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Abstract 
Minimum Cost Polygon Overlay (MCPO) is a unique two-dimensional optimization 

problem that involves the task of covering a polygon shaped area with a series of 

rectangular shaped panels. The challenges in solving MCPO problems are related to the 

interdependencies that exist among the parameters and constraints that may be applied 

to the solution. 

This thesis examines the MCPO problem to construct a model that captures essential 

parameters to be solved using optimization algorithms. The purpose of the model is to 

make it possible that a solution for an MCPO problem can be generated automatically. 

A software application has been developed to provide a framework for validating the 

model. 

The development of the software has uncovered a host of geometric operations that are 

required to enable optimization to take place. Many of these operations are non-trivial, 

demanding novel, well-constructed algorithms based on careful appreciation of the 

nature of the problem. 

For the actual optimization task, three algorithms have been implemented: a greedy 

search, a Monte Carlo method, and a Genetic Algorithm. The behavior of the completed 

software is observed through its application on a series of test data. The results are 

presented to show the effectiveness of the software under various settings. This is 

followed by critical analysis of various findings of the research. 

Conclusions are drawn to summarize lessons learned from the research. Important 

issues about which no satisfactory explanation exists are given as material to be studied 

by future research. 
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1. Introduction 

1.1. Project Overview 
Optimizing the utilization of valuable resources has always been a premise for any 

successful undertaking. In manufacturing industries, the optimization of material plays 

an important part in minimizing the production cost, which in turn contributes to 

attaining a competitive edge. The importance of material optimization is especially 

evident in manufacturing goods consisting of large numbers of two-dimensional 

material components such as sheet metal or fabric material. 

The causal relationship between optimized use of raw material and low production cost 

similarly applies to the civil construction industry as well. Various components of a 

building are covered with rigid sheets cut from stock material, the waste of which is 

either impossible or uneconomical to recycle. In many cases, the effort involved in 

cutting the material also contributes significantly to the cost of the resulting building. 

Planning the sheet layout for a section of a building is a tedious process where exact 

manual calculation is either impractical or uneconomical, particularly when relatively 

inexpensive material is used. As a result, builders often allocate material based on loose 

guidelines only, incurring more cost in acquiring the material as well as consuming 

more manpower resources for material handling. 

This purpose of this thesis is to investigate the plausibility of automating the sheet 

optimization process for flat sections of a building. The goal of such an automated 

process is to construct a solution that allows the sections to be completely covered with 

the optimum layout. This can be defined as the smallest possible amount of stock 

material, which is cut with minimum amount of effort. It is also important for these 

optimum solutions to be found in a reasonable amount of time. This constraint will 

allow the approach to be useable by the industry partner, BISCo, Ltd. 

1.2. Research Objectives and Methodology 
The primary objective of this research is to demonstrate the viability of automated 

optimization of MCPO problems. A software application is to be developed and 

evaluated to facilitate the investigation. In more specific terms, the objective of the 

research can be refined into four distinct goals: 

• To develop a model of the MCPO problem into a series of parameters that can 

be optimized by numerical algorithms 
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• To develop a software application which implements MCPO automated 

optimization processes using general-purpose programming tools 

• To demonstrate that optimization algorithms can be utilized to solve the MCPO 

problem effectively 

• To observe the relative performance of alternative optimization algorithms  

The research follows the System Development Research Methodology (SDRM) 

proposed by Nunamaker & Chen (1991). In this methodology, the research process 

takes place in progressive stages and it has been used extensively in research in 

information systems development. Figure 1.1 shows the stages involved in SDRM 

(Nunamaker & Chen, 1991). 

Investigate
Related

Literature

Develop a
System

Architecture

Analyze and
Design the

System

Build the
Prototype
System

Observe and
Evaluate the

System

Construct
Conceptual
Framework

 

Figure 1.1: Research Process of SDRM (Nunamaker & Chen, 1991) 

Each phase consists of a series of activities undertaken to achieve specific goals. Table 

1.1 defines activities involved and the set goals for the phases. Because the research is 

explorative in nature, the completion of the phases is not expected to be perfectly 

sequential. While in-depth knowledge is gained through the process, repetition is 

anticipated as the diagram in Figure 1.1 indicates. 
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Phase Description 

Construct 
Conceptual 
Framework 

Explore general characteristics of the MCPO problem. The 

purpose of this phase is to identify defining properties of the 

MCPO problem and subsequent research objectives. 

Investigate 
Related 
Literature 

In-depth review of materials belonging to the same domain 

as MCPO. The objective of this phase is to identify key 

issues, ideas, and techniques that will serve as a basis for the 

development of MCPO solution software. 

Develop a 
System 
Architecture 

Conduct in-depth analysis aimed for well-justified selection 

process for methodology and architecture. Design 

architecture of the system that exhibits favorable 

characteristics in terms of modularity, extendibility, and 

control structure. The objective is to define the system as a 

conceptual collection of functional modules and 

interrelationships that exist among them that can be realized 

with available tools and resources.  

Analyze and 
Design the 
System 

Extend the result of previous phase by elaborating on the 

design of modules and data structures used within the 

system. The product of this phase is a technical-level design 

that serves as a framework for the actual coding. 

Build the 
Prototype 
System 

Gather in-depth knowledge regarding the concepts, 

framework, and design issues through system building 

process. The objective is to gain insight about the nature of 

the MCPO problem, critical sub-processes involved, and the 

complexity of the system as a whole. 

Observe and 
Evaluate the 
System 

Evaluate the system by laboratory experiment. The objective 

is to evaluate the value of the system for resolving MCPO 

problems and to draw lessons from experiences learned 

throughout the project. 

Table 1.1: SDRM Methodology 
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This approach defines the methodology for the underlying research. However the key 

phases of architecture development through to building the prototype are sufficiently 

flexible to accommodate various philosophies of software development which will be 

discussed in later chapters.  

The iteration and repetition that is supported in these key phases allows early 

exploration of the research questions to inform selection of an appropriate software 

development methodology. Subsequent iterations through these phases are more 

development orientated and explore the specific information and functionality needs of 

the software. 

1.3. Thesis Structure 
This thesis is divided into eight chapters to describe the entire study in a logical manner. 

Key aspects of the research are problem modeling, software design and implementation, 

experiments with actual problems, and the interpretation of the results. Although those 

activities were often repetitive and overlapping with each other, the core idea that drives 

them evolved in linear pattern and chapters in this thesis are organized as such. 

Chapter One provides an overview of the MCPO problem and the outline of this thesis. 

The purpose of this chapter is to describe the problem in general terms and provide a 

brief description of the forthcoming chapters. Chapter Two contains detailed analysis of 

the MCPO problem and the formulation of its proposed solution. Chapter Three 

summarizes the literature material that serve as the basis for various models and 

decisions made throughout the development of the solution. The theoretical aspect of 

the MCPO problem and the design of its solution are covered in these initial three 

chapters. 

The succeeding two chapters deal with the software development aspect of the project. 

Chapter Four describes the selection of software development model based on choices 

available judged against the particular requirements of the project. The selection of the 

development model integrates the research methodology, practical software engineering 

considerations, and the needs of the industry partner. This chapter also contains the 

design of the actual software application in the form of the decomposition of the 

application working mechanism into its key sub-tasks as well as the identified data 

structures involved. Chapter Five contains technical discussions regarding the actual 

implementation of the software. A large number of technical issues of various levels of 
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implementation were encountered and resolved, the most significant of which are 

described in this chapter. 

The remaining chapters of the thesis summarize and interpret the findings made during 

the execution of the software. Chapter Six reports the behavior of optimization 

algorithms in an isolated test environment, followed by the optimization results for the 

actual MCPO problems with those algorithms playing their part. Chapter Seven 

discusses the most significant findings that have been made during the development of 

the software application, along with the analysis and interpretation of the results given 

in Chapter Six. Finally, Chapter Eight provides the conclusion drawn from such 

findings and interpretation, as well as the identification of key areas where further 

investigation is deemed worthwhile. Appendices are provided to accommodate various 

supporting material that otherwise disrupts the logical flow of the thesis’ main text. 
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2. Project Background 
Optimum two-dimensional layout is a class of problems encountered in many 

industries. The problems are characterized with the need to pack non-overlapping 

shapes in an enclosed plane with the aim of minimizing the area outside the boundaries 

of the shapes, therefore maximizing the utilization of the material in the base sheet. 

A simple presentation of the problem is shown in Figure 2.1. In this example, four 

shapes are arranged within the boundaries of a slanted pentagon. The objective of an 

optimum two-dimensional layout is to minimize the shaded area without making the 

shapes inside overlap. The optimization is done either by shrinking the enclosure,  

adding more shapes into it or repositioning the existing shapes. 

 

Figure 2.1: Simplified 2D Layout Problem 

The actual optimum two-dimensional layout problem exists in several variants. Among 

them are the sheet layout problem, bin packing and strip packing problems, optimum 

floor plan problem, and cutting stock problem. These problems will be discussed in 

more detail in the succeeding chapter. 

The optimum two-dimension layout problem has applications in a wide range of 

industries. Industries such as textile, timber, glass, and steelworks regularly encounter 

the problem of cutting the material most efficiently so as to minimize waste. In a 

different context, very large scale integration (VLSI) design requires arranging a large 

number of transistors and other modules in a rectangular silicon chip. The computer 

based solution of such problems falls under the blanket of technology referred to as 

Computer Aided Design and Computer Aided Manufacturing (CAD/CAM). 



 13 

Although the problems found in the specific industries belong to the same class, a 

multitude of algorithms have been developed over the past few decades. There are two 

main reasons behind such a response. 

• Computing power: the early CAD/CAM applications typically employed 

simple algorithms (e.g. branch-and-bound) since they had to operate under 

meager computing resources in terms of CPU speed and memory size. As more 

powerful computing platforms became available, more sophisticated algorithms 

were introduced and used. 

• Context-specific constraints: on homogenous materials such as metal sheet or 

plain glass panel, the shapes to be contained can be mirrored and rotated to any 

direction. In many other cases such freedom of orientation is restricted. The 

material may have a face side, which makes mirroring illegal. It can also have 

patterns and internal fibers which limit the ranges of potential rotations. 

This research is essentially an attempt to address the two points above, mainly in the 

identification of algorithms and constraints associated to a specific domain. 

Subsequently a solution is to be developed with respect to the constraints and available 

computing power. 

2.1. Polygon Overlay with Fixed Sized Rectangles 
A rather unique variant of the optimum two-dimensional layout problem is found in the 

construction industry. A polygon shaped area such as wall or ceiling is to be tiled with 

covering sheet material such as cardboard or plywood. With such tiling, it is essential 

that the entire surface is covered with no gaps or overlaps. The panels are obtained from 

the supplier in fixed size rectangles. Typically the individual panel is much smaller than 

the area to be covered. It is also anticipated that the enclosing area may have an 

irregular outline. 

The problem is demonstrated in Figure 2.2. To keep the construction expenses under 

control, the builder must arrange the panels in a way that keeps the cost variables low. 

Such parameters include the number of panels allocated, the amount of discarded off 

cuts, and the amount of effort required for cutting the panels. 



 14 

 

Figure 2.2: Wall Overlay with Fixed Size Panels 

A similar problem has been encountered in the shipbuilding industry, particularly in 

cutting steel sheets to cover various parts of the ship. Adamowicz and Albano defined 

the problem for the operator (Adamowicz & Albano, 1976): 

• A set of standard rectangular sheets of steel is provided 

• An order is given to produce various types of shapes which include rectangular 

and irregular shapes 

• It is required that no two shapes may overlap 

• Waste is minimized 

When the panel is homogenous, such as with sheet metal, it is desirable to reuse the off 

cuts to cover irregular regions at other places, as this has the potential to reduce the total 

number of sheets required. A particular example was made by Sibley-Punnett and 

Bossomaier (2001) regarding the reuse of off cuts from corrugated iron roofs. The 

justification for such effort is provided by the high cost of delivering the roofing 

material. 

The diversity of materials used for constructing a building provides no guarantee that 

such homogeneity exists for materials used for a particular area. The implication is that 

the constraints for a particular section of the building cannot be predetermined. In 
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response, a computer program used to resolve such problem must be capable of finding 

the solution under a varying set of constraints to allow it to be used for any specific 

instance of the general problem. 

2.2. Two-Stage Layout Problem 
Closer examination reveals that the polygon overlay problem is composed of two sub-

problems which must be resolved sequentially, although each sub-problem still belongs 

to the same two-dimensional layout optimization. For a given enclosed area and given 

dimensions of rectangular panels, the requirement is twofold: 

• Find the optimum arrangement of whole panels in which the covered area within 

the enclosure is maximized. The by-product of this process is a set of irregular 

shapes which represent the remaining exposed areas. 

• Resolve how such irregular shapes can be nested within the minimum number of 

panels. Shapes that are bigger than the panel itself are cut at angles parallel with 

the rectangle’s axes to allow such nesting. 

This decomposition into two sub-problems can potentially mask the complexity of the 

task of finding the optimum solution. It is important to recognize that in the construction 

industry, the actual size of the panels is in itself a design parameter. In some 

applications, the panel size will remain fixed for the two sub-problems whilst for other 

applications the panel size could potentially be varied. With this in mind, it becomes 

apparent that the problem is complex with potentially many locally optimum solutions. 

At the end of the calculation process, the desired output consists of numerical and 

graphical information: 

• The total number of panels, consisting of panels to be fitted whole and the 

remainder to be cut to produce the irregular shapes 

• The nesting plan with which irregular shapes are cut from whole panels 

• The area overlay plan with which whole panels and irregular cuts are fitted to 

the enclosed area 

It is important to note that although the two sub-problems are similar, they are resolved 

with mutually unrelated and potentially conflicting objectives. As an example, the 

lowest cost solution for first sub-problem may be to cover as much area as possible with 

the least number of panels. However, the optimum solution for the second sub-problem 
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may be the least amount of cutting (the panel may actually be a marble or granite slab, 

for instance). Hence a cheap solution in the first phase may lead to expensive penalties 

in the second. 

2.3. Motivation 
Apart from reducing the waste and reducing the associated costs, automating the panel 

placement design also greatly assists the builder in calculating the required material. 

When the calculation is done by hand, the common practice is to have a human expert 

work on the layout and to estimate the number of panels needed to cover a particular 

part of the building. A few extra panels must then be provided to anticipate the error in 

the calculation. 

As the solution only applies to a particular part of the building, the work must be 

repeated for all other parts as well. The process becomes more tedious when different 

sizes of the panels are available to choose from. Exploring more than a few different 

configurations by hand is therefore an impractical proposition. 

Another inherent problem in MCPO problems is the lack of guarantee that an optimum 

solution in the first phase will lead to an optimum solution of the entire problem. 

Coupled with the absence of a-priori knowledge about the cost of the subsequent phase, 

exploring the less-than-optimum first-phase solutions becomes a necessity. Seen in this 

light, making the process automatic offers the potential of discovering better solutions 

than those obtained by hand calculations. 

When computers are used, more possible solutions can be explored both for individual 

parts of the building as well as the sum of all those parts. The desired effect is that by 

providing the raw information to the software, in the form of a CAD model of the entire 

building, the builder obtains a detailed and accurate plan about the number of panels 

required and how they should be cut and placed for the whole structure. 

2.4. Building Integration Software Company 
Building Integration Software Company (BISCo) Ltd is a business enterprise whose 

main product is information management software for residential house construction 

industry. The organization has been founded by people who had identified the need for 

such centralized information management from their own extensive experience in the 

civil construction industry. 
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The premise of such a need is the fact that a typical house building project involves a 

number of different parties such as an architect, builders, city council, and others, who 

work in different ways and run their organizations for different goals. Although many 

have already adopted computer-based information systems, there is no automated means 

for communication with other parties. Only verbal and paper-based forms of 

communication are hitherto available to those parties to exchange information. It is not 

surprising that substantial amounts of money and effort are wasted during a project due 

to the lack of reliable and efficient communication system. 

The core business of BISCo is developing software to accommodate such 

communication needs. At the time of the writing, the prototype of the software is 

drawing close to finish, after which it will undergo a series of live tests before it is 

finalized for release to the market. The software has been given a commercial name 

Blue Sky™. 

Blue Sky™ manages a range of information that is very diverse in terms of 

representation and usage. A typical Blue Sky™ database for a house building project 

will include pictures and text, Computer Aided Design (CAD) drawings, letters, 

invoices, and a host of other documents. Such documents take various physical forms 

such as computer files, paper, and e-mail correspondence. Figure 2.3 shows the different 

parties interacting through Blue Sky™ software. 

 

Figure 2.3: Information Exchange using Blue Sky™ Software 
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The geometric data stored in the CAD drawings assumes overriding importance in the 

house building project’s web of information. Many important documents created during 

the lifetime of the project, such as cost estimates, specification documentation, or 

project plans, are actually spawned from the CAD models. Consequently, the software 

engineering aspect of Blue Sky™ at the current stage revolves primarily on extracting 

and making use of the CAD data. 

For a number of reasons, accurate cost estimation has long been regarded as problematic 

to practice in house building projects. Firstly, it is hard for a human estimator to 

accurately calculate the amount of each material required to build every part of the 

house just from the 3D and 2D models available in the CAD drawing. Secondly, for any 

given building material, it is difficult to select the ideal standard dimensions from the 

numerous choices available in the market even when the estimated amount required is 

accurate. Thirdly, builders often allocate spare materials because of the difficulty in 

calculating the number of pieces of certain building material is needed.  The spare 

material not only adds to the shipping and storage costs, but it may also be damaged or 

deteriorate on the building site and be discarded. Fourthly, inaccuracies in the design are 

often discovered during the physical assembly of different parts of the house. Finally 

when the house owner changes his mind about how certain parts of the house should be 

made, the alteration in many cases can only done by removing the originally-designed 

part when it has already been constructed – wasting even more material. 

Aside from the accurate cost estimation, material optimization is another significant 

way to augment the enterprise’s control on overall building costs. Optimization can be 

achieved by reconfiguring the construction of the parts of the house to minimize the 

wasted material. It is widely accepted within the civil construction community that up to 

2% nominal worth of a project is normally wasted as scrap material. Although such 

percentage may look trivial at a glance, the high value of residential houses in New 

Zealand and other developed countries means reducing the waste by just a half will 

invariably save the owner a sum of money well worth the effort. 

Parts of the house made of flat panels such as roof tile or drywall are prime candidates 

for optimization. From a financial point of view, the optimization effort is quite justified 

by the substantial amount of such materials needed every time a house is built. From a 

software development perspective, such homogenous materials are simple and readily 

represented as two dimensional shapes. Such characteristics make it possible to develop 
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and use a generic solution for varying parts of the house, with the provision that 

different constraints can be applied to reflect the actual materials in use. 

The above analysis ultimately leads to the identification of the need to develop software 

capable of performing two-dimensional optimization. The solution of layout 

optimization problems, which is the focus of this thesis project, therefore will have an 

immediate commercial application at BISCo and will assist in maintaining a 

competitive edge through the ongoing innovation of their products. As a result, all the 

important requirements of the software written for this project have been identified at 

BISCo. 

2.5. Technical Requirements 
As previously discussed, the MCPO problem consists of two variants of the sheet 

nesting problem. Hence MCPO can be decomposed into two sub-problems, the solution 

of which should seek to optimize the cost involved in both. 

• Design a layout of a set of stock rectangular panels which covers the container 

region 

• Design a set of layouts where irregular remaining shapes of the original 

container can be fitted back into the minimum number of additional stock 

rectangular panels 

After analysis of these requirements, it is clear that the first sub-problem is well 

represented by the cutting stock problem whereas the second sub-problem is the “pure” 

sheet nesting similar to garment sheet layout design. These will be discussed further in 

the next chapter. 

The objective of this project is therefore to construct a computer program capable of 

resolving the two sub-tasks in order to solve MCPO problems. Table 2.1 lists the input 

and output parameters of such a program. 

For technical and aesthetic reasons, some of the flat building materials, such as drywall 

and roofing tiles, may have directional grains or patterns. The existence of such patterns 

limits the possible directions of which irregular pieces can be cut from the stock panel. 
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Input Output 
1. The outline of the container 
2. The areas within the container that 

should not be covered, i.e. “illegal 
areas” 

3. The dimensions of the stock 
rectangular panels 

4. Rules on how the irregular pieces 
can be oriented in the cutting 
template 

1. The number of rectangle panels 
required to cover the area 

2. A list of irregular shapes of where 
the whole panels cannot cover the 
container 

3. A list of nesting layouts where the 
irregular shapes are contained by 
the stock panels 

4. A nesting layout where whole and 
irregular-cut panels are fitted 
inside the original container 

Table 2.1: Input and Output Parameters of MCPO Solution 
Failure to conform to such restrictions will result in an invalid cutting solution. To 

accommodate this constraint, a set of rules about the possible orientation of the irregular 

pieces is added as a program input. This particular input will have an impact on the 

software design as discussed in Chapter 4. 

2.6. Programming Environment 
The MCPO software is to be written in Delphi/Pascal code to run on Microsoft 

Windows™ operating system. The Pascal-based programming language is a natural 

choice given the fact that other commercial products of BISCo are developed using the 

language. Although the executable is currently developed exclusively on a Microsoft 

Windows™ platform, the code is written with special provisions to allow porting to 

Linux operating system should the need arise. 

Although there are plenty of software development tools and compilers in the market, 

none of them are cheap. The only development suite which offers features suitable to 

build the layout optimization software reliably within the allotted time is Borland 

Delphi™ Version 7. This particular version is used because of its availability to the 

author. However, since only basic features of Delphi are used, the source code should 

compile on earlier versions of Delphi with little or no change at all. 

Apart from the availability issue, the Delphi compiler has been selected because of its 

full support of object oriented programming. All the important features of OOP used 

extensively in the development, i.e. the encapsulation, inheritance, and polymorphism, 

are fully supported in Delphi. 

Additionally, Delphi comes with the Integrated Development Environment (IDE), 

which allows Rapid Application Development (discussed in Chapter 4) to be practiced 
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to the full extent. The concept of an IDE is not unique to Borland products however. 

Microsoft Visual Studio™, for instance, uses a programming user interface very similar 

to IDE. Microsoft Visual Studio™ cannot be used however, since it does not have a 

Pascal compatible compiler. The author is not aware of any more software development 

packages that offer a feature set comparable to that in Delphi. 
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3. Literature Review 
The layout optimization problem consists of two main parts: the problem definition and 

its solution algorithms. This chapter has been written to address both issues but without 

specific commentary regarding the research methodologies used in each part. 

Invariably, research in this area utilizes a constructive methodology, even if it is not 

formalized, such as those proposed by Nunamaker & Chen (1991), Hevner, March, 

Park, & Ram (2004) or Peffers et al. (2006). Section 3.1 deals with the unique problem 

space which sheet layout optimization problem belongs to. The rest of the chapter 

discusses various search and optimization algorithms in general terms as well as with 

specific reference to published literature. 

3.1. Sheet Layout 
Considerable research has been done in various fields of two-dimensional layout 

optimization problems due to the practical needs of industry. Dyckhoff (1990) makes an 

attempt to provide a systematic classification of such optimization problems. He uses 

the term cutting and packing (C&P) as a generic name for the problem and all its 

variants. He further postulates the four properties of each problem which determine to 

which class it belongs. 

Dyckhoff also asserts that there are 96 classes of C&P problems that result from the 

combination of the four characteristics. For the purpose of this study however, only the 

most important variants are considered. The significance of such variants is evident by 

the amount of research done and the publications that follow. The majority of such 

problems can be modeled in one of the four main variants: the sheet layout, bin packing 

and strip packing, rectangular floor planning and cutting stock problems. More detailed 

discussion about the four follows below. 

Because most of the research efforts are driven by the need to solve real-life problems, 

they tend to focus on specific instance of the C&P class of problems. Consequently, the 

solutions are often very closely linked with the actual problems, leading to exotic 

algorithms that are potentially difficult to adopt anywhere else. 

3.1.1. Basic Sheet Layout Problem 
The sheet layout problem is the most generic and unrestricted form of two-dimensional 

layout optimization. The problem is also commonly known as sheet nesting and polygon 

containment. A simple definition of the problem is defined by Lamousin and 

Waggenspack: 
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[A technique for] allocation or ‘nesting’ of irregular parts into 

arbitrary shaped resources. Placements are generated by matching 

complementary shapes between the unplaced parts and the remaining 

areas of the stock material (Lamousin & Waggenspack Jr., 1997). 

Essentially, the sheet layout problem calls for cramming as many polygon-shaped 

pieces within a polygon-shaped container without any restrictions apart from the basic 

requirement that the pieces should never overlap. The pieces are allowed to rotate, 

translate, and to flip about any axis. 

Although the generic definition allows the use of an arbitrary shaped container, in 

practice most problems are characterized by regular-shaped containers such as 

rectangular sheets (e.g. metal plates) and fixed width with infinite-length source (e.g. 

fabric or paper). The shape or pattern of the pieces to nest on the container may be 

singular or multiple. Two sample applications are discussed below. 

3.1.1.1. Metal Stamping Blank Layout 
Stamping is a very important technique in metal work. Pieces are engraved or cut from 

stock metal sheet using die blocks. The majority of everyday objects such as kitchen 

utensils, motor vehicles, electronic equipment, etc. contain a large number of 

components made by this process. 

