

Minimum Cost Polygon Overlay with
Rectangular Shape Stock Panels

by

Wilson Strethes Siringoringo

This thesis is submitted in partial fulfillment of the
requirements of Auckland University of
Technology for the degree of Master of Computer
& Information Sciences.

School of Computer & Information Sciences
Auckland University of Technology

August 2006

 2

Table of Contents

Table of Contents ..2
Acknowledgements ...4
Abstract ...5
List of Abbreviations ..6
1. Introduction...7

1.1. Project Overview..7
1.2. Research Objectives and Methodology..7
1.3. Thesis Structure..10

2. Project Background...12
2.1. Polygon Overlay with Fixed Sized Rectangles..13
2.2. Two-Stage Layout Problem ...15
2.3. Motivation..16
2.4. Building Integration Software Company ...16
2.5. Technical Requirements...19
2.6. Programming Environment..20

3. Literature Review..22
3.1. Sheet Layout...22

3.1.1. Basic Sheet Layout Problem ...22
3.1.2. Bin Packing and Strip Packing..25
3.1.3. Rectangular Floor Plans ..26
3.1.4. Cutting Stock Problem ..27
3.1.5. Summary ...28

3.2. Layout Optimization Approaches ..29
3.2.1. Placement Strategies ...29
3.2.2. Greedy Algorithm ...32
3.2.3. Monte Carlo Technique...33
3.2.4. Genetic Algorithm...34

4. Software Design..41
4.1. Design Process ...41

4.1.1. Development Process Models ...41
4.1.2. Project Characteristics...44
4.1.3. Rapid Application Development Model ...45

4.2. System Modeling ...47
4.2.1. Software Scope ...47
4.2.2. Information Flow ..48
4.2.3. Data Dictionary ...54

4.3. Design Issues..56
4.3.1. Control Hierarchy ...56
4.3.2. Program Input and Output...58
4.3.3. User Interface and Visualization...58

5. Software Implementation..60
5.1. Overview..60
5.2. Program Structure ..60

5.2.1. Modules...60
5.2.2. Input and Output Mechanism..64
5.2.3. User Interface ..66

5.3. Data Structures ...68
5.3.1. Active Data Structures ..68
5.3.2. Passive Data Structures ...69

 3

5.3.3. Graphics Pipeline ..71
5.4. Basic Geometry Algorithms...73

5.4.1. Line and Segment Intersection Detection ...74
5.4.2. Polygon Triangulation...75
5.4.3. Polygon Congruence ...77
5.4.4. Convex Shape Detection...78
5.4.5. Polygon Surface Area Calculation..79
5.4.6. Inside or Outside Polygon Query..80
5.4.7. Polygon Overlap Detection...81
5.4.8. Polygon Slicing with Straight Line ...83
5.4.9. Polygon Clipping ..86
5.4.10. Centre of Mass Calculation...93

5.5. Optimization Algorithms ...94
5.5.1. Greedy Algorithm ...94
5.5.2. Parameter Representation for GA and MC ...101
5.5.3. Monte Carlo Technique...109
5.5.4. Genetic Algorithm...110
5.5.5 Verification Functions..112

6. Experiment Results ...115
6.1. Experiment Strategy and Issues ...115
6.2. Verification on Numerical Functions...117

6.2.1. Rastrigin Function...117
6.2.2. Schwefel Function...120

6.3. Case 1: Simple Rectangular Layout...127
6.4. Case 2: Single Wall Layout..130
6.5. Case 3: Simple Roof Layout ..133
6.6. Case 4: Complex Roof Layout...136

7. Discussion ...139
7.1. Research Methodology ..139
7.2. Design ..139
7.3. Implementation ..140
7.4. Experimental Results ...145

8. Conclusion ..152
8.1. Suggestions for Future Work ...153

9. Cited References ...156
Appendix A: Experiment Results ...165
Appendix B: Data Flow Diagrams..175
Appendix C: Data Dictionary..182

 4

Acknowledgements
First and foremost, I would like to thank my thesis supervisor Dr. Andrew Connor,

whose contributions to the research effort are simply too many to mention here. I would

also like to thank Krassie Petrova, MSc., the program leader of School of Computer and

Information Sciences, for her continuous support during my Master’s study at AUT. For

a very different reason, I must thank Professor Stephen MacDonell for his invaluable

moral support. It was a small remark he made in one of his lectures some time ago that

convinced me that becoming a researcher is not beyond my means.

I owe many thanks to the directors of BISCo, Ltd.: Nick Clements, MBA and Nick

Alexander, MSc. for hosting my research. They have also been generous in providing

technical knowledge on the house building subject which is the practical application of

this study.

This research has been supported by Technology New Zealand through the Technology

for Industry Fellowships scheme under grant number BISCO502 and this support is

gratefully acknowledged.

Finally, I would like to take this opportunity to thank all of my family and friends

whose support throughout the project have made hard times bearable and good times

most enjoyable. Most of all, I would like to thank my wife Carol whose love and

kindness never cease to amaze me.

 5

Abstract
Minimum Cost Polygon Overlay (MCPO) is a unique two-dimensional optimization

problem that involves the task of covering a polygon shaped area with a series of

rectangular shaped panels. The challenges in solving MCPO problems are related to the

interdependencies that exist among the parameters and constraints that may be applied

to the solution.

This thesis examines the MCPO problem to construct a model that captures essential

parameters to be solved using optimization algorithms. The purpose of the model is to

make it possible that a solution for an MCPO problem can be generated automatically.

A software application has been developed to provide a framework for validating the

model.

The development of the software has uncovered a host of geometric operations that are

required to enable optimization to take place. Many of these operations are non-trivial,

demanding novel, well-constructed algorithms based on careful appreciation of the

nature of the problem.

For the actual optimization task, three algorithms have been implemented: a greedy

search, a Monte Carlo method, and a Genetic Algorithm. The behavior of the completed

software is observed through its application on a series of test data. The results are

presented to show the effectiveness of the software under various settings. This is

followed by critical analysis of various findings of the research.

Conclusions are drawn to summarize lessons learned from the research. Important

issues about which no satisfactory explanation exists are given as material to be studied

by future research.

 6

List of Abbreviations

2BP Two-Dimensional Bin Packing

2SP Two-Dimensional Strip Packing

4GT Fourth Generation Technique

AAT Append at Tail

BISCo Building Integration Software Company

C & P Cutting and Packing

CAD Computer Aided Design

CoM Centre of Mass

CSP Cutting Stock Problem

DFD Data Flow Diagram

EP Evolutionary Programming

ES Evolutionary Strategies

GA Genetic Algorithm

MC Monte Carlo

MCPO Minimum Cost Polygon Overlay

OOP Object Oriented Programming

RAD Rapid Application Development

RFB Redistribute from Beginning

RFP Rectangular Floor Plan

SA Simulated Annealing

SDRM System Development Research Methodology

UI User Interface

XML Extensible Markup Language

 7

1. Introduction

1.1. Project Overview
Optimizing the utilization of valuable resources has always been a premise for any

successful undertaking. In manufacturing industries, the optimization of material plays

an important part in minimizing the production cost, which in turn contributes to

attaining a competitive edge. The importance of material optimization is especially

evident in manufacturing goods consisting of large numbers of two-dimensional

material components such as sheet metal or fabric material.

The causal relationship between optimized use of raw material and low production cost

similarly applies to the civil construction industry as well. Various components of a

building are covered with rigid sheets cut from stock material, the waste of which is

either impossible or uneconomical to recycle. In many cases, the effort involved in

cutting the material also contributes significantly to the cost of the resulting building.

Planning the sheet layout for a section of a building is a tedious process where exact

manual calculation is either impractical or uneconomical, particularly when relatively

inexpensive material is used. As a result, builders often allocate material based on loose

guidelines only, incurring more cost in acquiring the material as well as consuming

more manpower resources for material handling.

This purpose of this thesis is to investigate the plausibility of automating the sheet

optimization process for flat sections of a building. The goal of such an automated

process is to construct a solution that allows the sections to be completely covered with

the optimum layout. This can be defined as the smallest possible amount of stock

material, which is cut with minimum amount of effort. It is also important for these

optimum solutions to be found in a reasonable amount of time. This constraint will

allow the approach to be useable by the industry partner, BISCo, Ltd.

1.2. Research Objectives and Methodology
The primary objective of this research is to demonstrate the viability of automated

optimization of MCPO problems. A software application is to be developed and

evaluated to facilitate the investigation. In more specific terms, the objective of the

research can be refined into four distinct goals:

• To develop a model of the MCPO problem into a series of parameters that can

be optimized by numerical algorithms

 8

• To develop a software application which implements MCPO automated

optimization processes using general-purpose programming tools

• To demonstrate that optimization algorithms can be utilized to solve the MCPO

problem effectively

• To observe the relative performance of alternative optimization algorithms

The research follows the System Development Research Methodology (SDRM)

proposed by Nunamaker & Chen (1991). In this methodology, the research process

takes place in progressive stages and it has been used extensively in research in

information systems development. Figure 1.1 shows the stages involved in SDRM

(Nunamaker & Chen, 1991).

Investigate
Related

Literature

Develop a
System

Architecture

Analyze and
Design the

System

Build the
Prototype
System

Observe and
Evaluate the

System

Construct
Conceptual
Framework

Figure 1.1: Research Process of SDRM (Nunamaker & Chen, 1991)

Each phase consists of a series of activities undertaken to achieve specific goals. Table

1.1 defines activities involved and the set goals for the phases. Because the research is

explorative in nature, the completion of the phases is not expected to be perfectly

sequential. While in-depth knowledge is gained through the process, repetition is

anticipated as the diagram in Figure 1.1 indicates.

 9

Phase Description

Construct
Conceptual
Framework

Explore general characteristics of the MCPO problem. The

purpose of this phase is to identify defining properties of the

MCPO problem and subsequent research objectives.

Investigate
Related
Literature

In-depth review of materials belonging to the same domain

as MCPO. The objective of this phase is to identify key

issues, ideas, and techniques that will serve as a basis for the

development of MCPO solution software.

Develop a
System
Architecture

Conduct in-depth analysis aimed for well-justified selection

process for methodology and architecture. Design

architecture of the system that exhibits favorable

characteristics in terms of modularity, extendibility, and

control structure. The objective is to define the system as a

conceptual collection of functional modules and

interrelationships that exist among them that can be realized

with available tools and resources.

Analyze and
Design the
System

Extend the result of previous phase by elaborating on the

design of modules and data structures used within the

system. The product of this phase is a technical-level design

that serves as a framework for the actual coding.

Build the
Prototype
System

Gather in-depth knowledge regarding the concepts,

framework, and design issues through system building

process. The objective is to gain insight about the nature of

the MCPO problem, critical sub-processes involved, and the

complexity of the system as a whole.

Observe and
Evaluate the
System

Evaluate the system by laboratory experiment. The objective

is to evaluate the value of the system for resolving MCPO

problems and to draw lessons from experiences learned

throughout the project.

Table 1.1: SDRM Methodology

 10

This approach defines the methodology for the underlying research. However the key

phases of architecture development through to building the prototype are sufficiently

flexible to accommodate various philosophies of software development which will be

discussed in later chapters.

The iteration and repetition that is supported in these key phases allows early

exploration of the research questions to inform selection of an appropriate software

development methodology. Subsequent iterations through these phases are more

development orientated and explore the specific information and functionality needs of

the software.

1.3. Thesis Structure
This thesis is divided into eight chapters to describe the entire study in a logical manner.

Key aspects of the research are problem modeling, software design and implementation,

experiments with actual problems, and the interpretation of the results. Although those

activities were often repetitive and overlapping with each other, the core idea that drives

them evolved in linear pattern and chapters in this thesis are organized as such.

Chapter One provides an overview of the MCPO problem and the outline of this thesis.

The purpose of this chapter is to describe the problem in general terms and provide a

brief description of the forthcoming chapters. Chapter Two contains detailed analysis of

the MCPO problem and the formulation of its proposed solution. Chapter Three

summarizes the literature material that serve as the basis for various models and

decisions made throughout the development of the solution. The theoretical aspect of

the MCPO problem and the design of its solution are covered in these initial three

chapters.

The succeeding two chapters deal with the software development aspect of the project.

Chapter Four describes the selection of software development model based on choices

available judged against the particular requirements of the project. The selection of the

development model integrates the research methodology, practical software engineering

considerations, and the needs of the industry partner. This chapter also contains the

design of the actual software application in the form of the decomposition of the

application working mechanism into its key sub-tasks as well as the identified data

structures involved. Chapter Five contains technical discussions regarding the actual

implementation of the software. A large number of technical issues of various levels of

 11

implementation were encountered and resolved, the most significant of which are

described in this chapter.

The remaining chapters of the thesis summarize and interpret the findings made during

the execution of the software. Chapter Six reports the behavior of optimization

algorithms in an isolated test environment, followed by the optimization results for the

actual MCPO problems with those algorithms playing their part. Chapter Seven

discusses the most significant findings that have been made during the development of

the software application, along with the analysis and interpretation of the results given

in Chapter Six. Finally, Chapter Eight provides the conclusion drawn from such

findings and interpretation, as well as the identification of key areas where further

investigation is deemed worthwhile. Appendices are provided to accommodate various

supporting material that otherwise disrupts the logical flow of the thesis’ main text.

 12

2. Project Background
Optimum two-dimensional layout is a class of problems encountered in many

industries. The problems are characterized with the need to pack non-overlapping

shapes in an enclosed plane with the aim of minimizing the area outside the boundaries

of the shapes, therefore maximizing the utilization of the material in the base sheet.

A simple presentation of the problem is shown in Figure 2.1. In this example, four

shapes are arranged within the boundaries of a slanted pentagon. The objective of an

optimum two-dimensional layout is to minimize the shaded area without making the

shapes inside overlap. The optimization is done either by shrinking the enclosure,

adding more shapes into it or repositioning the existing shapes.

Figure 2.1: Simplified 2D Layout Problem

The actual optimum two-dimensional layout problem exists in several variants. Among

them are the sheet layout problem, bin packing and strip packing problems, optimum

floor plan problem, and cutting stock problem. These problems will be discussed in

more detail in the succeeding chapter.

The optimum two-dimension layout problem has applications in a wide range of

industries. Industries such as textile, timber, glass, and steelworks regularly encounter

the problem of cutting the material most efficiently so as to minimize waste. In a

different context, very large scale integration (VLSI) design requires arranging a large

number of transistors and other modules in a rectangular silicon chip. The computer

based solution of such problems falls under the blanket of technology referred to as

Computer Aided Design and Computer Aided Manufacturing (CAD/CAM).

 13

Although the problems found in the specific industries belong to the same class, a

multitude of algorithms have been developed over the past few decades. There are two

main reasons behind such a response.

• Computing power: the early CAD/CAM applications typically employed

simple algorithms (e.g. branch-and-bound) since they had to operate under

meager computing resources in terms of CPU speed and memory size. As more

powerful computing platforms became available, more sophisticated algorithms

were introduced and used.

• Context-specific constraints: on homogenous materials such as metal sheet or

plain glass panel, the shapes to be contained can be mirrored and rotated to any

direction. In many other cases such freedom of orientation is restricted. The

material may have a face side, which makes mirroring illegal. It can also have

patterns and internal fibers which limit the ranges of potential rotations.

This research is essentially an attempt to address the two points above, mainly in the

identification of algorithms and constraints associated to a specific domain.

Subsequently a solution is to be developed with respect to the constraints and available

computing power.

2.1. Polygon Overlay with Fixed Sized Rectangles
A rather unique variant of the optimum two-dimensional layout problem is found in the

construction industry. A polygon shaped area such as wall or ceiling is to be tiled with

covering sheet material such as cardboard or plywood. With such tiling, it is essential

that the entire surface is covered with no gaps or overlaps. The panels are obtained from

the supplier in fixed size rectangles. Typically the individual panel is much smaller than

the area to be covered. It is also anticipated that the enclosing area may have an

irregular outline.

The problem is demonstrated in Figure 2.2. To keep the construction expenses under

control, the builder must arrange the panels in a way that keeps the cost variables low.

Such parameters include the number of panels allocated, the amount of discarded off

cuts, and the amount of effort required for cutting the panels.

 14

Figure 2.2: Wall Overlay with Fixed Size Panels

A similar problem has been encountered in the shipbuilding industry, particularly in

cutting steel sheets to cover various parts of the ship. Adamowicz and Albano defined

the problem for the operator (Adamowicz & Albano, 1976):

• A set of standard rectangular sheets of steel is provided

• An order is given to produce various types of shapes which include rectangular

and irregular shapes

• It is required that no two shapes may overlap

• Waste is minimized

When the panel is homogenous, such as with sheet metal, it is desirable to reuse the off

cuts to cover irregular regions at other places, as this has the potential to reduce the total

number of sheets required. A particular example was made by Sibley-Punnett and

Bossomaier (2001) regarding the reuse of off cuts from corrugated iron roofs. The

justification for such effort is provided by the high cost of delivering the roofing

material.

The diversity of materials used for constructing a building provides no guarantee that

such homogeneity exists for materials used for a particular area. The implication is that

the constraints for a particular section of the building cannot be predetermined. In

 15

response, a computer program used to resolve such problem must be capable of finding

the solution under a varying set of constraints to allow it to be used for any specific

instance of the general problem.

2.2. Two-Stage Layout Problem
Closer examination reveals that the polygon overlay problem is composed of two sub-

problems which must be resolved sequentially, although each sub-problem still belongs

to the same two-dimensional layout optimization. For a given enclosed area and given

dimensions of rectangular panels, the requirement is twofold:

• Find the optimum arrangement of whole panels in which the covered area within

the enclosure is maximized. The by-product of this process is a set of irregular

shapes which represent the remaining exposed areas.

• Resolve how such irregular shapes can be nested within the minimum number of

panels. Shapes that are bigger than the panel itself are cut at angles parallel with

the rectangle’s axes to allow such nesting.

This decomposition into two sub-problems can potentially mask the complexity of the

task of finding the optimum solution. It is important to recognize that in the construction

industry, the actual size of the panels is in itself a design parameter. In some

applications, the panel size will remain fixed for the two sub-problems whilst for other

applications the panel size could potentially be varied. With this in mind, it becomes

apparent that the problem is complex with potentially many locally optimum solutions.

At the end of the calculation process, the desired output consists of numerical and

graphical information:

• The total number of panels, consisting of panels to be fitted whole and the

remainder to be cut to produce the irregular shapes

• The nesting plan with which irregular shapes are cut from whole panels

• The area overlay plan with which whole panels and irregular cuts are fitted to

the enclosed area

It is important to note that although the two sub-problems are similar, they are resolved

with mutually unrelated and potentially conflicting objectives. As an example, the

lowest cost solution for first sub-problem may be to cover as much area as possible with

the least number of panels. However, the optimum solution for the second sub-problem

 16

may be the least amount of cutting (the panel may actually be a marble or granite slab,

for instance). Hence a cheap solution in the first phase may lead to expensive penalties

in the second.

2.3. Motivation
Apart from reducing the waste and reducing the associated costs, automating the panel

placement design also greatly assists the builder in calculating the required material.

When the calculation is done by hand, the common practice is to have a human expert

work on the layout and to estimate the number of panels needed to cover a particular

part of the building. A few extra panels must then be provided to anticipate the error in

the calculation.

As the solution only applies to a particular part of the building, the work must be

repeated for all other parts as well. The process becomes more tedious when different

sizes of the panels are available to choose from. Exploring more than a few different

configurations by hand is therefore an impractical proposition.

Another inherent problem in MCPO problems is the lack of guarantee that an optimum

solution in the first phase will lead to an optimum solution of the entire problem.

Coupled with the absence of a-priori knowledge about the cost of the subsequent phase,

exploring the less-than-optimum first-phase solutions becomes a necessity. Seen in this

light, making the process automatic offers the potential of discovering better solutions

than those obtained by hand calculations.

When computers are used, more possible solutions can be explored both for individual

parts of the building as well as the sum of all those parts. The desired effect is that by

providing the raw information to the software, in the form of a CAD model of the entire

building, the builder obtains a detailed and accurate plan about the number of panels

required and how they should be cut and placed for the whole structure.

2.4. Building Integration Software Company
Building Integration Software Company (BISCo) Ltd is a business enterprise whose

main product is information management software for residential house construction

industry. The organization has been founded by people who had identified the need for

such centralized information management from their own extensive experience in the

civil construction industry.

 17

The premise of such a need is the fact that a typical house building project involves a

number of different parties such as an architect, builders, city council, and others, who

work in different ways and run their organizations for different goals. Although many

have already adopted computer-based information systems, there is no automated means

for communication with other parties. Only verbal and paper-based forms of

communication are hitherto available to those parties to exchange information. It is not

surprising that substantial amounts of money and effort are wasted during a project due

to the lack of reliable and efficient communication system.

The core business of BISCo is developing software to accommodate such

communication needs. At the time of the writing, the prototype of the software is

drawing close to finish, after which it will undergo a series of live tests before it is

finalized for release to the market. The software has been given a commercial name

Blue Sky™.

Blue Sky™ manages a range of information that is very diverse in terms of

representation and usage. A typical Blue Sky™ database for a house building project

will include pictures and text, Computer Aided Design (CAD) drawings, letters,

invoices, and a host of other documents. Such documents take various physical forms

such as computer files, paper, and e-mail correspondence. Figure 2.3 shows the different

parties interacting through Blue Sky™ software.

Figure 2.3: Information Exchange using Blue Sky™ Software

 18

The geometric data stored in the CAD drawings assumes overriding importance in the

house building project’s web of information. Many important documents created during

the lifetime of the project, such as cost estimates, specification documentation, or

project plans, are actually spawned from the CAD models. Consequently, the software

engineering aspect of Blue Sky™ at the current stage revolves primarily on extracting

and making use of the CAD data.

For a number of reasons, accurate cost estimation has long been regarded as problematic

to practice in house building projects. Firstly, it is hard for a human estimator to

accurately calculate the amount of each material required to build every part of the

house just from the 3D and 2D models available in the CAD drawing. Secondly, for any

given building material, it is difficult to select the ideal standard dimensions from the

numerous choices available in the market even when the estimated amount required is

accurate. Thirdly, builders often allocate spare materials because of the difficulty in

calculating the number of pieces of certain building material is needed. The spare

material not only adds to the shipping and storage costs, but it may also be damaged or

deteriorate on the building site and be discarded. Fourthly, inaccuracies in the design are

often discovered during the physical assembly of different parts of the house. Finally

when the house owner changes his mind about how certain parts of the house should be

made, the alteration in many cases can only done by removing the originally-designed

part when it has already been constructed – wasting even more material.

Aside from the accurate cost estimation, material optimization is another significant

way to augment the enterprise’s control on overall building costs. Optimization can be

achieved by reconfiguring the construction of the parts of the house to minimize the

wasted material. It is widely accepted within the civil construction community that up to

2% nominal worth of a project is normally wasted as scrap material. Although such

percentage may look trivial at a glance, the high value of residential houses in New

Zealand and other developed countries means reducing the waste by just a half will

invariably save the owner a sum of money well worth the effort.

Parts of the house made of flat panels such as roof tile or drywall are prime candidates

for optimization. From a financial point of view, the optimization effort is quite justified

by the substantial amount of such materials needed every time a house is built. From a

software development perspective, such homogenous materials are simple and readily

represented as two dimensional shapes. Such characteristics make it possible to develop

 19

and use a generic solution for varying parts of the house, with the provision that

different constraints can be applied to reflect the actual materials in use.

The above analysis ultimately leads to the identification of the need to develop software

capable of performing two-dimensional optimization. The solution of layout

optimization problems, which is the focus of this thesis project, therefore will have an

immediate commercial application at BISCo and will assist in maintaining a

competitive edge through the ongoing innovation of their products. As a result, all the

important requirements of the software written for this project have been identified at

BISCo.

2.5. Technical Requirements
As previously discussed, the MCPO problem consists of two variants of the sheet

nesting problem. Hence MCPO can be decomposed into two sub-problems, the solution

of which should seek to optimize the cost involved in both.

• Design a layout of a set of stock rectangular panels which covers the container

region

• Design a set of layouts where irregular remaining shapes of the original

container can be fitted back into the minimum number of additional stock

rectangular panels

After analysis of these requirements, it is clear that the first sub-problem is well

represented by the cutting stock problem whereas the second sub-problem is the “pure”

sheet nesting similar to garment sheet layout design. These will be discussed further in

the next chapter.

The objective of this project is therefore to construct a computer program capable of

resolving the two sub-tasks in order to solve MCPO problems. Table 2.1 lists the input

and output parameters of such a program.

For technical and aesthetic reasons, some of the flat building materials, such as drywall

and roofing tiles, may have directional grains or patterns. The existence of such patterns

limits the possible directions of which irregular pieces can be cut from the stock panel.

 20

Input Output
1. The outline of the container
2. The areas within the container that

should not be covered, i.e. “illegal
areas”

3. The dimensions of the stock
rectangular panels

4. Rules on how the irregular pieces
can be oriented in the cutting
template

1. The number of rectangle panels
required to cover the area

2. A list of irregular shapes of where
the whole panels cannot cover the
container

3. A list of nesting layouts where the
irregular shapes are contained by
the stock panels

4. A nesting layout where whole and
irregular-cut panels are fitted
inside the original container

Table 2.1: Input and Output Parameters of MCPO Solution
Failure to conform to such restrictions will result in an invalid cutting solution. To

accommodate this constraint, a set of rules about the possible orientation of the irregular

pieces is added as a program input. This particular input will have an impact on the

software design as discussed in Chapter 4.

2.6. Programming Environment
The MCPO software is to be written in Delphi/Pascal code to run on Microsoft

Windows™ operating system. The Pascal-based programming language is a natural

choice given the fact that other commercial products of BISCo are developed using the

language. Although the executable is currently developed exclusively on a Microsoft

Windows™ platform, the code is written with special provisions to allow porting to

Linux operating system should the need arise.

Although there are plenty of software development tools and compilers in the market,

none of them are cheap. The only development suite which offers features suitable to

build the layout optimization software reliably within the allotted time is Borland

Delphi™ Version 7. This particular version is used because of its availability to the

author. However, since only basic features of Delphi are used, the source code should

compile on earlier versions of Delphi with little or no change at all.

Apart from the availability issue, the Delphi compiler has been selected because of its

full support of object oriented programming. All the important features of OOP used

extensively in the development, i.e. the encapsulation, inheritance, and polymorphism,

are fully supported in Delphi.

Additionally, Delphi comes with the Integrated Development Environment (IDE),

which allows Rapid Application Development (discussed in Chapter 4) to be practiced

 21

to the full extent. The concept of an IDE is not unique to Borland products however.

Microsoft Visual Studio™, for instance, uses a programming user interface very similar

to IDE. Microsoft Visual Studio™ cannot be used however, since it does not have a

Pascal compatible compiler. The author is not aware of any more software development

packages that offer a feature set comparable to that in Delphi.

 22

3. Literature Review
The layout optimization problem consists of two main parts: the problem definition and

its solution algorithms. This chapter has been written to address both issues but without

specific commentary regarding the research methodologies used in each part.

Invariably, research in this area utilizes a constructive methodology, even if it is not

formalized, such as those proposed by Nunamaker & Chen (1991), Hevner, March,

Park, & Ram (2004) or Peffers et al. (2006). Section 3.1 deals with the unique problem

space which sheet layout optimization problem belongs to. The rest of the chapter

discusses various search and optimization algorithms in general terms as well as with

specific reference to published literature.

3.1. Sheet Layout
Considerable research has been done in various fields of two-dimensional layout

optimization problems due to the practical needs of industry. Dyckhoff (1990) makes an

attempt to provide a systematic classification of such optimization problems. He uses

the term cutting and packing (C&P) as a generic name for the problem and all its

variants. He further postulates the four properties of each problem which determine to

which class it belongs.

Dyckhoff also asserts that there are 96 classes of C&P problems that result from the

combination of the four characteristics. For the purpose of this study however, only the

most important variants are considered. The significance of such variants is evident by

the amount of research done and the publications that follow. The majority of such

problems can be modeled in one of the four main variants: the sheet layout, bin packing

and strip packing, rectangular floor planning and cutting stock problems. More detailed

discussion about the four follows below.

Because most of the research efforts are driven by the need to solve real-life problems,

they tend to focus on specific instance of the C&P class of problems. Consequently, the

solutions are often very closely linked with the actual problems, leading to exotic

algorithms that are potentially difficult to adopt anywhere else.

3.1.1. Basic Sheet Layout Problem
The sheet layout problem is the most generic and unrestricted form of two-dimensional

layout optimization. The problem is also commonly known as sheet nesting and polygon

containment. A simple definition of the problem is defined by Lamousin and

Waggenspack:

 23

[A technique for] allocation or ‘nesting’ of irregular parts into

arbitrary shaped resources. Placements are generated by matching

complementary shapes between the unplaced parts and the remaining

areas of the stock material (Lamousin & Waggenspack Jr., 1997).

Essentially, the sheet layout problem calls for cramming as many polygon-shaped

pieces within a polygon-shaped container without any restrictions apart from the basic

requirement that the pieces should never overlap. The pieces are allowed to rotate,

translate, and to flip about any axis.

Although the generic definition allows the use of an arbitrary shaped container, in

practice most problems are characterized by regular-shaped containers such as

rectangular sheets (e.g. metal plates) and fixed width with infinite-length source (e.g.

fabric or paper). The shape or pattern of the pieces to nest on the container may be

singular or multiple. Two sample applications are discussed below.

3.1.1.1. Metal Stamping Blank Layout
Stamping is a very important technique in metal work. Pieces are engraved or cut from

stock metal sheet using die blocks. The majority of everyday objects such as kitchen

utensils, motor vehicles, electronic equipment, etc. contain a large number of

components made by this process.

Figure 3.1 shows an example of metal stamping layout where only one blank pattern is

involved. The major cost involved in the stamping process is incurred in providing the

material. Therefore minimizing waste is a major goal in stamping die design.

Figure 3.1: Metal Stamping Layout for a Single Pattern

Prasad (1994) describes the procedure, requirements, and constraints of metal stamping

in considerable detail. In substance, blank layout design is characterized with limited

 24

variation of shapes that are to be produced in large numbers from stock sheet. Because

the die block is highly reusable, the design happens only occasionally.

An algorithm called computer aided sheet nesting system (CASNS) was also developed

(Prasad & Somasundaram, 1991). The CASNS algorithm performs the search for the

optimum objective value by performing incremental rotation on the pieces. Later Prasad

proposes three variants of the algorithm, single-product-single-row (SPSR), single-

product-multiple-row (SPMR), and multi-product-single-row (MPSR), to address the

different possible requirements (Prasad, 1994).

Nye (2001) proposes a different approach that applies only to identical blanks, which he

refers to as an exact algorithm. First he defines the objective value as a function of

rotation. The algorithm calls for the rotation of the polygon and the objective value

abruptly changes whenever the vertices reach certain orientations. By identifying the

points where the changes take place, he effectively turns the problem into a discrete

search. Linear programming is then used to find the optimum orientation (Nye, 2001).

3.1.1.2. Garment Shape Nesting Layout
In the textile industry, apparel pieces are cut from a strip of fabric which has fixed width

and indefinite length. The task of a human marker is to arrange the placement of the

pieces in such a way that waste is minimized. Automating the process becomes

desirable as a human marker needs considerable training to acquire the necessary skills.

An example of such layout is given in Figure 3.2 below. Unique requirements on

garment shape nesting are that flipping is not allowed and the fabric may have patterns

which only allow rotation in a very limited range (typically up to 3º). To cope with the

varying constraints, Bounsaythip propose the use of evolutionary search. Various

heuristic algorithms are used to implement the solution (Bounsaythip & Maouche,

1997; Bounsaythip, Maouche, & Neus, 1995).

 25

Figure 3.2: Garment Shape Layout

3.1.2. Bin Packing and Strip Packing
Unlike the general sheet layout problem, the objective of strip packing (SP) and bin

packing (BP) is limited to placing rectangular items within a fixed width container.

Furthermore, rotation is allowed only at 90º increments whereas mirroring is irrelevant

because of the rectangle’s symmetry. The subject of SP and BP covers problems of

various dimensions. However, two-dimensional BP and SP problems can be considered

a subset of the sheet layout problem class.

Lodi, A., Martello, S., & Monaci, M. (2002) define the SP and BP problems

respectively :

• Two-Dimensional Strip Packing (2SP): for a given set of rectangles, a single

bin with fixed width and unlimited height (called strip) is provided. The

objective is to allocate all the items to the strip by minimizing the height of the

strip used.

• Two-Dimensional Bin Packing (2BP): for a given set of rectangles, an

unlimited number of identical rectangular bins of fixed height and width are

provided. The objective is to allocate all the items to the minimum number of

bins.

They further report their observation that algorithms used to solve 2SP and 2BP

problems fall into three classes. They are approximation algorithms, lower bounds

algorithms, and exact algorithms.

 26

a. Bin Packing

b. Strip Packing

Figure 3.3: BP and SP Layouts

An example of an approximation algorithm is provided by Vassidialis (2005) who

creates a model of the 2BP problem using a binary tree data structure and local search

optimization methods. He argues that the tree-representation in his design is capable of

capturing any configuration and translations of the problem efficiently and offers a

strong base for the optimization algorithms that follow. He further specifies simulated

annealing (SA) and threshold accepting (TA) to implement the local search.

Another example of a 2BP approximation algorithm is provided by Shigehiro et al

(2001), which is based on tabu search. In their algorithm, various close permutations of

the rectangles formation are explored to find local optima while maintaining the list of

previously known optimum solutions .

An exact algorithm solution for strip packing is proposed by Hifi (1997). The 2SP

problem is decomposed into a series of two-dimensional constrained cutting stock

problems and a branch-and-bound procedure is used to compute the final result.

3.1.3. Rectangular Floor Plans
The rectangular floor plan (RFP) problem is a finer subset of the sheet layout problem.

With RFP, the problem is limited to arranging rectangle shaped objects within a fixed

size, rectangle shaped container. Therefore the RFP can be regarded as a special case of

2BP, where the objective is to put as many non-overlapping objects as possible inside a

single bin.

 27

Figure 3.4: Rectangular Floor Plan

In the past, RFP has a range of applications such as in metal fabrication and publication

layout (Imahori, Yagiura, & Ibaraki, 2005). However RFP later found an application in

the design of very large scale integrated circuit (VLSI) chips (Hakimi, 1988; Hsu &

Kubitz, 1988; Kiyota & Fujiyoshi, 2000; Murata, Fujiyoshi, Nakatake, & Kajitani,

1995). Hence despite its being a very small subset of the sheet layout problem, RFP has

become an extremely important subject of research in recent years.

