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Abstract
The Energy Management System (EMS) applied in battery management system 

(BMS) plays the decisive role in effectiveness and proper operation of any hybrid 

energy storage system. Without significant advances in the state-of-the-art of BMS 

techniques, the future uptake of hybrid electric/electric vehicle applications are not 

feasible. Therefore, this thesis aims to provide a coherent body of work on the 

enhancement of the most important tasks performed by a modern BMS, which includes 

the hybrid EMS design and State of Charge (SoC) estimation. 

The premeditated EMS adopted groups of rules to determine the operation state of 

different components. The main advantage of premeditated EMS is less computational 

burden and easy to apply. A novel rule-based control strategy is proposed throughout 

this thesis to decrease the emission and increase the fuel economy. Then, an 

optimization using genetic algorithm (GA) is applied on the designed rule-based 

control strategy to improve the vehicle performance and achieve reduction of fuel 

consumption and emissions at the same time. This hybrid EMS combined the rule-

based control strategy and its optimization is verified through a bi-directional 

simulation. The hybrid electric vehicle (HEV) model and the input of load condition 

adopted in the simulation are based on the real data to close to the practical 

implementations. In addition, an improved extended Kalman Filter (iEKF) is designed 

to provide high-accuracy SoC estimation of battery. The SoC estimation is considered 

as a dynamic identification process of the parameters of battery model and it 

significantly relies on the battery model. This estimator with iEKF algorithm adopts a 

composite battery model, which combines the method of open-circuit voltage (OCV) 

(to obtain an initial value of parameters), Amp-hour (Ah) method (to dynamically 
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identify the parameters), and the extended Kalman Filter (to improve the accuracy) . 

There are five groups of experiments conducted on Lithium-based cell, to provide the 

data for parameters identification. Finally, the proposed estimator with iEKF algorithm 

is simulated in MATLAB_Simulink to show the effectiveness of the proposed SoC 

estimation in BMS.  
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Chapter 1  Introduction 

This chapter briefly introduces the background and explains the motivation of this 

thesis. It presents an overview of the research issues and challenges in the field of 

electric vehicles (EVs), especially the energy management system (EMS) or battery 

management system (BMS) in EVs. This chapter also gives an outline for the structure 

of the thesis. The contributions and the novelty of work in this research is succinctly 

listed at the end of this chapter. 

1.1 Background 
Automobiles have become an indispensable means of transportation. The daily vehicle 

usage and the automotive manufacturing market are dominated by the traditional 

automobile. However, the high usage of internal combustion engine (ICE) in the 

traditional automobile will inevitably lead to more pollution. Petrol as the main power 

source in ICE of the traditional automobile aggravates the excessive consumption of 

resources, especially non-renewable energy, such as the fossil fuels. Various national 

governments have enforced vehicle emission regulations for environmental issues. 

The harmful components in the exhaust gas from individual units should be less than 

the prescribed threshold values under different regulations for vehicle emission in any 

country. The exhaust gas produced by burning of petrol from ICE is completely 

discharged into the atmosphere. The Carbon dioxide (CO2) in the exhaust gas causes 

the Greenhouse Effect; the Nitrogen-oxide compounds (NOx) destroy the Ozone layer; 

the sulphides lead to acid rain, which will seriously impact the ecological environment 

[1].  The reserves of fossil energy are decreasing at an alarming level and the 
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environmental pollution is getting worse with the social progress and economic 

development [2]. For energy conservation and environmental protection, the 

development of an eco-friendly vehicle has become mandatory. 

The EV refers to a vehicle driven by an electric motor and powered by an on-board 

battery package [3]. The general classifications of the EVs mainly include the Hybrid 

Electric Vehicles (HEVs), Battery Electric Vehicles (BEVs) and Fuel Cell Electric 

Vehicles (FCEVs). Compared to the conventional ICE automobile, there are serval 

advantages for EVs. The battery powers the electric motor (EM) to drive the vehicle 

and there is no pollution in the process. The motor works smoothly with little or no 

noise. Compared to the ICE, the working efficiency of the EM is higher. The EVs 

could be charged at night to take advantage of the ‘valley power’ of the grid. In 

addition, the maintenance of EM is simple and convenient. The ICE regularly requires 

replacing the engine oil and filter, while the EM needs only a lubricant [3, 4].  

 The Global Trend of EVs  

The development of renewable-EVs is a primary task for worldwide automotive 

manufacturers. The data released by EV sales indicate that the rapid progress of EV 

market in recent years is mainly due to the surge of EV-related industries in Europe, 

United States and Asian markets dominated by China [5]. Various countries have 

formulated relevant laws and regulations to promote the development of renewable-

energy vehicles [6]. The Paris Agreement was signed by approximately 200 parties in 

United Nations Framework Convention on Climate Change in 2015, which plans to 

deploy 100 million EVs by 2030 [7]. International Energy Agency proposed that the 

market of EVs will grow to 150 million by 2030 and 1 billion by 2050 [8]. 
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The governments of various countries proposed incentives for EVs, which have 

promoted the sales growth and the development of technologies related to EVs. Major 

auto producers are steadily pushing forward the energy transformation in the field of 

transportation.  According to the data collection reported by EV sales [9], in terms of 

the global market, the total number of EVs exceeded 2 million in 2018.  At the same 

time, the sales of EVs accounted for more than 2.1% of global auto sales.  The sales 

of EVs in 2018 were up 72% compared to 2017.  The main market of the EVs sales is 

dominated by plug-in electric vehicle (PEVs), which include the plug-in battery 

electric vehicles (PBEVs) and plug-in hybrid electric vehicles (PHEVs).  

Norway is the main EV market in Europe and a pioneer in the field of Carbon-free 

transportation worldwide. The data published in International Energy Agency [10] 

showed the sale of PBEVs and PHEVs  in Norway in 2018 increased by 31.2%  and 

accounted for 32% of total vehicle sales compared to 2017. According to the report 

from Nordic Energy Research [11], the Norwegian EV market share is expected to 

exceed 50% in 2019. The EV market share in Norway has reached the highest level in 

the world.  Norway plans to ban traditional fuel vehicles by 2025. Similarly, France 

has announced the prohibition of fuel car by 2040.  France is vigorously building the 

supporting construction of charging piles. The French government levies taxes on 

vehicles based on Carbon: when the Carbon emissions are less than 60g/km, a subsidy 

is granted (up to 6000 euros): otherwise, a tax is levied [12]. The German government 

implements a tax reduction policy for the owners of “zero-emission” vehicles to 

promote the new energy vehicles. Germany expects to reach one million new energy 

vehicle population by 2020 [12].  
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The US government lists the development of new energy vehicles as a national strategy. 

Both the customers and the new energy vehicle manufactures could receive certain 

amounts of subsidies from the US government. Meanwhile, the US government 

encourages investment in the battery technology industry and the purchase of the new 

energy vehicles. The main incentives include exempting the emission test and 

expanding the privilege of EVs [13, 14].  

In Asia [15], Japan attaches importance to the new energy vehicles. In 2020, the market 

share of EVs and HEVs will reach 15% in Japan. The Japanese government encourages 

research institutions to conduct research on the power battery of EVs. The major auto 

companies have launched corresponding development plans [16] for EVs such as 

Toyota, Honda and Nissan. South Korea has increased research and investment in the 

batteries to meet the increasing needs of new energy vehicles. Automobile industry is 

the pillar of the national economy in China. The production and sales of the new energy 

vehicles in China have continued to grow in the last five years. The sales of new energy 

vehicles increased to 40% in 2018 [17].  The Chinese government has implemented 

subsidies and tax reduction polices for customers and manufactures of new energy 

vehicles since 2008 [12]. China plans to exceed five million units of PEVs by 2020, 

while the sales of new energy vehicles have accounted for 10% of the total vehicle 

sales [18]. 

 The Current EV Technology 

With the progress of the EV-related technologies, the performance of EVs is 

improving and gradually meeting the demands of most customers. Meanwhile, the 

manufacturing cost of EVs is continuously decreasing.  As the representative of the 
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advanced technologies/products in the PBEVs industry, the charging system of Tesla 

Model S [19] supports three charging methods- Direct Current (DC) fast charging on 

the super charging pile, high power wall hanging charging and 220 V household socket 

charging. The battery pack (85 kWh) is composed of more than 7000 individual battery 

units in a series and parallel connection configuration. The battery equalization adopts 

the passive equalization approach and the equalization current is 0.1 A. The 

representative of range-extended electric vehicles (REVs) is BMW i3 [20]. The BMW 

i3 [20, 21] is also using Lithium battery pack to power the vehicle. The maximum 

endurance mileage of the BMW i3 is 271 kms under full charge, while the highest 

speed can reach 150 km/h. Meanwhile, the BMW i3 realized fast charging function, 

from 0% to about 80% in one hour.  Nissan Leaf is reported as one of the most popular 

PBEV in recent EV market [22]. Two different types of battery cell have been adopted 

in Nissan Leaf for the versions released in the Asian and the European markets, 

respectively. The battery cell for European market uses the Nickel Cobalt Manganite 

(NCM266) - the battery pack consists of 24 modules and each module includes 8 cells, 

192 cells in total. The rated terminal voltage is 360 V and the weight is 249 kg. The 

output power of the EM is 80 kW, the maximum torque is 280 Nm and the range is 

160 kms. The fast charging function achieves 80% charging within half an hour. The 

version for the Asian market uses the ternary Lithium. The constant speed range 

enables the range to be 389 kms. The Asian Nissan Leaf has fast and slow charging 

modes - the fast charging mode is the same as the European version while the slow 

charging mode can achieve full charge in 8 hours. The Toyota Prius is reported as the 

one of the most popular of PHEVs [23-25]. In terms of the propulsion, Toyota Prius 
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adopts both ICE (1.8 L) and EM. The THS-III system achieved an effective series-

parallel drive based on power split. The power of ICE is divided by the THS-III system 

- one part is directly used to drive the vehicle while another part is used to generate the

electricity to drive the EM. The ratio of the divided power can be adjusted arbitrarily 

according to the different working conditions. 8.8 kWh Lithium battery pack singly 

supplies the power to the pure-electric driving mode of Toyota Prius, which has a 

maximum range of 35 kms and the highest speed of 135 km/h. Because of hybrid 

propulsion, the battery with small capacity of Toyota Prius can be fully charged in a 

short time [23-25].  

With the rapid development of EV technology and related industries, the battery 

technology, as the leading force for the EV development, has made significant progress 

globally. The commonly used battery for EVs mainly includes the Lead-acid batteries, 

NiMH batteries, Lithium Iron Phosphate (LiFePO4) batteries, ternary Lithium batteries 

and Lithium Titanite (Li2TiO3/LTO) batteries [26].  Table 1.1 lists the performance of 

the different mainstream battery types in common usage for EVs in the current era [27, 

28]. It is defined as the discharge current divided by the theoretical current draw under 

which the battery would deliver its nominal rated capacity in one hour. 

Table 1.1 Performance comparison of common battery types. 

Battery types Lead-acid NiMH LiFePO4 Ternary Lithium LTO 
Energy density 
(Wh/kg) 

40 ~ 60 60 ~ 100 70 ~ 120 150 ~ 250 70 ~ 80 

Discharge rate 2 C 3 C 5 C 2 C 6 C 
Cycle life (times) 300 400 2000 500 ~ 1000 25000 
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Battery is the decisive factor in the performance of EVs. However, existing battery 

materials still have limitations in energy/power density, which affect the 

charging/discharging performance. According to the information listed in Table 1.1, 

the energy density, discharge rate and lifetime of the vehicle batteries are gradually 

increasing with more extensive battery material research and applications. Lithium-

based batteries are increasingly popular due to the advantages of high energy/power 

density, longer lifetime, less self-discharge and wide temperature range [29, 30]. The 

LiFePO4 and ternary Lithium batteries are the most commonly used in EVs now [31, 

32]. The LiFePO4 battery has good safety performance. The LiFePO4 battery such as 

BYD Song DM and BJEV EC180 has been widely used in passenger vehicles because 

of high power density and high temperature resistance [33].  The anode material of 

ternary Lithium battery is Nickel-Cobalt Manganite (NCM). The high energy density 

of ternary Lithium shows advantages in higher cruising range [34]. The BEVs 

produced by Tesla are powered by ternary Lithium battery in type 18650 [35]. 

Similarly, BMWi3, Volkswagen E-Golf and BJEV EV200 use the ternary Lithium 

battery to achieve higher cruising range [36, 37].  The LTO battery is commonly used 

in electric bus because of the wide temperature range, good safety performance and 

fast charging characteristics. 

In terms of the vehicle battery manufactures, significant progress has been made by 

Samsung SDI battery industry from South Korea [20, 38]. Several SDI battery plants 

located overseas are into large scale production. The LG Chem as one of the dominant 

battery suppliers has cooperated with several manufactures involved in EVs, such as 

Renault S.A. and AUDI. Besides, the SK Innovation and the PolyPlus Battery 
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Company from South Korea cooperatively researched and developed a Lithium metal 

battery with high energy density and longer lifecycle [39]. There are major 

breakthroughs in battery technology in China [40]. The development of EVs in China 

is mainly based on ternary Lithium battery [41]. Since 2012, China has vigorously 

developed the power battery for EVs, which has tripled the energy density of the 

Lithium-battery cell and the price dropped by 70% in 2017.  

The main difference between the EV and traditional car is the use of electricity to drive 

the EV. Lithium-based batteries have higher energy/power density among many types 

of rechargeable batteries. The Lithium-based battery is tipped to be the dominant 

player in the current battery market. There are still many restrictions on the use of the 

battery. The Lithium-based battery without protection is prone to excessive 

charge/discharge and overheating, which will have a great impact on the performance 

of the battery [42]. According to the characteristics of the different types of Lithium-

based batteries, the effective management of the different working modes and states 

of battery pack poses a significant issue. The normal operation of vehicular Lithium-

based battery pack partially depends on a matched BMS. The coordinative works 

between the battery pack, the EM, and the engine are mainly achieved by the BMS or 

EMS [43]. 

Figure 1.1 shows a summary of general BMS for EVs [44, 45]. The function of 

monitoring is to collect the voltage, current and temperature information of the battery. 

The battery information monitoring should be accurate and reliable because it is the 

basis for all the other works of the BMS, for example the State of Charge (SoC) 
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estimation. The protection function is mainly to avoid overcharge/discharge and over-

temperature working. In particular, Lithium-based battery is prone to damage in the 

case of overcharge/discharge such as capacity attenuation and can lead to burning to 

explosion [46].  

The EMS plays an important role in BMS, which determines the different working 

states (charge/discharge) between the battery and other components such as the EM or 

the engine. At the same time, due to the electrochemical characteristics of the battery, 

the voltage of the cells is changing dynamically during the energy transfer. 

The high difference among the cell voltage decreases both stability and safety. 

Therefore, the equalization control of the battery plays a significant part in the EMS. 

The main purpose of the EMS is to maximize the efficiency of the battery without any 

damage, which will depend on the different pathways of the control strategy [47, 48]. 

However, the control strategy is limited by the practical conditions during the EV 

running process. The optimization control is required to work cooperatively with the 

control strategy to improve the working efficiency of the battery.  
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Voltage measurement
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Overcharge/discharge protection

Over temperature protection

Charge/discharge control strategy
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Maximum charge/discharge current

Energy delivered

Internal impedance

SoC, SoH, SoP estimation

Over/under voltage protection (lead-acid and Li-ion cells)

Over-pressure protection (NiMH batteries)

Ground fault and leakage current detection

Figure 1.1 General functions of BMS. 

The communication between various elements is essential. The different functions of 

BMS are achieved by different modules. The hardware, which includes the cell-

controller (modular architecture) and controller-controller (distributed architecture), is 

properly managed by internal communication [47-49]. The external communication 
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connects the BMS and other electronic control systems; different types of 

communications such as the Controller Area Network (CAN) bus and wireless 

communications are often used [49]. In addition, the regular operation of the BMS 

requires some necessary calculations such as maximum charge/discharge current, 

number of cycles, the operating time of the battery, the internal impedance and the 

energy delivered in one charge cycle and the total energy delivered since the first use. 

For the BMS related products, many EV companies mainly in the US, Germany and 

Japan are involved in the BMS research and production. The SmartGuard system 

developed by Aerovironment in the US is an early representative product of BMS [50]. 

An integrated chip is used in the SmartGuard system to measure the voltage and 

temperature of the battery. The BatOpt designed by AC Propulsion Company collects 

the battery information through a bussing technique. The majority of the research 

institutions in the US focus on the battery performance for the BMS design [51]. For 

example, the designed BMS based on the battery decay effectively avoids the working 

mode which can lead to rapid battery deterioration [51]. The basic functions of 

different BMS design are similar. However, the implementation is different. Germany, 

which dominates the European market for EVs, has developed sophisticated BMS of 

its own. A BMS of BATTMAN manages different types of batteries by setting up both 

the hardware and software. The BMS of BADICHEQ and BADICOACH was 

designed by Electronic GmbH and Werner Retzlaff [52, 53]. In terms of the battery 

equalization, the BADICHEQ includes an additional EM to charge the cell to decrease 

the difference.  The BADICOACH is an improvement on the BADICHEQ, which 

enhances the functions of monitor and communication to obtain a faster response. The 



28 

Preh Company from Germany has spent years developing vehicular components and 

control systems [54]. They designed an effective BMS for the BEV of BMW i3, which 

includes the electronic control unit (ECU) of the battery management unit (BMU) and 

cell supervising sensor unit (CSSU). The CSSU monitors the voltage and temperature 

of the battery in real-time while the measured data is processed by the BMU. In Japan, 

research related to BMS has been conducted since 1990s [55]. Toyota began 

researching on the BMS for EVs more than a decade ago [56]. Their research studied 

different types of batteries and compared the control strategies based on many groups 

of contrast tests. The BMS design in Prius of Toyota has an advanced thermal 

management system - the temperature distribution of the battery can be balanced by 

evacuating the excess heat to keep a reasonable temperature environment [57].  

1.2 Motivation 
From the background information provided in section 1.1, it can be seen that the global 

popularity of EVs is an irresistible trend. However, the open and pressing issues in 

efficiency, cost and safety for the EVs are significant in terms of research. The current 

challenges of EV related technologies includes three main aspects: 

• The vehicle control technology:

The vehicle control unit (VCU) is the core unit to decide the different working

modes by collecting the signals from the accelerator pedal, the brake pedal and

the gear, which respond to the driving requirements in different operating

conditions. The operating modes of different types of the EVs vary from each

other and strongly rely on the battery pack. For example, the power demands

and energy transmission of the electric bus are different from that of small-size
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passenger vehicle. The challenge of the VCU technology is to seek an optimal 

control strategy amongst the battery pack, the driving system and the vehicle, 

which achieve the purpose of energy conservation and emission reduction 

when meeting the driving demands. 

• The motor control technology:

The motor control unit (MCU) controls the energy transmission between the

battery pack and the EM. The controlled objects mainly include the EM,

DC/DC converter, vehicle-mounted charger and the electric air-conditioning

system. To control the voltage, current, phase sequence and frequency of the

three-phase input AC, the MCU adjusts the performance of EM to obtain an

appropriate speed, torque, steering and to increase the efficiency of the braking

energy recovery system.  The MCU is the core component for motor driving,

which is facing the issues of high integrated and high voltage design. The

voltage endurance capability of the insulated gate bipolar transistor (IGBT) for

the MCU is currently developing systems in the range of 650 V to 750 V and

even up to 1200 V.

• The BMS technology:

The BMS is the core technology of the power battery pack to work with VCU

and MCU cooperatively. The current difficulties of the BMS technology

mainly include an accurate SoC estimation which is required to build a reliable

battery model, the optimization of battery charge/discharge control algorithm

which can improve the efficiency and provide a friendly working environment

for the battery, an efficient control strategy of battery equalization which is
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required for transferring from energy dissipative type to non-energy dissipative 

type, a sensitive temperature protection system which requires a cooling 

method with faster cooling speeds compared to the cold air system such as 

liquid cooling technology and an advanced self-diagnostic technology for BMS 

which prevents the failure of the BMS in advance. 

Recognising the main technical issues listed above, the difficulties and challenges 

faced by the researchers to promote the EV technical industry are interdisciplinary. 

The main areas include control engineering, materials science, hardware/software 

design, optimization algorithms, etc.. The current material technology and production 

process of the battery have many limitations which reflect in the low charging rate, 

poor safety performance, low instantaneous power, low power/energy density and high 

cost. Moreover, there are many uncertainties and impact factors in the electrochemical 

reaction when the battery is in operation and the safety issues cannot be ignored. The 

BEVs strongly rely on the dynamic performance of the battery, while the PBEVs 

replenish battery power in the plug-in rechargeable method.  This means an extensive 

establishment of the charging station is necessary, which brings a heavy economic 

burden. The widespread popularity of either BEVs or PBEVs seems difficult to 

achieve due to the limitations of the current vehicular battery and the huge investment 

of charging facility. HEVs are seen as a short-term transition from the traditional ICE 

automobile to BEVs.  Both the engine and the battery provide the driving force while 

the HEVs do not entirely rely on the battery. The HEVs have the potential to ensure a 

good driving experience while saving energy and reducing emission. There are two 

types of energy transmission - mechanical and electric energy transmissions, which 
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demand an appropriate EMS to effectively engage the different working modes of the 

engine, EM and the battery.  

1.3 Thesis Contribution 
This thesis focuses on the EMS/BMS to control and monitor the battery aspects of the 

EV operation. The research presents a novel control strategy for PHEVs - an 

optimization based on genetic algorithm (GA) achieved significant reduction of the 

emission. The design and optimization of the EMS is verified by modelling and 

simulation according to the value of harmful gases emissions and fuel consumption. 

Meanwhile, the implementations of the designed and optimized EMS significantly rely 

on the SoC estimation. To increase the reliability and feasibility of the designed and 

optimized EMS, an improved extended Kalman filter (iEKF) has been designed to 

obtain an accurate SoC estimation. The battery model used in SoC estimation is based 

on real experimental data of Lithium Iron Phosphate (LiFePO4) battery. The research 

presented in this thesis has resulted in three journal and one conference publications, 

with another journal paper currently under review.  

Journal publications: 

• Ding, N., Prasad, K. and Lie, T. T. (2017). The electric vehicle: a

review. International Journal of Electric and Hybrid Vehicles, 9(1), 49-66.

• Ding, N., Lie, T. and Prasad, K. (2017). The Design of Control Strategy for

Blended Series-Parallel Power-Split PHEV–a Simulation Study. International

Journal of Transportation Systems, 2, 21-24.
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• Ding, N., Prasad, K., Lie, T. T. and Cui, J. (2019). State of Charge Estimation

of a Composite Lithium-Based Battery Model Based on an Improved Extended

Kalman Filter Algorithm. Inventions, 4(4), 66.

Conference publication: 

• Ding, N., Prasad, K. and Lie, T. T. (2017, November). The potential Li 4 Ti 5

O 12 battery products applications for New Zealand electric buses. In 2017

24th International Conference on Mechatronics and Machine Vision in

Practice (M2VIP) (pp. 1-7). IEEE.

1.4 Aims and Objectives of the Thesis 

The main aims and objectives of the thesis can be itemized as follows： 

• To develop an efficient energy management system firstly using a rule-based

control strategy.  This is further improved by using Genetic Algorithms to

achieve a better fuel economy and reduced emissions.

• To develop an accurate estimation of the State of Charge (SoC) of the

battery.  This is done by using improved Extended Kalman Filter (iEKF)

approach.   The approach also used real battery experimental data from a

company which was used to build the battery model.

1.5 Thesis Organisation 
This thesis is organized into several chapters. 
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Chapter 1 gives the introduction of the thesis and discusses the motivations behind 

the research work for different objectives. Chapter 1 enables the readers to quickly 

understand the research difficulties and challenges in the field of EVs.  

Chapter 2 reviews the technologies in EVs, including the mainstream technologies of 

the battery models and energy transmission in various types of EVs. The background 

of the EMS is also provided, which is discretionary for developing an advanced control 

strategy for PHEVs. The modelling methods and experimental control for the 

characteristics of the different types of battery are discussed with a view to later 

development of the designed battery model. The optimization techniques are reviewed 

to form appropriate algorithms in EMS design, which can robustly optimize the 

designed control strategy to improve the performance such as the fuel economy. 

Finally, the state-of-art of the SoC estimation is reviewed to develop the monitoring 

function of BMS design in this thesis. 

Chapter 3 discusses the importance of the EMS for PHEVs. The control strategy as 

the core technology in EMS design mainly divided into adaptive algorithm and the 

control strategy with empiricism. A novel rule-based control strategy is demonstrated 

for the purpose of decreasing the fuel consumption and the emissions. Also, simulation 

studies of the design rule-based control strategy are proposed. The rule-based control 

strategy is implemented in a practical vehicle model using MATLAB.  

Chapter 4 presents and discusses a Genetic Algorithm (GA) for optimization. The 

algorithm will be used to optimize designed rule-based control strategy demonstrated 

in Chapter 3. The GA mathematical model built considering the scenarios in PHEVs. 
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The fitness functions are set based on the optimizing objectives of reducing the fuel 

consumption and emission. The group of the solutions in GA mathematical model is 

decided by a logical and mechanical controlling. The reasons for setting the parameter 

values is explained, which includes the initial population and genetic operator selection, 

crossover and mutation. A simulation study is conducted with same vehicle model and 

input of working conditions to compare the optimization results. 