Figure 3.1 shows an example of metal stamping layout where only one blank pattern is 

involved. The major cost involved in the stamping process is incurred in providing the 

material. Therefore minimizing waste is a major goal in stamping die design. 

 

Figure 3.1: Metal Stamping Layout for a Single Pattern 

Prasad (1994) describes the procedure, requirements, and constraints of metal stamping 

in considerable detail. In substance, blank layout design is characterized with limited 
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variation of shapes that are to be produced in large numbers from stock sheet. Because 

the die block is highly reusable, the design happens only occasionally. 

An algorithm called computer aided sheet nesting system (CASNS) was also developed 

(Prasad & Somasundaram, 1991). The CASNS algorithm performs the search for the 

optimum objective value by performing incremental rotation on the pieces. Later Prasad 

proposes three variants of the algorithm, single-product-single-row (SPSR), single-

product-multiple-row (SPMR), and multi-product-single-row (MPSR), to address the 

different possible requirements (Prasad, 1994). 

Nye (2001) proposes a different approach that applies only to identical blanks, which he 

refers to as an exact algorithm. First he defines the objective value as a function of 

rotation. The algorithm calls for the rotation of the polygon and the objective value 

abruptly changes whenever the vertices reach certain orientations. By identifying the 

points where the changes take place, he effectively turns the problem into a discrete 

search. Linear programming is then used to find the optimum orientation (Nye, 2001). 

3.1.1.2. Garment Shape Nesting Layout 
In the textile industry, apparel pieces are cut from a strip of fabric which has fixed width 

and indefinite length. The task of a human marker is to arrange the placement of the 

pieces in such a way that waste is minimized. Automating the process becomes 

desirable as a human marker needs considerable training to acquire the necessary skills. 

An example of such layout is given in Figure 3.2 below. Unique requirements on 

garment shape nesting are that flipping is not allowed and the fabric may have patterns 

which only allow rotation in a very limited range (typically up to 3º). To cope with the 

varying constraints, Bounsaythip propose the use of evolutionary search. Various 

heuristic algorithms are used to implement the solution (Bounsaythip & Maouche, 

1997; Bounsaythip, Maouche, & Neus, 1995). 
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Figure 3.2: Garment Shape Layout 

3.1.2. Bin Packing and Strip Packing 
Unlike the general sheet layout problem, the objective of strip packing (SP) and bin 

packing (BP) is limited to placing rectangular items within a fixed width container. 

Furthermore, rotation is allowed only at 90º increments whereas mirroring is irrelevant 

because of the rectangle’s symmetry. The subject of SP and BP covers problems of 

various dimensions. However, two-dimensional BP and SP problems can be considered 

a subset of the sheet layout problem class. 

Lodi, A., Martello, S., & Monaci, M. (2002) define the SP and BP problems 

respectively : 

• Two-Dimensional Strip Packing (2SP): for a given set of rectangles, a single 

bin with fixed width and unlimited height (called strip) is provided. The 

objective is to allocate all the items to the strip by minimizing the height of the 

strip used. 

• Two-Dimensional Bin Packing (2BP): for a given set of rectangles, an 

unlimited number of identical rectangular bins of fixed height and width are 

provided. The objective is to allocate all the items to the minimum number of 

bins. 

They further report their observation that algorithms used to solve 2SP and 2BP 

problems fall into three classes. They are approximation algorithms, lower bounds 

algorithms, and exact algorithms. 
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a. Bin Packing 

 

b. Strip Packing 

Figure 3.3: BP and SP Layouts 

An example of an approximation algorithm is provided by Vassidialis (2005) who 

creates a model of the 2BP problem using a binary tree data structure and local search 

optimization methods. He argues that the tree-representation in his design is capable of 

capturing any configuration and translations of the problem efficiently and offers a 

strong base for the optimization algorithms that follow. He further specifies simulated 

annealing (SA) and threshold accepting (TA) to implement the local search. 

Another example of a 2BP approximation algorithm is provided by Shigehiro et al 

(2001), which is based on tabu search. In their algorithm, various close permutations of 

the rectangles formation are explored to find local optima while maintaining the list of 

previously known optimum solutions . 

An exact algorithm solution for strip packing is proposed by Hifi (1997). The 2SP 

problem is decomposed into a series of two-dimensional constrained cutting stock 

problems and a branch-and-bound procedure is used to compute the final result. 

3.1.3. Rectangular Floor Plans 
The rectangular floor plan (RFP) problem is a finer subset of the sheet layout problem. 

With RFP, the problem is limited to arranging rectangle shaped objects within a fixed 

size, rectangle shaped container. Therefore the RFP can be regarded as a special case of 

2BP, where the objective is to put as many non-overlapping objects as possible inside a 

single bin. 
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Figure 3.4: Rectangular Floor Plan 

In the past, RFP has a range of applications such as in metal fabrication and publication 

layout (Imahori, Yagiura, & Ibaraki, 2005). However RFP later found an application in 

the design of very large scale integrated circuit (VLSI) chips (Hakimi, 1988; Hsu & 

Kubitz, 1988; Kiyota & Fujiyoshi, 2000; Murata, Fujiyoshi, Nakatake, & Kajitani, 

1995). Hence despite its being a very small subset of the sheet layout problem, RFP has 

become an extremely important subject of research in recent years. 

3.1.4. Cutting Stock Problem 
Another variant of the sheet nesting problem is the cutting stock problem (CSP). In 

CSP, a single stock sheet is to be cut into a series of rectangular pieces of predetermined 

sizes. The sizes are usually associated to values, from which the objective function of 

the optimization is constructed. 

The CSP has a major application in the iron and steel industries. Tokuyama and Uneo 

(1985) define that such an application is characterized by : 

• Varying criteria such as maximizing yield or increasing efficiency of production 

lines 

• The cutting stock problem is accompanied by an optimal stock selection 

problem. 

Similar to BP and SP, typically the stock material in CSP has a rectangular shape. In 

some cases however, the material can have an irregular outline as well as defective 
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spots in the internal area. Georgis et al (2000) define the generalized CSP and propose a 

solution to such problem based on the simulated annealing technique. An example of 

CSP on irregular shaped stock material is given in Figure 3.5. 

 

a. Original Object 

 

b. Sliced Object 

Figure 3.5: Cutting Stock Layout 

3.1.5. Summary 
In the previous sections, the four main classes of layout optimization problem have been 

discussed. Whilst awareness of the types of problems solved to date have informed this 

research, the constraints on the wall layout planning problem as described in Section 2.2 

are sufficiently different to make it unique. This view is supported by the limited 

amount of literature relating to building services applications. 

The problem being solved at the first-stage is most similar to the CSP class of problem, 

but there is an additional constraint that coverage of the area must be 100%, as the wall 

or floor cannot be allowed to have gaps or holes. The second-stage problem is similar to 

the 2BP class of problems in the sense that the objective of the optimization is 

minimizing the number of containers used. The second-stage problem however is more 

complicated because it involves irregular shapes instead of the exclusively rectangular 

objects dealt with in 2BP. The basic sheet layout problem fits the profile better in this 

regard. 
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3.2. Layout Optimization Approaches 
All classes of sheet layout problems share the characteristic requirement of putting 

together multiple pieces in every container. Therefore the designer of the solution is 

presented with the choice of whether to fit the pieces sequentially or simultaneously. 

The following discussion explores both options in more detail. 

3.2.1. Placement Strategies 
Because of the limitation of computing resources, the early solutions to sheet nesting 

problems are based on sequential placement of the pieces. Adamowicz and Albano 

implemented their algorithm in 1974 using FORTRAN on an IBM 360/67, which had 

50 kB RAM (Adamowicz & Albano, 1976). About twenty years later, Daniels and 

Milenkovic (1995) used a SPARC computer with a CPU speed of 28 MHz. The 

sequential search algorithms are typically simpler to construct but easily become 

trapped in locally optimum solutions. 

At present the typical personal computer has up to 1 GB memory and operates at 2 GHz 

CPU clock, providing computing power significantly greater than that in 1994. The 

availability of more powerful computers has made possible the approach of 

simultaneous placement of the nested pieces. The simultaneous placement approach 

allows for wider exploration within the search space, which increases the chances of 

finding better solutions than that obtained from sequential placement. 

3.2.1.1. Sequential Placement 
Sequential placement algorithms are characterized by populating the container with one 

piece after another. When a piece is placed on the container, an irregularly shaped 

smaller container is created in effect. The algorithms greedily conserve the size of the 

newly created restricted area when it picks subsequent pieces. The process is repeated 

until either the pieces are exhausted or the container is unable to accommodate more 

pieces. 

Cheng and Atkinson list three techniques used in determining the allocation sequence of 

the parts in sheet layout problem. These techniques are the Monte Carlo technique, 

random evolution, and heuristic sequencing (Cheng & Atkinson, 1994). 

• Monte Carlo technique: The entire allocation sequence is determined 

beforehand with a random generator. The optimum coordinates and orientation 

of individual pieces are then determined during the placement. At the end of the 
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placement process, the utilization efficiency is calculated. To obtain good 

results, the entire procedure is repeated with each result discarded unless it 

improves on the utilization efficiency of the best solution found to date. 

• Random Evolution: This approach is generally similar to that of the Monte 

Carlo technique. However, only the placement sequence of the first iteration is 

generated as random. In the subsequent iterations, only two pieces in the 

sequence are interchanged while retaining the rest. The selection of pieces to 

interchange is also done randomly. 

• Heuristic Approach: Instead of selecting pieces at random, with the heuristic 

approach the pieces are sorted according to the fitness value. Cheng and 

Atkinson specify that the irregular shaped pieces are first approximated with an 

enclosing rectangle. Such rectangles are sorted according to their sizes in 

descending order. The algorithm then proceeds to place the rectangles one by 

one. There are no subsequent iterations of the procedure. The authors claim that 

the technique is very efficient in terms of computation time and ease of 

programming, although the utilization efficiency as compared to other 

techniques is not mentioned (Cheng & Atkinson, 1994). 

An equally important aspect of sequential placement algorithms is the optimization of 

coordinates and orientation of the pieces. Linear programming is perhaps the most 

popular approach found in the literature. With linear programming, possible coordinates 

and orientations are limited to discrete values only. The configuration that yields the 

optimum value for the subsequent objective function is then selected. Laurent and 

Iyengar (1982) provide an example of linear programming in use for solving nesting 

problem with rectangular objects. 

3.2.1.2. Simultaneous Placement 
With simultaneous placement, pieces are selected and placed in the container without 

using any sequence allocation list. Instead, other data structures such as trees and graphs 

are used to represent the nesting and the position of each piece relative to one another 

(Bounsaythip & Maouche, 1997; Bounsaythip, Maouche, & Neus, 1995). The 

optimization task is accomplished by finding the configuration of such structures which 

provides the best value for the objective function. 

Typically there is a very large number of possible configurations for a given nesting 

problem, which makes an exhaustive search unfeasible. Several researchers argue that 
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the sheet nesting problem generally falls into an NP-hard computational complexity 

category. Faina (1999) concludes that the implication of being an NP-hard problem is 

finding the absolute optimum is not feasible when the number of items is large. 

To appreciate the complexity of NP-hard problems, it is important to first understand 

the notion of the NP (Non-deterministic Polynomial time) problem. NP is the set of 

decision problems solvable in polynomial time on a non-deterministic Turing machine. 

The machine used to solve NP problems needs to be non-deterministic because the 

alternative – the deterministic machine – would attempt to find the solution through 

exhaustive search, which is clearly impossible in most cases since the number of 

evaluations increases in exponential proportion to the number of parameters. Fortnow 

and Homer (2002) provide historical reflection on how researchers concluded that the 

NP-hard class contained problems that are at least as hard as any decision problem in 

NP. 

The computational complexity of the NP problem class is evident in the traveling 

salesman problem (TSP), where solving a problem with 100 nodes or more using 

exhaustive search requires computation time well exceeding human life time given the 

computing power of current technology hardware. Clearly exhaustive search cannot be 

suitable to NP-hard problems such as sheet layout optimization when simultaneous 

placement strategy is used. 

Meta-heuristic algorithms offer the means of finding good solutions to such problems, 

although they do not guarantee the discovery of a global optimum. Evolutionary 

algorithms (EA) and genetic algorithms (GA) are especially popular as found in the 

literature (Bounsaythip & Maouche, 1997; Crispin, Clay, Taylor, Bayes, & Reedman, 

2005; Horn, 2005). Other researchers prefer simulated annealing (SA) and tabu search 

instead (Bennell & Dowsland, 1999; Shigehiro, Koshiyama, & Masuda, 2001; Yuping, 

Shouwei, & Chunli, 2005). Newer meta-heuristic algorithms such as swarm intelligence 

(SI) and ant colony optimization (ACO) are also beginning to gain popularity (Hsieh, 

Lin, & Sun, 2005; Jiang, Xing, Yang, & Liang, 2004; Sun & Teng, 2002). 

Given the scope of this project, it is not possible to implement and evaluate more than a 

small number of optimization algorithms in the MCPO software application. Three 

algorithms viewed to be representative for the range of available algorithms have been 

selected for implementation. They are the greedy algorithm, the Monte Carlo technique 

and the Genetic Algorithm. With this selection, it is anticipated that a performance 
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comparison can be made in terms of placement strategy (sequential in greedy algorithm 

against simultaneous in MC and GA), parameter manipulation approach (direct 

parameter handling in greedy algorithm method against indirect handling in MC and 

GA), and the impact of guidance (random walk in MC against guided search in GA). 

3.2.2. Greedy Algorithm 
Solving optimization problems typically involves the process of going through a series 

of steps, making a decision from a set of possible choices at each step. If the 

information about payoff for each choice is available, such optimization problems can 

be solved using relatively unsophisticated methods such as a greedy algorithm. 

At any point, the greedy algorithm always picks a choice that gives the best reward at 

the moment. No consideration is given for the lesser immediate payoff alternatives, 

despite the potential of greater long-term reward. Because of this characteristic, greedy 

algorithms are simple in concept and easy to implement. 

There is a weakness to this strategy of being unable to escape local optima traps. In the 

classic hill climbing problem, the algorithm makes its ascent by successively selecting 

the highest neighboring node until the peak is reached and no more climbing is possible. 

Obviously, this approach is prone to premature convergence if the search space happens 

to contain multiple local optima. 

Greedy algorithms seldom find the globally optimum solution, yet in many cases they 

are capable of finding reasonable solutions quickly (Cormen, Leiserson, Rivest, & 

Stein, 2003). Because of the simplicity and speed of execution, greedy methods are 

quite powerful and well suited for a range of problems. Greedy methods are used in a 

number of important algorithms such as minimum-spanning-tree algorithms, Dijkstra’s 

single-source-shortest-path, and for data compression using Huffman codes (Cormen et 

al 2003). 

In the optimization domain, greedy algorithms may not be the best solution because 

they cannot reliably find better-than-average results. Nevertheless, a greedy algorithm 

implementation is important for this research for a number of reasons. Firstly, it 

provides an easy to construct platform to verify the correctness of the problem 

modeling. More importantly, however, it serves as the baseline solution against which 

the performances of more sophisticated algorithms can be measured. For industrial use, 

it is important to trade off solution quality and speed of convergence, and it may be that 
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for the building services industry that the baseline greedy algorithm may provide 

sufficiently good solutions in an acceptable timeframe. 

3.2.3. Monte Carlo Technique 
A heuristic approach is commonly used in optimization problem when the search space 

is too large for exhaustive exploration. In a heuristic algorithm, rules and methods are 

applied to narrow the search just to the most promising areas in the search space (Dean, 

Allen, & Aloimonos, 1995). 

Heuristic techniques are a major subject in the field of Artificial Intelligence (AI) as AI 

problems are typically represented as a large search space, from which the solution is to 

be discovered. Heuristic techniques exist in many forms and are the key ingredient for 

many successful and robust AI algorithms. In the GA discussed below for example, the 

guidance takes the form of the three genetic operators of selection, crossover and 

mutation. 

Despite being a good practice in general, heuristic techniques do not guarantee success 

in every case. They do however, offer better chances of a good result most of the time 

than deterministic methods. In some cases, particularly when the objective function has 

a discontinuous or random pattern, a blind guess may give an equal or better result than 

the guided search (Dean et al., 1995). 

The discrete-time stochastic process called the Markov chain is a prime example of such 

a case. In a Markov chain, the past state of the system no has influence on its next state. 

The future state is only dependent on the current state and the transition probability, 

which is constant. Therefore even though the system is statistically stable, its exact state 

for a given point is completely unpredictable (Oloffson, 2005). 

If unbiased dice are tossed a number of times, the resulting Markov chain will have such 

an erratic pattern that applying guided search will serve no purpose. In cases like this, 

random guessing stands an equal chance of giving a good result without any of the 

overhead required in heuristic decision making. Similarly, in a search space with many 

local optima, unguided search can come across good optimum point entirely by chance. 

A Monte Carlo method is a blanket term used to describe any method characterized by 

the use of a random number generator and the complete disregard of dynamics involved 

in reaching the results. Weisstein (1999) defines a Monte Carlo technique in general as: 
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[Monte Carlo technique is] any method which solves a problem by 

generating suitable random numbers and observing that fraction of the 

numbers obeying some property or properties. The method is useful for 

obtaining numerical solutions to problems which are too complicated to 

solve analytically. 

Apart from the transition probability, which is constant, decisions at any stage are made 

without any restriction in a Monte Carlo method. The original Monte Carlo method was 

first used to create models in statistics. Later it found its use in various optimization 

problems. 

In its most basic form, a memory-less random walk is all that is involved in 

implementing a Monte Carlo optimization method. With such unrestricted search, 

completely lacking in decision making rules and record keeping makes Monte Carlo 

optimization much simpler to implement than the heuristic algorithms. 

3.2.4. Genetic Algorithm 
The natural world has long been regarded the ultimate source of inspiration for design 

and optimization. Many sophisticated structures such as the shape of bird wings or the 

branching of blood vessels can be commonly found in nature, of which no man-made 

equivalents of comparable efficiency exist. Despite the continuing controversy about 

how such designs emerged in the natural world, the explanation coming from Charles 

Darwin’s theory of evolution has been accepted in the scientific domain and firmly 

established itself as the foundation of modern science of biology. 

Evolutionary computation and optimization were born when researchers proposed the 

idea of developing powerful optimization algorithms based on simulation of 

evolutionary process. The efforts spawned a number of algorithms, of which Bäck & 

Schwefel have identified three mainstream methods: the genetic algorithm (GA), 

evolutionary programming (EP), and evolution strategies (ES) (Bäck & Schwefel, 

1996). 

These algorithms use the concept of a population of individuals which are subject to a 

series of probabilistic operators such as mutation, selection and recombination. Each 

individual represents a potential solution to a given optimization problem. During the 

computation process, the population will undergo a draconian process in which stronger 

individuals will thrive while the weaker ones perish. 
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Genetic algorithms, which were first developed by John Holland and his colleagues at 

the University of Michigan (Holland, 1975), exhibit all the three main characteristics of 

evolutionary computation (Bäck & Schwefel, 1996). Their research goals were to 

rigorously explain the adaptive processes of natural systems and to design an algorithm 

that faithfully replicates the important mechanisms of natural systems. 

In a GA, an individual is represented as a string of genes, or chromosome. Unlike its 

natural counterpart however, the genes do not manifest themselves in the physical traits 

of the organism. The algorithm is only interested in the gene string itself as the potential 

solution of the optimization problem. No mapping to physical characteristic is necessary 

or desired beyond that which is required to evaluate the fitness of the candidate solution. 

From the optimization point of view, the chromosome serves as the representation of the 

coded parameters of the optimization problem. To determine how ‘good’ an individual 

is as a solution, its chromosome is decoded to retrieve the actual values, which are then 

fed to the objective function of the original optimization problem. The routine that 

decodes the gene string and calculates its objective function is called the fitness 

function, and the result of the examination is called the fitness value. Gene strings with 

better fitness values represent the stronger individuals within the population. Such 

individuals are favored by the system and more likely to survive and reproduce. 

A genetic algorithm starts with an initial population, which will be successively 

replaced by newer generations until the algorithm terminates either when a sufficiently 

good individual is found or the number of generations has exceeded the limit set by the 

user. Many variants of GAs exist, but they are generally easy to recognize as they are 

constructed using the same following outline. If P(t) denotes a population of µ 

individuals at generation t, and Q is a special set of individuals to be considered for 

selection, then the GA can be summarized as follows: 
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Outline of Genetic Algorithm: 

1. set t = 0 
2. initialize P(t) 
3. evaluate P(t) 
4. set P’(t) = recombination of P(t) 
5. set P’’(t) = mutation of P’(t) 
6. evaluate P’’(t) 
7. set P(t+1) = selection of (P’’(t) U Q) 
8. increment t 
9. repeat steps 3 to 8 until termination condition is met 
 

Goldberg (1989) asserts that GAs are more robust than many other optimization 

techniques, particularly when the search space contains many local optima. He further 

attributes the robustness of GAs to four special characteristics of the algorithm: 

1. Instead of working directly with the optimization parameters, GA works with a 

coded set of the parameters 

2. The optimization result is obtained from a population of points instead of a 

single point 

3. GAs directly use the objective function to calculate the payoff information 

instead of derivatives or other auxiliary information 

4. Probabilistic transition rules are used in GAs instead of deterministic rules 

GAs have been applied to a wide range of problems that have been considered 

intractable to other approaches. The diversity of applications can be appreciated from a 

sample of the recent literature. A brief review of 2006 publications indicates that GAs 

have been applied to a huge range of problems including logic tree decision modelling 

(Mak, Blanning & Ho, 2006), database partitioning (Du, Alhajj & Barker, 2006), design 

of composite laminates (Pai et al, 2006), reliability engineering (Levitin, 2006), the 

design of water distribution networks (Reca & Martinez, 2006) and the classification of 

software failures (Watkins et al, 2006). A comprehensive review of applications of GAs 

is not required to discover the interest in applying this method to solving complex 

problems and there is considerable interest in the approach. 

In many GA implementations in the literature the chromosome is commonly 

implemented as a finite-length binary vector. A binary vector provides the maximum 

flexibility for parameter coding and interpretation in much the same way as basic data 

types such as numerical or symbolic values are internally represented in the computer 

memory. Non-binary strings are also used however, in specific cases such as when 
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representing nodes in Traveling Salesman Problem (TSP), where a binary equivalent is 

impractical or inefficient (Ansari & Hou, 1997). 

Because of its very flexibility, coding the optimization parameters into a gene string can 

be a daunting task. For any given optimization problem, there are typically a number of 

possible ways to code the parameters into the gene string, some are better than others. 

There is surprisingly little available literature providing a general guideline for coding 

GA parameters. Coding guidelines for specific domains do exist however, such as those 

proposed by Nagao for optimization of numerical parameters (Nagao, 1996). 

The three basic operators in evolutionary computing, mutation, selection and 

recombination, are used in the implementation of the genetic algorithm. Specifically in 

the context of GAs, the operators are referred to respectively as mutation, reproduction, 

and crossover (Ansari & Hou, 1997). 

3.2.4.1. Reproduction 
Reproduction is the way a GA recreates new individuals in the population when the 

generation changes. Candidates for reproduction are selected randomly from the old 

population. Similar to the notion of survival of the fittest commonly observed in the 

natural world however, the selection of individuals is biased in favor of the stronger 

ones. The concept is expanded further in the form of elitism in some GA 

implementations, where chromosomes with the best fitness values in the population are 

favored for reproduction or even directly reintroduced to the succeeding generation 

(Connor, 1996). Whilst a range of elitism strategies have been discovered in the 

literature (Ahn & Ramakrishna, 2003; Bellomo, Naso & Turchiano, 2002; Djurisic, 

1998) the use of elitism strategy at this stage has been discounted in order to investigate 

the performance of a simple implementation. 

This mechanism allows chromosomes yielding better fitness values to stand greater 

chances to reproduce, in the hope of passing their good quality genes to the next 

generation. Less favored individuals are still kept as legal candidates despite their lower 

fitness values and reduced chance of being selected, in effect retaining the diversity of 

the chromosomes population and the search direction. Seminal work by De Jong (1975) 

demonstrates the effects of adjustments in GA parameters and modifications from the 

basic algorithm in great detail. 
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3.2.4.2. Crossover 
The crossover operator is applied to a pair of chromosomes that have been selected for 

reproduction. Mating between two individuals mixes the gene strings to create a new 

pair of strings representing new candidate solutions. Since the two chromosomes 

selected for crossover are likely to have good traits, the resultant gene strings may have 

better features due to the recombination. 

A very simple demonstration of a crossover operation is given in Figure 3.6 below. In 

this example, an arbitrary point, or crossover site, has been selected to split the parent 

chromosomes into left and right segments. 

X X X X X X X X X

Y Y Y Y Y Y Y Y Y

Before crossover

Crossover site

X X X X Y Y Y Y Y

Y Y Y Y X X X X X

After crossover  

Figure 3.6: Simple Crossover Operation 

In practice, any part of the chromosomes can be exchanged during the crossover. To 

complete the crossover operation in the above example, the rightmost segments are 

swapped to construct a pair of new chromosomes. 

