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Abstract 

The Support Vector Machine (SVM) is a common machine 
learning tool that is widely used because of its high classification 
accuracy. Implementing SVM for embedded real-time 
applications is very challenging because of the intensive 
computations required. This increases the attractiveness of 
implementing SVM on hardware platforms for reaching high 
performance computing with low cost and power consumption. 
This paper provides the first comprehensive survey of current 
literature (2010-2015) of different hardware implementations of 
SVM classifier on Field-Programmable Gate Array (FPGA). 
A classification of existing techniques is presented, along with a 
critical analysis and discussion. A challenging trade-off between 
meeting embedded real-time systems constraints and high 
classification accuracy has been observed. Finally, some key 
future research directions are suggested. 
Keywords: 26TSVM, FPGA, Hardware Implementation, Embedded 
Systems, Image Processing. 

1. Introduction 

Support Vector Machine (SVM) model is a powerful 
supervised machine learning method that is used for 
efficient classification with high accuracy in various 
applications like object detection, speech recognition, 
bioinformatics, image classification, medical diagnosis and 
others [1]. Supervised learning methods are normally 
composed of two main phases: training/learning, and 
classification. The SVM training phase builds a model for 
classifying any future data based on the Support Vectors 
(SVs) identified from a training dataset. The SVs are then 
used in the classification phase to predict the appropriate 
class of an input test data. Interestingly, SVMs have 
shown high classification accuracy rates outperforming 
other popular classification algorithms in numerous cases 
and applications [2-5]. 
 
A growing interest exists for exploiting SVMs in many 
embedded detection systems and various image processing 
applications. SVM model is computationally expensive 
and time-consuming especially for large-scale problems, 
which raises a vital need for acceleration. While software 
implementations of SVM produce high accuracy rates, 
they cannot efficiently meet real-time embedded systems 

constraints. In such embedded real-time applications, 
special dedicated hardware architectures are required to 
meet constraints like limited resources utilization and low 
power consumption. This has motivated plethora of 
research towards implementing and accelerating SVM in 
hardware such as using parallel computing platforms.  
 
Special purpose hardware such as reconfigurable hardware 
is promising for speeding up computations, and provides 
High Performance Computing (HPC) at low cost and low 
power consumption [6]. Field-Programmable Gate Arrays 
(FPGAs) are powerful and highly parallel processing 
reconfigurable devices which are used for achieving HPC 
in embedded systems with efficient utilization of hardware 
resources. Interestingly, FPGAs have recently shown 
significant performance gains outperforming General-
Purpose-Processors (GPPs) for many applications in a 
growing range of areas such as image processing, digital 
signal processing, pattern recognition, computer vision, 
bioinformatics, machine learning algorithms, etc. [7-11].  
 
Graphics Processing Unit (GPU) also offers an alternative 
platform for high performance computing [12]. Many 
performance comparisons of FPGA and GPU 
implementations of different algorithms and applications 
have been studied in literature [13-19]. FPGAs 
demonstrated superior performance in most cases, 
however in some applications, GPUs slightly 
outperformed FPGAs [19]. The availability of open source 
libraries such as OpenCV helps achieve much faster 
development time for GPUs than for FPGAs. However, for 
more complicated algorithms that use shared arrays and 
high memory accesses, GPUs cannot provide good 
performance due to memory access limitations caused by 
their memory architecture [13]. Although GPUs benefit 
from lower cost and shorter development time compared 
to FPGAs, they are inferior to FPGAs in terms of power 
consumptions (FPGAs consume approximately an order of 
magnitude less power [14]). Moreover, existing GPU 
implementations are challenging and very hard to be 
mapped efficiently to the energy-efficient embedded GPUs 
because of the fixed hardware and limited available 
resources (less memory, registers, cache and cores) [20].  
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Accordingly, implementations on power hungry GPUs are 
difficult to be deployed in embedded environments, and 
this has motivated a move towards FPGA implementations. 
 
Recent FPGA technology makes it possible to include 
processor cores and various useful Intellectual Property (IP) 
blocks onto a single chip, which ensures more flexibility 
for designing high performance embedded systems and 
Multi- Processor Systems on Chip (SoC) [21]. Also, 
modern development tools that have been recently released 
allow simplified embedded systems design by using high-
level languages that decrease hardware development effort 
and shorten time-to-market with no need for expert 
hardware designers (e.g. Xilinx Vivado HLS tool [22]). 
Accordingly, FPGA has become a good choice for 
substantially accelerating intensive computations like 
SVM to achieve HPC with more flexibility at low cost, 
while meeting hard constraints of embedded real-time 
systems. 
 
Some existing research work aims to implement and speed 
up the SVM model (training or classification phase) using 
FPGAs by exploiting the inherent parallelism of the SVM 
algorithm. Various hardware architectures and designs 
have been introduced achieving high level of 
parallelization as well as high performance. This paper 
reviews existing literature for hardware implementations 
of the SVM classifiers on FPGAs, as to the best of our 
knowledge no survey or review paper on this topic 
currently exists in literature. This paper reviews a total of 
53 current papers published within the period 2010-2015. 
These papers are grouped into two main groups. The first 
group considers FPGA-based implementations of the SVM 
training phase, while implementations regarding the 
classification phase are presented in group two. An 
additional third group is presented that contains 
application-specific implementations that use hardware 
implementation of SVM as part of a larger algorithm. 
Group three is narrowed to concern SVM-based 
applications that target classification or analysis of images 
only, due to the common use of SVM in image processing 
applications.  
     
This survey paper aids hardware designers to understand 
this area and possibly choose the best-fit solution for their 
context. In addition to simply presenting and collecting 
various techniques, we also provide a critical analysis and 
discussion on the strengths and limitations of existing 
works as well as future research directions in the area. 
 
This paper is organized in five sections. Section 2 provides 
a brief background of SVM. The research methodology 
used is presented in section 3. Different hardware 
techniques assembled into the three groups mentioned 
above are presented in section 4 followed by critical 

analysis for each group. Finally, this article ends with a 
discussion and concluding remarks in section 5. 

2. SVM Background 

Support Vector Machine was first introduced by Cortes 
and Vapnik in 1995, and is based on the concept of a 
decision boundary that separates two different classes of 
data in order to discriminate classes with high accuracy 
[23]. A separating hyperplane is constructed in the training 
phase by using an input training data set containing data 
samples. The hyperplane that best separates the samples 
belonging to the two classes is called a maximum-margin 
hyperplane that forms the decision boundary. The class 
samples that are on the boundary are called Support 
Vectors (SVs) as depicted in Fig.1, where SVs are 
encircled. These SVs obtained from training phase are then 
used in the classification phase to classify new data [24]. 
 
Consider training data labelled as (xRi R, yRiR),  i = 1, 2,....., N, 
yRi Rϵ {-1, +1}, and  xRi Rϵ RP

d
P. The hyperplane is the plane that 

separates the two classes of positive and negative samples 
as shown in Fig.1. The pattern x lies on the hyperplane in 
the feature space can be described by Eq. (1), where w is a 
normal vector to the hyperplane and b is a constant: 
 

   w·x + b = 0          (1) 
 
By selecting the two hyperplanes described in Eq. (2) and 
(3), the data points are separated in the margin region, and 
the aim is to maximize the distance between them. 
 

  w·x + b = +1                   (2) 
  w·x + b = -1    (3) 

 
The Euclidian distance between these two hyperplanes is 
given as 2/||w|| (see Fig.1), and so the distance ||w|| needs 
to be minimized. The optimum separation hyperplane 
conditions can be formulated into the following expression 
that represents a linear SVM, minimize ||w|| P

2
P/2 under the 

following constraints, which are added for all the training 
samples to prevent from falling into the margin: 
 

w·xRiR + b  ≥ +1 , for yRiR = +1    (4) 
w·xRiR + b  ≤ -1 , for yRiR = -1    (5) 

 
This can be rewritten in the following equivalent form: 
 

yRiR ( w·xRiR + b) ≥  1 , i=1,…N     (6) 
 

The optimization problem represents the minimization of a 
quadratic function under linear constraints (quadratic 
programming (QP)). A convenient way to solve 
constrained minimization problems is by using a Lagrange 
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function, where a Lagrange multiplier αRiR is assigned to 
each training pattern via the constraints represented in Eq. 
(6). Solving the SVM training problem by using the QP 
techniques is computationally expensive, especially for 
large high-dimensional datasets. Hence, numerous 
algorithms have been proposed in literature for solving the 
QP problem like the Sequential Minimal Optimization 
(SMO) decomposition method [25]. The most important 
aspect of these solutions is that the complicated 
computation of the dot-products calculation is required for 
each iteration. 
 