3.1.4. Cutting Stock Problem
Another variant of the sheet nesting problem is the cutting stock problem (CSP). In

CSP, a single stock sheet is to be cut into a series of rectangular pieces of predetermined

sizes. The sizes are usually associated to values, from which the objective function of

the optimization is constructed.

The CSP has a major application in the iron and steel industries. Tokuyama and Uneo

(1985) define that such an application is characterized by :

• Varying criteria such as maximizing yield or increasing efficiency of production

lines

• The cutting stock problem is accompanied by an optimal stock selection

problem.

Similar to BP and SP, typically the stock material in CSP has a rectangular shape. In

some cases however, the material can have an irregular outline as well as defective

 28

spots in the internal area. Georgis et al (2000) define the generalized CSP and propose a

solution to such problem based on the simulated annealing technique. An example of

CSP on irregular shaped stock material is given in Figure 3.5.

a. Original Object

b. Sliced Object

Figure 3.5: Cutting Stock Layout

3.1.5. Summary
In the previous sections, the four main classes of layout optimization problem have been

discussed. Whilst awareness of the types of problems solved to date have informed this

research, the constraints on the wall layout planning problem as described in Section 2.2

are sufficiently different to make it unique. This view is supported by the limited

amount of literature relating to building services applications.

The problem being solved at the first-stage is most similar to the CSP class of problem,

but there is an additional constraint that coverage of the area must be 100%, as the wall

or floor cannot be allowed to have gaps or holes. The second-stage problem is similar to

the 2BP class of problems in the sense that the objective of the optimization is

minimizing the number of containers used. The second-stage problem however is more

complicated because it involves irregular shapes instead of the exclusively rectangular

objects dealt with in 2BP. The basic sheet layout problem fits the profile better in this

regard.

 29

3.2. Layout Optimization Approaches
All classes of sheet layout problems share the characteristic requirement of putting

together multiple pieces in every container. Therefore the designer of the solution is

presented with the choice of whether to fit the pieces sequentially or simultaneously.

The following discussion explores both options in more detail.

3.2.1. Placement Strategies
Because of the limitation of computing resources, the early solutions to sheet nesting

problems are based on sequential placement of the pieces. Adamowicz and Albano

implemented their algorithm in 1974 using FORTRAN on an IBM 360/67, which had

50 kB RAM (Adamowicz & Albano, 1976). About twenty years later, Daniels and

Milenkovic (1995) used a SPARC computer with a CPU speed of 28 MHz. The

sequential search algorithms are typically simpler to construct but easily become

trapped in locally optimum solutions.

At present the typical personal computer has up to 1 GB memory and operates at 2 GHz

CPU clock, providing computing power significantly greater than that in 1994. The

availability of more powerful computers has made possible the approach of

simultaneous placement of the nested pieces. The simultaneous placement approach

allows for wider exploration within the search space, which increases the chances of

finding better solutions than that obtained from sequential placement.

3.2.1.1. Sequential Placement
Sequential placement algorithms are characterized by populating the container with one

piece after another. When a piece is placed on the container, an irregularly shaped

smaller container is created in effect. The algorithms greedily conserve the size of the

newly created restricted area when it picks subsequent pieces. The process is repeated

until either the pieces are exhausted or the container is unable to accommodate more

pieces.

Cheng and Atkinson list three techniques used in determining the allocation sequence of

the parts in sheet layout problem. These techniques are the Monte Carlo technique,

random evolution, and heuristic sequencing (Cheng & Atkinson, 1994).

• Monte Carlo technique: The entire allocation sequence is determined

beforehand with a random generator. The optimum coordinates and orientation

of individual pieces are then determined during the placement. At the end of the

 30

placement process, the utilization efficiency is calculated. To obtain good

results, the entire procedure is repeated with each result discarded unless it

improves on the utilization efficiency of the best solution found to date.

• Random Evolution: This approach is generally similar to that of the Monte

Carlo technique. However, only the placement sequence of the first iteration is

generated as random. In the subsequent iterations, only two pieces in the

sequence are interchanged while retaining the rest. The selection of pieces to

interchange is also done randomly.

• Heuristic Approach: Instead of selecting pieces at random, with the heuristic

approach the pieces are sorted according to the fitness value. Cheng and

Atkinson specify that the irregular shaped pieces are first approximated with an

enclosing rectangle. Such rectangles are sorted according to their sizes in

descending order. The algorithm then proceeds to place the rectangles one by

one. There are no subsequent iterations of the procedure. The authors claim that

the technique is very efficient in terms of computation time and ease of

programming, although the utilization efficiency as compared to other

techniques is not mentioned (Cheng & Atkinson, 1994).

An equally important aspect of sequential placement algorithms is the optimization of

coordinates and orientation of the pieces. Linear programming is perhaps the most

popular approach found in the literature. With linear programming, possible coordinates

and orientations are limited to discrete values only. The configuration that yields the

optimum value for the subsequent objective function is then selected. Laurent and

Iyengar (1982) provide an example of linear programming in use for solving nesting

problem with rectangular objects.

3.2.1.2. Simultaneous Placement
With simultaneous placement, pieces are selected and placed in the container without

using any sequence allocation list. Instead, other data structures such as trees and graphs

are used to represent the nesting and the position of each piece relative to one another

(Bounsaythip & Maouche, 1997; Bounsaythip, Maouche, & Neus, 1995). The

optimization task is accomplished by finding the configuration of such structures which

provides the best value for the objective function.

Typically there is a very large number of possible configurations for a given nesting

problem, which makes an exhaustive search unfeasible. Several researchers argue that

 31

the sheet nesting problem generally falls into an NP-hard computational complexity

category. Faina (1999) concludes that the implication of being an NP-hard problem is

finding the absolute optimum is not feasible when the number of items is large.

To appreciate the complexity of NP-hard problems, it is important to first understand

the notion of the NP (Non-deterministic Polynomial time) problem. NP is the set of

decision problems solvable in polynomial time on a non-deterministic Turing machine.

The machine used to solve NP problems needs to be non-deterministic because the

alternative – the deterministic machine – would attempt to find the solution through

exhaustive search, which is clearly impossible in most cases since the number of

evaluations increases in exponential proportion to the number of parameters. Fortnow

and Homer (2002) provide historical reflection on how researchers concluded that the

NP-hard class contained problems that are at least as hard as any decision problem in

NP.

The computational complexity of the NP problem class is evident in the traveling

salesman problem (TSP), where solving a problem with 100 nodes or more using

exhaustive search requires computation time well exceeding human life time given the

computing power of current technology hardware. Clearly exhaustive search cannot be

suitable to NP-hard problems such as sheet layout optimization when simultaneous

placement strategy is used.

Meta-heuristic algorithms offer the means of finding good solutions to such problems,

although they do not guarantee the discovery of a global optimum. Evolutionary

algorithms (EA) and genetic algorithms (GA) are especially popular as found in the

literature (Bounsaythip & Maouche, 1997; Crispin, Clay, Taylor, Bayes, & Reedman,

2005; Horn, 2005). Other researchers prefer simulated annealing (SA) and tabu search

instead (Bennell & Dowsland, 1999; Shigehiro, Koshiyama, & Masuda, 2001; Yuping,

Shouwei, & Chunli, 2005). Newer meta-heuristic algorithms such as swarm intelligence

(SI) and ant colony optimization (ACO) are also beginning to gain popularity (Hsieh,

Lin, & Sun, 2005; Jiang, Xing, Yang, & Liang, 2004; Sun & Teng, 2002).

Given the scope of this project, it is not possible to implement and evaluate more than a

small number of optimization algorithms in the MCPO software application. Three

algorithms viewed to be representative for the range of available algorithms have been

selected for implementation. They are the greedy algorithm, the Monte Carlo technique

and the Genetic Algorithm. With this selection, it is anticipated that a performance

 32

comparison can be made in terms of placement strategy (sequential in greedy algorithm

against simultaneous in MC and GA), parameter manipulation approach (direct

parameter handling in greedy algorithm method against indirect handling in MC and

GA), and the impact of guidance (random walk in MC against guided search in GA).

3.2.2. Greedy Algorithm
Solving optimization problems typically involves the process of going through a series

of steps, making a decision from a set of possible choices at each step. If the

information about payoff for each choice is available, such optimization problems can

be solved using relatively unsophisticated methods such as a greedy algorithm.

At any point, the greedy algorithm always picks a choice that gives the best reward at

the moment. No consideration is given for the lesser immediate payoff alternatives,

despite the potential of greater long-term reward. Because of this characteristic, greedy

algorithms are simple in concept and easy to implement.

There is a weakness to this strategy of being unable to escape local optima traps. In the

classic hill climbing problem, the algorithm makes its ascent by successively selecting

the highest neighboring node until the peak is reached and no more climbing is possible.

Obviously, this approach is prone to premature convergence if the search space happens

to contain multiple local optima.

Greedy algorithms seldom find the globally optimum solution, yet in many cases they

are capable of finding reasonable solutions quickly (Cormen, Leiserson, Rivest, &

Stein, 2003). Because of the simplicity and speed of execution, greedy methods are

quite powerful and well suited for a range of problems. Greedy methods are used in a

number of important algorithms such as minimum-spanning-tree algorithms, Dijkstra’s

single-source-shortest-path, and for data compression using Huffman codes (Cormen et

al 2003).

In the optimization domain, greedy algorithms may not be the best solution because

they cannot reliably find better-than-average results. Nevertheless, a greedy algorithm

implementation is important for this research for a number of reasons. Firstly, it

provides an easy to construct platform to verify the correctness of the problem

modeling. More importantly, however, it serves as the baseline solution against which

the performances of more sophisticated algorithms can be measured. For industrial use,

it is important to trade off solution quality and speed of convergence, and it may be that

 33

for the building services industry that the baseline greedy algorithm may provide

sufficiently good solutions in an acceptable timeframe.

3.2.3. Monte Carlo Technique
A heuristic approach is commonly used in optimization problem when the search space

is too large for exhaustive exploration. In a heuristic algorithm, rules and methods are

applied to narrow the search just to the most promising areas in the search space (Dean,

Allen, & Aloimonos, 1995).

Heuristic techniques are a major subject in the field of Artificial Intelligence (AI) as AI

problems are typically represented as a large search space, from which the solution is to

be discovered. Heuristic techniques exist in many forms and are the key ingredient for

many successful and robust AI algorithms. In the GA discussed below for example, the

guidance takes the form of the three genetic operators of selection, crossover and

mutation.

Despite being a good practice in general, heuristic techniques do not guarantee success

in every case. They do however, offer better chances of a good result most of the time

than deterministic methods. In some cases, particularly when the objective function has

a discontinuous or random pattern, a blind guess may give an equal or better result than

the guided search (Dean et al., 1995).

The discrete-time stochastic process called the Markov chain is a prime example of such

a case. In a Markov chain, the past state of the system no has influence on its next state.

The future state is only dependent on the current state and the transition probability,

which is constant. Therefore even though the system is statistically stable, its exact state

for a given point is completely unpredictable (Oloffson, 2005).

If unbiased dice are tossed a number of times, the resulting Markov chain will have such

an erratic pattern that applying guided search will serve no purpose. In cases like this,

random guessing stands an equal chance of giving a good result without any of the

overhead required in heuristic decision making. Similarly, in a search space with many

local optima, unguided search can come across good optimum point entirely by chance.

A Monte Carlo method is a blanket term used to describe any method characterized by

the use of a random number generator and the complete disregard of dynamics involved

in reaching the results. Weisstein (1999) defines a Monte Carlo technique in general as:

 34

[Monte Carlo technique is] any method which solves a problem by

generating suitable random numbers and observing that fraction of the

numbers obeying some property or properties. The method is useful for

obtaining numerical solutions to problems which are too complicated to

solve analytically.

Apart from the transition probability, which is constant, decisions at any stage are made

without any restriction in a Monte Carlo method. The original Monte Carlo method was

first used to create models in statistics. Later it found its use in various optimization

problems.

In its most basic form, a memory-less random walk is all that is involved in

implementing a Monte Carlo optimization method. With such unrestricted search,

completely lacking in decision making rules and record keeping makes Monte Carlo

optimization much simpler to implement than the heuristic algorithms.

3.2.4. Genetic Algorithm
The natural world has long been regarded the ultimate source of inspiration for design

and optimization. Many sophisticated structures such as the shape of bird wings or the

branching of blood vessels can be commonly found in nature, of which no man-made

equivalents of comparable efficiency exist. Despite the continuing controversy about

how such designs emerged in the natural world, the explanation coming from Charles

Darwin’s theory of evolution has been accepted in the scientific domain and firmly

established itself as the foundation of modern science of biology.

Evolutionary computation and optimization were born when researchers proposed the

idea of developing powerful optimization algorithms based on simulation of

evolutionary process. The efforts spawned a number of algorithms, of which Bäck &

Schwefel have identified three mainstream methods: the genetic algorithm (GA),

evolutionary programming (EP), and evolution strategies (ES) (Bäck & Schwefel,

1996).

These algorithms use the concept of a population of individuals which are subject to a

series of probabilistic operators such as mutation, selection and recombination. Each

individual represents a potential solution to a given optimization problem. During the

computation process, the population will undergo a draconian process in which stronger

individuals will thrive while the weaker ones perish.

 35

Genetic algorithms, which were first developed by John Holland and his colleagues at

the University of Michigan (Holland, 1975), exhibit all the three main characteristics of

evolutionary computation (Bäck & Schwefel, 1996). Their research goals were to

rigorously explain the adaptive processes of natural systems and to design an algorithm

that faithfully replicates the important mechanisms of natural systems.

In a GA, an individual is represented as a string of genes, or chromosome. Unlike its

natural counterpart however, the genes do not manifest themselves in the physical traits

of the organism. The algorithm is only interested in the gene string itself as the potential

solution of the optimization problem. No mapping to physical characteristic is necessary

or desired beyond that which is required to evaluate the fitness of the candidate solution.

From the optimization point of view, the chromosome serves as the representation of the

coded parameters of the optimization problem. To determine how ‘good’ an individual

is as a solution, its chromosome is decoded to retrieve the actual values, which are then

fed to the objective function of the original optimization problem. The routine that

decodes the gene string and calculates its objective function is called the fitness

function, and the result of the examination is called the fitness value. Gene strings with

better fitness values represent the stronger individuals within the population. Such

individuals are favored by the system and more likely to survive and reproduce.

A genetic algorithm starts with an initial population, which will be successively

replaced by newer generations until the algorithm terminates either when a sufficiently

good individual is found or the number of generations has exceeded the limit set by the

user. Many variants of GAs exist, but they are generally easy to recognize as they are

constructed using the same following outline. If P(t) denotes a population of µ

individuals at generation t, and Q is a special set of individuals to be considered for

selection, then the GA can be summarized as follows:

 36

Outline of Genetic Algorithm:

1. set t = 0
2. initialize P(t)
3. evaluate P(t)
4. set P’(t) = recombination of P(t)
5. set P’’(t) = mutation of P’(t)
6. evaluate P’’(t)
7. set P(t+1) = selection of (P’’(t) U Q)
8. increment t
9. repeat steps 3 to 8 until termination condition is met

Goldberg (1989) asserts that GAs are more robust than many other optimization

techniques, particularly when the search space contains many local optima. He further

attributes the robustness of GAs to four special characteristics of the algorithm:

1. Instead of working directly with the optimization parameters, GA works with a

coded set of the parameters

2. The optimization result is obtained from a population of points instead of a

single point

3. GAs directly use the objective function to calculate the payoff information

instead of derivatives or other auxiliary information

4. Probabilistic transition rules are used in GAs instead of deterministic rules

GAs have been applied to a wide range of problems that have been considered

intractable to other approaches. The diversity of applications can be appreciated from a

sample of the recent literature. A brief review of 2006 publications indicates that GAs

have been applied to a huge range of problems including logic tree decision modelling

(Mak, Blanning & Ho, 2006), database partitioning (Du, Alhajj & Barker, 2006), design

of composite laminates (Pai et al, 2006), reliability engineering (Levitin, 2006), the

design of water distribution networks (Reca & Martinez, 2006) and the classification of

software failures (Watkins et al, 2006). A comprehensive review of applications of GAs

is not required to discover the interest in applying this method to solving complex

problems and there is considerable interest in the approach.

In many GA implementations in the literature the chromosome is commonly

implemented as a finite-length binary vector. A binary vector provides the maximum

flexibility for parameter coding and interpretation in much the same way as basic data

types such as numerical or symbolic values are internally represented in the computer

memory. Non-binary strings are also used however, in specific cases such as when

 37

representing nodes in Traveling Salesman Problem (TSP), where a binary equivalent is

impractical or inefficient (Ansari & Hou, 1997).

Because of its very flexibility, coding the optimization parameters into a gene string can

be a daunting task. For any given optimization problem, there are typically a number of

possible ways to code the parameters into the gene string, some are better than others.

There is surprisingly little available literature providing a general guideline for coding

GA parameters. Coding guidelines for specific domains do exist however, such as those

proposed by Nagao for optimization of numerical parameters (Nagao, 1996).

The three basic operators in evolutionary computing, mutation, selection and

recombination, are used in the implementation of the genetic algorithm. Specifically in

the context of GAs, the operators are referred to respectively as mutation, reproduction,

and crossover (Ansari & Hou, 1997).

3.2.4.1. Reproduction
Reproduction is the way a GA recreates new individuals in the population when the

generation changes. Candidates for reproduction are selected randomly from the old

population. Similar to the notion of survival of the fittest commonly observed in the

natural world however, the selection of individuals is biased in favor of the stronger

ones. The concept is expanded further in the form of elitism in some GA

implementations, where chromosomes with the best fitness values in the population are

favored for reproduction or even directly reintroduced to the succeeding generation

(Connor, 1996). Whilst a range of elitism strategies have been discovered in the

literature (Ahn & Ramakrishna, 2003; Bellomo, Naso & Turchiano, 2002; Djurisic,

1998) the use of elitism strategy at this stage has been discounted in order to investigate

the performance of a simple implementation.

This mechanism allows chromosomes yielding better fitness values to stand greater

chances to reproduce, in the hope of passing their good quality genes to the next

generation. Less favored individuals are still kept as legal candidates despite their lower

fitness values and reduced chance of being selected, in effect retaining the diversity of

the chromosomes population and the search direction. Seminal work by De Jong (1975)

demonstrates the effects of adjustments in GA parameters and modifications from the

basic algorithm in great detail.

 38

3.2.4.2. Crossover
The crossover operator is applied to a pair of chromosomes that have been selected for

reproduction. Mating between two individuals mixes the gene strings to create a new

pair of strings representing new candidate solutions. Since the two chromosomes

selected for crossover are likely to have good traits, the resultant gene strings may have

better features due to the recombination.

A very simple demonstration of a crossover operation is given in Figure 3.6 below. In

this example, an arbitrary point, or crossover site, has been selected to split the parent

chromosomes into left and right segments.

X X X X X X X X X

Y Y Y Y Y Y Y Y Y

Before crossover

Crossover site

X X X X Y Y Y Y Y

Y Y Y Y X X X X X

After crossover

Figure 3.6: Simple Crossover Operation

In practice, any part of the chromosomes can be exchanged during the crossover. To

complete the crossover operation in the above example, the rightmost segments are

swapped to construct a pair of new chromosomes.

The crossover operation does not need to be limited to a single site as in the above

example. More advanced versions of GAs sometimes use multiple crossover sites, as

exemplified by Chang (2006) and Yoon & Moon (2002). In the interest of measuring

baseline performance however, only single point crossover will be used in the GA

implementation for the MCPO problem.

3.2.4.3. Mutation
The use of crossover on its own makes for a rather brittle genetic algorithm. If the

parent chromosomes are identical, no new patterns will emerge in the resultant

chromosomes. Similarly, no new strings will be generated when the entire population

has only one type of string. The mutation operator provides a remedy to this situation.

A mutation test is applied to all genes from the chromosome of a candidate solution,

normally with a very low probability of occurrence. For a positive test, the mutation

 39

operator is applied and changes the value of the gene under consideration. This process

simulates the spontaneous genetic alteration that is one of the cornerstones of the theory

of evolution. In software design terms, mutation introduces variability into the

population, and serves as an escape mechanism from local optima traps (Ansari & Hou,

1997).

X X X X X X X X X

Before mutation

X X Y X X X X X X

After mutation

Mutation site

Figure 3.7: Mutation Operation

Liberal use of the mutation operator can be potentially disruptive to the search. This

view is supported by De Jong who asserts that in formal terms:

With too high mutation rate, the performance is degraded by the sub-

optimal allocation of trials to competing hyper-planes (De Jong, 1975)

In relatively stable populations, mutation should occur only occasionally. Although

there is no rule about how often mutation should be allowed to take place, successful

GA implementations tend to keep its control parameter, the mutation probability, at low

values such as 0.001 or less (De Jong, 1975).

3.2.4.4. Schemata
It has been observed that patterns of genes at certain positions have significant

contribution to the fitness value of the individual. Such fixed position gene patterns are

called schemata, which is quite an important concept in GAs (Bolc & Cytowski, 1992).

A schema is defined as a similarity template that describes a subset of chromosomes

with certain similarities at certain genes. Schemata provide a basic means for analyzing

the net effect of genetic operators on individuals within the population (Goldberg,

1989). Although the use of schemata is a powerful tool for creating and fine tuning

sophisticated GA solutions, it is not required in a basic GA implementation.

3.2.4.5. Parameter Coding
As previously mentioned, parameter coding for GA has a major contribution towards

the effectiveness of the optimization engine. A set of chromosomes containing wrong

 40

sets of parameters or poorly mapped parameter values will ruin an otherwise good GA

implementation. Similarly a good representation of the parameters will make it possible

for the GA implementation to realize its full potential.

Parameter coding is especially problematic in MCPO problems, especially for the

second-stage optimization, because interdependencies exist among the parameters.

Referring to Section 3.1.5, the second stage optimization appears to be best modeled on

the 2BP problem. Although the use of a GA in solving 2BP can be found in a number of

publications such as those by Chan, Au, & Chan (2005), Falkenauer & Delchambre

(1992), Lewis, Ragade, Kumar, & Biles, (2005), and Liu & Teng (1999), none provides

the technical description about the actual parameter coding. Perhaps the most technical

detail can be found in the work of Shian-Miin, Cheng-Yan, & Jorng-Tzong (1994)

where complex tree structures are used to represent the nested objects.

In the absence of an exact description regarding the parameter coding of 2BP

optimization, a novel solution for parameter coding has been devised. The complete

discussion about the parameter coding is provided in Section 5.5.2. Critical analysis is

provided in subsequent discussions regarding the impact of such a solution to the

effectiveness of the search algorithm.

3.2.4.6. Extension of the Basic Genetic Algorithm
The basic GA can be improved in many ways. Goldberg (1989) describes a number of

advanced techniques applicable to the GA. Some of the techniques are adopted from the

natural world, such as diploidy and dominance, elitism, and segregation. Others, such as

inversion, translocation, and duplication and deletion, are based more on mathematical

reasoning.

The use of advanced techniques allows the basic GA to be either developed to deal

specific problems or to be improved in efficiency (Connor, 1996). A wide range of

advanced techniques have been investigated, such as the use of parallel populations

(Lis, 1996), shuffling individuals between such populations (Ndiritu & Daniell, 1999),

the use of “introns”, which are uncoded chromosome segments (Levenick, 1991),

variable population sizes (Shi et al, 2003) and the use of a hybrid method (Hwang & He,

2006) to name but a few. The improved GA in turn can be used to solve MCPO

problems more effectively. Further investigation on these techniques, however, is

beyond the scope of this research, and the basic GA will be used in the software

application to provide results against which future enhancements can be benchmarked.

 41

4. Software Design
As discussed in Chapter 1, this research utilizes the System Development Research

Methodology (SDRM) proposed by Nunamaker & Chen (1991). Within the phases of

this methodology, as outlined in Table 1.1, the selection of an appropriate design

methodology is an explicit activity required to conform to the research methodology.

4.1. Design Process

4.1.1. Development Process Models
A number of software development models have emerged since the inception of

electronic computers in the 40s. Software had become particularly important when

punched cards were introduced in early 50s, replacing the old system where computers

were ‘programmed’ physically by changing its electronic circuits (Tanenbaum, 2001).

Most of the software development models have been shaped by the lessons learned as

various related technologies evolved. A few are now obsolete and irrelevant to the

demands of today’s software. On the other hand, there are still quite a few contemporary

models to choose from, each has formed to address certain characteristics of the project.

Pressman (2004) provides a list of the most common models currently used in practice.

For the purpose of this work, it is important to select a development model that

complements the research activities.

Linear Sequential Model: a classic life cycle development model borrowed from

general engineering practices. The development model consists of a sequential process

progressing through analysis, design, coding, testing, and support. This is a very

sensible approach, which is the oldest and most widely used in software engineering. It

is rather inflexible model however, demanding explicit and precise specification of the

problem in the initial stage of the project, which is often difficult in practice. A major

omission in the requirement specification, if not detected early, can be disastrous to the

project.

Prototyping Model: users unaware of the issues involved in software development

typically define a set of general objectives for the software they want without providing

a detailed specification. Critical information such as the input, output, or human-

computer interaction requirements are often left out. The prototyping model solves this

problem through an iterative specification, mockup build/revision, and customer testing

cycle. Comments given by the user during testing are used to refine the specification,

 42

leading to a revision of the software closer to the actual solution. Although this

approach can be very effective when properly used, critics point out its inherent

weakness of the tendency to lure the developer to make implementation compromises to

quickly get the prototype working. Inefficient algorithms may be used just to

demonstrate the overall capability of the software. As the software grows, the

inappropriate choices become embedded deeply in the system and become an integral

part of it.

Rapid Application Development (RAD) Model: attempts to enable high speed

development while maintaining the stability of the linear sequential model. The model

still retains the notion of sequential development, with stages similar to that of the linear

sequential model. Rapid pace of software development is achieved through extensive

deployment of reusable software components. If necessary, several RAD teams can

work in parallel to construct different parts of the system, minimizing the total

development time for the overall project. If the scope is well defined, a fully functional

system can be constructed within very short time periods using the RAD model. There

are, however, a few drawbacks of the RAD model. For larger projects, significant

human resources are required to allow RAD to have any impact. Further, everyone

involved must be committed to the frantic pace of the development activities. Finally,

not all projects are suitable for RAD, especially high performance systems whose

efficiency will be compromised by the use of large numbers of software components

communicating through standardized protocols (which are as a rule slower than

proprietary ones).

Evolutionary Models: since the user is subject to competition or business pressure,

building comprehensive software in a single development project is often unfeasible.

The business and product requirements may also change over time, necessitating major

updates in the software. For software that is expected to evolve over longer periods of

time, a model that accommodates incremental development with minimum disruption to

the overall system is required. An evolutionary model is an iterative paradigm used for

the development of large systems, characterized by the emphasis on allowing the

engineers to build increasingly more complete software over time while it is used in the

live environment. There are a number of software development models that are

considered evolutionary: the incremental model, the spiral model, the WINWIN model,

and the concurrent development model (Pressman, 2004). Because of the nature of the

 43

problem addressed by evolutionary models is unique, their advantages and weaknesses

cannot be directly compared to the other development models discussed so far.

Component-Based Development: the advances in the technologies of object-oriented

computing have magnified the impact of code reusability further than that in RAD. The

component-based development model builds applications from reusable software

components, many of which are available from third party vendors. The engineering

activities are therefore more focused on mapping the functionalities required from the

system with the software components suitable for the tasks. When suitable components

cannot be found, custom components are engineered using the same object-oriented

methods and added to the library. The Unified Modeling Language (UML) has been

defined to facilitate efficient component-based development. Apart from the fast

progress enabled by code reuse, component-based development has a pronounced

advantage of allowing a scenario-based approach in software design, allowing the users

to participate closely in defining the system they want. The component-based

development model has its disadvantage too. Firstly, it tends to limit the developer’s

options to what is available in the component library. Secondly, third party components

often come in binary form only, making it extremely difficult to track programming

errors when they occur.

Formal Methods Model: in some cases, formal mathematical notations are the best

way to rigorously specify, develop, and verify computer-based systems. Formal

methods provide a way to construct correct code through the application of

mathematical analysis instead of the ad-hoc review used in the mainstream models. The

formal methods are very powerful and promise software that is completely free of

defects. However it requires a formal mathematical ability on the part of the software

developer, necessitating extensive training. Similar command in mathematics is also

required from the customer if the model is to be effectively communicated. Nonetheless,

the formal methods model has a secure niche in the development of safety-critical

applications where software errors cannot be tolerated, such as in aviation, military, and

medical equipment.

Fourth Generation Techniques: some of the latest software development tools have

the capability of generating program code directly from the specification provided by

the software designer. Such an approach is called computer-aided software engineering

(CASE) or fourth generation techniques (4GT). With 4GT, certain specification

 44

graphics and languages are used to define the problem, resulting in meta-code that can

be translated to the actual program code using the development tools. Apart from the

automatically generated code, 4GT differs little from other models discussed above. The

distinct advantage in the 4GT approach is the reduced time required for design and

analysis, particularly for small application. It also allows the technically inclined users

to develop a credible solution of their own directly. The potential productivity boost

comes at a price however. The ease with which code is generated may lead the

developers into neglecting the importance of a good design, resulting in poor quality

software. Another problem inherent in automatic code generation is that the process is

unidirectional. As a result, manual modifications on the code will not be incorporated

back to the design. Worse yet, regenerating the program will overwrite the modified

code, effectively wiping out all the manual changes.

Agile Methods: in the interest of satisfying the customer’s demands on the software at a

very rapid pace, a relatively new approach called agile methods have emerged in the last

few years. The agile methods refer to a number of software development practices that

put heavy emphasis on progress in the form of working software. Such progress is

achieved by developing the system in a series of development mini-periods, each lasting

between one to four weeks. At the end of each period, the resulting software is

evaluated, establishing the base upon which the user requirement is further refined or

possibly expanded. The agile methods rely on intensive, face-to-face communication

between customer and developer, resulting in little formal specification and

documentation compared to other models. While potentially very effective, agile

methods may lead to undisciplined or chaotic development activities, limiting its value

to small sized and highly skilled development teams only.

4.1.2. Project Characteristics
All the software development models discussed above offer enough potential to be

considered to select one that suits best for this project. With the key characteristics of

the models identified, the selection of which one to use in this project is to be decided

by analysis of the characteristics of the problem.

The basic premise is that the layout optimization software is first and foremost a

research project. The project scope and size is deliberately limited to that required to

examine the concept and algorithms involved in the problem space. Therefore the

project should be regarded as a short term software development, with limited goals

 45

only. There is a strong prospect for longer term deployment of the commercial version

however, which calls for sound design and easy to maintain code.

As evident in Chapter 2, there is no detailed specification provided by the user of the

system, which is not surprising given the research oriented nature of the development.

What is available is a general description of what the system is going to be used for and

what it should be capable of doing. Whilst such information is enough to provide a

general direction for the development, much of the technical details must be discovered

as part of the research and development activities. The absence of detailed specification

favors the prototyping and RAD models whilst ruling out the use of linear sequential

model.

There is also a definite constraint in the development timeline. A fully working system

is required within no more twelve months from the beginning of the project. While such

restriction is quite reasonable for the scope of the project, successful completion

requires focus on critical parts of the software that are developed to address specific

aspects of the research. Non-critical parts are implemented using rudimentary

algorithms since little time is available to explore or implement more sophisticated

alternatives. Without the need of building a large system over prolonged periods of

time, evolutionary models automatically become irrelevant.

Although quite a number of people are involved in the project, the actual development

of the software is done by a single person. Consequently the resultant amount of work is

extremely limited compared to what a team of developers can achieve.

Due to the lack of mathematical background on the part of the author, formal methods

cannot be used with any degree confidence given the time available. Similarly, there is

no suitable 4GL tool at the author’s disposal during the project. All these constraints

leave the prototyping, RAD, and component-based models to be the only viable choices.

The actual development model uses features of all three. Prevailing development effort

takes mainly the form of RAD because the requirements are best mapped to this model.

4.1.3. Rapid Application Development Model
As previously discussed, the RAD model dominates the actual development pattern of

the layout optimization software. Key characteristics of RAD are modular design,

parallel development, and code reuse; all resulting in development of good quality

software at a rapid pace. Other deciding factors are the availability of a development

 46

tool and the ease of future integration to the BISCo commercial software. Finally, RAD

allows development to begin in the absence of a comprehensive system requirement,

making it ideal in a research environment.

The effectiveness of RAD comes from the way it is designed to decompose the problem

into its logical components. This allows development of some components of the

software to commence whilst research activities are still being conducted to determine

the requirements for other aspects of the software. The development process is also

divided into several phases. Much like the linear sequential model, the RAD cycle in a

commercial project consists of five phases: business modeling, data modeling, process

modeling, application generation, and testing and turnover (Pressman, 2004).

Business modeling: the way information flows within the customer’s organization is

analyzed and modeled in terms of data architecture, application architecture, and the

technology infrastructure. Since the layout optimization problem is to be developed

much in isolation, analysis is focused only on data and application architecture.

Rigorous analysis on future customer’s technology infrastructure will have little impact

on the construction of the software.

Data modeling: the information flow is further refined by identifying all the important

data objects that the system should maintain. The data objects are defined by the

attributes and relationships that exist with other data objects.

Process modeling: another refinement of the information flow is when relevant

processes that transform the data objects are defined for implementation. Important

functionalities such as data object creation, alteration, calculation and removal are

specified in sufficient detail for the application generation phase that follows.

Application generation: ideally, the implementation phase uses a 4GT tool to generate

the code. Third generation programming languages are used when a suitable 4GL is not

available. Existing program components are used whenever possible. New components

are created when necessary, with reusability as one of the main design goals.

Testing and turnover: the final product is tested and updated as necessary. The true

value of RAD should be apparent at this stage. Since the majority of the reusable

components have been proven to work in other applications before, few errors are

expected to occur from them. The net result is reduced overall testing time. Care must

 47

be taken, however, to thoroughly test new components to ensure their reliability in

future projects.

The remainder of this chapter deals with the business and data modeling, along with the

abstract part of process modeling. The RAD cycles are discussed in Chapter 5: Software

Implementation.