The crossover operation does not need to be limited to a single site as in the above 

example. More advanced versions of GAs sometimes use multiple crossover sites, as 

exemplified by Chang (2006) and Yoon & Moon (2002). In the interest of measuring 

baseline performance however, only single point crossover will be used in the GA 

implementation for the MCPO problem. 

3.2.4.3. Mutation 
The use of crossover on its own makes for a rather brittle genetic algorithm. If the 

parent chromosomes are identical, no new patterns will emerge in the resultant 

chromosomes. Similarly, no new strings will be generated when the entire population 

has only one type of string. The mutation operator provides a remedy to this situation. 

A mutation test is applied to all genes from the chromosome of a candidate solution, 

normally with a very low probability of occurrence. For a positive test, the mutation 
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operator is applied and changes the value of the gene under consideration. This process 

simulates the spontaneous genetic alteration that is one of the cornerstones of the theory 

of evolution. In software design terms, mutation introduces variability into the 

population, and serves as an escape mechanism from local optima traps (Ansari & Hou, 

1997). 

X X X X X X X X X

Before mutation

X X Y X X X X X X

After mutation

Mutation site

 

Figure 3.7: Mutation Operation 

Liberal use of the mutation operator can be potentially disruptive to the search. This 

view is supported by De Jong who asserts that in formal terms: 

With too high mutation rate, the performance is degraded by the sub-

optimal allocation of trials to competing hyper-planes (De Jong, 1975) 

In relatively stable populations, mutation should occur only occasionally. Although 

there is no rule about how often mutation should be allowed to take place, successful 

GA implementations tend to keep its control parameter, the mutation probability, at low 

values such as 0.001 or less (De Jong, 1975). 

3.2.4.4. Schemata 
It has been observed that patterns of genes at certain positions have significant 

contribution to the fitness value of the individual. Such fixed position gene patterns are 

called schemata, which is quite an important concept in GAs (Bolc & Cytowski, 1992). 

A schema is defined as a similarity template that describes a subset of chromosomes 

with certain similarities at certain genes. Schemata provide a basic means for analyzing 

the net effect of genetic operators on individuals within the population (Goldberg, 

1989). Although the use of schemata is a powerful tool for creating and fine tuning 

sophisticated GA solutions, it is not required in a basic GA implementation. 

3.2.4.5. Parameter Coding 
As previously mentioned, parameter coding for GA has a major contribution towards 

the effectiveness of the optimization engine. A set of chromosomes containing wrong 
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sets of parameters or poorly mapped parameter values will ruin an otherwise good GA 

implementation. Similarly a good representation of the parameters will make it possible 

for the GA implementation to realize its full potential. 

Parameter coding is especially problematic in MCPO problems, especially for the 

second-stage optimization, because interdependencies exist among the parameters. 

Referring to Section 3.1.5, the second stage optimization appears to be best modeled on 

the 2BP problem. Although the use of a GA in solving 2BP can be found in a number of 

publications such as those by Chan, Au, & Chan (2005), Falkenauer & Delchambre 

(1992), Lewis, Ragade, Kumar, & Biles, (2005), and Liu & Teng (1999), none provides 

the technical description about the actual parameter coding. Perhaps the most technical 

detail can be found in the work of Shian-Miin, Cheng-Yan, & Jorng-Tzong (1994) 

where complex tree structures are used to represent the nested objects. 

In the absence of an exact description regarding the parameter coding of 2BP 

optimization, a novel solution for parameter coding has been devised. The complete 

discussion about the parameter coding is provided in Section 5.5.2. Critical analysis is 

provided in subsequent discussions regarding the impact of such a solution to the 

effectiveness of the search algorithm. 

3.2.4.6. Extension of the Basic Genetic Algorithm 
The basic GA can be improved in many ways. Goldberg (1989) describes a number of 

advanced techniques applicable to the GA. Some of the techniques are adopted from the 

natural world, such as diploidy and dominance, elitism, and segregation. Others, such as 

inversion, translocation, and duplication and deletion, are based more on mathematical 

reasoning. 

The use of advanced techniques allows the basic GA to be either developed to deal 

specific problems or to be improved in efficiency (Connor, 1996). A wide range of 

advanced techniques have been investigated, such as the use of parallel populations 

(Lis, 1996), shuffling individuals between such populations (Ndiritu & Daniell, 1999), 

the use of “introns”, which are uncoded chromosome segments (Levenick, 1991), 

variable population sizes (Shi et al, 2003) and the use of a hybrid method (Hwang & He, 

2006) to name but a few. The improved GA in turn can be used to solve MCPO 

problems more effectively. Further investigation on these techniques, however, is 

beyond the scope of this research, and the basic GA will be used in the software 

application to provide results against which future enhancements can be benchmarked. 
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4. Software Design 
As discussed in Chapter 1, this research utilizes the System Development Research 

Methodology (SDRM) proposed by Nunamaker & Chen (1991). Within the phases of 

this methodology, as outlined in Table 1.1, the selection of an appropriate design 

methodology is an explicit activity required to conform to the research methodology. 

4.1. Design Process 

4.1.1. Development Process Models 
A number of software development models have emerged since the inception of 

electronic computers in the 40s. Software had become particularly important when 

punched cards were introduced in early 50s, replacing the old system where computers 

were ‘programmed’ physically by changing its electronic circuits (Tanenbaum, 2001). 

Most of the software development models have been shaped by the lessons learned as 

various related technologies evolved. A few are now obsolete and irrelevant to the 

demands of today’s software. On the other hand, there are still quite a few contemporary 

models to choose from, each has formed to address certain characteristics of the project. 

Pressman (2004) provides a list of the most common models currently used in practice. 

For the purpose of this work, it is important to select a development model that 

complements the research activities. 

Linear Sequential Model: a classic life cycle development model borrowed from 

general engineering practices. The development model consists of a sequential process 

progressing through analysis, design, coding, testing, and support. This is a very 

sensible approach, which is the oldest and most widely used in software engineering. It 

is rather inflexible model however, demanding explicit and precise specification of the 

problem in the initial stage of the project, which is often difficult in practice. A major 

omission in the requirement specification, if not detected early, can be disastrous to the 

project. 

Prototyping Model: users unaware of the issues involved in software development 

typically define a set of general objectives for the software they want without providing 

a detailed specification. Critical information such as the input, output, or human-

computer interaction requirements are often left out. The prototyping model solves this 

problem through an iterative specification, mockup build/revision, and customer testing 

cycle. Comments given by the user during testing are used to refine the specification, 
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leading to a revision of the software closer to the actual solution. Although this 

approach can be very effective when properly used, critics point out its inherent 

weakness of the tendency to lure the developer to make implementation compromises to 

quickly get the prototype working. Inefficient algorithms may be used just to 

demonstrate the overall capability of the software. As the software grows, the 

inappropriate choices become embedded deeply in the system and become an integral 

part of it. 

Rapid Application Development (RAD) Model: attempts to enable high speed 

development while maintaining the stability of the linear sequential model. The model 

still retains the notion of sequential development, with stages similar to that of the linear 

sequential model. Rapid pace of software development is achieved through extensive 

deployment of reusable software components. If necessary, several RAD teams can 

work in parallel to construct different parts of the system, minimizing the total 

development time for the overall project. If the scope is well defined, a fully functional 

system can be constructed within very short time periods using the RAD model. There 

are, however, a few drawbacks of the RAD model. For larger projects, significant 

human resources are required to allow RAD to have any impact. Further, everyone 

involved must be committed to the frantic pace of the development activities. Finally, 

not all projects are suitable for RAD, especially high performance systems whose 

efficiency will be compromised by the use of large numbers of software components 

communicating through standardized protocols (which are as a rule slower than 

proprietary ones). 

Evolutionary Models: since the user is subject to competition or business pressure, 

building comprehensive software in a single development project is often unfeasible. 

The business and product requirements may also change over time, necessitating major 

updates in the software. For software that is expected to evolve over longer periods of 

time, a model that accommodates incremental development with minimum disruption to 

the overall system is required. An evolutionary model is an iterative paradigm used for 

the development of large systems, characterized by the emphasis on allowing the 

engineers to build increasingly more complete software over time while it is used in the 

live environment. There are a number of software development models that are 

considered evolutionary: the incremental model, the spiral model, the WINWIN model, 

and the concurrent development model (Pressman, 2004). Because of the nature of the 
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problem addressed by evolutionary models is unique, their advantages and weaknesses 

cannot be directly compared to the other development models discussed so far. 

Component-Based Development: the advances in the technologies of object-oriented 

computing have magnified the impact of code reusability further than that in RAD. The 

component-based development model builds applications from reusable software 

components, many of which are available from third party vendors. The engineering 

activities are therefore more focused on mapping the functionalities required from the 

system with the software components suitable for the tasks. When suitable components 

cannot be found, custom components are engineered using the same object-oriented 

methods and added to the library. The Unified Modeling Language (UML) has been 

defined to facilitate efficient component-based development. Apart from the fast 

progress enabled by code reuse, component-based development has a pronounced 

advantage of allowing a scenario-based approach in software design, allowing the users 

to participate closely in defining the system they want. The component-based 

development model has its disadvantage too. Firstly, it tends to limit the developer’s 

options to what is available in the component library. Secondly, third party components 

often come in binary form only, making it extremely difficult to track programming 

errors when they occur. 

Formal Methods Model: in some cases, formal mathematical notations are the best 

way to rigorously specify, develop, and verify computer-based systems. Formal 

methods provide a way to construct correct code through the application of 

mathematical analysis instead of the ad-hoc review used in the mainstream models. The 

formal methods are very powerful and promise software that is completely free of 

defects. However it requires a formal mathematical ability on the part of the software 

developer, necessitating extensive training. Similar command in mathematics is also 

required from the customer if the model is to be effectively communicated. Nonetheless, 

the formal methods model has a secure niche in the development of safety-critical 

applications where software errors cannot be tolerated, such as in aviation, military, and 

medical equipment. 

Fourth Generation Techniques: some of the latest software development tools have 

the capability of generating program code directly from the specification provided by 

the software designer. Such an approach is called computer-aided software engineering 

(CASE) or fourth generation techniques (4GT). With 4GT, certain specification 



 44 

graphics and languages are used to define the problem, resulting in meta-code that can 

be translated to the actual program code using the development tools. Apart from the 

automatically generated code, 4GT differs little from other models discussed above. The 

distinct advantage in the 4GT approach is the reduced time required for design and 

analysis, particularly for small application. It also allows the technically inclined users 

to develop a credible solution of their own directly. The potential productivity boost 

comes at a price however. The ease with which code is generated may lead the 

developers into neglecting the importance of a good design, resulting in poor quality 

software. Another problem inherent in automatic code generation is that the process is 

unidirectional. As a result, manual modifications on the code will not be incorporated 

back to the design. Worse yet, regenerating the program will overwrite the modified 

code, effectively wiping out all the manual changes. 

Agile Methods: in the interest of satisfying the customer’s demands on the software at a 

very rapid pace, a relatively new approach called agile methods have emerged in the last 

few years. The agile methods refer to a number of software development practices that 

put heavy emphasis on progress in the form of working software. Such progress is 

achieved by developing the system in a series of development mini-periods, each lasting 

between one to four weeks. At the end of each period, the resulting software is 

evaluated, establishing the base upon which the user requirement is further refined or 

possibly expanded. The agile methods rely on intensive, face-to-face communication 

between customer and developer, resulting in little formal specification and 

documentation compared to other models. While potentially very effective, agile 

methods may lead to undisciplined or chaotic development activities, limiting its value 

to small sized and highly skilled development teams only. 

4.1.2. Project Characteristics 
All the software development models discussed above offer enough potential to be 

considered to select one that suits best for this project. With the key characteristics of 

the models identified, the selection of which one to use in this project is to be decided 

by analysis of the characteristics of the problem. 

The basic premise is that the layout optimization software is first and foremost a 

research project. The project scope and size is deliberately limited to that required to 

examine the concept and algorithms involved in the problem space. Therefore the 

project should be regarded as a short term software development, with limited goals 
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only. There is a strong prospect for longer term deployment of the commercial version 

however, which calls for sound design and easy to maintain code. 

As evident in Chapter 2, there is no detailed specification provided by the user of the 

system, which is not surprising given the research oriented nature of the development. 

What is available is a general description of what the system is going to be used for and 

what it should be capable of doing. Whilst such information is enough to provide a 

general direction for the development, much of the technical details must be discovered 

as part of the research and development activities. The absence of detailed specification 

favors the prototyping and RAD models whilst ruling out the use of linear sequential 

model. 

There is also a definite constraint in the development timeline. A fully working system 

is required within no more twelve months from the beginning of the project. While such 

restriction is quite reasonable for the scope of the project, successful completion 

requires focus on critical parts of the software that are developed to address specific 

aspects of the research. Non-critical parts are implemented using rudimentary 

algorithms since little time is available to explore or implement more sophisticated 

alternatives. Without the need of building a large system over prolonged periods of 

time, evolutionary models automatically become irrelevant. 

Although quite a number of people are involved in the project, the actual development 

of the software is done by a single person. Consequently the resultant amount of work is 

extremely limited compared to what a team of developers can achieve. 

Due to the lack of mathematical background on the part of the author, formal methods 

cannot be used with any degree confidence given the time available. Similarly, there is 

no suitable 4GL tool at the author’s disposal during the project. All these constraints 

leave the prototyping, RAD, and component-based models to be the only viable choices. 

The actual development model uses features of all three. Prevailing development effort 

takes mainly the form of RAD because the requirements are best mapped to this model. 

4.1.3. Rapid Application Development Model 
As previously discussed, the RAD model dominates the actual development pattern of 

the layout optimization software. Key characteristics of RAD are modular design, 

parallel development, and code reuse; all resulting in development of good quality 

software at a rapid pace. Other deciding factors are the availability of a development 
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tool and the ease of future integration to the BISCo commercial software. Finally, RAD 

allows development to begin in the absence of a comprehensive system requirement, 

making it ideal in a research environment. 

The effectiveness of RAD comes from the way it is designed to decompose the problem 

into its logical components. This allows development of some components of the 

software to commence whilst research activities are still being conducted to determine 

the requirements for other aspects of the software. The development process is also 

divided into several phases. Much like the linear sequential model, the RAD cycle in a 

commercial project consists of five phases: business modeling, data modeling, process 

modeling, application generation, and testing and turnover (Pressman, 2004). 

Business modeling: the way information flows within the customer’s organization is 

analyzed and modeled in terms of data architecture, application architecture, and the 

technology infrastructure. Since the layout optimization problem is to be developed 

much in isolation, analysis is focused only on data and application architecture. 

Rigorous analysis on future customer’s technology infrastructure will have little impact 

on the construction of the software. 

Data modeling: the information flow is further refined by identifying all the important 

data objects that the system should maintain. The data objects are defined by the 

attributes and relationships that exist with other data objects. 

Process modeling: another refinement of the information flow is when relevant 

processes that transform the data objects are defined for implementation. Important 

functionalities such as data object creation, alteration, calculation and removal are 

specified in sufficient detail for the application generation phase that follows. 

Application generation: ideally, the implementation phase uses a 4GT tool to generate 

the code. Third generation programming languages are used when a suitable 4GL is not 

available. Existing program components are used whenever possible. New components 

are created when necessary, with reusability as one of the main design goals. 

Testing and turnover: the final product is tested and updated as necessary. The true 

value of RAD should be apparent at this stage. Since the majority of the reusable 

components have been proven to work in other applications before, few errors are 

expected to occur from them. The net result is reduced overall testing time. Care must 
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be taken, however, to thoroughly test new components to ensure their reliability in 

future projects. 

The remainder of this chapter deals with the business and data modeling, along with the 

abstract part of process modeling. The RAD cycles are discussed in Chapter 5: Software 

Implementation. 

4.2. System Modeling 

4.2.1. Software Scope 
Before analyzing the system in more detail, it is a good practice to describe the scope in 

a brief statement. Such a statement serves as the basis for communication among parties 

involved in the project, especially between the engineer and the customer. In the case of 

this layout optimization project, the customer is represented by BISCo. The layout 

optimization scope statement is as follows: 

Layout Optimization Software searches for the most efficient configuration 

to cover an area using flat rectangular panels of fixed length and width. 

The layout optimization problem consists of the layout area(s), the invalid 

areas that should not be covered, and the list of candidate stock panels. 

For each optimization run, the user provides additional information such 

as the panel legal orientations, search strategy, and optimization 

algorithm-specific parameters. 

The output of the optimization consists of the dimensions of the most 

efficient stock panel, the cutout plan for individual panels, and the plan to 

cover the layout area. Efficiency is primarily calculated in terms of the 

wasted material, although the amount of cutting also determines the 

quality of the solution. The less efficient solutions are also provided for 

comparison. The results must be sufficient allow the user to select the 

most efficient panel, cut the irregular shapes from the stock panel if 

necessary, and arrange them on the layout area with no manual 

calculation. 

The purpose of the above statement is to capture all the essential parts of the system. 

Further technical details are not relevant at this stage and will be defined at the 

subsequent phases. 
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4.2.2. Information Flow 
In well-functioning software, information is transformed from its raw form into its final, 

useful representation. To afford credibility for such transformation, it is important to 

define the components taking part and the various pieces of information that undergo 

the process. Data computation is seen as information flow from input of various forms, 

which ends in the output forms, through a series of transitional forms. 

There are various ways of modeling the information transformation. The Data Flow 

Diagram (DFD) is the prime modeling tool to use when the designer is interested in 

decomposing the system based on its functional components. Entity-Relationship (ER) 

models can be used instead when relationships within the data are regarded to have 

overriding importance. Otherwise when the system is defined by its time-dependent 

behavior, State Transition modeling is the most suitable tool (Yourdon, 1989). 

In the case of the layout optimization software, the DFD model is used for a number of 

reasons. First, the system must be built when no formal or standardized representation 

of the data exists. A key element of this research is the exploration of the information 

required for the solution of the MCPO problem and how the software interacts with this 

data. The functionality of the software, namely discovering the solution for a given 

optimization problem, therefore dominates all other issues. Second, the data does not 

dictate the behavior of the system at all. Instead, there is a rigid mechanism to which the 

information is subjected. These two reasons rule out the use of entity-relationship and 

state transition models. Finally, the DFD model actually serves as an indispensable tool 

for defining what components are required to build the entire system, as reflected in the 

discussions that follow. 

The ideas similar to DFD have been circulated in the engineering communities since the 

mid-seventies (Yourdon, 2006). The DFD owes much of its appeal to the simplicity of 

its notation and representation. Such simplicity makes DFD easy and intuitive to use, 

making it ideal to communicate design ideas among designers and users alike. 

A data flow diagram consists of four components, of which three are static and one 

dynamic: 

External Entities: objects and actors that reside outside the system and interact 

with it. The most important external entities are the input device, output device, 

and the user. External entities are represented in the diagram by rectangles. 
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Processes: the transition in which the input data is turned into output. A process 

can be directly mapped to a functional module of the software, serving as a black 

box where only input and output types of information are defined without 

revealing the actual mechanism of the transformation. A process is only identified 

by its functionality, and is represented by a circle in the DFD. 

Data Store: repository for where non volatile data is kept. Theoretically the 

storage has no restrictions in terms of size or lifetime. A data store is represented 

by parallel lines in the diagram. 

Data Flow: the dynamic component which describes the movement of packets of 

information moving from one component of the system to another component. 

The flow represents the data in motion, as opposed to the data store which 

represents the data at rest. Data flow is represented in the diagram as an arrow 

coming from or into a process. 

Another major feature of DFD is the freedom for the designer to zoom in on a particular 

process to reveal its inner working as a mini-system. When a process is analyzed, the 

resulting DFD consists of the components similar to the DFD of the higher levels, but 

with more refined processes and data flow. Due to this hierarchy, any part of the system 

can be analyzed to any level of detail. The decision on how much analysis is required is 

left to the designers and perhaps the user. 

Figure 4.1 shows the information flow at the top level of the layout optimization 

software. The diagram of this type is often referred to as DFD Level 0, for it shows the 

system components and the information flow at the most abstract level. The DFD shows 

that nine processes are involved in transforming raw data from the input device to the 

final form presented to the user. 

The nine processes are the key to successful optimization operation from one end of the 

system to the other. Further decomposition of these processes into their respective sub-

processes and information flows can be found in Appendix B. The remainder of this 

section discusses all the components found in DFD Level 0. 
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Figure 4.1: Overall System Information Flow 

4.2.2.1. External Entities 
There are four external entities used in the DFD: the input device, user, disk file, and 

visual output device. 

Input Device supplies the problem definition to the software. Disk files are excellent 

candidates for the input device, although other forms of input such as remote procedure 

calls (RPC) and onboard editors may also be used. RPC may become the primary input 

device in the future, especially when the software is integrated into the Blue Sky™ 

system. 

User interacts with the software in many ways. The most important role of the user 

from the design perspective, however, is to determine the actions to be taken for a given 

optimization problem as well as specifying the various parameters required by the 

optimization algorithms. 

Disk File can be considered a virtual output device, where the results of the 

optimization can be stored for future use. The disk file is not a true output device 

however, since the information is only useful within the system’s domain. 
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Visual Output Device presents the solution of the optimization problem in its final 

form to the user. Because the layout optimization deals with two-dimensional objects, 

the main use of an output device is for viewing the objects. Thus only graphics capable 

devices can be used. In most cases the computer screen can satisfactorily serve as the 

output device, although a printer may be preferred by the user in other cases. 

4.2.2.2. Processes 
As mentioned earlier, there are nine processes that make up the system at the conceptual 

level. Although these processes vary in size and complexity, none can be omitted from a 

fully working system. The data flow diagram for the following can be found in 

Appendix B, from Figure B.2 to Figure B.10, respectively. 

Validate Input ensures that the input data is of correct physical format and is organized 

in a valid structure. As discussed in section 5.2.2., Extensible Markup Language (XML) 

has been chosen as the physical format of the input data. The validating measure is very 

simple: the input stream is checked whether it has an XML document, in which case the 

root node in the XML hierarchy must have a certain name to be accepted as valid. 

Illegal input will immediately cause the whole loading process to be terminated. 

Read Input Type seeks to find whether the XML input file contains a problem set or a 

solution set data by examining a certain attribute of the root node. The program enters 

the optimization mode when a problem set input is encountered, whereas a solution set 

will cause the program to enter the display-only mode. 

Extract Layout Objects extricates the layout containers and the obstacles within them 

from the input data. These objects are very significant in a layout optimization problem, 

and they are both present in either type of input. The containers and obstacles are used 

to define the problem in optimization mode, which makes them critically important. 

Extract Solution Data reads the information about the shapes covering the container 

legal area as well as their nesting plan in the stock panel. Such information is used to 

present the solution visually to the user. Naturally, this operation is only relevant when 

the input is of solution set type. 

Compose Problem Definition packs the data required for the actual optimization 

process. Layout optimization data loaded from the input device is combined with the 

supporting data in the repository to make the complete problem definition. Finally, the 

algorithm-specific optimization parameters are supplied from the user input. 
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Generate Solution Panels resolves the first stage of the optimization problem as 

discussed in Chapter 2. The solution is constructed by cutting the layout container area 

with horizontal and vertical lines as if it were a large sheet of material. The cut lines are 

defined by the dimensions of the corresponding stock panel. The resulting shapes are 

then deducted by the obstacle shapes within the container to find the final set. 

Nesting for Irregular Panels resolves the second stage of the optimization problem. 

The irregular shapes from the solution set of the first stage are mapped to the smallest 

possible number of stock panels. Three search strategies are available to find the 

solution: the greedy algorithm, the Monte Carlo search, and Genetic Algorithm search. 

The result of this process is the irregular shape nesting layout plans, according to which 

the actual material will be cut. 

Combine Solution Data arranges the bits of information obtained from both stages of 

the optimization into an organized form, ready to either display on the visual output 

device or save into the disk file. Checks are also made to detect and remove 

redundancies as well as inconsistencies. 

Construct Graphical Objects extracts the visual information from the solution and 

transforms it to the standard format of the output device. Section 5.3.3 in Chapter 5 

discusses the concept of graphics pipeline which makes this process necessary. In 

simplest terms, the optimization problem and its solution use a coordinate system that 

differs to that in visualization. The process of constructing graphical objects takes care 

of the transformation between the coordinate systems as well as adding visual properties 

that helps the user to differentiate between objects in his viewing device. 

4.2.2.3. Data Store and Data Flow 
There is only one data store object used in the system, that of the Building Material 

Repository. In contrast, there are thirteen data flows defined in the DFD Level 0. The 

large number of the data flows very well demonstrates that information does flow in 

many forms through the system before the final result can be obtained. 

Building Material Repository is where static, problem-independent data is stored. In 

the commercial context, the repository takes the form of the Blue Sky™ database. 

Referring to section 2.4 in Chapter 2, the database contains a large collection of 

disparate objects. In the context of layout optimization however, only the stock panel 

information – which makes for only a small subset of the data – is used. In the research 

context, the repository is implemented as a disk file of much simpler structure. The 
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decision to keep the repository separate from the main input remains justified, however, 

by the static nature of the stock panel information. 

Raw Input Data presents the system with an input stream. At this stage the system 

does not know whether the input is valid or whether it contains meaningful data. All the 

same, the only way a valid input can enter the system is through this data stream. 