In many real-world classification problems, it is not 
possible to linearly separate the training data in the 
original space.  So, the input space is mapped to a higher-
dimensional one where a linear separation is feasible, 
which is a computationally expensive task, especially in 
large-scale problems. Therefore, SVMs go towards 
utilizing kernel tricks/functions K(xRiR, xRjR) replacing the 
inner products in the optimization problem in Eq. (6) as in 
Eq. (7). 
 
     yRiR (K(xRiR , xRjR ) + b) ≥  1 , i=1,…N    (7) 

 
The SVM computational requirements depend on the used 
Kernel function. The most common kernel designs which 
are widely used because of their efficiency in mapping 
data to higher dimensional space are illustrated as follows 
(X and Z are vectors) [26]: 
 

1. Linear: K(X ,Z)= (X·Z) 
2. Polynomial:  K(X ,Z)= (1+(X·Z))P

d 
3. Sigmoid:P

 
PK(X ,Z)= tan ((X·Z)+θ) 

4. Gaussian Radial Basis Function (RBF): K(X ,Z)= 
exp( ||(X-Z)|| P

2 
P/ (2σP

2
P)) 

 
On the SVM classification phase, the classification 
function is universal and straightforward. A new data 
sample x is classified according to the output (sign) of the 
main decision function in Eq. (8). For large datasets, a 
massive number of complicated dot-product calculations is 
needed, which offers significant parallelization potential 
that could be exploited by parallel hardware resources as 
FPGAs. 

 
F(x) = sign ( ∑ αRiR yRiR K(xRiR , x)  + b)   

  (8)     
 

 

 

Fig. 1  SVM separating hyperplane. 

SVM is originally designed for binary classification and 
the use for multiclass classification is more problematic, 
either several binary classifiers have to be built or a larger 
optimization problem is required. As multiclass problems 
are commonly encountered, many multiclass SVM 
classification strategies have been proposed in literature 
like “one-against-all”, “one-against-one” and other 
methods [27].                

3. Research Methodology 

In order to review literature that deals with “Hardware 
Implementations of SVM Classifiers on FPGAs”, some 
keywords were used to cross-search for thousands related 
papers in five databases of scientific publications: Google 
Scholar, IEEE Xplore, ScienceDirect, Scopus and ACM 
Digital Library. The search keywords include FPGA, 
hardware implementation, embedded systems, Support 
Vector Machine, SVM classification/classifier, and SVM 
training/learning. 
 
This review is confined to conference papers and journal 
articles published within the period 2010-2015 in order to 
explore and analyze the current state-of-the-art of 
hardware implementations of SVM classifiers on FPGAs. 
Many recent works highlight the importance of real-time 
embedded applications in different areas like 
bioengineering, healthcare, digital signal processing, 
wireless sensor networks, multimedia, and others. 
Therefore, demonstrating the importance of boosting SVM 
classifier to meet embedded systems constraints is required 
to be considered and added to the current literature. There 
already exist a recent survey shows SVM in data mining 
tasks [1], regarding applications only and some of the 
challenges. Some of the considerable limitations of 
implementing the SVM model that are stated in [1] are the 
processing speed for the training and testing phase as well 
as large memory space requirements, which prove the 
necessity of an efficient implementation of SVM. To the 

Optimal  
Hyperplane 

Optimal  
Margin 
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best of our knowledge, there is currently no review or 
survey paper on FPGA-based hardware implementations 
of SVM targeted towards various embedded applications. 
Consequently, this review examines current and recent 
techniques in hardware implementations targeting efficient 
implementations of the SVM model on FPGA. 
 
The methodological framework of this research is defined 
by analyzing a variety of techniques in hardware 
implementations on FPGA for implementing SVM 
classifiers. Thus, a total of 53 articles is classified into two 
main groups regarding hardware implementations on 
FPGA for the training/learning phase of the SVM as the 
first group (12 papers) and for the classification phase as 
the second group (28 papers), where training is performed 
offline in the software. In addition, a third group (13 
papers) is also included to gather a miscellany of hardware 
implementations for applications that barely use the SVM 
classification as a part of a larger implemented algorithms 
covering different domains and areas. We restrict group 3 
to image analysis algorithms only, as it results in a 
compact but robust set of techniques that can be 
qualitatively compared.  

4. FPGA Implementations of SVM 

Existing literature for the hardware implementations of 
SVM model on FPGA was reviewed and roughly 
subdivided into two main groups according to the 
implemented phase of the SVM; training phase and 
classification phase. In this section, different techniques 
for FPGA-based hardware implementations were 
presented for the two groups and followed by critical 
analysis for each group. In addition, a third group is added 
regarding SVM classification-based application-specific 
implementations, which is considered part of the second 
group but from an application point of view and so 
analyzed with group two at the end of the section. 

4.1 Group 1: SVM Training Phase Implementations 

The training/learning phase of the SVM model has 
motivated many researchers to use hardware accelerators 
targeting a reduction in total training time. In this section, 
a variety of different FPGA-based architectures is 
presented in a systematic manner for the first group with a 
total number of 12 papers. 
   
Many SVM implementations were presented in literature 
that were based on the common SMO decomposition 
method [25]. T. Kuan et al. [28] proposed a fully 
functional circuit design for accelerating the SVM learning 
phase based on SMO algorithm. The proposed architecture 
consists of three main circuit modules functioning for the 

SMO process with a memory block and a cache block that 
were controlled by a designed Finite-State Machine (FSM) 
based controller. Experimental results showed that lesser 
processing time was recorded from using the cache, and 
the recognition performance of the proposed fixed-point 
design (FPGA) was similar to that of the floating-point 
SMO running on MATLAB. 
 
K. Cao et al. [29] proposed a parallel scalable digital 
architecture for training SVM based on SMO algorithm, 
aiming to overcome the lack of necessary flexibility in 
previous implemented embedded applications in literature. 
A modified version of the traditional SMO algorithm [30] 
(to improve the efficiency of the working set selection 
method) was adopted in the proposed digital system, 
where a multiple processing units working in parallel was 
mapped to the error cache updating task in the algorithm. 
The memory size of the hardware and the number of 
processing units are adjustable, aiming to achieve scalable 
architecture for handling different sizes of the training 
problems. The synthesizable Verilog code adopted for 
FPGA synthesis was generated automatically from the 
Simulink Stateflow using Simulink HDL Coder. 
Experiment results based on two different datasets 
demonstrated that SVM training problems could be solved 
effectively with inexpensive fixed-point arithmetic 
offering better flexibility and scalability results.  
 
J. Filho et al. [31] presented a dynamically reconfigurable 
SVM architecture for general purpose training that 
supports different sizes of training sets. Based on the SMO 
algorithm, a modular architecture was designed reaching 
interchanging modules by dynamic reconfiguration. The 
hardware-friendly kernel function proposed in [32] was 
adopted for the system and so the Coordinate Rotation 
Digital Computer (CORDIC) algorithm [33] based on shift 
and add operations was employed for kernel 
implementation. The proposed reconfigurable architecture 
achieved 22.38% area saving with acceptable 
reconfiguration time penalty. The effect of fixed-point data 
representation on precision and classification error was 
studied on three different learning benchmarks. Based on 
simulation results, the hardware implementations of the 
three benchmarks achieved acceleration factors of more 
than 12.53 times faster than the software implementation 
for the total training time. 
 
C. Peng et al. [34] proposed a novel reconfigurable and 
efficient chip design for accelerating SMO-based SVM 
learning. Two novel methods were used in the proposed 
design; trimode coarse-grained reconfigurable architecture 
and triple finite-state-machine with dynamic scheduling, 
targeting improvement of the baseline design proposed in 
[28]. The first method amended the baseline design by 
proposing trimode reconfigurable architectures with 
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parallel and pipeline computing capabilities, while the 
second method offered a schedule for efficient 
reconfiguration. Compared to the baseline design, 
simulation results demonstrated that the proposed design 
achieved improvements in area size (50% less memory 
usage from removing the kernel cache and 31% fewer gate 
counts), power consumption (17-fold improvement), and 
training speed (16-fold improvement) with satisfactory 
recognition accuracy (85%). 
 
L. Martinez et al. [35] proposed a hardware/software 
architecture to accelerate SVM training phase based on 
SMO algorithm. The high time-consuming dot-product 
computation in the SMO algorithm was executed on the 
hardware coprocessor in parallel, while the heuristic 
hierarchy of SMO was implemented in software on the 
GPP. The bottleneck dot-product calculation was mapped 
to a logical AND operation and a counter to be executed in 
three clock cycles. The proposed coprocessor architecture 
achieved a speedup of 178.7x compared to a software-only 
implementation on a GPP. 
 
Another hardware-software co-design system for fast 
SVM training based on SMO algorithm was proposed for 
embedded speaker identification system [36]. The modular 
design proposed in [28] was exploited and improved for 
realizing the computational bottleneck SMO training on 
hardware, whilst other processes including pre-processing, 
feature extraction and SVM-based voting analysis were 
implemented in software on an ARM processor (embedded 
C code). Also, a data-packed/unpacked mechanism was 
proposed to improve the efficiency of communication and 
data transmission between software and hardware (around 
5% reduction in delivery time). Compared to an ARM 
embedded C code, the proposed system achieved 90% 
decline in training time with a slight decrease in 
identification rate, where about 89.9% identification rate 
was achieved.    
 