4.2. System Modeling

4.2.1. Software Scope
Before analyzing the system in more detail, it is a good practice to describe the scope in

a brief statement. Such a statement serves as the basis for communication among parties

involved in the project, especially between the engineer and the customer. In the case of

this layout optimization project, the customer is represented by BISCo. The layout

optimization scope statement is as follows:

Layout Optimization Software searches for the most efficient configuration

to cover an area using flat rectangular panels of fixed length and width.

The layout optimization problem consists of the layout area(s), the invalid

areas that should not be covered, and the list of candidate stock panels.

For each optimization run, the user provides additional information such

as the panel legal orientations, search strategy, and optimization

algorithm-specific parameters.

The output of the optimization consists of the dimensions of the most

efficient stock panel, the cutout plan for individual panels, and the plan to

cover the layout area. Efficiency is primarily calculated in terms of the

wasted material, although the amount of cutting also determines the

quality of the solution. The less efficient solutions are also provided for

comparison. The results must be sufficient allow the user to select the

most efficient panel, cut the irregular shapes from the stock panel if

necessary, and arrange them on the layout area with no manual

calculation.

The purpose of the above statement is to capture all the essential parts of the system.

Further technical details are not relevant at this stage and will be defined at the

subsequent phases.

 48

4.2.2. Information Flow
In well-functioning software, information is transformed from its raw form into its final,

useful representation. To afford credibility for such transformation, it is important to

define the components taking part and the various pieces of information that undergo

the process. Data computation is seen as information flow from input of various forms,

which ends in the output forms, through a series of transitional forms.

There are various ways of modeling the information transformation. The Data Flow

Diagram (DFD) is the prime modeling tool to use when the designer is interested in

decomposing the system based on its functional components. Entity-Relationship (ER)

models can be used instead when relationships within the data are regarded to have

overriding importance. Otherwise when the system is defined by its time-dependent

behavior, State Transition modeling is the most suitable tool (Yourdon, 1989).

In the case of the layout optimization software, the DFD model is used for a number of

reasons. First, the system must be built when no formal or standardized representation

of the data exists. A key element of this research is the exploration of the information

required for the solution of the MCPO problem and how the software interacts with this

data. The functionality of the software, namely discovering the solution for a given

optimization problem, therefore dominates all other issues. Second, the data does not

dictate the behavior of the system at all. Instead, there is a rigid mechanism to which the

information is subjected. These two reasons rule out the use of entity-relationship and

state transition models. Finally, the DFD model actually serves as an indispensable tool

for defining what components are required to build the entire system, as reflected in the

discussions that follow.

The ideas similar to DFD have been circulated in the engineering communities since the

mid-seventies (Yourdon, 2006). The DFD owes much of its appeal to the simplicity of

its notation and representation. Such simplicity makes DFD easy and intuitive to use,

making it ideal to communicate design ideas among designers and users alike.

A data flow diagram consists of four components, of which three are static and one

dynamic:

External Entities: objects and actors that reside outside the system and interact

with it. The most important external entities are the input device, output device,

and the user. External entities are represented in the diagram by rectangles.

 49

Processes: the transition in which the input data is turned into output. A process

can be directly mapped to a functional module of the software, serving as a black

box where only input and output types of information are defined without

revealing the actual mechanism of the transformation. A process is only identified

by its functionality, and is represented by a circle in the DFD.

Data Store: repository for where non volatile data is kept. Theoretically the

storage has no restrictions in terms of size or lifetime. A data store is represented

by parallel lines in the diagram.

Data Flow: the dynamic component which describes the movement of packets of

information moving from one component of the system to another component.

The flow represents the data in motion, as opposed to the data store which

represents the data at rest. Data flow is represented in the diagram as an arrow

coming from or into a process.

Another major feature of DFD is the freedom for the designer to zoom in on a particular

process to reveal its inner working as a mini-system. When a process is analyzed, the

resulting DFD consists of the components similar to the DFD of the higher levels, but

with more refined processes and data flow. Due to this hierarchy, any part of the system

can be analyzed to any level of detail. The decision on how much analysis is required is

left to the designers and perhaps the user.

Figure 4.1 shows the information flow at the top level of the layout optimization

software. The diagram of this type is often referred to as DFD Level 0, for it shows the

system components and the information flow at the most abstract level. The DFD shows

that nine processes are involved in transforming raw data from the input device to the

final form presented to the user.

The nine processes are the key to successful optimization operation from one end of the

system to the other. Further decomposition of these processes into their respective sub-

processes and information flows can be found in Appendix B. The remainder of this

section discusses all the components found in DFD Level 0.

 50

Input Device

4.
Extract
Solution

Data

3.
Extract
Layout
Objects

2.
Read

Input Type

6.
Generate
Solution
Panels

5.
Compose
Problem
Definition

9.
Construct
Graphical
Objects

7.
Nesting for

Irregular
Panels

Building
Material

Repository

8.
Combine
Solution

Data

Disk File

Visual Output
Device

1.
Validate

Input

Raw
Input Data

Valid
Input
Data

Valid
Input
Data

Candidate
Stock Panels

Valid
Input
Data

Layout
Objects

Solution
Objects

Layout
Objects

Formalized
Optimization

Problem

Irregular
Panels

Nested
Irregular
Panels

First Stage
Solution

Data

Complete
Solution

Data

Graphical
2-D

Shapes

User

Optimization
Settings &

Parameters

Solution
ObjectsDisplay-Only

Mode

Optimization
Mode

Optimization
Settings &

Parameters

Figure 4.1: Overall System Information Flow

4.2.2.1. External Entities
There are four external entities used in the DFD: the input device, user, disk file, and

visual output device.

Input Device supplies the problem definition to the software. Disk files are excellent

candidates for the input device, although other forms of input such as remote procedure

calls (RPC) and onboard editors may also be used. RPC may become the primary input

device in the future, especially when the software is integrated into the Blue Sky™

system.

User interacts with the software in many ways. The most important role of the user

from the design perspective, however, is to determine the actions to be taken for a given

optimization problem as well as specifying the various parameters required by the

optimization algorithms.

Disk File can be considered a virtual output device, where the results of the

optimization can be stored for future use. The disk file is not a true output device

however, since the information is only useful within the system’s domain.

 51

Visual Output Device presents the solution of the optimization problem in its final

form to the user. Because the layout optimization deals with two-dimensional objects,

the main use of an output device is for viewing the objects. Thus only graphics capable

devices can be used. In most cases the computer screen can satisfactorily serve as the

output device, although a printer may be preferred by the user in other cases.

4.2.2.2. Processes
As mentioned earlier, there are nine processes that make up the system at the conceptual

level. Although these processes vary in size and complexity, none can be omitted from a

fully working system. The data flow diagram for the following can be found in

Appendix B, from Figure B.2 to Figure B.10, respectively.

Validate Input ensures that the input data is of correct physical format and is organized

in a valid structure. As discussed in section 5.2.2., Extensible Markup Language (XML)

has been chosen as the physical format of the input data. The validating measure is very

simple: the input stream is checked whether it has an XML document, in which case the

root node in the XML hierarchy must have a certain name to be accepted as valid.

Illegal input will immediately cause the whole loading process to be terminated.

Read Input Type seeks to find whether the XML input file contains a problem set or a

solution set data by examining a certain attribute of the root node. The program enters

the optimization mode when a problem set input is encountered, whereas a solution set

will cause the program to enter the display-only mode.

Extract Layout Objects extricates the layout containers and the obstacles within them

from the input data. These objects are very significant in a layout optimization problem,

and they are both present in either type of input. The containers and obstacles are used

to define the problem in optimization mode, which makes them critically important.

Extract Solution Data reads the information about the shapes covering the container

legal area as well as their nesting plan in the stock panel. Such information is used to

present the solution visually to the user. Naturally, this operation is only relevant when

the input is of solution set type.

Compose Problem Definition packs the data required for the actual optimization

process. Layout optimization data loaded from the input device is combined with the

supporting data in the repository to make the complete problem definition. Finally, the

algorithm-specific optimization parameters are supplied from the user input.

 52

Generate Solution Panels resolves the first stage of the optimization problem as

discussed in Chapter 2. The solution is constructed by cutting the layout container area

with horizontal and vertical lines as if it were a large sheet of material. The cut lines are

defined by the dimensions of the corresponding stock panel. The resulting shapes are

then deducted by the obstacle shapes within the container to find the final set.

Nesting for Irregular Panels resolves the second stage of the optimization problem.

The irregular shapes from the solution set of the first stage are mapped to the smallest

possible number of stock panels. Three search strategies are available to find the

solution: the greedy algorithm, the Monte Carlo search, and Genetic Algorithm search.

The result of this process is the irregular shape nesting layout plans, according to which

the actual material will be cut.

Combine Solution Data arranges the bits of information obtained from both stages of

the optimization into an organized form, ready to either display on the visual output

device or save into the disk file. Checks are also made to detect and remove

redundancies as well as inconsistencies.

Construct Graphical Objects extracts the visual information from the solution and

transforms it to the standard format of the output device. Section 5.3.3 in Chapter 5

discusses the concept of graphics pipeline which makes this process necessary. In

simplest terms, the optimization problem and its solution use a coordinate system that

differs to that in visualization. The process of constructing graphical objects takes care

of the transformation between the coordinate systems as well as adding visual properties

that helps the user to differentiate between objects in his viewing device.

4.2.2.3. Data Store and Data Flow
There is only one data store object used in the system, that of the Building Material

Repository. In contrast, there are thirteen data flows defined in the DFD Level 0. The

large number of the data flows very well demonstrates that information does flow in

many forms through the system before the final result can be obtained.

Building Material Repository is where static, problem-independent data is stored. In

the commercial context, the repository takes the form of the Blue Sky™ database.

Referring to section 2.4 in Chapter 2, the database contains a large collection of

disparate objects. In the context of layout optimization however, only the stock panel

information – which makes for only a small subset of the data – is used. In the research

context, the repository is implemented as a disk file of much simpler structure. The

 53

decision to keep the repository separate from the main input remains justified, however,

by the static nature of the stock panel information.

Raw Input Data presents the system with an input stream. At this stage the system

does not know whether the input is valid or whether it contains meaningful data. All the

same, the only way a valid input can enter the system is through this data stream.

Valid Input Data is the input data that has been verified and accepted as valid, in terms

of physical format and the content organization. A valid input data may contain either a

problem set or a solution set. Different processes are involved to handle each type.

Optimization Mode and Display-Only Mode is a control flow, a special case of

information flow, where only fixed value information is passed. For a given input data,

either optimization mode or display-only mode control is passed to the responsible

processes depending on whether the input is of problem set or solution set type,

respectively.

Layout Objects are the containers with the optional obstacles that define a layout

optimization problem. These objects have paramount importance since they are actually

the basic representation of the optimization problem itself.

Candidate Stock Panels: provides the context for resolving the layout optimization

problem. Any solution must be built from candidate stock panels that are known to the

system. Also the efficiency of a solution is to an extent determined by the properties of

its candidate stock panel, such as the material price and cost associated with cutting the

irregular shapes.

Optimization Settings and Parameters is a control flow that allows the user to

manage which optimization algorithm is to be used, and how a given algorithm should

operate. More detailed information about optimization settings and parameters can be

found later in section 4.2.3.3.

Formalized Optimization Problem is a data structure that consists of the containers,

obstacles, and the candidate stock panels. The data structure emerges as the final result

of the all data preprocessing and is ready to be fed to the actual optimization algorithms.

Irregular Panels are a subset of the result of the first stage solution. The rest are

regular panels that map perfectly to the stock panels and therefore need no further

processing. Irregular panels make for the material for second stage processing, in which

the search for most efficient nesting plans takes place.

 54

First Stage Solution consists of both irregular panels and the regular panels, which are

a part of the final product of the layout optimization. Only minor post-processing, such

as redundant vertices removal, will be applied prior to presentation to the user.

Nested Irregular Panels is the result of the second stage optimization. Similar to the

first stage solution, the nested irregular panels are also part of the product of the layout

optimization.

Solution Objects are the first and second stage solutions combined. The solution

objects reside in the computer memory, ready to be translated into its visual

representation.

Complete Solution Data is the solution objects organized as an XML tree. The purpose

of creating such representation of the solution is for storage in the disk file, from which

it can be loaded to the software later for viewing.

Graphical 2-D Shapes are the data representation of the objects to be visualized. Such

representation is platform-dependent or device-dependent. Unlike the rest of the system,

the designer has no control over the format of the data since it is dictated by the

particular output device in use.

4.2.3. Data Dictionary
Another important design tool used to develop the layout optimization software is the

data dictionary. Yourdon (1989) defines the data dictionary as a listing of the data and

control objects used in the system. In the data dictionary, such objects are defined in

much greater precision than the equivalents found in the data flow diagram. The

combination of the DFD and the data dictionary provides the analyst with a highly

accurate view of the system (Pressman, 2004). Yourdon (1989) further specifies that the

data dictionary complements the DFD in a number of ways:

• The data dictionary describes the meaning of the flows and stores in the data

flow diagrams

• The data dictionary describes the composition of aggregate data packets in the

flows and in the stores

• The data dictionary specifies the relevant values and units of the elementary

parts of the data objects

An entry in the dictionary consists of the header and the definition. The header contains

the name of the item, its aliases, and the context of where or how the item is used. The

 55

data dictionary uses metadata to describe various operators such as definition,

aggregation, iteration, and selection in the definition part. The following symbols are

most commonly used as recommended by Yourdon (2006).

= is composed of
+ and
() optional (may be present or absent)
{ } iteration
[] select one of several alternative choices
** comment
@ identifier (key field) for a store
| separates alternative choices in the [] construct

Yourdon (2006) warns that building the data dictionary can be tedious for medium or

large-sized systems. Modern relational database management systems such as DB2,

Oracle, or Sybase come equipped with automated tools for defining the data dictionary.

In this project however, such tools are not available and the data dictionary must be

constructed by hand. For this reason, only certain items of the dictionary are defined.

The complete data dictionary can be found in Appendix C.

4.2.3.1. Input Data
As previously discussed, the input data contains various control information to describe

its content. The document body follows, consisting of parts common to all input data

and optionally the solution information if the document is of solution set type. The

common part is further decomposed into various components that define the problem as

well as the viewing parameters.

name: raw input data
aliases: complete solution data
where used/ how used: layout problem definition (input)
 resolved layout problem data (input)
description:
 raw input data = signature + document body
 signature = "PolyWorkSpace" + content type
 content type = ["ProblemSet" | "SolutionSet"]
 document body = generic part (+ solution set)
 generic part = view parameters + container set + obstacle set
 view parameters = zoom factor + viewing offset
 zoom factor = *real number > 0*
 viewing offset = XY screen coordinates

Figure 4.2: Program Main Input

4.2.3.2. Optimization Result and Output Data
Discussion about the output data in non-graphical form actually becomes meaningless

since the optimization result is reduced into a series of platform-dependent geometrical

information to produce the visual output. The complete solution data saved in the disk

 56

file does not reflect the result very well either since it contains aggregate information

that can obscure the solution. The optimization result is therefore best represented by

the solution set, which in turn is composed of a series of single solutions. A single

solution defines the stock panel used, along with the first and second stage solutions.

name: solution set
aliases: None
where used/ how used: resolved layout problem data (input & output)
description:
 solution set = {single solution}
 single solution = stock panel + solution panels + nested layouts
 stock panel = rectangle definition

Figure 4.3: Complete Layout Optimization Solution

4.3. Design Issues
The data flow diagram and the data dictionary have served their purpose well in

examining the system, helping the analyst to identify all the major issues. Speaking in

terms of rapid application development, data modeling and process modeling have been

sufficiently covered using those tools. Because business modeling has little relevance to

the engineering-oriented project, software development can now proceed to the code

generation stage, where the program is implemented. The technical discussion about the

actual implementation can be found in Chapter 5. There are a few remaining design

issues however that must be resolved at this point.

It is important to recognize that considerable effort has been expended to achieve

thorough analysis, design, and implementation of the software. These activities have

been conducted in parallel with the research activities that have informed the

refinements of the requirements. Nevertheless it must be kept in mind that the ultimate

goals of the research are as defined in Chapter 1. For this reason, a few design

compromises have to be made to prevent minor issues from detracting the progress from

its true objectives.

4.3.1. Control Hierarchy
The data flow diagram and data dictionary are very good at capturing the data

transformation from the raw form to its final representation. In other words, they have

provided a data-centric view of the software. The actual program, however, ought to be

a task-centric system if the user is to have the ultimate control.

 57

The control hierarchy or program structure represents the organization of the functional

modules to reflect the control relationship. Like any hierarchical relationships, the

control hierarchy is best represented as a tree-like diagram.

The layout optimization software uses a control hierarchy shown in Figure 4.4. The

diagram consists of a set of rectangular shapes representing the software modules, and

connecting lines representing the superordinate-subordinate relationship. The modules

are either of control type or functional type. A control type is represented by a gray box

whereas a functional type is represented by a white box. A controlling module (called

superordinate) is drawn higher than the controlled modules (called subordinate)

connected to it.

A module called nesting work space occupies the top of the control hierarchy. The user

interacts with the module through the user interface feature of the program. At the

second level, the control is partitioned into three separate sub-trees: the input modules,

data transformation modules, and the output modules. Each controls a set of functional

modules either directly or indirectly through its subordinate control modules.

Figure 4.4: Layout Optimization Software Control Hierarchy

Most of the functional modules in the control hierarchy can be directly mapped to the

process modules in the data flow diagram, indicating that the system analysis has been

sound. Unlike in bigger systems where the control hierarchy can be quite elaborate, the

 58

simple diagram in Figure 4.4 sufficiently models the control structure of the layout

optimization software. Therefore no further analysis is necessary.

4.3.2. Program Input and Output
Substantial discussion has been made regarding various issues about the input and

output of the layout optimization software. It remains difficult to settle for a final form

of either however, because the software is destined to become part of a large system yet

to exist. Nevertheless interim formats have been established for the purpose of this

research.

For program input, the physical source is a text-based disk file structured in XML

format. The content of the file is to be created and edited by hand, even though in the

future it is anticipated that the input will be generated by an automated process instead.

Little provision beyond a few simple checks is to be made for validating the integrity of

the input data.

The program output has been designed with similar orientation. The computer screen,

run by a specific operating system, is to be used as the main output device. The disk file

is also to be used as secondary output device, with the data organized in XML format

recognizable by the program input module.

4.3.3. User Interface and Visualization
The primary requirement for the program user interface (UI) is that it provides the user

with full access to the commanding nesting work space module in the control hierarchy.

While the simplest solution may be to build the module directly in the UI or vice versa,

it has been decided to build them separately to make it possible to change the UI

without affecting the control hierarchy.

The separation is particularly important as the UI has been designed as a research tool

and not to be particularly effective with the average user. In future development,

software usability will be taken into consideration when designing the UI. For the

purpose of this research, the functionalities of the UI are limited only to that of

providing access to the system features. The following is a list of the main user

activities facilitated by the UI:

• Open input file and load the content into the computer memory

• Save the geometric objects in the computer memory into output file

• Select optimization algorithm and set its parameters

 59

• Execute optimization process

• Monitor the software activities during the lengthy execution of important tasks

There is a set of optimization parameters that deserves special attention at this point.

These are the constraints that specify what orientations are allowed when the irregular

pieces are laid out in the nesting plan, e.g. flipping and rotation. The way such

constraints are applied may have a direct impact on the final result, which brings up the

question of who must decide what particular order to use on each run. It is the end user,

with domain knowledge regarding the materials in use, that must specify how such

constraints will be applied.

For a start, it seems sensible to implement the corresponding modules in a way that

allows the parameters to be used in any sequence, rather than implicitly assuming a

particular order in the program code. Such customizable parameter ordering is rather

costly to implement, but it eliminates speculation on the part of the developer and leaves

the decision to the user instead. Therefore it deserves to be a standard feature of the

software. Subsequently the UI must provide a way for the user to supply his custom

constraint application to the system.

The UI also serves as the platform for visualization of the layout optimization problem.

Sufficient space is to be provided within the program UI on the computer screen for

drawing the geometric shapes. Standard viewing features such as zooming and panning

are also to be provided in the visualization space.

Because of the importance of the visual information to the user, additional measures are

also to be taken to assist the user to absorb the information efficiently. Such measures

include the use of colors and patterns to help the user identify different type of objects

more easily. It may be a good idea to make the colors and patterns customizable by the

user. At the current stage however, such customization is not a priority.

 60

5. Software Implementation

5.1. Overview
The implementation of the MCPO concept provides the means of obtaining detailed

insight regarding the nature of the problem in technical terms. It is during the actual

development process that the basic knowledge previously acquired from the literature

research is consolidated and enriched. Comparatively large amounts of time and other

resources have been allocated to this effort due to its overwhelming importance.

Throughout the development of the software, it was found that many of the

functionalities required by the application present unique logical problems demanding

thoughtful and well designed solutions. It was also found that certain kinds of such

problems tend to reappear at various places, although often in slightly different guises.

Such recurring classes of problems merit discussion of their own due to their

contribution to the overall optimization problem.

The development follows a RAD pattern characterized by the absence of a predefined

set of requirements. Instead, the software starts as a crude prototype which quickly

evolves into an increasingly refined product in a continuous coding-evaluation-

improvement cycle.

Program modularity is regarded as very important, compelling the author to strive

towards a highly modular code in spite of the lack of formal requirements and design

and the foresight they may offer. Object Oriented Programming (OOP) with its inherent

features such as encapsulation and polymorphism provides an excellent framework for

modular application development under such circumstances. This is made possible in

particular by Borland Delphi™ compiler which has full support of OOP. The Object

Pascal language supported by Delphi allows custom classes and objects to be used

extensively in the program to achieve the desired level of modularity.

5.2. Program Structure

5.2.1. Modules
The primary goal of writing modular software is to make coding and maintaining all

parts of the program relatively easy, no matter how divergent those parts may be.

Modular software design also facilitates code reuse, which is another key ingredient for

rapid development of good quality software. In Delphi as the programming language,

software modularity can be achieved in three different ways:

 61

• Object modularity. As the basic building block in OOP, the objects bind data

and procedures into single entities. In Delphi programming, all classes descend

from TObject. Despite its lack of sophistication compared to many special-

purpose classes it was derived from, the basic TObject class allows the ultimate

flexibility of which a descendant class can be defined and used. Consequently,

although Delphi libraries provide many descendants of TObject for specific

uses, the great majority of custom classes written by the author descend directly

from TObject.

• Source-code-file modularity. Delphi is not a pure object-oriented language,

although it provides full support for OOP. As a variant of the older Pascal

programming language, Delphi also fully supports procedural programming it

was originally designed for. To take advantage of both, objects and procedures

can be logically grouped in source-code files called Units. At the end of this

section the units and their content will be discussed in more detail.

• Task oriented modularity. Objects that are frequently used without alterations

can be integrated back into Delphi compiler’s library as VCL Components. VCL

stands for Visual Component Library, a subset of the generic Delphi objects

which constitute the highest form of encapsulation in Delphi. When necessary,

components can be created in design time and manipulated using Delphi’s GUI

without having to write a single line of code. Although quite a number of

Delphi’s standard components are used in this project, no custom components

are written as there is no need for them that has been identified during the course

of the project.

In this section, the term module is used in the context of source code file. Since in RAD

the software evolves from a very simple prototype, it is not possible to separate

functionalities in logical modules from the start. Instead, earlier modules are typically

constructed as no more than a disorganized collection of objects and functions kept

together in the same place to accomplish specific tasks. As their precise nature becomes

better understood, the objects and functions are shuffled to the more appropriate

modules. New modules were regularly added as the research progressed to further refine

the organization of the software source code.

The following is the list of source code files that make up the program modules. The

modules are ordered from the simple modules providing basic functionalities to the

 62

complex ones performing the more meaningful tasks using the functionalities found in

the former.

• uError.pas: a very simple module consisting of a mere series of string constants

to be displayed by other routines from modules when a run-time error is

encountered.

• uDebug.pas: provides a mechanism of conveying various pieces of information

to the programmer through the program’s user interface for the express purpose

of debugging. This module is only used as a development tool and will be

removed in the commercial version of the software.

• uCommon.pas: provides helper functions to perform various rudimentary tasks

such as stack and queue management, scalar and vector evaluation, and so on,

that will otherwise obscure and possibly foul the more complex algorithms that

use them. Using the functions from this module instead of rewriting the code

avoids duplication and keeps the code clarity of the host modules.

• uGraphicBase.pas: this is where two dimensional shapes are represented in the

logical viewing space. This module provides the crucial link between the world

and the screen coordinate systems. Equally important is a collection of functions

and procedures that perform various basic geometric operations discussed in

later sections.

• uPolygon.pas: defines the classes that define the internal representation of

polygon in both mathematical and application terms. In a mathematical sense,

the polygon is subject to geometric operations such as transformation,

projection, clipping, and so forth. Such concepts are generally unknown in the

application domain, where the polygon is seen as representation of a real-world

entity such as a wall, an obstacle, or a piece of panel material.

• uProblemSpace.pas: provides the objects that hold the data of the actual layout

problem in the application internal representation. Such objects are instrumental

in converting the relatively abstract concepts of layout containers, obstacles, and

panel shapes into the formalized structure of raw polygons that the actual

calculations of the optimization engine can deal with.

 63

• uPolyCalc.pas: manipulates polygons as a set instead of treating them as

individual pieces. The set may represent the MCPO problem, its solution, or a

subset of either.

• uPolyClip.pas: consists of the code for polygon slicing and clipping engines.

The tasks of cutting polygon have been found to be non-trivial, the solution of

which required novel algorithms to be developed and resulted in substantial

amounts of program code. The nature of the problems and their solution are

described in more detail in sections 5.5.8. Polygon Slicing with Straight Line and

5.5.9. Polygon Clipping.

• uSolution.pas: the heart of the program where various nesting and optimization

algorithms are to be implemented. It also contains advanced geometric

operations to complement those in uGraphicBase.pas. All the code that controls

the execution of optimization tasks can be found in this module. It also contains

the code of the Greedy Algorithm and Monte Carlo optimization algorithms.

• uGAEngine.pas: contains the implementation additional code of Genetic

Algorithm (GA) optimization engine. The algorithm is implemented in a

separate unit to allow the engine to be tested and verified before it is actually

used in the context of layout optimization.

• uPolyDoc.pas: provides control to all the application features. The application

main window defined in fMain.pas below obtains access to such features

exclusively from this module. uPolyDoc.pas handles multiple sets of polygons

and manipulates them in a single workspace. Another important task performed

by this unit is the reading of sets of polygons and writing them to external files.

• uWinDisplay.pas: is a graphic rendering engine written specifically for

Microsoft Windows™ Operating System. This module does the conversion from

the abstract view coordinates to the computer screen coordinates where the user

can visually see the objects. No computation code is written in this module apart

from that for rendering purposes.

• fMain.pas: is the main window that provides the user interface and the space

where the rendering takes place. No computation takes place in this module. Its

 64

only purpose being to provide access to the other units that do the actual

computations.

5.2.2. Input and Output Mechanism
The application needs the capability to handle the receipt of input and generating output

data in proper format. The Extensible Markup Language (XML) has been used as the

base format because of its ease of use as well as its native support in Delphi. This

decision is further justified by the wide acceptance of XML as the universal standard for

data exchange. By the virtue of modular design however, the different input and output

formats can be accommodated later fairly easily by updating the relevant modules.

Moreover, as an XML file physically takes the form of a text file, creating and altering

the input can be done easily using an external text editor. The use of an external editor

avoids the additional coding work that would otherwise be needed if the input data is to

be edited directly in the main application.

Although it has been envisioned that the optimization software should be capable of

receiving input from various sources such as disk file, memory stream, and remote

procedure calls, implementing such capabilities is decidedly outside the scope of the

research. Hence for the purpose of this project, the software currently accepts input

exclusively from disk file.

Similarly, the output of the program is currently limited to the computer screen and

XML-based disk file. Although it is anticipated that other forms of output such as data

streams to be passed to other applications and printed hardcopy may be required later in

the commercial version, screen output is considered sufficient for the purpose of this

research.

The application’s user interface (UI) is also susceptible to change, which is a further

reason why maintaining modularity in the code is so important. The current UI is

designed for evaluating the performance of the MCPO solution algorithms only. The

software can be adapted to industrial or commercial use later by modifying the I/O and

UI modules as necessary.

The XML input file is constructed as a series of polygons, as depicted in the simplified

picture of Figure 5.1. The actual structure of the hierarchy had undergone numerous

modifications to accommodate various additional data. No major rework was necessary

 65

when the structure evolved however, due to the effectiveness of the modular design of

the software.

Figure 5.1: The Skeleton of XML Input File

Within the application, an object of TPolyWorkSpace class is responsible for handling

the input and output data. As the name implies, the object actually serves as the

platform on which all the polygon processing takes place. Once loaded from input file,

the polygons are stored as descendants of TPolygonBase in a variable-length array.

TPolyWorkSpace loads the input data when procedure LoadFromFile is invoked.

Similarly the polygons in the work space can be saved back to an external file by calling

SaveToFile procedure.

Reading and writing external files are relatively minor features of TPolyWorkSpace.

The more important ones are those invoking geometric calculation routines and search

of solution for the given problem. The corresponding routines accept specific data

structures as input and generate output of sometimes intricate data structures.

TPolyWorkSpace has the capability of reading such data structures and visualizing

them. Because of these functionalities, TPolyWorkSpace can be regarded as the central

point from which the optimization engine is controlled.

 66

TPolyWorkSpace interacts extensively with TPolyDisplay, the abstract drawing space

on which the polygon objects in TPolyWorkSpace are drawn. Although physically not

involved in the actual painting of the polygon objects to the screen, TPolyDisplay has

the critical role of doing all the necessary operations required by TPolyWorkSpace to

visualize its contents. The role of TPolyDisplay is to provide a translation between

TPolyWorkSpace and the system-dependent objects that do the actual screen output.

TPolyScreen provides the actual means of drawing the graphical objects on the

computer screen. Because such operations are system-dependent, the implementation of

TPolyScreen varies between platforms. Currently TPolyScreen is coded to operate in a

Microsoft Windows™ environment only. Transporting the application to another

operating system such as Linux should only require modifications to the TPolyScreen

object, which demonstrates yet another clear benefit of modular design.

5.2.3. User Interface
The application’s main user interface consists of a read-only drawing surface and a

panel containing various buttons for quick access to the program functions. The

complete set of the program’s features is accessible from the pull down menu. Such

features are invoked through a set of methods provided by TPolyWorkSpace as

previously discussed.

Figure 5.2 below is a snapshot of the application’s main window. Since the UI window

has been designed to have minimum amount of intelligence, the various input controls

on the UI only serve as a link to TPolyWorkSpace’s data and methods.

 67

Figure 5.2: Main Window of Nesting.exe Application

Delphi’s standard class TCanvas is used as the drawing surface in the Microsoft

Windows™ environment. This particular class is suitable for vector-based drawing

required by the application. Although the TCanvas object is created and owned by the

application’s main window, its reference is also kept by the TPolyScreen, which uses it

as the output drawing space. The application’s complete visual output mechanism

follows the sequence shown in Figure 5.3.

Figure 5.3: Nesting.exe Visualization Sequence

 68

Since TCanvas is already equipped with methods to perform the actual drawing

operations on the screen, the work involved in generating visual output is essentially

limited to just calculating the correct screen coordinates.

At the current stage it is not known whether a class similar to TCanvas is also available

for other operating systems such as Linux. It is perfectly feasible however, to implement

a class similar to TCanvas, since all the shapes the application works on are made of

straight lines which are relatively easy to draw. Non-linear curves such as circles,

ellipses, or Bezier curves are deliberately replaced by their linear equivalent in the

current application. Such a restriction is acceptable given the fact that the potential

benefit of accommodating non-linear curves is marginal at best, which is easily offset

by the major work required to implement them.

5.3. Data Structures
Since Delphi supports procedural and object-oriented programming, both approaches

can be utilized to suit specific programming needs within the same project. While OOP

has the definite advantage of encapsulation and polymorphism, managing the objects

and their pointers requires special care which often complicates the code more than it is

worth. The reverse is equally true with the simpler procedural-oriented data structures,

which are no more than passive data containers lacking the sophistication of Delphi’s

classes and objects but hardly need memory management at all. Because of such

reasons, both types of data structure are used in the project. The most important ones are

described in the following sub-sections.

Although Delphi’s classes and objects have different meanings (class refers to the type

whereas the object is the instance of the class), they can be considered the same for the

purpose of this discussion. Therefore for the remainder of this section the term object

refers to both unless specified otherwise.

5.3.1. Active Data Structures
The term active data structure refers to Delphi’s object, which encapsulates both data

and methods. This kind of data structure is used when most of the data is manipulated

within the objects and little is passed between them. Objects are used heavily in the

developed application for the sake of code modularity as previously discussed.

For all their power as a programming concept, objects are also delicate to handle during

their lifetime. Unlike simple variables which can be accessed directly, object variables

 69

are only memory pointers. Consequently the memory space for the actual object must be

allocated and released by its explicit creation and disposal. At the minimum, failure to

release the unused memory space will result in the program leaking memory resources.

Typically, careless memory management results in the program becoming unstable

during runtime.

In many places in the source code, multiple variables can point to a single object. This

multiple reference situation causes removing a particular object from memory without

properly updating all variables pointing to it to corrupt the program.

5.3.2. Passive Data Structures
Passive data structures differ from the active ones in the complete absence of embedded

methods. In Delphi, the passive data structure is referred to as record, as it is in standard

Pascal language. The record structure contains only data, hence it is a much simpler

construct than the object type discussed earlier.

Unlike an object, the memory space is automatically allocated by the compiler on the

program stack when a record variable is declared. Similarly the space is removed from

the memory when the execution thread exits the block the variable is scoped for. Simply

put, memory management is of no concern to the programmer when records are used.

It is quite possible to dynamically create and destroy records explicitly, such as when

dealing with linked lists. Such an operation is roughly equivalent to handling the Delphi

objects as previously discussed. However dynamic memory allocation is an exception

rather than the rule when handling simple Pascal records. This particular technique is

not used in the developed application, save for the linked list structure for the polygon

clipping algorithm discussed in section 5.5.9.

The main drawback of passive data structures is the possible data corruption which is

the penalty for the absence of built-in methods. When objects are used, it is easy to

apply integrity checks at any point during its lifetime, which is typically done when data

is passed to the object. None of these can be done with the record type whose checks

and validations must be done by external routines.

With those characteristics, passive data structures are ideally suited to use as simple data

containers that can be passed through a series of external processes with little deviation

happening to their values during that time. This is typically the case of the raw polygons

when subjected to geometric operations.