Chapter 5 describes the battery models and estimation algorithm for the monitoring 

function in BMS. The different battery models are evaluated in terms of model 

complexity, ability of the voltage tracking and the model development efficiency. A 

novel composite battery model is developed according to the electrochemical 

empirical models. The composite battery model based on the real experimental data of 

the LiFePO4 is built. The composite battery model showed an accurate voltage tracking 

and used to build the estimator. An iEKF algorithm is described for SoC estimation, 

which combined the Open Circuit Voltage (OCV), Ah counting method and the EKF 

methods.  The simulation results showed that the iEKF is capable of an accurate online 

parameter identification based on the composite model, even under varying operating 

conditions. Moreover, the significant issues for SoC estimation applications in 

monitoring module for BMS are analysed at the end of this chapter. A comparative 

and improved SoC estimation model is proposed for these issues, which include a 

second-order RC equivalent circuit model (ECM) and Thevenin battery model. 
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Chapter 6 draws a number of conclusions and summaries the contributions of this 

research work in terms of EMS and BMS.  It also presents the scope for any future 

work in the areas of EMS, BMS and EVs. 



36 

Chapter 2  Literature Review 

The implementations of EVs and related technologies have made significant progress 

in recent years, due to the urgent demand for energy saving and emission reduction. 

The EMS and BMS play a decisive role for the development of all types of EVs. 

Advanced techniques in EMS and BMS are constantly evolving. This chapter, 

therefore, targets at providing a review of the cutting-edge technologies in the field of 

EVs. The characteristics of different types of EVs are analysed and the advantages and 

disadvantages of each type of EVs are compared. Thereafter, a comprehensive review 

on the EMS and optimization approaches is undertaken. Finally, the monitoring 

methods for BMS are discussed to provide the readers with a deeper understanding of 

the topic. The review on the EVs topologies presented in section 2.1.1, has been 

successfully published as a review paper [58], while other technical reviews in the 

chapter are collected based on many issues in the research field of EVs.  

2.1 A Review of Electric Vehicles 
The invention of EVs in 1881 preceded the petrol- or diesel- driven ICEV. In the early 

stages, pure electric driven technique was only applied in small vehicles such as golf 

karts due to the then limitations in the battery technology. At that time, the EVs 

accounted for ~38% of the market share, only ~2% behind the steam-engine vehicles. 

The diesel- and petrol-powered ICEVs have dominated the vehicle market since 1905. 

At the end of 19th century and early of 20th century, the development of lead-acid 

batteries and rechargeable nickel-cadmium batteries brought new opportunities for the 

development of EVs.  In the years 1990 and 1991, the development of nickel-metal 
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hydride (NiMH) and lithium-ion batteries with higher energy densities revolutionised 

the energy storage industries. The increased interests due to the issues of energy crisis 

and the environmental pollution accelerated the research and development of the EVs. 

The significant success in Toyota Prius HEV in 1997 showed that the promising and 

irreversible trend of turning from conventional ICEVs to the EVs. In 2008, the first 

BEV Roadster by US car manufacturer Tesla Motor company aroused the worldwide 

attention of the vehicle industries to the development of BEVs and related technologies 

[59, 60]. In recent years, major automotive manufactures such as BMW, Nissan and 

Mitsubishi, have vigorously developed the EVs as a result of technological progress 

in the battery field. In the following sections, some of the most advanced and most 

used technologies in EVs, PHEVs and BMS industry are discussed.  

 EV topologies [58] 

Typically, the EV refers to any vehicle in which the electric power is responsible for 

the propulsion and at least one EM is used. As a general term in industry and academia, 

there is no specific distinction of the energy storage medium, such as supercapacitor 

or flywheel or the air compression energy storage unit (ESU), used in EVs. The term 

EVs in this thesis is used to describe vehicles that use battery as the energy storage 

medium. 

Taking the power supplement and propulsion devices into account, Table 2.1 shows a 

brief classification of different EVs. The BEV is purely fed by electricity from the 

power storage unit, while the propulsion of BEV is solely provided by an electric motor. 

The driving system of HEV combines the electric motor and the engine, while the 

power sources involve both electricity and gasoline or diesel. FCEV is driven by an 
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electric motor and could be directly or indirectly powered using hydrogen, methanol, 

ethanol or gasoline [58]. 

Table 2.1 General comparison of EVs. 

Types BEV HEV FCEV 
Drive section EM EM and ICE EM 
Energy sources ESU (battery) ESU and petrol tank  Fuel cell 
Energy 
supplements 

Electricity and power 
system 

Electricity and power 
system, gasoline station 

Hydroge-
nide 

 

Battery Electric Vehicles (BEVs) 

In BEV, energy storage capacity fully depends on the battery technology. Zero 

discharge emission of BEV is a significant advantage because the electrical energy is 

solely supplied from the vehicle-mounted battery. On the other hand, the limitations 

on the present status of the on-board battery technology of BEV makes it less attractive 

than ICEV under similar economic and driving requirements. Batteries with high 

power densities but low energy densities result in longer charging time – even with 

fast charging technologies, one hour to several hours for full charging is necessary. 

Thus, main challenges of the BEV are limited driving range, high initial cost and lack 

of charging infrastructure [61]. For the practical implementation, the size and location 

of the battery inside the BEV should also be standardised [62].  

Fuel Cell Electric Vehicles (FCEVs) 

FCEVs are attractive because of zero roadside emissions. Even taking the overall 

emissions into account, which include the emission from chemical plants and on-
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road reformers, the FCEV seems still competitive. Fuel cell (FC) is the main power 

supplier and the critical technology for FCEV is an electrochemical device that 

produces DC electrical energy through a chemical reaction. There are five main 

components in FC: anode, an anode layer, electrolyte, cathode and a cathode catalyst 

layer. With suitable parallel/series connection of FC sources, the required amount of 

power can be produced to drive the car. In terms of driving range, it is comparable 

to ICEV, thus resulting in a wide range of application of FCs from small scale plants 

of the order of 200 W to small power plants of the order of 500 kW. However, the 

high initial cost and lack of refuelling stations are still regarded as significant 

challenges for the success of FCEV [63]. Also, the supply electricity continuity of 

FCs is less reliable than conventional battery used in EVs. 

The crucial advantage of BEV and FCEV is the ‘zero emission’ and hence reduced air 

pollution. However, the ‘zero emission’ of BEV and FCEV is not absolute 

considering the emissions during the whole processing. However, “what is critical as 

the main pollution-contributor and how” are the topics that are hardly discussed. For 

example, the pollution-contributors include chemical contamination when producing 

the fuel cell and the battery (or the electrochemical plant for FCs), the emissions during 

the vehicle manufacture, the pollution from scrap battery processing, etc.. 

Hybrid Electric Vehicles (HEVs) 

The HEV combines the properties of ICEV and BEV. Driving power sources of HEV 

include both gasoline/diesel and electricity; the propulsion relies on the engine and 

electric motor. According to different refuelling or recharging measures, HEVs can 
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be classified as either conventional HEVs or grid-able HEVs. Based on levels of the 

combination, the conventional HEV could be further developed to three types: 

micro, mild and full HEV. The grid-able HEV could be either PHEV or range-

extended electric vehicle (REV) [62]. Table 2.2 shows different categories of EVs 

based on the energy source and propulsion device. 

Table 2.2 Classification of EVs 

Energy Source Vehicle Type Propulsion Device 

Gasoline 
ICEV 

Engine Micro HEV 

Mild HEV 

Full HEV 

PHEV 

REV    Electric Motor  

Electricity 

Hydrogen 

BEV 

PBEV 

FCEV 

As both electricity and petrol propel the HEV, the driving range of HEV is comparable 

to that of ICEV. The economic practicality of HEV seems to take more advantages 

than BEV due to the status of present battery technology. However, the need for 

engine and gasoline is not eliminated in HEV – so there is no zero emission. The 

combination of electric generator and engine increases the complexity of the 

manufacturing process and the initial cost. Therefore, the challenges for HEV are the 

design of these two propulsion devices to achieve an optimal efficiency while reducing 

the design complexity at the same time [64]. Going through the overall development 
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of EVs and considering both the economy and the technology, HEV has the most 

potential to develop and is expected to dominate the next few decades. 

EVs are fully or partially energised from the batteries, which themselves are directly 

or indirectly charged from either a power station and/or electrochemical reactions. 

Therefore, various renewable energy sources should be used to improve the overall 

emission of EVs. Figure 2.1 gives the energy diversification based on different 

feeding measures for the EV. 

 

Figure 2.1 Energy diversification of EVs. 
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 System Layout of HEVs 

Since both ICE and EM provide the propulsion, there are two types of energy 

transmission in HEVs: electrical and mechanical energy transmissions. Figure 2.2 

illustrates a typical system layout of the HEVs. The components shown in Figure 2.2 

are generally divided into four systems and described in the following sections. 

 

Figure 2.2 Typical system layout of HEVs. 

Energy storage system 

The energy storage system plays a significant role in EVs and HEVs to ensure a 

dynamic performance. The energy storage system can be classified into two types - 

baseload energy storage and peak energy storage [65]. The baseload energy storage 

technology is used in situations of large electricity demand, typically in BEVs. The 

peak energy storage technology is used in situations of high-rate charge/discharge 

cycle with little capacity degradation such as the supercapacitor or flywheel. The 

energy storage system includes the main battery pack and a back-up battery. The main 

battery pack is used to provide sufficient power for the normal operation of EVs/HEVs 
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[65, 66]. To avoid excessive consumption of the main battery pack, the main battery 

pack will be automatically shut down and isolated when the vehicle is turned off and 

not required to power the drivetrain. However, various other devices may continue 

working and require some amount of power.  The back-up battery will be used to 

power such devices without depleting the main battery pack.  

As discussed earlier in Chapter 1 (section 1.1 and Table 1.1), three main types of 

batteries are suitable for energy storage in EVs/HEVs - lead-acid battery, NiMH 

battery and lithium-based battery. Table 2.3 gives a more detailed performance 

comparison of the three main types of batteries used as the energy storage system in 

EVs/HEVs. In the table, DOD is an abbreviation for Depth-Of-Discharge [67]. 

Table 2.3 Performance comparison of three main types of batteries. 

Performance of batteries lead-acid  NiMH  lithium-based  

Common working voltage (V) 2 1.2 3.2-3.7 

Energy density (Wh/kg) 40-60 60-100 70-200+ 

Charge/discharge cycle life 
@100%DOD  

≥300 times ≥400 times ≥600 times 

Fast charging capability ordinary fairly good good 

Overcharge resistance moderate strong weak 

Environment performance severe pollution  slight pollution slight pollution 

Operating temperature range (℃) -20 to +50 -20 to +50 -20 to +55 

From Table 2.2, it is clear that the lithium-based battery has distinct advantages over 

the other two types of batteries in terms of the working voltage, energy density, life 

cycle and the ability of overcharge resistance [43].  Selecting the lithium-based 
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batteries as the energy storage can reduce the weight of the battery pack and the vehicle 

because they offer higher energy density [42]. Meanwhile, lithium-based batteries, 

with their higher working voltages, can reduce the number of cell connection in series 

and hence provide a relief to any assembly difficulties of the battery pack.  The main 

advantages of lead-acid and NiMH batteries are low cost and the technical maturity. 

It should be noted that there is no battery memory effect in all three types of the 

batteries. 

Power electronics system 

The power electronics system is mainly responsible for the operation of motor 

controllers and is the core of the EV drivetrains. The power electronics system converts 

the high voltage DC from the energy storage system to signals that meet the 

requirement of other motor controllers and sensors - for example, the electronics 

stability control and the hall-effect sensor [68]. For the grid-able EVs (PBEVs and 

PHEVs), the power electronics system design tends to include the control of various 

types of inverters and rectifiers. The battery can be charged or discharged to drive the 

vehicle and maintain a highly efficient working condition [69]. The power electronic 

system not only services the powertrain but also controls several vehicle components 

such as the step-down convertors, sensors and actuators of the lights, entertainment 

devices, etc.. 

Control system 
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The control system refers to the integrated controller, which mainly includes the BMS 

and the EMS. The BMS plays an important role for a better safety performance and 

extended battery life. As the lead-acid batteries are gradually replaced by the lithium-

based batteries, the design of the BMS can be complex. Table 2.4 lists the technology 

status and expectations of the BMS [70, 71]. The technology of EMS is also significant, 

especially for the HEVs with more than one type of energy transmission. The main 

purpose of EMS is achieving the control strategy working on the EM and ICE. The 

EMS is required to combine the power supply technology and motor control 

technology and collaboratively work with BMS in control system. 

Table 2.4 The core technical status and development of the BMS [70,71]. 

Core 
functions 

Last 5 years Current 
difficulties 

Indicators in 
2020  

Future expectation 

SoC 
estimation 

Ah counting- 
based methods 

Inaccurate and hard 
implementation 

Ah counting- 
based methods 

High estimation 
accuracy 

Thermal 
management 

Forced 
ventilation and 
runner structure 
design 

Poor cooling effect 
with simple air 
cooling 

Air cooling 
system with 
waste heat 
utilization 

More sensitive to the 
temperature change 
for high safety and 
longer life 

Power 
electronics 

Three-stage 
chargers and 
pulse current 
charge 

Lack of reliability 
on two-stage or 
three stage 
charging  

The charging 
system with fast 
charging ability 

Fast charging with 
better protection 

Battery 
equalization 

Dissipative 
charge and 
passive 
equalization 

Hard to accomplish Active 
equalization 

Active equalization 
with low failure rate 

Powerplant (EM/generator) [72, 73] 
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There are four main types of electric motors (generators) used in the EVs: 

The brushed DC (BDC) motor is one of the most common type of EMs, which has a 

permanent magnet in the stator and the armature windings and commutators mounted 

on the rotor.  When the current is following through the brush and the commutator, the 

interaction between magnetic fields will generate electromagnetic torque so that the 

motor rotates to drive the load. There is less complexity in the control of BDC motor, 

because the communication is achieved by the mechanical brush. However, significant 

maintenance work due to mechanical contact cannot be ignored. Also, the efficiency 

of the EM is limited by the electrical contact of the brushes.  

Brushless permanent magnet (BLPM) motor is seen as a reverse design of the BDC 

motor. There are no windings on the rotor. The rotor incorporates permanent magnets 

and creates the magnetic field while the stator has windings. The power electronic 

device in BLPM motor acts as the communicator without any mechanical connection, 

leading to an increase the complexity in control. The operation of the BLPM motor 

not only requires the power electronic devices to respond fast, but also an accurate 

decision from the position sensor and the processor. The Nissan Leaf and Chevrolet 

Spark have adopted the BLPM motor. 

Brushless induction (BLI) motor is another common type of brushless motor. 

Compared to the BLPM motor, the BLI motor replaces the permanent magnet with a 

conductor mounted on the rotor. The conductor is inductively powered by the changing 

magnetic field around the stator.  A concept of split in BLI motor is defined as the ratio 
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of the speed difference between the stator and rotor to the stator velocity. The BLI 

motor is widely used in the BEVs - for example, the Tesla Roadster uses a BLI motor. 

Brushless switched reluctance (BLSR) motor has similar structure to the BLI motor - 

no permanent magnet on the rotor but stator mounted winding. To turn the rotor, 

certain sets of stator coils are powered such that the rotor responds by aligning sets of 

its teeth with these coils in order to minimise reluctance. The BLSR motor is a new 

type of speed-adjustable motor but has been developed for several applications such 

as household appliances, aviation and aerospace. The BLSR motor has a good 

performance when used in EVs. 

2.2 A Review on EMS 
The EMS, as the core control system in HEVs, decides the different operating modes 

of the ICE and EM. Based on the consideration of the fuel consumption, driving 

performance and the emission, the EMS is required to realize the optimization and 

complementarity among different energy sources in HEVs. A well performing EMS is 

required to adopt effective strategy for different control objectives. However, it is 

difficult to manage effectively for different objectives at the same time. The HEVs 

vary in the configurations and the degree of mixing of fuel consumption and electric 

energy consumption [74]. The different control methods applied in the EMS, therefore, 

have varying impacts on the vehicle performance.  

The control methods of EMS for energy saving and efficiency optimization mainly 

consider the following four aspects: 1) a cooperative control of the EM and ICE which 
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ensures the ICE is working with high efficiency,  2) more use of pure electric mode 

(than fuel mode) reduces the fuel consumption under the premise of meeting the 

driving demand, 3) efficiently capture the energy loss in braking and then charging the 

battery through the motor with the captured energy and 4) take advantage of the fast 

start-stop characteristics of the EM to avoid the ICE in urban idle conditions. The 

energy sources structure and the energy transfer system of the HEVs are complex and 

nonlinear [75]. The control of the EMS is considered as a multi-objective 

comprehensive optimization problem. Figure 2.3 shows a process from design to 

practical implementation of the EMS.  

 

Figure 2.3 The implementation process of EMS. 

In the first step of the theoretical background, the problem of energy management for 

HEVs could be solved by establishing mathematical models [76]: 

⎩
⎨

⎧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓�𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)�, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 𝑥𝑥(𝑘𝑘 + 1) = 𝑓𝑓�𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)�,𝑘𝑘 = 1,2,⋯ ,𝑁𝑁

𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥,𝑢𝑢
𝐽𝐽(𝑥𝑥,𝑢𝑢)

𝑠𝑠.𝑡𝑡.𝐺𝐺(𝑥𝑥)≤0

             (2-1)    
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where 𝑥𝑥 ∈ 𝑋𝑋 is the state variable and 𝑢𝑢 ∈ 𝑈𝑈 is the control variable of the system and 

𝐺𝐺(𝑥𝑥) is the constraint. Most of the control models use the SoC of the battery as the 

state variable while the distribution ratio of power demand or torque demand is 

generally set as the control variable.  The constraints mainly include the maximum 

power and speed limits of the EM, the torque and speed limits of ICE, the upper and 

lower limits of battery SoC. According to the four control directions listed in the 

previous paragraph, five mathematical models are commonly used for solving the 

EMS problems.  They are listed below: 

1. Equivalent fuel consumption energy manage model:

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢

𝐽𝐽 (𝑡𝑡,𝑢𝑢) = ∆𝐸𝐸𝑓𝑓(𝑡𝑡, 𝑢𝑢) + 𝑠𝑠(𝑡𝑡)∆𝐸𝐸𝑒𝑒(𝑡𝑡,𝑢𝑢)  (2-2) 

where the ∆𝐸𝐸𝑓𝑓(𝑡𝑡,𝑢𝑢) and ∆𝐸𝐸𝑒𝑒(𝑡𝑡,𝑢𝑢) are the fuel consumption and the electric 

energy consumption during the period ∆𝑡𝑡 , respectively, which could be 

obtained through the map of ICE and EM. 𝑠𝑠(𝑡𝑡)  is the energy conversion 

equivalent factor over the time. Musardo et al. [77] developed an adaptive 

model based on equation (2-2), which considers the change of the power 

demand and the equivalent factor during the charging/discharging process.  

2. Energy management model considering the battery state:

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢

:∫ 𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
0     (2-3) 

s.t.     𝑥̇𝑥1(𝑡𝑡) = −𝑃𝑃𝑖𝑖�𝑢𝑢(𝑡𝑡)�
𝑄𝑄0 (𝑡𝑡)

𝑥̇𝑥2(𝑡𝑡) =
−�𝑃𝑃𝑖𝑖�𝑢𝑢(𝑡𝑡)��

�2 ∙ 𝑁𝑁��𝑃𝑃𝑖𝑖�𝑢𝑢(𝑡𝑡)��� ∙ 𝑄𝑄0(0)�
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𝑥𝑥1(0) = 𝑥𝑥1,0;  𝑥𝑥2(0) = 1; 𝑥𝑥1(𝑇𝑇) ≥ 𝑥𝑥1,0;  𝑥𝑥2(𝑇𝑇) ≥ 0; 

𝑥𝑥(𝑡𝑡) ∈ 𝑋𝑋, 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2]𝑇𝑇;𝑢𝑢(𝑡𝑡) ∈ 𝑈𝑈  . 

where 𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣,𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑑𝑑 is the energy consumption rate.  𝑥𝑥1(0), 𝑥𝑥2(0) and 𝑥𝑥1(𝑇𝑇), 𝑥𝑥2(𝑇𝑇) 

are the initial and stop values of SoC and the State of Health (SoH), respectively. 

𝑃𝑃𝑖𝑖�𝑢𝑢(𝑡𝑡)� is the output power of the battery.  𝑥𝑥1,0 is the initial SoC, and 𝑄𝑄0(0)is the 

initial capacity. X and U are the state space and the control space, respectively. This 

mathematical model, which considers the capacity and the health of the battery, is 

discussed by Ebbesen et al. [78]. 

3. Energy management model considering the emission:  

𝐽𝐽 = ��𝐿𝐿�𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)� + 𝐺𝐺�𝑥𝑥(𝑁𝑁)��
𝑁𝑁−1

𝑘𝑘=0

 

𝐿𝐿�𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)� = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘) + 𝜇𝜇𝑁𝑁𝑁𝑁𝑥𝑥(𝑘𝑘) + 𝜈𝜈𝜈𝜈𝜈𝜈(𝑘𝑘)                      (2-4) 

𝐺𝐺�𝑥𝑥(𝑁𝑁)� = 𝛼𝛼�𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁) − 𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓�
2
 

where fuel(k) is the fuel consumption during the period k. NOx(k)and PM(k) are the 

emissions of NOx and PM, respectively.  𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓is the expected stop value of SoC. 𝜇𝜇, 𝜈𝜈 

and 𝛼𝛼 are the weighting factors. 𝐿𝐿�𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)� is the fuel consumption and emission 

and G(x(N)) is the impact of the change of SoC. The mathematical model described in 

equation (2-4) is used in various research works, for example, Nuesch et al. [79]. They 

incorporated the emissions into the function, which formed a compromise optimization 

problem of fuel consumption and emission control.  

4. Energy management model considering both the steady and the unsteady state 

fuel consumptions:  
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𝐽𝐽(𝑘𝑘) = 𝛼𝛼1 � 𝑚̇𝑚𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝑘𝑘+𝑡𝑡𝑝𝑝

𝑡𝑡𝑘𝑘
+ 𝛼𝛼2�𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑘𝑘) − 𝑆𝑆𝑆𝑆𝑆𝑆�𝑡𝑡𝑘𝑘 + 𝑡𝑡𝑝𝑝��

+𝛼𝛼3�1 − 𝑘𝑘𝑘𝑘𝑦𝑦𝑜𝑜𝑜𝑜�𝑡𝑡𝑘𝑘 + 𝑡𝑡𝑝𝑝��  (2-5) 

𝑠𝑠. 𝑡𝑡.  𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢_𝑙𝑙𝑙𝑙𝑙𝑙

where 𝑚̇𝑚𝑓𝑓(𝑡𝑡)is the fuel consumption, 𝑘𝑘𝑘𝑘𝑦𝑦𝑜𝑜𝑜𝑜 ∈ {0,1} is the state of the ICE. 𝛼𝛼𝑖𝑖 , 𝑖𝑖 =

1, 2, 3 is the weighting factor, tk is the time count at moment k, tp is predicted period 

of time and 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙 and  𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢_𝑙𝑙𝑙𝑙𝑙𝑙 are the upper and lower limits of the battery 

SoC, respectively. The mathematical model in equation (2-5) is discussed in great 

detail by Yan et al. [80]. They defined a cost function based on the fuel consumption, 

equivalent consumption of the electric energy with SoC change of the battery and the 

instantaneous fuel consumption when ICE is on or off. Moghbeli et al. [81] used a 

similar energy management model but included the fuel consumption when shifting 

gears. 

5. Energy management model considering the structural parameters of the vehicle:

 Cost function included the weight of the vehicle:

𝐽𝐽 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐹𝐹 ∙ 𝜔𝜔𝑓𝑓 + 𝑊𝑊 ∙ 𝜔𝜔𝑠𝑠�  (2-6) 

 Cost function considered the gear influence:

𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑒𝑒(𝑘𝑘),𝑖𝑖(𝑘𝑘)

𝐽𝐽′ = ∑ 𝐷𝐷�𝑇𝑇𝑒𝑒(𝑘𝑘), 𝑖𝑖(𝑘𝑘)� ∙ ∆𝑁𝑁−1
𝑘𝑘=0  (2-7) 

𝐷𝐷�𝑇𝑇𝑒𝑒(𝑘𝑘), 𝑖𝑖(𝑘𝑘)� = 𝑚̇𝑚 �𝑇𝑇𝑒𝑒(𝑘𝑘),𝜔𝜔𝑒𝑒(𝑘𝑘),𝑅𝑅�𝑖𝑖(𝑘𝑘)�� 

𝑠𝑠. 𝑡𝑡.𝑇𝑇𝑒𝑒_𝑚𝑚𝑚𝑚𝑚𝑚
′ (𝑘𝑘) ≤ 𝑇𝑇𝑒𝑒(𝑘𝑘) ≤ 𝑇𝑇𝑒𝑒_𝑚𝑚𝑚𝑚𝑚𝑚

′ (𝑘𝑘), 𝑖𝑖(𝑘𝑘) ∈ 𝐼𝐼(𝑘𝑘) 

𝑥𝑥(𝑁𝑁) − 𝑥𝑥(0) = ∆𝑆𝑆𝑆𝑆𝑆𝑆 = 0 
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where F in equation (2-6) is the fuel consumption, while W is the weight of the vehicle. 