A. Patel et al. [37] proposed also a hardware/software co-
design system to speedup SVM training based on SMO 
algorithm. A fully scalable co-processor architecture was 
implemented on Xilinx Virtex-7 FPGA for handling kernel 
computations based on a proposed SMO algorithm which 
effectively designed for exploiting the parallel computing 
power of the proposed co-processor and caching kernel 
columns through a grid of processing units. A speedup of 
20-25x was achieved for the kernel computations on the 
designed co-processor, while an application speed-up of 
up to 15x was achieved by comparing results of 
experiments of the proposed system on the ADULT 
dataset with LIBSVM. 
 
Other researchers implemented SVM based on different 
decomposition algorithms replacing the traditional SMO. 

A hardware-software co-design system for accelerating the 
SVM learning phase was presented based on another 
decomposition algorithm instead of the common SMO 
algorithm [38]. A Hybrid Working Set (HWS) algorithm 
was proposed based on the extended working set 
decomposition algorithm [39], taking advantage of cached 
kernel values and the fast convergence nature in order to 
decrease the number of iterations. A fully scalable 
coprocessor architecture consisting of a grid of cores was 
proposed to achieve parallelism for kernel computations 
similar to their previous proposed architecture [37]. A 
speed-up for kernel computations of up to 25x was 
achieved from the implemented coprocessor (32 cores) 
over a single threaded core i5 CPU. A reduction in 
iterations of 50% and 60% was achieved compared to 
LIBSVM and SVMLight software programs due to the 
implemented HWS algorithm. Finally, the proposed 
coprocessor with the HWS algorithm achieved an 
application speedup of up to 15x and 23x compared to 
software implementations of LIBSVM and SVMLight 
respectively.  
 
M. Papadonikolakis et al. [40]  proposed a fully scalable 
heterogeneous FPGA architecture for boosting the SVM 
learning, which fully exploits the device parallel 
processing power and the dynamic range diversities of the 
precision requirements among training problem features. 
The proposed design fully utilized the custom-precision 
arithmetic and heterogeneous components supported by 
the FPGA device for handling kernel computations. The 
proposed architecture used parallel custom precision 
multipliers feeding a pipelined adder tree for the fixed-
point inner products which are then interpreted into 
floating point format for further calculations.   
Experimental results demonstrated the efficiency of the 
proposed heterogeneous architecture which increased with 
the precision diversities of the homogenous/heterogeneous 
datasets attributes. Also, the proposed design showed a 
speedup of more than 6x compared to other proposed 
designs. 
 
M. Rabieah et al. [41] presented a complete FPGA-based 
system for boosting nonlinear SVM training by utilizing 
ensemble learning, in addition to a proposed cascaded 
multi-precision training flow that exploits FPGA 
reconfigurability and the training problem heterogeneity 
for handling large datasets. The proposed hardware 
module was designed for implementing Gilbert’s training 
algorithm (simpler than SMO [42]), where numerous 
processing elements are used for kernel dot product 
operations, each with its own on-chip memory blocks. The 
architecture of the processing element followed the 
previously proposed architecture in [40], where the kernel 
computation was divided between fixed point and floating 
point domains, and was improved by using caching and 
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running the solution update in parallel. The proposed 
FPGA system achieved significant speedups compared to 
other CPU and GPU-based implementations across three 
different datasets with acceptable accuracy and lower 
power consumption. 
 
M. Ning et al. [43] used a different design methodology 
from the previous works presented; High-Level Synthesis 
(HLS) for developing the hardware accelerator. A 
demonstration was presented to show that the hardware 
development time for an embedded system could be 
reduced by applying the HLS method using C language 
instead of traditional Hardware Description Language 
(HDL). A SOPC (System on Programmable Chip) system 
was designed to implement the Least Square SVM (LS-
SVM) on the recent Xilinx Zynq platform using Vivado 
HLS tool with C language. The LS-SVM has lower 
computational complexity as it solves a set of linear 
equations instead of a quadratic programming for standard 
SVM [44]. The proposed algorithm was divided into three 
parts; a generating Kernel Matrix module, a solving linear 
equations module (SOLE), and a forecasting module. The 
first and third modules were realized in ARM processor 
which also controls computing modules and data path, 
whilst the compute-intensive second module was 
implemented in programmable logic utilizing HLS method. 
A speed up factor of 2-8x was achieved with 0.06% 
maximum relative error for trained data, compared to a 
Matlab based CPU implementation for experiments with a 
real dataset. 
 
S. Wang et al. [45] exploited the Run Time 
Reconfiguration (RTR) technology of the FPGA for 
boosting the online training of the LS-SVM. The proposed 
design was divided into two parts to be swapped using 
RTR and applying pipeline in the modules design, 
reaching high parallelization. The first part is the kernel 
matrix formulation where a piecewise linear interpolation 
method was applied. The second part is the least-square 
problem solving, where a modified Cholesky 
Decomposition was proposed improving large memory 
requirements and the long latency caused by square roots 
operations. Experimental results illustrated speed up from 
6 to 218x compared to a Xeon CPU implementation. 
Regarding time cost percentage analysis, the proposed 
architecture was shown to be suitable for large-scale 
problems with more than 1000 samples, due to the large 
reconfiguration time. 

4.1.1 Critical Analysis of group 1 

The total training time is considered the main bottleneck of 
the overall SVM performance in real-time applications, 
which motivates many researchers for speeding-up this 
consuming task through implementation on parallel FPGA 

devices. This section presents a critical analysis for the 
previous FPGA implementations of the SVM classifier 
that were introduced in the previous section and 
summarized in Table 1.  
 
Most of the proposed hardware architectures for 
implementing the SVM learning were based on the 
common SMO decomposition algorithm [28, 29, 31, 34-
37], whilst an alternative algorithm was employed by one 
work in [38] and another simpler algorithm was 
implemented in [41]. Two research papers implemented 
the improved SVM; LS-SVM instead of the standard SVM 
due to its low computational complexity [43, 45], but 
generally most previous work focused on boosting the 
whole training process including complicated kernel 
computations. 
 
Various parallel digital designs were presented where the 
common pipelining approach was mostly applied, reaching 
a high level of parallelization. Additionally, some studies 
employed the dynamic reconfiguration technique for the 
designs aiming speed improvement with more flexibility 
[31, 45], and dynamic scheduling was exploited as well for 
efficient reconfiguration in [34]. Moreover, the hardware-
friendly kernel was used in [31] and implemented by 
common CORDIC algorithm based on shifters and adders 
replacing expensive multipliers, which led to a remarkable 
reduction in resources utilization.  
 
Many implemented systems employed the 
hardware/software co-design method for running the 
compute intensive task of the algorithm on the FPGA as a 
hardware accelerator (co-processor) aiming to reach real-
time SVM training [35-38, 43]. In addition, researchers in 
[43] used different design methodology; HLS for 
developing the hardware co-processor instead of using the 
traditional HDL, where an outstanding reduction in 
hardware development time and effort for realizing an 
embedded system was emphasized.  
 
Concerning scalability, some proposed architectures were 
designed to meet scalability issue, offering more flexibility 
for efficient usage in embedded environment [29, 37, 38, 
40]. Interestingly, a unique heterogeneous FPGA 
architecture for fully exploiting custom-precision 
arithmetic and heterogeneous components of the device 
was proposed [40, 41], offering scalability and adaptability 
to the classification problem nature.   
  
Finally regarding the achieved results, many proposed 
implementations for SVM training phase achieved 
significant speedup results which outperformed similar 
software implementations [31, 34-38, 41, 43, 45], where 
some reached acceptable accuracy with slightly rate loss 
[34, 36].  On the other hand, some hardware 
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implementations gained remarkable speedup improvement 
compared to previous hardware designs [34, 40]. 
Furthermore, great area saving results were realized in [31, 
34] and an improvement in power consumption was shown 
by [34, 41], which could meet some important embedded 
systems constraints.  

4.2 Groups 2 and 3 

4.2.1 Group 2: SVM Classification Phase Implementations 

Regarding the second group, various techniques for 
hardware implementations have been developed for 
boosting the online classification process on different 
FPGA boards. The SVM model was trained first offline on 
software (mostly using Matlab), then the trained data were 
extracted to be used for online classification on hardware. 

In this section, different hardware techniques used in 
implementations are presented in an organized manner for 
28 papers in group two. 
 
Systolic array architecture was widely implemented on 
FPGA for achieving high levels of parallelism, which was 
exploited by numerous SVM implementations. R. Patil et 
al. [46] used the systolic array architecture to implement a 
multiclass SVM classifier on Xilinx Virtex-6 FPGA for 
facial expression recognition system after performing 
training phase in Matlab. In addition, difference-based 
partial reconfiguration technique was utilized in order to 
achieve power optimization of the FPGA design. Power 
reduction up to 3 to 5 percent was achieved after applying 
reconfiguration by using Xilinx EDA tool. 
 