Valid Input Data is the input data that has been verified and accepted as valid, in terms 

of physical format and the content organization. A valid input data may contain either a 

problem set or a solution set. Different processes are involved to handle each type. 

Optimization Mode and Display-Only Mode is a control flow, a special case of 

information flow, where only fixed value information is passed. For a given input data, 

either optimization mode or display-only mode control is passed to the responsible 

processes depending on whether the input is of problem set or solution set type, 

respectively. 

Layout Objects are the containers with the optional obstacles that define a layout 

optimization problem. These objects have paramount importance since they are actually 

the basic representation of the optimization problem itself. 

Candidate Stock Panels: provides the context for resolving the layout optimization 

problem. Any solution must be built from candidate stock panels that are known to the 

system. Also the efficiency of a solution is to an extent determined by the properties of 

its candidate stock panel, such as the material price and cost associated with cutting the 

irregular shapes. 

Optimization Settings and Parameters is a control flow that allows the user to 

manage which optimization algorithm is to be used, and how a given algorithm should 

operate. More detailed information about optimization settings and parameters can be 

found later in section 4.2.3.3. 

Formalized Optimization Problem is a data structure that consists of the containers, 

obstacles, and the candidate stock panels. The data structure emerges as the final result 

of the all data preprocessing and is ready to be fed to the actual optimization algorithms. 

Irregular Panels are a subset of the result of the first stage solution. The rest are 

regular panels that map perfectly to the stock panels and therefore need no further 

processing. Irregular panels make for the material for second stage processing, in which 

the search for most efficient nesting plans takes place. 
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First Stage Solution consists of both irregular panels and the regular panels, which are 

a part of the final product of the layout optimization. Only minor post-processing, such 

as redundant vertices removal, will be applied prior to presentation to the user. 

Nested Irregular Panels is the result of the second stage optimization. Similar to the 

first stage solution, the nested irregular panels are also part of the product of the layout 

optimization. 

Solution Objects are the first and second stage solutions combined. The solution 

objects reside in the computer memory, ready to be translated into its visual 

representation. 

Complete Solution Data is the solution objects organized as an XML tree. The purpose 

of creating such representation of the solution is for storage in the disk file, from which 

it can be loaded to the software later for viewing. 

Graphical 2-D Shapes are the data representation of the objects to be visualized. Such 

representation is platform-dependent or device-dependent. Unlike the rest of the system, 

the designer has no control over the format of the data since it is dictated by the 

particular output device in use. 

4.2.3. Data Dictionary 
Another important design tool used to develop the layout optimization software is the 

data dictionary. Yourdon (1989) defines the data dictionary as a listing of the data and 

control objects used in the system. In the data dictionary, such objects are defined in 

much greater precision than the equivalents found in the data flow diagram. The 

combination of the DFD and the data dictionary provides the analyst with a highly 

accurate view of the system (Pressman, 2004). Yourdon (1989) further specifies that the 

data dictionary complements the DFD in a number of ways: 

• The data dictionary describes the meaning of the flows and stores in the data 

flow diagrams 

• The data dictionary describes the composition of aggregate data packets in the 

flows and in the stores 

• The data dictionary specifies the relevant values and units of the elementary 

parts of the data objects 

An entry in the dictionary consists of the header and the definition. The header contains 

the name of the item, its aliases, and the context of where or how the item is used. The 
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data dictionary uses metadata to describe various operators such as definition, 

aggregation, iteration, and selection in the definition part. The following symbols are 

most commonly used as recommended by Yourdon (2006). 

= is composed of 
+ and 
( ) optional (may be present or absent) 
{ } iteration 
[ ] select one of several alternative choices 
** comment 
@ identifier (key field) for a store 
| separates alternative choices in the [ ] construct 

Yourdon (2006) warns that building the data dictionary can be tedious for medium or 

large-sized systems. Modern relational database management systems such as DB2, 

Oracle, or Sybase come equipped with automated tools for defining the data dictionary. 

In this project however, such tools are not available and the data dictionary must be 

constructed by hand. For this reason, only certain items of the dictionary are defined. 

The complete data dictionary can be found in Appendix C. 

4.2.3.1. Input Data 
As previously discussed, the input data contains various control information to describe 

its content. The document body follows, consisting of parts common to all input data 

and optionally the solution information if the document is of solution set type. The 

common part is further decomposed into various components that define the problem as 

well as the viewing parameters. 

name: raw input data 
aliases: complete solution data 
where used/ how used: layout problem definition (input) 
   resolved layout problem data (input) 
description:   
  raw input data = signature + document body 
  signature = "PolyWorkSpace" + content type 
  content type = ["ProblemSet" | "SolutionSet"] 
  document body = generic part (+ solution set) 
  generic part = view parameters + container set + obstacle set 
  view parameters = zoom factor + viewing offset 
  zoom factor = *real number > 0* 
  viewing offset = XY screen coordinates 

Figure 4.2: Program Main Input 

4.2.3.2. Optimization Result and Output Data  
Discussion about the output data in non-graphical form actually becomes meaningless 

since the optimization result is reduced into a series of platform-dependent geometrical 

information to produce the visual output. The complete solution data saved in the disk 
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file does not reflect the result very well either since it contains aggregate information 

that can obscure the solution. The optimization result is therefore best represented by 

the solution set, which in turn is composed of a series of single solutions. A single 

solution defines the stock panel used, along with the first and second stage solutions. 

name: solution set 
aliases: None 
where used/ how used: resolved layout problem data (input & output) 
description:   
  solution set = {single solution} 
  single solution = stock panel + solution panels + nested layouts 
  stock panel = rectangle definition 

Figure 4.3: Complete Layout Optimization Solution 

4.3. Design Issues 
The data flow diagram and the data dictionary have served their purpose well in 

examining the system, helping the analyst to identify all the major issues. Speaking in 

terms of rapid application development, data modeling and process modeling have been 

sufficiently covered using those tools. Because business modeling has little relevance to 

the engineering-oriented project, software development can now proceed to the code 

generation stage, where the program is implemented. The technical discussion about the 

actual implementation can be found in Chapter 5. There are a few remaining design 

issues however that must be resolved at this point. 

It is important to recognize that considerable effort has been expended to achieve 

thorough analysis, design, and implementation of the software. These activities have 

been conducted in parallel with the research activities that have informed the 

refinements of the requirements. Nevertheless it must be kept in mind that the ultimate 

goals of the research are as defined in Chapter 1. For this reason, a few design 

compromises have to be made to prevent minor issues from detracting the progress from 

its true objectives. 

4.3.1. Control Hierarchy 
The data flow diagram and data dictionary are very good at capturing the data 

transformation from the raw form to its final representation. In other words, they have 

provided a data-centric view of the software. The actual program, however, ought to be 

a task-centric system if the user is to have the ultimate control. 
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The control hierarchy or program structure represents the organization of the functional 

modules to reflect the control relationship. Like any hierarchical relationships, the 

control hierarchy is best represented as a tree-like diagram. 

The layout optimization software uses a control hierarchy shown in Figure 4.4. The 

diagram consists of a set of rectangular shapes representing the software modules, and 

connecting lines representing the superordinate-subordinate relationship. The modules 

are either of control type or functional type. A control type is represented by a gray box 

whereas a functional type is represented by a white box. A controlling module (called 

superordinate) is drawn higher than the controlled modules (called subordinate) 

connected to it. 

A module called nesting work space occupies the top of the control hierarchy. The user 

interacts with the module through the user interface feature of the program. At the 

second level, the control is partitioned into three separate sub-trees: the input modules, 

data transformation modules, and the output modules. Each controls a set of functional 

modules either directly or indirectly through its subordinate control modules. 

 
Figure 4.4: Layout Optimization Software Control Hierarchy 

Most of the functional modules in the control hierarchy can be directly mapped to the 

process modules in the data flow diagram, indicating that the system analysis has been 

sound. Unlike in bigger systems where the control hierarchy can be quite elaborate, the 
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simple diagram in Figure 4.4 sufficiently models the control structure of the layout 

optimization software. Therefore no further analysis is necessary. 

4.3.2. Program Input and Output 
Substantial discussion has been made regarding various issues about the input and 

output of the layout optimization software. It remains difficult to settle for a final form 

of either however, because the software is destined to become part of a large system yet 

to exist. Nevertheless interim formats have been established for the purpose of this 

research. 

For program input, the physical source is a text-based disk file structured in XML 

format. The content of the file is to be created and edited by hand, even though in the 

future it is anticipated that the input will be generated by an automated process instead. 

Little provision beyond a few simple checks is to be made for validating the integrity of 

the input data. 

The program output has been designed with similar orientation. The computer screen, 

run by a specific operating system, is to be used as the main output device. The disk file 

is also to be used as secondary output device, with the data organized in XML format 

recognizable by the program input module. 

4.3.3. User Interface and Visualization 
The primary requirement for the program user interface (UI) is that it provides the user 

with full access to the commanding nesting work space module in the control hierarchy. 

While the simplest solution may be to build the module directly in the UI or vice versa, 

it has been decided to build them separately to make it possible to change the UI 

without affecting the control hierarchy. 

The separation is particularly important as the UI has been designed as a research tool 

and not to be particularly effective with the average user. In future development, 

software usability will be taken into consideration when designing the UI. For the 

purpose of this research, the functionalities of the UI are limited only to that of 

providing access to the system features. The following is a list of the main user 

activities facilitated by the UI: 

• Open input file and load the content into the computer memory 

• Save the geometric objects in the computer memory into output file 

• Select optimization algorithm and set its parameters 
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• Execute optimization process 

• Monitor the software activities during the lengthy execution of important tasks 

There is a set of optimization parameters that deserves special attention at this point. 

These are the constraints that specify what orientations are allowed when the irregular 

pieces are laid out in the nesting plan, e.g. flipping and rotation. The way such 

constraints are applied may have a direct impact on the final result, which brings up the 

question of who must decide what particular order to use on each run. It is the end user, 

with domain knowledge regarding the materials in use, that must specify how such 

constraints will be applied. 

For a start, it seems sensible to implement the corresponding modules in a way that 

allows the parameters to be used in any sequence, rather than implicitly assuming a 

particular order in the program code. Such customizable parameter ordering is rather 

costly to implement, but it eliminates speculation on the part of the developer and leaves 

the decision to the user instead. Therefore it deserves to be a standard feature of the 

software. Subsequently the UI must provide a way for the user to supply his custom 

constraint application to the system. 

The UI also serves as the platform for visualization of the layout optimization problem. 

Sufficient space is to be provided within the program UI on the computer screen for 

drawing the geometric shapes. Standard viewing features such as zooming and panning 

are also to be provided in the visualization space. 

Because of the importance of the visual information to the user, additional measures are 

also to be taken to assist the user to absorb the information efficiently. Such measures 

include the use of colors and patterns to help the user identify different type of objects 

more easily. It may be a good idea to make the colors and patterns customizable by the 

user. At the current stage however, such customization is not a priority. 
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5. Software Implementation 

5.1. Overview 
The implementation of the MCPO concept provides the means of obtaining detailed 

insight regarding the nature of the problem in technical terms. It is during the actual 

development process that the basic knowledge previously acquired from the literature 

research is consolidated and enriched. Comparatively large amounts of time and other 

resources have been allocated to this effort due to its overwhelming importance. 

Throughout the development of the software, it was found that many of the 

functionalities required by the application present unique logical problems demanding 

thoughtful and well designed solutions. It was also found that certain kinds of such 

problems tend to reappear at various places, although often in slightly different guises. 

Such recurring classes of problems merit discussion of their own due to their 

contribution to the overall optimization problem. 

The development follows a RAD pattern characterized by the absence of a predefined 

set of requirements. Instead, the software starts as a crude prototype which quickly 

evolves into an increasingly refined product in a continuous coding-evaluation-

improvement cycle. 

Program modularity is regarded as very important, compelling the author to strive 

towards a highly modular code in spite of the lack of formal requirements and design 

and the foresight they may offer. Object Oriented Programming (OOP) with its inherent 

features such as encapsulation and polymorphism provides an excellent framework for 

modular application development under such circumstances. This is made possible in 

particular by Borland Delphi™ compiler which has full support of OOP. The Object 

Pascal language supported by Delphi allows custom classes and objects to be used 

extensively in the program to achieve the desired level of modularity. 

5.2. Program Structure 

5.2.1. Modules 
The primary goal of writing modular software is to make coding and maintaining all 

parts of the program relatively easy, no matter how divergent those parts may be. 

Modular software design also facilitates code reuse, which is another key ingredient for 

rapid development of good quality software. In Delphi as the programming language, 

software modularity can be achieved in three different ways: 
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• Object modularity. As the basic building block in OOP, the objects bind data 

and procedures into single entities. In Delphi programming, all classes descend 

from TObject. Despite its lack of sophistication compared to many special-

purpose classes it was derived from, the basic TObject class allows the ultimate 

flexibility of which a descendant class can be defined and used. Consequently, 

although Delphi libraries provide many descendants of TObject for specific 

uses, the great majority of custom classes written by the author descend directly 

from TObject. 

• Source-code-file modularity. Delphi is not a pure object-oriented language, 

although it provides full support for OOP. As a variant of the older Pascal 

programming language, Delphi also fully supports procedural programming it 

was originally designed for. To take advantage of both, objects and procedures 

can be logically grouped in source-code files called Units. At the end of this 

section the units and their content will be discussed in more detail. 

• Task oriented modularity. Objects that are frequently used without alterations 

can be integrated back into Delphi compiler’s library as VCL Components. VCL 

stands for Visual Component Library, a subset of the generic Delphi objects 

which constitute the highest form of encapsulation in Delphi. When necessary, 

components can be created in design time and manipulated using Delphi’s GUI 

without having to write a single line of code. Although quite a number of 

Delphi’s standard components are used in this project, no custom components 

are written as there is no need for them that has been identified during the course 

of the project. 

In this section, the term module is used in the context of source code file. Since in RAD 

the software evolves from a very simple prototype, it is not possible to separate 

functionalities in logical modules from the start. Instead, earlier modules are typically 

constructed as no more than a disorganized collection of objects and functions kept 

together in the same place to accomplish specific tasks. As their precise nature becomes 

better understood, the objects and functions are shuffled to the more appropriate 

modules. New modules were regularly added as the research progressed to further refine 

the organization of the software source code. 

The following is the list of source code files that make up the program modules. The 

modules are ordered from the simple modules providing basic functionalities to the 
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complex ones performing the more meaningful tasks using the functionalities found in 

the former. 

• uError.pas: a very simple module consisting of a mere series of string constants 

to be displayed by other routines from modules when a run-time error is 

encountered. 

• uDebug.pas: provides a mechanism of conveying various pieces of information 

to the programmer through the program’s user interface for the express purpose 

of debugging. This module is only used as a development tool and will be 

removed in the commercial version of the software. 

• uCommon.pas: provides helper functions to perform various rudimentary tasks 

such as stack and queue management, scalar and vector evaluation, and so on, 

that will otherwise obscure and possibly foul the more complex algorithms that 

use them. Using the functions from this module instead of rewriting the code 

avoids duplication and keeps the code clarity of the host modules. 

• uGraphicBase.pas: this is where two dimensional shapes are represented in the 

logical viewing space. This module provides the crucial link between the world 

and the screen coordinate systems. Equally important is a collection of functions 

and procedures that perform various basic geometric operations discussed in 

later sections. 

• uPolygon.pas: defines the classes that define the internal representation of 

polygon in both mathematical and application terms. In a mathematical sense, 

the polygon is subject to geometric operations such as transformation, 

projection, clipping, and so forth. Such concepts are generally unknown in the 

application domain, where the polygon is seen as representation of a real-world 

entity such as a wall, an obstacle, or a piece of panel material. 

• uProblemSpace.pas: provides the objects that hold the data of the actual layout 

problem in the application internal representation. Such objects are instrumental 

in converting the relatively abstract concepts of layout containers, obstacles, and 

panel shapes into the formalized structure of raw polygons that the actual 

calculations of the optimization engine can deal with. 
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• uPolyCalc.pas: manipulates polygons as a set instead of treating them as 

individual pieces. The set may represent the MCPO problem, its solution, or a 

subset of either. 

• uPolyClip.pas: consists of the code for polygon slicing and clipping engines. 

The tasks of cutting polygon have been found to be non-trivial, the solution of 

which required novel algorithms to be developed and resulted in substantial 

amounts of program code. The nature of the problems and their solution are 

described in more detail in sections 5.5.8. Polygon Slicing with Straight Line and 

5.5.9. Polygon Clipping. 

• uSolution.pas: the heart of the program where various nesting and optimization 

algorithms are to be implemented. It also contains advanced geometric 

operations to complement those in uGraphicBase.pas. All the code that controls 

the execution of optimization tasks can be found in this module. It also contains 

the code of the Greedy Algorithm and Monte Carlo optimization algorithms. 

• uGAEngine.pas: contains the implementation additional code of Genetic 

Algorithm (GA) optimization engine. The algorithm is implemented in a 

separate unit to allow the engine to be tested and verified before it is actually 

used in the context of layout optimization. 

• uPolyDoc.pas: provides control to all the application features. The application 

main window defined in fMain.pas below obtains access to such features 

exclusively from this module. uPolyDoc.pas handles multiple sets of polygons 

and manipulates them in a single workspace. Another important task performed 

by this unit is the reading of sets of polygons and writing them to external files. 

• uWinDisplay.pas: is a graphic rendering engine written specifically for 

Microsoft Windows™ Operating System. This module does the conversion from 

the abstract view coordinates to the computer screen coordinates where the user 

can visually see the objects. No computation code is written in this module apart 

from that for rendering purposes. 

• fMain.pas: is the main window that provides the user interface and the space 

where the rendering takes place. No computation takes place in this module. Its 
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only purpose being to provide access to the other units that do the actual 

computations. 

5.2.2. Input and Output Mechanism 
The application needs the capability to handle the receipt of input and generating output 

data in proper format. The Extensible Markup Language (XML) has been used as the 

base format because of its ease of use as well as its native support in Delphi. This 

decision is further justified by the wide acceptance of XML as the universal standard for 

data exchange. By the virtue of modular design however, the different input and output 

formats can be accommodated later fairly easily by updating the relevant modules. 

Moreover, as an XML file physically takes the form of a text file, creating and altering 

the input can be done easily using an external text editor. The use of an external editor 

avoids the additional coding work that would otherwise be needed if the input data is to 

be edited directly in the main application. 

Although it has been envisioned that the optimization software should be capable of 

receiving input from various sources such as disk file, memory stream, and remote 

procedure calls, implementing such capabilities is decidedly outside the scope of the 

research. Hence for the purpose of this project, the software currently accepts input 

exclusively from disk file. 

Similarly, the output of the program is currently limited to the computer screen and 

XML-based disk file. Although it is anticipated that other forms of output such as data 

streams to be passed to other applications and printed hardcopy may be required later in 

the commercial version, screen output is considered sufficient for the purpose of this 

research. 

The application’s user interface (UI) is also susceptible to change, which is a further 

reason why maintaining modularity in the code is so important. The current UI is 

designed for evaluating the performance of the MCPO solution algorithms only. The 

software can be adapted to industrial or commercial use later by modifying the I/O and 

UI modules as necessary. 

The XML input file is constructed as a series of polygons, as depicted in the simplified 

picture of Figure 5.1. The actual structure of the hierarchy had undergone numerous 

modifications to accommodate various additional data. No major rework was necessary 
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when the structure evolved however, due to the effectiveness of the modular design of 

the software. 

 

Figure 5.1: The Skeleton of XML Input File 

Within the application, an object of TPolyWorkSpace class is responsible for handling 

the input and output data. As the name implies, the object actually serves as the 

platform on which all the polygon processing takes place. Once loaded from input file, 

the polygons are stored as descendants of TPolygonBase in a variable-length array. 

TPolyWorkSpace loads the input data when procedure LoadFromFile is invoked. 

Similarly the polygons in the work space can be saved back to an external file by calling 

SaveToFile procedure. 

Reading and writing external files are relatively minor features of TPolyWorkSpace. 

The more important ones are those invoking geometric calculation routines and search 

of solution for the given problem. The corresponding routines accept specific data 

structures as input and generate output of sometimes intricate data structures. 

TPolyWorkSpace has the capability of reading such data structures and visualizing 

them. Because of these functionalities, TPolyWorkSpace can be regarded as the central 

point from which the optimization engine is controlled. 
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TPolyWorkSpace interacts extensively with TPolyDisplay, the abstract drawing space 

on which the polygon objects in TPolyWorkSpace are drawn. Although physically not 

involved in the actual painting of the polygon objects to the screen, TPolyDisplay has 

the critical role of doing all the necessary operations required by TPolyWorkSpace to 

visualize its contents. The role of TPolyDisplay is to provide a translation between 

TPolyWorkSpace and the system-dependent objects that do the actual screen output. 

TPolyScreen provides the actual means of drawing the graphical objects on the 

computer screen. Because such operations are system-dependent, the implementation of 

TPolyScreen varies between platforms. Currently TPolyScreen is coded to operate in a 

Microsoft Windows™ environment only. Transporting the application to another 

operating system such as Linux should only require modifications to the TPolyScreen 

object, which demonstrates yet another clear benefit of modular design. 

5.2.3. User Interface 
The application’s main user interface consists of a read-only drawing surface and a 

panel containing various buttons for quick access to the program functions. The 

complete set of the program’s features is accessible from the pull down menu. Such 

features are invoked through a set of methods provided by TPolyWorkSpace as 

previously discussed. 

Figure 5.2 below is a snapshot of the application’s main window. Since the UI window 

has been designed to have minimum amount of intelligence, the various input controls 

on the UI only serve as a link to TPolyWorkSpace’s data and methods. 
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Figure 5.2: Main Window of Nesting.exe Application 

Delphi’s standard class TCanvas is used as the drawing surface in the Microsoft 

Windows™ environment. This particular class is suitable for vector-based drawing 

required by the application. Although the TCanvas object is created and owned by the 

application’s main window, its reference is also kept by the TPolyScreen, which uses it 

as the output drawing space. The application’s complete visual output mechanism 

follows the sequence shown in Figure 5.3. 

 

Figure 5.3: Nesting.exe Visualization Sequence 
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Since TCanvas is already equipped with methods to perform the actual drawing 

operations on the screen, the work involved in generating visual output is essentially 

limited to just calculating the correct screen coordinates. 

At the current stage it is not known whether a class similar to TCanvas is also available 

for other operating systems such as Linux. It is perfectly feasible however, to implement 

a class similar to TCanvas, since all the shapes the application works on are made of 

straight lines which are relatively easy to draw. Non-linear curves such as circles, 

ellipses, or Bezier curves are deliberately replaced by their linear equivalent in the 

current application. Such a restriction is acceptable given the fact that the potential 

benefit of accommodating non-linear curves is marginal at best, which is easily offset 

by the major work required to implement them. 

5.3. Data Structures 
Since Delphi supports procedural and object-oriented programming, both approaches 

can be utilized to suit specific programming needs within the same project. While OOP 

has the definite advantage of encapsulation and polymorphism, managing the objects 

and their pointers requires special care which often complicates the code more than it is 

worth. The reverse is equally true with the simpler procedural-oriented data structures, 

which are no more than passive data containers lacking the sophistication of Delphi’s 

classes and objects but hardly need memory management at all. Because of such 

reasons, both types of data structure are used in the project. The most important ones are 

described in the following sub-sections. 

Although Delphi’s classes and objects have different meanings (class refers to the type 

whereas the object is the instance of the class), they can be considered the same for the 

purpose of this discussion. Therefore for the remainder of this section the term object 

refers to both unless specified otherwise. 

5.3.1. Active Data Structures 
The term active data structure refers to Delphi’s object, which encapsulates both data 

and methods. This kind of data structure is used when most of the data is manipulated 

within the objects and little is passed between them. Objects are used heavily in the 

developed application for the sake of code modularity as previously discussed. 

For all their power as a programming concept, objects are also delicate to handle during 

their lifetime. Unlike simple variables which can be accessed directly, object variables 
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are only memory pointers. Consequently the memory space for the actual object must be 

allocated and released by its explicit creation and disposal. At the minimum, failure to 

release the unused memory space will result in the program leaking memory resources. 

Typically, careless memory management results in the program becoming unstable 

during runtime. 

In many places in the source code, multiple variables can point to a single object. This 

multiple reference situation causes removing a particular object from memory without 

properly updating all variables pointing to it to corrupt the program. 

5.3.2. Passive Data Structures 
Passive data structures differ from the active ones in the complete absence of embedded 

methods. In Delphi, the passive data structure is referred to as record, as it is in standard 

Pascal language. The record structure contains only data, hence it is a much simpler 

construct than the object type discussed earlier. 

Unlike an object, the memory space is automatically allocated by the compiler on the 

program stack when a record variable is declared. Similarly the space is removed from 

the memory when the execution thread exits the block the variable is scoped for. Simply 

put, memory management is of no concern to the programmer when records are used. 

It is quite possible to dynamically create and destroy records explicitly, such as when 

dealing with linked lists. Such an operation is roughly equivalent to handling the Delphi 

objects as previously discussed. However dynamic memory allocation is an exception 

rather than the rule when handling simple Pascal records. This particular technique is 

not used in the developed application, save for the linked list structure for the polygon 

clipping algorithm discussed in section 5.5.9. 