 70

In the case of the developed application, the optimization module uses a number of

record data types to represent the geometric entities that make up the optimization

problem space. Such record data types are described in more detail as follows:

TVertex is a representation of a point in a two-dimensional plane. The record

contains X and Y axes whose values are stored as real numbers. TVertex is a

fundamental data structure in the entire project as virtually every geometric

operation involves the handling of either a series of, or a single TVertex.

TPoint is a native Delphi record that represents a point on the screen. TPoint

contains X and Y axes similar to those in TVertex. The axes in TPoint are of

integer data type however, as they are used in mapping picture elements (pixels)

to the discrete matrix of computer display buffer. TPoint is not manipulated in any

of the geometric calculations as its use is limited to display purposes only.

TVertices, which is a series of TVertex, is the representation of a polygon of

arbitrary number of vertices. TVertices corresponds to the TPolygon object

previously discussed, and is used to streamline the process of geometric

calculations. All the functions and procedures performing such calculations take

TVertices as a parameter instead of TPolygon.

TPrimitiveTriangle represents a simple triangle. The record consists of three

TVertex variables to denote the three vertices of the triangle. TPrimitiveTriangle

is important for various geometric operations such as surface area calculation and

point/shape inclusion as described later in the Geometric Operations section.

TPrimitiveTriangle also corresponds to the TViewTriangle described later.

TSegment represents a fixed length line. The record consists of two TVertex

variables that contain the vertices of both its ends. TSegment is used extensively

within the program since in many cases a polygon is regarded as closed loop of

segments instead of its most basic representation as an array of vertices.

There are many other active and passive data structures used, however for such special

purposes that the data structures will be discussed in the succeeding sections within the

context of their usage.

 71

5.3.3. Graphics Pipeline
As common practice in computer graphics programming, a graphical entity goes

through a series of transformation widely known as a graphics pipeline consisting of a

number of transformations to different coordinate systems before it materializes as a

series of pixels on the computer screen. Computer graphics programming is a complex

subject, and the graphics pipeline approach allows developers to write robust graphics

software with reasonable ease. For this reason, the graphics aspect of the application

development is dealt with using such an approach. The simplified graphics pipeline is

depicted in figure 5.4 below.

Figure 5.4: Simple Graphics Pipeline

In this project, the world coordinates system is used to represent the information about

the shape in its physical environment and is typically used as input and output data. The

view coordinates is used in representing the shape in the working view space where

various mathematical operations take place. Finally the results are visualized on the

computer monitor using its screen coordinates.

5.3.3.1. Shape Objects using World Coordinates
Although all kinds of shapes can be regarded as polygons, special cases exist for which

creating corresponding classes is beneficial. Three classes have been identified: the ones

representing a line, a rectangle, and a generic polygon.

TPolygonBase serves as the base class for the three identified classes. This is an

abstract class, meaning it cannot be instantiated directly as it contains methods yet

to be specified in its descendants. TPolygonBase contains variables common to all

its descendants such as origin point, pivot point, and orientation angle with which

the polygon is rotated at is pivot point. Among other things the class has the

capability of writing itself to an open XML file.

TLine is the simplest descendant of TPolygonBase. TLine represent a finite-

length segment of a line, which is not a valid polygon as it does not exist in the

physical world. Nonetheless, the line is implemented independently because of its

 72

instrumental role in various preprocessing tasks. The line consists of exactly two

vertices representing both of its ends.

TRectangle is unique that it represents the rectangular stock panel used in the

MCPO problem. The rectangle has four vertices which can also manipulated by

altering its length and width properties. These properties are not found in other

descendants of TPolygonBase.

TPolygon is the generic representation for any polygon having any number of

vertices. Within the context of layout optimization problems however, TPolygon

has the restriction of having at least three vertices to reflect the possible number of

vertices of 2D objects in the real world. The class does not have a mechanism for

detecting non-simple polygons, i.e. polygons whose outlines would intersect with

each other. A non-simple polygon has no equivalent in real world objects, and to

handle them would complicate the program code unnecessarily. Because of this

reason, no attempt has been made to accommodate non-simple polygons and any

input data containing such polygons is simply regarded as invalid and therefore

rejected. More discussion about non-simple polygons can be found in section 5.5:

Basic Geometry Algorithms.

5.3.3.2. Shape Objects using View Coordinates
TViewShape is the only object needed to manipulate and display the polygons,

although a special object TViewTriangle as described below is also used. The

TViewShape object has the capability of transforming itself within the viewing space as

well as performing a few basic geometric operations. One of the most important is

perhaps the triangulation operation, where the original polygon is decomposed into a

series of triangles. More detailed discussion regarding triangulation can be found in the

Geometric Operations section later in this report. Note that the term triangulation in this

context should not be confused with its more common use for describing the method of

locating an object from its distances from known reference points.

TViewTriangle is a helper object used for debugging purposes. The object is used

primarily to prove that a triangulation operation actually works. TViewTriangle also has

the capability to draw itself on the screen for visual inspection.

 73

5.3.3.4. Shape Object using Screen Coordinates
Along with TViewTriangle, TScreenShape is the only object that uses screen

coordinates. The only purpose of this object is to display its corresponding TViewShape

to the computer display buffer using various colors and filling patterns. Apart from

transforming the view coordinates to the screen coordinates, the only calculation done

by TScreenShape is centre of mass calculation. The calculation is done to determine the

coordinates of a string label to be displayed with the shape. Centre of mass calculation

will be discussed in more detail in the Geometric Operation section.

5.4. Basic Geometry Algorithms
As the most basic level, a polygon is represented by an array of vertices. The polygon

can be visually constructed by connecting adjacent vertices using straight lines. The last

vertex in the sequence is then connected to the first to close the loop. Overall, this

simple data structure is quite satisfactory for the software’s requirements. Nevertheless

it does have a number of problems that must be addressed, namely:

• Non-unique representation: to represent a shape, one needs to first select the

starting vertex from all vertices of the polygon. Second, the direction in which

the rest of the vertices are traced, either clockwise or anti-clockwise, must also

be determined. Therefore a polygon consisting of n vertices can be represented

in exactly 2n ways. To avoid mistaking identical polygons because of their

different representations, special congruence calculations are required.

• Non-simple polygon: The defining characteristic of a simple polygon is that

none of its sides intersect with each other. A non-simple polygon on the other

hand has at least two “sides” intersecting. All polygon shapes in the real-world

environment belong to the simple polygon type because it is physically

impossible to be otherwise. Non-simple polygons, which are regarded as an

error condition, can easily occur accidentally when such a simple data structure

is used.

Various geometric problems are encountered during the research and development of

the application. The rest of this section discusses a few such problems that require

substantial effort to solve. A number of them turn out to be subject to research efforts on

their own given that solutions are not readily available, and indeed there is a limited

amount of published work dealing with such problems.

 74

Bearing in mind that the software application is merely a vehicle for examining and

solving the MCPO problem, only limited amounts of time and effort can be devoted to

solve the generic geometric problems encountered. The implication is that most of the

basic geometric problems are solved using a pragmatic approach when possible. The

resulting algorithms are therefore designed for ease of implementation, and are

potentially relatively inefficient compared to alternatives with a larger implementation

overhead. For all its faults, this approach is nevertheless necessary to keep the project

within its defined scope.

5.4.1. Line and Segment Intersection Detection
Line and segment intersection detection is probably one of the most basic yet most

extensively used geometric operations. Since only linear shapes are handled,

intersection between shapes is relatively simple to detect.

The most flexible way to represent an infinite length straight line in a program code is

the implicit linear function:

0=++ CBYAX

The intersection point between two linear functions can be found by calculating x and y

values to satisfy both functions. Although the basic calculation is simple, provisions

must be made to handle special cases. Naïve calculation for such special cases

invariably leads to a division-by-zero operation, which is perhaps the worst kind of run-

time error to encounter.

• Horizontal Line: the value of A in the implicit function equals zero.

Mathematically, this means the value of Y is constant for any given X.

Attempting to blindly pinpoint Y with a standard calculation is therefore a

mistake, which will manifest in the division-by-zero error condition.

• Vertical Line: similar to horizontal line case, the value of B in the implicit

function is equal to zero. This is because the value of X is constant and Y is

utterly irrelevant.

• Parallel Lines: in this case the values of A and B are identical for both functions

and an intersection point does not exist.

A segment is a finite length line with defined endpoints. Segment intersection detection

is therefore a subset of line intersection detection problem. In this case the algorithm

 75

must perform additional tests to ensure that when an intersection exists between two

segments, it must occur within the boundaries defined by the endpoints of both.

Figure 5.5 below shows the segment intersection detection problem. The picture on the

left shows an intersection between segments AB and CD exists at P within their

boundaries. In contrast, there is no intersection between segments AB and CD in the

right diagram although the lines projecting from them do intersect at P’. In the latter

case the segment detection function should return FALSE, which will not agree with the

result line detection function invoked for the same problem.

A

C

DB

C

A

B

DP

P’

Figure 5.5: Detecting Segment Intersection

Various problems require segment intersection calculations to be solved. An example is

non-simple polygon evaluation, which is done by detecting intersections among the

polygon’s outline. Segment intersection is detected by first finding the intersection point

of the corresponding infinite-length lines – if there is any – and verifying whether that

point lies within the ranges of both segments in all axes.

5.4.2. Polygon Triangulation
Certain geometric calculations require a polygon to be decomposed into a set of

elementary triangles. The picture below shows such decomposition of a 7 vertices

polygon to five triangles. The decomposition process, which is also called polygon

triangulation, is the prerequisite to other operations such as surface area calculation

and inside-outside polygon query to be discussed later.

Extracting triangles from a convex polygon is found to be a simple and straightforward

process. Triangulating a concave polygon such as in Figure 5.6 however, is much more

complex. Since both convex and concave polygons must be handled, a triangulation

algorithm capable of solving both is needed.

 76

Figure 5.6: Polygon Triangulation

Various algorithms have been developed to solve the general polygon triangulation

problem. The apparent simplicity of the general polygon triangulation problem is

actually deceptive. For years researchers could only speculate whether an efficient

algorithm really exists until as late as 1988, when Tarjan and van Wyk constructed an

algorithm that runs in ()nnO loglog time (Chazelle, 1990).

The early work done by Michel Garey and his colleagues in 1978 resulted in a

triangulation algorithm that works on ()nnO log time (Garey, Johnson, Preparata, &

Tarjan, 1978). The algorithm works in two complex stages, making it hard to translate

into computer code.

A somewhat simpler algorithm was later proposed by Fournier and Montuno in 1984.

The algorithm first breaks the polygon into monotone polygons, which can be easily

triangulated afterwards (Fournier & Montuno, 1984). The performance of the algorithm

is similar to Garey’s algorithm at ()nnO log time. Fournier and Montuno’s algorithm

specifically handles all possible cases differently, resulting in a complex structured code

which is hard to validate.

Probably the most efficient solution is the one constructed by Bernard Chazelle (1990),

which operates at linear time ()nO . The basis of his algorithm is the horizontal visibility

map: the partition of the polygon obtained by drawing horizontal chords from the

polygon’s vertices. Chazelle’s algorithm however, is very complex and difficult to

implement.

 77

The most practical approach is to use the ear-cutting algorithm, where a polygon is

recursively reduced by clipping off vertices protruding from the polygon’s hull.

Triangles formed from such vertices and their two immediate neighbors are aptly called

ears. The ear-cutting algorithm is not particularly efficient, with execution time

reaching ()2nO in the worst cases. Nonetheless it is relatively simple to implement and

its performance appears adequate for this problem and therefore the ear cutting

algorithm is used as the solution for polygon triangulation problem.

5.4.3. Polygon Congruence
As previously explained, the data structure allows a polygon to be represented

differently in the memory. To avoid potential confusion during more complex

operations, it is necessary to write a polygon congruence detection routine.

The solution is constructed on the premise that the Euclidean distance of any pair of

points on a rigid body is constant regardless to the body’s orientation to the reference

framework. Using this principle, congruence is detected by matching the relative

distances of all vertices of a polygon with that of the other polygon it is compared to.

Additional measures are also taken to allow detection when different starting points and

tracing directions are used.

The Euclidean distance dist between two points (x1, y1) and (x2, y2) on a 2-dimensional

plane is calculated using the simple Pythagorean equation:

() ()2
12

2
12 yyxxdist −+−=

Because the equality between distances is all that is needed for congruence detection,

the expensive square root operation can be omitted without affecting the result.

Therefore in the interest of better performance, the comparisons are made on square

distances sqr_dist instead:

() ()2
12

2
12_ yyxxdistsqr −+−=

Since the square distance is calculated for every pair of vertices on the polygon, the

execution time of the algorithm is ()2,nC , the number of pair combinations between its

vertices. Further because:

() ()
()()
() () nnnn
n

nnn
n

nnC −=−=
−

−−
=

−
= 21

!2
!21

!2
!2,

 78

The execution time of this congruence detection algorithm is therefore ()2nO , which is

reasonable when n is low. In the current software implementation, the number of

vertices is currently limited to 100=n . More advanced algorithms may be considered

in the future should this limitation prove unacceptable.

As a side note, congruence is still detected when the polygons are shifted and rotated

since the calculations are only made on distances of the vertices relative to each other.

5.4.4. Convex Shape Detection
A polygon is convex when there are no cavities on its outline, whereas the concave

polygon is one that has one or more of such cavities. A cavity is defined by considering

three sequential vertices, and is present if the central vertex is inside the straight line

joining the two end vertices. Such cavities are easy to identify visually, as can be seen

by examining Figure 5.6, but complex to identify computationally. Although the

difference may sound subtle, its implication is not trivial. Concave polygons are much

more complex to work on, and often need to be decomposed into convex sub-polygons

before certain operations can be achieved.

The solution of convex-concave detection problem is based on the fact that the vector

between a pair of two vertices constantly changes in one direction when one traces a

convex polygon. In the example below, the convex polygon to the left is traced counter-

clockwise with the vectors always changing direction to the left.

Figure 5.7: Convex and Concave Shapes

 79

On the other hand, the concave polygon on the right has a vector changing direction to

the right at vertex V3 whereas the rest are turning left. Note that when V3 is discounted,

the two polygons above are identical.

The convex – concave detection algorithm can be summarized as follows:

1. For a given vertex Vi, determine a line Li which connects
Vi and Vi+1

2. For the Vi and Vi+1 pair of vertices, calculate whether
vertex Vi+2 lies to the left or right of line Li
calculated above

3. Repeat steps 1 and 2 until all vertices in the polygon is
evaluated

4. If the direction change is consistent for all vertices
(i.e. all to the left or all to the right), the polygon
is convex

5. Otherwise the polygon is concave

The side-of-line calculation is based on the basic implicit linear function for a given pair

of vertices (x1, y1) and (x2, y2).

() ()() ()()211121, xxyyyyxxyxf −−+−−=

where

() 0, =yxf when point (x, y) lies on the line

() 0, >yxf when point (x, y) lies to the right of the line

() 0, <yxf when point (x, y) lies to the left of the line

In this algorithm, point (x, y) used for the Vi and Vi+1 pair of vertices is vertex Vi+2 as

indicated in the algorithm.

The execution time of the algorithm in its current form is ()nO which implies

satisfactory performance for any given n. Because of this reason, no further

optimization is seen as necessary for convex-concave detection.

5.4.5. Polygon Surface Area Calculation
It is absolutely necessary to be able to calculate the surface area of a polygon. This is

particularly true in the context of layout optimization problems, where the efficiency of

the solution is ultimately determined by the surface area of the wasted material.

 80

Various mathematical formulae exist to do the calculation on various regular-shaped

polygons. Using specific formulae to calculate different shapes is very impractical

however, and does not offer a solution when irregular-shaped polygons are involved.

A much more feasible approach is to calculate the surface area of a polygon as the sum

of surface areas of its elementary triangles. Since the elementary triangles are already

provided by the triangulation routine previously discussed, all that remains to be done is

the triangle surface area calculation.

The triangle surface area is calculated by using Heron’s formula:

()()()()
4

bacacbcbacba
area

−+−+−+++
=

where a, b, c are the lengths of the triangle’s sides. The formula in its original form

above is numerically unstable on triangles with small angles. To alleviate the problem,

the formula is slightly modified and simple pre-processing is added.

()() ()() ()() ()()
4

cbabacbaccba
area

−+−+−−++
=

and the sides are sorted according to their lengths so that

cba ≥≥

The sum of surface area of the triangles yields the surface area of the original polygon.

5.4.6. Inside or Outside Polygon Query
There are cases where the knowledge of whether a given point lies inside a polygon is

critical. The most important ones are polygon overlap detection and polygon slicing

described in succeeding sections.

Similar to the surface area calculation, the elementary triangles are used to determine

whether a given point lies inside or outside a polygon. The implicit linear function is

again used as the basis of determining whether a point resides inside a triangle.

To find whether a point P lies inside a triangle, the algorithm evaluates that for all

segments of the triangle, P lies on the same side as the remaining vertex. In the example

below P is inside the triangle ABC if all the following requirements are satisfied:

 81

• P lies on the same side as C to segment AB

• P lies on the same side as A to segment BC

• P lies on the same side as B to segment CA

Figure 5.8: Point P is Inside Polygon ABC

To determine whether a point lies inside a polygon, that point is tested to see if it lies

inside any of the polygon’s elementary triangles. The evaluation returns TRUE when

such a container triangle is found. Otherwise the evaluation returns FALSE when none

is found after all the triangles have been examined.

The concept can be expanded further to evaluate whether a polygon lies entirely inside

another polygon. Such a check is easy to perform by testing that all vertices of the

polygon lie within the boundary of the host polygon. Using a similar method, it is

equally easy to check whether a polygon lies entirely outside another polygon. Although

very simple, these checks provide powerful tools for more complex operations such as

polygon overlap detection.

5.4.7. Polygon Overlap Detection
Overlapping polygons represent an error condition to any MCPO solution. Detecting

such overlaps is therefore a critical task to be solved. The detection proves a non-trivial

task as illustrated by various possible ways two rectangles ABCD and EFGH can

overlap in the pictures below.

 82

C

A B

D

F

G

H

E

A B

CD

E F

GH

A B

CD

E F

GH

A
E B

F

C
GD

H

A B

CD

E F

GH

Figure 5.9: Polygon Overlap Examples

The two top pictures show the simple cases of overlap, which can be detected when

either of the following is true:

• At least one vertex of a polygon is found within the surface area of the other

polygon

• The sides of one polygon are intersecting with the sides of the other polygon

The remaining three on the bottom, however, are the examples of more complex

situations where intersections exist and none of the above tests can be used. Because of

the diversity of overlap conditions, a detection result cannot be reliably obtained if the

test is done on a per-case basis.

David Mount (1992) constructed an algorithm to detect overlap between two simple

polygons of arbitrary shape. The algorithm uses separators and scaffolds to simplify the

outline of the polygons and recursively refine the hulls until either intersections are

found or the hulls merge back to the original polygons’ outlines. Mount’s algorithm is

powerful and efficient, running at ()nmO 2log time, where n is the number of vertices

and m is the complexity of the polygonal curve separating the two polygons (Mount,

1992). The algorithm is quite complex however, making it impractical to implement.

A much simpler solution is to test for all cases previously mentioned if the polygons

involved are limited to triangles. Two triangles are considered to overlap when:

• At least one vertex of a triangle clearly lies inside the other triangle

 83

• The triangles are identical and occupy exactly the same area in the coordinate

system

On the other hand, two triangles are considered not to overlap when:

• The two triangles occupy completely different areas in the coordinate system

• One vertex of a triangle lies on the outline of the other triangle, while the

remaining two vertices are clearly outside

• Two vertices of a triangle lie on the outline of the other triangle, while the third

vertex is clearly outside

The triangle overlap detection provides a solid base for the polygon overlap detection

function. A generic solution for overlap detection is to decompose the polygons into

their elementary triangles, followed by a test of whether any of the following conditions

is true:

• Any of the elementary triangles of a polygon overlaps with any elementary

triangle of the other polygon, or

• A polygon lies entirely within another polygon

Using the above series of tests, none of the complex cases in Figure 5.9 can escape

detection any more. All the simpler cases are detected correctly as well.

The algorithm is not particularly efficient, since the polygons must be triangulated, for

which the ear-clipping algorithm has the complexity of ()2nO , as part of the pre-

processing. Later, each vertex of the other polygons is examined against all triangles of

the first polygon, making the total complexity of the algorithm ()3nO .

Clearly the performance of Mount’s algorithm is superior with ()nmO 2log when n is

large. The novel algorithm however, works on a more straightforward logic facilitating

rapid realization of the actual software module and thus allowing the research and

development effort to focus on issues more directly related to MCPO problems.

5.4.8. Polygon Slicing with Straight Line
Referring back to the definition of MCPO problems, cutting the exposed areas of the

original container to fit the dimensions of the stock panel is necessary by the time the

first sub-problem is solved and the second sub-problem is to be constructed. A simple

example of the polygon cutting problem is given below. In this example, an irregular

 84

shaped polygon is sliced by a straight line. The result is three sub-polygons where the

intersection points between the original polygon and the cutting line make for vertices

of the new polygons.

Figure 5.10: Straight Line Polygon Cutting

In the absence of published research on the subject, a custom algorithm has been

developed to perform such cuts. The algorithm works on the assumption that for every

intersection point between the cutting line and the polygon, there is exactly one

intersection point opposite to it. In the abstract form, the algorithm has the following

outline:

Straight line cut pre-processing:
1. Trace the polygon from the first vertex to the last
2. Evaluate whether an intersection is found for every

segment between neighboring vertices
3. Store the vertices and intersection points in an array,

according to the order they are found
4. Scan the entire array, and for each intersection point,

identify its opposite

Straight line cut sub-polygon construction:
5. Make an attempt to trace neighboring vertices from the

first in the array to the last
6. When an intersection point is encountered, jump to its

opposite
7. Repeat steps 5 and 6 until the end of the array is

reached
8. Store the tracing sequence as the vertices of newly

created sub-polygon
9. Remove vertices that have been visited, mark visited

intersection points as normal vertices
10. Repeat steps 5 to 9 until the list is empty

The pictures below illustrate the process of cutting one such sub-polygon from a ten-

vertex polygon on which four intersection points are detected. By tracing the array from

V0 to V9 using C0 and C1 as jump points, the new sub-polygon is constructed. The rest

of the sub-polygons are cut away from the remaining polygon in the next iterations in a

similar manner.

 85

Figure 5.11: Polygon Cutting Algorithm at Work

For any given intersection point, the simplest way of finding its opposite is by selecting

the other intersection point closest to it. This naïve approach works generally well when

the polygon is traced from its convex vertices, such as V0 in the above example. That is

not true however, when the polygon is traced from a concave vertex, such as V6 in the

same example. In this case C2 will be selected as the opposite or C1 intersection point,

leading to invalid results.

The problem is further compounded by the fact that the cutting line sometimes goes

through the polygon vertices. This is especially problematic when the vertex is concave,

such as V6 in Figure 5.11 example. Intersection at a concave vertex means that

particular point has two opposite intersection point instead of just one.

Such problems are solved by improving the basic algorithm above to accommodate a

number of different types of intersection point, coded in the program as an enumerated

type with values of ctNoCutOff, ctAtLeg, ctAtJointSingle, ctAtJointDouble, ctInvalid. In

the preprocessing phase, the polygon is traced from the first vertex to the last, where all

vertices and intersection points are stored in the reference array marked with the

appropriate type.

• ctNoCutOff: when there is no intersection detected between the current vertex

and its next neighbor.

• ctAtLeg: intersection is detected between two vertices. This is a normal

intersection with only one corresponding opposite intersection point.

• ctAtJointSingle: the intersection is detected at a convex vertex. Similar to

ctAtLeg, there is only one corresponding opposite intersection point.

 86

• ctAtJointDouble: the intersection is detected at a concave vertex. This is a

special case where two opposite intersection points exist instead of just one.

• ctInvalid: this is used during the sub-polygon construction to mark vertices that

have been traced and used

Additionally, a vertex not crossed by the cutting line must either lie to its left or to its

right. This information is also stored for the use in the sub-polygon construction phase.

Straight line cut sub-polygon construction:
5. Decide the direction in which the cutting line will be

traced
6. Find the first valid intersection point according to

the cutting line tracing direction
7. When such an intersection point is found, construct a

sub-polygon to the left of the cutting line
8. Store the tracing sequence as the vertices of newly

created sub-polygon
9. Repeat steps 7 to 8 to construct sub-polygon to the

right of the cutting line
10. Change the type of all traced ctAtJointDouble nodes to

ctAtJointSingle
11. Mark all traced nodes of other types to ctInvalid
12. Repeat steps 5 to 11 until all nodes are marked

ctInvalid

The improved algorithm proves much more robust than the original. The result of the

polygon cutting process has been found correct in all possible cases when the code was

tested. No error has been found during live calculations either. Further work may be

required to prove that the algorithm applies to all cases, though it is likely that this will

be through empirical evidence rather than an analytical theorem of proof.

5.4.9. Polygon Clipping
A different kind of cutting problem is encountered when a polygon needs to be cut

using the outline of another polygon overlapping it. To avoid confusion, the shape to be

cut is called the subject polygon, whereas the polygon whose outline is used as the

cutting template is called the clip polygon. The left picture below shows the subject

polygon in the shape of a blue rectangle about to be cut with the clip polygon

represented by the green triangle. The picture on the right shows the two polygons

resulting from the cut.

 87

Figure 5.12: Polygon Clipping Problem

This type of cutting is necessary in MCPO problems when there are areas within the

container that should not be covered, such as a window on a wall. In such a case, the

portion of the panel occupied by the window area must be cut off.

Before contemplating the design of a suitable algorithm for solving the polygon clipping

problem, it is necessary to evaluate the possible cases of clipping scenarios and their

expected solutions. The given example above is probably one of the simplest and

easiest. Figure 5.13 below shows all actual cases found during research and the

development and deployment of the optimization software.

An ideal clipping algorithm must be able to efficiently handle all five cases shown in

Figure 5.13. The fourth case, however, is peculiar since the result calls for a special data

type to represent it. Since polygon representation in layout optimization software only

keeps the information about its outline, the result of the fourth case cannot be

accommodated without special provisions. Because there is no practical use of keeping

such information within the context of layout optimization anyway, it has been decided

to disregard the holes altogether and treat the fourth case as if it is similar to the first

case. This is justified simply because the outline of the subject polygon is unchanged by

the clipping action.

 88

Subject
Polygon Clip

Polygon

Clip
Result

Case 1: Clipping when no overlap exists does not affect the subject polygon

Subject
Polygon

ClipPolygon

Clip
Result

Case 2: Clipping on simple overlap results in single polygon

Subject
Polygon

Clip
Polygon Clip

Results

Case 3: Clipping on simple ovelrap results in multiple polygons

Hole

Clip
Result

Clip
Polygon

Subject
Polygon

Case 4: Clipping makes a hole in the subject polygon without altering its outline

Clip
Result

Subject
Polygon

Clip
Polygon

Case 5: Clipping removes the subject polygon entirely

Figure 5.13: Possible Polygon Clipping Cases

 89

There are surprisingly few polygon clipping algorithms to be found in the literature. The

development of polygon clipping algorithms is explained by Maillot, 1992; Zhang &

Sabharwal, (2002). According to them, Cohen and Sutherland proposed in 1968 what

was probably the earliest polygon clipping algorithm, which works through the formal

encoding of line and segments. The Cohen-Sutherland (CS) algorithm works with

rectangular clip polygons only, but it laid the groundwork for more sophisticated

algorithms which came later.

The CS algorithm was improved in terms of performance by the works of Sutherland

and Hodgman published in 1974. Their solution is called the reentrant polygon clipping

algorithm. The Sutherland-Hodgman algorithm gained wide popularity as reflected by

their use as a measuring standard by a number of researchers of the field.

Liang and Barsky (1993) later proposed an improved algorithm which treats each

segment of the subject polygon independently from each other, cutting the affected

segments separately before assembling it to form the final shape. Liang and Barsky

claimed the execution time of their algorithm to be only half of that required by the

standard Sutherland-Hodgman algorithm.

In the interest of speed, Maillot refined Liang-Barsky algorithm by using integer

arithmetic instead of the original floating point calculations (Maillot, 1992). With the

advent of multimedia computing, Schneider and Van Weltzen further introduced

clipping algorithm specifically tailored for Single-Instruction Multiple-Data (SIMD)

multimedia processors (Schneider and Van Weltzen, 1998).

Although numerous performance improvements have been made from the basic CS

algorithm, all the algorithms mentioned above share the same basic restrictions:

• The clip polygon has a rectangular shape only

• The valid clip result is only that found inside the clip polygon

The above restrictions severely limit the value of those algorithms in the layout

optimization. Firstly, there is no guarantee that the clip polygon in the layout

optimization problem will have a rectangular shape. Secondly, the main use of the

polygon clipping algorithm is to find shapes that lie outside instead of inside the

clipping region – a direct contradiction to the second restriction. For these reasons, the

algorithms discussed above cannot be used in the layout optimization software.

 90

About the only generic clipping algorithm for arbitrary shape of both subject and clip

polygons available in the literature has been proposed by Bala R. Vatti. The algorithm is

based on the assumption that the edges of one side of the clip polygon will end up as

edges of the opposite side of the resulting polygon (Vatti, 1992). Both subject and clip

polygons are first decomposed into a series of bounds, or the collection of segments

facing either to the left or right of the original polygon. The bound is further defined as

a series of vertices sorted by their value on the Y-axis, starting with a local minimum

and ending with a local maximum. A convex polygon will have exactly one left bound

and one right bound, whereas a concave polygon may have more than one of each.

The edges are then scanned from bottom to top to find the intersection points as well as

the vertices that contribute to the construction of the sub-polygons. A set of rules is used

to determine the nature of the intersection points and their role in constructing the sub-

polygons. The edges information is implemented as a linked list, which is fed to the

actual clipping algorithm.

Despite Vatti’s claim that the algorithm is robust and efficient, it has not been found a

suitable solution for the cutting problem at hand because the algorithm is very complex

and requires a great deal of preprocessing. The amount of work involved during

preprocessing phase is especially apparent when building the linked list to keep the edge

information. The algorithm also employs an extensive set of rules which cannot be

implemented easily. Finally, the basic algorithm cannot handle the cases where a string

of vertices are found on the same Y-coordinate value. To accommodate such cases calls

for a considerable expansion of the basic algorithm, further complicating the

implementation task. Because of the above reasons, implementing the Vatti clipping

algorithms was not a feasible option for this project.

To resolve this problem, a novel algorithm with a completely different approach has

been derived and implemented. The algorithm makes extensive use of various other

geometric calculations already implemented in the software and whilst it is recognized

that it has not been shown analytically to work in all cases it has proven to be a

pragmatic solution to a very complex problem with no exception found during testing

and use.

The clipping algorithm works by emulating the notion of a pair of scissors cutting a

piece of paper using a polygon-shaped flat template. To achieve this effect, the

algorithm works in two phases: the pre-processing and the sub-polygon construction. In

 91

the first phase, the intersection points are identified and stored in linked lists. In the

second phase, the information from the linked lists is used to construct the resulting

polygons.

Polygon clipping pre-processing:
1. Construct a linked list to represent the clip polygon
2. Construct a linked list to represent the subject

polygon
3. Trace the clip polygon from the first vertex to the

last
4. For all segments of the clip polygon traced in step 3,

trace the subject polygon from the first vertex to the
last

5. When a segment from the clip polygon intersects with a
segment from the subject polygon, create a node for
that intersection point

6. Insert the node created in step 5 between appropriate
vertices of the clip polygon

7. Insert the node created in step 5 between appropriate
vertices of the subject polygon

8. Discard the original vertices from both the clip
polygon and the subject polygon if they are identical
with the intersection points

9. Discard the original vertices from the subject polygon
if they are found inside the clip polygon

Both the clip polygon and subject polygon use linked lists of the same structure. The list

element contains four pointers, two for the neighboring vertices of the clip polygon and

another two for the neighboring vertices of the subject polygon. The result of this pre-

processing is two linked lists fused together at intersection points. Figure 5.14 shows the

process of the linked lists progressing from the raw polygons to their final form.

Although the polygons occupy the same plane, their linked lists are shown on different

layers for clarity.

The resulting sub-polygons are constructed from the linked lists by tracing the clip

polygon in one direction, taking off a closed loop of vertices whenever an intersection

point is found. Such a loop represents a sub-polygon made from the outline of both the

clip polygon and subject polygon.

 92

Subject
Polygon

Clip
Polygon

s s

s s

c c

c

Subject
Polygon

Clip
Polygon

s s

s s

c c

c

c

c

c

s s

s s
c c

c

i
i

i
i

s s

s s
c c

c

i
i

i
i

s s

s s
c c

c

i
i

i
i

The clipping problem Polygons represented
as linked lists

Project clip polygon to a
different plane for clarity

Detect intersection
points - arrow heads

omitted for clarity

Link subject polygon to
intersection points

Link clip polygon to
intersection points

Figure 5.14: Constructing Linked Lists for Polygon Clipping

Polygon clipping sub-polygon construction:
10. Find the base vertex at a new sub-polygon by tracing

the clip polygon in a certain direction (e.g. to the
left) until an intersection point is found immediately
after an ordinary vertex

11. If such a base vertex is found, continue tracing the
clip polygon vertices until an opposite intersection
point is found

12. From that intersection point, switch to tracing the
subject polygon in the reverse direction (e.g. to the
right) until the base vertex is found

13. If an intersection point is encountered in the interim,
switch back to tracing the clip polygon in the original
direction

14. Save all the nodes visited during the loop as a new
sub-polygon

15. Mark all visited nodes as ‘invalid’ to deny their use
in subsequent iterations

16. Repeat steps 10 to 15 until all nodes of the clip
polygon are marked as invalid

Although linked lists are notoriously fragile when misused, it can be a powerful

programming solution when managed correctly. The polygon clipping engine has been

written with this caveat in mind. The resulting code is robust, showing none of the

symptoms of memory management failure.

 93

The performance of the algorithm as a whole has been found equally satisfactory in

terms of execution time and the correctness of the results. Such an assertion is well

supported by various test and live runs even though it is quite possible that the

algorithm may fail on some unforseen cases. The engine has been tested for all known

clipping problems, with the correct result found on each run. Similarly, there has been

no problem found when the engine is used on the actual optimization runs.