Table 1. Group 1: SVM Training Phase Implementations 

Ref. 
Training 

Implementation 
Method 

Platform/FPGA 
board and tools SVM Type 

Kernel 
Function 

Type 

Application 
Domain / dataset Important Results 

[28] Functional circuit 
design 

Altera Cyclone II 
DE2-70 

Quartus II 7.2 sp3 
Multiclass  Linear 

Speaker 
recognition, 

SMD 
and FMMD speech 

datasets 

Fully functional 
prototype 

[29] Parallel scalable digital 
architecture 

Xilinx Virtex-4 
(XC4VLX100) 

Simulink 
Stateflow +HDL 

Coder 

Binary  Gaussian 
Sonar dataset, 

Telecommunicatio
n problem dataset 

- 

[31] 
General-purpose DR 

architecture, 
CORDIC 

Xilinx Virtex-IV 
(XC4VLX25) 

 
Binary  

Hardware 
friendly 
kernel 

Breast Cancer, 
Dermatology, Tic 

Tac Toe 
benchmarks 

22.38% area saving 
Speedup > 12.53x 

[34] 
Reconfigurable 

architecture with 
dynamic scheduling 

Spartan c3s4000 Multiclass  Linear 

Speaker 
recognition, 

SMD 
and FMMD speech 

datasets 

Improvements in 
power, area, memory 

efficiency 

[35] Co-processor 

XtremeDSP 
Virtex- IV 

Development Kit 
Xilinx ISE 9.2 

ModelSIM SE 6.5 

Binary  Linear ADULT dataset Speedup 178.7x GPP 

[36] Co-processor 
Xilinx Spartan-

c3s4000 
Xilinx ISE 10.1 

Multiclass  Linear 
NIST 2010 speaker 

recognition 
database 

90% less training time 

[37] Co-processor Xilinx Virtex-7 
(VC707) Binary  Gaussian ADULT dataset Speedup 20-25x 

App speedup 15x 

[38] Co-processor 
Xilinx Virtex-7 
(XC7VX485T) 

Xilinx PlanAhead 
Binary  Gaussian Different datasets 

Speedup 25x CPU 
App speedup 15x 

LIBSVM, 
23x SVMLight 

[40] 
Heterogeneous 

architecture(custom-
arithmetic) 

Altera’s Stratix III 
(EP3SE260) Binary  

Linear 
Gaussian 

polynomial 
Various datasets Speedup 6x 
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sigmoid 

[41] 
Heterogeneous 

architecture(custom-
arithmetic) 

Xilinx board 
ML605 

(Virtex-6 
XC6VLX240T 

Binary  RBF 
ADULT, 

Forest covertype, 
MNIST datasets 

Speedup >1 order 

[43] SOPC (HLS) 
Xilinx 

XC7Z020 
Vivado HLS 

LS-SVM RBF Electricity 
Demand dataset Speedup 2-8x CPU 

[45] RTR 
Xilinx ML510 

(XC5VFX130T) 
Xilinx PlanAhead 

LS-SVM RBF 
mobile 

communication 
traffic dataset 

Speedup 6-218x CPU 

Dynamic Partially Reconfigurable (DPR) technique was 
exploited by H. Hussain et al. [47] to implement an SVM 
classifier for classifying microarray data for bioinformatics 
applications.  That SVM classifier was also implemented 
using the systolic array architecture (4 main blocks), but 
on an old FPGA board; Xilinx ML403, where the kernel 
computation was implemented using 2-pipelined stages. A 
speed-up of up to 85x was achieved over an equivalent 
GPP software implementation based on Matlab 
bioinformatics toolbox. For changing the SVM core with 
different parameters, DPR was applied which was 8x 
faster than reconfiguring the whole FPGA device. 
 
H. Hussain et al. [48] extended their work lately based on 
their previous work [47] by proposing another systolic 
array architecture for different dataset sizes (number of 
SVs is greater than the dimension), where more 
computation was required. The two architectures were 
compared with an equivalent Matlab based 
implementations on GPP and a speedup of ~61x and ~49x 
were achieved for both respectively. Moreover, DPR was 
applied for a multi-core SVM architecture based on their 
previous architecture [47], providing flexibility for 
microarray based applications.  
 
C. Kyrkou et al. proposed an optimized parallel array 
architecture [49] targeting real-time SVM-based object 
detection, by finalizing their initial work of implementing 
a systolic chain of processing elements [50]. They also 
showed that the proposed array processing engine is 
scalable and flexible that could be extended and adapted to 
meet multiclass classification and different applications 
demands. The implemented array architecture was 
evaluated using three different object detection 
applications; face, pedestrian, and car side view detection. 
The results demonstrated a high performance of 40, 46, 
122 fps for the three applications, with no accuracy loss 
regarding the software detection accuracy of the SVM 
model implemented in Matlab (77, 76, 78%).  
 
Many implementations adopted the multiplier-less 
approach for optimizing hardware complexity. A hardware 
implementation for boosting SVM classification was 
developed on the modern Xilinx Virtex-7 FPGA, that was 
also based on  parallel pipelined systolic array architecture 

[51]. The researchers were targeting a reduction in 
hardware complexity and power consumption by 
implementing simplified multiplier-less kernel using shifts 
and adds operations instead of traditional vector product 
kernel for classification. They presented a different 
approach of applying the CSD (Canonic Signed Digit) and 
CSE (Common Subexpression Elimination) representation 
methods for vectors data in order to reduce the number of 
required adders leading to hardware complexity reduction 
[52]. A comparative analysis was performed regarding 
resources utilization for three implemented classifiers; 
binary linear, binary non-linear and multiclass classifiers 
using the proposed CSD-based multiplier-less kernel 
versus the vector product kernel [51]. Also, power 
reductions of 1, 2.7, and 3.5% were achieved from the 
three implemented classifiers than that using the 
conventional vector product kernel. 
 
M. Ruiz-Llata et al. [53] presented an FPGA-based 
hardware design of SVM for classification as well as 
regression (regression out of our scope). The proposed 
system adopted the hardware friendly kernel function 
presented in [32], which significantly simplifies the 
hardware design of the feed-forward SVM classification 
phase by avoiding the use of computationally intensive 
multiplications, providing good classification performance 
compared to the traditional Gaussian kernel. The proposed 
architecture employed the CORDIC iterative algorithm 
[33], based on using only shift and add operations instead 
of multiplications required by the kernel computation. The 
implemented SVM classification system utilized 75% of 
the FPGA logic (Cyclone II) and an external memory was 
used for storing support vectors leading to 2ms limitation 
in the classification speed, with an error rate of 4%.  
 
An embedded hardware SVM implementation on FPGA 
was proposed [54], which was based also on exploiting the 
hardware friendly Kernel [32] to simplify the hardware 
design targeting satellite onboard applications. Similarly, 
the resource consuming multiplications were replaced by 
simple shift operations, which demonstrated lower 
resources utilization of 167 slices. 
 
J. Sarciada et al. [55] introduced an FPGA implementation 
of fast SVM that was based on CORDIC algorithm, 
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following the design of the proposed hardware friendly 
Kernel.  The proposed system consists of three sub-circuits 
(data preparation, CORDIC, and classification circuits) to 
implement the kernel calculations that was based on a 
proposed iterative algorithm which is a simplification of 
the CORDIC method through adders and shifters (without 
multiplications and exponentials). The implemented 
system achieved speed improvement over their previous 
CORDIC circuit implemented in [56] with a factor of 6, 
with limited hardware resources utilization. 
Another hardware design for the SVM decision function 
was presented for classification and regression problems 
[57], that was based also on adopting the hardware 
friendly Kernel [32]. A tree structure based on common 
Sum of Absolute Differences (SAD) module was exploited 
for decreasing clock cycles of the 1-norm computation 
between vectors [58]. Preliminary simulation study was 
performed on the precision of input parameters by 
choosing fixed-point arithmetic, keeping the same 
classification accuracy level with no loss.   
 
D. Anguita et al. [59] proposed an FPGA core generator 
tool for automatically generating an optimized hardware 
description of a digital architecture for implementing SVM, 
according to the user requirements and the constraints of 
the target FPGA device.  The proposed architecture for the 
feedforward phase of the SVM was based on the 
hardware-friendly kernel [32] [60], where the bottleneck 
1-norm (Manhattan norm) computation was implemented 
using the parallel tree structure of the common SAD 
modules [58]. Three architectures was presented for 
implementing the kernel computation. The first kernel 
architecture exploited the polynomial approximation 
method (parabolic and linear piecewise approximations) 
that was computed by multiple cascade pipelined stages of 
Multiply-and-Accumulate (MAC) blocks. The second 
architecture was based on CORDIC-like iterative 
algorithm with no multipliers implementation [32]. The 
third architecture was based on the Look-Up Tables (LUTs 
(memory blocks)) based approach, where kernel values 
were stored. The tool was tested for an automotive 
application, showing results with trade-off among latency, 
hardware resources and maximum clock frequency for the 
three architectures on low-cost, intermediate-class and 
high-end FPGAs. The LUT-based and CORDIC-like 
approaches achieved higher classification rates. 
 