The main drawback of passive data structures is the possible data corruption which is 

the penalty for the absence of built-in methods. When objects are used, it is easy to 

apply integrity checks at any point during its lifetime, which is typically done when data 

is passed to the object. None of these can be done with the record type whose checks 

and validations must be done by external routines. 

With those characteristics, passive data structures are ideally suited to use as simple data 

containers that can be passed through a series of external processes with little deviation 

happening to their values during that time. This is typically the case of the raw polygons 

when subjected to geometric operations. 
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In the case of the developed application, the optimization module uses a number of 

record data types to represent the geometric entities that make up the optimization 

problem space. Such record data types are described in more detail as follows: 

TVertex is a representation of a point in a two-dimensional plane. The record 

contains X and Y axes whose values are stored as real numbers. TVertex is a 

fundamental data structure in the entire project as virtually every geometric 

operation involves the handling of either a series of, or a single TVertex. 

TPoint is a native Delphi record that represents a point on the screen. TPoint 

contains X and Y axes similar to those in TVertex. The axes in TPoint are of 

integer data type however, as they are used in mapping picture elements (pixels) 

to the discrete matrix of computer display buffer. TPoint is not manipulated in any 

of the geometric calculations as its use is limited to display purposes only. 

TVertices, which is a series of TVertex, is the representation of a polygon of 

arbitrary number of vertices. TVertices corresponds to the TPolygon object 

previously discussed, and is used to streamline the process of geometric 

calculations. All the functions and procedures performing such calculations take 

TVertices as a parameter instead of TPolygon. 

TPrimitiveTriangle represents a simple triangle. The record consists of three 

TVertex variables to denote the three vertices of the triangle. TPrimitiveTriangle 

is important for various geometric operations such as surface area calculation and 

point/shape inclusion as described later in the Geometric Operations section. 

TPrimitiveTriangle also corresponds to the TViewTriangle described later. 

TSegment represents a fixed length line. The record consists of two TVertex 

variables that contain the vertices of both its ends. TSegment is used extensively 

within the program since in many cases a polygon is regarded as closed loop of 

segments instead of its most basic representation as an array of vertices. 

There are many other active and passive data structures used, however for such special 

purposes that the data structures will be discussed in the succeeding sections within the 

context of their usage. 
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5.3.3. Graphics Pipeline 
As common practice in computer graphics programming, a graphical entity goes 

through a series of transformation widely known as a graphics pipeline consisting of a 

number of transformations to different coordinate systems before it materializes as a 

series of pixels on the computer screen. Computer graphics programming is a complex 

subject, and the graphics pipeline approach allows developers to write robust graphics 

software with reasonable ease. For this reason, the graphics aspect of the application 

development is dealt with using such an approach. The simplified graphics pipeline is 

depicted in figure 5.4 below. 

 

Figure 5.4: Simple Graphics Pipeline 

In this project, the world coordinates system is used to represent the information about 

the shape in its physical environment and is typically used as input and output data. The 

view coordinates is used in representing the shape in the working view space where 

various mathematical operations take place. Finally the results are visualized on the 

computer monitor using its screen coordinates. 

5.3.3.1. Shape Objects using World Coordinates 
Although all kinds of shapes can be regarded as polygons, special cases exist for which 

creating corresponding classes is beneficial. Three classes have been identified: the ones 

representing a line, a rectangle, and a generic polygon. 

TPolygonBase serves as the base class for the three identified classes. This is an 

abstract class, meaning it cannot be instantiated directly as it contains methods yet 

to be specified in its descendants. TPolygonBase contains variables common to all 

its descendants such as origin point, pivot point, and orientation angle with which 

the polygon is rotated at is pivot point. Among other things the class has the 

capability of writing itself to an open XML file. 

TLine is the simplest descendant of TPolygonBase. TLine represent a finite-

length segment of a line, which is not a valid polygon as it does not exist in the 

physical world. Nonetheless, the line is implemented independently because of its 
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instrumental role in various preprocessing tasks. The line consists of exactly two 

vertices representing both of its ends. 

TRectangle is unique that it represents the rectangular stock panel used in the 

MCPO problem. The rectangle has four vertices which can also manipulated by 

altering its length and width properties. These properties are not found in other 

descendants of TPolygonBase. 

TPolygon is the generic representation for any polygon having any number of 

vertices. Within the context of layout optimization problems however, TPolygon 

has the restriction of having at least three vertices to reflect the possible number of 

vertices of 2D objects in the real world. The class does not have a mechanism for 

detecting non-simple polygons, i.e. polygons whose outlines would intersect with 

each other. A non-simple polygon has no equivalent in real world objects, and to 

handle them would complicate the program code unnecessarily. Because of this 

reason, no attempt has been made to accommodate non-simple polygons and any 

input data containing such polygons is simply regarded as invalid and therefore 

rejected. More discussion about non-simple polygons can be found in section 5.5: 

Basic Geometry Algorithms. 

5.3.3.2. Shape Objects using View Coordinates 
TViewShape is the only object needed to manipulate and display the polygons, 

although a special object TViewTriangle as described below is also used. The 

TViewShape object has the capability of transforming itself within the viewing space as 

well as performing a few basic geometric operations. One of the most important is 

perhaps the triangulation operation, where the original polygon is decomposed into a 

series of triangles. More detailed discussion regarding triangulation can be found in the 

Geometric Operations section later in this report. Note that the term triangulation in this 

context should not be confused with its more common use for describing the method of 

locating an object from its distances from known reference points. 

TViewTriangle is a helper object used for debugging purposes. The object is used 

primarily to prove that a triangulation operation actually works. TViewTriangle also has 

the capability to draw itself on the screen for visual inspection. 
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5.3.3.4. Shape Object using Screen Coordinates 
Along with TViewTriangle, TScreenShape is the only object that uses screen 

coordinates. The only purpose of this object is to display its corresponding TViewShape 

to the computer display buffer using various colors and filling patterns. Apart from 

transforming the view coordinates to the screen coordinates, the only calculation done 

by TScreenShape is centre of mass calculation. The calculation is done to determine the 

coordinates of a string label to be displayed with the shape. Centre of mass calculation 

will be discussed in more detail in the Geometric Operation section. 

5.4. Basic Geometry Algorithms 
As the most basic level, a polygon is represented by an array of vertices. The polygon 

can be visually constructed by connecting adjacent vertices using straight lines. The last 

vertex in the sequence is then connected to the first to close the loop. Overall, this 

simple data structure is quite satisfactory for the software’s requirements. Nevertheless 

it does have a number of problems that must be addressed, namely: 

• Non-unique representation: to represent a shape, one needs to first select the 

starting vertex from all vertices of the polygon. Second, the direction in which 

the rest of the vertices are traced, either clockwise or anti-clockwise, must also 

be determined. Therefore a polygon consisting of n vertices can be represented 

in exactly 2n ways. To avoid mistaking identical polygons because of their 

different representations, special congruence calculations are required. 

• Non-simple polygon: The defining characteristic of a simple polygon is that 

none of its sides intersect with each other. A non-simple polygon on the other 

hand has at least two “sides” intersecting. All polygon shapes in the real-world 

environment belong to the simple polygon type because it is physically 

impossible to be otherwise. Non-simple polygons, which are regarded as an 

error condition, can easily occur accidentally when such a simple data structure 

is used. 

Various geometric problems are encountered during the research and development of 

the application. The rest of this section discusses a few such problems that require 

substantial effort to solve. A number of them turn out to be subject to research efforts on 

their own given that solutions are not readily available, and indeed there is a limited 

amount of published work dealing with such problems. 
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Bearing in mind that the software application is merely a vehicle for examining and 

solving the MCPO problem, only limited amounts of time and effort can be devoted to 

solve the generic geometric problems encountered. The implication is that most of the 

basic geometric problems are solved using a pragmatic approach when possible. The 

resulting algorithms are therefore designed for ease of implementation, and are 

potentially relatively inefficient compared to alternatives with a larger implementation 

overhead. For all its faults, this approach is nevertheless necessary to keep the project 

within its defined scope. 

5.4.1. Line and Segment Intersection Detection 
Line and segment intersection detection is probably one of the most basic yet most 

extensively used geometric operations. Since only linear shapes are handled, 

intersection between shapes is relatively simple to detect. 

The most flexible way to represent an infinite length straight line in a program code is 

the implicit linear function: 

0=++ CBYAX  

The intersection point between two linear functions can be found by calculating x and y 

values to satisfy both functions. Although the basic calculation is simple, provisions 

must be made to handle special cases. Naïve calculation for such special cases 

invariably leads to a division-by-zero operation, which is perhaps the worst kind of run-

time error to encounter. 

• Horizontal Line: the value of A in the implicit function equals zero. 

Mathematically, this means the value of Y is constant for any given X. 

Attempting to blindly pinpoint Y with a standard calculation is therefore a 

mistake, which will manifest in the division-by-zero error condition. 

• Vertical Line: similar to horizontal line case, the value of B in the implicit 

function is equal to zero. This is because the value of X is constant and Y is 

utterly irrelevant. 

• Parallel Lines: in this case the values of A and B are identical for both functions 

and an intersection point does not exist. 

A segment is a finite length line with defined endpoints. Segment intersection detection 

is therefore a subset of line intersection detection problem. In this case the algorithm 
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must perform additional tests to ensure that when an intersection exists between two 

segments, it must occur within the boundaries defined by the endpoints of both. 

Figure 5.5 below shows the segment intersection detection problem. The picture on the 

left shows an intersection between segments AB and CD exists at P within their 

boundaries. In contrast, there is no intersection between segments AB and CD in the 

right diagram although the lines projecting from them do intersect at P’. In the latter 

case the segment detection function should return FALSE, which will not agree with the 

result line detection function invoked for the same problem. 

A

C

DB

C

A

B

DP

P’

 

Figure 5.5: Detecting Segment Intersection 

Various problems require segment intersection calculations to be solved. An example is 

non-simple polygon evaluation, which is done by detecting intersections among the 

polygon’s outline. Segment intersection is detected by first finding the intersection point 

of the corresponding infinite-length lines – if there is any – and verifying whether that 

point lies within the ranges of both segments in all axes. 

5.4.2. Polygon Triangulation 
Certain geometric calculations require a polygon to be decomposed into a set of 

elementary triangles. The picture below shows such decomposition of a 7 vertices 

polygon to five triangles. The decomposition process, which is also called polygon 

triangulation, is the prerequisite to other operations such as surface area calculation 

and inside-outside polygon query to be discussed later. 

Extracting triangles from a convex polygon is found to be a simple and straightforward 

process. Triangulating a concave polygon such as in Figure 5.6 however, is much more 

complex. Since both convex and concave polygons must be handled, a triangulation 

algorithm capable of solving both is needed. 
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Figure 5.6: Polygon Triangulation 

Various algorithms have been developed to solve the general polygon triangulation 

problem. The apparent simplicity of the general polygon triangulation problem is 

actually deceptive. For years researchers could only speculate whether an efficient 

algorithm really exists until as late as 1988, when Tarjan and van Wyk constructed an 

algorithm that runs in ( )nnO loglog  time (Chazelle, 1990). 

The early work done by Michel Garey and his colleagues in 1978 resulted in a 

triangulation algorithm that works on ( )nnO log  time (Garey, Johnson, Preparata, & 

Tarjan, 1978). The algorithm works in two complex stages, making it hard to translate 

into computer code. 

A somewhat simpler algorithm was later proposed by Fournier and Montuno in 1984. 

The algorithm first breaks the polygon into monotone polygons, which can be easily 

triangulated afterwards (Fournier & Montuno, 1984). The performance of the algorithm 

is similar to Garey’s algorithm at ( )nnO log  time. Fournier and Montuno’s algorithm 

specifically handles all possible cases differently, resulting in a complex structured code 

which is hard to validate. 

Probably the most efficient solution is the one constructed by Bernard Chazelle (1990), 

which operates at linear time ( )nO . The basis of his algorithm is the horizontal visibility 

map: the partition of the polygon obtained by drawing horizontal chords from the 

polygon’s vertices. Chazelle’s algorithm however, is very complex and difficult to 

implement. 
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The most practical approach is to use the ear-cutting algorithm, where a polygon is 

recursively reduced by clipping off vertices protruding from the polygon’s hull. 

Triangles formed from such vertices and their two immediate neighbors are aptly called 

ears. The ear-cutting algorithm is not particularly efficient, with execution time 

reaching ( )2nO  in the worst cases. Nonetheless it is relatively simple to implement and 

its performance appears adequate for this problem and therefore the ear cutting 

algorithm is used as the solution for polygon triangulation problem. 

5.4.3. Polygon Congruence 
As previously explained, the data structure allows a polygon to be represented 

differently in the memory. To avoid potential confusion during more complex 

operations, it is necessary to write a polygon congruence detection routine. 

The solution is constructed on the premise that the Euclidean distance of any pair of 

points on a rigid body is constant regardless to the body’s orientation to the reference 

framework. Using this principle, congruence is detected by matching the relative 

distances of all vertices of a polygon with that of the other polygon it is compared to. 

Additional measures are also taken to allow detection when different starting points and 

tracing directions are used. 

The Euclidean distance dist between two points (x1, y1) and (x2, y2) on a 2-dimensional 

plane is calculated using the simple Pythagorean equation: 

( ) ( )2
12

2
12 yyxxdist −+−=  

Because the equality between distances is all that is needed for congruence detection, 

the expensive square root operation can be omitted without affecting the result. 

Therefore in the interest of better performance, the comparisons are made on square 

distances sqr_dist instead: 

( ) ( )2
12

2
12_ yyxxdistsqr −+−=  

Since the square distance is calculated for every pair of vertices on the polygon, the 

execution time of the algorithm is ( )2,nC , the number of pair combinations between its 

vertices. Further because: 

( ) ( )
( )( )
( ) ( ) nnnn
n

nnn
n

nnC −=−=
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−−
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The execution time of this congruence detection algorithm is therefore ( )2nO , which is 

reasonable when n is low. In the current software implementation, the number of 

vertices is currently limited to 100=n . More advanced algorithms may be considered 

in the future should this limitation prove unacceptable. 

As a side note, congruence is still detected when the polygons are shifted and rotated 

since the calculations are only made on distances of the vertices relative to each other. 

5.4.4. Convex Shape Detection 
A polygon is convex when there are no cavities on its outline, whereas the concave 

polygon is one that has one or more of such cavities. A cavity is defined by considering 

three sequential vertices, and is present if the central vertex is inside the straight line 

joining the two end vertices. Such cavities are easy to identify visually, as can be seen 

by examining Figure 5.6, but complex to identify computationally. Although the 

difference may sound subtle, its implication is not trivial. Concave polygons are much 

more complex to work on, and often need to be decomposed into convex sub-polygons 

before certain operations can be achieved. 

The solution of convex-concave detection problem is based on the fact that the vector 

between a pair of two vertices constantly changes in one direction when one traces a 

convex polygon. In the example below, the convex polygon to the left is traced counter-

clockwise with the vectors always changing direction to the left. 

 

Figure 5.7: Convex and Concave Shapes 
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On the other hand, the concave polygon on the right has a vector changing direction to 

the right at vertex V3 whereas the rest are turning left. Note that when V3 is discounted, 

the two polygons above are identical. 

The convex – concave detection algorithm can be summarized as follows: 

1. For a given vertex Vi, determine a line Li which connects 
Vi and Vi+1 

2. For the Vi and Vi+1 pair of vertices, calculate whether 
vertex Vi+2 lies to the left or right of line Li 
calculated above 

3. Repeat steps 1 and 2 until all vertices in the polygon is 
evaluated 

4. If the direction change is consistent for all vertices 
(i.e. all to the left or all to the right), the polygon 
is convex 

5. Otherwise the polygon is concave 

The side-of-line calculation is based on the basic implicit linear function for a given pair 

of vertices (x1, y1) and (x2, y2). 

( ) ( )( ) ( )( )211121, xxyyyyxxyxf −−+−−=  

where 

( ) 0, =yxf  when point (x, y) lies on the line 

( ) 0, >yxf  when point (x, y) lies to the right of the line 

( ) 0, <yxf  when point (x, y) lies to the left of the line 

In this algorithm, point (x, y) used for the Vi and Vi+1 pair of vertices is vertex Vi+2 as 

indicated in the algorithm. 

The execution time of the algorithm in its current form is ( )nO  which implies 

satisfactory performance for any given n. Because of this reason, no further 

optimization is seen as necessary for convex-concave detection. 

5.4.5. Polygon Surface Area Calculation 
It is absolutely necessary to be able to calculate the surface area of a polygon. This is 

particularly true in the context of layout optimization problems, where the efficiency of 

the solution is ultimately determined by the surface area of the wasted material. 
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Various mathematical formulae exist to do the calculation on various regular-shaped 

polygons. Using specific formulae to calculate different shapes is very impractical 

however, and does not offer a solution when irregular-shaped polygons are involved. 

A much more feasible approach is to calculate the surface area of a polygon as the sum 

of surface areas of its elementary triangles. Since the elementary triangles are already 

provided by the triangulation routine previously discussed, all that remains to be done is 

the triangle surface area calculation. 

The triangle surface area is calculated by using Heron’s formula: 

( )( )( )( )
4

bacacbcbacba
area

−+−+−+++
=  

where a, b, c are the lengths of the triangle’s sides. The formula in its original form 

above is numerically unstable on triangles with small angles. To alleviate the problem, 

the formula is slightly modified and simple pre-processing is added. 

( )( ) ( )( ) ( )( ) ( )( )
4

cbabacbaccba
area

−+−+−−++
=  

and the sides are sorted according to their lengths so that 

cba ≥≥  

The sum of surface area of the triangles yields the surface area of the original polygon. 

5.4.6. Inside or Outside Polygon Query 
There are cases where the knowledge of whether a given point lies inside a polygon is 

critical. The most important ones are polygon overlap detection and polygon slicing 

described in succeeding sections. 

Similar to the surface area calculation, the elementary triangles are used to determine 

whether a given point lies inside or outside a polygon. The implicit linear function is 

again used as the basis of determining whether a point resides inside a triangle. 

To find whether a point P lies inside a triangle, the algorithm evaluates that for all 

segments of the triangle, P lies on the same side as the remaining vertex. In the example 

below P is inside the triangle ABC if all the following requirements are satisfied: 



 81 

• P lies on the same side as C to segment AB 

• P lies on the same side as A to segment BC 

• P lies on the same side as B to segment CA 

 

Figure 5.8: Point P is Inside Polygon ABC 

To determine whether a point lies inside a polygon, that point is tested to see if it lies 

inside any of the polygon’s elementary triangles. The evaluation returns TRUE when 

such a container triangle is found. Otherwise the evaluation returns FALSE when none 

is found after all the triangles have been examined. 

The concept can be expanded further to evaluate whether a polygon lies entirely inside 

another polygon. Such a check is easy to perform by testing that all vertices of the 

polygon lie within the boundary of the host polygon. Using a similar method, it is 

equally easy to check whether a polygon lies entirely outside another polygon. Although 

very simple, these checks provide powerful tools for more complex operations such as 

polygon overlap detection. 

5.4.7. Polygon Overlap Detection 
Overlapping polygons represent an error condition to any MCPO solution. Detecting 

such overlaps is therefore a critical task to be solved. The detection proves a non-trivial 

task as illustrated by various possible ways two rectangles ABCD and EFGH can 

overlap in the pictures below. 
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Figure 5.9: Polygon Overlap Examples 

The two top pictures show the simple cases of overlap, which can be detected when 

either of the following is true: 

• At least one vertex of a polygon is found within the surface area of the other 

polygon 

• The sides of one polygon are intersecting with the sides of the other polygon 

The remaining three on the bottom, however, are the examples of more complex 

situations where intersections exist and none of the above tests can be used. Because of 

the diversity of overlap conditions, a detection result cannot be reliably obtained if the 

test is done on a per-case basis. 

David Mount (1992) constructed an algorithm to detect overlap between two simple 

polygons of arbitrary shape. The algorithm uses separators and scaffolds to simplify the 

outline of the polygons and recursively refine the hulls until either intersections are 

found or the hulls merge back to the original polygons’ outlines. Mount’s algorithm is 

powerful and efficient, running at ( )nmO 2log  time, where n is the number of vertices 

and m is the complexity of the polygonal curve separating the two polygons (Mount, 

1992). The algorithm is quite complex however, making it impractical to implement. 

A much simpler solution is to test for all cases previously mentioned if the polygons 

involved are limited to triangles. Two triangles are considered to overlap when: 

• At least one vertex of a triangle clearly lies inside the other triangle 
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• The triangles are identical and occupy exactly the same area in the coordinate 

system 

On the other hand, two triangles are considered not to overlap when: 

• The two triangles occupy completely different areas in the coordinate system 

• One vertex of a triangle lies on the outline of the other triangle, while the 

remaining two vertices are clearly outside 

• Two vertices of a triangle lie on the outline of the other triangle, while the third 

vertex is clearly outside 

The triangle overlap detection provides a solid base for the polygon overlap detection 

function. A generic solution for overlap detection is to decompose the polygons into 

their elementary triangles, followed by a test of whether any of the following conditions 

is true: 

• Any of the elementary triangles of a polygon overlaps with any elementary 

triangle of the other polygon, or 

• A polygon lies entirely within another polygon 

Using the above series of tests, none of the complex cases in Figure 5.9 can escape 

detection any more. All the simpler cases are detected correctly as well. 

The algorithm is not particularly efficient, since the polygons must be triangulated, for 

which the ear-clipping algorithm has the complexity of ( )2nO , as part of the pre-

processing. Later, each vertex of the other polygons is examined against all triangles of 

the first polygon, making the total complexity of the algorithm ( )3nO . 

Clearly the performance of Mount’s algorithm is superior with ( )nmO 2log  when n is 

large. The novel algorithm however, works on a more straightforward logic facilitating 

rapid realization of the actual software module and thus allowing the research and 

development effort to focus on issues more directly related to MCPO problems. 

5.4.8. Polygon Slicing with Straight Line 
Referring back to the definition of MCPO problems, cutting the exposed areas of the 

original container to fit the dimensions of the stock panel is necessary by the time the 

first sub-problem is solved and the second sub-problem is to be constructed. A simple 

example of the polygon cutting problem is given below. In this example, an irregular 
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shaped polygon is sliced by a straight line. The result is three sub-polygons where the 

intersection points between the original polygon and the cutting line make for vertices 

of the new polygons. 

 
Figure 5.10: Straight Line Polygon Cutting 

In the absence of published research on the subject, a custom algorithm has been 

developed to perform such cuts. The algorithm works on the assumption that for every 

intersection point between the cutting line and the polygon, there is exactly one 

intersection point opposite to it. In the abstract form, the algorithm has the following 

outline: 

Straight line cut pre-processing: 
1. Trace the polygon from the first vertex to the last 
2. Evaluate whether an intersection is found for every 

segment between neighboring vertices 
3. Store the vertices and intersection points in an array, 

according to the order they are found 
4. Scan the entire array, and for each intersection point, 

identify its opposite 
 
Straight line cut sub-polygon construction: 
5. Make an attempt to trace neighboring vertices from the 

first in the array to the last 
6. When an intersection point is encountered, jump to its 

opposite 
7. Repeat steps 5 and 6 until the end of the array is 

reached 
8. Store the tracing sequence as the vertices of newly 

created sub-polygon 
9. Remove vertices that have been visited, mark visited 

intersection points as normal vertices 
10. Repeat steps 5 to 9 until the list is empty 

The pictures below illustrate the process of cutting one such sub-polygon from a ten-

vertex polygon on which four intersection points are detected. By tracing the array from 

V0 to V9 using C0 and C1 as jump points, the new sub-polygon is constructed. The rest 

of the sub-polygons are cut away from the remaining polygon in the next iterations in a 

similar manner. 
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Figure 5.11: Polygon Cutting Algorithm at Work 

For any given intersection point, the simplest way of finding its opposite is by selecting 

the other intersection point closest to it. This naïve approach works generally well when 

the polygon is traced from its convex vertices, such as V0 in the above example. That is 

not true however, when the polygon is traced from a concave vertex, such as V6 in the 

same example. In this case C2 will be selected as the opposite or C1 intersection point, 

leading to invalid results. 

The problem is further compounded by the fact that the cutting line sometimes goes 

through the polygon vertices. This is especially problematic when the vertex is concave, 

such as V6 in Figure 5.11 example. Intersection at a concave vertex means that 

particular point has two opposite intersection point instead of just one. 

Such problems are solved by improving the basic algorithm above to accommodate a 

number of different types of intersection point, coded in the program as an enumerated 

type with values of ctNoCutOff, ctAtLeg, ctAtJointSingle, ctAtJointDouble, ctInvalid. In 

the preprocessing phase, the polygon is traced from the first vertex to the last, where all 

vertices and intersection points are stored in the reference array marked with the 

appropriate type. 

• ctNoCutOff: when there is no intersection detected between the current vertex 

and its next neighbor. 

• ctAtLeg: intersection is detected between two vertices. This is a normal 

intersection with only one corresponding opposite intersection point. 