5.4.10. Centre of Mass Calculation
Any physical object has its centre of mass (CoM), a point where all the object’s mass

and weight are perfectly balanced. The CoM calculation does not serve any significant

purpose in MCPO. However, the calculation is necessary when associating a text label

to a polygon during display. When the text label is placed arbitrarily around a polygon,

it is easy to lose the association when large a number of polygons are displayed. To

minimize this undesired effect, it is most natural to place the label at the “centre” of the

polygon.

Figure 5.15 below demonstrates the difference. On the left, the text labels are placed to

the upper right corner of the rectangular boundaries of the associated polygons, with an

untidy and potentially confusing result. In contrast, the association is much more

intuitive in the right picture where the labels are placed on the centre of the polygons.

Figure 5.15: An Example of Centre of Mass in Use

The CoM calculation is based on the assumption that the shapes are homogenous. Under

such assumption, the calculations for a given polygon are made in three stages: line

calculation, triangle calculation, and generic polygon calculation.

Computing the CoM for a line segment (x1, y1) and (x2, y2) is done simply by finding its

midpoint.

 94

2
21 xx

xCoM
+

=

2
21 yyyCoM

+
=

To calculate the centre of mass for a triangle, first the CoM for each of its sides is

determined. Then the length of each segment is also calculated. Finally the triangle’s

CoM is determined by the average of the CoM’s as weighted by the corresponding

segment length. Hence for a triangle with known CoM for all its sides at points A, B, C,

and the length of the respective sides of LA, LB, LC, the centre of mass on its x-axis is

calculated as follows.

CBA

ccBBAA
CoM LLL

LxLxLx
x

++
++

=

A similar calculation is done to find the CoM for the y-axis.

The CoM for a polygon is calculated from the sum of the CoMs of its elementary

triangles, weighted by their surface areas. Therefore for a polygon consisting of n

elementary triangles, with the ith triangle having CoMi and surface area Ai, the

composite CoM for the x-axis is calculated using the following equation:

()

∑

∑

=

== n

i
i

n

i
ii

CoM

A

AxCoM
x

1

1

The CoM for the y-axis is also calculated in the same manner as above.

5.5. Optimization Algorithms
With the tools for all necessary geometric operations implemented and tested, finally

the software has taken the shape where the actual optimization can be realized. There

are three algorithms studied here: a greedy algorithm, a Monte Carlo technique, and a

Genetic Algorithm. This section provides detailed discussion about major issues

encountered when implementing each of them.

5.5.1. Greedy Algorithm
For the MCPO problem, the greedy algorithm constructs a solution sequentially by

always trying to fit the most profitable piece into the available free space. This is a

 95

short-sighted strategy whose performance can be extremely poor in complex solution

spaces due to its inability to escape from local optima. Nonetheless, the mechanism of a

greedy algorithm is intuitive and therefore easy to implement into reliable code and also

provides a baseline performance to be measured against other methods.

While the concept is simple, the implementation in nesting problems is much more

involved because the basic greedy algorithm works only with scalar values. To solve a

nesting problem, the algorithm needs to be modified to take vector values into account.

Vector values differ fundamentally from scalar values in that simple arithmetic

operations do not apply. Accommodating vector values in a greedy algorithm proves a

non-trivial task.

For any given iteration in a nesting search, the greedy algorithm must resolve four key

problems:

1. Which candidate piece to select

2. Where to put that particular piece in the nesting container

3. What orientation the piece should be placed in

4. Whether flipping should be applied for the piece if orientation constraints allow

Most of the corresponding parameters, i.e. problems 1, 3, 4, can be represented as scalar

values. The second problem however requires a vector parameter for representation.

The basic greedy algorithm essentially addresses only the first problem, whereas the

remaining three are not covered because they are specific only to the domain. Valid

answers to those additional three will in effect justify the decision made for the first

problem by proving that the piece in question can be successfully nested. Recall that the

search for valid answers must not violate the two fundamental constraints of the nesting

problem:

• The pieces must lay entirely within the boundaries of the container

• The pieces must not overlap with each other

At this point it is also important to appreciate that the objective of the layout

optimization is to minimize wasted material. Modeling the problem for a greedy

algorithm therefore requires the understanding of how the values of the pieces are

quantified to allow the resulting waste to be directly calculated. The physical panel used

for the actual building has length, width, and thickness, totaling in three dimensions. In

 96

the model used however, thickness is ignored, leaving two dimensions only. The

amount of material is therefore most suitably measured by surface area rather than

volume.

This leads to surface area being selected as the main parameter for the greedy algorithm

search. When a candidate piece is to be evaluated, the surface area of the vacant space

in the container is calculated. The algorithm then attempts to fit the biggest piece in the

pool whose area is smaller or equal to the vacant space into the container. If this attempt

is unsuccessful, the next biggest piece is evaluated. The process is repeated until a piece

can be legally fitted into the container, which also results in that piece being removed

from the pool. If none of the candidate pieces in the pool can be selected, a fresh

container is used and the process is repeated.

The algorithm terminates when all the pieces have been used. Because the pieces are the

product of the original layout area when it was cut up according to the shape of the

container, there will be at least one way to fit a piece into an empty container. Therefore

the algorithm is always guaranteed to terminate.

The greedy notion of this algorithm is realized by sorting the pieces based on their

surface area in descending order before the actual optimization takes place. Figure 5.16

shows an example of the pieces that emerge immediately after the first stage solution

has been constructed.

0 1 2
3 4

5 6 7 8 9

10

11

12 13

14

15 16

Figure 5.16: Nesting Problem Sample Pieces

Figure 5.17 shows the same pieces reordered in descending order from left to right, top

to bottom according to surface area, and ready for optimization.

 97

01

2

3

4 5

6

7

8

9

10

11

1213

14

15 16

Figure 5.17: Pieces Reordered by Surface Area

The second problem to be solved about a particular piece is about where it should be

placed within the container. Using Figure 5.18.a as an example, it is evident that when

the container is considered continuous, the candidate panel can be placed inside in an

infinite number of ways.

Container

Candidate
Panel

a. b.

Figure 5.18: Layout Solution by Vertex Incidence

Reducing the container to a discrete set of possible placement choices is vital to make

search possible. Given the exponential nature of the size of the overall optimization

problem as a whole, limiting the number of possible ways of placing candidate panels in

the container from that discrete set is also necessary.

This particular implementation uses incident vertex placement, which is an approach

similar to linear programming. If the area of the container is considered as the feasible

area, then the potential optimum solutions are associated to its vertices. Only those

vertices will be evaluated as incident vertex candidates for the panel at hand. The panel

is then shifted to various places to make its vertices overlap with those of the container.

 98

Figure 5.18.b shows the evaluation of how a small triangular piece can be placed inside

a rectangular container using such a method. It appears that twelve possible solutions

exist, of which three are valid as a nesting solution. Because the solution is not singular,

a further decision must be made to select the “best” from these equally valid options.

There are two options available in response: those based on the first fit and the best fit

strategies.

5.5.1.1. First Fit Strategy
For a given piece, the greedy algorithm selects the first legal placement solution it

comes across. No further investigation is made on whether other solutions also exist.

This is a simplistic approach, which implicitly assumes that any results, including

suboptimal ones, are acceptable.

Because the polygon representation is not singular, there are typically a number of

different possible outcomes when a piece is nested using first fit strategy. Figure 5.19

demonstrates a few possible results when a triangular piece is nested in a rectangular

container. The algorithm evaluates the container from the first vertex to the last, using

them as reference points. For each container vertex, the algorithm then evaluates the

possible solution by overlapping the piece’s vertices with the current reference point.

Figure 5.19.a shows the best case where the vertices of the container and the piece are

ordered in such a way that making the first vertices of both shapes overlap produces a

valid result. Figure 5.19.b shows a slightly different ordering of the triangle resulting in

two unsuccessful evaluations being made before a legal solution is found. Figure 5.19.c

demonstrates even more unsuccessful attempts resulting when the container vertices are

arranged differently to that in Figure 5.19.a.

 99

a.

b.

c.

Figure 5.19: A Few Legal Results of First Fit Placement Strategy

Evaluating every single possible solution may seem wasteful, and reordering the

vertices prior to optimization to achieve a favorable situation like Figure 5.19.a appears

to be an attractive option. This is not possible to implement however, because there are

no generic and definite rules to be found in the literature on how the vertices must be

ordered to get such a result. Discovering such rules – if they exist – may require a

separate project well beyond the scope of the current research. For this reason, no

attempt has been made to improve the algorithm performance from this vertices

ordering aspect.

Note that in this example, only a single orientation is shown for the sake of clarity. In

the actual optimization, all coincidence vertices of flipped and reoriented shapes are

also evaluated.

 100

For all its faults, the first fit strategy does have its clear advantages. Apart from being

simple to implement, the search is also fast because it ends as soon as a solution is

found. In the worst case scenario, the algorithm will evaluate all possible solutions

before it realizes that none of them is legal. In the best case scenario, a legal solution is

found at the first try, such as the example shown in Figure 5.19.a. Without dwelling on

an actual statistical proof, it is safe to assume that the typical case would be that a legal

solution is found before all candidates are evaluated.

5.5.1.2. Best Fit Strategy
In the context of layout optimization, the best fit strategy reflects an attempt to improve

the odds of achieving a better final result by selecting a legal nesting solution that gives

the best chance to put more high-value pieces in the subsequent iterations. Unlike the

first fit strategy which settles with the first legal solution it finds, the best fit strategy

evaluates all legal solutions before deciding which one to use.

Figure 5.20 shows three legal ways a triangle abc can be placed inside a rectangular

container. These three candidates will be evaluated to determine which one is the

“best”. The notion of best solution is elusive and problem-specific however, requiring

analysis about what goal the algorithm is set to achieve and what means are available to

achieve it.

Figure 5.20: Candidate Solutions for Best Fit Placement

Because the objective of layout optimization is to put the pieces so as to occupy as

much container space as possible without overlapping, the logical posture of the best fit

strategy is to maintain a continuous and convex free space after each piece is placed.

Hence, the best solution for a given iteration is the one that provides the least possible

obstructions in the remaining unoccupied space.

With the criterion of the best solution established, the next task is to develop an

effective and inexpensive way to make the necessary evaluation. Unfortunately there is

no straightforward way the amount of obstruction within the vacant space can be

measured. A less direct calculation based on overlapping edges is used instead. For a

 101

given candidate solution, the length of the edges of the piece that overlap with the

outline of the container is calculated. If previously placed pieces exist, the length of

overlapping edges with those pieces is also added. The best solution is defined as the

one with highest total length of the overlapping edges.

Although there is no proof that the length of overlapping edges is directly related to the

amount of obstruction in the vacant space, the effectiveness of this approach is quite

evident. In Figure 5.20, solution 1 is regarded as the best since the triangular piece has

two edges ab and ac overlapping with the container outline. Solutions 2 and 3 have

one overlapping edge each, with decreasing length. Note that solution 1 leaves a convex

free space, effectively meeting the criterion of the best fit solution. In contrast, the

shapes of the free area of the remaining two are concave, significantly reducing the

chance of nesting large pieces afterwards.

5.5.2. Parameter Representation for GA and MC
As discussed in Chapter 3, the Genetic Algorithm (GA) and the Monte Carlo (MC)

implementations share a common characteristic of representing the solution parameters

in a bit string. In the GA, the bit string is called a chromosome. There is no special

name given for the bit string in MC. The bit string, however, serves exactly the same

purpose of providing the algorithms the means of fine-tuning the parameters by

manipulating the bit patterns. Additionally, the bit string is physically implemented

exactly the same way in both algorithms. For these reasons, the term chromosome is

taken as appropriate to refer to the bit string in the context of both algorithms.

To be of any use, the parameters represented in the chromosome must effectively

capture the problem that the algorithms are expected to solve. Modeling the problem

into a form readily represented as a chromosome is an important task entirely unrelated

to how the algorithms will physically manipulate the bits within the said chromosome.

Because of its importance, the discussion that follows will be devoted to analyzing the

problem and constructing its representation as a chromosome.

5.5.2.1. Parameter Modeling Issues
Substantial effort has been expended in designing the chromosome. Not only because

there are multiple parameters involved in layout optimization problems, but some of the

parameters are also inter-dependent. To construct a suitable model, it is quite

worthwhile to examine the parameters that define a second-stage solution in MCPO.

Such parameters are:

 102

1. The total number of stock panels required

2. The list of pieces that are nested within each stock panel

3. The placement coordinates of each piece within a stock panel

4. The rotation and flipping applied to that particular piece

Evidently the first parameter is dependent on the second parameter. Similarly the

second parameter is largely dependent on the third and fourth parameters. In the face of

this, the only information available to determine the value of those parameters is the list

of irregular panels represented by their vertices. This all leads to a situation radically

different from standard sheet layout problems found in the literature.

To reiterate, in standard sheet layout problems commonly found in the literature, only a

single container is provided. The solution designer is therefore allowed to use the

chromosome to directly represent the container and map the genes within the

chromosome to the nested pieces. Static blocks of bits can be used to represent the

placement coordinates of each piece, its rotation, and so on.

This static mapping cannot be easily applied to MCPO, since the number of containers

itself is a variable to begin with. The only possible way to accommodate all the

parameters within a single chromosome using a static mapping is by allocating a large

block of bits for each stock panel to make it able to contain all the pieces, and ensure

that enough stock panel blocks are provided within that single chromosome to anticipate

the possibility of having only one piece per panel. Unsurprisingly, the resulting bit

string is very large and prohibitively inefficient to be implemented.

A much more feasible solution is to deliberately use only a few parameters in the main

model, and to relegate the task of populating the rest of the parameters somewhere else.

Since the first two parameters identified above are the most crucial, they are selected to

be represented in the chromosome.

The solutions provided by both the GA and MC therefore only contain the information

about how many stock panels are used and the list of pieces that are nested within each

stock panel. The problem of how those pieces are actually nested remains unsolved at

this level.

Resolving the third and fourth parameters is important to determine whether the solution

for first and second parameters is legal. It is most appropriate to make finding their

 103

correct values an integral part of the fitness evaluation function for the original

chromosome.

There are two logical ways to solve the above secondary problem at a technical level.

The first is by utilizing the same sequential placement routines as used in the greedy

algorithm. The second is by mapping the now-static parameters as chromosomes to be

processed by the same GA or MC engines used to solve the first two parameters.

The first option has been proven a good choice because it is fast and deterministic in

nature. The second option fails on both accounts because having a simulation to

determine the fitness function of another simulation squares the total processing time,

and the nesting layout found during fitness evaluation cannot be reliably reproduced

because of the stochastic nature of the simulation. The last point is especially crucial

because only the original chromosome will be retained during the search process, and

therefore constructing the nesting layout after the search must yield exactly the same

result as found by the fitness function.

The above analysis reflects a very significant finding of this research. As indicated by

the discussion in Chapter 3, both GA and MC algorithms are typically used to

implement a simultaneous placement nesting strategy. The fact that all nesting

optimization algorithms implemented in this project eventually use a sequential

placement strategy rules out the possibility of comparing the performances of the two.

5.5.2.2. Chromosome Definition
After all the relevant decisions been made as discussed above, the problem is now

sufficiently reduced to enable the actual modeling of the chromosome. There are only

two parameters remaining to be coded in the chromosome:

1. The total number of stock panels required

2. The list of pieces that are nested within each stock panel

Direct coding to the genes in the chromosome is still not possible because the second

parameter is of a variable length. To solve this problem, indirect coding employing the

concept of clusters is used.

In this technique, static blocks in the chromosome are mapped to the pieces to be

nested. This represents the worst case solution, where each piece requires an individual

stock panel to be used. From the first step of the solution, it is known that all pieces to

 104

be nested are smaller than the stock panels therefore this provides an upper threshold for

the maximum number of panels required. Continuing with the example given in Figure

5.16, each panel is associated with a fixed-width block of bits in the chromosome. This

block contains only a single variable of integer type, namely the cluster ID. Figure 5.21

shows the association between the panels and the blocks in the chromosome.

0

1

2

3

4

5

16

V0 V1 V2 V3 V4 V5 V16...

Figure 5.21: Gene to Panel Mapping

The value of each variable points to an imaginary cluster to which the panel belongs.

Figure 5.22 shows an example of a populated chromosome with the imaginary clusters

that result. Because only 17 panels exist, the binary string can use five bits to hold the

cluster ID.

2 8 6 10 0 2 5 3 5 10 1 11 7 4 11 8 9

4

0

5

7 14 6 8

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Chromosome

10

0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 10 1 0 0 0... Binary
Representation

Decimal
Interpretation

Figure 5.22: Interpreting a Candidate Chromosome

 105

Using Figure 5.21 as reference, it is easy to decode the chromosome to find that the

Panel 0 is a member of Cluster 2, whereas Panel 1 is a member of Cluster 8, and so on.

Similarly, Cluster 0 appears to have only a single member, i.e. Panel 4, whereas Cluster

2 has two members: Panel 0 and Panel 5.

A cluster is regarded as legal if all its members can be nested in a single stock panel. As

previously discussed, part of the fitness function’s task is to discover whether such

nesting is possible. In the case of an invalid cluster being encountered, there are a

number of possible ways to respond. This issue will be covered later in Section 5.5.2.3.

The use of clusters effectively addresses the variable length problem of the nesting list.

Because the list only exists implicitly in the chromosome, no assumption about the

number of clusters needs to be made beforehand. Furthermore by allowing the pieces to

map themselves to the clusters, it is guaranteed that the number of clusters will always

be less than or equal to the number of pieces.

Typically, the number of bits allocated for each panel is a good deal more than required

to express all the possible Cluster IDs for a given optimization problem. Consequently,

assigning the pieces with a random Cluster ID number will often result in single-

member clusters with widely scattered IDs. While this phenomenon does not affect the

validity of the result, it does potentially bias the optimization engine into giving an

inefficient result. This problem is easy to solve however, by using a modulo operator to

convert all IDs to the acceptable range.

There are many ways to physically implement the chromosome. The simplest and

easiest is to use a Boolean variable to represent each bit with the chromosome itself

taking the form of a Boolean array as can be seen in the Pascal code written by

Goldberg (1989). While this kind of representation is good enough for simple problems

involving a few variables, it is not suitable for the multiple-container nesting problem at

hand. The chromosome in this project typically contains scores of variables that

sometimes number well over of a hundred. Representing each bit within the variable

with 8-bit Boolean data type proves prohibitively expensive in terms of memory

resources and computation time.

A one-to-one mapping for bit representation is a much more logical alternative. There is

a dilemma during the physical implementation, however, on which Delphi native data

type to use to represent the variables. Because the variables are only used to represent

 106

cluster IDs, the most appropriate candidates must be unsigned integer types. The basic

8-bit unsigned Byte data type may be too small because it can only hold 256 possible

values. The 16-bit unsigned Word data type on the other hand, is way too large. A 10-

bit integer would be ideal, as it can hold up to 1024 possible values. It is not anticipated

that the number or clusters used in the layout optimization would exceed this number.

The solution is to superimpose 10-bit integer variables in a physical string of 16-bit

Word data type. The individual variables can be assigned, extracted, and modified using

a series of masking and shifting operations. Figure 5.23 illustrates the custom data

structure.

V0

W0

V1 V2

W1 Wm-2 Wm-1

Vn-1Vn-2Vn-3

W2

V3

...

...

Figure 5.23: Chromosome Physical Representation

A 16-bit Word array of m elements is used to represent n 10-bit integer variables. In the

actual program, an array of 640 16-bit Word variables is used to represent an array of

1024 10-bit integer variables. No memory space is wasted because the number of bits is

exactly the same.

5.5.2.3. Accommodating Invalid Chromosomes
A chromosome in the context of layout optimization is accepted as valid only when all

pieces can be successfully nested in their associated stock panel. Its opposite is the

invalid chromosome, which contains one or more clusters whose members cannot be

nested in a stock panel. Because the search performed by both GA and MC algorithms

is set-oriented, there is no guarantee that all the clusters extracted from a chromosome

are valid. Invalid clusters are found very frequently in the actual tests because many of

the individual pieces are quite large compared to the size of stock panels, invariably

claiming most of the available area after only one or two nested pieces.

Invalid chromosomes have much less impact on the Monte Carlo technique than they do

on the Genetic Algorithm. As discussed in Chapter 3, the MC technique generates a new

bit pattern on a completely random basis at each cycle. The bit pattern of the

chromosome at any particular point has no influence on the shaping of the bit pattern in

the next iteration. As a result, the MC algorithm needs only to retain the best known

valid chromosome somewhere in memory and ignore the invalid ones.

 107

In contrast, mindlessly discarding invalid chromosome is not an option using the GA.

Because the direction of the search is dictated by the collective patterns in its population

of chromosomes, great care must be taken to ensure that the population can survive and

retain good quality patterns at each turn of generation. A dilemma inevitably arises:

should an invalid chromosome be retained in spite of its utter lack of value as a solution;

or should it be discarded and risk the population dwindling and becoming stagnant after

just a few generations? The sensible answer must lie somewhere between those two

extremes. The following discussion covers three possible policies that can be applied to

the fitness function to solve the problem.

5.5.2.3.1. No-Action
The easiest option to handle invalid chromosomes is to pretend that they are nothing

more than somewhat unfit individuals. A heavy penalty is given to the chromosome

whenever a nesting attempt for its clusters fails. Such a penalty contributes to the

overall fitness value of the chromosome, allowing the individual to survive and pass its

genes to the next generation.

Although it sounds fair in theory, the actual implementation of this approach is quite

difficult. There seems to be no right way to determine how much penalty to be given

whenever a nesting failure is encountered. While too low a penalty value will perpetuate

invalid individuals in the population, setting the value too high may cripple the chances

of an otherwise good solution surviving because of a single nesting failure the

chromosome contains.

There is no fitness calculation mechanism that has been devised to reliably resolve this

problem although possibly satisfactory solutions exist for further exploration. For

instance, a penalty proportional to excess area of invalid clusters can discourage invalid

individuals from breeding while high value clusters of the same individual may negate

the effect of the penalty. However, additional geometric calculations would be required

to implement the ability to calculate a penalty function based on excess area. However,

the validity of such a mechanism can be a worthwhile subject for future investigation.

5.5.2.3.2. Append at Tail
A less draconian approach is to interpret the invalid chromosome in a way that turns it

into a valid albeit disadvantaged solution. Because the actual nesting routine is

sequential in nature, a successful operation is always guaranteed at least for the first few

pieces. When the attempt to add a piece fails, that piece can be taken out of the original

 108

cluster and put into another cluster. When all existing clusters are exhausted, new

clusters are created to accommodate the rejected pieces. This way, more clusters may

eventually be used than originally specified by the chromosome.

With the append at tail (AAT) strategy, a new cluster is created at the end of the list

whenever an unfit piece is found. All subsequent unfit pieces are added to that cluster.

Because the clusters in the list are evaluated from the first to the last, the potentially

overcrowded additional cluster at the end will also be evaluated and reduced, with yet

another additional cluster added to make the new tail. This newest cluster will have its

turn to be evaluated, possibly resulting in more clusters with less pieces. The process is

repeated until no more invalid cluster is found. The fitness value of the chromosome is

calculated from the wasted area found in all these clusters.

5.5.2.3.3. Redistribute from Beginning
A slightly more sophisticated approach is to attempt nesting the rejected piece in an

already created panel before creating the new cluster at the end of the list. This strategy

corrects the imbalance of piece density that may occur in the AAT approach. Recall that

in AAT, rejected pieces are always added to the cluster at the end of the list. This means

that under-populated original clusters will never receive any of the floating pieces. On

the other hand the additional clusters always start overcrowded, meaning that they will

never be under-populated.

The strategy of redistribute from beginning (RFB) addresses this imbalance by ensuring

that all of the existing clusters are given a fair chance to accommodate the rejected

piece. When a piece cannot be fitted in its own cluster, the algorithm first tries to place

it in all populated clusters. Only when this attempt fails is a new cluster created at the

end of the list. Theoretically this approach will result in a more even distribution of the

pieces, and ultimately a better overall fitness value. It is slower however, due to the

extra work involved with the populated clusters.

5.5.2.3.4. Impact to Optimization Algorithms
Although AAT and RFB are sensible correction policies in the interest of obtaining

better solutions, they tend to obscure the performance of the host algorithm. In extreme

case, one might as well just create one big cluster that accommodates all the pieces and

let RFB create and distribute the pieces in a similar way to how the greedy algorithm

works. The role of computationally expensive simulation search such as GA and MC

automatically becomes moot, perhaps to the point of being irrelevant altogether.

 109

This unfortunate effect is caused by the corrective action intervening with the

calculation of the actual bit string. While the bit strings that result from GA operations

are not changed when the fitness values are calculated, the non-existent fitness value of

an invalid string is substituted with that of its valid equivalent. The surrogate bit string

is never introduced back to the population to replace the original. In the absence of

feedback mechanism, invalid cluster correction tends to deflect the GA search away

from the potentially most productive directions. Considering the value of the invalid

cluster correction policies, future work in introducing valid bit strings to the population

is necessary to realize the true performance of the optimization algorithm with the

current chromosome design. The apparent analogy for reintroducing the corrected

strings back into the population would be genetic modification and there is a reasonable

chance that such modification could lead to improved performance.

5.5.3. Monte Carlo Technique
Simulation with the Monte Carlo technique uses only a pair of bit strings: the working

chromosome and the current best chromosome. For the number of iterations specified

by the user, the working chromosome is subjected to random manipulation and its

fitness value is calculated. Whenever the fitness value of the working chromosome is

better than previously found, the bit string is copied to the current best chromosome.

The random manipulation for MC is simply done by flipping random bits in the

chromosome. The user supplies the numerical constants that control the number of bits

that may be flipped, and the probability of a selected bit to actually be flipped.

A fitness value is calculated by considering the total amount of vacant surface area

found in the nesting containers. Because the objective of the optimization is to minimize

this area, a lower fitness value is taken as the better fitness value. For each nesting plan,

vacant surface area is simply calculated as the area of the container subtracted with the

total area of all the pieces nested inside.

The MC technique represents an undirected search. The algorithm employs no particular

strategy other than exploring the multidimensional search space rather aimlessly by

randomly changing direction along certain axes at each cycle in the hope of coming

across a good solution. Although there is a certain degree of inertia provided by the

unchanged bits, they do not in any way contribute to directing the algorithm towards

likely better solutions.

 110

5.5.4. Genetic Algorithm
As opposed to the MC technique, the genetic algorithm performs the search in the

directions that promise the best result. Instead of just a single working chromosome, a

population of chromosomes is used. The search direction is controlled by various bit

patterns contained within the population. The GA shares the same chromosome

structure and fitness function as those used in MC.

5.5.4.1. Basic GA Algorithm
At the conceptual level, the GA implementation for nesting optimization follows the

outline given in Chapter 3. The actual code is based on the simple GA implementation

in Pascal written by Goldberg (1989). The associated literature is instructional in nature

and the code was clearly written with the purpose of demonstrating the inner

mechanism of GA rather than providing the audience with a high-performance version.

Not surprisingly, this particular implementation of the algorithm is awkward to use and

inefficient performance wise.

Major modifications were necessary to allow Goldberg’s code to be used in the layout

optimization software as discussed below. The original Goldberg’s code remains

immensely valuable however, in providing a solid base for this project’s actual

implementation.

5.5.4.2. Enhanced GA Algorithm
The first fundamental modification is to restructure the code to take advantage of the

object-oriented feature of the Borland Delphi™ compiler. Although the standard Pascal

code can be compiled directly with Borland Delphi™ without any form of adaptation,

adopting an object-oriented form affords the modularity and flexibility for the otherwise

monolithic, rigid design. Modularity is especially important because the GA engine

would be verified against a few other optimization tasks before its actual use in the

layout optimization software. The GA code was duly encapsulated into a Delphi object,

making it possible to use exactly the same code to solve various optimization problems.

Another major improvement from the original code is the physical representation of the

chromosome. As discussed in section 6.6.2.2, the original code uses a full byte to

represent a single bit in the chromosome. This representation is excessively wasteful,

particularly when large populations of chromosomes, each containing hundreds of

integer variables, are anticipated. A bit-for-bit physical representation explained in

 111

section 6.6.2.2 has been adopted instead, with subsequent updates at various segments

in the code.

5.5.4.3. Population Sorting and Chromosome Mating
The most significant attempt at obtaining better future solutions from an existing set of

chromosomes is population sorting. When a population is generated, its members are

sorted according to their fitness values. Chromosomes with better fitness values are

placed higher in the list, implying higher chances of being selected to mate.

The chromosomes are selected in pairs for mating, during which crossover occurs. A

chromosome that has been selected is not eliminated for the selection of the next pair,

and stands the same chance of being selected again as before. The reason behind this

policy is to allow a supposedly good individual to contribute more than once in creating

the next better generation.

Population sorting is the key aspect that differentiates this particular implementation of

a GA from a completely random search such as the Monte Carlo technique. Without

population sorting and the survival for the fittest rule it implies, the GA will degenerate

into a series of indiscriminate mating between random chromosomes with no real

chance of optimizing the result.

5.5.4.4. Preserving Good Clusters
As hinted in section 5.5.2.3, a chromosome may contain a number of good clusters, i.e.

clusters that translates into a nesting plan with small waste area, as well as bad or

invalid clusters. Leaving the good clusters untouched while actively working on the rest

may be a good strategy.

Because the existence of the clusters is only implied by the pieces that “belong” to

them, the bit pattern of good clusters is immediately found in the bit pattern of the

variables within the chromosome referring to them. In other words, the bit pattern of the

good clusters is static. Ergo, a more advanced concept in GA associated with the bit

patterns, the schemata can be brought into play.

How the schemata can be used to further enhance the GA implementation for layout

optimization has not been explored in this project, mainly because of the perceived

complication associated with capturing and handling the bit patterns. Such an

investigation remains an interesting subject however, and given the potential to improve

 112

the performance of the algorithm, further research into the area in the future may prove

worthwhile.

5.5.5 Verification Functions
Before the optimization algorithms can be used in the actual nesting problem, their

implementation must be verified to ascertain that they perform the way they were

designed to and are able to produce valid results. Verification is especially important for

stochastic methods, a group to which Genetic Algorithms and the Monte Carlo

technique belong. Stochastic methods, which imply the use of random variables, are

especially difficult to validate analytically because processes monitored are not

repeatable.

The greedy algorithm in contrast, is a deterministic technique characterized by the

complete lack of use of random variables. The correctness of the algorithm and its

implementation therefore can be examined analytically. Verification therefore becomes

more straightforward in the case of greedy algorithm.

In the case of the GA and MC, special techniques are required to verify the correctness

of the implementation code. The verification takes the form of resolving optimization

problems of which the solutions are known. With this approach, the optimization engine

is regarded as a black box. No attempt is made to track the activity of the algorithms,

only the final result is evaluated.

At the implementation level, the verification routine is realized as the fitness function.

The main algorithm itself is left unchanged. Because of the modular design the

algorithms have been adapted to, switching between fitness functions can be done with

very little effort.

Gordon, Mathias, and Whitley (1994) list a number of test functions that were used to

verify their GA variant. Two among those mentioned, the Rastrigin and Schwefel

functions, are widely known as standard test functions for verifying simulation

algorithms.

The Rastrigin, a multidimensional function, presents a challenging problem because of

the presence of a large number of local optima. The objective of the test is to find the

coordinates of x* where the value of the function is minimum. The function itself is

defined as follows:

 113

() ()∑ == ⋅⋅−+⋅=
n

i iinii xAxnAxfR
1

2
,1 2cos|: π []11.5,12.5−∈ix

A ≡ a product of ten constants

n ≡ number of dimensions

The absolute minimum point for Rastrigin function is known at)0,..0(* =x . Figure 5.24

shows the plot of the function with 2=n . Note that the peaks are not only evenly

distributed, but also symmetrical along all the axes.

Figure 5.24: Plot of Rastrigin Function (Hedar, 2006)

Similar to the Rastrigin function, the Schwefel function is also multidimensional. The

optimization objective is also to minimize the function value. The function is given as

follows:

() ()∑ == −+∗=
10

110,1 sinn418.9829|:
i iiii xxxfS []511,512−∈ix

The absolute minimum point for Schwefel function is known at)1,..1(* =x . Figure 5.25

shows the plot of the function with 2=n . The topology differs significantly from that of

Rastrigin function, with second-best point typically far away from the global optimum.

The Schwefel function can be extended for 2>n and its complexity increases

considerably, with n=10 being considered a non-trivial problem to solve.

 114

Figure 5.25: Plot of Schwefel Function (Hedar, 2006)

 115

6. Experiment Results

6.1. Experiment Strategy and Issues
The number of parameters used in solving a layout optimization problem is such that a

considerable number of possible combinations exist. This problem rules out exhaustive

investigation because for each combination of parameters, the actual optimization run is

computationally expensive. Only a limited number of optimization runs can be

performed given the resource constraints of the project. The experiments therefore need

to be configured and executed in such a way that allows the behavior of the software to

be monitored and measured through only a small number of optimization runs.

The initial series of experiments have been dedicated to verifying the correctness of the

optimization algorithms and their implementations. Verification is especially important

for simulation-based optimization algorithms, i.e. the Monte Carlo technique and the

Genetic Algorithm, because their stochastic nature is often misleading because it may

allow “correct” results to emerge from erroneous processes. The issue is less important

for the remaining algorithms implemented in the software because they are

deterministic, which implies that flaws in the code can be detected immediately by their

failure to yield valid results. In practice, verification for almost all of the modules in the

software has been done as integral part of the implementation phase. Consequently, only

the experiments that concern the implementation of Monte Carlo and Genetic Algorithm

techniques are to be covered in this chapter, though results for these approaches on the

MCPO problem will be compared to those achieved by the deterministic solution

algorithms.

The remainders of the experiments have been conducted with the aim of achieving the

primary goals of this research as defined in Chapter 2. To reiterate, the objective of

layout optimization is twofold:

• Generate a layout of a set of stock rectangular panels which covers the container

region

• Generate a set of layouts where irregular remaining shapes of the original

container can be fitted back into the stock rectangular panels

Two crucial tasks need to be performed by the optimization engine for the first phase:

determining the point of origin on which the bottom-left corner of leftmost panel will be

placed, and selecting the particular stock panel that returns the most favorable result.

 116

The second optimization phase is somewhat easier for the optimization engine because

it is only required to search for a set of layout plans according to user-specified

parameters.

A few trial runs quickly reveal that for a given point of origin used in the first phase

optimization, there is a sizeable amount of computation that follows before its

corresponding final result can be obtained. The problem is particularly severe when a

simulation-based optimization algorithm is used in the second phase. As will be

discussed in later sections, resolving a moderate-sized problem using simulation-based

algorithm for a single point of origin can easily take hours or days, even when

reasonably powerful computer hardware is used.