V. Vranjkovic et al. [61] presented a digital architecture 
for SVM classification with a kernel that avoids 
multiplication, which is similar to the previous hardware-
friendly kernel [32] and looks like the common radial 
kernel. In the proposed architecture, the expensive 
exponential function was realized by CORDIC algorithm 
and the multiplications were implemented using shifters. 
The results showed that the proposed kernel had 

comparable classification performance with the similar 
original radial kernel (No hardware implementation of the 
proposed digital architecture on FPGA was presented).  
 
Other implementations aimed to exploit the common 
pipelined fashion for reaching efficient designs. V. 
Vranjkovic et al. [62] proposed a universal coarse-grained 
reconfigurable architecture for implementing various types 
of machine learning including SVM, decision trees and 
artificial neural networks. The proposed architecture was 
organized as 1D or 2D array of simple reconfigurable 
blocks in a pipelined structure for implementing one of the 
three classifiers. Concerning the SVM implementation, the 
classification function was divided into partial sums to be 
implemented by the reconfigurable blocks using 
multipliers and adders (and a subtractor in the case of a 
radial kernel), which was controlled by FSM model. 
Experimental results showed that the implemented 
architecture achieved significant classification speedup of 
1-2 orders of magnitude, compared with R project-based 
software implementation, with modest hardware resources 
utilization. 
 
A high performance unified circuit supporting both linear 
and non-linear SVM classification was designed, based on 
sharing most of the resources required for both types, 
leading to a reduction in circuit size [63]. The proposed 
unified circuit was designed using a parallel architecture 
with two-stage pipeline providing shared multipliers and 
adders required for inner product calculation to support 
both linear and non-linear SVM classification. For the 
nonlinear case, the table-driven algorithm proposed in [64] 
was adopted for the RBF kernel computation, which 
accelerates the operating speed for an exponential function 
(fixed-point arithmetic operation) as well as increasing the 
accuracy.  The proposed circuit was synthesized using 
65nm standard cell library, demonstrating 661,261 gates 
with 152 MHz maximum operating frequency. Also, high 
performance was achieved from processing up to 33.8 
640x480 image frames per second. 
 
A highly flexible architecture for a complete SVM 
classifier regarding the input data and kernel function 
selection was proposed for multi-purpose classification 
that could be integrated into different projects [65]. The 
SVM core was designed as a pipelined architecture, where 
selection of linearly, polynomial and RBF kernel was 
performed dynamically at run-time. The dot-product 
calculation was performed with parallel embedded 
DSP48E-based MAC units with a LUT-based adder tree, 
and the exponential function was calculated by using the 
Xilinx CORDIC IP core. The proposed flexible SVM core 
was simulated and verified in hardware, achieving 
accuracy for the RBF kernel of a bound of 10ppm with 
maximum frequency 92 MHz. 
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A hardware design of SVM-based type identification 
module in a CAD system was presented for colorectal 
endoscopic images with narrow band imaging (NBI) 
magnification [66, 67]. A 2-step identifier based on binary 
SVM was proposed to develop a 3-class identifier using 
one-versus-one technique targeting real-time processing of 
full HD images. The SVM identification module was 
implemented by a fixed-point number and evaluated with 
different bit length, showing the tradeoff between 
hardware size and accuracy. A customized architecture 
was first introduced based on combining 2-class classifiers, 
which was implemented in their previous work [68], 
resulted in increasing the inner-product process by 18% 
due to the overlap of input data. Then, an improved 
architecture was presented preventing the duplication in 
the inner-product computation that was structured in two 
pipeline stages, where common inner-products were 
computed at the first stage (similar to the approach in 
above paper described [63]).  Accordingly, the hardware 
size was decreased and the system throughput was 
increased (>21.2 fps at 100 MHz [66]), with sufficient 
identification accuracy for CAD system.  
 
An FPGA implementation of multi-class SVM classifier 
based on posterior probability was introduced that 
implemented Lin’s second improved classification 
algorithm [69]. The proposed simplified algorithm was 
implemented in a pipelined design that used a LUT-based 
method to produce the sigmoid function output, in addition 
to adders, multipliers and dividers used for the other 
computations. Experimental results showed that the mean 
absolute error is 10-4 order of magnitude between the 
implemented simplified algorithm on FPGA and the C-
based implementation, with a slight loss in recognition rate. 
Also, a decrease in computation complexity was achieved 
from implementing the simplified algorithm with 0.7 ms 
time delay, which meet the real-time requirements. 
 
Y. Ago et al. [70]  presented a new approach of effectively 
using cascaded DSP slices and block RAMs embedded in 
FPGA to design a fully pipelined DSP architecture for 
accelerating SVM classification. The proposed processor 
core utilizing 768 DSPs and 800 block RAMs was 
implemented in Xilinx Virtex-6 FPGA, for the SVM 
classifier with 760 support vectors that supported three 
types of kernel functions; sigmoid, polynomial, and RBF 
kernels.  The experimental results showed high throughput 
of 2.89x106 times per second for classifying 128-
dimension feature space running at 370.096 MHZ. 
 
Beside using FPGA, a hardware architecture for 
accelerating SVM classification phase was realized in 
ASIC  exploiting pipelined adder for the accumulation 
process in the main processing unit instead of common 

adders [71]. As a result, speedups of 1.44x and 1.21x were 
achieved using pipelined adder in compare to using RCA 
and KS adders respectively, with slightly area overhead. 
Additionally, the implemented architecture offered 3.5x 
GMACs compared to other FPGA-based architectures in 
literature.  
 
Some work in the surveyed literature targeted comparisons 
between FPGA and GPU implementations. Hardware 
architectures for FPGA and GPU implementing a human 
skin SVM classifier and comparing their performance with 
the software was presented [7, 17]. For FPGA 
implementation, the critical hardware components were 
designed using HDL in a fully pipelined structure, whilst 
other standard components (interfaces, FIFO, FSMs) were 
implemented in HLL (Impulse C). The preliminary 
implementation results illustrated that the implemented 
fully pipelined FPGA architecture outperformed GPU and 
CPU for a small number of image pixels, while the GPU 
implementation was the fastest for a large number of 
pixels. But, GPU implementation consumed significantly 
higher power than the FPGA implementation, which 
reduces the use of GPUs in power-constrained embedded 
systems [17].    
 
Apart from using the traditional HDL approach in many 
research work for designing hardware implementations, 
some other work used available powerful tools on the 
market which simplified the process of hardware designs. 
One of the common tools is the Xilinx System Generator 
that offers high-performance system modelling and 
automatic code generation from Matlab/Simulink. D. 
Mahmoodi et al. [72] used the System Generator to design 
and implement a simple hardware architecture of a 3-class 
pairwise SVM classifier for Persian handwritten digits 
dataset. The training phase was performed using LIBSVM 
model in Matlab, then testing phase was implemented 
using a combination of serial and parallel designs of 
simple blocks and functions of System Generator reaching 
a parallel simultaneously hardware architecture of the 
classifier. Also, the CORDIC block in System Generator 
was exploited for implementing the exponential function. 
The FPGA simulation results demonstrated 202.840 MHz 
maximum frequency for linear classification and 98.67% 
classification accuracy for nonlinear classification, with 
considerable computation time compared to software 
implementation in Matlab.  
 
A digital hardware implementation for multi-speaker 
phoneme recognition system based on SVM was designed 
using building blocks of the Synopsys Signal Processing 
Workbench (SPW) software, which generated  the 
corresponding VHDL code to be analysed with the Xilinx 
Simulator [73]. The priority scheme was included in the 
design with the multiclass one-against-one SVM method 
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to produce the three most likely phonemes at the output 
(first, second and third possible phoneme representations), 
targeting an increase in the accuracy. The implemented 
hardware system was faster than the software 
implementation by about 2.53 times, with 16.2% reduction 
in accuracy.   
 
Some researchers considered the cascaded classification 
scheme as an alternative approach for accelerating the 
SVM classification process. In this scheme, the majority of 
data are rejected in the early classification stages with less 
computationally demanding, leaving small amounts of data 
to be classified at the latter stages with higher accuracy 
and computational complexity. Accordingly, the usage of 
the cascaded classification structure could achieve great 
speedups over a single SVM classifier. Therefore, many 
researchers were motivated towards hardware 
implementations for the cascaded structure, in order to 
reach online real-time classification meeting embedded 
systems constraints of high performance and low cost.     
 