• ctAtJointSingle: the intersection is detected at a convex vertex. Similar to 

ctAtLeg, there is only one corresponding opposite intersection point. 
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• ctAtJointDouble: the intersection is detected at a concave vertex. This is a 

special case where two opposite intersection points exist instead of just one. 

• ctInvalid: this is used during the sub-polygon construction to mark vertices that 

have been traced and used 

Additionally, a vertex not crossed by the cutting line must either lie to its left or to its 

right. This information is also stored for the use in the sub-polygon construction phase. 

Straight line cut sub-polygon construction: 
5. Decide the direction in which the cutting line will be 

traced 
6. Find the first valid intersection point according to 

the cutting line tracing direction 
7. When such an intersection point is found, construct a 

sub-polygon to the left of the cutting line 
8. Store the tracing sequence as the vertices of newly 

created sub-polygon 
9. Repeat steps 7 to 8 to construct sub-polygon to the 

right of the cutting line 
10. Change the type of all traced ctAtJointDouble nodes to 

ctAtJointSingle 
11. Mark all traced nodes of other types to ctInvalid 
12. Repeat steps 5 to 11 until all nodes are marked 

ctInvalid 

The improved algorithm proves much more robust than the original. The result of the 

polygon cutting process has been found correct in all possible cases when the code was 

tested. No error has been found during live calculations either. Further work may be 

required to prove that the algorithm applies to all cases, though it is likely that this will 

be through empirical evidence rather than an analytical theorem of proof. 

5.4.9. Polygon Clipping 
A different kind of cutting problem is encountered when a polygon needs to be cut 

using the outline of another polygon overlapping it. To avoid confusion, the shape to be 

cut is called the subject polygon, whereas the polygon whose outline is used as the 

cutting template is called the clip polygon. The left picture below shows the subject 

polygon in the shape of a blue rectangle about to be cut with the clip polygon 

represented by the green triangle. The picture on the right shows the two polygons 

resulting from the cut. 
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Figure 5.12: Polygon Clipping Problem 

This type of cutting is necessary in MCPO problems when there are areas within the 

container that should not be covered, such as a window on a wall. In such a case, the 

portion of the panel occupied by the window area must be cut off. 

Before contemplating the design of a suitable algorithm for solving the polygon clipping 

problem, it is necessary to evaluate the possible cases of clipping scenarios and their 

expected solutions. The given example above is probably one of the simplest and 

easiest. Figure 5.13 below shows all actual cases found during research and the 

development and deployment of the optimization software. 

An ideal clipping algorithm must be able to efficiently handle all five cases shown in 

Figure 5.13. The fourth case, however, is peculiar since the result calls for a special data 

type to represent it. Since polygon representation in layout optimization software only 

keeps the information about its outline, the result of the fourth case cannot be 

accommodated without special provisions. Because there is no practical use of keeping 

such information within the context of layout optimization anyway, it has been decided 

to disregard the holes altogether and treat the fourth case as if it is similar to the first 

case. This is justified simply because the outline of the subject polygon is unchanged by 

the clipping action. 
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Figure 5.13: Possible Polygon Clipping Cases 
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There are surprisingly few polygon clipping algorithms to be found in the literature. The 

development of polygon clipping algorithms is explained by Maillot, 1992; Zhang & 

Sabharwal, (2002). According to them, Cohen and Sutherland proposed in 1968 what 

was probably the earliest polygon clipping algorithm, which works through the formal 

encoding of line and segments. The Cohen-Sutherland (CS) algorithm works with 

rectangular clip polygons only, but it laid the groundwork for more sophisticated 

algorithms which came later. 

The CS algorithm was improved in terms of performance by the works of Sutherland 

and Hodgman published in 1974. Their solution is called the reentrant polygon clipping 

algorithm. The Sutherland-Hodgman algorithm gained wide popularity as reflected by 

their use as a measuring standard by a number of researchers of the field. 

Liang and Barsky (1993) later proposed an improved algorithm which treats each 

segment of the subject polygon independently from each other, cutting the affected 

segments separately before assembling it to form the final shape. Liang and Barsky 

claimed the execution time of their algorithm to be only half of that required by the 

standard Sutherland-Hodgman algorithm. 

In the interest of speed, Maillot refined Liang-Barsky algorithm by using integer 

arithmetic instead of the original floating point calculations (Maillot, 1992). With the 

advent of multimedia computing, Schneider and Van Weltzen further introduced 

clipping algorithm specifically tailored for Single-Instruction Multiple-Data (SIMD) 

multimedia processors (Schneider and Van Weltzen, 1998). 

Although numerous performance improvements have been made from the basic CS 

algorithm, all the algorithms mentioned above share the same basic restrictions: 

• The clip polygon has a rectangular shape only 

• The valid clip result is only that found inside the clip polygon 

The above restrictions severely limit the value of those algorithms in the layout 

optimization. Firstly, there is no guarantee that the clip polygon in the layout 

optimization problem will have a rectangular shape. Secondly, the main use of the 

polygon clipping algorithm is to find shapes that lie outside instead of inside the 

clipping region – a direct contradiction to the second restriction. For these reasons, the 

algorithms discussed above cannot be used in the layout optimization software. 
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About the only generic clipping algorithm for arbitrary shape of both subject and clip 

polygons available in the literature has been proposed by Bala R. Vatti. The algorithm is 

based on the assumption that the edges of one side of the clip polygon will end up as 

edges of the opposite side of the resulting polygon (Vatti, 1992). Both subject and clip 

polygons are first decomposed into a series of bounds, or the collection of segments 

facing either to the left or right of the original polygon. The bound is further defined as 

a series of vertices sorted by their value on the Y-axis, starting with a local minimum 

and ending with a local maximum. A convex polygon will have exactly one left bound 

and one right bound, whereas a concave polygon may have more than one of each. 

The edges are then scanned from bottom to top to find the intersection points as well as 

the vertices that contribute to the construction of the sub-polygons. A set of rules is used 

to determine the nature of the intersection points and their role in constructing the sub-

polygons. The edges information is implemented as a linked list, which is fed to the 

actual clipping algorithm. 

Despite Vatti’s claim that the algorithm is robust and efficient, it has not been found a 

suitable solution for the cutting problem at hand because the algorithm is very complex 

and requires a great deal of preprocessing. The amount of work involved during 

preprocessing phase is especially apparent when building the linked list to keep the edge 

information. The algorithm also employs an extensive set of rules which cannot be 

implemented easily. Finally, the basic algorithm cannot handle the cases where a string 

of vertices are found on the same Y-coordinate value. To accommodate such cases calls 

for a considerable expansion of the basic algorithm, further complicating the 

implementation task. Because of the above reasons, implementing the Vatti clipping 

algorithms was not a feasible option for this project. 

To resolve this problem, a novel algorithm with a completely different approach has 

been derived and implemented. The algorithm makes extensive use of various other 

geometric calculations already implemented in the software and whilst it is recognized 

that it has not been shown analytically to work in all cases it has proven to be a 

pragmatic solution to a very complex problem with no exception found during testing 

and use. 

The clipping algorithm works by emulating the notion of a pair of scissors cutting a 

piece of paper using a polygon-shaped flat template. To achieve this effect, the 

algorithm works in two phases: the pre-processing and the sub-polygon construction. In 
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the first phase, the intersection points are identified and stored in linked lists. In the 

second phase, the information from the linked lists is used to construct the resulting 

polygons. 

Polygon clipping pre-processing: 
1. Construct a linked list to represent the clip polygon 
2. Construct a linked list to represent the subject 

polygon 
3. Trace the clip polygon from the first vertex to the 

last 
4. For all segments of the clip polygon traced in step 3, 

trace the subject polygon from the first vertex to the 
last 

5. When a segment from the clip polygon intersects with a 
segment from the subject polygon, create a node for 
that intersection point 

6. Insert the node created in step 5 between appropriate 
vertices of the clip polygon 

7. Insert the node created in step 5 between appropriate 
vertices of the subject polygon 

8. Discard the original vertices from both the clip 
polygon and the subject polygon if they are identical 
with the intersection points 

9. Discard the original vertices from the subject polygon 
if they are found inside the clip polygon 

Both the clip polygon and subject polygon use linked lists of the same structure. The list 

element contains four pointers, two for the neighboring vertices of the clip polygon and 

another two for the neighboring vertices of the subject polygon. The result of this pre-

processing is two linked lists fused together at intersection points. Figure 5.14 shows the 

process of the linked lists progressing from the raw polygons to their final form. 

Although the polygons occupy the same plane, their linked lists are shown on different 

layers for clarity. 

The resulting sub-polygons are constructed from the linked lists by tracing the clip 

polygon in one direction, taking off a closed loop of vertices whenever an intersection 

point is found. Such a loop represents a sub-polygon made from the outline of both the 

clip polygon and subject polygon. 
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Figure 5.14: Constructing Linked Lists for Polygon Clipping 

Polygon clipping sub-polygon construction: 
10. Find the base vertex at a new sub-polygon by tracing 

the clip polygon in a certain direction (e.g. to the 
left) until an intersection point is found immediately 
after an ordinary vertex 

11. If such a base vertex is found, continue tracing the 
clip polygon vertices until an opposite intersection 
point is found 

12. From that intersection point, switch to tracing the 
subject polygon in the reverse direction (e.g. to the 
right) until the base vertex is found 

13. If an intersection point is encountered in the interim, 
switch back to tracing the clip polygon in the original 
direction 

14. Save all the nodes visited during the loop as a new 
sub-polygon 

15. Mark all visited nodes as ‘invalid’ to deny their use 
in subsequent iterations 

16. Repeat steps 10 to 15 until all nodes of the clip 
polygon are marked as invalid 

Although linked lists are notoriously fragile when misused, it can be a powerful 

programming solution when managed correctly. The polygon clipping engine has been 

written with this caveat in mind. The resulting code is robust, showing none of the 

symptoms of memory management failure. 
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The performance of the algorithm as a whole has been found equally satisfactory in 

terms of execution time and the correctness of the results. Such an assertion is well 

supported by various test and live runs even though it is quite possible that the 

algorithm may fail on some unforseen cases. The engine has been tested for all known 

clipping problems, with the correct result found on each run. Similarly, there has been 

no problem found when the engine is used on the actual optimization runs. 

5.4.10. Centre of Mass Calculation 
Any physical object has its centre of mass (CoM), a point where all the object’s mass 

and weight are perfectly balanced. The CoM calculation does not serve any significant 

purpose in MCPO. However, the calculation is necessary when associating a text label 

to a polygon during display. When the text label is placed arbitrarily around a polygon, 

it is easy to lose the association when large a number of polygons are displayed. To 

minimize this undesired effect, it is most natural to place the label at the “centre” of the 

polygon. 

Figure 5.15 below demonstrates the difference. On the left, the text labels are placed to 

the upper right corner of the rectangular boundaries of the associated polygons, with an 

untidy and potentially confusing result. In contrast, the association is much more 

intuitive in the right picture where the labels are placed on the centre of the polygons. 

 
Figure 5.15: An Example of Centre of Mass in Use 

The CoM calculation is based on the assumption that the shapes are homogenous. Under 

such assumption, the calculations for a given polygon are made in three stages: line 

calculation, triangle calculation, and generic polygon calculation. 

Computing the CoM for a line segment (x1, y1) and (x2, y2) is done simply by finding its 

midpoint. 
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To calculate the centre of mass for a triangle, first the CoM for each of its sides is 

determined. Then the length of each segment is also calculated. Finally the triangle’s 

CoM is determined by the average of the CoM’s as weighted by the corresponding 

segment length. Hence for a triangle with known CoM for all its sides at points A, B, C, 

and the length of the respective sides of LA, LB, LC, the centre of mass on its x-axis is 

calculated as follows. 
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A similar calculation is done to find the CoM for the y-axis. 

The CoM for a polygon is calculated from the sum of the CoMs of its elementary 

triangles, weighted by their surface areas. Therefore for a polygon consisting of n 

elementary triangles, with the ith triangle having CoMi and surface area Ai, the 

composite CoM for the x-axis is calculated using the following equation: 
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The CoM for the y-axis is also calculated in the same manner as above. 

5.5. Optimization Algorithms 
With the tools for all necessary geometric operations implemented and tested, finally 

the software has taken the shape where the actual optimization can be realized. There 

are three algorithms studied here: a greedy algorithm, a Monte Carlo technique, and a 

Genetic Algorithm. This section provides detailed discussion about major issues 

encountered when implementing each of them. 

5.5.1. Greedy Algorithm 
For the MCPO problem, the greedy algorithm constructs a solution sequentially by 

always trying to fit the most profitable piece into the available free space. This is a 
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short-sighted strategy whose performance can be extremely poor in complex solution 

spaces due to its inability to escape from local optima. Nonetheless, the mechanism of a 

greedy algorithm is intuitive and therefore easy to implement into reliable code and also 

provides a baseline performance to be measured against other methods. 

While the concept is simple, the implementation in nesting problems is much more 

involved because the basic greedy algorithm works only with scalar values. To solve a 

nesting problem, the algorithm needs to be modified to take vector values into account. 

Vector values differ fundamentally from scalar values in that simple arithmetic 

operations do not apply. Accommodating vector values in a greedy algorithm proves a 

non-trivial task. 

For any given iteration in a nesting search, the greedy algorithm must resolve four key 

problems: 

1. Which candidate piece to select 

2. Where to put that particular piece in the nesting container 

3. What orientation the piece should be placed in 

4. Whether flipping should be applied for the piece if orientation constraints allow 

Most of the corresponding parameters, i.e. problems 1, 3, 4, can be represented as scalar 

values. The second problem however requires a vector parameter for representation. 

The basic greedy algorithm essentially addresses only the first problem, whereas the 

remaining three are not covered because they are specific only to the domain. Valid 

answers to those additional three will in effect justify the decision made for the first 

problem by proving that the piece in question can be successfully nested. Recall that the 

search for valid answers must not violate the two fundamental constraints of the nesting 

problem: 

• The pieces must lay entirely within the boundaries of the container 

• The pieces must not overlap with each other 

At this point it is also important to appreciate that the objective of the layout 

optimization is to minimize wasted material. Modeling the problem for a greedy 

algorithm therefore requires the understanding of how the values of the pieces are 

quantified to allow the resulting waste to be directly calculated. The physical panel used 

for the actual building has length, width, and thickness, totaling in three dimensions. In 
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the model used however, thickness is ignored, leaving two dimensions only. The 

amount of material is therefore most suitably measured by surface area rather than 

volume. 

This leads to surface area being selected as the main parameter for the greedy algorithm 

search. When a candidate piece is to be evaluated, the surface area of the vacant space 

in the container is calculated. The algorithm then attempts to fit the biggest piece in the 

pool whose area is smaller or equal to the vacant space into the container. If this attempt 

is unsuccessful, the next biggest piece is evaluated. The process is repeated until a piece 

can be legally fitted into the container, which also results in that piece being removed 

from the pool. If none of the candidate pieces in the pool can be selected, a fresh 

container is used and the process is repeated. 

The algorithm terminates when all the pieces have been used. Because the pieces are the 

product of the original layout area when it was cut up according to the shape of the 

container, there will be at least one way to fit a piece into an empty container. Therefore 

the algorithm is always guaranteed to terminate. 

The greedy notion of this algorithm is realized by sorting the pieces based on their 

surface area in descending order before the actual optimization takes place. Figure 5.16 

shows an example of the pieces that emerge immediately after the first stage solution 

has been constructed. 
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Figure 5.16: Nesting Problem Sample Pieces 

Figure 5.17 shows the same pieces reordered in descending order from left to right, top 

to bottom according to surface area, and ready for optimization. 
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Figure 5.17: Pieces Reordered by Surface Area 

The second problem to be solved about a particular piece is about where it should be 

placed within the container. Using Figure 5.18.a as an example, it is evident that when 

the container is considered continuous, the candidate panel can be placed inside in an 

infinite number of ways. 

Container

Candidate
Panel

 
 

a. b. 

Figure 5.18: Layout Solution by Vertex Incidence 

Reducing the container to a discrete set of possible placement choices is vital to make 

search possible. Given the exponential nature of the size of the overall optimization 

problem as a whole, limiting the number of possible ways of placing candidate panels in 

the container from that discrete set is also necessary. 

This particular implementation uses incident vertex placement, which is an approach 

similar to linear programming. If the area of the container is considered as the feasible 

area, then the potential optimum solutions are associated to its vertices. Only those 

vertices will be evaluated as incident vertex candidates for the panel at hand. The panel 

is then shifted to various places to make its vertices overlap with those of the container. 
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Figure 5.18.b shows the evaluation of how a small triangular piece can be placed inside 

a rectangular container using such a method. It appears that twelve possible solutions 

exist, of which three are valid as a nesting solution. Because the solution is not singular, 

a further decision must be made to select the “best” from these equally valid options. 

There are two options available in response: those based on the first fit and the best fit 

strategies. 

5.5.1.1. First Fit Strategy 
For a given piece, the greedy algorithm selects the first legal placement solution it 

comes across. No further investigation is made on whether other solutions also exist. 

This is a simplistic approach, which implicitly assumes that any results, including 

suboptimal ones, are acceptable. 

Because the polygon representation is not singular, there are typically a number of 

different possible outcomes when a piece is nested using first fit strategy. Figure 5.19 

demonstrates a few possible results when a triangular piece is nested in a rectangular 

container. The algorithm evaluates the container from the first vertex to the last, using 

them as reference points. For each container vertex, the algorithm then evaluates the 

possible solution by overlapping the piece’s vertices with the current reference point. 

Figure 5.19.a shows the best case where the vertices of the container and the piece are 

ordered in such a way that making the first vertices of both shapes overlap produces a 

valid result. Figure 5.19.b shows a slightly different ordering of the triangle resulting in 

two unsuccessful evaluations being made before a legal solution is found. Figure 5.19.c 

demonstrates even more unsuccessful attempts resulting when the container vertices are 

arranged differently to that in Figure 5.19.a. 
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a. 

 
b. 

 
c. 

Figure 5.19: A Few Legal Results of First Fit Placement Strategy 

Evaluating every single possible solution may seem wasteful, and reordering the 

vertices prior to optimization to achieve a favorable situation like Figure 5.19.a appears 

to be an attractive option. This is not possible to implement however, because there are 

no generic and definite rules to be found in the literature on how the vertices must be 

ordered to get such a result. Discovering such rules – if they exist – may require a 

separate project well beyond the scope of the current research. For this reason, no 

attempt has been made to improve the algorithm performance from this vertices 

ordering aspect. 

Note that in this example, only a single orientation is shown for the sake of clarity. In 

the actual optimization, all coincidence vertices of flipped and reoriented shapes are 

also evaluated. 
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For all its faults, the first fit strategy does have its clear advantages. Apart from being 

simple to implement, the search is also fast because it ends as soon as a solution is 

found. In the worst case scenario, the algorithm will evaluate all possible solutions 

before it realizes that none of them is legal. In the best case scenario, a legal solution is 

found at the first try, such as the example shown in Figure 5.19.a. Without dwelling on 

an actual statistical proof, it is safe to assume that the typical case would be that a legal 

solution is found before all candidates are evaluated. 

5.5.1.2. Best Fit Strategy 
In the context of layout optimization, the best fit strategy reflects an attempt to improve 

the odds of achieving a better final result by selecting a legal nesting solution that gives 

the best chance to put more high-value pieces in the subsequent iterations. Unlike the 

first fit strategy which settles with the first legal solution it finds, the best fit strategy 

evaluates all legal solutions before deciding which one to use. 

Figure 5.20 shows three legal ways a triangle abc can be placed inside a rectangular 

container. These three candidates will be evaluated to determine which one is the 

“best”. The notion of best solution is elusive and problem-specific however, requiring 

analysis about what goal the algorithm is set to achieve and what means are available to 

achieve it. 

 
Figure 5.20: Candidate Solutions for Best Fit Placement 

Because the objective of layout optimization is to put the pieces so as to occupy as 

much container space as possible without overlapping, the logical posture of the best fit 

strategy is to maintain a continuous and convex free space after each piece is placed. 

Hence, the best solution for a given iteration is the one that provides the least possible 

obstructions in the remaining unoccupied space. 

With the criterion of the best solution established, the next task is to develop an 

effective and inexpensive way to make the necessary evaluation. Unfortunately there is 

no straightforward way the amount of obstruction within the vacant space can be 

measured. A less direct calculation based on overlapping edges is used instead. For a 
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given candidate solution, the length of the edges of the piece that overlap with the 

outline of the container is calculated. If previously placed pieces exist, the length of 

overlapping edges with those pieces is also added. The best solution is defined as the 

one with highest total length of the overlapping edges. 

Although there is no proof that the length of overlapping edges is directly related to the 

amount of obstruction in the vacant space, the effectiveness of this approach is quite 

evident. In Figure 5.20, solution 1 is regarded as the best since the triangular piece has 

two edges ab  and ac  overlapping with the container outline. Solutions 2 and 3 have 

one overlapping edge each, with decreasing length. Note that solution 1 leaves a convex 

free space, effectively meeting the criterion of the best fit solution. In contrast, the 

shapes of the free area of the remaining two are concave, significantly reducing the 

chance of nesting large pieces afterwards. 

5.5.2. Parameter Representation for GA and MC 
As discussed in Chapter 3, the Genetic Algorithm (GA) and the Monte Carlo (MC) 

implementations share a common characteristic of representing the solution parameters 

in a bit string. In the GA, the bit string is called a chromosome. There is no special 

name given for the bit string in MC. The bit string, however, serves exactly the same 

purpose of providing the algorithms the means of fine-tuning the parameters by 

manipulating the bit patterns. Additionally, the bit string is physically implemented 

exactly the same way in both algorithms. For these reasons, the term chromosome is 

taken as appropriate to refer to the bit string in the context of both algorithms. 

To be of any use, the parameters represented in the chromosome must effectively 

capture the problem that the algorithms are expected to solve. Modeling the problem 

into a form readily represented as a chromosome is an important task entirely unrelated 

to how the algorithms will physically manipulate the bits within the said chromosome. 

Because of its importance, the discussion that follows will be devoted to analyzing the 

problem and constructing its representation as a chromosome. 

5.5.2.1. Parameter Modeling Issues 
Substantial effort has been expended in designing the chromosome. Not only because 

there are multiple parameters involved in layout optimization problems, but some of the 

parameters are also inter-dependent. To construct a suitable model, it is quite 

worthwhile to examine the parameters that define a second-stage solution in MCPO. 

Such parameters are: 
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1. The total number of stock panels required 

2. The list of pieces that are nested within each stock panel 

3. The placement coordinates of each piece within a stock panel 

4. The rotation and flipping applied to that particular piece 

Evidently the first parameter is dependent on the second parameter. Similarly the 

second parameter is largely dependent on the third and fourth parameters. In the face of 

this, the only information available to determine the value of those parameters is the list 

of irregular panels represented by their vertices. This all leads to a situation radically 

different from standard sheet layout problems found in the literature. 

To reiterate, in standard sheet layout problems commonly found in the literature, only a 

single container is provided. The solution designer is therefore allowed to use the 

chromosome to directly represent the container and map the genes within the 

chromosome to the nested pieces. Static blocks of bits can be used to represent the 

placement coordinates of each piece, its rotation, and so on. 

This static mapping cannot be easily applied to MCPO, since the number of containers 

itself is a variable to begin with. The only possible way to accommodate all the 

parameters within a single chromosome using a static mapping is by allocating a large 

block of bits for each stock panel to make it able to contain all the pieces, and ensure 

that enough stock panel blocks are provided within that single chromosome to anticipate 

the possibility of having only one piece per panel. Unsurprisingly, the resulting bit 

string is very large and prohibitively inefficient to be implemented. 

A much more feasible solution is to deliberately use only a few parameters in the main 

model, and to relegate the task of populating the rest of the parameters somewhere else. 

Since the first two parameters identified above are the most crucial, they are selected to 

be represented in the chromosome. 

The solutions provided by both the GA and MC therefore only contain the information 

about how many stock panels are used and the list of pieces that are nested within each 

stock panel. The problem of how those pieces are actually nested remains unsolved at 

this level. 

Resolving the third and fourth parameters is important to determine whether the solution 

for first and second parameters is legal. It is most appropriate to make finding their 
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correct values an integral part of the fitness evaluation function for the original 

chromosome. 

There are two logical ways to solve the above secondary problem at a technical level. 

The first is by utilizing the same sequential placement routines as used in the greedy 

algorithm. The second is by mapping the now-static parameters as chromosomes to be 

processed by the same GA or MC engines used to solve the first two parameters. 

The first option has been proven a good choice because it is fast and deterministic in 

nature. The second option fails on both accounts because having a simulation to 

determine the fitness function of another simulation squares the total processing time, 

and the nesting layout found during fitness evaluation cannot be reliably reproduced 

because of the stochastic nature of the simulation. The last point is especially crucial 

because only the original chromosome will be retained during the search process, and 

therefore constructing the nesting layout after the search must yield exactly the same 

result as found by the fitness function. 

The above analysis reflects a very significant finding of this research. As indicated by 

the discussion in Chapter 3, both GA and MC algorithms are typically used to 

implement a simultaneous placement nesting strategy. The fact that all nesting 

optimization algorithms implemented in this project eventually use a sequential 

placement strategy rules out the possibility of comparing the performances of the two. 

