8) into the airway, is 17 

characterized by a rapid increase in Dh. 18 

 19 

4.4 Heat and water flux 20 

Assuming constant air physical properties identifies Re as playing a major role in regulating 21 

the heat and mass transfer processes within the nose.  Figure 3A shows the distribution of Re 22 

vs. X/L.  There is a significant reduction in Re magnitude within the mid functional region of 23 

both patent and congested airways.  This indicates a reduction in flow velocity in this region 24 



which favours olfaction function and particulate deposition as well as an increase in the 1 

duration of time air is exposed to the mucosal surfaces. 2 

Figure 3B shows the net heat and water flux (N-Fluxqw) vs. X/L.  This variable, derived from 3 

Re and airway surface area, effectively quantifies the total heat and water flux distribution 4 

along the nasal airway.  Cool and dry air potentially provides the greatest air-conditioning 5 

challenges to the nasal mucosa by placing a disproportionate heat and water mass flux burden 6 

on the anterior airway.  To overcome this ‘shock’ effect, it appears that the initial anterior 7 

region, covering the transition between the skin at the nares and middle airway epithelia 8 

(X/L=0 – 0.20), has reduced N-Fluxqw.  During tidal breathing, cyclic exchanges of heat and 9 

water need to be distributed evenly along the mucosal surface to balance out tissue loadings.  10 

A constant N-Fluxqw value within the mid functional region of the patent airway must 11 

contribute to achieving this under conditions of alternating airflow.  This region covers the 12 

majority of patent airway length (X/L=0.20 – 0.80) and results in progressive heating and 13 

humidifying of inhaled air as it traverses the length of the nasal passage.  Of note are the 14 

fluctuating suppressed N-Fluxqw values for congested airways.  The posterior regions in both 15 

patent and congested airways are characterised by an increase in N-Fluxqw which would 16 

ensure further heat and water flux occurs within this locale. 17 

4.5 Mucocillary clearance 18 

Periodic congestion/decongestion of the nasal airways has been shown previously to assist in 19 

purging contaminants entrapped within the mucus layer of the congested airway (Soane et al., 20 

2001).  In our investigation, reduction in N-Fluxqw occurred at two locations within the mid 21 

functional portion of the congested airway (Fig 3B).  Although the purpose of the nasal cycle 22 

is currently not fully understood, it is thought to play a role in balancing mucosal heat and 23 

water fluxes (Elad et al., 2008), as well as allowing the cells on the congested side to rest and 24 

recharge (Eccles, 1982).  This reduction in N-Fluxqw coincides with reduced air flow in the 25 



congested airway and should result in no net change in air-conditioning of the combined 1 

airways.  Earlier research has found that the degree of water saturation did not correlate to 2 

any position along the airway or time during the nasal cycle (Lindemann et al., 2003).  3 

Reduced heat and water demand within the congested airway leads to replenishment of 4 

airway fluid levels and additional mucus hydration, both of which have been shown to 5 

improve MTV (Kilgour et al., 2004).  Further, diminished airflow within the congested 6 

airway also leads to a reduction in particulate and other airborne pollutant deposition rates 7 

into the sticky mucus layer, further aiding mucocillary clearance.  Since MTV is 8 

predominantly regulated by purinergic mechanisms (Braiman et al., 2000; Bucheimer and 9 

Linden, 2004; Button and Boucher, 2008), mucus transport acts independently of the nasal 10 

cycle. 11 

 12 

CONCLUSIONS 13 

This investigation has identified three functional regions occurring within the nasal airways.  14 

The anterior functional region of both patent and congested airways demonstrates a reduction 15 

in N-Fluxqw that prevents local stressing of underlying tissue heat and water supply.  The mid 16 

functional regions of the two enantiomorphic nasal airways demonstrate a reduction in Re 17 

which favours olfactory function and particulate deposition by increasing the time of air is 18 

exposed to the mucosal surfaces.  This functional region of the patent airway also experiences 19 

constant N-Fluxqw which balances tissue heat and water supply during the period of greatest 20 

demand.  The posterior region of both airways experience increases in N-Fluxqw in order to 21 

achieve further air-conditioning despite reduced driving gradients.  Finally, reduced N-Fluxqw 22 

occurs within the congested airway which supports earlier findings of enhanced mucus 23 

clearance occurring within this passage. 24 

 25 
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 1 

Figure 1: Distribution of participant morphological parameters. (A) Patent airway cross-2 

sectional area. (B) Congested airway cross-sectional area. (C) Patent airway perimeter. (D) 3 

Congested airway perimeter. 4 

 5 
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Figure 2: Human and canine airway hydraulic diameter distribution:  human patent 2 

airway (MRI),  human congested airway (MRI),  canine airway (Craven et al. (2007), 3 

∗ human cadaver (Hanna, 1983). 4 

5 
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 3 

Figure 3: Distribution of airway heat and mass transfer components. (A) Reynolds number. 4 

(B) Net heat and water flux coefficients.  human patent airway,  human congested 5 

airway. 6 
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