𝜔𝜔𝑓𝑓and 𝜔𝜔𝑠𝑠 are the weighting factors of each item. Since the weight and the structure 

significantly impact the energy consumption of the vehicle, [81] used the model in 

equation (2-6) to solve the trade-off problems between the fuel consumption and the 

weight of the vehicle. Moreover, the mathematical model in equation (2-7) is discussed 

with great detail in [81], which deliberates the effect of changing gear on energy 

consumption. ∆  in equation (2-7) is the sampling time, 𝐷𝐷�𝑇𝑇𝑒𝑒(𝑘𝑘), 𝑖𝑖(𝑘𝑘)�  is the fuel 

consumption with a torque of 𝑇𝑇𝑒𝑒(𝑘𝑘) , while 𝑚̇𝑚 �𝑇𝑇𝑒𝑒(𝑘𝑘),𝜔𝜔𝑒𝑒(𝑘𝑘),𝑅𝑅�𝑖𝑖(𝑘𝑘)�� is the fuel 

consumption when ICE is working at torque of Te(k), rotating speed of 𝜔𝜔𝑒𝑒(𝑘𝑘) and 

transmission ratio of R(i(k)), which could be calculated through the engine map. 

𝑇𝑇𝑒𝑒_𝑚𝑚𝑚𝑚𝑚𝑚
′ (𝑘𝑘)and 𝑇𝑇𝑒𝑒_𝑚𝑚𝑚𝑚𝑚𝑚

′  are the minimum and maximum output torques of the ICE and x 

is charge in the battery. In addition to the weight and gear influence of the vehicle, 

DiCariano et al. [82] proposed an energy management model based on the efficiency 

of the powertrain in a series HEV. 

In terms of practical applications, the energy management model needs to be 

simplified when the EMS is implemented in the ECU. Taking the memory constraint 

and the computational capacity into account, some of the algorithms with high 

efficiency have been used in the established energy control models. The algorithms for 

EMS have been in development since 1992 [83]. These algorithms used in different 

scenarios range from offline to online applications and from local to global 

optimization.  Figure 2.4 shows a general classification of the methods used in EMS. 
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Control methods of the EMS in HEVs 

Control based on 
certain rules

Control methods based 
on optimization

Rule-based control strategies 

Control based on 
fuzzy logic rules

Control methods 
based on global 

optimization

Control methods based 
on instantaneous 

optimization

Applications combined with other control methods DP, SDP, PMP, GA,…, ECMS, MPC, ….

Figure 2.4 Control methods overview on the EMS in HEVs. 

2.2.1 Rule-based control strategies applied for premeditated EMS 

A premeditated EMS is also considered as the rule-based control strategy, which uses 

a deterministic rule or a group of fuzzy rules. The premeditated EMS uses a 

precalculated control policy, considers the values of inputs and the real-life driving 

conditions to produce an expected control. The premediated EMS is not encumbered 

with computational complexity. The premeditated EMS using the rule-based control 

strategy is commonly used to generate a simplified and offline control. On the other 

hand, a casual EMS uses algorithms with dynamic characteristics to produce the 

control in real-time/online during real-world driving scenarios. A blended EMS 

combines the premeditated EMS and the casual EMS. A premeditated decision and an 

instantaneous control are complementary to obtain a global and online optimization in 

blended EMS.  
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The rule-based control strategy used for premeditated EMS is often designed based on 

the empirical cognitions from the engineer, the division of different working modes in 

HEVs and a static energy efficiency map of the ICE and EM. The advantage of rule-

based control is less calculation and easy implementation, but the drawback is its 

inability to adapt to complex operating conditions [84].  

Compared to the rule-based control working separately, the fuzzy logic rules show 

strong robustness when addressing the nonlinear problem with uncertainty. Di Cairano 

et al. [82] used two controllers based on fuzzy logic rules to provide a fuzzy control 

on the battery SoC and the engine torque. Murphey et al. [85] adopted a hierarchical 

structure and fuzzy logic rules to control the engine torque to keep ICE working in an 

efficient workspace and improve the fuel economy. However, the fuzzy logic rules as 

one class of premeditated EMS methods, commonly rely on the engineering 

experience.  Hence it is difficult to ensure an optimal solution.  

The method of fuzzy logic rules is regularly used in conjunction with other algorithms 

to improve the adaptability of different operating conditions. Dynamic Programming 

(DP) and the fuzzy logic rules were combined to optimize five different working 

modes in HEV [81, 86]. Another method used fuzzy rules to control the equivalent 

factor in the Equivalent Consumption Minimization Strategy (ECMS) and produced 

an outstanding performance in fuel economy of a heavy HEV. Fuzzy logic control 

could also be combined with other intelligent algorithms [85]. For example, Vural et 

al. [87] combined the Genetic Algorithm (GA) to optimize the torque control, while 

Won and Langari [88] used Particle Swarm Optimization (PSO) instead of GA. In 
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addition, the fuzzy logic control was also combined with the learning vector 

quantization (LVQ) and Neural Networks (NN) for the optimization based on driving 

environment and status identification [68].  

Compared to the single rule-based model, the fuzzy logic rules for EMS show strong 

robustness and are more suitable for the control of complex hybrid nonlinear systems 

that do not rely on the accuracy of the system. However, the fuzzy logic control cannot 

guarantee an optimal management; therefore, it is often combined with other 

algorithms to improve the performance of the system and then achieve the global 

optimization.  

The control methods based on the optimization algorithms is another significant 

category for EMS, which define the energy consumption as a cost function and 

combined with the constraints. As shown in Figure 2.5, the control methods based on 

optimization can be divided into two categories - the EMS based on global 

optimization is formed on the static data table or historical data under specific 

operating conditions; the other is the online control based on real-time state or current 

parameters of the vehicle, which usually guarantees a local and instantaneous 

optimization.  

The most representative methods for EMS based on the global optimization include 

the DP, Pontryagin’s minimum principle (PMP) and GA, or some combinations of 

these methods [48]. The implementations of DP are highly targeted on the specific 

operating cycles, which require the information of the operating conditions in advance 

[89]. The main difficulties for DP applications in EMS are the large amount of 
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calculation and lengthy time consumption. A great number of researches have been 

devoted to the improvement of the DP algorithm used for EMS in HEVs. The 

improvement of DP implementation is mainly in three directions - reduce the 

computing time and memory requirements, recognition and prediction of the future 

information of operating conditions and integration with other technologies to improve 

the computational efficiency.  The EMS for HEV could be considered as an optimal 

control problem for time-varying nonlinear systems with constrains. The method of 

PMP is appropriate to address the trade-off problem between the optimal control and 

the constraints. Compared to the DP-based control, the EMS using PMP significantly 

decreases the computation and is more adaptive to the real-time control.  

In terms of the GA applications in EMS, the advantage of adaptive probabilistic 

iterative searching could provide faster convergence to multi-objective optimization. 

However, the EMS using GA method often demands to predict the driving cycle in 

advance and the amount of calculation is not significantly reduced; therefore, the 

practical application of EMS based on GA have some limits. A considerable number 

of published works used the GA in a hierarchical optimization model and in 

conjunction with other algorithms [65, 90, 91]. For example, Genetic-based bacteria 

foraging (GBF) proposed in [92] shown a good performance in fuel economy. 

2.2.2 Control methods based on algorithms applied for casual EMS 

With the development of real-time system technology, the instantaneous optimization 

has been gradually applied to the EMS of HEVs. The intention of the real-time control 

is to minimize the energy/power consumption in the current work state. According to 
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the optimum working curve of the ICE (the Map of fuel consumption, power and 

efficiency), algorithms are used to find the instantaneous optimal operating point and 

control the state variables for an effective dynamic energy distribution, such that the 

ICE and EM working at the instantaneous optimal point. The methods for causal EMS 

are optimal controls on the energy transmission in HEV under instantaneous working 

conditions, which will not be limited by the specific cycles and do not demand the 

prediction of the future driving information of the vehicles in advance. Moreover, 

compared to the rule-based control, the amount of the calculation in causal EMS is less 

and easier to implement.  

The method of ECMS is one of the representative algorithms commonly used for a 

casual EMS. The principle of the ECMS is equivalent fuel consumption, which 

converts the energy consumption of EM under a transient condition into the fuel 

consumption of the ICE. The ECMS introduced an equivalent factor to build the cost 

function of total fuel consumption at each instantaneous state. Meanwhile, the 

weighting factor in ECMS could provide an optimization for different targets listed in 

the cost function. Therefore, the ECMS could achieve the real-time control and the 

compromised optimization among the dynamic performance, fuel economy and the 

emission of the HEVs.  

However, the ECMS method is based on a hypothesis that the ICE compensates for 

the electricity in battery under the same condition, dynamic changes of the battery SoC 

are not considered. That means the ECMS cannot guarantee a global optimization. By 

way of illustration, Sciaretta et al. [93] used the ECMS for the real-time EMS without 
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the hypothesis of known driving cycle conditions and considered the difference of 

charging/discharging processes by using different weighting factors. Marano et al. [94] 

compared the EMS based on DP and ECMS. The EMS based on DP provided a higher 

fuel economy. However, the EMS based on ECMS is more real-time since there is no 

requirement of prior knowledge of the driving cycle. Ramadan et al. [95] combined 

the PMP and ECMS and achieved longer life battery with lower fuel consumption.  

Model Predictive Control (MPC) is commonly used for online identification to 

optimize the dynamic parameters of the vehicles, which converts the global optimal 

control of fuel economy through the driving cycle into local optimal control in the 

prediction working area. The rolling optimization provided by MPC will update and 

predict the operating control state or the control parameters of the next time domain of 

the vehicle to obtain an optimization result. The method of MPC shows strong 

robustness and adaptability for the uncertain and nonlinear control system.  

Moreover, the MPC could be used in combination with other algorithms such as NN, 

artificial intelligence (AI) and fuzzy logic control methods to obtain an excellent 

control performance [96]. The blended EMS used the model that includes both rule-

based control strategies and optimization algorithms. Table 2.5 summarizes 

performance comparison of the different four energy management strategies. 
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Table 2.5 Performance comparison of main control methods for EMS. 

Performance Rule-based 
control  

Fuzzy logic 
control 

Global 
optimization 

Real-time 
optimization 

Advantages Simple and easy 
to implement. 

Independent 
of the 
accuracy of 
the model; 
strong 
robustness 
and 
adaptability.  
 

Good 
optimization 
performance 
and good 
adaptability 
with other 
algorithms. 

Unconstrained 
on the cycling 
operating 
conditions; 
less 
calculations 
and 
instantaneous 
optimization. 

Disadvantages Depends on 
experience and 
static data; unable 
to adapt the 
dynamic changes 
of the operating 
conditions; unable 
to guarantee 
optimal control.   

Depends on 
experience 
and unable to 
guarantee 
optimal 
control. 

Depends on 
operating 
cycles and 
limits by great 
amount of 
calculation. 

Unable to 
guarantee the 
global 
optimization. 

 

2.3 Monitoring Techniques for BMS 

A good operation of the EMS is based on the current estimation and possible future 

predictions of the battery states from the monitoring module in BMS. With the 

progress of the battery technologies, the energy storage system in EVs often includes 

more than one type of battery. The monitoring module for composite energy storage 

system is more complicated. It is required to provide accurate battery states 

information and fastest response. Subsequently, the EMS will decide the appropriate 

actions on battery immediately to achieve optimal control and protection.  Figure 2.6 

gives a schematic of the basic functions of the battery monitoring module.  
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Figure 2.5 Basic functions of the battery monitoring module. 

The battery states monitor is necessary to ensure an effective and robust EMS. The 

most favourite states include the SoC, SoH and SoP and are strongly dynamic with the 

varying operating conditions. The methods for battery states monitoring are required 

with time-variability of the battery characteristics such as the capacity and impedance 

of the battery.  As shown in Figure 2.6, it is important to build a dynamic battery model 

to reflect the electrochemical changes during charging/discharging process. According 

to the input information of voltage, current and temperature, the algorithms used in the 

dynamic model must be able to adaptively estimate the variations of parameters such 

as the internal resistance and Ah capacity in real-time. Based on the dynamic battery 

model, a prediction of the battery OCV is subsequently obtained and applied to either 

a look-up table or the predefined empirical function to online estimate the SoC.  

 Review of battery models 

The estimation of the battery states mainly includes the SoC, SoP and SoH. The SoC 

estimation could be considered as the parameter identification of the battery model. 
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According to the different options of battery models, the accuracy of the estimation is 

varying and impacted by the operating conditions such as temperature [97]. The 

significant challenge for an accurate SoC estimation is that the nonlinear 

characteristics of the battery are intensified by the changes of the current/voltage and 

the temperature. The amount of calculation/computation will increase and is difficult 

to be implemented on the controller if all the influencing factors are considered.   

In order to reduce the cost of vehicle manufacturing, the establishment of the BMS 

needs to be verified by simulation and then obtain a practical validation through 

software-in-loop and hardware-in-loop (see Figure 2.4). The battery model could be 

built through three different approaches: mechanism modelling, experimental 

modelling and hybrid-methods modelling [98]. The mechanism modelling uses the 

theory of physical formulae and chemical reaction principles to establish the 

mathematical model. In experimental modelling, the controlled object is regarded as a 

“black box” and the battery model is built by recording the change rule of the 

characteristic parameters of the object through multiple groups of experiments. The 

hybrid modelling combines the mechanism modelling and experimental modelling.  

The battery is a highly complex nonlinear electrochemical energy storage device. As 

the working process of the battery is dynamic, it is difficult to precisely describe the 

interactions occurring inside the battery by a specific formula (mechanism modelling 

works alone). Fully adopting experimentally generated data modelling requires large 

amount of testing data. The complexity and the calculation time of experimental data 

processed by algorithms increase with the extensive experimental data. Therefore, 
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hybrid modelling is more commonly used to select a reasonable formula and identify 

the pending parameters.  

According to the different demands of the application scenarios, the selections of 

various battery models significantly affect the estimation accuracy for the monitoring 

module in BMS. The model with more accuracy has more complex operation and the 

expectation of hardware is higher. The mechanism modelling mainly includes the 

electrochemical model, empirical model, data driven model and equivalent circuit 

model (ECM) [99]. Table 2.6 lists general classifications of the battery models and 

compared the advantages/disadvantages. 

As reported by recent works on the battery monitoring and models, the ECM does not 

require a comprehensive analysis of the electrochemical reaction inside the battery 

[100]. ECM uses an appropriate circuit to describe the external characteristics of the 

battery such as the DC internal resistance, polarization resistance and the OCV. The 

polarization of the battery usually means the potential deviates from the equilibrium 

potential when a current is passing through the battery.  

There are three types of polarization: electrochemical polarization, concentration 

polarization and the Ohmic polarization [101]. The concentration polarization is 

caused by the consumption of the reactants and the surface of the electrode is not 

replenished.  Some by-products produced in electrochemical reactions accumulate on 

the electrode surface and cannot be evacuated in time. The Ohmic polarization is 

caused by the contact resistance between various components such as the electrolyte, 

electrode material, and diaphragm resistance. 
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Table 2.6 The classifications of battery models. 

Classifications of battery models  Pros Cons 
Empirical 
model 

Shepherd model Simple expression 
and computational 
efficiency 

Limited 
capability of 
describing 
the terminal 
voltage 

Unnewehr universal model 
Nernst model 
Enhanced self-correcting (ESC) model 
Zero-state hysteresis model 

ECM Rint model Easily understood 
and widely used in 
SoC estimation 

Complex 
parameter 
identification 
process 

RC model 
Thevenin model 
PNGV model 
GNL model 

Electroche
mical 
model 

Pseudo 2D model High accuracy of 
voltage calculation 

Require prior 
knowledge of 
the battery 
and time 
consuming 

Single particle model 

Data 
driven 
model 

Neural Networks model High accuracy of 
voltage calculation 
and no 
requirements on the 
prior knowledge of 
the battery 

Laborious 
training 
dataset 
collection 
process 

Radial Basis Function Neutral Networks 
Support Vector Machine (SVM) model 
Extreme Learning Machine (ELM) 
model 

 

The three types of polarization listed above are the obstructions to the electrochemical 

reaction of the battery. The internal resistance of the battery is the sum of the Ohmic 

resistance, electrochemical polarization resistance and the concentration polarization 

resistance, which are considered when the battery model is built by the method of ECM. 

Figure 2.6 provides a general process of building the battery model using the method 

of hybrid modelling. The following section will provide a brief review on several 

common ECM for battery models reported by Xiong et al.  [102].  
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Determine the type of 
battery modelling 

Determine input, 
output and state 
variables of the 
selected model 

Determine the 
equation of state

Modelling in 
MATLAB

Identify parameters 
based on the 

experimental data 

Correct the 
parameters in real-

time according to the 
changes of inputs

Validate the model 
by simulation

Mechanism modeling

Experimental modeling

 

Figure 2.6 General process of hybrid modelling method for battery model 
establishment. 

The Rint model  

The Rint model, also called the internal resistance model, is the simplest ECM. As 

shown in Figure 2.7, the OCV of the battery is defined by an ideal voltage source. R0  

(internal resistance of the battery) and Uoc (open circuit voltage of the battery) are 

functions of SoC and temperature. IL is the load current of the battery - positive IL  

means the battery is discharging and negative IL means charging. The advantage of 

Rint model is that the measurement of parameters is simple, the modelling simulation 

is easier to implement and has versatility. However, the accuracy of the Rint model is 

lower compared to other ECMs. Rint model is unable to reflect the dynamic 

performance of the battery under different charging/discharging conditions.  
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UL

IL

+
-

R0= fR(SoC,T)

UOC = UL+IL×R0
 

Figure 2.7 The Rint model for battery ECM. 

The RC model 

The ECM of RC model is shown in Figure 2.8 and includes three resistors and two 

capacitors.  A large capacitor Cb is used to describe the capacity of the battery, Cc is a 

smaller capacitor to reflect the surface effect of the battery. The relationship between 

Ub and Uc could be obtained using Kirchhoff’s current law. Rt is the terminal resistance, 

Re is termination resistance, and Rc is the capacitive resistance. 

UL
Ub 

IL+
-

Re

Cb 

Rt

Rc

Uc 

+
-

Cc 

Ie

Ic

 

Figure 2.8 The RC model for battery ECM. 

 

The Thevenin model 
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The Thevenin model is shown Figure 2.9 and is based on the internal resistance model. 

Thevenin model has one or more RC circuits connected in series and an ideal voltage 

source to express the OCV of the battery. The addition of multiple sets of RC networks 

will affect the accuracy of the battery model. With increasing number of RC networks 

involved, the amount of computation will increase too. The serial RC networks have 

forward-looking function which will predict the response to the load at specific SoC. 

The accuracy of Thevenin model is higher than the Rint model.  

ULUOC 

IL+
-

R0

RTh

CTh 

···
RC networks

Figure 2.9 The Thevenin model for battery ECM. 

The PNGV model  

The Partnership for a New Generation of Vehicles (PNGV) model is proposed in 

PNGV battery test manual [103]. As shown is figure 2.10, the PNGV model is 

connected with a capacitor (Cb) in series based on the Thevenin model.  Uoc is the 

OCV of the battery while R0 is the Ohmic internal resistance, Rp is the polarization 

𝑈𝑈𝑂𝑂𝑂𝑂 = 𝑅𝑅0 × 𝐼𝐼𝐿𝐿 + 𝑈𝑈𝐿𝐿 + 𝑈𝑈𝑇𝑇ℎ 

𝑈𝑈𝑇𝑇ℎ = 1
𝐶𝐶𝑇𝑇ℎ� (𝐼𝐼𝑇𝑇ℎ𝑑𝑑𝑑𝑑) = 𝑅𝑅𝑇𝑇ℎ × (𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑇𝑇ℎ)
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resistance, Cp is the polarization capacitor, IL is the load current and UL is the load 

voltage. Compared to the Thevenin model, the PNGV model introduces capacitor Cb 

to describe the effect of the load current variation over time on OCV when the battery 

is charging/discharging. In other words, the Thevenin model is only used to express 

the response when battery has a certain SoC value – this means an instantaneous static 

response. However, the PNGV model is able to characterize the dynamic response of 

the battery.  

 

ULUOC 

IL

+
-

R0

Rp

Cp 

Cb 

··· 
RC networks

 

 

 

 

Figure 2.10 The PNGV model for battery ECM. 

The GNL model 

The General Non-linear (GNL) model is developed from the Rint, Thevenin and 

PNGV models. As shown in figure 2.11, Cp and Rp constitute a RC network of 

electrochemical polarization. While the concentration polarization is expressed in 

another RC network with Cc and Rc, Re indicates the self-discharge or over-charge 

internal resistance and R0 represents the equivalent internal resistance. The additions 

𝑈𝑈𝑂𝑂𝑂𝑂 = 𝑈𝑈𝐿𝐿 + 1
𝐶𝐶𝑏𝑏� �� 𝐼𝐼𝐿𝐿𝑑𝑑𝑑𝑑� + 𝑅𝑅𝑝𝑝𝐼𝐼𝑝𝑝 + 𝑅𝑅0𝐼𝐼𝐿𝐿 
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of circuit components in the GNL model gives a clearer physical meaning. The 

modelling simulation based on GNL model can precisely track the dynamic change of 

the battery voltage. The monitoring algorithms applied on the GNL model provide a 

higher accuracy for the battery SoC estimation, but the model has more difficult 

hardware implementation.  

ULUOC 

IL

+
-

R0

Rp

Cp 

Cb 

···
RC networks

Figure 2.11 The GNL model for battery ECM. 

 SoC estimation algorithms 

The battery SoC is used to describe the remaining charge of the battery in use, which 

is a significant parameter for vehicular battery usage. For the BEVs, an accurate SoC 

estimation could provide customers with charging demand alarms in time and prevent 

the battery packs from being over charged/discharged. A precise SoC for a single cell 

significantly benefits to the battery equalization. For the HEVs, SoC as a critical 

parameter participates in the dynamic coordination and energy management of the 

multiple power sources. Precise SoC estimation will optimize the fuel consumption 

and emissions from HEV effectively and improves the driving performance and ride 

comfort for users.  
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The manufacturers and designers of different BMS are maintaining their own 

definition of SoC and hence the estimation accuracy of algorithms used for SoC 

estimation is varying.  It is significant to give a precise definition of SoC before 

estimation. Currently, a generally accepted definition of SoC is based on the angle of 

charge. For example, U.S. Advanced Battery Consortium (USA BC) gives a definition 

of SoC in the battery test manual as the ratio of residual charge to rated capacity under 

the same condition at a certain discharge rate [104]. On the other hand, Kia Motors 

from Korea defined the SoC from the perspective of energy, which is listed as follows 

[105]: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 . 

In practical applications, the SoC of the battery is affected by charge/discharge rate, 

temperature, self-discharge, and aging, etc.. The BMS needs to adjust the definition of 

SoC. The EV Plus gives a definition of SoC as follows [106]: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 , 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑁𝑁𝑁𝑁𝑁𝑁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

The different SoC definitions listed above are taking the single battery cell as the 

research object. There are always battery packs used in practical; therefore, it is a 

challenge to evenly define the SoC of battery pack. To ensure the safety of the battery, 

the SoC of the battery evaluated with the worst performance is often used as the SoC 

of whole battery pack.  
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The estimation of SoC is an important issue in EVs. Many researchers have discussed 

different methods for SoC estimation [107]. They include an estimation of SoC fully 

based on the discharge experiments, a method of load voltage (terminal voltage), 

OCV-based  method, impedance-based method, the coulomb counting-based method 

(Ah method), the estimator with Kalman Filter- based methods, the estimator based on 

neural network, etc.. Different estimation methods could be combined with various 

battery models and the obtained accuracy of the SoC estimator could also be different. 

A summary of common methods for SoC estimation is shown in Table 2.7.  

Table 2.7 The classification of battery SoC estimation methods. 

SoC 
estimation 
methods 

Static 
estimation 
oriented  

Dynamic 
estimation 
oriented 

Features 

Model-based 
Estimator 

OCV-based 
estimation; 
Ah-based 
estimation. 

Adaptive 
observer; 
Optimized 
recursive 
algorithms; 
Kalman Filter-
based 
algorithms. 
 

Static model has simple 
principle and obtain a clear 
relationship between OCV and 
SoC; Implementation has strong 
flexibility combined with 
dynamic algorithms; Dynamic 
algorithms could track the 
changes of voltage in real-time. 

Data Driven 
Estimator 

Impedance-
based 
estimation. 

Book-keeping 
methods /Look-
up-tables; 
Machine 
learning 
techniques. 

The estimation process needs to 
look up the Map composed of a 
great number of historical data; 
implementation requires a large-
storage controller; Estimation 
accuracy is strongly relying on 
the historical data.   

 

The estimation methods can be used either alone or in combination with each other. 

The OCV-based method and Ah-based method are reported as the direct techniques 
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and are easily implementable approaches for SoC estimation. However, the OCV-

based estimator suffers from the sensor noise and the initialization-induced offsets, 

while the Ah-based estimator requires a very long period of no-load connection to 

build an accurate measurement for the OCV of the battery [108]. Therefore, the static 

oriented methods are often combined with the adaptive algorithms in an indirect way 

to dynamically track the change of SoC.  