5.5.2.2. Chromosome Definition 
After all the relevant decisions been made as discussed above, the problem is now 

sufficiently reduced to enable the actual modeling of the chromosome. There are only 

two parameters remaining to be coded in the chromosome: 

1. The total number of stock panels required 

2. The list of pieces that are nested within each stock panel 

Direct coding to the genes in the chromosome is still not possible because the second 

parameter is of a variable length. To solve this problem, indirect coding employing the 

concept of clusters is used. 

In this technique, static blocks in the chromosome are mapped to the pieces to be 

nested. This represents the worst case solution, where each piece requires an individual 

stock panel to be used. From the first step of the solution, it is known that all pieces to 
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be nested are smaller than the stock panels therefore this provides an upper threshold for 

the maximum number of panels required. Continuing with the example given in Figure 

5.16, each panel is associated with a fixed-width block of bits in the chromosome. This 

block contains only a single variable of integer type, namely the cluster ID. Figure 5.21 

shows the association between the panels and the blocks in the chromosome. 
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Figure 5.21: Gene to Panel Mapping 

The value of each variable points to an imaginary cluster to which the panel belongs. 

Figure 5.22 shows an example of a populated chromosome with the imaginary clusters 

that result. Because only 17 panels exist, the binary string can use five bits to hold the 

cluster ID. 
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Figure 5.22: Interpreting a Candidate Chromosome 
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Using Figure 5.21 as reference, it is easy to decode the chromosome to find that the 

Panel 0 is a member of Cluster 2, whereas Panel 1 is a member of Cluster 8, and so on. 

Similarly, Cluster 0 appears to have only a single member, i.e. Panel 4, whereas Cluster 

2 has two members: Panel 0 and Panel 5. 

A cluster is regarded as legal if all its members can be nested in a single stock panel. As 

previously discussed, part of the fitness function’s task is to discover whether such 

nesting is possible. In the case of an invalid cluster being encountered, there are a 

number of possible ways to respond. This issue will be covered later in Section 5.5.2.3. 

The use of clusters effectively addresses the variable length problem of the nesting list. 

Because the list only exists implicitly in the chromosome, no assumption about the 

number of clusters needs to be made beforehand. Furthermore by allowing the pieces to 

map themselves to the clusters, it is guaranteed that the number of clusters will always 

be less than or equal to the number of pieces. 

Typically, the number of bits allocated for each panel is a good deal more than required 

to express all the possible Cluster IDs for a given optimization problem. Consequently, 

assigning the pieces with a random Cluster ID number will often result in single-

member clusters with widely scattered IDs. While this phenomenon does not affect the 

validity of the result, it does potentially bias the optimization engine into giving an 

inefficient result. This problem is easy to solve however, by using a modulo operator to 

convert all IDs to the acceptable range. 

There are many ways to physically implement the chromosome. The simplest and 

easiest is to use a Boolean variable to represent each bit with the chromosome itself 

taking the form of a Boolean array as can be seen in the Pascal code written by 

Goldberg (1989). While this kind of representation is good enough for simple problems 

involving a few variables, it is not suitable for the multiple-container nesting problem at 

hand. The chromosome in this project typically contains scores of variables that 

sometimes number well over of a hundred. Representing each bit within the variable 

with 8-bit Boolean data type proves prohibitively expensive in terms of memory 

resources and computation time. 

A one-to-one mapping for bit representation is a much more logical alternative. There is 

a dilemma during the physical implementation, however, on which Delphi native data 

type to use to represent the variables. Because the variables are only used to represent 



 106 

cluster IDs, the most appropriate candidates must be unsigned integer types. The basic 

8-bit unsigned Byte data type may be too small because it can only hold 256 possible 

values. The 16-bit unsigned Word data type on the other hand, is way too large. A 10-

bit integer would be ideal, as it can hold up to 1024 possible values. It is not anticipated 

that the number or clusters used in the layout optimization would exceed this number. 

The solution is to superimpose 10-bit integer variables in a physical string of 16-bit 

Word data type. The individual variables can be assigned, extracted, and modified using 

a series of masking and shifting operations. Figure 5.23 illustrates the custom data 

structure. 
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Figure 5.23: Chromosome Physical Representation 

A 16-bit Word array of m elements is used to represent n 10-bit integer variables. In the 

actual program, an array of 640 16-bit Word variables is used to represent an array of 

1024 10-bit integer variables. No memory space is wasted because the number of bits is 

exactly the same. 

5.5.2.3. Accommodating Invalid Chromosomes 
A chromosome in the context of layout optimization is accepted as valid only when all 

pieces can be successfully nested in their associated stock panel. Its opposite is the 

invalid chromosome, which contains one or more clusters whose members cannot be 

nested in a stock panel. Because the search performed by both GA and MC algorithms 

is set-oriented, there is no guarantee that all the clusters extracted from a chromosome 

are valid. Invalid clusters are found very frequently in the actual tests because many of 

the individual pieces are quite large compared to the size of stock panels, invariably 

claiming most of the available area after only one or two nested pieces. 

Invalid chromosomes have much less impact on the Monte Carlo technique than they do 

on the Genetic Algorithm. As discussed in Chapter 3, the MC technique generates a new 

bit pattern on a completely random basis at each cycle. The bit pattern of the 

chromosome at any particular point has no influence on the shaping of the bit pattern in 

the next iteration. As a result, the MC algorithm needs only to retain the best known 

valid chromosome somewhere in memory and ignore the invalid ones. 
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In contrast, mindlessly discarding invalid chromosome is not an option using the GA. 

Because the direction of the search is dictated by the collective patterns in its population 

of chromosomes, great care must be taken to ensure that the population can survive and 

retain good quality patterns at each turn of generation. A dilemma inevitably arises: 

should an invalid chromosome be retained in spite of its utter lack of value as a solution; 

or should it be discarded and risk the population dwindling and becoming stagnant after 

just a few generations? The sensible answer must lie somewhere between those two 

extremes. The following discussion covers three possible policies that can be applied to 

the fitness function to solve the problem. 

5.5.2.3.1. No-Action 
The easiest option to handle invalid chromosomes is to pretend that they are nothing 

more than somewhat unfit individuals. A heavy penalty is given to the chromosome 

whenever a nesting attempt for its clusters fails. Such a penalty contributes to the 

overall fitness value of the chromosome, allowing the individual to survive and pass its 

genes to the next generation. 

Although it sounds fair in theory, the actual implementation of this approach is quite 

difficult. There seems to be no right way to determine how much penalty to be given 

whenever a nesting failure is encountered. While too low a penalty value will perpetuate 

invalid individuals in the population, setting the value too high may cripple the chances 

of an otherwise good solution surviving because of a single nesting failure the 

chromosome contains. 

There is no fitness calculation mechanism that has been devised to reliably resolve this 

problem although possibly satisfactory solutions exist for further exploration. For 

instance, a penalty proportional to excess area of invalid clusters can discourage invalid 

individuals from breeding while high value clusters of the same individual may negate 

the effect of the penalty. However, additional geometric calculations would be required 

to implement the ability to calculate a penalty function based on excess area. However, 

the validity of such a mechanism can be a worthwhile subject for future investigation. 

5.5.2.3.2. Append at Tail 
A less draconian approach is to interpret the invalid chromosome in a way that turns it 

into a valid albeit disadvantaged solution. Because the actual nesting routine is 

sequential in nature, a successful operation is always guaranteed at least for the first few 

pieces. When the attempt to add a piece fails, that piece can be taken out of the original 
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cluster and put into another cluster. When all existing clusters are exhausted, new 

clusters are created to accommodate the rejected pieces. This way, more clusters may 

eventually be used than originally specified by the chromosome. 

With the append at tail (AAT) strategy, a new cluster is created at the end of the list 

whenever an unfit piece is found. All subsequent unfit pieces are added to that cluster. 

Because the clusters in the list are evaluated from the first to the last, the potentially 

overcrowded additional cluster at the end will also be evaluated and reduced, with yet 

another additional cluster added to make the new tail. This newest cluster will have its 

turn to be evaluated, possibly resulting in more clusters with less pieces. The process is 

repeated until no more invalid cluster is found. The fitness value of the chromosome is 

calculated from the wasted area found in all these clusters. 

5.5.2.3.3. Redistribute from Beginning 
A slightly more sophisticated approach is to attempt nesting the rejected piece in an 

already created panel before creating the new cluster at the end of the list. This strategy 

corrects the imbalance of piece density that may occur in the AAT approach. Recall that 

in AAT, rejected pieces are always added to the cluster at the end of the list. This means 

that under-populated original clusters will never receive any of the floating pieces. On 

the other hand the additional clusters always start overcrowded, meaning that they will 

never be under-populated. 

The strategy of redistribute from beginning (RFB) addresses this imbalance by ensuring 

that all of the existing clusters are given a fair chance to accommodate the rejected 

piece. When a piece cannot be fitted in its own cluster, the algorithm first tries to place 

it in all populated clusters. Only when this attempt fails is a new cluster created at the 

end of the list. Theoretically this approach will result in a more even distribution of the 

pieces, and ultimately a better overall fitness value. It is slower however, due to the 

extra work involved with the populated clusters. 

5.5.2.3.4. Impact to Optimization Algorithms 
Although AAT and RFB are sensible correction policies in the interest of obtaining 

better solutions, they tend to obscure the performance of the host algorithm. In extreme 

case, one might as well just create one big cluster that accommodates all the pieces and 

let RFB create and distribute the pieces in a similar way to how the greedy algorithm 

works. The role of computationally expensive simulation search such as GA and MC 

automatically becomes moot, perhaps to the point of being irrelevant altogether. 
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This unfortunate effect is caused by the corrective action intervening with the 

calculation of the actual bit string. While the bit strings that result from GA operations 

are not changed when the fitness values are calculated, the non-existent fitness value of 

an invalid string is substituted with that of its valid equivalent. The surrogate bit string 

is never introduced back to the population to replace the original. In the absence of 

feedback mechanism, invalid cluster correction tends to deflect the GA search away 

from the potentially most productive directions. Considering the value of the invalid 

cluster correction policies, future work in introducing valid bit strings to the population 

is necessary to realize the true performance of the optimization algorithm with the 

current chromosome design. The apparent analogy for reintroducing the corrected 

strings back into the population would be genetic modification and there is a reasonable 

chance that such modification could lead to improved performance. 

5.5.3. Monte Carlo Technique 
Simulation with the Monte Carlo technique uses only a pair of bit strings: the working 

chromosome and the current best chromosome. For the number of iterations specified 

by the user, the working chromosome is subjected to random manipulation and its 

fitness value is calculated. Whenever the fitness value of the working chromosome is 

better than previously found, the bit string is copied to the current best chromosome. 

The random manipulation for MC is simply done by flipping random bits in the 

chromosome. The user supplies the numerical constants that control the number of bits 

that may be flipped, and the probability of a selected bit to actually be flipped. 

A fitness value is calculated by considering the total amount of vacant surface area 

found in the nesting containers. Because the objective of the optimization is to minimize 

this area, a lower fitness value is taken as the better fitness value. For each nesting plan, 

vacant surface area is simply calculated as the area of the container subtracted with the 

total area of all the pieces nested inside. 

The MC technique represents an undirected search. The algorithm employs no particular 

strategy other than exploring the multidimensional search space rather aimlessly by 

randomly changing direction along certain axes at each cycle in the hope of coming 

across a good solution. Although there is a certain degree of inertia provided by the 

unchanged bits, they do not in any way contribute to directing the algorithm towards 

likely better solutions. 
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5.5.4. Genetic Algorithm 
As opposed to the MC technique, the genetic algorithm performs the search in the 

directions that promise the best result. Instead of just a single working chromosome, a 

population of chromosomes is used. The search direction is controlled by various bit 

patterns contained within the population. The GA shares the same chromosome 

structure and fitness function as those used in MC. 

5.5.4.1. Basic GA Algorithm 
At the conceptual level, the GA implementation for nesting optimization follows the 

outline given in Chapter 3. The actual code is based on the simple GA implementation 

in Pascal written by Goldberg (1989). The associated literature is instructional in nature 

and the code was clearly written with the purpose of demonstrating the inner 

mechanism of GA rather than providing the audience with a high-performance version. 

Not surprisingly, this particular implementation of the algorithm is awkward to use and 

inefficient performance wise. 

Major modifications were necessary to allow Goldberg’s code to be used in the layout 

optimization software as discussed below. The original Goldberg’s code remains 

immensely valuable however, in providing a solid base for this project’s actual 

implementation. 

5.5.4.2. Enhanced GA Algorithm 
The first fundamental modification is to restructure the code to take advantage of the 

object-oriented feature of the Borland Delphi™ compiler. Although the standard Pascal 

code can be compiled directly with Borland Delphi™ without any form of adaptation, 

adopting an object-oriented form affords the modularity and flexibility for the otherwise 

monolithic, rigid design. Modularity is especially important because the GA engine 

would be verified against a few other optimization tasks before its actual use in the 

layout optimization software. The GA code was duly encapsulated into a Delphi object, 

making it possible to use exactly the same code to solve various optimization problems. 

Another major improvement from the original code is the physical representation of the 

chromosome. As discussed in section 6.6.2.2, the original code uses a full byte to 

represent a single bit in the chromosome. This representation is excessively wasteful, 

particularly when large populations of chromosomes, each containing hundreds of 

integer variables, are anticipated. A bit-for-bit physical representation explained in 
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section 6.6.2.2 has been adopted instead, with subsequent updates at various segments 

in the code. 

5.5.4.3. Population Sorting and Chromosome Mating 
The most significant attempt at obtaining better future solutions from an existing set of 

chromosomes is population sorting. When a population is generated, its members are 

sorted according to their fitness values. Chromosomes with better fitness values are 

placed higher in the list, implying higher chances of being selected to mate. 

The chromosomes are selected in pairs for mating, during which crossover occurs. A 

chromosome that has been selected is not eliminated for the selection of the next pair, 

and stands the same chance of being selected again as before. The reason behind this 

policy is to allow a supposedly good individual to contribute more than once in creating 

the next better generation. 

Population sorting is the key aspect that differentiates this particular implementation of 

a GA from a completely random search such as the Monte Carlo technique. Without 

population sorting and the survival for the fittest rule it implies, the GA will degenerate 

into a series of indiscriminate mating between random chromosomes with no real 

chance of optimizing the result. 

5.5.4.4. Preserving Good Clusters 
As hinted in section 5.5.2.3, a chromosome may contain a number of good clusters, i.e. 

clusters that translates into a nesting plan with small waste area, as well as bad or 

invalid clusters. Leaving the good clusters untouched while actively working on the rest 

may be a good strategy. 

Because the existence of the clusters is only implied by the pieces that “belong” to 

them, the bit pattern of good clusters is immediately found in the bit pattern of the 

variables within the chromosome referring to them. In other words, the bit pattern of the 

good clusters is static. Ergo, a more advanced concept in GA associated with the bit 

patterns, the schemata can be brought into play. 

How the schemata can be used to further enhance the GA implementation for layout 

optimization has not been explored in this project, mainly because of the perceived 

complication associated with capturing and handling the bit patterns. Such an 

investigation remains an interesting subject however, and given the potential to improve 
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the performance of the algorithm, further research into the area in the future may prove 

worthwhile. 

5.5.5 Verification Functions 
Before the optimization algorithms can be used in the actual nesting problem, their 

implementation must be verified to ascertain that they perform the way they were 

designed to and are able to produce valid results. Verification is especially important for 

stochastic methods, a group to which Genetic Algorithms and the Monte Carlo 

technique belong. Stochastic methods, which imply the use of random variables, are 

especially difficult to validate analytically because processes monitored are not 

repeatable. 

The greedy algorithm in contrast, is a deterministic technique characterized by the 

complete lack of use of random variables. The correctness of the algorithm and its 

implementation therefore can be examined analytically. Verification therefore becomes 

more straightforward in the case of greedy algorithm. 

In the case of the GA and MC, special techniques are required to verify the correctness 

of the implementation code. The verification takes the form of resolving optimization 

problems of which the solutions are known. With this approach, the optimization engine 

is regarded as a black box. No attempt is made to track the activity of the algorithms, 

only the final result is evaluated. 

At the implementation level, the verification routine is realized as the fitness function. 

The main algorithm itself is left unchanged. Because of the modular design the 

algorithms have been adapted to, switching between fitness functions can be done with 

very little effort. 

Gordon, Mathias, and Whitley (1994) list a number of test functions that were used to 

verify their GA variant. Two among those mentioned, the Rastrigin and Schwefel 

functions, are widely known as standard test functions for verifying simulation 

algorithms. 

The Rastrigin, a multidimensional function, presents a challenging problem because of 

the presence of a large number of local optima. The objective of the test is to find the 

coordinates of x* where the value of the function is minimum. The function itself is 

defined as follows: 
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A ≡ a product of ten constants 

n ≡ number of dimensions 

 

The absolute minimum point for Rastrigin function is known at )0,..0(* =x . Figure 5.24 

shows the plot of the function with 2=n . Note that the peaks are not only evenly 

distributed, but also symmetrical along all the axes. 

 

Figure 5.24: Plot of Rastrigin Function (Hedar, 2006) 

Similar to the Rastrigin function, the Schwefel function is also multidimensional. The 

optimization objective is also to minimize the function value. The function is given as 

follows: 
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The absolute minimum point for Schwefel function is known at )1,..1(* =x . Figure 5.25 

shows the plot of the function with 2=n . The topology differs significantly from that of 

Rastrigin function, with second-best point typically far away from the global optimum. 

The Schwefel function can be extended for 2>n  and its complexity increases 

considerably, with n=10 being considered a non-trivial problem to solve. 
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Figure 5.25: Plot of Schwefel Function (Hedar, 2006) 

 



 115 

6. Experiment Results 

6.1. Experiment Strategy and Issues 
The number of parameters used in solving a layout optimization problem is such that a 

considerable number of possible combinations exist. This problem rules out exhaustive 

investigation because for each combination of parameters, the actual optimization run is 

computationally expensive. Only a limited number of optimization runs can be 

performed given the resource constraints of the project. The experiments therefore need 

to be configured and executed in such a way that allows the behavior of the software to 

be monitored and measured through only a small number of optimization runs. 

The initial series of experiments have been dedicated to verifying the correctness of the 

optimization algorithms and their implementations. Verification is especially important 

for simulation-based optimization algorithms, i.e. the Monte Carlo technique and the 

Genetic Algorithm, because their stochastic nature is often misleading because it may 

allow “correct” results to emerge from erroneous processes. The issue is less important 

for the remaining algorithms implemented in the software because they are 

deterministic, which implies that flaws in the code can be detected immediately by their 

failure to yield valid results. In practice, verification for almost all of the modules in the 

software has been done as integral part of the implementation phase. Consequently, only 

the experiments that concern the implementation of Monte Carlo and Genetic Algorithm 

techniques are to be covered in this chapter, though results for these approaches on the 

MCPO problem will be compared to those achieved by the deterministic solution 

algorithms. 

The remainders of the experiments have been conducted with the aim of achieving the 

primary goals of this research as defined in Chapter 2. To reiterate, the objective of 

layout optimization is twofold: 

• Generate a layout of a set of stock rectangular panels which covers the container 

region 

• Generate a set of layouts where irregular remaining shapes of the original 

container can be fitted back into the stock rectangular panels 

Two crucial tasks need to be performed by the optimization engine for the first phase: 

determining the point of origin on which the bottom-left corner of leftmost panel will be 

placed, and selecting the particular stock panel that returns the most favorable result. 
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The second optimization phase is somewhat easier for the optimization engine because 

it is only required to search for a set of layout plans according to user-specified 

parameters. 

A few trial runs quickly reveal that for a given point of origin used in the first phase 

optimization, there is a sizeable amount of computation that follows before its 

corresponding final result can be obtained. The problem is particularly severe when a 

simulation-based optimization algorithm is used in the second phase. As will be 

discussed in later sections, resolving a moderate-sized problem using simulation-based 

algorithm for a single point of origin can easily take hours or days, even when 

reasonably powerful computer hardware is used. 

A major contributor to the computation cost, however, is the multiple candidate stock 

panels associated with each optimization case. Because selecting the most productive 

stock panel dimensions from a pool of candidates is one of the prime objectives of 

MCPO, this feature cannot be dispensed with and the resulting computational cost must 

be accepted. 

It is clear that exploring multiple points of origin is not a feasible option except in very 

simple cases. Real-life examples are typically complicated enough to render multiple 

points of origin prohibitively expensive to compute, regardless of the strategy in 

selecting those points. Because of this reason, all the optimization runs will be 

conducted with a single predetermined point of origin only. The chosen point of origin 

is at (0, 0) in the workspace coordinates, which is arbitrary because of the non-unique 

way the container can be placed in the workspace. Future research can explore ways of 

making an intelligent selection of the point of origin. 

There is still an array of parameters whose values need to be determined before the 

second stage optimization can take place. In a commercial setting, the users can tune all 

of these parameters through the UI according to their own preferences and reasoning. In 

these experiments however, the main interest lies in finding the comparative 

performance between algorithms in terms of execution time and the quality of the 

results. Consequently, few of the parameters will change during the course of the 

experiments. Values set for those parameters and the justification behind them will be 

provided on per case basis. 
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Apart from the algorithm performance, the experiments will also provide some 

additional information that may be of importance. Especially interesting is the effect of 

placement strategy (first-fit compared to best-fit), piece flipping and rotation to the 

overall efficiency of the solution. 

6.2. Verification on Numerical Functions 
As has been discussed, the goal of the first part of the experiments is to verify whether 

the simulation-based algorithms have been correctly implemented. The requirement for 

the verification is simple: a “correct” implementation must consistently show 

converging pattern towards the optimum solution, and terminate after a limited 

execution time, i.e. never enter an infinite loop. Both simulation based algorithms, the 

Monte Carlo technique and Genetic Algorithm will be tested. Two verification functions 

discussed in Chapter 5 are used for each: the Rastrigin Function and the Schwefel 

Function. 

6.2.1. Rastrigin Function 
The Rastrigin Function as defined in Section 5.5.5 is used: 
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In this example, the two-dimensional function is used (n = 2) with A = 10. The absolute 

minimum point is known at (0, 0) with the function value of ( ) .00.00,0 =f  It can also 

be seen from Figure 5.24 that multiple peaks exist in the search space, regularly spaced 

with local minimum function values increasing in direct proportion to distance from the 

global minimum. 

The variables are simply represented by two 10-bit blocks in the chromosome. 

Partitioning the normal [-5.12, 5.11] range as specified in Section 5.5.5 will result in 

0.01 increments which is relatively coarse. Instead of the normal [-5.12, 5.11] range 

therefore, a smaller range of [-1, 1] is used to make the increment smaller. The [-1, 1] 

range in each dimension is partitioned equally in a 10-bit vector, resulting in each bit 

increment corresponding to an approximately 0.002 increment in the search space. 

6.2.1.1 Monte Carlo 
The Monte Carlo optimization performs the search by attempting to flip every single bit 

of the chromosome in each of the 500,000 iterations. The flip probability is set at 0.5, 

which makes each bit very unstable, but guarantees that a large area will be searched. 

Five optimization runs with an identical set of parameters have been performed. 
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Figure 6.1 shows the converge pattern of the MC optimization. All the trace lines 

exhibit steep improvement in the initial few cycles. The lines generally reach 

“acceptable” solution within less than one hundred cycles, from which the gradients 

become level until the absolute optimum solution is reached. 
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Figure 6.1: Monte Carlo Search Convergence for the Rastrigin Function 

The algorithm succeeds in finding the absolute optimum solution in all five cases well 

before the maximum allocated 500,000 iteration is reached. In fact, the algorithm 

always finds approximate solutions very close to the absolute before 10,000 iterations. 

Clearly 500,000 iterations is significantly more than required in this case, indicating an 

opportunity of performing the search with comparable results at much fewer iterations. 

Nonetheless, the experiment demonstrates that MC works satisfactorily as it stands. 

Because there is no way of knowing how many iterations will be required before 

acceptable results can be obtained, an attempt at optimization in this respect will not be 

worthwhile and thus no modification will be applied to the MC implementation for 
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further use, as it is primarily intended as a benchmark against which to assess the 

performance of the GA. 

6.2.1.2. Genetic Algorithm 
Optimization using the Genetic Algorithm is done using the total number of evaluations 

that match the previous experiment with the MC technique. A population of 500 

individuals evolving through 1,000 generations is used to make the equivalent of the 

500,000 evaluations used in MC. 

The two remaining key parameters of the GA however, the crossover probability and 

the mutation probability, do not have a counterpart in the MC technique. In our 

experiment we use a crossover probability of 0.6 and a mutation probability of 0.03 as 

these are commonly held to be reasonable settings for a simple GA. 
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Figure 6.2: Genetic Algorithm Search Convergence for Rastrigin Function 

 
Admittedly there is no direct correlation between these two control parameters with the 

flip probability of MC technique. It matters little however, since the objective of this 

exercise is to verify the correctness of the GA implementation rather than making a 
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direct comparison with that of MC. Results for the GA convergence are given in Figure 

6.2. 