A major contributor to the computation cost, however, is the multiple candidate stock

panels associated with each optimization case. Because selecting the most productive

stock panel dimensions from a pool of candidates is one of the prime objectives of

MCPO, this feature cannot be dispensed with and the resulting computational cost must

be accepted.

It is clear that exploring multiple points of origin is not a feasible option except in very

simple cases. Real-life examples are typically complicated enough to render multiple

points of origin prohibitively expensive to compute, regardless of the strategy in

selecting those points. Because of this reason, all the optimization runs will be

conducted with a single predetermined point of origin only. The chosen point of origin

is at (0, 0) in the workspace coordinates, which is arbitrary because of the non-unique

way the container can be placed in the workspace. Future research can explore ways of

making an intelligent selection of the point of origin.

There is still an array of parameters whose values need to be determined before the

second stage optimization can take place. In a commercial setting, the users can tune all

of these parameters through the UI according to their own preferences and reasoning. In

these experiments however, the main interest lies in finding the comparative

performance between algorithms in terms of execution time and the quality of the

results. Consequently, few of the parameters will change during the course of the

experiments. Values set for those parameters and the justification behind them will be

provided on per case basis.

 117

Apart from the algorithm performance, the experiments will also provide some

additional information that may be of importance. Especially interesting is the effect of

placement strategy (first-fit compared to best-fit), piece flipping and rotation to the

overall efficiency of the solution.

6.2. Verification on Numerical Functions
As has been discussed, the goal of the first part of the experiments is to verify whether

the simulation-based algorithms have been correctly implemented. The requirement for

the verification is simple: a “correct” implementation must consistently show

converging pattern towards the optimum solution, and terminate after a limited

execution time, i.e. never enter an infinite loop. Both simulation based algorithms, the

Monte Carlo technique and Genetic Algorithm will be tested. Two verification functions

discussed in Chapter 5 are used for each: the Rastrigin Function and the Schwefel

Function.

6.2.1. Rastrigin Function
The Rastrigin Function as defined in Section 5.5.5 is used:

() ()∑ == ⋅⋅−+⋅=
n

i iinii xAxnAxfR
1

2
,1 2cos|: π []11.5,12.5−∈ix

In this example, the two-dimensional function is used (n = 2) with A = 10. The absolute

minimum point is known at (0, 0) with the function value of () .00.00,0 =f It can also

be seen from Figure 5.24 that multiple peaks exist in the search space, regularly spaced

with local minimum function values increasing in direct proportion to distance from the

global minimum.

The variables are simply represented by two 10-bit blocks in the chromosome.

Partitioning the normal [-5.12, 5.11] range as specified in Section 5.5.5 will result in

0.01 increments which is relatively coarse. Instead of the normal [-5.12, 5.11] range

therefore, a smaller range of [-1, 1] is used to make the increment smaller. The [-1, 1]

range in each dimension is partitioned equally in a 10-bit vector, resulting in each bit

increment corresponding to an approximately 0.002 increment in the search space.

6.2.1.1 Monte Carlo
The Monte Carlo optimization performs the search by attempting to flip every single bit

of the chromosome in each of the 500,000 iterations. The flip probability is set at 0.5,

which makes each bit very unstable, but guarantees that a large area will be searched.

Five optimization runs with an identical set of parameters have been performed.

 118

Figure 6.1 shows the converge pattern of the MC optimization. All the trace lines

exhibit steep improvement in the initial few cycles. The lines generally reach

“acceptable” solution within less than one hundred cycles, from which the gradients

become level until the absolute optimum solution is reached.

0 4 7 27 150
246
676
1293
2566
3930
5300
8913
14016
20816
28618
35993
56382
182445
226147

Iteration

0.00

10.00

20.00

30.00

40.00

Fi
tn

es
s

Va
lu

e
1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.1: Monte Carlo Search Convergence for the Rastrigin Function

The algorithm succeeds in finding the absolute optimum solution in all five cases well

before the maximum allocated 500,000 iteration is reached. In fact, the algorithm

always finds approximate solutions very close to the absolute before 10,000 iterations.

Clearly 500,000 iterations is significantly more than required in this case, indicating an

opportunity of performing the search with comparable results at much fewer iterations.

Nonetheless, the experiment demonstrates that MC works satisfactorily as it stands.

Because there is no way of knowing how many iterations will be required before

acceptable results can be obtained, an attempt at optimization in this respect will not be

worthwhile and thus no modification will be applied to the MC implementation for

 119

further use, as it is primarily intended as a benchmark against which to assess the

performance of the GA.

6.2.1.2. Genetic Algorithm
Optimization using the Genetic Algorithm is done using the total number of evaluations

that match the previous experiment with the MC technique. A population of 500

individuals evolving through 1,000 generations is used to make the equivalent of the

500,000 evaluations used in MC.

The two remaining key parameters of the GA however, the crossover probability and

the mutation probability, do not have a counterpart in the MC technique. In our

experiment we use a crossover probability of 0.6 and a mutation probability of 0.03 as

these are commonly held to be reasonable settings for a simple GA.

0 2 4 6 8 10 12 15 19 58 118
158
274

Generation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.2: Genetic Algorithm Search Convergence for Rastrigin Function

Admittedly there is no direct correlation between these two control parameters with the

flip probability of MC technique. It matters little however, since the objective of this

exercise is to verify the correctness of the GA implementation rather than making a

 120

direct comparison with that of MC. Results for the GA convergence are given in Figure

6.2.

As evident in Figure 6.2, the search successfully converges to the global minimum in

every run. Similar to that in MC, steep improvement is achieved in the initial few

generations, after which it becomes more and more level until the optimum solution is

found. At around 20 generations (10,000 evaluations), the best candidate solution has

come very close to the absolute minimum. The global minimum solution itself is

reached after no more than 275 generations (137,500 evaluations), even in the worst

case.

Recall that each variable is represented by a 10-bit string, resulting in 210 = 1,048,576

possible values in the two-dimensional search space. Because there are 500 individuals

in the population, GA is able to find the optimum solution in 137,500 evaluations in the

worst performing run. In this instance, the optimum solution is found by exploring just

0.13% of the total number of candidate solutions in the search space.

These two experiments clearly demonstrate that both MC and GA implementation can

perform consistently in finding the global minimum of the Rastrigin Function. The GA,

however, shows better performance by finding the global minimum after an average of

53,200 evaluations as compared to 210,212 achieved by MC, though even this higher

number of evaluations is a relatively low percentage of the total solution space.

6.2.2. Schwefel Function
Referring to Section 5.5.5 once again, the Schwefel function is defined as:

() ()∑ == −+∗=
10

110,1 sinn418.9829|:
i iiii xxxfS []511,512−∈ix

The global minimum value is found at)00.1,..1.00(* =x with the function value

of () 00.01.00,..1.00 =f . Unlike the Rastrigin function however, the peaks in the search

space are less regularly distributed. Perhaps more importantly, the global minimum and

its second-best minimum are widely separated, making it difficult to recover from local

optima.

A 10-bit block is used to represent each [-512, 511] variable range, partitioning it so that

each bit increment corresponds to one unit increment within the search space. Because

of the one-unit increments, the exact variable value of 420.9687 will never be evaluated

 121

making it impossible to find the true global minimum. Its approximation however can

be found at x = 421.

Unlike the Rastrigin function, the Schwefel function is tested for different numbers of

variables to highlight the performance difference between GA and MC. This strategy

will also confirm that any number of variables less than the maximum of 640 specified

in Section 5.5.2.2 can be reliably mapped to the same chromosome structure. A 10-bit

block is used to represent each [-512, 511] variable range, partitioning it so that each bit

increment corresponds to one unit increment within the search space.

6.2.1.1 Monte Carlo
Similar to the Rastrigin function test, the MC search is done with a total of 500,000

iterations. The same flip probability of 0.5 is also used. Figures 6.3, 6.4, and 6.5 show

the convergence patterns of MC search for n = 2, 4, and 10 respectively.

0 4 10 27 43 101
232
567
1422
3533
8944
19082
46371
63617
105704
298564

Iteration

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.3: MC Search Convergence for the Schwefel Function with n=2

 122

0 5 23 33 70 86 181
361
508
1127
1620
3126
4414
11595
34484
46932
116991
396723

Iteration

0.00

500.00

1000.00

1500.00

2000.00

2500.00

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.4: MC Search Convergence for the Schwefel Function with n=4

 123

0 7 16 35 71 96 172
322
428
745
1300
2395
3931
9245
26286
46970
110331
345940

Iteration

1000.00

2000.00

3000.00

4000.00

5000.00

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.5: MC Search Convergence for the Schwefel Function with n=10

For n = 2, MC search is able to steadily converge and find a solution with a fitness value

of less than 1.00 after about 100,000 evaluations. The convergence pattern becomes

more irregular when n=4, with a minimum fitness value found in the 45.00-100.00

range after 300,000 iterations. Increasing the number of variables to n=10 further

deteriorates the MC performance, resulting in fitness value in the 1,300.00-1,600.00

range at about 300,000 iterations.

The MC technique performs adequately in finding a good solution of the Schwefel

function when only a small number of variables are used. This assertion is supported by

the fact that the search consistently discovers better solutions as it progresses, and

always terminates with at least a local minimum discovered. The search performance

drops considerably when a large number of variables are used however.

 124

6.2.1.2. Genetic Algorithm
Also similar to its Rastrigin function counterpart, the GA optimization for the Schwefel

function uses a population of 500 individuals that evolve in 1,000 generations. As in the

Rastrigin function search, the values of 0.6 and 0.03 are also used for crossover and

mutation probability constants, respectively.

Figures 6.6, 6.7, and 6.8 shows the resulting convergence patterns of the search for n =

2, 4 and 10. Similar to the search on the Rastrigin function, the GA search on the

Schwefel function converges rapidly when few variables are used. With n=2, the search

converges quickly, with the absolute minimum found at under 70 generations or 35,000

evaluations. On average, a fitness value of less than 1.00 is found in just 10 generations

or 5,000 evaluations. Such performance is considerably better than that of MC for the

same number of variables.

0
1

2
3

4
5

6
7

8
10

12
13

15
18

20
26

30
33

34
36

37
41

69

Generation

0.00

50.00

100.00

150.00

200.00

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.6: GA Search Convergence for the Schwefel Function with n = 2

 125

0 3 6 9 12 18 22 26 33 37 45 51 66 77 134
141
286
518
572
819

Generation

0.00

200.00

400.00

600.00

800.00

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.7: GA Search Convergence for the Schwefel Function with n = 4

The better performance of GA becomes evident for n=4 where not only the convergence

is faster, but the result is also better. The GA is consistently able to find solutions whose

fitness values fall within the 0.600-1.700 range in about 100 generations or 50,000

evaluations. This compares favorably to fitness values in the 45.00-100.00 range after

300,000 evaluations using the MC method.

Similar to the MC result, the GA fails to find the absolute minimum in all attempts

when the number of variables is set at n=10. The GA is far more successful at finding

better solutions however, with fitness value consistently falling within the 200.00-

400.00 range compared to MC’s range of 1,300-1,600.

 126

0 3 6 9 12 17 22 25 33 39 52 59 91 112
156
313
366
634

Generation

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

Fi
tn

es
s

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

Figure 6.8: GA Search Convergence for Schwefel Function with n = 10

There are a number of possible reasons for the algorithm’s failure to find the global

optimum. The irregular distribution of the function peaks must be one major reason.

The other is the relatively unsophisticated implementation of the GA used in this

particular instance. Yet another possible reason is that the constants used for crossover

and mutation probabilities may be suboptimal.

The results for the n=10 variation can be compared to a more mature GA

implementation available in the public domain (Dolan, 2006). This GA, implemented in

the Java programming language, is considerably more fully featured than the simple GA

implemented as part of this research. With similar control parameters this

implementation finds near-optimal solutions to the n=10 problem with an average of

around 70,000 evaluations. This further supports the hypothesis that the implemented

GA is struggling to solve the problem due to the lack of sophistication.

 127

In any case, the GA does succeed in converging to at least a local optimum and

terminates when a valid solution is found. It is also clearly much more effective than a

random walk. Such qualities alone may be sufficient for the purpose of the experiments

that follow. Should the GA not solve the MCPO problem sufficiently well, the results

achieved can be used as a benchmark against which future, more sophisticated

algorithms can be compared. It is important to bear in mind that as a rule the global

optimum is not known in an actual MCPO problem. The capability of reliably

converging towards a good solution is what can be realistically expected from the

algorithm and may be sufficient to find a solution that is “good enough” tradeoff

between the quality of the solution and the time required to find it.

6.3. Case 1: Simple Rectangular Layout
The first experiment involves the layout optimization of a 300x300 square container,

with a 50x100 rectangle-shaped obstacle within as shown in Figure 6.9. The bottom left

vertex of the shape is (50, 50). The optimization procedure seeks a solution with which

50x100 rectangular shaped stock panels can be used to cover the container area, using

(0, 0) as the point of origin. The origin is outside of the area to be covered and this

simple example allows the impact of this to be observed.

Figure 6.9: Simple Rectangular Container Optimization Problem

 128

This is a trivial example, the purpose of which is to demonstrate that the optimization

process is actually able to find a solution for a simple problem. Figure 6.10 shows the

solution of the first part of the problem, whereas Figure 6.11 shows the solution of the

second stage optimization using the greedy algorithm. Light blue color is used to

indicate regular, whole panels whereas dark blue color indicates irregular panels.

The solution efficiency is defined as the container area divided by the available area

provided by the stock panels. Tables A.1, A5, and A.9 in Appendix A show all three

optimization algorithms consistently successful in finding a 100% efficiency solution.

The simple rectangular container, however, is not typical. Solutions with less than 100%

efficiency are the norm as subsequent experiments will show.

Figure 6.10: Panel Placement Solution for Simple Rectangular Container Problem

 129

Figure 6.11: Nesting Solution for Simple Rectangular Container Problem

Despite the 100% material efficiency, it is clear that the solution for the simple

rectangular container problem above is not ideal when point of origin (0, 0) is used. The

absolute best efficiency is achieved when (50, 50) is used as the point of origin instead,

as evident in Figure 6.12. Only entire panels are used in this case, implying not only

100% efficiency but also the complete absence of cutting the material.

Figure 6.12: Best Nesting Solution for Simple Rectangular Container Problem

 130

It has been explained in Section 6.1 however, that only a single point of origin (0, 0) is

to be used throughout the experiments. Therefore to be consistent with the experiment

strategy laid out early in this chapter, results such as that in Figure 6.12 are not to be

considered any better than that in Figure 6.10. Future work will focus on the

development of the geometric functions required to select a more appropriate origin

based on querying the shape of the polygon to be filled to determine the best starting

point. This would eliminate the need to conduct multiple optimizations to determine the

best origin.

6.4. Case 2: Single Wall Layout
The second experiment involves the layout optimization of a single container with both

convex and concave corners. As shown in Figure 6.13, the outline of the container takes

the form of the wall at the side of a building. The shape has height and width of 450 and

350 units of measure, respectively. Assuming that the panels do not have grains or

patterns, rotation at 90 degrees increments is allowed during the nesting process.

Two types of stock panels are being considered to generate the solution: one has the

dimensions of 80x60, the other 54x80. Because the shapes can be easily scaled to their

life-size equivalent, there is no need to map units of measure used in this example to the

standards actually used in the building industry.

Figure 6.13: Single Wall Optimization Problem

The first stage solution is shown in Figure 6.14. As with the previous case, it is clear

that the use of the (0, 0) origin is affecting the quality of the resulting solution

adversely. Being able to identify, without human intervention, a better origin would in

 131

this case lead to improving the quality of solution by reducing the cutting required to

produce the layout, even if the number of panels were not reduced.

Such improvement would be most evident in the number of pieces required to be nested

in the second stage. An example of a second stage solution is shown in Figure 6.15.

Unlike the simple rectangle container problem however, it is not possible to achieve a

solution with 100% efficiency.

Figure 6.14: Panel Placement Solution for Single Wall Problem

 132

Figure 6.15: Nesting Solution for Single Wall Problem

Table A.2 in Appendix A shows various results obtained for single wall optimization

problem when the greedy search algorithm is used. The achieved efficiency is higher

than expected at 87.31% in most cases with the best at 89.30% when the first-fit

strategy is used and 180 degrees rotation is allowed. Because greedy search is

deterministic, the result is always identical for a given set of parameters. Therefore, only

a single optimization run is executed for each parameter set.

As shown in Table A.6, optimization using the Monte Carlo method is less successful

with efficiency ranging from 81.86% to 85.42%. The number of iterations and the flip

probability are set to 10,000 and 0.2 respectively. Such numbers have been selected

after a series of trial runs to reflect a perceived good combination of moderate-size

search with a relatively low rate of bit mutation.

The Genetic Algorithm achieves similar performance as shown in Table A.10,

achieving 85.42% efficiency for all parameter settings. In all cases, a population of 100

individuals is used to evolve in 100 generations. A crossover probability of 0.6 and a

mutation probability of 0.1 are used, also after such numbers appear to be adequate in a

 133

series of trial runs. In the absence of better methods for setting the parameters, this

approach seems sufficient for our purpose.

Perhaps the most important finding in this experiment is that greedy search outperforms

the two other algorithms despite it being incapable of recovering from premature

convergence. The MC and GA on the other hand seem unable to capitalize their

advantage in negotiating local optima. The net result is not only the greedy search being

capable of finishing the job much faster (one nesting attempt instead of 10,000), but also

with a better quality result. However, it is important to point out that the total number of

panels required for the single wall is the same even though the utilization of material is

lower. The savings in material become significant as the application of the approach is

extended from the optimization of the single wall, to the room, and ultimately to the

whole building. Potential exists to significantly reduce the total amount of material

required if the approach can be applied to the optimization of whole buildings.

Another important finding is the impact of rotating the pieces to the efficiency of the

final nesting result. More freedom of altering the orientation of the pieces does not

automatically translate to a more efficient nesting solution, as consistently indicated in

tables A.2, A.6, and A.10.

Finally, the best-fit placement strategy does not guarantee a better solution than the

first-fit strategy, both in terms of area utilization and shared edge length. This finding is

rather unexpected, because the best-fit strategy has been expressly aimed at maximizing

the length of the shared edge.

6.5. Case 3: Simple Roof Layout
The third optimization problem is taken from one of the sample problems used by

Sibley-Punnett and Bossomaier (2001) for their roof layout optimization.In this

particular case, multiple containers are used. The simple roof layout differs from the

previous problems by the multiple containers involved. Figure 6.16 shows the top view

of the roof. Sections of the roof have been labeled 1-4 to assist identification. Figure

6.17 shows the sections the same roof taken apart and laid on a flat surface.

At this point, it is important to note that while the work of Sibley-Punnett & Bossomaier

provides examples of the actual roof layout optimization problems, no specific details

are given regarding the performance of their algorithms on the specific cases. For this

 134

reason, it is not possible to make direct comparison between the results obtained by

these researchers and the results of this experiment.

3

1

2

4

Figure 6.16: Simple Roof Viewed from Above

4

2

1

3

Figure 6.17: Sections of the Simple Roof

The simple roof layout also differs from previous problems from the material

constraints of the sheets used. Sibley-Punnett and Bossomaier assume that the panel

used takes the form of corrugated iron or similar material. The implication is that the

panel has distinct upper and lower sides, rendering flipping illegal. The material also

has ridgelines and guttering that dictates that only 180 degrees rotation is allowed.

Yet another constraint to be taken into account in this optimization problem is the

overlap between adjacent pieces when installed on the actual roof. Such overlap exists

in the actual roof construction both for aesthetic reasons and to prevent leakage. In this

example however, such overlap is ignored to avoid unnecessary complication.

Figure 6.18 shows the first stage solution with the four sections of the roof laid side by

side. The nesting layout in Figure 6.19 shows the corresponding second stage solution.

 135

Figure 6.18: Panel Placement Solution for Simple Roof Problem

Table A.3 in Appendix A shows solutions with very high efficiency of 90.51% and

95.84% being achieved by greedy search. The highest efficiency is obtained when 180

degrees rotation is allowed.

In stark contrast, Table A.7 reveals that the Monte Carlo method is only able to produce

solutions with efficiency ranging from 74.05% to 81.46%. All the parameters have been

set identical to those in the single wall layout problem previously discussed.

The Genetic Algorithm yields even more disappointing results, achieving efficiency of

only 74.05% to 77.58% in its solutions as shown in Table A.9. All GA parameters have

also been set identical to that in single wall layout problem.

The superiority of greedy search becomes much more apparent in this experiment.

Neither the MC nor GA is able to create solutions with efficiency that matches even the

lowest of that generated by the greedy search.

As in the previous example, the total number of panels required is the same in each

case, apparently not offering the savings that should be possible given the extension to

multi-surface optimization. In the majority of the cases, better efficiency is obtained

when rotating the pieces by 180 degrees is an option and even better results are possible

if free rotation is allowed. The constraints on the problem due to the material are

limiting the ability to reduce the number of panels required. As in the previous

experiment, the best-fit placement strategy does not provide direct help in achieving

better overall efficiency. It does consistently yield better results in terms of shared edge

length, however.

 136

Figure 6.19: Nesting Solution for Simple Roof Problem

6.6. Case 4: Complex Roof Layout
The fourth and final experiment uses another example from Sibley-Punnett and

Bossomaier (2001). In this case, a complex roof consisting of multiple sections is used.

Unlike the simple roof example, there are twice as many sections of greatly varying

sizes that make up the roof. Concave shaped sections are also used, as opposed to all-

convex shapes in the simple roof layout problem. Other roofing material-specific

constraints still apply however. Figure 6.20 shows the top view of the complex roof.

Similar to the previous case, results obtained from this experiment cannot be directly

compared to that acquired by Sibley-Punnett & Bossomaier due to the lack of the

required data. Nonetheless, the example is adopted for experiment because of its value

in representing more complex actual layout optimization problem.

 137

7 8

1

2

6

3

4

5

Figure 6.20: Complex Roof Layout

Figure 6.21 shows the first stage solution for the problem. Because of the large size of

the roof, only segments 3, 5, and 6 are completely visible. The nesting plan which is

part of the second stage solution is given in Figure 6.22.

Figure 6.21: Panel Placement Solution for Complex Roof Problem

As in previous experiments, the greedy search clearly outperforms the other algorithms

in terms of computation time and solution efficiency. Table A.4 in Appendix A reveals

very high efficiency rates from 95.50% to 96.99% being achieved using this method.

None of the optimization results produced by the Monte Carlo method achieve

comparable efficiency. Table A.8 shows the efficiency ranging from 62.70% to 72.18%,

nowhere near that achieved by the greedy search.

 138

Figure 6.22: Nesting Solution for Complex Roof Problem

The Genetic Algorithm performs somewhat better than the Monte Carlo technique this

time. Solution efficiencies ranging from 70.54% to 73.03% have been attained, which is

higher than those from MC even though still far behind the greedy search.

Similar to the preceding experiment, better efficiency is generally achieved when 180

degree rotation is an option. There is an exception with the GA however, where the best

efficiency is found when no rotation is allowed. Again the material constraints are

limiting the potential for reducing the total number of panels required and another

similarity found with the previous experiment is the longer shared edge consistently

obtained when best-fit placement strategy is used. The best-fit strategy also seems to

contribute towards better overall efficiency, although exceptions still exist.

 139

7. Discussion
Up to this point, the investigation of two-stage layout optimization has covered a

number of disparate subject areas. A distinct characteristic of the research is that a big

portion of the effort has been spent designing, constructing, and validating the software

in the framework provided by the chosen research methodology. The experiment with

actual data, despite its importance and the amount of effort involved, became less

prominent in view of the overall work required to maintain rigor of research.

This chapter has been organized to report the findings at the same proportion. A

sizeable amount of space has been devoted to discuss the software development aspect

of the research, in which quite a number of important findings have occurred. The

remainder of this chapter is divided into three sections: the first two deal with the

software design and implementation, whereas the third discusses the findings of the

actual experiments.

7.1. Research Methodology
This research was conducted using the System Development Research Methodology

(SDRM) (Nunamaker & Chen, 1991) which has provided a governing framework for

structuring the key activities. Whilst other constructive methodologies exist, the strength

of SDRM is that it explicitly requires the selection and use of an appropriate software

development methodology.

During the early exploratory phases of the research a great deal of effort was spent

investigating and implementing the geometric algorithms required for developing the

model of the MCPO problem. The alignment between research methodology and

software development methodology provided constraints on these activities that ensured

the modularity of the code and the ability to develop different modules at different rates

without impacting on the overall success of the project.

7.2. Design
From a number of software development models commonly practiced, the rapid

application development (RAD) approach had been selected. RAD was deemed suitable

when evaluated against the key characteristics of the project, such as the lack of detailed

initial requirements from the user and the strict time line within which the project must

be completed. The model proved effective in allowing incremental development of the

software to take place. The incremental development in turn provided a solid base from

which the problem space could be better studied and understood. Finally the better

 140

understanding of the problem made it possible that informed decisions were made

regarding its solution.

While RAD provides the outline for the development activities, the cornerstone of

actual software design is the process modeling where the data flow diagram (DFD) is

used. Process modeling provides a systematic way of both decomposing the problem

and designing its computer-based solution. The resulting DFD identifies all the critical

components of the software and how they all interact. The subsequent actual

development task was essentially translating the components from their abstract form in

the diagrams to the actual program code.

In conjunction with process modeling, the various forms of information flowing within

the system are captured in the data modeling. The end result of data modeling is the

data dictionary, in which all types of information packet are defined and standardized.

While the DFD provides a template for constructing the actual objects, instructions, and

routines in the program code, the data dictionary serves as the equivalent of the data

structures that are manipulated by those routines.

Although they are indispensable for analyzing the problem and designing the solution,

the DFD and the data dictionary are not without weaknesses. More than anything they

did not in any way provide an error-proof mechanism of constructing the actual

software. The RAD model indeed lacks the capability of automatically generating the

program code, which is the main feature of more modern software modeling tools such

as 4GL. All the intelligence built into the software code has been entirely written by

hand. As a result, there can never be a guarantee for faithful translation of the abstract

design to the actual program code. The information flow and transformation mechanism

devised for the system, however, remains to a high degree mapped to the actual code.

7.3. Implementation
Maintaining software modularity has always been practiced throughout its development.

As a defining characteristic of RAD, modularity allows various parts of the software to

be added, updated, or in some cases removed, with minimum impact to other parts of

the system. Such flexibility in turn allows those parts to be coded, tested, and debugged

in isolation to ensure the development of the software as a whole can reliably take place

at a rapid pace.

 141

The notion of modularity can be found both in the program logic and the organization of

its source code. Modularity in program logic is realized by the use of object-oriented

programming (OOP) language and environment. Programming language-specific

objects are used extensively to encapsulate logical entities of the software, effectively

turning them into modules, to make clear separation between various data packets and

the processes associated.

Furthermore, the program source code has been organized into a number of disk files to

make closely related objects easy to locate. While file organization does not have any

impact whatsoever to the correctness or efficiency of the executable program, it has

enormous value in maintaining the efficiency of the coding effort.

In the absence of definitive requirements from the user, the input and output of the

software take the form of disk files. Run-time parameters supplied through the program

user interface make for additional input. Another major form of output is on-screen

visualization, with which the two dimensional objects are presented to the user the way

they would appear in real life.

When external files are used either as input or output, the associated data is always

organized in a hierarchical structure. This approach offers the capability of packing a

collection of data of dissimilar formats into a convenient single container. Such a

container is physically implemented conforming to extended-markup language (XML)

standard, which is a data exchange protocol widely accepted in the computing

establishment.

Although the XML data packet is commonly criticized for its comparatively low

information content and lack of inherent security features, it proved to be well suited for

this project’s requirements for several reasons. Firstly, being a text based standard it

allows the data to be inspected and edited by hand using a general purpose text editor,

eliminating the need of a specialized editor. Secondly, wide support of the XML

standard has resulted in the easy access to third party XML-handling components that

can be integrated into the software. Finally, because the actual disk files containing the

data are typically small, the low information content has not been found to be an issue.

Data security has never been considered relevant to this project, making it a non-factor

when it comes to determining the data exchange format.

 142

Various data structures are used to internally represent the pieces of information in the

computer memory. Depending on the complexity of operations associated to each data

structure, they can be divided into two types: the active and passive data objects. Active

data objects are used to represent data entities associated to a wide range of activities

and hence tend to be processed individually. Active data objects consist of data and

methods, and exhibiting encapsulation and polymorphism, the characteristics of true

objects in OOP terms. The active data structure is quite powerful, yet delicate to handle

and tends to consume system resources when incorrectly managed.

In contrast, passive data objects contain only data. Moreover all their contents are fully

exposed and hence become subject to external processes. Passive data objects are a key

feature of procedural programming language such as ANSI C or Pascal (implemented as

struct and record types respectively), and unknown in a pure OOP environment. Passive

data objects are much simpler and straightforward than their active counterparts, making

them suitable for batch-type processing. A two-dimensional vertex for example, can be

easily represented by a passive data structure containing only X and Y values. An array

of vertices makes for a polygon, which can be easily passed between procedures when a

complex task is performed.

Optimization of two-dimensional problems proves to be much more complex than

optimizing problems consisting of two scalar variables because of the geometric

calculations involved. Two-dimensional layout optimization problems are characterized

by a multitude of geometric operations to be performed to find the solutions.

Consequently a considerable amount of effort has been spent in building geometric

models and writing geometric calculation routines before optimization algorithms could

be realized.

A number of geometric operations stand out because of their complexity. Polygon

triangulation, polygon overlap detection, polygon linear cut, and polygon clipping are

geometric problems whose solutions in the literature are either non-existent or

excessively complex for the scale of this project. To resolve this problem, novel

solutions have been devised and empirically proven to be applicable.

These solutions have been found to work correctly in all tested cases and displayed with

adequate performance to justify their use. Also the program code is flexible enough to

easily accommodate other solutions for those geometric problems later. While there is

 143

no plan to implement other solutions in the immediate future, this flexibility further

justifies the effort spent maintaining modularity of the software during its development.

Three search algorithms have been selected to perform the actual optimization: the

greedy search, the Monte Carlo technique, and the Genetic Algorithm. It was planned to

model the optimization problem in such a way that all three could be used in both stages

of the solution. With the implementation of those algorithms in place, it would only be a

question of determining parameters to be optimized during each stage before those

optimization algorithms can be used. While the parameters for the second stage problem

are quite complex, the parameters for the first stage are very simple: only the X and Y

coordinate for the point of origin. Unfortunately there are two major problems that

prevented the actual implementation of this plan.

The first is the greedy algorithm implementation, which only works effectively when it

has been extended so it can deal with vector parameters instead of just scalar parameters

it was originally designed for. The result is a heavily modified greedy algorithm that is

efficient in solving nesting problem, but incredibly awkward to use with simple scalar

parameters.

The second is the enormous computational cost associated with the second stage

solution, particularly when simulation-based solution algorithms are used. Only the

greedy algorithm is efficient enough to find a solution for the second stage problem to

make it appropriate as part of fitness evaluation of the MCPO problem. The other two

are slower typically by the order of two or three, requiring execution time of up to a few

hours for a single moderate sized second stage problem. This level of computational

expense is unacceptable for the industry partners of the project, and considerable further

work will be needed to develop heuristic algorithms that increase the quality of solution

in an acceptable timescale.

Because of the above problems, the optimization algorithms are used only to find the

second stage solution. The parameters for the first stage solution are to be specified

explicitly by the user.

The first stage task is to partition the container area both vertically and horizontally

using the stock panels as a template. The result is a set of small pieces that either fit

perfectly to a stock panel because of their identical size and shape, or smaller with

 144

possibly an irregular outline. The irregular panel becomes the input for the second stage

optimization.

For the second stage optimization, the greedy algorithm is relatively simple to code. The

algorithm attempts to fit a piece with the largest surface area into the vacant space in the

container at every turn. When such a piece is found, there is typically more than one

valid way to position and orient the piece within the container. The first-fit strategy

simply accepts the first valid solution, resulting in a solution found faster but with

potentially sub-optimum efficiency.

The best-fit strategy is meant to seek better solution by considering all valid placement

options before selecting the best. Naturally, the best placement is the one that conserves

the most contiguous space. This is not possible to implement however, due to the lack

of a reliable means of measuring such a quality. As an alternative, the length of shared

edge is used instead. The rationale is that even though contiguous space is not

conserved, more shared edge would mean less effort in cutting the pieces off the

material. This is typically one of the concerns of the targeted end user, builders, who

wish to simplify installation as much as possible. It was also believed that maximizing

the shared edge may have the side effect of making the piece less likely to become

obtrusive in the vacant space.

Modeling the second stage parameters into a binary string is a major issue in the

implementation of both the Monte Carlo and the Genetic Algorithm. Unlike other layout

optimization problems commonly found in the literature, the second stage problem

requires a number of pieces to be nested in multiple containers. The optimization task

therefore becomes twofold: to minimize the number of containers and to map the pieces

to those containers in a way that minimizes the containers’ vacant surface area.

No suitable model has been found to satisfactorily map all the parameters to a single

binary string. Only a subset of the parameters is used in the model that prevailed. In this

model, the pieces are mapped to clusters to indicate to which panel they will be nested.

Greedy search is then used to actually put those pieces together within the assigned

panel.

Although the cluster-based model is workable, it has an important issue of handling

invalid clusters where the corresponding panels cannot accommodate all pieces assigned

to them. A correction strategy of redistributing surplus pieces is used to split an invalid

 145

cluster to multiple valid clusters. The actual software uses the append at tail strategy,

where new cluster is added at the end of the list to hold excess pieces from the invalid

cluster. It is acknowledged that such strategies may have an impact on the effectiveness

of the GA implementation. Other strategies, such as the redesign of the penalty function,

could be considered in the future if this approach does not yield adequate results.

Whilst the Monte Carlo technique was very easy to implement because it only needs to

do a random walk in the search space to find the solution, the Genetic Algorithm is

more complex because of the number of sub-processes involved, of which adopting

different strategies for which may have significant impact on the overall performance of

the algorithm. A version of a GA as implemented by Goldberg (1989) is used to avoid

unnecessary complications. Again, it is acknowledged that this implementation may

lack the sophistication required to solve complex problems.

7.4. Experimental Results
The MC and GA implementations have been subjected to a series of test problems to

verify their correctness. The purpose of the procedure was to ascertain that the logic of

the algorithms remains fully preserved in the program code. Such verification is

important because unlike the deterministic greedy search where the solution for a

certain problem is singular, MC and GA contain stochastic elements that make solutions

vary between runs and the exact process non-repeatable.