The static oriented estimation in the classification of data driven estimator mainly rely 

on the groups number of experimental data of battery performance tests. The 

impedance-based method is built according to the relationship of impedance and SoC, 

which is often used for SoC estimation in lead-acid, NiMH and NiCd battery [109]. In 

terms of the lithium-ion battery, the impedance is strongly affected by the external 

environmental factors such as temperature. The impedance parameters alone are 

unable to provide an accurate SoC. When there is enough experimental data to 

establish accurate Maps/look-up tables for the battery and EM, it can be applied to the 

dynamic scenarios. In terms of the dynamic estimation, when the operating condition 

of the EV becomes complex, the requirement of experimental data quantity and 

accuracy of the impedance-based estimator is higher.  

For different types of batteries, it is possible to achieve high accuracy SoC estimation 

with all above the method(s) either working alone or in combination. For example, the 

estimation method based on Kalman Filter has reported that the estimation error is less 

than 2% applied to the lead-acid battery and lithium manganate battery, while the 

estimation error of combining the methods of terminal voltage curve recognition and 
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Hamming Neural Networks is ~5% [110]. However, the same operating conditions 

applied to the LiFePO4 had a lower estimation accuracy [111]. The main reason is that 

the convergence speed of the iterative algorithms is affected by the flatness of the 

middle section in SoC-OCV curve of LiFePO4 battery. The battery modelling method, 

the design of the SoC estimator, and the experiment of battery performance test will 

be discussed in more detail in Chapter 5. 

2.4 Concluding Remarks 

This chapter presented various technical applications of EVs and state-of-art of EMS 

and monitoring technologies in HEVs. It was shown that, due to the technical limits 

on the energy/power density of the battery, the HEVs/PHEVs promise appreciable 

driving performance and less emission. Also, it was discussed that an efficient EMS 

for HEVs is a significant challenge while the SoC estimation is the key technology for 

the system running of the EMS and BMS in EVs. Therefore, a comprehensive review 

on the control strategies and algorithms for EMS and the estimation methods for the 

SoC monitoring has been provided in this chapter. The premeditated EMS based on 

rule-based control strategies, the causal EMS based on adaptive algorithms and the 

blended EMS combining the rule-based control and the dynamic algorithms has been 

proposed. Similarly, various SoC estimation methods were categorized into model-

based and data-driven approaches including the static and dynamic groups. The 

essence of the estimator is to identify the parameters of the battery and track the 

changes. Therefore, the uses of different battery models affected accuracy of 

estimators. Different battery models used for SoC estimation were described. This 



73 

chapter summarized the advantages and disadvantages of four kinds of battery models. 

The ECM as the most popular battery model for SoC estimator reported four types of 

equivalent circuits. According to their characteristics, the different combinations with 

the estimating algorithms were implemented to confront the constrains of various 

computational and storable capacity in hardware. 
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Chapter 3  Rule-based Control Strategy Design for 
Premeditated Energy Management System 

This chapter is based on the work from the following publication in which the author 

of this thesis is the principal author:  Ding, N., Lie, T., and Prasad, K. (2017), “The 

Design of Control Strategy for Blended Series-Parallel Power-Split PHEV–a 

Simulation Study”, International Journal of Transportation Systems, 2, 21-24. 

The EMS will decide the long-term development and popularization of HEVs.  For the 

PHEVs, an efficient EMS will fully utilize the advantages of the rechargeable batteries. 

However, the computational and storage capacity of the hardware where EMS is 

implemented has to be taken into account. Currently, the great challenge of EMS 

technology is how to realize an efficient electrical and mechanical resources 

scheduling and ensure a good driving experience under limited hardware conditions. 

The premeditated EMS relies on one/groups of rule(s)-based (fuzzy) control strategies 

and is an acclaimed option for the researchers because of the lucid principle and less 

computational load. Most of the proposed techniques of the premeditated EMS based 

on rules is designed according to the antecedent knowledge and experience from the 

engineers and normally has a poor emission performance when meeting the dynamic 

requirements. In this chapter, a rule-based control strategy for series-parallel PHEV is 

designed and simulated in MATLAB. The simulation calls the vehicle model based on 

real data in Advanced Vehicle SimulatOR (ADVISOR) to increase the credibility of 

the rule-based control strategy. The input is used of the real traffic data, while the 

output is the emission of the main harmful components and the fuel economy. The 
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proposed rule-based control strategy is finally verified by a comparison to the 

simulation based on same input vehicle model without the designed control strategy.  

3.1 Introduction 
As discussed in section 2.2 of Chapter 2, an efficient scheduling of multiple power 

sources is a significant issue for HEV/PHEV research. Due to the series-parallel 

configuration, the different working modes in series-parallel HEVs include: 

1）Series mode - the ICE is connected to the generator in series to charge the 

battery. 

2）Parallel mode - the ICE and EM are working in parallel to provide the 

propulsion at the same time. 

3）Series-parallel mode - the ICE in series with the generator charges the battery 

and simultaneously works with the EM to drive the vehicle.  

The fuel economy can be improved by switching different working modes - which 

means the control of the multiple working modes becomes more complex. 

Therefore, a suitable control strategy in EMS/BMS plays an important role in the 

following aspects: 

• Increase the electric range mileage to obtain better dynamic performance. 

• Decrease the emission to achieve the purpose of environmental protection. 

• Improve the safety by providing a safe and efficient working environment for 

battery. 
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• Increase the efficiency to save the energy by switching to the most appropriate 

working mode under different road conditions. 

Various rule-based control strategy for HEVs/PHEVs have been presented in literature, 

each having its own advantages and disadvantages [112, 113]. The main functions will 

be different according to the different logic design of the rule (s).  The general design 

process of the premeditated EMS uses a rule-based control strategy in four steps: 

Step1. System specification: using the specific theory, such as the theory of Hybrid 

Dynamic System (HDS) and building the mathematical relationships to describe 

and define the dynamic characteristics of discrete events and continuous variables 

in the hybrid system. 

Step2. Obtain offline power distribution: defining the model of each subcomponent 

under a steady state. Then, seeking an optimal power distribution under different 

working conditions for each component by using specific method such as the 

Sequential Quadratic Programming (SQP).  

Step3. Establish the online control strategies based on the rules using fuzzy logic: 

based on the offline solutions (optimal power distribution) obtained from last step, 

using dynamic algorithms to build the online rules of switching to different 

working modes. Alternatively, a fuzzy control system of power distribution can be 

established according to the fuzzy logic rules.  
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Step4. Optimize the control system: using the optimization algorithm (e.g. GA) to 

optimize the parameters set in the switching rule of working modes and the fuzzy 

control rules of power distribution obtained in Step 3, then, having an optimal EMS. 

As discussed in Chapter 2 (see section 2.2.1), the rule-based control strategy uses the 

deterministic logic threshold or the fuzzy rules control. Most of the rules in the 

premeditated EMS are designed to ensure the components running in a highly efficient 

working area under various working conditions. For example, Cao and Ali built two 

modes according to different power demands -  series mode in low load condition and 

parallel mode in high load condition [114]. However, the realistic conditions are more 

complicated and the threshold of power demand working alone cannot ensure the ICE 

working in an efficient area. Therefore, the rule-based control strategy proposed in 

[115] is built on a Markov model that was obtained from the statistics of several urban 

cycle conditions. Another example of rule-based control strategy demonstrated in [116] 

is applied in the Hydraulic Hybrid Vehicle (HHV). The hydraulic accumulator (ACC) 

used in HHV has the characteristics of high-power density, which benefits the dynamic 

performance such as the vehicle starting up, accelerating and climbing. The rules used 

for controlling the ACC and ICE are modes switching obtained through the actual 

experimental results from the vehicle testing engineer. There are four modes designed 

– ACC drive the vehicle alone in mode 1; in mode 2 the ICE provides propulsion and 

pressurizes the ACC; mode 3 is regenerative braking for energy recovery and mode 4 

is the conventional friction deceleration braking mode. For uncertain road conditions 

and driving behaviours, the rule-based control strategy is considered as static reference 

of evaluation benchmark and normally works in conjunction with dynamic algorithms. 
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The rule-based control strategy optimized by dynamic programming (DP) is used in 

[117], which set the cost of engine fuel and battery energy as the objective function, 

starting/stopping working points of the ICE as the control variable and battery SoC as 

the state variable. [118] proposed a rule-based control strategy that switch the different 

modes according to set fixed working points on the maximum power curve of the ICE. 

Meanwhile, the fixed working points were optimized by DP, which has an objective 

function of battery consumption to improve the battery life at the expense of fuel 

economy. 

Most of the research presented in literature on different premeditated EMS using rule-

based control strategy are verified through simulation. This has been perceived as a 

motivation to design a rule-based control strategy for PHEV. To this end, this chapter 

initially focuses on analysing the power splitting of the power provided from battery 

and ICE when confronting power demand under various working conditions. 

Thereafter, the control logics of switching different modes are decided by threshold 

values of the battery SoC and engine torque. The proposed rule-based control strategy 

is then validated through the simulation using vehicle model and the inputs of driving 

cycles from real database. Finally, a comparison of the simulation results on the control 

of traditional working modes and the designed rule-based strategy is conducted. The 

results presented in this chapter were successfully published in a journal [84]. 

3.2 Design of the Rule-based Control Strategy 
This rule-based control strategy design is setting the thresholds to switch working 

modes of the PHEV. The different modes design is to achieve the purpose of reducing 

the emission and the energy loss, then improve the fuel economy and the efficiency of 
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the power sources usage. The difference in working modes lies in the different 

transmission pathways between the electrical and mechanical energies.  The working 

modes are defined according to the power splitting configurations of the PHEV. The 

following section illustrates the logic design of the novel working modes for the rule-

based control strategy.   

 The power splitting configuration and the blended modes in 
PHEV 

As described in Figure 2.3, three different connection modes are included in HEV 

based on the connection between the battery and ICE - series connection, parallel 

connection and series-parallel connection. Based on these three different connections, 

the traditional working modes in HEV include - the Electric Vehicle (EV) mode that 

only the battery provides the propulsion; the Charge Depletion (CD) mode where 

battery and ICE work in a parallel configuration with electricity as the main power; 

the Charge Sustaining (CS) mode in which the ICE provides a considerable propulsion 

despite being the main provider. Figure 3.1 illustrates the electrical and mechanical 

energy transfer in PHEVs.  

 

Figure 3.1 Energy transfer in PHEV. 
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When the vehicle is in a traffic condition that has low power demand and the battery 

has sufficient charge, the EV mode is forced to achieve “zero” emission. The CD mode 

is used when the electricity provided by battery cannot meet the power demand and 

the ICE is started to compensate for the lack of power. ICE works in the CD mode as 

compensation but when in CS mode, acts as the main power provider to drive the 

vehicle and charge the battery at the same time. The emission is gradually increased 

from “zero emission” in EV mode to CD and CS modes. The switching of different 

modes depends on the power demand, electric power provided by the battery and the 

power compensated from ICE. To decrease the emission, the design of the rule-based 

control strategy targets on avoiding the CS mode as much as possible. Based on this 

design logic, the following section (3.2.2) illustrates a novel rule-based control strategy. 

 The rule-based control design  

For the series-parallel power split PHEV, a complex system cannot be avoided. Since 

the grid-able battery has been introduced, the thresholds of the parameters for working 

modes setting differ from other types of EVs. According to the analysis of the various 

charge levels in battery meeting different power demands, the rule-based control 

strategy proposed in this chapter is designed to increase the fuel economy and then 

decrease the emission. Figure 3.2 illustrates the design of SoC control strategy while 

the parameters used are listed in Table 3.1.  
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Figure 3.2 Design logic of the rule-based control strategy. 

Table 3.1 Parameters of rule-based control strategy logic design 

Parameters for design logic Abbreviation 

Power demand/require Pd/req 

High and low point SoC SoCh, SoCl 

Maximum and minimum rated 
power of battery 

Pb,max, Pb,min 

Instantaneous SoC SoCi   
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The design concepts for the strategy set the SoC as the priority and then consider the 

relationship between the power requirements and the maximum power of the battery. 

Compared to the working modes in traditional rule-based control strategy, the novelty 

of this design logic is introducing the CSe2b mode. In addition to setting the threshold 

value of SoCl and SoCh, 0.5SoCl has been added as the boundary of the CSe2b mode. 

The significant purpose of adding CSe2b mode is to last the time of pure electric 

propulsion and charging depletion as long as possible. It increases the percentage of 

EV and CD mode in the total logic control. 

3.3 Simulation Validation 
To verify the design logic, a comparison simulation based on the vehicle model and 

the road working conditions built from real data is presented in this section. The initial 

simulation model is based on the ADVISOR in MATLAB/Simulink operating 

environment. The control strategy proposed above will be set in MATLAB/Simulink 

with Simdriveline models which will invoke the same structural parameters from 

models of ADVISOR operating in the initial simulation. The initial control strategy 

will be compared to the designed rule-based control in the same vehicle model and 

under same input working conditions.  

 The parameters set in vehicle model 

For the initial simulation model, it adopts the vehicle model of the first-generation 

Toyota Prius in ADVISOR. In terms of the rule-based control strategy, threshold 

values of the parameters will be set in power-split controller in Simulink Scape 

Driveline to achieve the design logic. Table 3.2 lists the significant parameters set in 
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the vehicle model. The critical values of SoCh and SoCl are set to 0.80 and 0.30, 

respectively. 

Table 3.2 Parameters of vehicle model setting in simulation 

Critical components of 
vehicle model 

Parameters setting 

Engine Size: 1.5L, Straight- 4ǀI4 DOHC 16 valve. 
Power: 43kW(58hp) at 4000rpm. 

Electric motor Power: 288V 30kW; 31kW (40hp) at 940-2000. 

Torque: 305 N·m (225 lbf·ft) at 4000rpm. 

Energy storage NiMH battery with maximum 40kW power 

Transmission  Planetary gear continuously varible transmission 
model 

Wheel/Axle Constant coefficient of rolling resistance model 

Accessory Constant power accessory load models 
Override mass 1368 kg 

 The simulation and discussion 

The parameters of initial conditions included several characteristics that can be 

adjusted from model blocks. For example, the value of the coefficient of air resistance 

is 0.3, wheel radius is 0.287 m, wind award area is 1.746 m2 and the initial SoC0 is 

0.75. The input drive cycle uses one extended driving cycle of the Extra Urban Driving 

Cycle from a database of Economic Commission for Europe (CYC_ECE_EUDC) 

shown in Figure 3.3. The detailed information of one driving cycle input listed in Table 

3.3. Figure 3.4 illustrates the SoC and emissions curves of the simulation results under 

one specific driving cycle of extended CYC_ECE_EUDC.  
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Table 3.3 Critical information of one CYC_ECE_EUDC driving cycle 

Critical information of one drive cycle Vales 
Average speed 19.95 km/h 
Distance 39.92 km 
average accelerate 1.78 km/s2 

decelerate -2.59 km/s2

Maximum speed 74.56 km/h
Maximum  accelerate 3.46 km/s2

decelerate -4.56km/s2

Time 122.5 minutes

The SoC estimation in this vehicle model uses the Ah method. Figure 3.4 (a) shows 

that the SoC of the battery decreases during the first 90 minutes of the driving cycle. 

That means the electric power is involved in propulsion for three quarters of the trip. 

From figure 3.3, it is clear that high-speed driving is not required in the first eighty 

minutes - remaining electricity in battery is affordable, battery is discharged.  

Figure 3.3 The speed input of extended CYC_ECE_EUDC. 
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Figure 3.4 Simulation results of the emissions and SoC curve of thge designed rule-

based control strategy. 

The battery begins to charge at around the 90th minute around when the power demand 

is increasing with the speed up, as shown in Fig 3.4 (a). A similar charging and 

discharging trend could also be seen in Figure 3.5. In addition, Figures 3.6 and 3.7 

illustrate the efficiency of motor and the difference between the achieved speed and 

the required speed, respectively. Figure 3.7 shows that the difference between the 

required speed and the achieved speed is in the 10-12 range, which seems negligible.   
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Figure 3.5 The simulation results of charging/discharging efficiency of the battery in 
specific driving cycle. 
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Figure 3.6 The simulation results of motor/controller efficiency in specific driving 
cycle. 

Figure 3.7 The simulation results of difference between achieved and required speed 
in specific driving cycle. 
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A comparison of the specific output values of different emission characteristics from 

simulation results of the traditional control strategy that are inherent in the vehicle 

model in ADVISOR and the designed rule-based control strategy is listed in Table 3.4. 

The emission of CO considerably reduced by 25.9% and the NOx emission reduced 

by 6.8%. There is, however, an increase in HC emission by 4.7%. The simulation 

results show that fuel economy (miles per gallon, mpg) increased from 45.4 to 57.9 

under the designed rule-based control strategy. In terms of logic design, the engine 

works as the main power provider only in CSe2b mode. In CD or CS mode, the engine 

works as a parallel or auxiliary part to provide little propulsion. Thus, the vehicle 

performance has improved considerably through the designed rule-based control 

strategy. 

Table 3.4 Comparison of simulation results between the designed rule-based control 
strategy and the inherent control strategy in ADVISOR model 

Emission 
(g/km) 

Designed rule-based 
control strategy 

Inherent control 
strategy in Prius model 

Comparison 
(%) 

CO 0.898 1.213 Decreased 25.9 

HC 1.297 1.239 Increased 4.7 

NOx 0.161 0.173 Decreased 6.7 

3.4 Concluding Remarks 

In chapter 2, it was discussed that the EMS plays an imperative role in the multi-energy 

power sources system, thus, determining the various working status of the components 

to avoid undesirable energy loss. This issue with most controlling and scheduling 

techniques proposed in literature is that it is hard to obtain an equilibrium between the 

efficient and sophisticated control strategies.  It involves large number of calculations 
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and subsequent implementation costs. As a result, in this chapter, at first, the different 

working modes in HEV were analysed. The proposed technique included the 

relationships between the control logic and the working modes of the battery and the 

engine. A novel design of introducing the CSe2b mode was proposed to increase the 

proportion of electrical propulsion of the vehicle. The performance of the designed 

rule-based control strategy was verified by the simulation of Toyota Prius vehicle 

model and extended driving cycle (CYC_ECE_EUDC) based on real data in 

MATLAB. Compared to the conventional working states and inherent control strategy 

in ADVISOR, the simulation results of the designed rule-based control strategy 

successfully achieved reduction of CO and HC emissions while achieving an increase 

in fuel economy. These two are quite significant achievements of the work presented 

in this chapter.  



90 

Chapter 4  Genetic Algorithm Optimization on the Rule-
based Control Strategy for Premeditated Energy 
Management System  

In Chapters 2 and 3, it was shown that the premeditated EMS used the method of rule-

based control strategy for HEVs and can be difficult to satisfy the dynamic and 

complex driving conditions. The rule-based control strategy works as the reference for 

determining different working states of the components, which shows a poor efficiency 

when acting alone [119]. As a result, a hybrid EMS combined rule-based control 

strategy and dynamic optimization method is researched and described in this Chapter. 

Various adaptive approaches applied for optimization are reported – they include the 

fuzzy logic control, dynamic programming, model predictive control, intelligent 

algorithms, etc. [120]. The Genetic Algorithm is one of the most widely used and well-

developed heuristic evolutionary algorithms. Traditional optimization algorithms 

iteratively seek with a single initial value, which is easy to stray away from local 

optimal solution. The GA starts searching from sets of strings and a large coverage is 

conducive to global optimization. At the same time, the GA simultaneously processes 

multiple individuals in populations and reduces the risk of straying away from local 

optimal solution. The prerequisite knowledge of the search space or other supporting 

information is not required in GA. GA achieves parallelization with other algorithms 

on the hardware and has less calculational burden.  

The GA optimization is verified by the simulative and comparative study in this 

chapter. The logic of the designed rule-based control strategy demonstrated in Chapter 

3 is built in MATLAB_Stateflow while parameters to achieve the logic control are 
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converted into corresponding mechanical parameters in the vehicle model. Thereafter, 

bi-directional and dynamic simulation is conducted to obtain the optimal threshold 

values according to the fitness function based on reducing the emission and fuel 

consumption. The simulation results of the GA optimization compared to the designed 

rule-based control strategy working alone shows excellent performance in terms of 

emissions and fuel economy while meeting constraints set according to the power 

requirements  The results from this work have been submitted to a journal for 

publication and is currently under review. 

4.1 Introduction  
As discussed in Chapter 3, the designed rule-based control strategy is not ideal when 

encountering dynamic and complex driving cycles [81]. The adaptive algorithms 

applied in the EMS to optimize the rule-based control strategy for HEVs will improve 

the efficiency of the EMS when meeting different driving behaviours and environment. 

The algorithms for EMS have been in development since 1992 [83, 121]. These 

algorithms are used in different scenarios ranging from offline to online applications 

and from local to global optimizations.  

Taking the memory constraint and the computational capacity into account, some of 

the algorithms with high efficiency have been used in some well-established energy 

control models [121]. As described in Chapter 2, control methods of the EMS have 

been classified into premeditated EMS and the causal EMS. The premeditated EMS 

uses a precalculated control policy and considers the values of inputs and real-life 

driving conditions to produce an expected control. The premeditated EMS with the 

rule-based control strategy is commonly used to generate a simplified and offline 
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control and does not face any computational complexity. On the other hand, casual 

EMS uses algorithms with dynamic characteristics to produce the control in real-

time/online during real-world driving scenarios. A blended EMS combines both the 

premeditated EMS and the casual EMS. A premeditated decision and an instantaneous 

control are complementary to obtain a global and online optimization in blended EMS. 

The detailed optimization method applied in EMS design for the PHEV is shown in 

Figure 4.1. It could be divided into two pathways - rule-based control strategy and 

control/scheduling.  
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Figure 4.1 The main optimization methods utilized in vehicle EMS.
A logical relationship between the rule-based control strategy and the optimization 

objectives using genetic algorithm (GA) will be presented in following sections. The 

rule-based control strategy designs demonstrated in Chapter 3 have shown promising 

simulation results in terms of CO, HC and NOx emissions and better fuel economy. A 
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mathematical model of the hybrid rule-based control strategy and the optimization 

objectives using GA will be developed in this chapter. Simulation studies will be 

conducted using the EMS based on the proposed hybrid design to show the 

effectiveness in reducing emission and increasing FE. The findings of this Chapter 

have been submitted for a journal publication which is currently under review. 

4.2 The Hybrid EMS Design  
In Chapter 3, the objectives for rule-based control strategy design included improving 

the fuel economy while decreasing the emissions. They are also used as the 

optimization objectives in this Chapter. To solve the optimization problem in the EMS 

design, a mathematical model to quantitatively define the states and parameters of the 

system needs to be developed. Once the working states in the PHEV are defined, a 

mathematical model can be built and analysed with different optimization approaches 

to achieve an optimal parameter configuration for the EMS. 

 The preparation of the designed rule-based control strategy 

The rule-based control strategy design is based on the theoretical analysis and an 

engineering intuition. The different working states in PHEV are defined with critical 

values. The setting of the threshold values such as the low (SoCl) and high points 

(SoCh) of the SoC in the battery will decide one of the 12 working states of the battery, 

engine and the EM. Figure 4.2 shows the designed rule-based control strategy with 

different logic states.  
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Figure 4.2 The logical states design of rule-based control strategy. 

The main creative design of the rule-based control strategy is redefining the working 

states according to different power demand or requirements (Pd/req) and instantaneous 

value of the state of charge (SoCi). Compared to the traditional control strategy, the 

designed rule-based control strategy reduces the range of the CS mode and sets up a 

new mode, CS Engine to Battery (CSe2b) mode. The CSe2b mode allows the engine to 

charge the battery when the value of SoCi is lower than SoCl but not far away (higher 

than 50% of SoCl). The engine will now charge the battery as soon as possible. When 

the SoCi becomes more than SoCl, the working state will jump to EV and CD modes. 

Working in EV and CD modes will mean lower emission, which is a crucial design 

requirement for the EMS.  

The SoCi and the Pd/req will create 12 different states as shown in Figure 4.2. The value 

of SoCi shows an increasing trend from state 1 to state 12. The details of the engine 

and battery outputs in states 1 to 12 are itemized in Table 1 and shown in Figure 4.3. 
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States 1 to 3 refer to the battery output being zero.  The series-parallel PHEV is 

powered by engine only and the battery is in a completely discharged state. The output 

of the engine will depend on the power demand to go faster/slower.  When the amount 

of the charge in the battery is lower than the SoCl but higher than 0.5SoCl, the series-

parallel PHEV will be in CSe2b mode. In the CSe2b mode (states 4 to 6), the engine 

charges the battery first to a level above SoCl.  Only after this is achieved, the battery 

provides power for propulsion.  It should be mentioned that when power demand in 

state 6 is high, ICE is the major power provider and the battery will provide the 

necessary additional low power that is required. Under the conditions that the battery 

is charged by the ICE, the output value of the battery listed in Table 4.1 is zero, not 

negative, because the battery and ICE are two separate energy sources. The entire 

energy system (battery and ICE) cannot be recognized as a closed loop. 