M. Papadonikolakis et al. [74] presented the first FPGA-
based cascaded SVM classifier that exploited custom-
arithmetic characteristic (bit-precision) of the device 
heterogeneous nature, targeting SVM classification 
acceleration (following their previous proposed 
architecture in [40] for training acceleration). A fully 
scalable heterogeneous architecture was proposed that 
effectively utilized the parallel processing power of the 
device heterogeneous resources and dynamic range 
diversities among the classification problem’s features. 
The proposed heterogeneous architecture achieved a 
speed-up of 2-3 orders of magnitude compared to the CPU 
classification execution time, and a speed-up over 7x other 
previous implementations on FPGAs and GPUs.  
 
Later, M. Papadonikolakis et al. [75] applied the FPGA 
reconfigurability approach to their previous proposed 
architecture [74] for the cascaded classifier in order to 
switch from low- to high-precision classification. As a 
result, an increase in the performance was achieved, as 
well as gaining an expansion of the potential design space 
for implementing large-scale cascaded classifiers. 
 
C. Kyrkou et al. [76, 77] presented an optimized 
architecture for the cascaded SVM classifier based on a 
proposed hardware reduction method to implement 
additional stages in the cascade, resulting in reducing 
hardware resources utilization and power consumption for 
embedded applications. The proposed method replaced all 
multiplication operations of the early cascade stages with 
shift operations by rounding off the training data to the 
nearest power of two values, with classification accuracy 
savings. A hybrid architecture was implemented (Virtex 5 
FPGA) using the cascaded structure for sequential and 

parallel processing of input data, after training in Matlab 
targeting face detection on 640x480 images. As a result, an 
average performance of 70 fps was achieved, reaching a 
speed-up of 5x over a single parallel SVM classifier 
implementation. The employment of the proposed 
hardware reduction method achieved 43% fewer hardware 
resources utilization and 20% saving in power, with only 
0.7% reduction in classification accuracy. 
 
Next, C. Kyrkou et al. [78] extended their previous work 
for accelerating the cascaded SVM classifier [76] by 
proposing an optimized hybrid architecture with the 
proposed hardware reduction method and an additional 
novel response evaluation method. The proposed response 
evaluation process was developed by using the Neural 
Network (NN) model to classify the responses of the 
preceding simple stages in the cascade in order to remove 
samples before the final complicated classification stage, 
leading to classification speed improvement. In addition, 
the architecture employed local binary pattern (LBP) 
descriptors for applying feature extraction prior to the final 
stage in order to improve detection accuracy. The 
presented architecture was implemented on Spartan-6 
FPGA (replacing the old one used before), targeting 
embedded face detection using higher resolution of 
800x600 images than that in their previous work and other 
hardware implementations. The implemented hybrid 
architecture achieved real-time processing of 40 fps with 
80% detection accuracy, as well as 25% and 20% 
reduction in area and peak power respectively, with only 1% 
reduction in classification accuracy. But compared to their 
previous work, it seems that lower figures were achieved 
for both area and accuracy. This is because they are 
evaluating a big test set of higher resolution images, 
targeting real-time processing of online video 
classification as an embedded benchmark application. 

4.2.2 Group 3: SVM-based Applications Implementations 

This group was constructed to demonstrate the usage of 
the SVM classification in a wide range of applications, in 
which the research papers are focused more on the main 
application’s implementation, rather than the classification 
purpose implementation as in group two. Different 
hardware architectures have been introduced in literature 
for implementing algorithms including classification task 
targeting particular applications. This group consists of 13 
papers to introduce some research work of different 
applications that deal with images.  
 
Many works for object detection have been developed on 
FPGAs, utilizing the SVM-based Histograms of Oriented 
Gradients (HOG) algorithm. A real time pedestrian 
detection was implemented on FPGA targeting high 
resolution images of 1920 x 1080 pixels to be processed at 
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twice the pixel frequency [79]. The proposed design of the 
detection system was based on a time-multiplex method to 
construct multiscale detection, with a simply designed 
SVM that consists of a module for the dot product 
calculation, an address decoder controlling the memory 
accesses, an adder for the intermediary summation, and an 
adder for the bias. Experimental results showed high 
performance of processing HD resolution images at 64 fps, 
which outperformed existing FPGA implementations by a 
factor of 4 with good resources utilization.  
 
A real-time human detection using HOG algorithm with 
linear SVM classifier was implemented that based on 
adopting a binarization process [80, 81]. As a result of the 
binarization process, all multiplication operations in the 
classifier were replaced with addition operations, which 
decreased hardware complexity. The proposed pipelined 
architecture achieved a processing rate of 293 fps with a 
detection accuracy of 1.97% miss rate and 1% false 
positive rate, in addition to a low power consumption rate 
of 353mW.  
 
A processor based approach was employed for 
implementing SVM-based HOG algorithm [82], which 
was based on a developed IPPro (Image Processing 
Processor) from Rathlin research project [83]. The 
designed multi-core IPPro system (coded by the help of 
Matlab Simulink model) achieved throughput of 2.6x 
compared to a handed coded design targeting Xilinx Zed 
board, and 3.2x compared to relevant recent work in 
literature.   
 
An object detection processor was presented that based on 
a proposed simplified HOG algorithm which employed a 
simultaneous SVM calculation, targeting a reduction in 
amount of required computations [84, 85]. The proposed 
simultaneous SVM calculation architecture was designed 
as 15 parallel classification cores, where each managed 7 
blocks of MAC operations and allowed the reuse of 
intermediate results. Accordingly, experimental results 
showed 99% reduction of cycle counts for the proposed 
SVM module compared to architecture without 
parallelization and pipeline. The proposed system achieved 
objects detection for SVGA resolution video at 72 fps with 
40MHz. Also, the proposed simplified algorithm reduced 
required computation (from 89.2 to 2.25 GOPS) with 
minimal memory usage and 3% decline in accuracy.   
 
An embedded design using the HOG-SVM combination 
was presented for multiple object detection [86]. Single 
precision 32-bit floating point representation was used in 
the proposed implementation without making any 
simplification of the algorithm design in order not to 
reduce the detection accuracy as occurred in some 
previous work. Xilinx single precision IP cores (adders 

and multipliers) were exploited to be designed with the 
longest latency in a fully pipelined structure with no need 
of external memory storage. Multiple binary SVM 
classifiers were instantiated in the proposed system to be 
capable of detecting multiple objects. The implemented 
system was capable of detecting three different objects in 
640x480 images at 60 fps (outperformed the speed of the 
software implementation), with a computational 
performance of 9.47 Giga Floating Point Operations per 
Second (GFLOPS).       
 
An FPGA-based hardware design for head-shoulder 
detection was presented [87], which was based on Local 
Binary Patterns (LBPs) for feature extraction and SVM for 
classification. In addition, foreground object detection was 
exploited for improving detection accuracy. A different 
scheme of unrolling loops required by SVM computations 
was used for the implementation to meet the sequential 
flow of data in the FPGA. And so, the SVM computation 
module was designed based on a FIFO, multiple 
multipliers, and a pipelined adder tree. The integrated 
system was implemented on Xilinx Virtex 6 FPGA, 
demonstrating real-time video stream processing of 
640x480 images at 60 fps, with a 15% drop of detection 
accuracy.  
 
A digital hardware architecture was presented for face 
detection in IR images based on LBP, SVM algorithms, 
and generating bounding boxes of detected faces [88]. 
Concerning SVM module implementation, the dot product 
calculation was implemented as a pipelined sum using 
integer adders replacing multipliers (no DSP slices) and 
buffers were exploited for decreasing memory 
requirements. The implemented system outperformed 
software implementation with processing 640x480-pixels 
video at 313 fps with a false positive rate between 4.5 and 
7.2%. Also, low resources utilization were achieved of less 
than 25% with 266 mW power consumed.   
 
A hardware implementation for pedestrian detection 
algorithm was presented that was based on a sliding 
window- based SVM classifier using feature covariance 
matrices as descriptors [89].  The SVM classifier was 
designed as 15 units processing in parallel, where 147 
scalar products and accumulations were computed that are 
proportional to the number of the descriptor features. The 
implemented detection system showed encouraging results 
for hardware implementation with a maximum frequency 
of 213 MHz and 9% loss in accuracy. 
 
A complete parallel hardware architecture targeting real-
time image classification (object detection) using SVM 
model was implemented on FPGA, which was based on 
Scale-Invariant Feature Transform (SIFT) and Bag of 
Features (BoFs) algorithms for feature extraction [90]. 
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Regarding SVM implementation, the proposed 
architecture of the SVM module was designed by using 
multipliers and accumulators, exploiting parallelism in 
computing the RBF kernel to accelerate the processing 
time. Also, the Xilinx IP core CORDIC block was used for 
implementing the exponential function (sum of sin and 
cos). Two different challenging datasets with high image 
variation were used to evaluate the proposed hardware 
system in which 85% and 78% classification accuracy 
were achieved for Caltech-256 and KUL Belgium traffic 
sign datasets respectively, with less than 3% loss in 
accuracy from the software implementation. In addition, a 
speedup of 5.7x was achieved for classifying 640x480 
images compared to software implementation, with 
reasonable hardware resources utilization compared to 
related implementations. 
 