The verification problems took the form of continuous multi-variable mathematical

functions. Such functions are characterized by the existence of multiple peaks in their

ranges, which present local optima the search algorithm must negotiate in its attempt to

find a global optimum. There are numerous such functions available in the literature, of

which the Rastrigin and Schwefel functions have been selected. The optimization task

of both was to find the global minimum.

In general, both the MC and GA methods are proven able to consistently find solutions

with improved function values as the search progresses. When only two variables are

used (2=n), both algorithms succeeded in finding the global minimum after the same

number of evaluations. The GA has a clear performance advantage over MC for

minimizing the Schwefel function with 4=n . In this case the GA was able to find the

global minimum with a relatively small number of evaluations, whereas MC only

managed to find a local minimum after six times as many evaluations.

 146

Both algorithms failed to find the global optimum for the Schwefel function

with 10=n , although the GA consistently achieved better solutions compared to that of

the MC. This result is not surprising since there are 1024 possible values for each

variable, making the total number of possible solutions 101024 . The Schwefel function,

with n≥10 is considered a complex function, of comparable difficulty to solve as many

real world optimization problems. Clearly a much more advanced implementation of

GA is required to effectively solve a search problem of that magnitude.

The algorithms’ obvious lack of power in solving optimization problems involving

multiple variables may have a profound impact on the actual software performance

solving the MCPO problem. This is especially true since the second stage problem of

MCPO typically deals with large numbers of pieces, each being mapped to an

optimization variable. The problem is further compounded by the computational

expense associated with each fitness evaluation. Nevertheless, the verification tests

served their stated purpose and the correctness of the algorithms is confirmed.

The actual experiments were conducted with various MCPO problems with increasing

complexity. More straightforward problems were used to provide empirical proof that

the software actually performs the way it was designed and all the search algorithms

apply their underlying logic to find this domain-specific solution. More complex

problems were used to gain insight into comparative performance of the optimization

algorithms, particularly in terms of computation time and solution quality. Solution

quality is defined by the efficiency of material usage (or minimization of wasted

material) and the length of shared edges (indicating the effort of cutting the pieces off

the stock panels).

The greedy search proves to be very effective by consistently outperforming other

algorithms on both accounts. Greedy search has a decisive advantage in computation

time because the task of constructing the solution using this method is equivalent to just

one fitness function evaluation on MC and GA. It also converges to a local optimum

every time, of which the efficiency is always higher than that of MC and GA.

Table 7.1 shows the solution efficiency of each optimization algorithm in more detail.

The figures have been averaged from experiment results given in Appendix A. As

mentioned above, the key parameters of solution efficiency are the material usage and

the shared edge length. The number of irregular panels is included to indicate the

complexity of the second-stage optimization.

 147

Irr

eg
ul

ar
 P

an
el

s
M

at
er

ia
l U

sa
ge

Sh

ar
ed

 E
dg

e
Le

ng
th

G
re

ed
y

M
on

te

G
en

et
ic

G

re
ed

y
M

on
te

G

en
et

ic

G
re

ed
y

M
on

te

G
en

et
ic

Se
ar

ch

C
ar

lo

A
lg

or
ith

m

Se
ar

ch

C
ar

lo

A
lg

or
ith

m

Se
ar

ch

C
ar

lo

A
lg

or
ith

m

Si
m

pl
e

R
ec

ta
ng

le

14

14

14

10
0.

00
%

10

0.
00

%

10
0.

00
%

24

50
.0

0
24

50
.0

0
24

50
.0

0
Si

ng
le

 W
al

l
23

19

19

87

.8
1%

84

.9
8%

85

.4
2%

28

91
.5

8
23

97
.0

9
23

57
.7

1
Si

m
pl

e
R

oo
f

24

24

24

92
.2

9%

77
.0

5%

76
.4

0%

17
33

.9
3

16
13

.8
3

16
36

.3
2

C
om

pl
ex

 R
oo

f
12

9
12

9
12

9
96

.0
0%

65

.9
5%

71

.2
3%

97

14
.9

7
93

87
.2

7
95

16
.9

6

Table 7.1: Summary of MCPO Solution Efficiency

 148

Multiple stock panels of varying size have been provided for each layout optimization

problem. It has been observed that stock panels of smaller size would typically yield

better efficiency, though in reality may suffer from higher installation costs. The single

wall problem seems like an anomaly where both MC and GA had found solutions of

better efficiency with a stock panel larger than that used by greedy algorithm, as

indicated by the number of irregular panels. Recall that an identical point of origin at (0,

0) is used for all cases, meaning the number of irregular panels resulting from the first

stage solution is identical for a given stock panel dimension. The lower efficiency of the

solutions, however, indicates that the decision to use a larger panel was sub-optimal.

Similar to the validation functions, the performance difference between MC and GA is

only slight when only a small number of pieces are involved. Both are able to find

reasonable solution, compared to that achieved by greedy search, with only marginal

difference in efficiency.

When a larger number of irregular panels are involved, such as the case with a complex

roof, the GA performance advantage over MC becomes evident. Much in the same way

GA obtained better solutions than MC did in solving the Schwefel function with n = 10.

At the same time however, the superior performance of the greedy search over both

becomes even more pronounced.

Such a finding naturally raises a question of why such a crude algorithm can perform so

much better than its much more sophisticated counterpart. Especially when compared to

a GA, which is widely accepted as a powerful tool for solving the multi-variable

optimization class of problems to which the second-stage problem of MCPO belongs.

Because the optimization algorithms have been implemented as integral parts of a

computer application solving real rather than hypothetical problems, there is a number

of contributing factors to be considered for an answer. The first is the relatively low

level of sophistication possessed by the GA implementation. As discussed in Chapter 5,

the implementation has been based on a simple variant of GA once coded for the benefit

of students and researchers new to the subject. Such an implementation is characterized

by a single crossover point, pair selection for breeding exclusively based on fitness

value alone without regard to the actual bit patterns in the chromosome, and a lack of

elitism. These deficiencies alone may be directly responsible for the algorithms failure

to solve complex problems such as the ten-variable Schwefel function.

 149

The second fundamental problem with the use of a GA in solving MCPO problem is the

parameter modeling, which also applies to the MC method. As the analysis in section

5.5.2.2 demonstrates, inter-dependencies exist between the number of stock panels

required and the actual nesting result for a given stock panel. The latter further

introduces the problem of handling the invalid cluster, of which the attempt to put

together pieces allocated for a stock panel within its boundaries is unsuccessful.

The concept of clustering is used in the prevailing model to address the problem of

mapping the irregular panels to an undetermined number of stock panels. Whilst the

model solves this particular problem quite well, it completely disregards a host of

crucial parameters to be solved in the individual nesting tasks. Relegating the actual

nesting of irregular pieces from the clusters to individual stock panels to greedy search

has been done as a pragmatic measure taken in the interests of generating a valid nesting

layout at minimum computational cost. Special provisions were also needed to

effectively deal with invalid clusters.

By only partially solving the second stage problem, the MC and GA optimization have

no direct impact on the final result. It may also be the main reason why the efficiency of

the MC and GA solutions is only marginally different in the majority of cases. GA

solutions only become visibly better than those of MC when a large number of irregular

pieces are involved. This is consistent with the result of verification procedure using the

Schwefel test function, where the GA performs noticeably better when more variables

were used. The most likely explanation is that the performance disparity between the

two algorithms is such that relegating the rest of the nesting task to an external entity

does little to hide the difference in the final result.

In any case, the current parameter modeling has been found far from ideal. It is quite

possible that a better model may realize the true potential of the GA in solving MCPO

problems. Constructing such a model however is beyond the scope of this thesis.

Further interest in achieving better MCPO solutions using the GA may warrant future

study in this area. On a smaller scale, various aspects of the current model, such as

better realization of the best-fit strategy and invalid cluster handling, can also be subject

to more thorough study.

Lastly, the nature of the actual data itself may contribute to the efficiency of the

solution. Take the simple and complex roof problems for instance. The simple roof has

smaller search space, allowing the heuristic algorithms to find the good solutions in a

 150

relatively few evaluations. The complex roof on the other hand, presents a much larger

search space, requiring increased number of evaluations while making it less likely for

those algorithms to find good solutions. At the same time, the complex roof has larger

surface area. In effect, the ratio of the surface area of the stock panel with the container

is smaller in complex roof problem than it is in simple roof counterpart. Bearing in mind

that smaller stock panels tend to produce more efficient results, it is understandable that

the result obtained by the greedy search is better on complex roof problem. This effect,

however, is negated by the increased search space in the case of heuristic algorithm. The

increased difficulty is reflected by the lower efficiency obtained by the MC and the GA

on solving the complex roof problem compared to that of simple roof.

From the user perspective, the experiment results reveal that the use of novel

optimization algorithms such as MC and GA has not been justified at the current stage

of the software maturity. Employing the greedy search is the most logical choice for

solving MCPO problems due to its low resource requirements and high quality

solutions. However, it is important to point out that all three methods are finding

solutions that have better material utilization than those created by a builder.

As a commercial application, the MCPO software delivers value to the user in at least

three different ways. The first is that a great amount of manual work involved in

planning for a panel layout project has been automated. The automated process gives

the user detailed information regarding the number of stock panels required, the nesting

plan for each panel, and the layout plan for the actual sections of the physical building.

This wealth of information in turn allows the user to more accurately predict the costs

associated with material and labor required to undertake the project.

The second benefit to the user is the optimization capability that helps them to minimize

the project cost by making the necessary selection from different types of stock panel as

well as making sure that a minimum number of panels need to be allocated. The amount

of computational task needed to accomplish the optimization is such that manual

optimization is unlikely to yield comparable results except in very simple cases.

Finally, the software capability of solving multiple container problems means that

optimization does not need to be performed on the basis of individual sections of the

building. As previously mentioned, the use of a smaller stock panel typically results in

better material efficiency. It follows that the material usage efficiency tends to improve

when the ratio of container area to the stock panel area increases. Furthermore using

 151

multiple containers for a single MCPO problem is a good way of improving the ratio.

The important implication is that not only does solving MCPO for multiple sections of

the building in a single optimization run become possible, but doing so actually

generates less waste for the overall project than it would if the sections are optimized

individually.

 152

8. Conclusion
The objectives of this research were stated in Chapter 1 as;

• To develop a model of the MCPO problem into a series of parameters that can

be optimized by numerical algorithms

• To develop a software application which implements MCPO automated

optimization processes using general-purpose programming tools

• To demonstrate that optimization algorithms can be utilized to solve the MCPO

problem effectively

• To observe the relative performance of alternative optimization algorithms

It is clear that each of these objectives have been addressed by the research undertaken,

although at times with unexpected observations.

Decomposing MCPO into a two-stage optimization model provides a solid ground for

constructing a well-functioning solution. The study has also proven that with the

support of appropriate analysis, software application to solve complex problems such as

MCPO can be successfully implemented using standard modeling and programming

tools.

Various technical issues discovered throughout the development of the software have

provided insight to the nature of the problem as well as the challenges of constructing a

solution using contemporary programming tools. Pragmatic approaches have been taken

to resolve some of those problems for the lack of access to better alternatives. The

deficiencies of pragmatic solutions have manifested themselves in some sub-optimum

performance in affected modules.

Nonetheless the resulting software is capable of solving actual MCPO problems, thus

offering a proof for the correctness of the two-stage optimization model. Successful

implementation of the software also proves the feasibility of constructing MCPO

solutions automatically for commercial use with current computing technologies.

A series of experiments have demonstrated the outstanding performance of greedy

search in comparison with simulation-based search algorithms represented by the Monte

Carlo technique and a Genetic Algorithm. While this result is not surprising for the

Monte Carlo technique given its inherent inefficiency, the unexpected lack of

 153

performance of such a sophisticated method as a Genetic Algorithm calls for further

investigation in the area.

There are a number of possible reasons for the Genetic Algorithm’s relative poor

performance. The first is the efficiency of the coded implementation, which has been

based of an unsophisticated version of the algorithm featuring naïve strategies in

accomplishing its key sub-tasks. The second possible reason is the accuracy of the

parameter modeling that prevailed, in which many important parameters of the nesting

problem have been omitted to be optimized by external processes. Finally, the MCPO

class of problems may have certain characteristics that make Genetic Algorithms

unsuitable to solve them. None of these assertions have been proved however, implying

the need for further research in the area.

8.1. Suggestions for Future Work
At present the MCPO application has limitations indicating its lack of maturity as

solution, both as research and commercial software. There are quite a few areas where it

can be improved to expand its capabilities. There are also opportunities of exploring

various theoretical aspects of MCPO problem.

A degree of uncertainty regarding the correctness of the program code exists because of

the practice of manual coding and the absence of rigorous mathematical analysis in

constructing various algorithms. These are the byproduct of the Rapid Application

Development (RAD) model used for the project. While the use of RAD was justified by

the need to construct the solution software while simultaneously identifying various

issues unknown at the time the project was conceived, further development can use

different development models to take advantage of knowledge of key issues discovered

during the course of this project.

Many programming errors can be eliminated when automated coding is used. In this

case, 4th Generation Technique (4GT) is a good candidate as alternative development

model. Similarly, Formal Methods can increase the efficiency of many underlying

modules by its rigorous mathematical analysis. Future studies may discover the benefit

of employing these two development models in improving the quality of MCPO

software.

At a more technical level, there are a number of ad-hoc algorithms employed in the

current MCPO software that can be replaced with more efficient substitutes.

 154

Mathematically proven algorithms are especially valuable in increasing the efficiency of

difficult geometric operations such as polygon triangulation, polygon overlap detection,

and polygon clipping. Only pragmatic solutions have been implemented to solve these

three problems, resulting in possibly sub-optimal performance. The use of more

advanced algorithms, even in the form of third-party software components, may have

direct impact on the performance of MCPO software.

There also a number of unresolved problems with the second-stage optimization. The

most glaring problem is the unsatisfactory implementation of the best-fit strategy, which

calls for a better model in calculating the convex vacant space. Better models resulting

from study in this area will enable the correct realization of a best-fit placement

strategy. Similarly, the ability to automatically identify the best point of origin is likely

to lead to significantly improved results.

Another problematic aspect of the second-stage optimization is the parameter modeling

into chromosome used by simulation algorithms such as the Monte Carlo technique and

Genetic Algorithm. The current solution seems inadequate from a performance

standpoint, with many important parameters missing from the bit string representation

of the chromosome. It is used regardless because the task of constructing a better model

is not trivial. Given the existence of inter-dependencies between the second-stage

parameters, simple mapping of the parameters to the bit string is unlikely to be

workable. A more thorough exploration of possible parameter modeling is necessary to

find a better alternative.

On a smaller scale, further investigation can be made to improve the effectiveness of the

Genetic Algorithm using the current chromosome structure. For all its flaws, the current

parameter modeling serves a critical role of making it possible to employ such an

advanced optimization technique to solve MCPO problems. A major problem

encountered with utilizing Genetic Algorithms in this particular problem is the

abundance of invalid chromosomes, in which stock panels are assigned with more

pieces than they can accommodate. An invalid chromosome complicates the task of

calculating the fitness function of the individual.

At present, invalid chromosomes are turned into their valid equivalents through a

correction procedure of redistributing the surplus pieces found in the overcrowded

panels. Although this approach effectively enables a fitness function to be calculated

directly, its potentially adverse impact on the survival of better individuals has not been

 155

explored. An investigation into reintroducing modified strings back into the population

could lead to a significant improved in performance.

An alternative solution is to penalize the chromosome for the invalid clusters it contains.

For example, the surface area of the pieces that fall outside the stock panel boundaries

may be used to calculate the penalty applied to the chromosome. More solutions are

likely to result from a closer study in this area.

The use of a more sophisticated implementation of the Genetic Algorithm should also

be explored. Given the lack of sophistication of the current implementation, it is

possible that improvement in the evolution mechanism of the algorithm will have direct

impact on the result of the second-stage solution. Key aspects of the algorithms that

need improvement are the selection policy, crossover mechanism, and the introduction

of elitism where best individuals are carried over to the succeeding generations.

Successful use of the Monte Carlo technique and the Genetic Algorithm has proven that

optimization algorithms can be used to solve the second-stage problem. The implication

is that other optimization techniques could also be used in their place. Various

optimization techniques such as Swarm Intelligence, Simulated Annealing, and Tabu

Search can potentially increase the effectiveness of the search for the second-stage

optimization.

From a commercial point of view, study of the impact of the software to the practices of

house construction has significant value. A particular point of interest is the deployment

value of the greedy algorithm, which perfectly matches the needs of an industry solution

for quick optimization and high quality results. The software has been intended to

streamline the process of covering sections of a building. It has been envisioned that

successful deployment of the software may also lead to its usage for assisting related

tasks. For instance, the availability of MCPO solutions for covering a house section

with drywall can be used to design the wooden frame of that section. The resulting

design can then be used by the frame manufacturer to assist the calculation of the

amount of required timber as well as it cutting plan. Study in such areas will reveal

which aspects of the software that gives most value to the user, which in turn will allow

improvement efforts for the software to be directed towards areas that benefit the user

most.

 156

9. Cited References
Adamowicz, M., & Albano, A. (1976). Nesting Two-Dimensional Shapes In

Rectangular Modules. IEEE Transactions on Systems, Man and Cybernetics,

8(1), 27-33.

Ahn, C.W. & Ramakrishna, R.S. (2003). Elitism-based compact genetic algorithms.

IEEE Transactions on Evolutionary Computation, 7(4), 367-385.

Ansari, N., & Hou, E. (1997). Computational Intelligence for Optimization. Newark,

New Jersey: Kluwer Academic Publishers.

Bäck, T., & Schwefel, H.-P. (1996). Evolutionary computation: an overview. Paper

presented at the Evolutionary Computation, 1996., Proceedings of IEEE

International Conference on.

Bellomo, D., Naso, D. & Turchiano, B. (2002) Improving Genetic Algorithms: An

approach based on multi-elitism and Lamarckian mutation. Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics, 4, 89-94.

Bennell, J. A., & Dowsland, K. A. (1999). Tabu thresholding implementation for the

irregular stock cutting problem. International Journal of Production Research,

37(18), 4259-4275.

BISCO. (2006). The BISCo Solution. Retrieved 8 June 2006, from www.bisco.com

Bolc, L., & Cytowski, J. (1992). Search Methods for Artificial Intelligence. Warsaw,

Poland: Academic Press.

Bounsaythip, C., & Maouche, S. (1997). Irregular shape nesting and placing with

evolutionary approach. Paper presented at the Systems, Man, and Cybernetics,

1997. 'Computational Cybernetics and Simulation'., 1997 IEEE International

Conference on, Orlando, FL, United States.

Bounsaythip, C., Maouche, S., & Neus, M. (1995). Evolutionary search techniques

application in automated layout-planning optimization problem. Paper presented

at the Systems, Man and Cybernetics, 1995. 'Intelligent Systems for the 21st

Century'., IEEE International Conference on.

http://www.bisco.com/

 157

Caprara, A., & Monaci, M. (2004). On the two-dimensional Knapsack Problem.

Operations Research Letters, 32(1), 5-14.

Chan, F. T. S., Au, K. C., & Chan, P. L. Y. (2005). A genetic algorithm approach to bin

packing in an ion plating cell. Proceedings of the Institution of Mechanical

Engineers, Part B (Journal of Engineering Manufacture), 219(B1), 1-13.

Chang, W.-D. (2006). Coefficient estimation of IIR filter by a multiple crossover

genetic algorithm. Computers and Mathematics with Applications, 51(9-10),

1437-1444.

Chazelle, B. (1990, 1990//). Triangulating a simple polygon in linear time. Paper

presented at the Proceedings. 31st Annual Symposium on Foundations of

Computer Science (Cat. No.90CH2925-6), 22-24 Oct. 1990, St. Louis, MO,

USA.

Cheng, C. Y., & Atkinson, J. (1994). Comparison of some methods for computer-aided

nesting of sheet components. Journal of Materials Processing Technology, 44(3-

4), 311-318.

Connor, A. (1996). The Synthesis of Hybrid Mechanism Using Genetic Algorithms.

PhD Thesis, Liverpool John Moores University, Liverpool, UK.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2003). Introduction to Algorithms

(Second ed.). Cambridge, Massachusetts: The MIT Press.

Crispin, A., Clay, P., Taylor, G., Bayes, T., & Reedman, D. (2005). Genetic algorithm

coding methods for leather nesting. Applied Intelligence, 23(1), 9-20.

Daniels, K., & Milenkovic, V. (1995). Multiple translational containment: approximate

and exact algorithms. Paper presented at the Proceedings of the sixth annual

ACM-SIAM symposium on Discrete algorithms, San Fracisco, California,

United States.

Dean, T., Allen, J., & Aloimonos, Y. (1995). Artificial Intelligence: Theory and

Practice. Menlo Park, California: Addison-Wesley Publishing.

De Jong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD Thesis, The University of Michigan, Michigan, USA.

 158

Djurisic, A.B. (1998). Elite genetic algorithms with adaptive mutations for solving

continuous optimization problems - application to modeling of the optical

constants of solids. Optics Communications, 151(1-3), 147-159.

Dolan, A. (2006). GA Playground (A Genetic Algorithm Toolkit). Downloaded from

http://www.aridolan.com/ga/gaa/gaa.html on 14th August 2006.

Du, J., Alhajj, R. & Barker, K. (2006). Genetic algorithms based approach to database

vertical partition. Journal of Intelligent Information Systems, 26(2), 167-183.

Dyckhoff, H. (1990). Typology of cutting and packing problems. European Journal of

Operational Research, 44(2), 145-159.

Faina, L. (1999). Application of simulated annealing to the cutting stock problem.

European Journal of Operational Research, 114(3), 542-556.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and line

balancing, Paper presented at the 1992 International Conference on Robotics and

Automation, Nice, France

Fortnow, L., Homer, S. (2002). A Short History of Computational Complexity. In D.

van Dalen, J. Dawson, and A. Kanamori, editors, The History of Mathematical

Logic. North-Holland, Amsterdam.

Fournier, A., & Montuno, D. Y. (1984). Triangulation of Simple Polygons and

Equivalent Problems. ACM Transactions on Graphics, 3(2), 153-174.

Garey, M., Johnson, D., Preparata, F., & Tarjan, R. (1978). Triangulating a simple

polygon. Information Processing Letters, 7(4), 175-179.

Georgis, N., Petrou, M., & Kittler, J. (2000). On the generalised stock-cutting problem.

Machine Vision and Applications, 11(5), 231-241.

Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization, and Machine

Learning. Reading, Massachusetts: Addison-Wesley Publishing.

Gordon, V., Mathias, K., & Whitley, D. (1994). Cellular Genetic Algorithms as

Function Optimizers: Locality Effects. Paper presented at the Proceedings of the

1994 ACM symposium on Applied computing, Phoenix, Arizona, United States.

http://www.aridolan.com/ga/gaa/gaa.html on 14th August 2006

 159

Hakimi, S. L. (1988). Problem on rectangular floorplans. Paper presented at the 1988

IEEE International Symposium on Circuits and Systems, Proceedings, Jun 7-9

1988, Espoo, Finl.

Hedar, A. (2006). Global Optimization Test Problems. Retrieved 18 July 2006, 2006,

from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly, 28(1), 75-105.

Hifi, M. (1998). Exact algorithms for the guillotine strip cutting/packing problem.

Computers & Operations Research, 25(11), 925-940.

Holland, J. Adaptation in Natural and Artificial Systems. University of Michigan Press,

1975.

Horn, J. (2005). Shape nesting by coevolving species. Paper presented at the Genetic

And Evolutionary Computation Conference, Washington DC, USA.

Hsieh, S.-T., Lin, C.-W., & Sun, T.-Y. (2005). Particle swarm optimization for

macrocell overlap removal and placement, Proceedings of the 2005 IEEE

International Symposium on Swarm Intelligence, Pasadena, CA, United States.

Hsu, Y. C., & Kubitz, W. J. (1988). ALSO: A System for Chip Floorplan Design.

Integration, the VLSI Journal, 6(2), 127-146.

Hwang, S-F. & He, R-S. (2006) Improving real-parameter genetic algorithm with

simulated annealing for engineering problems. Advances in Engineering

Software, 37(6), 406-418.

Imahori, S., Yagiura, M., & Ibaraki, T. (2005). Improved local search algorithms for the

rectangle packing problem with general spatial costs. European Journal of

Operational Research, 167(1), 48-67.

Jiang, J. Q., Xing, X. L., Yang, X. W., & Liang, Y. C. (2004). A hybrid algorithm based

on PSO and genetic operation and its applications for cutting stock problem,

Paper presented at the Proceedings of 2004 IEEE International Conference on

Machine Learning and Cybernetics, Shanghai, China.

 160

Kiyota, K., & Fujiyoshi, K. (2000). Simulated annealing search through general

structure floorplans using sequence-pair. Paper presented at the Proceedings of

the IEEE 2000 Internaitonal Symposium on Circuits and Systems, May 29-

May 31 2000, Geneva, Switzerland.

Lamousin, H., & Waggenspack Jr., W. N. (1997). Nesting of two-dimensional irregular

parts using a shape reasoning heuristic. CAD Computer Aided Design, 29(3),

221-238.

Laurent, D. G., & Iyengar, S. S. (1982). Heuristic Algorithm for Optimal Placement of

Rectangular Objects. Information Sciences, 26(2), 127-139.

Levenick, J.R. (1991). Inserting introns improves genetic algorithm success rate: Taking

a cue from biology. Proceedings of the International Conference on Genetic

Algorithms, 123.

Levitin, G. (2006). Genetic algorithms in reliability engineering. Reliability Engineering

and System Safety, 91(9), 975-976.

Lewis, J. E., Ragade, R. K., Kumar, A., & Biles, W. E. (2005). A distributed

chromosome genetic algorithm for bin-packing. Robotics and Computer-

Integrated Manufacturing, 21(4-5), 486-495.

Liang, Y.-D., & Barsky, B. A. (1983). An analysis and algorithm for polygon clipping.

Communications of the ACM, 26(11), 868-877.

Lis, J. (1996). Parallel genetic algorithm with the dynamic control parameter.

Proceedings of the IEEE Conference on Evolutionary Computation, 324-329.

Liu, D., & Teng, H. (1999). Improved BL-algorithm for genetic algorithm of the

orthogonal packing of rectangles. European Journal of Operational Research,

112(2), 413-420.

Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A

survey. European Journal of Operational Research, 141(2), 241-252.

Maillot, P. G. (1992). A New, Fast Method For 2D Polygon Clipping: Analysis and

Software Implementation. ACM Transactions on Graphics, 11(3), 276-290.

 161

Mak, B., Blanning, R. & Ho, S. (2006). Genetic algorithms in logic tree decision

modelling. European Journal of Operational Research, 170(2), 597-612.

Mount, D. (1992). Intersection detection and separators for simple polygons. Paper

presented at the Proceedings of the eighth annual symposium on Computational

geometry, Berlin, Germany.

Murata, H., Fujiyoshi, K., Nakatake, S., & Kajitani, Y. (1995). Rectangle-packing-based

module placement. Paper presented at the Proceedings of the 1995 IEEE/ACM

International Conference on Computer-Aided Design, Nov 5-9 1995, San Jose,

CA, USA.

Nagao, T. (1996, 20-22 May 1996). Homogeneous Coding for Genetic Algorithm Based

Parameter Optimization. Paper presented at the Proceedings of the IEEE

Conference on Evolutionary Computation, Nagoya, Japan.

Ndiritu, J.G. & Daniell, T.M. (1999). Improved genetic algorithm for continuous and

mixed discrete-continuous optimization. Engineering Optimization, 31(5), 589-

614.

Nunamaker, J., Chen, M. (1991). Systems Development in Information Systems

Research. Paper presented at the Proceedings of the Twenty-Third Annual

Hawaii International Conference on System Sciences, Kailua-Kona, Hawaii,

USA.

Nye, T. J. (2001). Optimal nesting of irregular convex blanks in strips via an exact

algorithm. International Journal of Machine Tools and Manufacture, 41(7), 991-

1002.

Oloffson, P. (2005). Probability, Statistics, and Stochastic Processes. Houston, Texas:

Wiley-Interscience.

Pai, P.-F., Deng, S., Lai, C.-C. and Wu, P.-S. (2006). Genetic algorithms in simulating

optimal stacking sequence of a composite laminate plate with constant thickness.

International Journal of Modelling and Simulation, 26(1), 61-67.

 162

Peffers, K., Tuunanen, T., Gengler, C., Rossi, M., Hui, W., Virtanen, V., Bragge, J.

(2006). The Design Science Research Process: A Model for Producing and

Presenting Information Systems Research. Proceedings of the First International

Conference on Design Science Research in Information Systems and

Technology (DESRIST 2006), Claremont, CA. Retrieved 17/05/2006 from

http://ncl.cgu.edu/designconference/DESRIST%202006%20Proceedings/4A_2.pdf.

Prasad, Y. K. D. V. (1994). Set of heuristic algorithms for optimal nesting of two-

dimensional irregularly shaped sheet-metal blanks. Computers in Industry,

24(1), 55-70.

Prasad, Y. K. D. V., & Somasundaram, S. (1991). CASNS- a heuristic algorithm for the

nesting of irregular-shaped sheet-metal blanks. Computer-Aided Engineering

Journal, 8(2), 69-73.

Pressman, R. (2004). Software Engineering: A Practitioner's Approach (Sixth ed.). New

York: McGraw-Hill Higher Education.

Reca, J. & Martinex, J. (2006). Genetic algorithms for the design of looped irrigation

water distribution networks. Water Resources Research, 42(5), W05416.

Schneider, B.-O., & Van Welzen, J. (1998). Efficient polygon clipping for an SIMD

graphics pipeline. IEEE Transactions on Visualization and Computer Graphics,

4(3), 272-285.

Shi, X.H., Wan, L.M., Lee, H.P., Yang, X.W., Wang, L.M. & Liang, Y.C. (2003). An

improved genetic algorithm with variable population-size and a PSO-GA based

hybrid evolutionary algorithm. International Conference on Machine Learning

and Cybernetics, 3, 1735-1740.

Shian-Miin, H., Cheng-Yan, K., & Jorng-Tzong, H. (1994). On solving rectangle bin

packing problems using genetic algorithms, Paper presented at the 1994 IEEE

International Conference on Systems, Man, and Cybernetics, San Antonio, TX,

USA.

Shigehiro, Y., Koshiyama, S., & Masuda, T. (2001). Stochastic tabu search for rectangle

packing. Paper presented at the 2001 IEEE International Conference on Systems,

Man and Cybernetics, Oct 7-10 2001, Tucson, AZ.

 163

Sibley-Punnett, L., & Bossomaier, T. (2001). Optimisation techniques for roof layout.

Paper presented at the Electrical and Electronic Technology, 2001. TENCON.

Proceedings of IEEE Region 10 International Conference on.

Sun, Z.-G., & Teng, H.-F. (2002). An ant colony optimization based layout optimization

algorithm, Paper presented at 2002 IEEE Region 10 Conference on Computers,

Communications, Control and Power Engineering, Beijing, China.

Tanenbaum, A. (2001). Modern Operating Systems (Second ed.). New Jersey: Prentice-

Hall.

Tokuyama, H., & Ueno, N. (1985). Cutting Stock Problem For Large Sections In The

Iron And Steel Industries. European Journal of Operational Research, 22(3),

280-292.

Vassiliadis, V. S. (2005). Two-dimensional stock cutting and rectangle packing: Binary

tree model representation for local search optimization methods. Journal of Food

Engineering: Operational Research and Food Logistics, 70(3), 257-268.

Vatti, B. R. (1992). A Generic Solution to Polygon Clipping. Communications of The

ACM, 35(7), 56-63.

Watkins, A., Hufnagel, E.M., Berndt, D. & Johnson, L. (2006). Using genetic

algorithms and decision tree induction to classify software failures. International

Journal of Software Engineering and Knowledge Engineering, 16(2), 269-291.

Weisstein, E. W. (1999). Monte Carlo Method. Retrieved June, 2006, from

http://mathworld.wolfram.com/MonteCarloMethod.html

Yoon, H.-S., & Moon, B.-R. (2002). An empirical study on the synergy of multiple

crossover operators. IEEE Transactions on Evolutionary Computation, 6(2),

212-223.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, N.J.: Prentice-Hall.

Yourdon, E. (2006). Just Enough Structured Analysis. Retrieved 5 July 2006, from

http://www.yourdon.com/strucanalysis/

 164

Yuping, Z., Shouwei, J., & Chunli, Z. (2005). A very fast simulated re-annealing

algorithm for the leather nesting problem. International Journal of Advanced

Manufacturing Technology, 25(11-12), 1113-1118.

Zhang, M., & Sabharwal, C. L. (2002). An efficient implementation of parametric line

and polygon clipping algorithm. Paper presented at the Applied Computing

2002: Proceeedings of the 2002 ACM Symposium on Applied Computing, Mar

11-14 2002, Madrid, Spain.