Minor working area

Middle working area

Higher working area

Td= Tb+Te
Te

10Nlow

Boundary (Bmid/Bhi)Torque

Time
11 127 8 94 5 6321
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Figure 4.3The practical torque distribution of engine and battery in the rule-based 
control strategy 

In states 7, 8, 10 and 11, once the SoCi is higher than SoCl and the power demand 

(Pd/req) is lower than the maximum power of the battery (Pbmax), the engine output will 

become zero. Table 4.1 shows that states 7, 8, 10, and 11 maintain the same output of 
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the engine and battery, which seems as if they could be merged. However, the output 

of the battery will also depend on the Pd/req, which is at different levels in states 7, 8, 

10 and 11. In states 9 and 12, the battery will be set as the main power and is working 

in the maximum power (Pbmax) range. Meanwhile, the ICE as an auxiliary component 

in states 9 and 12, will work in a minimum (area shown in Figure 4.3 and small-

medium range (middle working minor working area shown in Figure 4.3), 

respectively, depending on the instantaneous charge and power demand. Figure 4.2 

shows the states 1 to 12 according to the degree of electric power participating in 

propulsion. The states are also ranked based on the emission in each state (green means 

pollution free). 

Table 4.1 The power output in logic states of the rule-based control strategy 

 

Condition State Engine  Battery 

SoCi < 0.5SoCl 
1 

Output = Pd/req Output = 0 2 
3 Output = Pemax 

0.5SoCl < SoCi < SoCl 
4 

Output = Pe2b + Pd/req Output = 0 5 
6 

SoCl < SoCi < SoCh 
7 

Output = 0 Output = Pd/req 8 
9 Output = Pd/req − Pbmax Output = Pbmax 

SoCh < SoCi 
10 

Output = 0 Output = Pd/req 
11 
12 Output = Pd/req − Pbmax Output = Pbmax 
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 The optimization model of the Genetic Algorithm (GA) 

The GA is defined as a random search algorithm based on natural selection and genetic 

mechanism [122]. The optimal solution obtained by GA will not be affected by the 

limitations of the area and the conditions. One of the significant advantages of the GA 

is the strong robustness, especially when addressing a complicated and sophisticated 

optimization problem [122]. The GA is widely used in various fields such as complex 

function optimization, picture processing, machine learning, etc. [123].  

The common process of the GA optimization is shown in Figure 4.4. It encodes the 

solutions from the solution space of the optimization problem to produce the initial 

generation of the population.  According to the principle of the survival of the fittest, 

a new generation with better performance will be individually obtained from the 

previous generation. After the selection, the selected solutions will be crossed over and 

mutated to create a new generation. This process will be iteratively operated until a 

group of the solutions that show the optimum adaptive performance for the system are 

obtained [124]. 

Based on the rule-based control design strategy and the GA, the hybrid EMS of the 

series-parallel PHEV will be designed to reduce the Fuel Consumption (FC) and 

emission. The hybrid EMS design will be verified through simulation. The simulation 

requires an accurate mathematical model. The significant part of the mathematical 

module building is a correct logical relationship between the rule-based control design 

strategy and the GA. 
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Figure 4.4 The flowchart of the GA optimization 

The optimization results of the GA are sensitive to the basic set parameters such as the 

encoding method, the genetic operators and the iterative update model [125]. The 

encoding methods refer to the group of solutions. The genetic operators include the 

crossover operator and the mutation operator; the iterative update model depends on 

the fitness function, the initial generation, the population size and the termination 

conditions [126]. The assignment of the parameters strongly depends on the different 

states in the rule-based control design strategy. Therefore, the model setting of the 

hybrid EMS design will start from establishing the mathematical model. 
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4.3 The Hybrid Mathematical Model Building 
The EMS design in this Chapter combines the rule-based control strategy and GA. The 

approach of GA optimization includes the constrained conditions such as the 

acceleration requirements, climbing ability, maximum velocity and others. The 

optimization objectives include the emission reduction and FE growth.  

In order to obtain the most effective controlling parameters of the EMS such as the 

SoCl, the process of using the GA searches for the optimum value for each parameter 

in the finite solution space. Searching the solution of the controlling parameters is 

based on the calculation of the fitness function [127]. The general mathematical model 

is expressed in equation (4-1) as follows: 

Nonlinear Programming (NLP) �
min𝐹𝐹(𝑥𝑥)

𝑠𝑠. 𝑡𝑡.𝑔𝑔𝑗𝑗(𝑥𝑥) ≥ 0 𝑗𝑗 = 1, 2, … ,𝑚𝑚 ,

(4-1),

where the F(x) is the fitness function and 𝑔𝑔𝑗𝑗(𝑥𝑥) are the different constraints that refer 

to the performance of the vehicle.  

 The fitness functions 

The fitness function for the GA operation is defined in Equation (4-2).  The specific 

expressions for FC and the emission are further shown in Equation (4-3) for F(x). 

Fitness function ∶ 𝐹𝐹(𝑥𝑥) = � 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑥𝑥)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸: 𝐶𝐶𝐶𝐶(𝑥𝑥),𝐻𝐻𝐻𝐻(𝑥𝑥),𝑁𝑁𝑁𝑁𝑥𝑥(𝑥𝑥) 

 (4-2)
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𝐹𝐹(𝑥𝑥) =
𝜔𝜔1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡)𝑑𝑑𝑑𝑑  +

𝜔𝜔2

𝐹𝐹𝐶𝐶𝐶𝐶−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�𝐶𝐶𝐶𝐶 (𝑡𝑡)𝑑𝑑𝑑𝑑 +

𝜔𝜔3

𝐹𝐹𝐻𝐻𝐻𝐻−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�𝐻𝐻𝐻𝐻(𝑡𝑡)𝑑𝑑𝑑𝑑

+
𝜔𝜔4

𝐹𝐹𝑁𝑁𝑁𝑁𝑥𝑥−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�𝑁𝑁𝑁𝑁𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑 

 (4-3), 

where, 𝜔𝜔1  to 𝜔𝜔4  are the different weighting factors, FFuel-goal, FCO-goal, FHC-goal and 

FNOx-goal are the desired values of the sub-targets. The expectation value of each sub-

target are decided by the requirements of the road emission policies [128]. 

∫𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡)𝑑𝑑𝑑𝑑 is the cumulative value of the instantaneous FC.  It should be noted that 

the FC is expressed as litres/100km. Similarly, ∫𝐶𝐶𝐶𝐶 (𝑡𝑡)𝑑𝑑𝑑𝑑 , ∫𝐻𝐻𝐻𝐻 (𝑡𝑡)𝑑𝑑𝑑𝑑  and 

∫𝑁𝑁𝑁𝑁𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑 are the cumulative values of the instantaneous emissions of CO, HC, and 

NOx, respectively. The constraint conditions referring to the vehicle performance are 

listed in Table 4.2. 

Table 4.2 The constraints condition for vehicle performance 

Constraints Condition Requirements Expression  

The maximum velocity (Vmax) ≥ 160 km/h g1 = Vmax ≥ 160 km/h 

The acceleration time from 0 to 100 km/h (T 
0~100km/h) ≤ 12s g2 = T 0~100km/h ≤ 12s 

The acceleration time from 40 to 100 km/h (T 
40~100km/h) ≤ 8s g3 = T 40~100km/h ≤ 8s 

The climbing gradient within 10s at 20 km/h 
(G20in10s) ≥ 30◦ g4 = G20in10s ≥ 30% 

The difference in velocity between the actual 
speed and the required speed in the cycle 
condition (∆𝑉𝑉) 

≤ 0.2 km/h 
g5 = ∆𝑉𝑉 ≤ 0.2 km/h 

The difference between the initial and terminal 
value of SoC in a cycle condition (∆𝑆𝑆𝑆𝑆𝑆𝑆) 

≤ 0.5% g6 = ∆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 0.5% 
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There are several mathematical methods to merge the constraint condition to the fitness 

function [129, 130]. The penalty function is one of the most widespread mathematical 

methods for the constraint condition. The use of the penalty function is highly practical 

and reliable. The penalty function establishes a specific constructor function based on 

the constraint condition. According to the individual degree of the deviation from 

constraints, the penalty function will decrease the value of the fitness and adds to the 

objective function. The optimization problem with the constraint conditions in the GA 

process will be converted to the final fitness function. Therefore, the fitness function 

with the constraint conditions discussed above can be converted to the final evaluation 

function that is described in Equation (4-4) as follows: 

𝐸𝐸 (𝑥𝑥) = �

𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹(𝑥𝑥), 𝑔𝑔𝑗𝑗(𝑥𝑥) ≥ 0 ∀𝑗𝑗 = 1, 2, … ,𝑚𝑚

𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥) +  𝛼𝛼��𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝑔𝑔𝑗𝑗(𝑥𝑥)��
2

,      𝑔𝑔𝑗𝑗(𝑥𝑥) < 0
𝑚𝑚

𝑗𝑗

 (4-4),

where m is the number of the constraints and 𝛼𝛼  is the penalty factor in the penalty 

function, 𝑔𝑔𝑗𝑗(𝑥𝑥) is the constraint condition, and 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥) is the objective function of 

the worst solution in the population. 

 The set of solutions of the GA 

A significant process in GA is defining the dimension of the solutions according to the 

rule-based control design strategy. The calculation of fitness value in GA is based on 

the vehicle model in the simulation environment. Therefore, the set of solutions 

include not only the controlling parameters but also the related mechanical parameters, 

for example, the torque demand (Td), the torque from the engine (Te) and the battery 
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or EM (Tb). Td also refers to the total output torque from the coupler. Based on the 

rule-based control design strategy (see Figure 4.2 and Table 4.1), the mechanical states 

of the EM and the ICE from states 1 to 12 are shown in Figure 4.3. In the figure, the 

X-axis is time and the Y-axis is torque. There are three fundamental lines that are 

particular to the characteristic curve of ICE: the lines of the Te ·temax and Te ·temin in the 

figure show the maximum and minimum output powers of the ICE, respectively and  

temax and temin are the maximum and minimum torque envelope coefficients, 

respectively. This is taken from the database in ADVISOR [131]. Nlow is the start-stop 

line for the engine. In the area to the left of Nlow, the engine is off while it is on in the 

area to the right of Nlow.  Based on the logical states of the rule-based control design 

strategy, the dotted straight lines in the figure separate the three working areas – minor, 

middle and higher working areas.  In states 1, 2 and 3, the total torque Td is entirely 

due to ICE - the battery is not supplying any power. In states 4, 5 and 6, the torque 

from the engine charges the battery with priority and provides the propulsion at the 

same time. The ICE stops in states 7, 8, 10 and 11 where the value of Te is zero. The 

Tb is the dominating torque in states 9 and 12 - while Te is not zero in these states, it is 

small compared to Tb. Based on the conditions illustrated in Figure 4.3, the group of 

solutions in GA process include 8 parameters of the vehicle model. The eight-

dimensional solution as a group in the GA process is shown in Table 4.3. 
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Table 4.3 the group of the solutions for GA optimization based on rule-based control 
strategy 

The group of solution Parameter representative Parameter properties 

x1 SoCl 

Logical controlling 

x2 SoCh 

x3 Ctchg 

x4 Bmid 

x5 Bhi 

x6 Nlow 

Mechanical x7 temax 
x8 temin 

The parameter Nlow will decide the state to start the engine. Bmid is the boundary at 

which the engine jumps from minor working area into the middle working area. Bhi is 

the boundary at which the engine jumps from middle working area to high working 

area.  In the rule-based control strategy, Bmid and Bhi have specific values, i.e., 0.25 and 

0.7, respectively. But in GA, these two values will be varying and will be optimized. 

temax and temin are the maximum and minimum torque envelope coefficients, 

respectively. SoCh and SoCl of the battery are the other two significant controlling 

parameters relating to the battery. The coefficient of the charging torque (Ctchg) will 

decide the amount of torque difference between the engine and EM. The Ctchg decides 

the threshold of high and low charge from the engine to the battery.   

 The initial population setting of the GA 

The size of population (NP) is a parameter that significantly impacts the optimum 

results. The values of NP can vary from ten to hundreds of thousands depending on 

specific problems [132]. Usually, the value of NP is set 10 times the dimension of the 
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set of solutions [132]. It should be pointed out that there is no direct evidence that the 

NP relates to the dimension. Using the principle of ‘10 times the dimension’ to set the 

NP value has been shown not applicable to a large population, for example, if  the 

dimension is more than 100 [132]. The computing complexity will linearly increase 

with the convergence time in a large population with high dimension. A small NP 

seems more appropriate in small-scale optimization problems [132].  

Meanwhile, reduced NP appears in large-scale optimization problems because of the 

advantage of forming the subset population [133]. For example, serval researchers 

have set NP as 2𝑑𝑑 , where d refers to the dimension [134]. For very large-scale 

optimization problems, a larger NP with a high-dimension solution will significantly 

increase the calculation complexity and operation cycle [135]. In terms of energy 

optimization in PHEV, the general scale of dimension is no more than 20 and the range 

of NP will be in a range from 50 to 200 [136].  

 The parameters of operators in the GA 

In order to obtain an optimum solution, the best offspring solution will be selected to 

bring the qualified gene to the next generation. Through the selection of suitable gene, 

optimum solution is achieved through an iterative process. 

The comma selection is one of the most common methods used in GA [137]. It 

randomly takes µ solutions from the parent population based on the fitness value. The 

selected solution meeting the termination condition is roughly considered as the best 

solution [138]. However, the comma selection lacks precision - the main reason is the 

possibility of missing the better solution due to the randomness [138]. Compared to 
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the comma selection, the plus selection enhances the diversity of the gene. The plus 

selection forms the new generation that includes part of µ offspring solutions in 

random selection and the λ parent solutions [139].  

The process of the comma selection and plus selection depends on the randomness. 

The roulette wheel selection is better than both in terms of the fitness proportional 

selection. The probability of being selected by the roulette wheel depends on the 

individual fitness value of each solution [139]. The mathematical expression of the 

selection probability (Ps) in a roulette wheel is shown in Equation (4-5). The Ps is the 

ratio of fitness value of individual solution (𝐹𝐹(𝑥𝑥𝑖𝑖)) to the sum of the fitness values of 

the whole generation that includes n sets of solutions [140]. The different selection 

method should be appropriately adopted according to the specific scenarios. 

𝑃𝑃𝑆𝑆 =
F(𝑥𝑥𝑖𝑖)

∑ 𝐹𝐹(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 

 (4-5)                                                                

The crossover operator is commonly in the form of probability (Pc) or a dynamic 

function of variables [141]. One of the common crossover operations is the N-node 

crossover. Two groups of solutions (chromosomes) are divided into N nodes. The 

offspring will then be generated by randomly exchanging the corresponding partition 

of these two groups of solutions [142].  

Another commonly used crossover method is the arithmetic crossover operation [141]. 

The arithmetic crossover is known as the intermedia crossover, which calculates the 

arithmetic mean value of two sets of solutions as the generated offspring [141]. The Pc 
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is a constant ratio in the uniform crossover, which will control the frequency of 

crossover operation [123]. The common range of Pc is from 0.25 to1. A large Pc 

enhances the ability to develop the new searching area but can easily reduce the 

performance of the solution. A low Pc leads to slow GA searching speed [141]. 

The mutation operation is the auxiliary searching process in GA. The main purpose of 

mutation is maintaining the diversity of the population [143]. The form of mutation 

operator is similar to the crossover, which could be a constant probability (Pm) or a 

dynamic function of variables [144]. The Gaussian mutation as the representative 

dynamic operator has been extensively reported [145]. The Gaussian mutation is based 

on the Gaussian distribution. The offspring (𝑋𝑋′ ) generated through the Gaussian 

mutation as shown in Equation (4-6). 

𝑋𝑋′ = 𝑋𝑋𝑖𝑖 + 𝛾𝛾 ∙ 𝑁𝑁(𝜏𝜏 ,𝜎𝜎2) 

 (4-6),  

where the Xi is the group of solutions after the crossover operation and 𝛾𝛾  is the 

mutation rate. It multiplies the normal distribution with a mathematical expectation of 

𝜏𝜏  and variance of 𝜎𝜎2 . The term 𝛾𝛾 ∙ 𝑁𝑁(𝜏𝜏 ,𝜎𝜎2)  results in an increased local area 

searching. It improves the convergence of the algorithm but could affect the global 

evolution [90].  

The flip mutation based on the randomness is frequently utilized in the binary coding 

method [90]. In flip mutation, each of the bit will be reversed with the probability of  

𝛾𝛾 = 1
𝐿𝐿
 , where L is the length of the string [146]. Another main approach of mutation 

is the random mutation with a specific probability (Pm). The common range of the Pm 
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is from 0.001 to 0.1. Generally, the risk of losing the significant characteristics (gene) 

is prevented from the low Pm. A high Pm convert the GA to the random search [136, 

147].  

4.4 The Simulation Studies 
The essence of GA is a probabilistic searching algorithm depending on the iterative 

fitness value [129]. For the proposed hybrid optimization in this research, the rule-

based control design strategy targets on the steady EMS. The dynamic searching is 

achieved through the GA optimization simulation. As described in Sections 4.3.3 and 

4.3.4, the initial NP setting is 100; the roulette wheel is used in selection process; the 

N-node approach is used in the crossover and the Gaussian mutation is adopted.

 The simulation preparation of the GA optimization 

The process of the hybrid optimization with simulation is shown in Figure 4.5. 

According to the mathematical model shown in Equations (4-1) to (4-6), the GA 

operation in MATLAB mainly includes the eight parameters expressed in Equation (4-

7) as follows:

GA= (C, E, P0, NP, Φ, Ƭ, Ψ, T) 

(4-7)

where C is the encoding method, E is the evaluation approach, P0 is the initial 

population, NP is the size of the population, T is the termination condition, Φ, Ƭ and 

Ψ are the selection, crossover and mutation operators, respectively. The lower and 

upper limits of the group of solutions from x1 to x8 are listed in Table 4.4.  
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Table 4.4 The value range of each solution 

The group of solution Parameter representative Lower limit Upper limit 

x1 SoCl 0.1 0.5 
x2 SoCh 0.5 0.9 
x3 Ctchg 0 1 
x4 Bmid 0 0.6 
x5 Bhi 0.4 0.8 
x6 Nlow 10 30 
x7 temax 0.3 0.8 

x8 temin 0.7 0.91 

The first step (see in Figure 4.5) is logically mapping the rule-based control design 

strategy to the group of solutions in GA. It decides the group of parameters/threshold 

values that will be optimized in the vehicle model.  

Since each solution operated in the vehicle model is a real number, appropriate 

encoding and decoding methods are required in the process of GA optimization. 

Therefore, the group of solutions is firstly encoded through binary code in step 2 (see 

Figure 4.5). The length of the bit string (Ltotal) depends on the accuracy of the actual 

numerical values of each solution. The length of the string for the group of solutions 

(X) is a sum of length of individual solution after encoding (Li). The binary coding

method for each solution is given by Equation (4-8) as shown below. 

2𝐿𝐿𝑖𝑖−1 < (𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖) × 10𝐴𝐴 ≤ 2𝐿𝐿𝑖𝑖 − 1 

 (4-8) 

where bi and ai refer to the upper and lower limits of each solution, respectively. A is 

the accuracy of the solution, down to two decimal points in this section. 
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For example, L1 = 6 when b1 = 0.9 and a1 = 0.5 for x1. Therefore, the encoded string 

with Ltotal = 47 is obtained, where (L1, L2, L3, L4, L5, L6, L7, L8) = (6, 6, 7, 6, 6, 11, 6, 

5). 

Once the population is generated, the genotyped string will be encoded to form initial 

population (P0). The value of NP is 100 in this section. The generation counter (G) is 

initialized to 0 when it randomly generates 100 sets of solutions. The calculation 

process is conducted in the MATLAB_GAOT based on the vehicle model and input 

working conditions. 

The third step (see Figure 4.5) evaluates the solution through the fitness function. The 

expression of fitness function directly or indirectly refers to the variable in the general 

utilization of GA. X (x1, x2, ···, x8) is the set of variables in the fitness function shown 

in Equation (4-3). However, right hand side of Equation (4-3) is the sum of the 

integrals of emissions and fuel consumption over time. Compared to the common 

fitness function, the specific difference in this scenario is the fitness evaluation. The 

different solutions from x1 to x8 will be set in vehicle model. Then, the working 

conditions are input to the vehicle model to obtain the corresponding results of 

emission and fuel consumption. 

The solutions will be decoded in the form of binary string into a real value that could 

be set in the vehicle model. The vehicle model (PRIUS_JPN_defaults_in 2013) is 

called from the ADVISOR [131]. The different working states in rule-based control 

design strategy are achieved in the control block in MATLAB_stateflow. The penalty 

function with constraints g1 to g6 will be calculated by calling the interface of the 
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adv_no_gui in ADVISOR. The optimization target sub-values, FFule-goal, FCO-goal, FCH-

goal and FNOx-goal, are set in MATLAB_GAOT to evaluate the fitness function E(X). 

Table 4.5 lists the values set for each target sub-values based on the Europe emission 

standard [128]. Since the optimization weights are assumed to be the same for each 

optimization goal in this Chapter, the weighting factors ω1 to ω4 in Equation (4-3) are 

all set equal to 0.25 (1/4).  

Table 4.5 the target sub-value set for the fitness function in GA [128] 

Europe emission 
standard 

FFule-goal 
(L/100 km) 

FCO-goal  
(g/km) 

FCH-goal 

(g/km) 
FNOx-goal 

(g/km) 

EURO VI (Sep. 2014) 
passenger vehicle 

6 1.00 0.10 0.08 

 

Step 4 (see in Figure 4.5) is the selection operation. In this research, 10 sets of solutions 

(λ = 10) are selected as the parent to be breeding. The fitness proportional selection 

method in Equation (4-5) is adopted. The Ps uses n = NP = 100 when selecting the 

solutions from the first or initial generation (G = 0) and n = μ = 80 after the first 

generation until termination. 

The process of the crossover occurs after obtaining the selected offspring. Since the 

selection is based on the fitness evaluation in the form of a real number, the first 

operation in step 5 (see Figure 4.5) is re-encoding the parent generation. The N-node 

crossover operation is utilized in this research. One node (N = 1) randomly divides the 

string into two segments. The segments will correspondingly crossover with the 

probability of 0.7 (Pc = 0.7).  
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The mutation to maintain the diversity of the solution space will be occur in step 6 (see 

in Figure 4.5). The fitness proportional selection method was used to find a better 

solution in step 5 (see Figure 4.5). The Gaussian mutation was found to improve the 

capability of local search. The Gaussian mutation will hardly affect the convergence 

of calculation for a small-scale scenario. Equation (4-6) uses the standard normal 

distribution, in which τ = 0, σ = 1. The mutation probability approximately takes 𝛾𝛾 = 

0.02 since the value of Pm is 1/47 (1/L) when the accuracy is to two decimal places. 

According to the normal GA process shown in Figure 4.2, the offspring generation 

(X’) produced in step 6 will be similarly re-evaluated in step 7 (see Figure 4.5). The 

operation is achieved by decoding the offspring generation, calling the vehicle model 

and running the same work cycle. After the evaluation of the offspring generation E 

(X’), the iteration counter will be updated by G’ = G+1. The GA process in step 8 (see 

Figure 4.5) will be capped at 100 if the solution is not yet achieved. 

 The simulation model 

The simulation results of the hybrid optimization design are compared to the single 

function of the rule-based control strategy [84]. Therefore, the vehicle model called 

from ADVISOR is the same as the one in simulation of the rule-based control design 

strategy in Chapter 3.  The detailed information of the vehicle model was listed in 

Table 3.2. The logic of the designed rule-based control strategy is achieved through 

MATLAB Simulink_stateflow. The whole vehicle model block and the rule-based 

control design strategy in Stateflow block built using the Simulink environment is 

shown in Figure 4.6. 
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Figure 4.7 The vehicle model called from ADVISOR for simulation. 

The GA process was operated in the MATLAB_GAOT and the ADVISOR_GUI based 

on the simulation process described in Figure 4.7. The GA is achieved by scripting the 

functions from MATLAB_GAOT.  There are five docking ports. They include two 

inputs from the drive cycle (Pd) and energy storage (SoC), respectively. Three outputs 

to Simulink are the EMTorque to EM, Torque to ICE and EngTorque to the generator. 

In terms of the state jump and conditional transfers of the individual block, the 

enumeration variables (Engmode, Genmode and EMmode) are built by an 

enumerated-type function. The value transfer in different states is realized through the 

truth table in MATLAB_stateflow (see Figure 4.8).    
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Figures 4.8 (a), (b) and (c) show the internal state jumps and the corresponding truth 

table in the blocks of the ICE, generator and EM, respectively. The values of 

mechanical parameters and the initial values of logical controlling parameters are 

listed in Table 6. The parameter marked with an asterisk (*) is the one that will be 

optimized in the GA process. To clearly compare the hybrid optimization design to the 

rule-based control design strategy, input of working condition will adopt the same 

Extended CYC_ECE_EUDC, as shown in Figure3.3 in Chapter 3.  

 The simulation results 

Based on the simulation process described in Section 4.4.2, the simulation results are 

plotted in a MATLAB environment. The curve of the GA objectives values is shown 

in Figure 4.9. The objectives of each section are plotted in a three-dimensional diagram 

in Figure 4.10, which is the HC, CO and NOx emission based on the charging factor 

and number of iterations. The detailed data of each optimal objectives and the 

parameters extracted from the simulation are listed in Table 4.6. 