C. Kyrkou et al. [91] presented a hardware architecture for 
real-time SVM-based object detection using a proposed 
depth and edge accelerated search method targeting 
improvement in speedup and detection accuracy. The 
proposed architecture exploited the proposed SVM 
processing architecture in their previous work that was 
based on an array of processing elements [49], and the 
reduced set method was employed to decrease the number 
of support vectors used for reducing memory utilization 
and increasing classification accuracy. The implemented 
system achieved real-time frame rates of 271, 42, and 23 
fps for 320x240, 640x480 and 800x600 image sizes 
respectively, with a 52% decline reached for the false-
positive rate. 
 
An FPGA implementation of a CAD system for skin 
cancer was introduced that was based on feature extraction 
and SVM classification for histo-pathological images [92]. 
A block diagram of hardware architecture of the CAD 
system flow was presented, which used the RAM memory 
for storing input image (no hardware design details). 
Simulation results of the proposed system implemented on 
Xilinx Virtex-7 FPGA was presented for applying CAD 
system phases on an input test image.  

4.2.3 Critical Analysis of Group 2 and 3 

Regarding parallel architectures targeting acceleration of 
the SVM classification phase, both group two and three 
are analyzed in this section and summarized in Table 2 and 
Table 3 respectively.  

 
Many works exploited the FPGA-based parallel systolic 
array architecture in their implementations [46-49, 51], 
resulting in good results of classification speedups that 
mostly outperformed software implementations on 
GPPs/CPUs. In addition, other works employed the DPR 
technique [46-48, 75], achieving more flexibility and 
design space expansion besides gaining speedups. Also, 
the hardware implementation in [46] achieved a significant 
reduction in power consumption as a result of applying the 
difference-based partial reconfiguration technique. 
  
Interestingly, many studies adopted the multiplier-less 
approach [51, 76-78, 80, 81, 88], where computational 
intensive multipliers required for computations are 
replaced with conventional adders and/or shifters in order 
to decrease the hardware complexity. Similarly, others 
[53-55, 57, 59, 61] utilized the hardware friendly kernel 
function for simplifying the hardware design by using the 
simple shift and add operations instead of resource 
consuming multiplications. Some of them employed the 
common CORDIC iterative algorithm for implementing 
the hardware friendly kernel computations, which is also 
based on using only shifters and adders [53, 55, 59], while 
other implementations used the CORDIC algorithm for 
solving the exponential function of the kernel [61, 65, 72, 
90]. As a result of multiplier-less implementation, 
significant reduction in hardware resources utilization was 
achieved by [51, 54, 55, 76-78], in addition to remarkable 
power consumption decrease was demonstrated in [31, 51, 
76-78, 80, 81, 88]. 
 
Moreover, the common pipelining technique was exploited 
by most previous hardware designs, taking advantage of 
the parallel processing capabilities of the FPGA that led to 
throughput increase of the implemented classification 
process. Some researchers designed a pipeline stage for 
common and shared multipliers required for computations 
to decrease usage of duplicate multiplications [63, 66, 67], 
achieving lower hardware resources utilization. 
Additionally, some pipelined designs like in [65, 70, 86] 
were based on exploiting the embedded IP cores in the 
FPGA device for efficient resources utilization. 
Furthermore, the parallel pipelined (adder) tree structure 
was used by various designs aiming to reach processing 
speed improvement  [57, 59, 65, 74-78].  

Table 2. Group 2: SVM Classification Phase Implementations 

Ref. 
Classification 

Implementation 
Method 

Platform/FPGA 
board and tools SVM Type 

Kernel 
Function 

Type 

Application 
Domain / dataset Important Results 

[46] 
Systolic array 
architecture, 

difference-based PR 

Xilinx Virtex-6 
(6vlx240tff1156-
2) Xilinx ISE + 

Multiclass  Polynomial 
Facial expression 

recognition 
system 

Power reduction 3-5% 
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EDA 

[47] Systolic array 
architecture, DPR 

Xilinx ML 
403(XC4VSX35) 

Xilinx ISE 
Binary  Linear 

Classifying 
microarray 

(biomedical)data 

Speedup 85x GPP DPR 
8x faster 

[48] Systolic array 
architecture, DPR 

Xilinx ML 
403(XC4VSX35) 

Xilinx ISE + 
PlanAhead + 

ChipScope 12.2 

Binary  Linear 
Classifying 
microarray 

(biomedical)data 

Speedup ~61x, ~49x 
GPP 

DPR 8x faster 

[49] Parallel systolic array 
architecture 

Xilinx ML505 
(Virtex 5-
LX110T) 

Binary  Polynomial 
RBF Object detection 40-122 fps 

76-78% accuracy 

[51] 
Systolic array 
architecture, 

multiplierless kernel 

Xilinx Virtex-7 
Xilinx XPE 14.1 

Binary and 
multiclass  

Linear 
Polynomial Fisheriris dataset Power reduction 1, 2.7, 

3.5% 

[53] 
Multiplierless kernel, 

CORDIC, external 
memory 

Cyclone II 
(EP2C20) Multiclass  

Hardware 
friendly 
kernel 

Image recognition 
COIL dataset 75% logic 

[54] Multiplierless kernel 
Xilinx Virtex-5, 

Spartan-3E 
Modelsim 

Binary  
Hardware 
friendly 
kernel 

Satellite onboard 
application/ 

NASA database 
167 slices < others 

[55] Multiplierless 
architecture, CORDIC - Binary  

Hardware 
friendly 
kernel 

- Speedup 6x previous 
circuit 

[57] SAD-based tree Altera Cyclone III 
ModelSim Binary  

Hardware 
friendly 
kernel 

UCI standard 
data set Breast 

Cancer 
- 

[59] 
Pipelined 

MAC/CORDIC/LUT-
based 

Xilinx Spartan-
IIE, Spartan-3, 
Virtex-II Pro, 

Virtex-4 

Binary  
Hardware 
friendly 
kernel 

Automotive 
application/pedest

rian detection 
Daimler-Chrysler 

dataset 

- 

[61] Multiplierless 
architecture, CORDIC - Binary  Digital 

kernel 4 UCI datasets - 

[62] 1D, 2D pipelined 
streams 

Xilinx Virtex-7 
Vivado 2014.2 Binary  Polynomial 

RBF 18 UCI datasets Speedup 1-2 orders 

[63] 2-stage pipelined 
parallel architecture - Binary  RBF - 33.8 fps 

[65] 
Pipelined Structure 

(CORDIC and 
MACs) 

Xilinx ML505 
(XC5VLX110T) Binary  

Linear 
Polynomial 

RBF 

Pedestrian 
detection - 

[66, 
67]  2-stage pipelined 

Altera Stratix-IV 
(EP4SE360F35C2

) 
Multiclass  Linear Colorectal cancer 

detection > 21.2 fps 

[69] Pipelined Xilinx Virtex-5 
ISE 10.1 Multiclass  Linear 

Sigmoid 
Language 

Recognition - 

[70] Fully pipelined DSP-
based architecture 

Xilinx Virtex-6 
(6VLX240T-

FF1156) 
Xilinx ISE 14.1 

Binary  
Sigmoid 

Polynomial 
RBF 

- 768 DSPs 
2.89x10P

6
P throughput 

[71] Pipelined adder-based 
architecture 

ASIC 
Synopsys tools Binary  Linear MNIST dataset Speedup 1.44x,1.21x 

other adders usage 

[7, 
17]  

Fully Pipelined 
architecture 

Xilinx Virtex-5 
(LX220), 

Xilinx Spartan 6 
(XC6SLX75) 

Binary  Gaussian Human skin 
classification Performance >> CPU 

[72] System Generator 
blocks-based design 

Xilinx Virtex4 
(xc4vsx35) 

System Generator 
Multiclass  Linear 

Gaussian 

Persian 
handwritten digits 

dataset 

202.840 MHz Freq. 
98.67% accuracy 

[73] Synopsys SPW Xilinx Virtex-II Multiclass  RBF Multi-speaker Speedup  2.53x 
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blocks-based (XC2V3000) 
Synopsys SPW, 
Xilinx Simulator 

phoneme 
recognition, 

TIMIT corpus 

[74, 
75]  

Heterogeneous 
architecture(custom-

arithmetic), DR 

Altera’s Stratix III 
(EP3SE260) 
Altera tools 

Cascaded 
(Binary) 

Gaussian 
polynomial 

sigmoid 
MNIST dataset Speedup 2-3 CPU 

Speed-up >7x others 

[76, 
77]  

Hybrid processing 
architecture, hardware 

reduction method 

Xilinx ML505 
(Virtex 5-
LX110T) 

Cascaded 
(Binary) 

Linear 
polynomial Face detection 

70 fps performance 
Speedup 5× 

43% less resources 
20% less power 

[78] 

Hybrid processing 
architecture, hardware 

reduction method, 
novel response 

evaluation method 

Xilinx Spartan-6 
XC6SLX150T 

Cascaded 
(Binary) 

Linear 
polynomial Face detection 

40 fps performance 
80% accuracy 

25% less resources 
20% less power 

One research group is discriminated with implementing 
the novel cascaded SVM classifier on FPGA [74-78]. The 
researches started with using the custom-arithmetic 
potential of the heterogeneous architecture to design low- 
and high-precision classification modules. Then, they 
proposed a hardware reduction method to be used in an 
optimized hybrid architecture. Finally, they achieved 
remarkable results of high performance, low resources 
utilization and less power consumption despite a slight 
loss in classification accuracy rate.   
 