 165

Appendix A: Experiment Results

Rotation None
180

Degree 90 Degree
Placement First Fit First Fit First Fit Best Fit
Experiment # 1 1 1 1
Regular Panels 10 10 10 10
Partial Panels 14 14 14 14
Total Panels 24 24 24 24
Stock Panels 17 17 17 17
Shared Edge 2450.00 2450.00 2450.00 2450.00
Covered Area 85000.00 85000.00 85000.00 85000.00
Stock Panel Area 85000.00 85000.00 85000.00 85000.00
Wasted Material 0.00 0.00 0.00 0.00
Solution Efficiency 100.00% 100.00% 100.00% 100.00%
Search Duration 0:00:01 0:00:01 0:00:01 0:00:01

Table A.1: Greedy Search Optimization on Simple Rectangular Container

Rotation None 180 Degree 90 Degree
Placement First Fit First Fit First Fit Best Fit
Experiment # 1 1 1 1
Regular Panels 11 11 11 11
Partial Panels 24 19 24 24
Total Panels 35 30 35 35
Stock Panels 25 22 25 25
Shared Edge 3013.00 2523.33 3013.00 3017.00
Covered Area 94300.00 94300.00 94300.00 94300.00
Stock Panel Area 108000.00 105600.00 108000.00 108000.00
Wasted Material 13700.00 11300.00 13700.00 13700.00
Solution Efficiency 87.31% 89.30% 87.31% 87.31%
Search Duration 0:00:01 0:00:01 0:00:01 0:00:01

Table A.2: Greedy Search Optimization on Single Wall

 166

Rotation None 180 Degree
Placement First Fit First Fit Best Fit
Experiment # 1 1 1
Regular Panels 8 8 8
Partial Panels 24 24 24
Total Panels 32 32 32
Stock Panels 18 17 18
Shared Edge 1698.24 1722.34 1781.21
Covered Area 26067.20 26067.20 26067.20
Stock Panel Area 28800.00 27200.00 28800.00
Wasted Material 2732.80 1132.80 2732.80
Solution Efficiency 90.51% 95.84% 90.51%
Search Duration 0:00:01 0:00:01 0:00:01

Table A.3: Greedy Search Optimization on Simple Roof

Rotation None 180 Degree
Placement First Fit First Fit Best Fit
Experiment # 1 1 1

Regular Panels 25 25 25
Partial Panels 129 129 129
Total Panels 154 154 154
Stock Panels 65 65 64
Shared Edge 9629.28 9586.05 9929.57
Covered Area 124153.13 124153.13 124153.13
Stock Panel Area 130000.00 130000.00 128000.00
Wasted Material 5846.87 5846.87 3846.87
Solution Efficiency 95.50% 95.50% 96.99%
Search Duration 0:00:02 0:00:04 0:00:03

Table A.4: Greedy Search Optimization on Complex Roof

 167

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

90
 D

eg
re

e
Pl

ac
em

en
t

Fi
rs

t F
it

Fi
rs

t F
it

Fi
rs

t F
it

B
es

t F
it

Ite
ra

tio
ns

10

00
0

10
00

0
10

00
0

10
00

0
Ex

pe
rim

en
t #

1

2

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Pa
rt

ia
l P

an
el

s
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

To
ta

l P
an

el
s

2
4

2
4

2
4

2
4

2
4

2
4

2
4

2
4

St
oc

k
Pa

ne
ls

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

Sh
ar

ed
 E

dg
e

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

C
ov

er
ed

 A
re

a
8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

St
oc

k
Pa

ne
l A

re
a

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

So
lu

tio
n

Ef
fic

ie
nc

y
1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

Se
ar

ch
 D

ur
at

io
n

0
0
:
0
0
:
3
2
.
5
5

0
:
0
0
:
3
2

0
:
0
0
:
4
0

0
:
0
0
:
3
2

0
:
0
0
:
3
1

0
:
0
0
:
3
1

0
:
0
0
:
4
0

0
:
0
0
:
4
1

Table A.5: Monte Carlo Optimization on Simple Rectangular Container

 168

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

90
 D

eg
re

e
Pl

ac
em

en
t

Fi
rs

t F
it

Fi
rs

t F
it

Fi
rs

t F
it

B
es

t F
it

Ite
ra

tio
ns

10

00
0

10
00

0
10

00
0

10
00

0
Ex

pe
rim

en
t #

1

2

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Pa
rt

ia
l P

an
el

s
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

To
ta

l P
an

el
s

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

St
oc

k
Pa

ne
ls

2
3

2
4

2
3

2
3

2
3

2
3

2
3

2
3

Sh
ar

ed
 E

dg
e

2
4
7
1
.
6
7

2
4
1
6
.
6
7

2
3
3
1
.
6
7

2
3
3
8
.
3
3

2
4
9
1
.
6
7

2
2
8
3
.
3
3

2
4
1
6
.
6
7

2
4
2
6
.
6
7

C
ov

er
ed

 A
re

a
9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

St
oc

k
Pa

ne
l A

re
a

1
1
0
4
0
0
.
0
0

1
1
5
2
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
1
6
1
0
0
.
0
0

2
0
9
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

So
lu

tio
n

Ef
fic

ie
nc

y
8
5
.
4
2
%

8
1
.
8
6
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

Se
ar

ch
 D

ur
at

io
n

0
:
0
3
:
3
1

0
:
0
3
:
2
9

0
:
0
5
:
4
1

0
:
0
5
:
4
5

0
:
0
5
:
4
1

0
:
0
3
:
2
9

0
:
0
4
:
4
0

0
:
0
4
:
3
8

Table A.6: Monte Carlo Optimization on Single Wall

 169

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

Pl
ac

em
en

t
Fi

rs
t F

it
Fi

rs
t F

it
B

es
t F

it
Ite

ra
tio

ns

10
00

0
10

00
0

10
00

0
Ex

pe
rim

en
t #

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

8

8

8

8

8

8

Pa
rt

ia
l P

an
el

s
2
4

2
4

2
4

2
4

2
4

2
4

To
ta

l P
an

el
s

3
2

3
2

3
2

3
2

3
2

3
2

St
oc

k
Pa

ne
ls

2
1

2
2

2
2

2
0

2
1

2
1

Sh
ar

ed
 E

dg
e

1
4
8
1
.
7
2

1
5
2
3
.
0
9

1
5
5
3
.
5
1

1
6
2
7
.
0
1

1
7
6
1
.
8
0

1
7
3
5
.
8
4

C
ov

er
ed

 A
re

a
2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

St
oc

k
Pa

ne
l A

re
a

3
3
6
0
0
.
0
0

3
5
2
0
0
.
0
0

3
5
2
0
0
.
0
0

3
2
0
0
0
.
0
0

3
3
6
0
0
.
0
0

3
3
6
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
7
5
3
2
.
8
0

9
1
3
2
.
8
0

9
1
3
2
.
8
0

5
9
3
2
.
8
0

7
5
3
2
.
8
0

7
5
3
2
.
8
0

So
lu

tio
n

Ef
fic

ie
nc

y
7
7
.
5
8
%

7
4
.
0
5
%

7
4
.
0
5
%

8
1
.
4
6
%

7
7
.
5
8
%

7
7
.
5
8
%

Se
ar

ch
 D

ur
at

io
n

0
:
0
2
:
1
2

0
:
0
2
:
2
7

0
:
0
3
:
0
8

0
:
0
3
:
0
5

0
:
0
6
:
1
0

0
:
0
6
:
1
0

Table A.7: Monte Carlo Optimization on Simple Roof

 170

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

Pl
ac

em
en

t
Fi

rs
t F

it
Fi

rs
t F

it
B

es
t F

it
Ite

ra
tio

ns

10
00

0
10

00
0

10
00

0
Ex

pe
rim

en
t #

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

2
5

2
5

2
5

2
5

2
5

2
5

Pa
rt

ia
l P

an
el

s
1
2
9

1
2
9

1
2
9

1
2
9

1
2
9

1
2
9

To
ta

l P
an

el
s

1
5
4

1
5
4

1
5
4

1
5
4

1
5
4

1
5
4

St
oc

k
Pa

ne
ls

9
4

9
9

9
8

9
6

8
6

9
3

Sh
ar

ed
 E

dg
e

9
1
6
9
.
9
7

9
3
1
2
.
4
0

9
2
9
7
.
7
2

9
1
9
7
.
8
9

9
6
8
3
.
7
2

9
6
6
1
.
9
0

C
ov

er
ed

 A
re

a
1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

St
oc

k
Pa

ne
l A

re
a

1
8
8
0
0
0
.
0
0

1
9
8
0
0
0
.
0
0

1
9
6
0
0
0
.
0
0

1
9
2
0
0
0
.
0
0

1
7
2
0
0
0
.
0
0

1
8
6
0
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
6
3
8
4
6
.
8
7

7
3
8
4
6
.
8
7

7
1
8
4
6
.
8
7

6
7
8
4
6
.
8
7

4
7
8
4
6
.
8
7

6
1
8
4
6
.
8
7

So
lu

tio
n

Ef
fic

ie
nc

y
6
6
.
0
4
%

6
2
.
7
0
%

6
3
.
3
4
%

6
4
.
6
6
%

7
2
.
1
8
%

6
6
.
7
5
%

Se
ar

ch
 D

ur
at

io
n

0
:
1
8
:
2
9

0
:
1
8
:
2
3

0
:
3
0
:
0
4

0
:
3
0
:
1
5

0
:
4
7
:
1
4

0
:
4
8
:
0
5

Table A.8: Monte Carlo Optimization on Complex Roof

 171

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

90
 D

eg
re

e
Pl

ac
em

en
t

Fi
rs

t F
it

Fi
rs

t F
it

Fi
rs

t F
it

B
es

t F
it

Po
pu

la
tio

n
| G

en
er

at
io

n
10

0
| 1

00

10
0

| 1
00

10

0
| 1

00

10
0

| 1
00

Ex

pe
rim

en
t #

1

2

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Pa
rt

ia
l P

an
el

s
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

To
ta

l P
an

el
s

2
4

2
4

2
4

2
4

2
4

2
4

2
4

2
4

St
oc

k
Pa

ne
ls

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

Sh
ar

ed
 E

dg
e

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

2
4
5
0
.
0
0

C
ov

er
ed

 A
re

a
8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

St
oc

k
Pa

ne
l A

re
a

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

8
5
0
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

So
lu

tio
n

Ef
fic

ie
nc

y
1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

1
0
0
.
0
0
%

Se
ar

ch
 D

ur
at

io
n

0
:
0
0
:
3
2

0
:
0
0
:
3
1

0
:
0
0
:
3
8

0
:
0
0
:
3
8

0
:
0
0
:
3
0

0
:
0
0
:
3
0

0
:
0
0
:
4
0

0
:
0
0
:
4
0

Table A.9: Genetic Algorithm Optimization on Simple Rectangular Container

 172

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

90
 D

eg
re

e
Pl

ac
em

en
t

Fi
rs

t F
it

Fi
rs

t F
it

Fi
rs

t F
it

B
es

t F
it

Po
pu

la
tio

n
| G

en
er

at
io

n
10

0
| 1

00

10
0

| 1
00

10

0
| 1

00

10
0

| 1
00

Ex

pe
rim

en
t #

1

2

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Pa
rt

ia
l P

an
el

s
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

To
ta

l P
an

el
s

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

St
oc

k
Pa

ne
ls

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

Sh
ar

ed
 E

dg
e

2
3
3
6
.
6
7

2
2
3
3
.
3
3

2
3
4
1
.
6
7

2
3
7
8
.
3
3

2
3
4
6
.
6
7

2
4
1
1
.
6
7

2
4
5
6
.
6
7

2
3
5
6
.
6
7

C
ov

er
ed

 A
re

a
9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

9
4
3
0
0
.
0
0

St
oc

k
Pa

ne
l A

re
a

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

1
1
0
4
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

1
6
1
0
0
.
0
0

So
lu

tio
n

Ef
fic

ie
nc

y
8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

8
5
.
4
2
%

Se
ar

ch
 D

ur
at

io
n

0
:
0
3
:
3
2

0
:
0
3
:
3
3

0
:
0
5
:
4
7

0
:
0
5
:
3
8

0
:
0
3
:
3
3

0
:
0
3
:
3
2

0
:
0
4
:
3
5

0
:
0
4
:
3
7

Table A.10: Genetic Algorithm Optimization on Single Wall

 173

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

Pl
ac

em
en

t
Fi

rs
t F

it
Fi

rs
t F

it
B

es
t

Po
pu

la
tio

n
| G

en
er

at
io

n
10

0
| 1

00

10
0

| 1
00

10

0
| 1

00

Ex
pe

rim
en

t #

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

8

8

8

8

8

8

Pa
rt

ia
l P

an
el

s
2
4

2
4

2
4

2
4

2
4

2
4

To
ta

l P
an

el
s

3
2

3
2

3
2

3
2

3
2

3
2

St
oc

k
Pa

ne
ls

2
1

2
2

2
2

2
1

2
1

2
1

Sh
ar

ed
 E

dg
e

1
5
6
7
.
9
1

1
5
9
0
.
5
1

1
5
6
7
.
7
7

1
5
7
4
.
5
1

1
7
7
5
.
3
7

1
7
4
1
.
8
4

C
ov

er
ed

 A
re

a
2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

2
6
0
6
7
.
2
0

St
oc

k
Pa

ne
l A

re
a

3
3
6
0
0
.
0
0

3
5
2
0
0
.
0
0

3
3
6
0
0
.
0
0

3
3
6
0
0
.
0
0

3
3
6
0
0
.
0
0

3
3
6
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
7
5
3
2
.
8
0

9
1
3
2
.
8
0

9
1
3
2
.
8
0

7
5
3
2
.
8
0

7
5
3
2
.
8
0

7
5
3
2
.
8
0

So
lu

tio
n

Ef
fic

ie
nc

y
7
7
.
5
8
%

7
4
.
0
5
%

7
4
.
0
5
%

7
7
.
5
8
%

7
7
.
5
8
%

7
7
.
5
8
%

Se
ar

ch
 D

ur
at

io
n

0
:
0
2
:
0
4

0
:
0
2
:
0
9

0
:
0
3
:
1
1

0
:
0
3
:
0
4

0
:
0
6
:
0
3

0
:
0
6
:
0
8

Table A.11: Genetic Algorithm Optimization on Simple Roof

 174

R
ot

at
io

n
N

on
e

18
0

D
eg

re
e

Pl
ac

em
en

t
Fi

rs
t F

it
Fi

rs
t F

it
B

es
t

Po
pu

la
tio

n
| G

en
er

at
io

n
10

0
| 1

00

10
0

| 1
00

10

0
| 1

00

Ex
pe

rim
en

t #

1

2

1

2

1

2

R
eg

ul
ar

 P
an

el
s

2
5

2
5

2
5

2
5

2
5

2
5

Pa
rt

ia
l P

an
el

s
1
2
9

1
2
9

1
2
9

1
2
9

1
2
9

1
2
9

To
ta

l P
an

el
s

1
5
4

1
5
4

1
5
4

1
5
4

1
5
4

1
5
4

St
oc

k
Pa

ne
ls

8
7

8
8

8
8

8
7

8
8

8
5

Sh
ar

ed
 E

dg
e

9
3
6
0
.
4
2

9
3
5
3
.
1
3

9
3
9
5
.
9
7

9
3
6
6
.
5
8

9
8
1
1
.
2
2

9
8
1
4
.
4
3

C
ov

er
ed

 A
re

a
1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

1
2
4
1
5
3
.
1
3

St
oc

k
Pa

ne
l A

re
a

1
7
4
0
0
0
.
0
0

1
7
6
0
0
0
.
0
0

1
7
6
0
0
0
.
0
0

1
7
4
0
0
0
.
0
0

1
7
6
0
0
0
.
0
0

1
7
0
0
0
0
.
0
0

W
as

te
d

M
at

er
ia

l
4
9
8
4
6
.
8
7

5
1
8
4
6
.
8
7

5
1
8
4
6
.
8
7

4
9
8
4
6
.
8
7

5
1
8
4
6
.
8
7

4
5
8
4
6
.
8
7

So
lu

tio
n

Ef
fic

ie
nc

y
7
1
.
3
5
%

7
0
.
5
4
%

7
0
.
5
4
%

7
1
.
3
5
%

7
0
.
5
4
%

7
3
.
0
3
%

Se
ar

ch
 D

ur
at

io
n

0
:
1
7
:
5
3

0
:
1
8
:
0
4

0
:
2
9
:
2
8

0
:
2
8
:
5
9

0
:
4
6
:
1
1

0
:
4
5
:
3
5

A.12: Genetic Algorithm Optimization on Complex Roof

 175

Appendix B: Data Flow Diagrams

Input Device

4.
Extract
Solution

Data

3.
Extract
Layout
Objects

2.
Read

Input Type

6.
Generate
Solution
Panels

5.
Compose
Problem
Definition

9.
Construct
Graphical
Objects

7.
Nesting for

Irregular
Panels

Building
Material

Repository

8.
Combine
Solution

Data

Disk File

Visual Output
Device

1.
Validate

Input

Raw
Input Data

Valid
Input
Data

Valid
Input
Data

Candidate
Stock Panels

Valid
Input
Data

Layout
Objects

Solution
Objects

Layout
Objects

Formalized
Optimization

Problem

Irregular
Panels

Nested
Irregular
Panels

First Stage
Solution

Data

Complete
Solution

Data

Graphical
2-D

Shapes

User

Optimization
Settings &

Parameters

Solution
ObjectsDisplay-Only

Mode

Optimization
Mode

Optimization
Settings &

Parameters

Figure B.1: Overall System Information Flow

 176

Input Device

1.1.
Load
XML

Stream

Raw
XML

Stream

XML
Root Node

Handle XML
Root Node

Handle

XML
Root Node

Handle

1.3.
Accept
XML

Document

1.2.
Locate XML
Root Node

1.4.
Verify Root
Node Name

Abort
Operation

XML
Document

Handle

Load
Failure

XML
Root Node
Not Found

Document
is Valid

Incorrect
Node Name

XML
Root Node

Handle

XML
Root Node

Handle

3.
Extract
Layout
Objects

2.
Read
Input
Type

4.
Extract
Solution

Data

Figure B.2: Validating Input

XML
Root Node

Handle

Display-Only
Mode

Optimization
Mode

2.1.
Get Node
Attribute
“Content”

2.2.
Value Equals
“ProblemSet”

2.3.
Value Equals
“SolutionSet”

2.4.
Other

Values

Abort
Operation

Attribute
“Content”

Attribute
“Content”

Attribute
“Content”

Attribute
“Content”
Not Found

Illegal
Value

1.
Validate

Input

3.
Extract
Layout
Objects

4.
Extract
Solution

Data

Figure B.3: Reading Input Type

 177

3.1.
Switch To

Optimization
Environment

2.
Read

Input Type

XML
Root Node

Handle Optimization
Mode

3.2.
Locate

Containers
Node

3.4.
Locate

Obstacles
Node

3.3.
Read

Containers
Data

3.5.
Read

Obstacles
Data

XML
Root Node

Handle

XML
Root Node

Handle

Abort
Operation

Containers
Node

Handle

Node
Not Found

Obstacles
Node

Handle

Container
Outline

Container
Outline

Obstacle
Polygon

Obstacle
Polygon

1.
Validate

Input

5.
Compose
Problem
Definition

9.
Construct
Graphics
Objects

Figure B.4: Extracting Layout Objects

2.
Read

Input Type

XML
Root Node

Handle

Raw
Layout
Shapes

Display-Only
Flag

4.1.
Switch To

Display-Only
Environment

4.3.
Read First

Stage
Solution

4.4.
Load Second

Stage
Solution

Nested
Layout
Shapes

Layout
Optimization

Plan

4.2.
Locate

Solution
Nodes

Abort
Operation

Solution
Nodes Not

Found

First Stage
Node

Second
Stage
Node

Ready

1.
Validate

Input

9.
Construct
Graphics
Objects

Figure B.5: Extracting Solution Data

 178

Building
Material

Repository Candidate
Stock Panels

Container
Set

Formalized
Optimization

Problem

User

Optimization
Settings &

Parameters

5.1.
Define

Container
Outline

5.2.
Define

Obstacle
Outline

5.3.
Populate

Data
Structure

Obstacle
Set

Container
Outline

Obstacle
Outline

3.
Extract
Layout
Objects

6.
Generate
Solution
Panels

Optimization
Settings &

Parameters

7.
Nesting for

Irregular
Panels

Figure B.6: Composing Problem Definition

6.3.
Define
Panel

Outline

Formalized
Optimization

Problem

Irregular
Panels

First Stage
Solution

Data

6.2.
Define

Cut Line
Equations

6.4.
Make

Vertical
Cuts

6.5.
Make

Horizontal
Cuts

Panel
Dimensions

Panel
Ouline

6.1.
Extract

Container
Outline

Formalized
Optimization

Problem Cut Line
Equations

Horizontal
StripsCut Line

Equations

Container
Outline

5.
Compose
Problem
Definition

7.
Nesting for

Irregular
Panels

8.
Combine
Solution

Data

Figure B.7: Generating Solution Panels

 179

7.1.
Compose

Search
Data

Irregular
Panels &
Container

Outline

Nested
Panels

6.
Generate
Solution
Panels

8.
Combine
Solution

Data

Optimization
Settings &

Parameters

5.
Compose
Problem
Definition

7.4.
Genetic

Algorithm
Search

7.3.
Monte
Carlo

Search

7.2.
Greedy

Algorithm
Search

Nested
Panels

Nested
Panels

Greedy
Search
Data

Monte Carlo
Data

Genetic
Algorithm

Data

Figure B.8: Nesting for Irregular Panels

8.4.
Populate
XML Tree

Disk File

Nested
Irregular
Panels

First Stage
Solution

Data

Complete
Solution

Data

Complete
Solution

Data

6.
Generate
Solution
Panels

7.
Nesting for

Irregular
Panels

9.
Construct
Graphics
Objects

8.1.
Save

Panels
Outline

8.2.
Save

Nesting
Layout

8.3.
Remove

Redundant
Objects

XML
Tree

Updated
Solution

Data

Updated
Solution

Data

Figure B.9: Combining the Solution Data

 180

9.2.
Create
Base

Polygon

Visual Output
Device

Solution
Objects

Layout
Objects

Graphical
2-D

Shape

Solution
Objects

3.
Extract
Layout
Objects

4.
Extract
Solution

Data

8.
Combine
Solution

Data

9.3.
Apply
Trans-

formations

9.1.
Extract
Polygon

Data

9.4.
Translate to

Screen
Coordinates

Base
Vertices

Offset &
Orientation

Context
Free

Shape

Context
Adapted
Shape

Figure B.10: Constructing Graphical Objects

7.2.2
Order

Panels by
Area

7.2.6.
Fit

Largest
Possible
Panels

7.2.3.
Update

Panel Set

7.2.5.
Nesting

Container
Generator

7.2.1.
Activate
Greedy
Search

7.2.4.
Greedy

Algorithm
Monitor

7.2.7.
Accumulate

8.
Combine
Solution

Data

7.1.
Compose

Search
Data

Greedy
Search
Data

Complete
Nesting

Plan

Irregular
Panels

Initial
Ordered
Panels

Set

Used
Panels

ID

Remaining
Ordered
Panels

Remove
Panels

Stock
Panel

Dimension

Nesting
Container

Create
Container Single

Container
Plan

Figure B.11: Greedy Search

 181

7.3.2.
Encode
Nesting

Information

7.3.5.
Decode
Nesting

Information

7.3.6.
Calculate
Solution

Efficiency

7.3.3.
Randomize

Solution
String

7.3.7.
Best Result

Keeper

7.3.1.
Activate

Monte Carlo
Search

8.
Combine
Solution

Data

7.3.8.
Decode

Final
Result

7.1.
Compose

Search
Data

Monte
Carlo
Data

Coded
Solution

Iterate

Nesting
Optimization

Problem

Blank
Solution
String

Coded
Candidate

Nested
Panels

Current
Solution

Efficiency

Nested
Panels

7.3.4.
Evaluate

Candidate

Coded
Candidate

Coded
Candidate

Accept/
Reject

Solution

Figure B.12: Monte Carlo Search

7.4.1.
Activate
Genetic

Algorithm

8.
Combine
Solution

Data

7.1.
Compose

Search
Data

Genetic
Algorithm

Data

Initial
Population

Nested
Panels

7.4.3.
Select
Pairs

7.4.4.
Perform

Crossover

7.4.5.
Perform
Mutation

7.4.2.
Maintain

Population

7.4.7.
Calculate
Fitness
Value

7.4.8.
Select
Best

Individual

7.4.6.
Decode

Chromosome

7.4.9.
Decode

Chromosome

New
Generation

Parent
Chromosomes

Child
Chromosomes

Current
Population

Complete
Chromosomes

Complete
Chromosome

Nesting
Solution

Chromosome
Fitness
Value

Final
Population

Best
Chromosome

Figure B.12: Genetic Algorithm Search

 182

Appendix C: Data Dictionary

name: XY real coordinates
aliases: vertex, offset, pivot
where used/ how used: point definition
 polygon definition
description:
 XY real coordinates = X value + Y value
 X value = *any real number*
 Y value = *any real number*

Figure C.1: 2-D Vertex Representation

name: vertices
aliases: raw polygon, primitive polygon
where used/ how used: polygon definition
description:
 vertices = {vertex}
 vertex = XY real coordinates

Figure C.2: Basic Polygon Representation

name: XY screen coordinates
aliases: none
where used/ how used: screen pixel coordinates (output)
description:
 XY screen coordinates = X value + Y value
 X value = *any integer number*
 Y value = *any integer number*

Figure C.3: Two-Dimensional Coordinates for Screen Output

name: panel ID
aliases: none
where used/ how used: solution definition (input)
 solution definition (output)
description:
 panel ID = *unique integer ≥ 0*

Figure C.4: Solution Panel Identifier

 183

name: orient
aliases: rotation
where used/ how used: generic
description:
 orient = *real number r | -2π ≤ r ≤ 2π*

Figure C.5: Object Rotation Constant

name: rectangle definition
aliases: stock shape, stock panel
where used/ how used: stock panel definition
description:

rectangle = origin + pivot + orient + top + bottom + left +
right

 origin = *XY base coordinates*
 pivot = *XY coordinates relative to origin*
 top = XY real coordinates
 bottom = XY real coordinates
 left = XY real coordinates
 right = XY real coordinates

Figure C.6: Rectangle Shape Definition

name: polygon definition
aliases: single container, single obstacle, shape
where used/ how used: generic shape definition (input & output)
description:
 polygon definition = origin + pivot + orient + vertices
 origin = *XY base coordinates*
 pivot = *XY coordinates relative to origin*
 vertices = {vertex}
 vertex = *XY coordinates relative to origin*

Figure C.7: Standard Polygon Definition

 184

name: raw input data
aliases: complete solution data
where used/ how used: layout problem definition (input)
 resolved layout problem data (input)
description:
 raw input data = signature + document body
 signature = "PolyWorkSpace" + content type
 content type = ["ProblemSet" | "SolutionSet"]
 document body = generic part [+ solution set]

generic part = view parameters + container set + obstacle
set

 view parameters = zoom factor + viewing offset
 zoom factor = *real number > 0*
 viewing offset = XY screen coordinates

Figure C.8: Program Main Input

name: container set
aliases: none
where used/ how used: layout problem definition (input & output)
 resolved layout problem data (input & output)
description:
 containers set = {single container}
 single container = polygon definition

Figure C.9: Container Areas Defined in Layout Problem

name: obstacle set
aliases: none
where used/ how used: layout problem definition (input & output)
 resolved layout problem data (input & output)
description:
 obstacles set = {single obstacle}
 single obstacle = polygon definition

Figure C.10: Illegal Areas Defined in Layout Problem

 185

name: solution set
aliases: none
where used/ how used: resolved layout problem data (input & output)
description:
 solution set = {single solution}
 single solution = stock panel + solution panels + nested layouts
 stock panel = rectangle definition

Figure C.11: Complete Layout Optimization Solution

name: solution panels
aliases: none
where used/ how used: resolved layout problem data (input & output)
description:
 solution panels = {solution panel}
 solution panel = panel ID + polygon definition

Figure C.12: Layout Solution Shapes Definition

name: nested layouts
aliases: nested irregular panels
where used/ how used: layout solution definition (input & output)
description:
 nested layouts = nested pack + nested layouts

Figure C.13: Nesting Plans Collection

name: nested pack
aliases: single layout
where used/ how used: layout solution definition (input & output)
description:
 nested pack = {shape layout definition}
 shape layout definition = panel ID + flip + offset + pivot + orient
 flip = [TRUE | FALSE]
 offset = XY real coordinates
 pivot = XY real coordinates

Figure C.14: Single Nesting Plan

 186

name: layout objects
aliases: none
where used/ how used: problem definition (input)
 extract layout objects (output)
description:
 layout objects = container set + obstacle set

Figure C.15: Layout Problem’s Containers and Obstacles

name: candidate stock panels
aliases: none
where used/ how used: problem definition (input)
 formalized optimization problem (output)
description:
 candidate stock panels = {rectangle}

Figure C.16: Available Stock Panels

name: formalized optimization problem
aliases: none
where used/ how used: generate solution panels (input)
description:

formalized optimization problem = container set + obstacle set +
candidate stock panels

Figure C.17: Memory Representation of Layout Optimization Problem

name: optimization parameters
aliases: none
where used/ how used: nesting for irregular panels (input)
description:

optimization parameters = search algorithm + shape orientations
+ search parameters

search algorithm = ["greedy search" | "monte carlo" | "genetic
algorithm"]

 shape orientations = shape orientation [+ shape orientations]

shape orientation = ["allow none" | "allow flip" | "allow 180" |
"allow 90" | "allow 3"]

Figure C.18: Second Stage Layout Optimization Parameters

 187

name: search parameters
aliases: none
where used/ how used: nesting for irregular panels (input)
description:

search parameters = [Greedy Search parameters | Monte Carlo
parameters | genetic algorithm parameters]

 Greedy Search parameters = ["first fit" | "best fit"]
 Monte Carlo parameters = flip probability + iterations
 flip probability = *real number r | 0 ≤ r ≤ 1"
 iterations = *any non-zero integer"

Genetic Algorithm parameters = population size + maximum
generations + crossover probability + mutation probability

Figure C.19: Optimization Search Parameters

name: solution objects
aliases: none
where used/ how used: construct graphics objects
description:

solution objects = layout objects + solution panels + nested
layouts

Figure C.20: Complete Optimization Solution Package

name: graphical 2D shapes
aliases: screen shapes
where used/ how used: screen & printer devices (output)
description:
 graphical 2D shapes = {graphical 2D shape}

Figure C.21: Collection of 2-D Screen Shapes

 188

name: graphical 2D shape
aliases: screen shape
where used/ how used: screen & printer devices (output)
description:

graphical 2D shape = name + centre of mass + points +
outline color + fill color

 name = *any literal string*
 centre of mass = XY screen coordinates
 points = XY screen coordinates [+ points]
 outline color = *any available color in the palette*
 fill color = *any available color in the palette*

Figure C.22: 2-D Screen Shape Definition

	 Table of Contents
	 Acknowledgements
	 Abstract
	 List of Abbreviations
	 1. Introduction
	1.1. Project Overview
	1.2. Research Objectives and Methodology
	1.3. Thesis Structure

	 2. Project Background
	2.1. Polygon Overlay with Fixed Sized Rectangles
	2.2. Two-Stage Layout Problem
	2.3. Motivation
	2.4. Building Integration Software Company
	2.5. Technical Requirements
	2.6. Programming Environment

	 3. Literature Review
	3.1. Sheet Layout
	3.1.1. Basic Sheet Layout Problem
	3.1.1.1. Metal Stamping Blank Layout
	3.1.1.2. Garment Shape Nesting Layout

	3.1.2. Bin Packing and Strip Packing
	3.1.3. Rectangular Floor Plans
	3.1.4. Cutting Stock Problem
	3.1.5. Summary

	3.2. Layout Optimization Approaches
	3.2.1. Placement Strategies
	3.2.1.1. Sequential Placement
	3.2.1.2. Simultaneous Placement

	3.2.2. Greedy Algorithm
	3.2.3. Monte Carlo Technique
	3.2.4. Genetic Algorithm
	3.2.4.1. Reproduction
	3.2.4.2. Crossover
	3.2.4.3. Mutation
	3.2.4.4. Schemata
	3.2.4.5. Parameter Coding
	3.2.4.6. Extension of the Basic Genetic Algorithm

	4. Software Design
	4.1. Design Process
	4.1.1. Development Process Models
	4.1.2. Project Characteristics
	4.1.3. Rapid Application Development Model

	4.2. System Modeling
	4.2.1. Software Scope
	4.2.2. Information Flow
	4.2.2.1. External Entities
	4.2.2.2. Processes
	4.2.2.3. Data Store and Data Flow

	4.2.3. Data Dictionary
	4.2.3.1. Input Data
	4.2.3.2. Optimization Result and Output Data

	4.3. Design Issues
	4.3.1. Control Hierarchy
	4.3.2. Program Input and Output
	4.3.3. User Interface and Visualization

	 5. Software Implementation
	5.1. Overview
	5.2. Program Structure
	5.2.1. Modules
	5.2.2. Input and Output Mechanism
	5.2.3. User Interface

	5.3. Data Structures
	5.3.1. Active Data Structures
	5.3.2. Passive Data Structures
	 5.3.3. Graphics Pipeline
	5.3.3.1. Shape Objects using World Coordinates
	5.3.3.2. Shape Objects using View Coordinates
	 5.3.3.4. Shape Object using Screen Coordinates

	5.4. Basic Geometry Algorithms
	5.4.1. Line and Segment Intersection Detection
	5.4.2. Polygon Triangulation
	5.4.3. Polygon Congruence
	5.4.4. Convex Shape Detection
	5.4.5. Polygon Surface Area Calculation
	5.4.6. Inside or Outside Polygon Query
	5.4.7. Polygon Overlap Detection
	5.4.8. Polygon Slicing with Straight Line
	5.4.9. Polygon Clipping
	5.4.10. Centre of Mass Calculation

	5.5. Optimization Algorithms
	5.5.1. Greedy Algorithm
	5.5.1.1. First Fit Strategy
	5.5.1.2. Best Fit Strategy

	5.5.2. Parameter Representation for GA and MC
	5.5.2.1. Parameter Modeling Issues
	5.5.2.2. Chromosome Definition
	5.5.2.3. Accommodating Invalid Chromosomes
	5.5.2.3.1. No-Action
	5.5.2.3.2. Append at Tail
	5.5.2.3.3. Redistribute from Beginning
	5.5.2.3.4. Impact to Optimization Algorithms

	5.5.3. Monte Carlo Technique
	5.5.4. Genetic Algorithm
	5.5.4.1. Basic GA Algorithm
	5.5.4.2. Enhanced GA Algorithm
	5.5.4.3. Population Sorting and Chromosome Mating
	5.5.4.4. Preserving Good Clusters

	5.5.5 Verification Functions

	 6. Experiment Results
	6.1. Experiment Strategy and Issues
	6.2. Verification on Numerical Functions
	6.2.1. Rastrigin Function
	6.2.1.1 Monte Carlo
	6.2.1.2. Genetic Algorithm

	6.2.2. Schwefel Function
	6.2.1.1 Monte Carlo
	6.2.1.2. Genetic Algorithm

	6.3. Case 1: Simple Rectangular Layout
	6.4. Case 2: Single Wall Layout
	6.5. Case 3: Simple Roof Layout
	6.6. Case 4: Complex Roof Layout

	 7. Discussion
	7.1. Research Methodology
	7.2. Design
	7.3. Implementation
	7.4. Experimental Results

	 8. Conclusion
	8.1. Suggestions for Future Work

	 9. Cited References
	 Appendix A: Experiment Results
	Appendix B: Data Flow Diagrams
	 Appendix C: Data Dictionary