Figure 4.9 The GA optimization results based on the fitness value and iterations. 
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120 

 

Table 4.6 The GA iterative optimization results of each solution in the critical 
generation 

Iterati-
ons  

SoCl SoCh Ctchg Bmid Bhi Nlow temax temin CO 
(g/km) 

HC 
(g/km) 

NOx 
(g/km) 

FE 
(MPG) 

10 0.35 0.82 0.42 0.2
9 

0.6
6 

15.1
7 

0.78 0.4
3 

1.12 0.20 0.08 60.1 

20 0.32 0.85 0.53 0.3
3 

0.7
1 

15.0
6 

0.76 0.4
7 

0.89 0.11 0.08 62.6 

30 0.36 0.83 0.53 0.3
4 

0.6
5 

15.7
2 

0.73 0.3
9 

0.98 0.08 0.07 61.7 

40 0.33 0.83 0.56 0.2
6 

0.6
9 

15.1
0 

0.73 0.4
1 

0.88 0.08 0.07 66.3 

50 0.37 0.79 0.46 0.2
8 

0.6
4 

14.8
2 

0.72 0.3
8 

0.96 0.10 0.11 59.6 

60 0.40 0.82 0.50 0.2
9 

0.6
6 

15.1
7 

0.78 0.4
0 

1.12 0.10 0.06 64.1 

70 0.35 0.85 0.51 0.3
3 

0.7
1 

15.0
6 

0.76 0.3
7 

0.93 0.09 0.07 60.6 

80 0.34 0.80 0.49 0.3
4 

0.6
2 

16.0
0 

0.69 0.4
1 

0.99 0.08 0.07 60.8 

90 0.35 0.84 0.50 0.3
0 

0.6
3 

15.3
9 

0.71 0.3
9 

0.99 0.11 0.09 59.9 

 

 The analysis  

According to the simulation results of the GA optimization shown in Figure 4.9, there 

is no significant fluctuation after the 30th generation, while the curve of GA 

optimization shows a convergence around the 35th generation.  

Figure 4.10 clearly shows that the emission of the HC has local linear decline. There 

is a notable decrease in HC emission around 20 iterations. It achieved the minimum 

emission when the value of Ctchg was around 0.53. The optimization of the CO 

emission similarly shows a local linear decrease. For the emission optimization of the 

NOx, a minimum value is obtained when the Ctchg is around 0.5 in the 60th generation.  
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According to the information listed in Table 4.6, a significant decrease in the 

optimization objective of HC occurred from the third to the 20th generation, from 0.2 

to 0.11. Compared to other values of parameters, the difference of temax and temin 

between the 20th generation (0.76 and 0.47) and the convergent results in 80th 

generation (0.69 and 0.41) are smallest. The parameters temax and temin appear to have 

maximum influence on the HC emission. Meanwhile, the lowest point of 0.06 around 

the 60th generation for the NOx emission seems to relate to the logical parameters of 

the battery (SoC and Ctchg). The trends and the fluctuations of the CO emission implied 

corresponding changes with the logical parameters of Bmid and Bhi between 10th and 

30th generations. However, the results at the 20th and 30th generation show that the 

optimization objective of the CO emission increased from number (0.89) to (0.98).  

Table 4.7 shows the comparison of the simulation results.  

Table 4.7 Comparison of the simulation results 

Objectives Before 
Optimization 

Rule-based 
strategy 

Hybrid 
Optimal Target GA Optimization 

Emissions 
(g/km) 

HC 1.24 1.30 0.1 0.08 
CO 1.21 0.90 1 0.88 
NOx 0.17 0.16 0.08 0.07 

Fuel 
Economy 
(MPG) 

FE 45.4 57.9 47.1 66.3 

Objective 
Evaluation 

E  0.71 minF(x) Mean: 0.42 

Best: 0.23 

 

Compared to other reported results using GA related algorithms [117, 148], the 

simulation results show a significant improvement in both FE and emission. The 
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majority of the hybrid EMS design based on rule-based control strategy and GA adopts 

the hierarchical optimization [149]. Compared to the hybrid approach in this case, the 

multi-level optimization requires a more accurate model.  Much of the available 

literature sets the vehicle performance as one of the objectives such as the velocity 

ratio to optimize [150, 151]. Compared to the results obtained using both algorithms 

and other types of methods such as the optimization based on orthogonal experimental 

design and Non-dominant sort GA (NSGA-II) [136], the proposed hybrid optimization 

in this Chapter shows an improvement in the CO emission and FE. However, the 

constraints condition in [136] seems to be more strict. For example, the time set to 

achieve an acceleration from 0 to 100 km/h was 10 seconds in [136], while 12 seconds 

is required in this research as well as some other work. The computation time for the 

model used in our work is around 120 minutes using a desktop running with an Intel 

(R) Core i7-6700 CPU and 32 GB memory. While no such specific numbers are 

available, it is generally reported that the computational time increases with the model 

complexity [152]. 

4.5 Concluding Remarks 
This Chapter reports results using an EMS based on hybrid rule-based control design 

strategy and GA to reduce the emission and improve the FE. A mathematical model is 

developed to connect the rule-based control design strategy and the GA. The 

simulation results from this mathematical model show improvements in FE, HC and 

NOx emissions. In terms of the GA process, the sub-targets set in the fitness function 

were successfully achieved around the 30th generation. Compared to the single 

function of the rule-based control design strategy, the hybrid method obtains a 
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dramatic decrease in the emission of HC from 1.3 to 0.08 g/km (93% reduction). At 

the same time, the emission of NOx decreased from 0.16 to 0.08 g/km (50% reduction), 

while CO emission marginally decreased from 0.90 to 0.88 g/km (2% reduction). The 

FE increased from 57.9 to 66.3 MPG.  
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Chapter 5  A Real-Time State of Charge Estimation Using 
an Improved Extended Kalman Filter Algorithm Based 
on a Composite Lithium-Based Battery Model  

This chapter is based on the work from the following publication in which the author 

of this thesis is the principal author: Ding, N., Prasad, K., Lie, T. T., and Cui, J. 

(2019),” State of Charge Estimation of a Composite Lithium-Based Battery Model 

Based on an Improved Extended Kalman Filter Algorithm,” Inventions, 4(4), 66. 

In Chapters 3 and 4, it was discussed that the significance of EMS to improve the 

efficiency of the energy dispatching in PHEVs. The SoC is one of the most critical 

basis of implementation of the EMS, which requires high estimation accuracy. The 

battery is the soul component of the vehicles driven by electricity. The electrochemical 

reactions make it difficult to accurately and intuitively describe the battery SoC. 

Chapter 2 also discussed that the SoC estimation of the battery can be seen as the 

dynamic identification of the internal parameters. The internal parameters of the 

battery significantly depend on the different adoptions of the battery models. 

Consequently, in this Chapter, an analysis on the various battery models is performed, 

in order to build an appropriate battery model for parameters identification. Thereafter, 

groups of experiments are carried out on the lithium-based battery. The experimental 

data is processed by the method of Recursive Least Squares (RLS) to achieve the 

offline parameters identification. Based on the adopted battery model and the offline 

parameters identification, a model of an improved extended Kalman Filter (EKF) 

algorithm is proposed to achieve the real-time parameters identification for dynamic 

SoC estimation. The simulation results show that the designed improved EKF can have 
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higher estimation accuracy, which significantly contribute to the SoC estimation for 

the monitoring module in EMS/BMS. 

5.1 Introduction 
In previous Chapters, it has been mentioned many times that the difficulties of the 

manufacturing technology and the assembly implementation of the battery restrain the 

development of EVs. The battery as the main power source directly affects vehicle 

performance. The BMS is a significant issue to the battery utilization in the vehicle. 

The main functions of BMS include improvement of the effectiveness of the battery 

utilization, prevention of over-charging and over-discharging, prolonging the battery 

life and monitoring of the battery status. The high effectiveness of the BMS/EMS in 

EVs will mainly depend on accurate information exchange between the modules. As 

discussed in section 2.3, the basic function of the monitor module in BMS is to capture 

and monitor the status of the battery and includes the SoC, SoP, and SoH [153]. The 

SoC of the battery is a crucial element to decide the battery operating condition. In 

terms of practical applications, the SoC is also the key factor to ensure the 

implementation of each module function in the BMS/EMS [154]. 

As described in section 2.1.2, the use of different types of batteries in EVs started from 

the lead-acid battery and quickly progressed to nickel-metal hydride (NiMH) battery 

and eventually to lithium-ion and ternary lithium battery [155]. The working trend of 

the cell and battery pack in EVs is a dynamic and non-linear change, specifically in 

the lithium-based battery applications [156]. In section 2.3, it has been discussed that 

the value of SoC is not directly measurable. The SoC is affected by serval factors such 
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as the battery terminal voltage, current and temperature. Moreover, measurements of 

voltage, current, etc. often occur with inevitable noises that lead to errors.  

The main objective for SoC estimation is to design an appropriate method with 

considerable accuracy and simplicity. Based on an overview of the SoC estimation 

algorithms in section 2.3.2, the detailed applications of different estimation methods 

are discussed firstly in this Chapter. Thereafter, it proposed a novel composite battery 

model based on the electrochemical models. Then, offline identification of parameters 

is done using experimental data. With these offline parameters, a battery model is 

subsequently built using MATLAB simulation. This model includes the effects of 

temperature, charge/discharge rate, direct current resistance, etc. Using this battery 

model, it consequently implemented the iEKF algorithm to estimate the SoC in 

MATLAB Simulink. The iEKF method combines the OCV, Ah and EKF methods: the 

OCV-SoC function in this work provide an initial value; Ah counting module online 

identifies the parameters of the battery model; the errors in the OCV and Ah estimation 

are corrected by the EKF algorithm. Under both static and dynamic operating 

conditions, it is shown that the iEKF algorithm applied on the novel composite battery 

model results in better accuracy of the SoC estimation than other EKF based methods. 

 The analysis of SoC estimators based on different methods 

The commonly used estimation methods of SoC mainly are based on Open Circuit 

Voltage (OCV) measurement, the coulomb counting method (Ah method), the method 

of Electrochemical Impedance Spectroscopy (EIS), the method based on neural 

network, the Kalman Filter (KF) based methods, etc.[157]. The OCV-based estimation, 

Ah method and EIS could be described as direct measurement methods. Taking into 
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account the practicality, the advantage of direct measurement methods is its easy 

implementation and low cost. However, the values of OCV and the current are 

obtained through an open-loop estimator. The hysteresis phenomena and the sensor 

drift will lead to inevitable and cumulative errors, which will significantly impact the 

operation of the BMS and the use of battery itself [154]. The estimation approach of 

the neural network is a data-driven method. The main purpose of the data-driven 

method is to simulate the nonlinear and dynamic characteristics of the battery. This 

method requires large Random Access Memory (RAM) storage to train the system for 

the learning process of the neural network [158]. Other machine learning methods such 

as the fuzzy logic, support vector machine and genetic algorithm have been extensively 

researched for battery SoC estimation [159-162]. The machine learning method 

improves the intelligence of the system, but the results are difficult to interpret and 

hence is not convenient in real practice. The need for appropriate storage requirement 

appears in the look-up table method of the SoC estimation. The look-up table sourced 

from the relationship curve of SoC-OCV is inadvisable for online application. A 

regular recalibration is required to update the table information [163].  

Another significant approach of SoC estimation is the model-based method, which is 

robust and is based on a close-loop-feedback system. The standard KF method is a 

well-known approach to estimate the internal state of a dynamic linear system [164]. 

To precisely describe the nonlinear working state of the battery, several KF relevant 

approaches have been used to obtain SoC estimation [165]. The extended KF (EKF) 

method mathematically transforms the standard (linear matrix) KF to fit a nonlinear 

system. Besides, several EKF-based methods, such as lazy EKF and robust EKF, are 
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proposed to estimate the SoC of the battery and in different scenarios for vehicle 

onboard battery and microgrid energy storage units [166, 167]. The Dual EKF (DEKF) 

adopted in [168, 169] to estimate the SoC of the battery and the parameter of the model 

shows faster convergence in shorter calculation time. The unscented KF (UKF) 

transforms the nonlinear models by linear interpolation. Sun et al. [170] discussed an 

adaptive UKF (AUKF) algorithm for SoC estimation which shows higher accuracy 

than the EKF-based estimator. The main issue of the UKF based methods is using the 

Unscented Transform to deal with the nonlinear transfer of the mean and covariance. 

Compared to the EKF, the UKF method approximates the probability density 

distribution of the nonlinear function instead of the nonlinear function approximation. 

Therefore, the UKF methods are more accurate [171-173]. However, the UKF-based 

estimator seems more applicable to the situation where the system is less nonlinear. 

The iterative update of the covariance in the UKF-based algorithm is prone to negative 

definite matrix in a highly nonlinear system. In addition to the methods related to KF, 

other model-based methods are reported in literature. For example, the Luenberger 

observer and sliding mode observer showed an accurate SoC estimation but is very 

complex [174]. 

5.2 The Battery Model 
The State of Charge (SoC) is used to identify the remaining capacity status of the 

battery. The value of SoC cannot be directly measured but obtained by analyzing 

external characteristics. Different battery manufactures in the market have a different 

definition of the SoC. Equation (5-1) gives a numerical definition of SoC. 
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SoC =
𝐶𝐶𝑄𝑄
𝐶𝐶𝐼𝐼

  

(5-1) 

where the CQ is the remaining capacity, and the CI is the rated capacity when the 

battery is discharged with a constant current I. 

The process of using the model-based method to estimate SoC could be considered as 

the dynamic identification for the parameters representing the characteristics of the 

battery. The choice of the models will determine the mathematical relationship of the 

different parameters. The equations of the state in the algorithms will also vary from 

the different model selections. Figure 5.1 shows a logical structure of the battery model 

build-up. 

 

Figure 5.1 The logical structure of the battery model build-up 
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1. Selecting the battery model (A novel composite electrochemical model). 

2. Determining the different parameters to be identified based on the selected 

model. 

3. Performing a series of characteristics tests on the battery. 
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6. Obtaining the equation of state.

7. Developing the online estimation algorithm (iEKF).

8. Inputting the current, temperature and SoC (simulations in static and dynamic

conditions). 

As shown in Figure 5.1, the battery model is constructed in two sections: offline 

parameter identification in section I and online parameter identification in section II. 

Steps 1 to 6 are the preparation steps for the battery model establishment. They will 

seriously influence the accuracy of the online estimation based on the iEKF algorithm 

in step 7. The series of experiments in step 3 refers to four different battery tests (see 

Sections 5.3.1 and 5.3.4). The experiments reflect the external characteristics of the 

battery and relate to the factors affecting the SoC estimation. The main factors 

affecting the battery capacity are the charge/discharge rate, temperature, the 

charge/discharge cycle (battery aging) and self-discharge of the battery [175]. Taking 

these factors into account, SoC (QtI) definition is amended as [176, 177]:  

𝑄𝑄𝑡𝑡𝑡𝑡 = 𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡 = 𝜂𝜂� 𝐼𝐼𝑑𝑑𝑑𝑑
𝑡𝑡

0
 

(5-2) 

where t is the charge/discharge duration time, Qti is the total quantity of electric 

charge/discharge during the period t, I is the current over a time interval 0 to t and η is 

the efficiency coefficient which includes both the charge/discharge rate (ηi) and the 

temperature influence coefficient (ηT). 
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 The composite battery model 

For the composite battery model, the SoC is considered as a state variable x in the 

system, 𝑥𝑥𝑘𝑘 is the number of the state vector. The output yk is the voltage of the battery 

model. The composite model is built based on three different electrochemical models 

as follows [83, 178]: 

Shepherd model: 

𝑦𝑦𝑘𝑘 = 𝐸𝐸0 − 𝑅𝑅𝑅𝑅𝑘𝑘 −  𝐾𝐾1 𝑥𝑥𝑘𝑘⁄    

(5-3) 

Unnewehr universal model: 

𝑦𝑦𝑘𝑘 = 𝐸𝐸0 − 𝑅𝑅𝑅𝑅𝑘𝑘 − 𝐾𝐾2 ∙ 𝑥𝑥𝑘𝑘  

(5-4) 

Nernst model: 

𝑦𝑦𝑘𝑘 = 𝐸𝐸0 − 𝑅𝑅𝑅𝑅𝑘𝑘 +  𝐾𝐾3 ∙ ln(𝑥𝑥𝑘𝑘) +𝐾𝐾4 ∙ ln(1 − 𝑥𝑥𝑘𝑘)  

(5-5) 

where E0 is the OCV when the battery is fully charged and R is the internal resistance 

which will change with different charge/discharge status and SoC, ik is the 

instantaneous current at time k (negative when the battery is charging and positive 

when discharging). K1 to K4 are the matching parameters to be identified through 

battery experiments. The state equation based on the composite battery model is 

described as follows: 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − (𝜂𝜂𝑖𝑖Δ𝑡𝑡 𝜂𝜂𝑇𝑇𝑄𝑄𝑛𝑛⁄ ) ∙ 𝑖𝑖𝑘𝑘  

(5-6) 

While the output equation is 
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𝑦𝑦𝑘𝑘 = 𝐾𝐾0 − 𝑅𝑅𝑅𝑅𝑘𝑘 −  𝐾𝐾1 𝑥𝑥𝑘𝑘⁄ −  𝐾𝐾2 ∙ 𝑥𝑥𝑘𝑘 + 𝐾𝐾3 ∙  ln(𝑥𝑥𝑘𝑘) +𝐾𝐾4 ∙ ln(1 − 𝑥𝑥𝑘𝑘) 

(5-7) 

where K0 is the OCV of the fully charged battery and has the same physical meaning 

as E0. However, E0 in Equations (5-3)–(5-5) is the actual measured value while K0 is 

obtained by the identification based on OCV-SoC experimental data (see in Section 

5.3.4). Equations (5-3)–(5-5) are combined in Equation (5-7). The electrochemical 

models of Equations (5-3)–(5-5) reflect the relationship between the terminal voltage 

and the SoC (𝑥𝑥𝑘𝑘). R is the internal resistance (Ohmic resistance) and changes with the 

charging/discharging state of the battery (𝑅𝑅𝑅𝑅𝑘𝑘).  𝐾𝐾1 𝑥𝑥𝑘𝑘⁄  from Equation (5-3) and 𝐾𝐾2 ∙

𝑥𝑥𝑘𝑘 from Equation (5-4) reflect the polarization resistances of the battery. 𝐾𝐾3 ∙  ln 𝑥𝑥𝑘𝑘 

and 𝐾𝐾4 ∙ ln(1 − 𝑥𝑥𝑘𝑘)  from Equation (5-5) represent the influence of the internal 

temperature and material activity during the electrochemical reaction of the battery, 

respectively. 

The SoC estimation is not directly considered in most of the research discussing the 

battery models. On the other hand, the accuracy of the battery model significantly 

affects the estimation of the SoC of the battery [179]. Justifying accurate battery 

models mainly depends on the dynamic tracking of the battery terminal voltage and 

the identification of parameters. Many bench tests are used to verify the accuracy of 

the battery models, such as HPPC test, pulsed charge/discharge cycles and dynamic 

stress test [180, 181]. At the same time, the experimental data used to verify the battery 

model is also applied to design the SoC estimators. 

In terms of the electrochemical model, various chemical reactions are carefully 

considered. They include the reaction occurring at the anode and cathode of the battery 
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and the electrolyte ion transfer process. Equations (5-3)–(5-5) are simplified 

electrochemical models based on empirical modeling method and have the advantages 

of simple expression and computational efficiency. However, there are some 

drawbacks when using models in Equations (5-3)–(5-5) alone or their correction 

models such as the new Electrochemical Polarization (EP) model [173, 181]. 

Compared to the equivalent circuit models (ECMs) [182, 183], the composite model 

described in this work shows sufficient accuracy and short execution time. The 

composite battery model in this research uses the calculation results of Equation (5-7) 

to replace the direct measurement of OCV, which is known to be difficult [184] but 

still used in other electrochemical models and ECMs. The advantage of linear 

parameters in the proposed model reduces the difficulty of parameter identification. 

With less complexity, the proposed composite battery model minimizes the number of 

the parameters to be identified while fully considering the influencing factors by 

combing K1 to K4.  

5.3 The Experiments and Offline Parameter Identification 

The mathematical parameters (𝜂𝜂𝑖𝑖, 𝜂𝜂𝑇𝑇, R, K0, K1, K2, K3, K4) of the composite battery 

model shown in Equations (5-6) and (5-7) require a validation. The initial 

identification of the parameters is an offline and static estimation, obtained by 

polynomial curve fitting of the experimental data (see Figures 5.2–5.8). The 

charge/discharge rate factor 𝜂𝜂𝑖𝑖  was obtained by the charge and discharge test. 

Similarly, the temperature influence coefficient 𝜂𝜂𝑇𝑇  was obtained from temperature 

characteristic test. The other parameters (R, K0, K1, K2, K3, K4) were obtained through 

a Hybrid Pulse Power Characterization (HPPC) test and OCV-SoC test [185]. All the 
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tests were conducted on a LiFePO4 battery (single cell) with 206 Ah rated capacity and 

3.2 V rated voltage. 

 Charge and discharge rate test  

The main purpose of this test is determining the influence from different 

charging/discharging rates on the actual capacity of the battery. According to the 

definition of SoC shown in Equation (5-2), the difference between the rated capacity 

and the measured capacity is caused by the variable parameter of 𝜂𝜂𝑖𝑖. The determination 

of 𝜂𝜂𝑖𝑖 is based on the experimental data to establish a linear fit relationship. Five groups 

of different rates (0.2 C, 0.5 C, 1 C, 2 C and 3 C) with a constant current at room 

temperature (25 °C) were conducted in charging and discharging tests, respectively. 

There was a 1 h resting time before starting the discharging test after the charging test 

was completed.  

Tables 5.1 and 5.2 show a specific data point of both capacity and energy retention for 

charging and discharging tests, respectively. The curves of the capacity retention rate 

for the charge and discharge rate tests for the LiFePO4 battery are shown in Figures 

5.2 and 5.3, respectively. From Figures 5.2 and 5.3, it is clear that the actual capacity 

of the battery will decrease as the charge/discharge rate increases. 

Table 5.1 The capacity and energy retention rate with specific charge rate 

Charge Rate Test 0.2 C 0.5 C 1.0 C 2.0 C 3.0 C 

Capacity/Ah 211.45 208.95 206.88 204.07 194.76 

Capacity retention rate/% 102.21 101.00 100.00 98.64 94.14 

Energy/Wh 707.76 706.36 708.04 712.64 692.15 

Energy retention rate/% 99.96 99.76 100.00 100.65 97.76 
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Figure 5.2 Capacity retention curves at different charge rates 

Table 5.2 The capacity and energy retention rate with specific discharge rate 

Charge Rate Test 0.2 C 0.5 C 1.0 C 2.0 C 3.0 C 

Capacity/Ah 214.31 212.94 211.84 211.28 211.08 

Capacity retention rate/% 101.16 100.52 100.00 99.74 99.64 

Energy/Wh 687.83 672.22 657.33 641.41 628.45 

Energy retention rate/% 104.64 102.26 100.00 97.58 95.61 
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Figure 5.3 Capacity retention curves at different discharge rates 

 

 Temperature characteristics test 

Similar to the charge/discharge rate, the battery shows nonlinear behavior with 

ambient temperature changes. The working temperature of the lithium-based battery 

pack in actual situations is not a constant. Therefore, a temperature coefficient (𝜂𝜂𝑇𝑇) 

has to be introduced to represent the impact of temperature on the SoC estimation. 

 

The test involved using the 1 C rate to discharge a fully charged battery under different 

(constant) temperature conditions (−20 ℃, −10 ℃, 0 ℃, 25 ℃ and 45 ℃). Table 

5.3 shows a specific data point in both the capacity and energy retention rates at 

specific temperatures. The change curves of capacity retention rate for the LiFePO4 

battery at different temperature are shown in Figure 5.4. 
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Table 5.3 The capacity and energy retention rate with specific temperature condition 

Temperature Characteristic Test −20 °C −10 °C 0 °C 25 °C 45 °C 

Capacity/Ah 194.18 201.14 205.49 211.27 211.35 

Capacity retention rate/% 91.91 95.20 97.26 100.00 100.00 

Energy/Wh 523.18 566.18 600.52 657.80 668.46 

Energy retention rate/% 79.54 86.07 91.29 100.00 101.62 

 

 

Figure 5.4 Capacity retention curves at a different temperatures 

 

The increase in temperature reduces the overpotential, which will cause an increase in 

the activity of the chemicals inside the battery. Thus, the discharge capacity of the 

battery increases at (constant) higher temperature conditions. The experimental results 
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shown in Figure 5.4 are consistent with the theoretical analysis—the capacity of the 

LiFePO4 battery decreases with the decreasing temperature [186]. 

 Hybrid pulse power characterization (HPPC) test 

The HPPC test is one of the most common approaches to offline parameter 

identification. It adopts the HPPC from Freedom CAR Battery Test Manual (published 

in 2003) to initially identify the parameters of direct current resistance (DCR) [185]. 

The DCR, which includes both Ohmic resistance and the polarization resistance, is 

dynamic. The HPPC test is used to obtain DCR parameters as a function of SoC from 

the voltage response values. The series of pulse experiments of HPPC is to reliably 

establish cell voltage response time constants during “discharge”, “rest” and “regen” 

regions. The standard process of HPPC test is described in Figure 5.5, where C1/1 is 

1C charge/discharge rate. 
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Figure 5.5 The HPPC test. (a) the HPPC test profile, (b) the start of HPPC test 
sequence, (c) the complete HPPC sequence 

 

The HPPC test includes nine single repeated sequences (Figure 5.5 c). Each sequence 

is separated by 10% SoC or depth of discharge (DOD) with constant current discharge 
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segments from 90% to 10% (Figure 5.5 b). One HPPC profile includes 10 s discharge, 

40 s rest and 10 s charge (Figure 5.5 a). There is one hour resting time between each 

sequence (Figure 5.5 b). It should be noted that the spikes shown in Figure 5.5 b,c are 

basically the HPPC profile of Figure 5.5 a. This test uses 4 C discharge and 3 C charge. 