Some research work studied the quantization effect of 
using the fixed-point number representation in the 
hardware implementation on the classification accuracy, 
aiming to reach the optimal number representation 
(minimum number of bits) that reduces hardware resources 

and increases speed with minimal reduction in overall 
classification accuracy [57, 62, 66, 67]. Accordingly, some 
hardware implementations recorded relatively loss in 
classification accuracy as in [69, 73, 76-78, 80, 81, 84, 85, 
87, 89-91]. 
 
Many of the previous various hardware implementations 
achieved relatively significant results of accelerating SVM 
classification process that outperformed similar software 
implementations [47, 62, 72-75, 79, 84, 86, 88, 90]. 
However, some researchers were interested to present fair 
comparison with selected hardware implementations in 
literature like in [74, 75, 78, 79, 82], demonstrating better 
performance achievement.   
 

 
Table 3. Group 3: SVM-based Applications Implementations 

Ref. 
Classification 

Implementation 
Method 

Platform/FPGA 
board and tools SVM Type 

Kernel 
Function 

Type 

Application 
Domain / dataset Important Results 

[79] 
Multiscale and time-

multiplex parallel 
architecture 

Xilinx Virtex-5 
(XC5VFX200T) Binary  Linear 

Pedestrian 
detection 

INRIA dataset 
64 fps 

[80, 
81]  

Pipelined 
binarization-based 
adder architecture 

Xilinx Spartan-3e 
(XC3S500E) Binary  Linear Human detection 

INRIA dataset 293 fps 

[82] (IPPro) Processor-
based 

Xilinx Zed board 
(Zynq 7020) 

Xilinx ISE 14.6 
Binary  Linear Object detection Throughput 3.2x 

[84, 
85]  

Pipelined parallel 
architecture 

Altera Cyclone 
IV EP4CE115 Binary  Linear Object detection 72 fps 

[86] 
Fully pipeline of 

Xilinx single 
precision IP cores 

Xilinx ML605 
(Virtex 6 

XC6VLX240T) 
Multiclass  Linear Multiple object 

detection 60 fps 

[87] Pipelined architecture 

Xilinx Virtex 6 
(XC6VLX 240T-

1FF1156) 
Xilinx ISE 13.4 

Binary  Linear Head-shoulder 
detection 60 fps 

[88] Pipelined 
multiplierless 

Xilinx Spartan-6 
(XC6SLX45) 

Synopsys 
Synplify, Xilinx 

ISE 

Binary  Linear Face detection 313 fps 
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[89] Parallel processing 
units 

Xilinx Virtex-4 
LX80 Binary  Linear 

Pedestrian 
detection, 

INRIA dataset 
9% accuracy loss 

[90] Parallel architecture 

Xilinx ML509 
(Virtex 5 
LX110T) 

Xilinx ISE 

Multiclass  RBF 

Caltech-256 
dataset, 

Belgium Traffic 
Sign dataset 

Speedup 5.7x 
3% accuracy loss 

[91] Parallel systolic array 
architecture 

Xilinx ML505 
(Virtex 5-
LX110T) 

Binary  Polynomial 
RBF Object detection 271, 42, 23 fps 

[92] Block diagram 
Xilinx Virtex-7 
(XC7VX980) 

Xilinx ISE 14.2 
Binary  Linear Skin cancer 

detection - 

 

5. Discussion and Concluding Remarks  

Various FPGA-based hardware techniques have been used 
for implementing the SVM classifier. These techniques 
exploit the inherent parallel capability of the device for 
reaching efficient parallel pipelined designs. It is clear that 
most of existing research works are focused on 
implementing the SVM classification phase online on 
FPGA after executing the training phase in software 
(mostly using Matlab), and limited research aims at 
implementing the training phase online.   
 
The main trend used for implementing the SVM training 
phase is the hardware/software co-design approach, where 
FPGA acts as a hardware coprocessor for accelerating the 
most computationally intensive parts in the training 
process. Numerous designs for implementing and boosting 
SVM classification phase use the parallel pipelined 
systolic array architecture of processing elements. This 
provides a configurable modular platform for parallel 
processing with efficient memory management and data 
flow, allowing for scalable design and reduced complexity 
[49]. 
 
Most previous research works agree that the main 
bottleneck of implementing the SVM classifier (for both 
training and classification phases) is the complicated 
kernel computation. So, numerous designs have been 
proposed for mainly implementing these most time and 
resource consuming computations on FPGA aiming to 
achieve high performance. The kernel functions basically 
require a dot-product calculation to process large vectors 
using expensive multipliers. Accordingly, a lot of research 
has been focused on replacing complex multipliers by 
simple shift and add operations, introducing the multiplier-
less approach that was widely implemented. In addition, 
the proposed hardware-friendly kernel was commonly 
adopted by many implementations targeting simple 
hardware designs without multiplications. Furthermore, 
the CORDIC iterative algorithm was employed in many 

designs for implementing the hardware-friendly kernel as 
well as the complicated exponential function of the kernel. 
Therefore, significant area and power savings are achieved 
by using these simplified methods for reducing hardware 
complexity.   
 
Furthermore, some researchers have studied the bit-width 
precision and quantization impacts on the classification 
accuracy, where some loss in accuracy rating occurs. This 
emphasizes a trade-off between hardware resources and 
classification rate. Additionally, meeting embedded 
systems constraints is considered the main challenging 
goal of the majority of previous implementations.  
Consequently, the main trade-off that exists is between 
classification accuracy and meeting real-time embedded 
systems constraints of high performance, flexibility, 
scalability and low levels of area, cost and power 
consumption. 
  
Regarding limitations of previous implementations, most 
of the previously presented SVM classification systems are 
application/problem specific and lack simplicity, 
flexibility and scalability. These cannot be easily extended 
and adapted for other applications. In addition, the 
problem of large memory storage requirements for 
implementing large-scale applications with big numbers of 
support vectors is not effectively addressed. Also, fully 
parallel processing of high vector dimensionality has not 
been effectively realized, where parallelism depends on 
the vector dimensionality of a given problem in terms of 
computational resources that increases processing cycles 
in the case of high dimensionality and limited hardware 
resources. Different simplification methods utilizing the 
multiplier-less approach targeting reduction in hardware 
complexity result in some loss of classification accuracy, 
which needs to be improved for reaching acceptable 
classification rates. Furthermore, many architectures are 
developed without taking into consideration important 
embedded systems constraints like the low power 
consumption constraint that was measured for few number 
of previous implementations. Moreover, most designs in 
existing literature were implemented on old versions of 
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FPGAs and only a very limited number used recent ones 
that reflect the current modern technologies for better 
achievements [37, 38, 43, 51, 82, 92]. 
 
From the above, we can conclude that the main challenges 
are the difficulty of meeting important embedded systems 
constraints such as real-time, high performance and low 
cost, and reaching reliable effective classification system 
with a high classification accuracy.  
   
For future research suggestions, reconfigurable hardware 
architectures of SVM classifiers for embedded real-time 
applications that require both high performance and low 
cost are required. New effective approaches are needed for 
reducing memory demands and resources utilization 
especially for problems with high dimensionality. Also, an 
optimum hardware-friendly kernel needs to be defined for 
better SVM acceleration. Also, using the DPR technique 
needs to be effectively employed for reaching optimized 
flexible and scalable systems, which has so far been poorly 
applied in a very few implementations. A combination of 
different techniques presented in literature could be 
explored for developing an optimized design. Efficient 
methods are required for improving and increasing the 
hardware-based classification system accuracy with at 
least keeping the same accuracy of software SVM 
implementations. In addition, more research work is 
required for addressing multi-class classification problems, 
as most of the existing targeted binary classification. More 
attention could be paid to the evolvable hardware approach 
for realizing effective online real-time SVM training. 
Moreover, an optimization method should be investigated 
for efficient data transfer and flow control in hardware 
implementations. Recent FPGA devices and SoCs could 
be exploited for realizing optimized real-time embedded 
system, complying with new technologies for achieving 
better efficiency and results. Furthermore, modern tools 
and IDEs for designing and developing hardware systems 
are recommended to be used replacing traditional HDLs, 
which simplify embedded systems design and reduce 
hardware development effort and time-to-market. 
 
In conclusion, further future research is required for 
accelerating SVM on FPGA, aiming to reach an efficient 
real-time embedded system taking into account the 
challenging trade-off between high classification accuracy 
and meeting significant embedded systems constraints. 
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