The data collection interval of the HPPC test is 0.2 s. The HPPC experimental results 

are shown in Table 5.4 and include the voltage and the DCR. Vbefore and Vafter are the 

measured voltage values before and after charging/discharge test, respectively. DCR 

values are rounded to two decimal places. 

Table 5.4 The HPPC test charging/discharging power and DCR. 

SoC 

206Ah 4C Discharge/3C Charge 

Discharge Charge 

Vbefore 
(mV) 

Vafter 
(mV) 

DCR 
(mΩ) 

Vbefore 
(mV) 

Vafter 
(mV) 

DCR 
(mΩ) 

90% 3328.30 2910.70 0.45 3277.20 3613.20 0.49 

80% 3327.40 2893.70 0.47 3267.20 3612.90 0.50 

70% 3327.40 2881.60 0.48 3258.90 3610.10 0.51 

60% 3296.70 2857.40 0.48 3244.90 3586.90 0.50 

50% 3289.00 2829.80 0.50 3230.40 3580.40 0.51 

40% 3288.00 2805.90 0.52 3217.30 3577.30 0.52 

30% 3284.30 2775.60 0.55 3201.50 3570.10 0.53 

20% 3254.50 2707.40 0.59 3169.90 3539.40 0.53 

10% 3209.60 2422.10 0.86 3110.40 3497.00 0.56 
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 OCV-SoC test 

The open-circuit voltage (OCV) test is significant and necessary for the estimation of 

K0. The operating characteristics of the battery show that a proportional relationship 

exists between OCV and SoC. The OCV is roughly regarded as a linearized function 

of SoC in a simplified system [187]. For example, the OCV rises with the increase in 

SoC. The current SoC of the battery can be calculated through a model relationship 

between OCV and SoC. The experimental steps used to obtain an approximate OCV 

value are shown in Figure 5.6. 

 

Figure 5.6 OCV-SoC test process 
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 Offline parameter identification  

The data shown in the various tests described in Sections 5.3.1 to 5.3.4 was obtained 

by real experimental bench based on LiFePO4 battery (206 Ah, 3.2 V). A convincing 

offline parameters identification was required to achieve a reliable mathematical 

battery model for the simulation of KF. Eight parameters (𝜂𝜂𝑖𝑖, 𝜂𝜂𝑇𝑇, R, K0, K1, K2, K3, K4) 

were identified by the approach of linear fitting and recursive least squares (RLS) in 

MATLAB. The experimental data was input into MATLAB in the form of different 

sets of data points. In terms of 𝜂𝜂𝑖𝑖, relationship between the actual capacity and the 

charge/discharge rate were quantified by linear fitting functions in MATLAB. A 

second-order polynomial linear fitting equation for 𝜂𝜂𝑖𝑖 was obtained by the use of the 

polyfit function: 

Polyfit (i, ηi, 2) 

𝜂𝜂𝑖𝑖 =
15873

5.47𝑖𝑖2 − 156.8𝑖𝑖 + 16301
 

 

(5-8) 

where i represents the charging-discharging current in A. Similarly, the polynomial 

curve of the temperature coefficient (𝜂𝜂𝑇𝑇) was obtained by MATLAB polyfit function, 

as follows: 

Polyfit (T, ηT, 1) 

𝜂𝜂𝑇𝑇 = 0.55𝑇𝑇 + 76.83 
 

(5-9) 

where T is the actual temperature of the battery. 
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The rest of parameters (K0, R, K1, K2, K3, K4) were obtained by the method of RLS. 

Figure 5.7 shows that the vales of parameters begin to converge after 1500 iterations. 

The values of the parameters were as follows: R = 0.0048, K1 = −0.000268, K2 = 

0.1495, K3 = 0.111 and K4 = −0.01955. The value of K0 was 3.191 and is not shown in 

the figure. The accuracy in the estimation of parameters was high, of the order of 

±0.3%. The mathematical model based on linear fitting from real experimental data is 

therefore reliable for SoC estimation using iEKF. 

 

Figure 5.7 Parameters identification results in the composite model 

 

5.4 The SoC Estimation on an Improved EKF Algorithm  
The crucial objective of addressing the filtering problem is filtering any noise from the 

observed noisy signal. Taking specific situations into account such as signal 

processing, target tracking and control system, the solution for filtering problem can 

be generally transformed into a statistical estimation of the system status. Based on the 
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theory of time domain state space, the KF algorithm achieves an estimation of the state 

of the system by recursive iteration. 

 Analysis of the KF and EKF algorithm 

The standard KF is mainly used in a linear dynamic system to estimate the unknown 

variable which cannot be directly measured. The optimal estimation is the core of the 

KF algorithm, which is based on the prediction estimation and algorithmic 

amendment. The processing objects of the KF algorithm include the real system and 

the system model [188]. The real system includes the measurable input uk, the real 

output yk and the unmeasurable state xk. The system model includes the same input uk, 

the known state xk and the output yx based on the specific battery model. The optimal 

estimation is obtained through a comparison between the yk and yx to amend the 

prediction estimation. The state variable xk of the system model is closer to the real 

value of yk. The state-space system model of the discrete-time standard KF is expressed 

as follows: 

�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: 𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑘𝑘𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘

 

(5-10) 

where k is the discrete time point, xk, uk and yk are the state variables of the input and 

the output of the system, respectively. wk is the process noise variable which is used to 

describe the superimposed noise and error during state transition. vk is the 

measurement noise variable which is used to describe the generated noise and error 

when the input is measured. Ak, Bk, Ck and Dk are the equation matching coefficients 

reflecting the dynamic characteristics of the system. Figure 5.8 shows the state-space 

model of the discrete simple KF. 
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Figure 5.8 The state-space model of discrete simple KF 

Two different estimates of the state variable xk and the mean square error of estimation 

Pk are made at each sampling interval. For example, the first-time predictive estimate 

of 𝑥𝑥𝑘𝑘− is obtained by the iterative recursion using the state equations based on 𝑥𝑥𝑘𝑘−1+ . 

The predictive estimates of 𝑥𝑥𝑘𝑘− and 𝑃𝑃𝑘𝑘− are completed before the yk measurement. The 

calculation of the optimal estimates of 𝑥𝑥𝑘𝑘+ and 𝑃𝑃𝑘𝑘+ start after the measurement of yk is 

processed. To obtain the optimal estimation of 𝑥𝑥𝑘𝑘+ and 𝑃𝑃𝑘𝑘+, the predictive estimates of 

𝑥𝑥𝑘𝑘− and 𝑃𝑃𝑘𝑘− will be amended after the calculation of yk. 

The processing steps of standard KF algorithm are as follows: 

1. Initial value of 𝑥𝑥0+ and 𝑃𝑃0+: 

𝑥𝑥0+ = 𝐸𝐸[𝑥𝑥0]                                                             (5-11) 

𝑃𝑃0+ = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥0+)(𝑥𝑥0 − 𝑥𝑥0+)𝑇𝑇]                               (5-12) 

2. Predictive estimate of the 𝑥𝑥𝑘𝑘− and 𝑃𝑃𝑘𝑘−: 

𝑥𝑥𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝑥𝑥𝑘𝑘−1+ + 𝐵𝐵𝑘𝑘−1𝑢𝑢𝑘𝑘−1                                (5-13) 

𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐴𝐴𝑘𝑘−1𝑇𝑇 + 𝐷𝐷𝑤𝑤                                (5-14) 

uk Bk + Delay Ck +

Dk

yk

wk

Xk+1 xk

vk

Ak

State Output
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3. KF gain Lk (weighting coefficient matrix) 

𝐿𝐿𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐶𝐶𝑘𝑘𝑇𝑇(𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘−𝐶𝐶𝑘𝑘𝑇𝑇 + 𝐷𝐷𝑣𝑣)−1                             (5-15) 

4. Optimal estimate of the 𝑥𝑥𝑘𝑘− and 𝑃𝑃𝑘𝑘−: 

𝑥𝑥𝑘𝑘+ = 𝑥𝑥𝑘𝑘− + 𝐿𝐿𝑘𝑘(𝑌𝑌𝑘𝑘 − 𝑦𝑦𝑘𝑘)                                 (5-16) 

𝑃𝑃𝑘𝑘− = (1 − 𝐿𝐿𝑘𝑘𝐶𝐶𝑘𝑘)𝑃𝑃𝑘𝑘−                                    (5-17) 

 

where Dw and Dv in Equations (5-14) and (5-15) are the covariance of the process noise 

wk and the measurement noise vk, respectively. 

The standard KF algorithm shows the advanced estimation of the linear dynamic 

system. In terms of the nonlinear dynamic system such as the battery pack of EVs, the 

EKF algorithm linearly transforms the nonlinear system through an extended state-

space model, then uses the iterative calculation of the standard EK algorithm to obtain 

the optimal estimation [189]. The state-space system model of the EKF is expressed 

as:  

�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑤𝑤𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:𝑦𝑦𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑣𝑣𝑘𝑘

                    ( 5-18) 

where 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) and 𝑔𝑔(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) are the state transfer function and the measurement 

function of the nonlinear system, respectively. The nonlinear discrete-time state-space 

model of the EKF algorithm is shown in Figure 5.9. 
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Figure 5.9 The state-space model of EKF 

Compared to the standard KF algorithm, the state-space model of EKF algorithm is 

different. However, the algorithm implementation is similar to the standard KF, which 

mainly includes the initialization, the predictive estimate and the optimal estimate. The 

𝐴𝐴𝑘𝑘−1𝑥𝑥𝑘𝑘−1+ + 𝐵𝐵𝑘𝑘−1𝑢𝑢𝑘𝑘−1 in predictive estimate of standard KF is replaced by (𝑥𝑥𝑘𝑘−,𝑢𝑢𝑘𝑘), 

while 𝑔𝑔(𝑥𝑥𝑘𝑘−,𝑢𝑢𝑘𝑘)  substitutes 𝐶𝐶𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑘𝑘𝑢𝑢𝑘𝑘  in the optimal estimate. The calculation 

process of EKF is shown in Figure 5.10. 

 

Figure 5.10 The calculation process of EKF 

u f(x,u) + Delay
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wk

Xk+1 xk
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The SoC estimation model corrected by EKF based on composite 
model  

The complexity of the SoC estimation increases because of the internal 

nonlinearization of the battery and the significant impact of external conditions. In 

addition, the working process of the battery for EVs involves large current changes 

and a single and regular approach hardly achieves an online accurate SoC estimation. 

Taking the estimate accuracy and the calculation cost into consideration, an iEKF 

algorithm is proposed. The iEKF algorithm combines the OCV method, Ah method 

and the EKF algorithm. Based on the actual experimental battery data and the 

initial/offline parameter extraction using MATLAB, the algorithm implementation of 

the iEKF is shown in Figure 5.11. 

Figure 5.11 The iEKF algorithm implementation 

Battery Model 

Initial/offline Identification of Parameters Based 
on Experiments

The Composite Model (ηi, ηT, R, K1 to 
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Hybrid Pulse Power Characteristics 
Test (HPPC) 

The iEKF Algorithm

OCV Method (Initial SoC)

Ah Mehod (SoC rough estimation)

EKF algorithm (SoC precise estimation)

SoC estimation

OCV-SoC Test
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The main function of OCV method is to provide a relatively accurate initial estimation 

of the SoC. OCV-SoC curve obtained from the OCV-SoC test (see Section 5.3.4) is 

used to provide an initialized SoC estimation for Ah method and EKF algorithm. A 

piecewise function is used for curve fitting the experimental data in OCV-SoC test. 

The mathematical expression of OCV-SoC relation is as follows (x is the measured 

OCV): 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑥𝑥 > 3335, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1
3327 ≤ 𝑋𝑋 ≤ 3335, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 8.4745𝑥𝑥2−56710𝑥𝑥+94872550

14512

3297 < 𝑥𝑥 < 3327, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − −0.26997𝑥𝑥2+1740𝑥𝑥−2798620
14512

3283 ≤ 𝑥𝑥 ≤ 3297, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 7.1273𝑥𝑥2−47222𝑥𝑥+78219350
14512

3179 < 𝑥𝑥 < 3283, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − −0.2017𝑥𝑥2+1256.2𝑥𝑥−1941900
14512

2828 ≤ 𝑥𝑥 ≤ 3179, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − −0.00735𝑥𝑥2+40.533𝑥𝑥−41359
14512

𝑥𝑥 < 2828, 𝑆𝑆𝑆𝑆𝑆𝑆 = 0

        (5-19) 

The Ah method quantifies the external influence factors which mainly refer to the 

charging/discharging rate and the temperature. The principle of Ah method is shown 

in equation (5-20). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘+1 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 −
1
𝑄𝑄𝑛𝑛
∫ 𝜂𝜂𝑖𝑖

𝜂𝜂𝑇𝑇
𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘+1

𝑘𝑘                               (5-20) 

where i is positive when discharging, but negative when charging. The coefficient of 

charging/discharging rate (ηi) and temperature (ηT) are obtained by Equations (5-8) 

and (5-9), respectively. 

In terms of the implementation of EKF algorithm, the composite model described in 

Equations (5-3)–(5-5) is adopted. The state-space model of EKF algorithm based on 

the composite battery model uses Equation (5-6) as the state equation and the Equation 
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(5-7) as the output equation. The EKF is expected to show a strong algorithm 

correction ability [190, 191]. The problem of inaccurate initialized estimation of OCV 

method and the current accumulated error in Ah method will be addressed by using 

EKF. 

The implementation of EKF algorithm is as follows: 

1. Model establishment: Use Equations (5-6) and (5-7). 

2. Determination of system parameters: 

𝐴𝐴𝑘𝑘−1 = 𝜕𝜕𝜕𝜕(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)
𝜕𝜕𝑥𝑥𝑘𝑘−1

�
𝑥𝑥𝑘𝑘−1=𝑥𝑥𝑘𝑘−1

+
= 1                            (5-21) 

𝐶𝐶𝑘𝑘 = 𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�
𝑥𝑥𝑘𝑘=𝑥𝑥𝑘𝑘

−
= 𝐾𝐾1 (𝑥𝑥𝑘𝑘−)2 − 𝐾𝐾2 + 𝐾𝐾3 𝑥𝑥𝑘𝑘−⁄ − 𝐾𝐾4 (1 − 𝑥𝑥𝑘𝑘−)⁄⁄            (5-22) 

3. Initialization of the state variable and the covariance. 

𝑥𝑥0+ = 𝑆𝑆𝑆𝑆𝑆𝑆0,𝑃𝑃0+ = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥0)                                (5-23) 

4. Iterative calculation of the EKF. 

𝑥𝑥𝑘𝑘− = 𝑥𝑥𝑘𝑘−1+ − � 𝜂𝜂𝑖𝑖𝛥𝛥𝛥𝛥
𝜂𝜂𝑇𝑇𝑄𝑄𝑛𝑛

� 𝑖𝑖𝑘𝑘−1
𝑦𝑦𝑘𝑘 = 𝐾𝐾0 − 𝑅𝑅𝑖𝑖𝑘𝑘 − 𝐾𝐾1 𝑥𝑥𝑘𝑘−⁄ − 𝐾𝐾2𝑥𝑥𝑘𝑘− +

𝐾𝐾3 𝑙𝑙𝑙𝑙(𝑥𝑥𝑘𝑘−) + 𝐾𝐾4 𝑙𝑙𝑙𝑙(1 − 𝑥𝑥𝑘𝑘−)

𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐴𝐴𝑘𝑘−1𝑇𝑇 + 𝐷𝐷𝑤𝑤
𝐿𝐿𝑘𝑘 = 𝑃𝑃𝑘𝑘

−𝐶𝐶𝑘𝑘
𝑇𝑇

𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘
−𝐶𝐶𝑘𝑘

𝑇𝑇+𝐷𝐷𝑣𝑣

𝑥𝑥𝑘𝑘+ = 𝑥𝑥𝑘𝑘− + 𝐿𝐿𝑘𝑘(𝑌𝑌𝑘𝑘 − 𝑦𝑦𝑘𝑘)

𝑃𝑃𝑘𝑘+ = (1 − 𝐿𝐿𝑘𝑘𝐶𝐶𝑘𝑘)𝑃𝑃𝑘𝑘−

𝑘𝑘 = 1,2,3 …

                        (5-24) 

Ak−1 and Ck are defined in Step 2 by using Equations (21), (22) and (25). The SoC0 is 

calculated based on the remaining charge (after charging/discharging) in the previous 

state and the OCV in the current state. 𝑃𝑃0+, Dw and Dv relate to the performance of the 
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battery and the data collection system. In order to update the status of the system, the 

sampling frequency is set in the Simulink equal to 2.5 times the bandwidth of the 

sampled signal as per the “Nyquist-Shannon sampling” criterion. 

5.5 The Simulation Validation of the Improved EKF Algorithm  

 The validation of the improved EKF algorithm  

In order to verify the actual effect of the iEKF, the model described in Section 4 has 

been simulated in MATLAB/Simulink. The inputs of the model, current and 

temperature, are set by constant values (1 C, 2 °C) which refer to the static operation 

condition. The initial guess for SoC is set at 70% based on existing published work 

[180, 192, 193].  

 The simulation results  

Figure 5.12 shows the comparison between standard SoC, the SoC estimated by Ah 

counting model and the SoC estimation results of iEKF method. The standard SoC was 

calculated values based on the charging/discharging experimental data. The fit 

between the standard SoC and the iEKF estimation gets better with increasing 

simulation time. 

Figure 5.13 shows the error covariance of the composite SoC model with and without 

the iEKF under static operation condition. The error with the use of iEKF is very small 

reflecting the effectiveness of the improved EKF method. The error covariance with 

the iEKF under static operation condition was of the order of 10−7. 
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Figure 5.12 Comparison SOCs under static operation conditions 

 

 

Figure 5.13 Comparison of error covariance between iEKF model and Ah counting 
model under static operation conditions 
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The MATLAB inputs of dynamic current efficiency and temperature are shown in 

Figure 5.14 a,b, respectively. Figures 5.15 compares the SoC estimation error under 

dynamic operation condition of the composite battery model with and without the 

iEKF. Figure 5.15 a gives the calculation results over a time of 1000 s while Figure 

5.15 b shows local calculation results from 0 to 100 s. The estimation error using iEKF 

is insignificant (of the order of 10−6), thereby providing credibility to the iEKF method. 

The error covariance with the iEKF under static operation condition was of the order 

of 10−7. Table 5.5 gives the calculated estimation error based on the error curves shown 

in Figures 5.13 and 5.15 (a), (b). 
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Figure 5.14 MATLAB inputs of (a) The input current efficiency and (b) The input 
temperature for the SOC estimation under dynamic operating conditions 
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Figure 5.15 Comparison of error covariance between iEKF and Ah models under 
dynamic operating conditions: (a) over a time of 1000 s (b) from 0 to 100 s.. 

The inset in both the figures shows the magnified plot of the error covariance of the iEKF model only. 
Note the extremely small value of error covariance of the iEKF model. 

 

Table 5.5 The SoC estimation error based on the iEKF method under static/dynamic 
condition 

Operation 
Condition 

Maximum Error 
(%) 

Average Error 
(%) 

Relative Error 
(%) 

Static 2.39 1.43 1.20 

Dynamic 6.76 3.94 2.15 

 

As shown in Figure 5.12, the estimator based on iEKF shows high degree of agreement 

tracking the change in SoC. Comparing the curves of estimation error shown in Figures 

5.13 and 5.15, the iEKF algorithm obtains better noise filtering performance. It should 

be pointed out that the dynamic operation condition shown in Figure 5.14 causes more 
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fluctuation in the estimation error curve than in static operation condition. From the 

comparison results shown in Table 5.5, the estimation errors increase under dynamic 

operation conditions. This means the estimation difficulty will become more 

challenging under dynamic operation conditions. 

Since the estimator is sensitive to different operation conditions, the quality of the 

estimator cannot be fairly compared with different approaches. Several factors such as 

the battery model, the battery types and the experimental methods for the offline 

parameter identification affect the performance of the estimator. For example, the 

estimator based on EKF with the Thevenin model reported an absolute mean error of 

4.42% under dynamic operation conditions [194]. Tested results of SoC estimation 

showed a relative error of 1.5% when using an estimator based on extended fractional 

KF with the fractional order PNGV model [195]. The SoC estimators based on 

different battery models using EKF and dual EKF methods have been compared in 

[191]. Plett [196] built the battery models based on a group of Pulsed-current test and 

adopted the UDDS dynamic test on LiPB battery, which shown estimation error of the 

battery models varying from 1% to 6.5%. The iEKF proposed in this research shows a 

relative error of 1.2% and 2.15% under static and dynamic conditions, respectively. 

The SoC estimation based on the improved-EKF model discussed in this Chapter 

shows good accuracy and the method itself has less complexity compared to other 

well-established methods such as the EKF based on the Thevenin or PNGV models. 

It has also carried out simulations using the proposed iEKF model but with different 

initial SoCs of 20% and 50% and were able to achieve similar accuracy as that of the 

SOC value of 70%: relative error under static and dynamic operating condition with 
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initial SoC of 20% and 50% are less than 2%. The relative errors of the SOC estimation 

for the 20%, 50% and 70% initial guess are compared in Table 5.6. The results shown 

in Table 5.6 further strengthen the credibility of the designed iEKF model. 

Table 5.6 The comparison of relative error (%) between SoC estimation based on the 
iEKF and Ah counting methods under static/dynamic condition 

       Estimation 
error  

Operation 

Initinal SoC of 20% Initinal SoC of 50% Initinal SoC of 70% 

Ah counting iEKF Ah counting iEKF Ah counting iEKF 

Static 14.9 0.8 15.3 1.0 15.0 1.2 

Dynamic 17.7 1.7 18.5 2.0 19.7 2.1 

 

 The Issues of Practical Implementation  

In practical applications, several issues influenced the estimation accuracy and the 

engineering applicability of the estimator. It has concluded in five aspects to be 

considered in practical implementation. 

1) The number of estimated parameters  

Parameters are estimated through limited observations with error during the 

estimation process. The fewer the estimated parameters, the higher the 

accuracy of the estimation. To improve the robustness and the applicability of 

the estimator, a battery model with fewer parameters could be used. For 

example, RC ECM included five parameters shown in Chapter two, Figure 2.9.  

2) Signal-noise ratio (SNR) 

The SNR describes that signals are disturbed by the noise in electronic devices 

and system. The signals collected in the system are obtained through the 



158 

 

sensors, which has the noise, and error in this scenario. A larger SNR value 

means less interference from noise or error. In practical implementation, the 

value of signal might be near zero to make the SNR value smaller disregarded 

the noise, which will impact the accuracy of the parameter estimation. 

Moreover, a ‘dead zone’ might appear in the process of identifying parameters 

using adaptive algorithm. The ‘dead zone’ can be captured by calculating the 

relationship between the model residual value and the estimation error of 

sensors, as shown in equation (5-25).  

|𝜀𝜀(𝑘𝑘)| ≥ 2𝑠𝑠𝑠𝑠𝑠𝑠|𝑒𝑒(𝑘𝑘)|                                (5-25) 

The estimation of the parameters will not be updated in the ‘dead zone’. where 

𝜀𝜀(𝑘𝑘)is the residual value of the model, 𝑒𝑒(𝑘𝑘) is the estimation error of the 

sensors.  

3) System error 

In addition to the observation errors that have been taken into account, the 

selected battery model has errors itself. Furthermore, the curve fitting of the 

SoC-OCV has errors, which include the errors of experimental measurement 

and the acquisition signal error from sensor. Therefore, error models are often 

introduced in the algorithm. 

4) Magnitude difference of measurement 

The issues of magnitude difference of measurement cannot be avoided in the 

process of parameter identification. The parameters cannot often be accurately 

estimated if the magnitudes differ greatly. Hence, there is a homogenization 
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procedure, such as difference equation, when large orders of magnitude in the 

estimation process. 

5) Time-variable parameters 

In practical battery applications, the chemical reactions inside the battery will 

change with time. To ensure the accuracy of the parameters, it is necessary to 

make the identified parameters come from the latest time point when the 

parameters are identified online by the adaptive or recurrence algorithm. A 

‘forgetting factor’ can be introduced into RLS algorithm to reduce the impact 

of the information from previous generations of measured value on the current 

measured value. For inputs with weak stimulus signals, the covariance matrix 

might be updated according to the original information during the iterative 

update of the parameter estimation of the algorithm, thereby causing large 

deviations with the phenomenon of ‘saturation’. Thus, estimating the 

parameters in batches using different estimating methods, such as Adaptive 

Kalman Filter (AKF) and EKF, to improve the accuracy, then, reduce 

calculation burden. 

For the issues discussed above, a comparative and improved model for SoC estimation 

is proposed and demonstrated in Figure 5.16 and Table 5.7. In Figure 5.16, the 

comparative model includes a second-order RC (2-RC) ECM and a Thevenin model. 

The initial input signals include current I, temperature T, and the relationship of SoC-

OCV obtained by polynomial fitting. Based on the second-order RC ECM with preset 

parameters, it will give outputs of estimated SoC0 and open circuit voltage of U, which 
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are the input signals for the Thevenin model to identify the parameters. Meanwhile, 

the SoC0 is seen as the primitive truth value to compare with the estimated SoC from 

the Thevenin model. 

 

Figure 5.16 The comparative and improved estimation model 

 

Table 5.7 The methodology of comparative and improved estimation model 

Comparative and improved SoC estimation model 

Preparation SoC-OCV relationship: Polynomial fitting of 
experimental data 

Thevenin model  Basic method Improved method 

Parameters identification  Identify the parameters 
(R0, R1, C1) by RLS  

Identify the 
parameters R0 by 
RLS, (R1, C1) by 
AKF 

SoC estimation Iterative estimation by 
EKF 

Iterative 
estimation by EKF 
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As listed in table 5.7, the basic approach of the parameters’ identification in Thevenin 

battery model is all using RLS. The identified parameters 𝜃𝜃 (𝑅𝑅0,𝑅𝑅1,𝐶𝐶1) are referring 

the components in Figure 2.10. In addition, the input signals for Thevenin model are 

added with the errors from sensor block, (I’, T’, U’). Based on the inputs, the SoC is 

estimated by EKF, which could be compared to the SoC0. For the improved estimation 

model, the parameters are identified in batches: the R0 is identified by RLS, while using 

AKF to identify the R1 and C1, then estimate the SoC by EKF.  

The example code for model parameter identification using RLS, AKF and EKF for 

SoC estimation is in the attachment. In this comparative and improved model, the 

second-order EC ECM and Thevenin model has less parameters to be identified, which 

reduced the dimension and calculational complexity. The introduction of ‘forgetting 

factor’ avoid the saturation effect of the covariance matrix, while the homogenization 

coefficient of the voltage and current is used to improve the accuracy of parameter 

identification.  

5.6 Concluding Remarks 
This Chapter has provided an analytical comparison of various SoC estimation 

methods. A well-designed SoC estimator includes the parameter identification of the 

battery model and the iterative estimation methods. A composite battery model using 

iEKF has been proposed in this Chapter. Four groups of real experiments and 

parameter identifications were conducted to build a reliable battery model for the 

achieving a credible estimator. A composite battery model was built using offline 

parameter identification using MATLAB. Based on this composite battery model, a 

mathematical model of the improved EKF was built. OCV method provided the initial 
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estimation inaccuracy and the Ah method provided a rough estimate of the SoC. The 

cumulative error of SoC estimation in Ah method was precisely corrected by the EKF 

algorithm. The iEKF algorithm provides successful simulation results for accurate SoC 

estimation under both static and dynamic operation conditions. The iEKF algorithm 

shows an outstanding advantage in the estimation accuracy while being less complex 

than other methods. In terms of the simplicity and feasibility, the iEKF is an excellent 

candidate for BMS implementation to promote the battery performance. To this end, 

the issues for the implementation of the SoC estimation have discussed, a comparative 

and improved model is proposed to solve the practical difficulties. 
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Chapter 6  Conclusion and Future Work 

This Chapter provides a summary of the work carried out in this thesis, discussing the 

role of each Chapter in achieving the main objective of the thesis and the contributions 

made to the body of knowledge as a whole. An overall conclusion is then drawn and 

the scope for the future work which expands on this thesis is also set out. 

6.1 Summary 
The main technical objective of this thesis was to develop an EMS with effective 

control strategy and smart optimization for HEVs. A novel iEKF algorithm is proposed 

based on a composite battery model to provide an accurate State of Charge (SoC) 

estimation for monitoring module in BMS.  

As set out in Chapter 1, the motivation for the work carried out in this thesis is to 

increase the future uptake of battery energy storage devices in effective and safety-

critical applications, such as in electric/hybrid-electric vehicles (EV/HEVs). The 

energy management system (EMS) with the control strategy and its optimization is 

identified as one the main areas of research for improving the future adoption of these 

delicate energy storage devices in a wider range of power and automotive applications. 

Hence, this thesis puts its focus on developing a novel hybrid EMS, whereby 

optimizing the rule-based control strategy, not only the aspect of decreasing emission 

will be achieved but also a better driving performance when achieving the optimization 

objectives with constrains.  

Subsequently, to complete a coherent piece of research, the state-of-the-art of the EMS 

and the monitoring technologies, including the various battery models, as presented in 
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literature, is reviewed in Chapter 2. At first, to familiarise the reader with the common 

EVs topologies. Thereafter, to provide the reader with appreciation for attributions of 

each chapter, a comprehensive review of different types of EMS with applicable 

techniques are explained. The accuracy of SoC estimation is significantly relying on 

the different adoptions of battery models, the algorithms used for SoC estimation and 

the battery models are finally discussed.  

Chapter 3 discussed the importance of EMS in the control of HEVs. Subsequently, a 

rule-based control strategy of premeditate EMS is proposed to increase the efficiency 

of battery usage in HEVs. For the purpose of reducing the emission, then increasing 

the fuel economy, the rule-based control strategy invented a new state based on the 

analysis of the engine and motor working modes. The designed rule-based control 

strategy was finally verified through simulation. Simulation conducted for this 

research adopted the vehicle model with practical data of Toyota-Prius. The simulation 

results show that the design of rule-based control strategy for premeditated EMS 

successfully achieved emission reduction and increased fuel economy.  

The premeditated EMS has the advantage of simple application in practical usage, but 

loss of efficiency confronting complex working conditions. Therefore, a hybrid EMS 

combined the designed rule-based control strategy and the GA optimization was 

discussed in Chapter 4. A mathematical model associated the logic of rule-based 

control strategy and GA optimization was built and subsequently verified in a dynamic 

and bidirectional simulation. With the same input of working condition used in 
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Chapter 3, the simulation results show that the hybrid EMS significantly improved the 

fuel economy and reduced the emission.   

The SoC is the decisive information for the execution of the designed EMS in Chapters 

3 and 4. An adaptive algorithm of online SoC estimation was proposed in Chapter 5 to 

include a novel battery model and estimation algorithm to obtain a dynamic SoC value. 

The parameter identification of the proposed composite battery model adopted five 

groups of battery performance testing experiments. The experiments used the battery 

using LiFePO4 cells and each set of experiments was discussed in detail.  

The estimation algorithm combines the OCV, Ah method and EKF algorithm and is 

verified through a simulation in MATLAB_Simulink. The simulation results show that 

the iEKF estimator based on composite battery model maintained very high accuracy 

on SoC estimation in both static condition with constant current and temperature inputs 

and dynamic condition with changed current and temperature.  Chapter 5 proposed a 

comparison framework for SoC estimator based on a 2-RC network battery model and 

developed the estimation algorithm and the method of parameters identification in 

pursuit of a higher accuracy estimator through comparison model. 

Although the techniques developed in this thesis were verified through the simulation, 

the vehicle model adopted in the simulation for hybrid EMS is based on the practical 

data to improve the practicability. To enhance the reliability, the parameters 

identification of the composite battery for SoC estimator in this thesis conducted 

groups of experiments of LiFePO4 battery. Therefore, the techniques of hybrid EMS 
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presented herein can be applied to the generic HEVs, and the iEKF algorithm could be 

applied in generic scenarios for SoC estimation.  

6.2 Scope for Future Work 
Although a conclusive body of work has been presented herein and benefits offered 

over the state of the art, there are areas which this thesis can expand on. The techniques 

presented in this thesis can be employed to solve some research issues raised in other 

scheduling and controlling hybrid electric area, especially in the technologies of 

vehicle applications. The list below summarises the scope for future work which can 

lead on from this thesis. 

• The method to optimize the rule-based control strategy for hybrid EMS could 

be developed smarter and more effective and could use other models such as 

neural network model, etc.  

• The hybrid EMS and the SoC estimator could be applied and verified through 

hardware-in-loop to increase the feasibility. 

• A connection could be developed that the estimated SoC value obtained by the 

proposed estimator in monitoring module as the decisive factor used in the 

hybrid EMS module for BMS applications. 

• In addition to the SoC, the techniques of estimating SoP and SoH could also 

be expanded in similar framework in monitoring module. 

• A well-functioning BMS could be developed by combining the hybrid EMS 

and monitoring module with SoC estimation, the active cell equalization, and 

the cooling system. 
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Attachment 

RLS Parmeter identification EKF SOC estimation 
clear;clc; 
%%% all parameters are estimated using RLS, and SoC estimation uses EKF 
load('I'); 
load('U'); 
load('time'); 
load('SOC'); 
load('R0');  
% Input the reference value of experimental data，SOC and R0  
%%% noise added 
% I1=zeros(1,12580); 
% u1=zeros(12580,1); 
% for i=1:12580 
% I1(i)=I(i)+normrnd(0,0.0061); 
% u1(i)=U(i)+normrnd(0,0.015); 
% end 
% I=I1; 
% U=u1; 
%%% EKF algorithm for Thevenin model 
% I_midvalue=zeros(1,12580); 
% U_midvalue=zeros(12580,1); 
% U_midvalue(1)=U(1); 
% I_midvalue(1)=I(1); 
% for i=2:1:12580 
% U_midvalue(i)=U(i)*1/(0.1+5)+U_midvalue(i-1)*5/(1+5); 
% I_midvalue(i)=I(i)*1/(0.1+5)+I_midvalue(i-1)*5/(1+5); 
% end 
% U=U_midvalue; num=length(I); delta_t=1;         %sampling period 
%% 
%% data preparation，assign initial value 
%% 
%==================================% 
%RC R0 parameter estimation and data processing  
lamda_rc=0.98; %forgetting factor 
y=zeros(1,num);                     %terminal voltage 
theta_rc=[0.01 0.01 0.0001];             %parameter initialization  
P_rc=1e-4*eye(3,3);   %covariance matrix 
result_R0=zeros(1,num); 
result_R1=zeros(1,num); result_C1=zeros(1,num); result_tao1=zeros(1,num); result_rc 
=ones(3,num); result_rc(:,1)=theta_rc'; 
epsilon=zeros(1,num);           %residual value 
true_R1=0.03755*ones(1,num); %R1 truth  
true_C1=100*ones(1,num); %C1 truth   
true_tao1=3.755*ones(1,num);    %tao1 truth 
%==================================% 
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%SOC estimated data processing  
initial_U1=0; 
initial_soc=0.933; %SOC assign initial value 
x_soc=[initial_U1;initial_soc];  %state matrix  
A_soc=zeros(2,2); 
B_soc=zeros(2,1); C_soc=zeros(1,2); 
Q_soc=1e-4*eye(2); %state noise covariance matrix 
R_soc=  eye(1)*1e-5; %observation noise covariance matrix 
P_soc=1e-4*eye(2); %covariance matrix 
e_soc=zeros(1,num); %residual   
result_SOC=zeros(1,num); result_SOC(2)=initial_soc; 
%% 
for k=3:num 
%==============RLS====================% 
%RC R0 parameter iteration process 
 
y(k-1)=U(k-1)-(3.704-1.594*result_SOC(k-1)+20.61*result_SOC(k-1)^2-92.9*result_SOC (k-
1)^3+208.7*result_SOC(k-1)^4-247*result_SOC(k-1)^5+147.7*result_SOC(k-1)^6-35.0 
5*result_SOC(k-1)^7); 
fai_rc=[y(k-2) I(k-1) I(k-2)]; K_rc=P_rc*fai_rc'/(lamda_rc+fai_rc*P_rc*fai_rc'); epsilon(k-
1)=y(k-1)-fai_rc*theta_rc'; theta_rc=theta_rc+K_rc'*epsilon(k-1); 
P_rc=(P_rc-K_rc*fai_rc*P_rc)/lamda_rc; result_rc(:,k-1)=theta_rc'; result_R0(k-
1)=result_rc(2,k-1); 
 
result_R1(k-1)=(result_rc(3,k-1)+result_rc(1,k-1)*result_rc(2,k-1))/(1-result_rc(1 
,k-1)); 
result_tao1(k-1)=-delta_t/log(result_rc(1,k-1)); result_C1(k-1)=result_tao1(k-1)/result_R1(k-1); 
%================EKF==================% 
%SOC iteration process 
A_soc(1,1)=exp(-delta_t/result_tao1(k-1)); A_soc(2,2)=1; 
B_soc(1)=result_R1(k-1)*(1-exp(-delta_t/result_tao1(k-1))); B_soc(2)=delta_t/(3600*2.3); 
C_soc(1)=-1; x_soc_1=A_soc*x_soc+B_soc*I(k-1); 
 
C_soc(2)=-1.594+41.22*x_soc_1(2)-278.7*x_soc_1(2)^2+834.8*x_soc_1(2)^3-1235*x_soc_ 
1(2)^4+886.2*x_soc_1(2)^5-245.35*x_soc_1(2)^6; 
P_soc_1=A_soc*P_soc*A_soc'+Q_soc; 
 
Voc_soc=3.704-1.594*x_soc_1(2)+20.61*x_soc_1(2)^2-92.9*x_soc_1(2)^3+208.7*x_soc_1( 2)^4-
247*x_soc_1(2)^5+147.7*x_soc_1(2)^6-35.05*x_soc_1(2)^7; 
e_soc(k)=U(k)-(Voc_soc+x_soc_1(1)+result_R0(k-1)*I(k)); 
K_soc=P_soc_1*C_soc'*(C_soc*P_soc_1*C_soc'+R_soc)'; x_soc=x_soc_1+K_soc*e_soc(k); 
P_soc=(eye(2)-K_soc*C_soc)*P_soc_1; result_SOC(k)=x_soc(2); disp(k/num*100); 
end 
%EKF algorithm  
R0_START=result_R0;  
R1_START=result_R1;  
C1_START=result_C1;  
R0_midvalue=zeros(1,num);  
R1_midvalue=zeros(1,num);  
C1_midvalue=zeros(1,num);  
R0_midvalue(1)=result_R0(1);  
R1_midvalue(1)=result_R1(1);  
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C1_midvalue(1)=result_C1(1); 
for  i=2:1:10000 
R0_midvalue(i)=result_R0(i)*0.1/(0.1+9)+R0_midvalue(i-1)*9/(0.1+9); 
R1_midvalue(i)=result_R1(i)*0.1/(0.1+9)+R1_midvalue(i-1)*9/(0.1+9); 
C1_midvalue(i)=result_C1(i)*0.1/(0.1+9)+C1_midvalue(i-1)*9/(0.1+9); 
end result_R0=R0_midvalue; result_R1=R1_midvalue; result_C1=C1_midvalue; 
result_R0(num)=result_R0(num-1);  
result_R1(num)=result_R1(num-1);  
result_C1(num)=result_C1(num-1);  
result_tao1=result_R1.*result_C1; 
result_R0_erro_RLS=abs(R0-result_R0); %R0 error identification 
result_R1_erro_RLS=abs(true_R1-result_R1); %R1 error identification  
result_C1_erro_RLS=abs(true_C1-result_C1); %C1 error identification 
result_tao1_erro_RLS=abs(true_tao1-result_tao1);  %tao1 error identification 
result_SOC_erro_RLS=abs(SOC-result_SOC); %SOC error estimation 
%% 
%results in figure 
%% 
figure(1);  
plot(time,R0,time,result_R0);  
xlabel('time/s','FontSize',14);  
ylabel('R0','FontSize',14); 
legend('model','estimate');  
title('R0 comparison of estimated value and the true value'); 
grid;  
figure(2); 
plot(time,true_R1,time,result_R1);  
xlabel('time/s','FontSize',14);  
ylabel('R1','FontSize',14); 
legend('model','estimate');  
title('R1 comparison of estimated value and the true value '); 
grid;  
figure(3); 
plot(time,true_C1,time,result_C1);  
xlabel('time/s','FontSize',14);  
ylabel('C1','FontSize',14); 
legend('model','estimate');  
title('C1 comparison of estimated value and the true value '); 
grid;  
figure(4); 
plot(time,true_tao1,time,result_tao1);  
xlabel('time/s','FontSize',14);  
ylabel('tao1','FontSize',14); 
legend('model','estimate');  
title('tao1 comparison of estimated value and the true value '); 
grid; figure(5); 
plot(time,SOC,time,result_SOC);  
xlabel('time/s','FontSize',14);  
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ylabel('SOC','FontSize',14); 
legend('model','estimate');  
title('SOC comparison of estimated value and the true value '); 
grid; 
Improved SoC estimation  
clear;clc; 
%%% using RLS identify R0,using AKF identify the polarization parameters R1 and C1，using 
EKF estimate SOC load('I'); 
load('U'); 
load('time'); 
load('SOC'); 
load('R0'); %input the experimental data，reference value of SOC and R0 
%noise added 
% I1=zeros(1,12580); 
% u1=zeros(12580,1); 
% for i=1:12580 
% I1(i)=I(i)+normrnd(0,0.0061); 
% u1(i)=U(i)+normrnd(0,0.015); 
% end 
% I=I1; 
% U=u1; 
%%%EKF algorithm 
% I_midvalue=zeros(1,12580); 
% U_midvalue=zeros(12580,1); 
% U_midvalue(1)=U(1); 
% I_midvalue(1)=I(1); 
% for i=2:1:12580 
% U_midvalue(i)=U(i)*0.1/(0.1+0.00005)+U_midvalue(i-
1)*0.00005/(0.1+0.00005); 
% I_midvalue(i)=I(i)*0.1/(0.1+0.00005)+I_midvalue(i-
1)*0.00005/(0.1+0.00005); 
% end 
% U=U_midvalue; num=length(I); delta_t=1; %sampling period 
%% 
%%data praperation，initial value assignment 
%% 
%==================================% 
% estimation data processing of R0 % 
I_r0=zeros(1,num); U_r0=zeros(1,num); 
for  i=2:1:num 
I_r0(i)=I(i)-I(i-1); 
U_r0(i)=U(i)-U(i-1); 
end 
P_r0 =  10^6; % covariance matrix  
lamda=0.98; % forgetting factors 
theta_r0=0.15*ones(1,num);%R0 initial value  
result_R0 =theta_r0(1)*ones(1,num); delta_deadzone=0;   
% threshold values of dead zone 
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%==================================% 
%RC data processing of parameter estimation  
y=zeros(1,num); 
ku=24; % homogenization coefficient of the voltage  
ki=-1/min(I); % homogenization coefficient of the current 
theta_rc=[0.01 0.01 0.0001]; % assign the initial value of the parameters 
P_rc=1e-5*eye(3,3);  % covariance matrix 
Rv_rc =  eye(1)*1e-5; % covariance matrix of observation noise 
result_R1=zeros(1,num);  
result_C1=zeros(1,num);  
result_tao1=zeros(1,num); 
result_rc =ones(3,num);  
result_rc(:,1)=theta_rc';  
epsilon=zeros(1,num); % error of the model  
epsilon1=zeros(1,num); % residual values 
true_R1=0.02*ones(1,num);%R1 truth value  
true_C1=1000*ones(1,num);%C1 truth value  
true_tao1=20*ones(1,num);%tao1 truth value 
%==================================% 
%SOC estimation data processing 
initial_U1=0; 
initial_soc=0.8; %SOC assign initial values 
x_soc=[initial_U1;initial_soc];% state matrix 
A_soc=zeros(2,2); 
B_soc=zeros(2,1);  
C_soc=zeros(1,2); 
Q_soc=1e-4*eye(2); % covariance matrix of state noise  
R_soc=  eye(1)*1e-5; % observation matrix of state noise 
P_soc=1e-4*eye(2); % covariance matrix  
e_soc=zeros(1,num); % residual   
result_SOC=zeros(1,num); 
%% 
for k=2:num 
%=============RLS=====================% 
%R0 iterative process 
if abs(I_r0(k))>delta_deadzone K_r0(k)=(P_r0*I_r0(k))/(lamda+I_r0(k)^2*P_r0); 
else  K_r0(k)=0; end 
theta_r0(k) = theta_r0(k-1)+K_r0(k)*(U_r0(k)-theta_r0(k-1)*I_r0(k)); P_r0=(1-
K_r0(k)*I_r0(k))*P_r0/lamda; 
result_R0(k)= theta_r0(k); 
 
%================EKF==================% 
%SOC iterative process 
A_soc(1,1)=exp(-delta_t/result_tao1(k-1)); A_soc(2,2)=1; 
B_soc(1)=result_R1(k-1)*(1-exp(-delta_t/result_tao1(k-1))); B_soc(2)=delta_t/(3600*2.3); 
C_soc(1)=-1; x_soc_1=A_soc*x_soc+B_soc*I(k-1); 
C_soc(2)=-1.594+41.22*x_soc_1(2)-278.7*x_soc_1(2)^2+834.8*x_soc_1(2)^3-1235*x_soc_ 
1(2)^4+886.2*x_soc_1(2)^5-245.35*x_soc_1(2)^6; 
P_soc_1=A_soc*P_soc*A_soc'+Q_soc; 
 
Voc_soc=3.704-1.594*x_soc_1(2)+20.61*x_soc_1(2)^2-92.9*x_soc_1(2)^3+208.7*x_soc_1( 2)^4-
247*x_soc_1(2)^5+147.7*x_soc_1(2)^6-35.05*x_soc_1(2)^7; 
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e_soc(k)=U(k)-(Voc_soc+x_soc_1(1)+result_R0(k)*I(k)); 
K_soc=P_soc_1*C_soc'*(C_soc*P_soc_1*C_soc'+R_soc)'; x_soc=x_soc_1+K_soc*e_soc(k); 
P_soc=(eye(2)-K_soc*C_soc)*P_soc_1; result_SOC(k)=x_soc(2); 
%==============AKF====================% 
%RC identification of iterative process 
 
y(k)=U(k)-(3.704-1.594*result_SOC(k)+20.61*result_SOC(k)^2-92.9*result_SOC(k)^3+20 
8.7*result_SOC(k)^4-247*result_SOC(k)^5+147.7*result_SOC(k)^6-35.05*result_SOC(k)^ 7)-
I(k)*result_R0(k); 
if k==2 
epsilon(1)=0.0001; end 
fai_rc=[ku*y(k-1) ki*I(k-1) epsilon(k-1)]; K_rc=P_rc*fai_rc'/(Rv_rc+fai_rc*P_rc*fai_rc'); 
epsilon1(k)=ku*y(k)-fai_rc*theta_rc'; 
% The coefficients of the U1 and U2 are estimated here, so the error expression here 
should be the sum of U1 and U2 
theta_rc=theta_rc+K_rc'*epsilon1(k); 
epsilon(k)=ku*y(k)-fai_rc*theta_rc'+ fai_rc(3)*theta_rc(3);% epsilon here represents U2 
Rw=((P_rc*fai_rc')*fai_rc*P_rc)/(Rv_rc+fai_rc*P_rc*fai_rc');  
P_rc=P_rc-K_rc*fai_rc*P_rc+Rw; 
result_rc(:,k)=theta_rc';  
result_R1(k)=ki*result_rc(2,k)/(ku*(1-result_rc(1,k))); 
 
result_C1(k)=ku*delta_t*(result_rc(1,k)-1)/(ki*result_rc(2,k)*log(result_rc(1,k))); 

 
 

end 

result_tao1(k)=result_R1(k)*result_C1(k); 
disp(k/num*100)
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% EKF algorithm  
R0_START=result_R0;  
R1_START=result_R1;  
C1_START=result_C1;  
R0_midvalue=zeros(1,num); 
R1_midvalue=zeros(1,num); 
C1_midvalue=zeros(1,num); R0_midvalue(1)=result_R0(1); R1_midvalue(1)=result_R1(1); 
C1_midvalue(1)=result_C1(1); for  i=2:1:10000 
R0_midvalue(i)=result_R0(i)*0.1/(0.1+20)+R0_midvalue(i-1)*20/(0.1+20); 
R1_midvalue(i)=result_R1(i)*0.1/(0.1+20)+R1_midvalue(i-1)*20/(0.1+20); 
C1_midvalue(i)=result_C1(i)*0.1/(0.1+20)+C1_midvalue(i-1)*20/(0.1+20); 
end result_R0=R0_midvalue; result_R1=R1_midvalue; result_C1=C1_midvalue; 
result_tao1=result_R1.*result_C1; result_R0_erro_AKF=abs(R0-result_R0); 
result_R1_erro_AKF=abs(true_R1-result_R1); result_C1_erro_AKF=abs(true_C1-
result_C1); result_tao1_erro_AKF=abs(true_tao1-result_tao1); 
result_SOC_erro_AKF=abs(SOC-result_SOC); 
%% 
% Results in figure 
%% 
figure(1);  
plot(time,R0,time,result_R0); 
xlabel('time/s','FontSize',14);  
ylabel('R0','FontSize',14); 
legend('model','estimate');  
title('R0 comparison of estimated value and the true value '); 
grid;  
figure(2); 
plot(time,true_R1,time,result_R1);  
xlabel('time/s','FontSize',14);  
ylabel('R1','FontSize',14); 
legend('model','estimate'); 
title('R1 comparison of estimated value and the true value '); 
grid; 
figure(3); 
plot(time,true_C1,time,result_C1); 
xlabel('time/s','FontSize',14);  
ylabel('C1','FontSize',14); 
legend('model','estimate'); 
title('C1 comparison of estimated value and the true value '); 
grid; 
figure(4); 
plot(time,true_tao1,time,result_tao1);  
xlabel('time/s','FontSize',14);  
ylabel('tao1','FontSize',14); 
legend('model','estimate');  
title('tao1 comparison of estimated value and the true value '); 
grid;  
figure(5); 
plot(time,SOC,time,result_SOC);  
xlabel('time/s','FontSize',14); 
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