As evident in Figure 6.2, the search successfully converges to the global minimum in 

every run. Similar to that in MC, steep improvement is achieved in the initial few 

generations, after which it becomes more and more level until the optimum solution is 

found. At around 20 generations (10,000 evaluations), the best candidate solution has 

come very close to the absolute minimum. The global minimum solution itself is 

reached after no more than 275 generations (137,500 evaluations), even in the worst 

case. 

Recall that each variable is represented by a 10-bit string, resulting in 210 = 1,048,576 

possible values in the two-dimensional search space. Because there are 500 individuals 

in the population, GA is able to find the optimum solution in 137,500 evaluations in the 

worst performing run.  In this instance, the optimum solution is found by exploring just 

0.13% of the total number of candidate solutions in the search space. 

These two experiments clearly demonstrate that both MC and GA implementation can 

perform consistently in finding the global minimum of the Rastrigin Function. The GA, 

however, shows better performance by finding the global minimum after an average of 

53,200 evaluations as compared to 210,212 achieved by MC, though even this higher 

number of evaluations is a relatively low percentage of the total solution space. 

6.2.2. Schwefel Function 
Referring to Section 5.5.5 once again, the Schwefel function is defined as: 
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The global minimum value is found at )00.1,..1.00(* =x  with the function value 

of ( ) 00.01.00,..1.00 =f . Unlike the Rastrigin function however, the peaks in the search 

space are less regularly distributed. Perhaps more importantly, the global minimum and 

its second-best minimum are widely separated, making it difficult to recover from local 

optima. 

A 10-bit block is used to represent each [-512, 511] variable range, partitioning it so that 

each bit increment corresponds to one unit increment within the search space. Because 

of the one-unit increments, the exact variable value of 420.9687 will never be evaluated 
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making it impossible to find the true global minimum. Its approximation however can 

be found at x = 421. 

Unlike the Rastrigin function, the Schwefel function is tested for different numbers of 

variables to highlight the performance difference between GA and MC. This strategy 

will also confirm that any number of variables less than the maximum of 640 specified 

in Section 5.5.2.2 can be reliably mapped to the same chromosome structure. A 10-bit 

block is used to represent each [-512, 511] variable range, partitioning it so that each bit 

increment corresponds to one unit increment within the search space. 

6.2.1.1 Monte Carlo 
Similar to the Rastrigin function test, the MC search is done with a total of 500,000 

iterations. The same flip probability of 0.5 is also used. Figures 6.3, 6.4, and 6.5 show 

the convergence patterns of MC search for n = 2, 4, and 10 respectively. 
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Figure 6.3: MC Search Convergence for the Schwefel Function with n=2 
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Figure 6.4: MC Search Convergence for the Schwefel Function with n=4 



 123 

0 7 16 35 71 96 172
322
428
745
1300
2395
3931
9245
26286
46970
110331
345940

Iteration

1000.00

2000.00

3000.00

4000.00

5000.00

Fi
tn

es
s 

Va
lu

e

1st Run
2nd Run
3rd Run
4th Run
5th Run

 

Figure 6.5: MC Search Convergence for the Schwefel Function with n=10 

For n = 2, MC search is able to steadily converge and find a solution with a fitness value 

of less than 1.00 after about 100,000 evaluations. The convergence pattern becomes 

more irregular when n=4, with a minimum fitness value found in the 45.00-100.00 

range after 300,000 iterations. Increasing the number of variables to n=10 further 

deteriorates the MC performance, resulting in fitness value in the 1,300.00-1,600.00 

range at about 300,000 iterations. 

The MC technique performs adequately in finding a good solution of the Schwefel 

function when only a small number of variables are used. This assertion is supported by 

the fact that the search consistently discovers better solutions as it progresses, and 

always terminates with at least a local minimum discovered. The search performance 

drops considerably when a large number of variables are used however. 

 



 124 

6.2.1.2. Genetic Algorithm 
Also similar to its Rastrigin function counterpart, the GA optimization for the Schwefel 

function uses a population of 500 individuals that evolve in 1,000 generations. As in the 

Rastrigin function search, the values of 0.6 and 0.03 are also used for crossover and 

mutation probability constants, respectively. 

Figures 6.6, 6.7, and 6.8 shows the resulting convergence patterns of the search for n = 

2, 4 and 10. Similar to the search on the Rastrigin function, the GA search on the 

Schwefel function converges rapidly when few variables are used. With n=2, the search 

converges quickly, with the absolute minimum found at under 70 generations or 35,000 

evaluations. On average, a fitness value of less than 1.00 is found in just 10 generations 

or 5,000 evaluations. Such performance is considerably better than that of MC for the 

same number of variables. 
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Figure 6.6: GA Search Convergence for the Schwefel Function with n = 2 
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Figure 6.7: GA Search Convergence for the Schwefel Function with n = 4 

The better performance of GA becomes evident for n=4 where not only the convergence 

is faster, but the result is also better. The GA is consistently able to find solutions whose 

fitness values fall within the 0.600-1.700 range in about 100 generations or 50,000 

evaluations. This compares favorably to fitness values in the 45.00-100.00 range after 

300,000 evaluations using the MC method. 

Similar to the MC result, the GA fails to find the absolute minimum in all attempts 

when the number of variables is set at n=10. The GA is far more successful at finding 

better solutions however, with fitness value consistently falling within the 200.00-

400.00 range compared to MC’s range of 1,300-1,600. 
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Figure 6.8: GA Search Convergence for Schwefel Function with n = 10 

There are a number of possible reasons for the algorithm’s failure to find the global 

optimum. The irregular distribution of the function peaks must be one major reason. 

The other is the relatively unsophisticated implementation of the GA used in this 

particular instance. Yet another possible reason is that the constants used for crossover 

and mutation probabilities may be suboptimal. 

The results for the n=10 variation can be compared to a more mature GA 

implementation available in the public domain (Dolan, 2006). This GA, implemented in 

the Java programming language, is considerably more fully featured than the simple GA 

implemented as part of this research. With similar control parameters this 

implementation finds near-optimal solutions to the n=10 problem with an average of 

around 70,000 evaluations. This further supports the hypothesis that the implemented 

GA is struggling to solve the problem due to the lack of sophistication. 
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In any case, the GA does succeed in converging to at least a local optimum and 

terminates when a valid solution is found. It is also clearly much more effective than a 

random walk. Such qualities alone may be sufficient for the purpose of the experiments 

that follow. Should the GA not solve the MCPO problem sufficiently well, the results 

achieved can be used as a benchmark against which future, more sophisticated 

algorithms can be compared. It is important to bear in mind that as a rule the global 

optimum is not known in an actual MCPO problem. The capability of reliably 

converging towards a good solution is what can be realistically expected from the 

algorithm and may be sufficient to find a solution that is “good enough” tradeoff 

between the quality of the solution and the time required to find it. 

6.3. Case 1: Simple Rectangular Layout 
The first experiment involves the layout optimization of a 300x300 square container, 

with a 50x100 rectangle-shaped obstacle within as shown in Figure 6.9. The bottom left 

vertex of the shape is (50, 50). The optimization procedure seeks a solution with which 

50x100 rectangular shaped stock panels can be used to cover the container area, using 

(0, 0) as the point of origin. The origin is outside of the area to be covered and this 

simple example allows the impact of this to be observed. 

 
Figure 6.9: Simple Rectangular Container Optimization Problem 
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This is a trivial example, the purpose of which is to demonstrate that the optimization 

process is actually able to find a solution for a simple problem. Figure 6.10 shows the 

solution of the first part of the problem, whereas Figure 6.11 shows the solution of the 

second stage optimization using the greedy algorithm. Light blue color is used to 

indicate regular, whole panels whereas dark blue color indicates irregular panels. 

The solution efficiency is defined as the container area divided by the available area 

provided by the stock panels. Tables A.1, A5, and A.9 in Appendix A show all three 

optimization algorithms consistently successful in finding a 100% efficiency solution. 

The simple rectangular container, however, is not typical. Solutions with less than 100% 

efficiency are the norm as subsequent experiments will show. 

 

Figure 6.10: Panel Placement Solution for Simple Rectangular Container Problem 
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Figure 6.11: Nesting Solution for Simple Rectangular Container Problem 

Despite the 100% material efficiency, it is clear that the solution for the simple 

rectangular container problem above is not ideal when point of origin (0, 0) is used. The 

absolute best efficiency is achieved when (50, 50) is used as the point of origin instead, 

as evident in Figure 6.12. Only entire panels are used in this case, implying not only 

100% efficiency but also the complete absence of cutting the material. 

 

Figure 6.12: Best Nesting Solution for Simple Rectangular Container Problem 
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It has been explained in Section 6.1 however, that only a single point of origin (0, 0) is 

to be used throughout the experiments. Therefore to be consistent with the experiment 

strategy laid out early in this chapter, results such as that in Figure 6.12 are not to be 

considered any better than that in Figure 6.10. Future work will focus on the 

development of the geometric functions required to select a more appropriate origin 

based on querying the shape of the polygon to be filled to determine the best starting 

point. This would eliminate the need to conduct multiple optimizations to determine the 

best origin. 

6.4. Case 2: Single Wall Layout 
The second experiment involves the layout optimization of a single container with both 

convex and concave corners. As shown in Figure 6.13, the outline of the container takes 

the form of the wall at the side of a building. The shape has height and width of 450 and 

350 units of measure, respectively. Assuming that the panels do not have grains or 

patterns, rotation at 90 degrees increments is allowed during the nesting process. 

Two types of stock panels are being considered to generate the solution: one has the 

dimensions of 80x60, the other 54x80. Because the shapes can be easily scaled to their 

life-size equivalent, there is no need to map units of measure used in this example to the 

standards actually used in the building industry. 

 
Figure 6.13: Single Wall Optimization Problem 

The first stage solution is shown in Figure 6.14. As with the previous case, it is clear 

that the use of the (0, 0) origin is affecting the quality of the resulting solution 

adversely. Being able to identify, without human intervention, a better origin would in 
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this case lead to improving the quality of solution by reducing the cutting required to 

produce the layout, even if the number of panels were not reduced. 

Such improvement would be most evident in the number of pieces required to be nested 

in the second stage. An example of a second stage solution is shown in Figure 6.15. 

Unlike the simple rectangle container problem however, it is not possible to achieve a 

solution with 100% efficiency. 

 
Figure 6.14: Panel Placement Solution for Single Wall Problem 
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Figure 6.15: Nesting Solution for Single Wall Problem 

Table A.2 in Appendix A shows various results obtained for single wall optimization 

problem when the greedy search algorithm is used. The achieved efficiency is higher 

than expected at 87.31% in most cases with the best at 89.30% when the first-fit 

strategy is used and 180 degrees rotation is allowed. Because greedy search is 

deterministic, the result is always identical for a given set of parameters. Therefore, only 

a single optimization run is executed for each parameter set. 

As shown in Table A.6, optimization using the Monte Carlo method is less successful 

with efficiency ranging from 81.86% to 85.42%. The number of iterations and the flip 

probability are set to 10,000 and 0.2 respectively. Such numbers have been selected 

after a series of trial runs to reflect a perceived good combination of moderate-size 

search with a relatively low rate of bit mutation. 

The Genetic Algorithm achieves similar performance as shown in Table A.10, 

achieving 85.42% efficiency for all parameter settings. In all cases, a population of 100 

individuals is used to evolve in 100 generations. A crossover probability of 0.6 and a 

mutation probability of 0.1 are used, also after such numbers appear to be adequate in a 
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series of trial runs. In the absence of better methods for setting the parameters, this 

approach seems sufficient for our purpose. 

Perhaps the most important finding in this experiment is that greedy search outperforms 

the two other algorithms despite it being incapable of recovering from premature 

convergence. The MC and GA on the other hand seem unable to capitalize their 

advantage in negotiating local optima. The net result is not only the greedy search being 

capable of finishing the job much faster (one nesting attempt instead of 10,000), but also 

with a better quality result. However, it is important to point out that the total number of 

panels required for the single wall is the same even though the utilization of material is 

lower. The savings in material become significant as the application of the approach is 

extended from the optimization of the single wall, to the room, and ultimately to the 

whole building. Potential exists to significantly reduce the total amount of material 

required if the approach can be applied to the optimization of whole buildings. 

Another important finding is the impact of rotating the pieces to the efficiency of the 

final nesting result. More freedom of altering the orientation of the pieces does not 

automatically translate to a more efficient nesting solution, as consistently indicated in 

tables A.2, A.6, and A.10. 

Finally, the best-fit placement strategy does not guarantee a better solution than the 

first-fit strategy, both in terms of area utilization and shared edge length. This finding is 

rather unexpected, because the best-fit strategy has been expressly aimed at maximizing 

the length of the shared edge. 

6.5. Case 3: Simple Roof Layout 
The third optimization problem is taken from one of the sample problems used by 

Sibley-Punnett and Bossomaier (2001) for their roof layout optimization.In this 

particular case, multiple containers are used. The simple roof layout differs from the 

previous problems by the multiple containers involved. Figure 6.16 shows the top view 

of the roof. Sections of the roof have been labeled 1-4 to assist identification. Figure 

6.17 shows the sections the same roof taken apart and laid on a flat surface. 

At this point, it is important to note that while the work of Sibley-Punnett & Bossomaier 

provides examples of the actual roof layout optimization problems, no specific details 

are given regarding the performance of their algorithms on the specific cases. For this 
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reason, it is not possible to make direct comparison between the results obtained by 

these researchers and the results of this experiment. 

3

1
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4

 
Figure 6.16: Simple Roof Viewed from Above 
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Figure 6.17: Sections of the Simple Roof 

The simple roof layout also differs from previous problems from the material 

constraints of the sheets used. Sibley-Punnett and Bossomaier assume that the panel 

used takes the form of corrugated iron or similar material. The implication is that the 

panel has distinct upper and lower sides, rendering flipping illegal. The material also 

has ridgelines and guttering that dictates that only 180 degrees rotation is allowed. 

Yet another constraint to be taken into account in this optimization problem is the 

overlap between adjacent pieces when installed on the actual roof. Such overlap exists 

in the actual roof construction both for aesthetic reasons and to prevent leakage. In this 

example however, such overlap is ignored to avoid unnecessary complication. 

Figure 6.18 shows the first stage solution with the four sections of the roof laid side by 

side. The nesting layout in Figure 6.19 shows the corresponding second stage solution. 
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Figure 6.18: Panel Placement Solution for Simple Roof Problem 

Table A.3 in Appendix A shows solutions with very high efficiency of 90.51% and 

95.84% being achieved by greedy search. The highest efficiency is obtained when 180 

degrees rotation is allowed. 

In stark contrast, Table A.7 reveals that the Monte Carlo method is only able to produce 

solutions with efficiency ranging from 74.05% to 81.46%. All the parameters have been 

set identical to those in the single wall layout problem previously discussed. 

The Genetic Algorithm yields even more disappointing results, achieving efficiency of 

only 74.05% to 77.58% in its solutions as shown in Table A.9. All GA parameters have 

also been set identical to that in single wall layout problem. 

The superiority of greedy search becomes much more apparent in this experiment. 

Neither the MC nor GA is able to create solutions with efficiency that matches even the 

lowest of that generated by the greedy search. 

As in the previous example, the total number of panels required is the same in each 

case, apparently not offering the savings that should be possible given the extension to 

multi-surface optimization. In the majority of the cases, better efficiency is obtained 

when rotating the pieces by 180 degrees is an option and even better results are possible 

if free rotation is allowed. The constraints on the problem due to the material are 

limiting the ability to reduce the number of panels required. As in the previous 

experiment, the best-fit placement strategy does not provide direct help in achieving 

better overall efficiency. It does consistently yield better results in terms of shared edge 

length, however. 
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Figure 6.19: Nesting Solution for Simple Roof Problem 

6.6. Case 4: Complex Roof Layout 
The fourth and final experiment uses another example from Sibley-Punnett and 

Bossomaier (2001). In this case, a complex roof consisting of multiple sections is used. 

Unlike the simple roof example, there are twice as many sections of greatly varying 

sizes that make up the roof. Concave shaped sections are also used, as opposed to all-

convex shapes in the simple roof layout problem. Other roofing material-specific 

constraints still apply however. Figure 6.20 shows the top view of the complex roof. 

Similar to the previous case, results obtained from this experiment cannot be directly 

compared to that acquired by Sibley-Punnett & Bossomaier due to the lack of the 

required data. Nonetheless, the example is adopted for experiment because of its value 

in representing more complex actual layout optimization problem. 
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Figure 6.20: Complex Roof Layout 

Figure 6.21 shows the first stage solution for the problem. Because of the large size of 

the roof, only segments 3, 5, and 6 are completely visible. The nesting plan which is 

part of the second stage solution is given in Figure 6.22. 

 

Figure 6.21: Panel Placement Solution for Complex Roof Problem 

As in previous experiments, the greedy search clearly outperforms the other algorithms 

in terms of computation time and solution efficiency. Table A.4 in Appendix A reveals 

very high efficiency rates from 95.50% to 96.99% being achieved using this method. 

None of the optimization results produced by the Monte Carlo method achieve 

comparable efficiency. Table A.8 shows the efficiency ranging from 62.70% to 72.18%, 

nowhere near that achieved by the greedy search. 
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Figure 6.22: Nesting Solution for Complex Roof Problem 

The Genetic Algorithm performs somewhat better than the Monte Carlo technique this 

time. Solution efficiencies ranging from 70.54% to 73.03% have been attained, which is 

higher than those from MC even though still far behind the greedy search. 

Similar to the preceding experiment, better efficiency is generally achieved when 180 

degree rotation is an option. There is an exception with the GA however, where the best 

efficiency is found when no rotation is allowed. Again the material constraints are 

limiting the potential for reducing the total number of panels required and another 

similarity found with the previous experiment is the longer shared edge consistently 

obtained when best-fit placement strategy is used. The best-fit strategy also seems to 

contribute towards better overall efficiency, although exceptions still exist. 
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7. Discussion 
Up to this point, the investigation of two-stage layout optimization has covered a 

number of disparate subject areas. A distinct characteristic of the research is that a big 

portion of the effort has been spent designing, constructing, and validating the software 

in the framework provided by the chosen research methodology. The experiment with 

actual data, despite its importance and the amount of effort involved, became less 

prominent in view of the overall work required to maintain rigor of research. 

This chapter has been organized to report the findings at the same proportion. A 

sizeable amount of space has been devoted to discuss the software development aspect 

of the research, in which quite a number of important findings have occurred. The 

remainder of this chapter is divided into three sections: the first two deal with the 

software design and implementation, whereas the third discusses the findings of the 

actual experiments. 

7.1. Research Methodology 
This research was conducted using the System Development Research Methodology 

(SDRM) (Nunamaker & Chen, 1991) which has provided a governing framework for 

structuring the key activities. Whilst other constructive methodologies exist, the strength 

of SDRM is that it explicitly requires the selection and use of an appropriate software 

development methodology. 

During the early exploratory phases of the research a great deal of effort was spent 

investigating and implementing the geometric algorithms required for developing the 

model of the MCPO problem. The alignment between research methodology and 

software development methodology provided constraints on these activities that ensured 

the modularity of the code and the ability to develop different modules at different rates 

without impacting on the overall success of the project. 

7.2. Design 
From a number of software development models commonly practiced, the rapid 

application development (RAD) approach had been selected. RAD was deemed suitable 

when evaluated against the key characteristics of the project, such as the lack of detailed 

initial requirements from the user and the strict time line within which the project must 

be completed. The model proved effective in allowing incremental development of the 

software to take place. The incremental development in turn provided a solid base from 

which the problem space could be better studied and understood. Finally the better 
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understanding of the problem made it possible that informed decisions were made 

regarding its solution. 

While RAD provides the outline for the development activities, the cornerstone of 

actual software design is the process modeling where the data flow diagram (DFD) is 

used. Process modeling provides a systematic way of both decomposing the problem 

and designing its computer-based solution. The resulting DFD identifies all the critical 

components of the software and how they all interact. The subsequent actual 

development task was essentially translating the components from their abstract form in 

the diagrams to the actual program code. 

In conjunction with process modeling, the various forms of information flowing within 

the system are captured in the data modeling. The end result of data modeling is the 

data dictionary, in which all types of information packet are defined and standardized. 

While the DFD provides a template for constructing the actual objects, instructions, and 

routines in the program code, the data dictionary serves as the equivalent of the data 

structures that are manipulated by those routines. 

Although they are indispensable for analyzing the problem and designing the solution, 

the DFD and the data dictionary are not without weaknesses. More than anything they 

did not in any way provide an error-proof mechanism of constructing the actual 

software. The RAD model indeed lacks the capability of automatically generating the 

program code, which is the main feature of more modern software modeling tools such 

as 4GL. All the intelligence built into the software code has been entirely written by 

hand. As a result, there can never be a guarantee for faithful translation of the abstract 

design to the actual program code. The information flow and transformation mechanism 

devised for the system, however, remains to a high degree mapped to the actual code. 

7.3. Implementation 
Maintaining software modularity has always been practiced throughout its development. 

As a defining characteristic of RAD, modularity allows various parts of the software to 

be added, updated, or in some cases removed, with minimum impact to other parts of 

the system. Such flexibility in turn allows those parts to be coded, tested, and debugged 

in isolation to ensure the development of the software as a whole can reliably take place 

at a rapid pace. 
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The notion of modularity can be found both in the program logic and the organization of 

its source code. Modularity in program logic is realized by the use of object-oriented 

programming (OOP) language and environment. Programming language-specific 

objects are used extensively to encapsulate logical entities of the software, effectively 

turning them into modules, to make clear separation between various data packets and 

the processes associated. 

Furthermore, the program source code has been organized into a number of disk files to 

make closely related objects easy to locate. While file organization does not have any 

impact whatsoever to the correctness or efficiency of the executable program, it has 

enormous value in maintaining the efficiency of the coding effort. 

In the absence of definitive requirements from the user, the input and output of the 

software take the form of disk files. Run-time parameters supplied through the program 

user interface make for additional input. Another major form of output is on-screen 

visualization, with which the two dimensional objects are presented to the user the way 

they would appear in real life. 

When external files are used either as input or output, the associated data is always 

organized in a hierarchical structure. This approach offers the capability of packing a 

collection of data of dissimilar formats into a convenient single container. Such a 

container is physically implemented conforming to extended-markup language (XML) 

standard, which is a data exchange protocol widely accepted in the computing 

establishment. 

Although the XML data packet is commonly criticized for its comparatively low 

information content and lack of inherent security features, it proved to be well suited for 

this project’s requirements for several reasons. Firstly, being a text based standard it 

allows the data to be inspected and edited by hand using a general purpose text editor, 

eliminating the need of a specialized editor. Secondly, wide support of the XML 

standard has resulted in the easy access to third party XML-handling components that 

can be integrated into the software. Finally, because the actual disk files containing the 

data are typically small, the low information content has not been found to be an issue. 

Data security has never been considered relevant to this project, making it a non-factor 

when it comes to determining the data exchange format. 
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Various data structures are used to internally represent the pieces of information in the 

computer memory. Depending on the complexity of operations associated to each data 

structure, they can be divided into two types: the active and passive data objects. Active 

data objects are used to represent data entities associated to a wide range of activities 

and hence tend to be processed individually. Active data objects consist of data and 

methods, and exhibiting encapsulation and polymorphism, the characteristics of true 

objects in OOP terms. The active data structure is quite powerful, yet delicate to handle 

and tends to consume system resources when incorrectly managed. 

In contrast, passive data objects contain only data. Moreover all their contents are fully 

exposed and hence become subject to external processes. Passive data objects are a key 

feature of procedural programming language such as ANSI C or Pascal (implemented as 

struct and record types respectively), and unknown in a pure OOP environment. Passive 

data objects are much simpler and straightforward than their active counterparts, making 

them suitable for batch-type processing. A two-dimensional vertex for example, can be 

easily represented by a passive data structure containing only X and Y values. An array 

of vertices makes for a polygon, which can be easily passed between procedures when a 

complex task is performed. 

Optimization of two-dimensional problems proves to be much more complex than 

optimizing problems consisting of two scalar variables because of the geometric 

calculations involved. Two-dimensional layout optimization problems are characterized 

by a multitude of geometric operations to be performed to find the solutions. 

Consequently a considerable amount of effort has been spent in building geometric 

models and writing geometric calculation routines before optimization algorithms could 

be realized. 

A number of geometric operations stand out because of their complexity. Polygon 

triangulation, polygon overlap detection, polygon linear cut, and polygon clipping are 

geometric problems whose solutions in the literature are either non-existent or 

excessively complex for the scale of this project. To resolve this problem, novel 

solutions have been devised and empirically proven to be applicable. 

These solutions have been found to work correctly in all tested cases and displayed with 

adequate performance to justify their use. Also the program code is flexible enough to 

easily accommodate other solutions for those geometric problems later. While there is 
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no plan to implement other solutions in the immediate future, this flexibility further 

justifies the effort spent maintaining modularity of the software during its development. 

Three search algorithms have been selected to perform the actual optimization: the 

greedy search, the Monte Carlo technique, and the Genetic Algorithm. It was planned to 

model the optimization problem in such a way that all three could be used in both stages 

of the solution. With the implementation of those algorithms in place, it would only be a 

question of determining parameters to be optimized during each stage before those 

optimization algorithms can be used. While the parameters for the second stage problem 

are quite complex, the parameters for the first stage are very simple: only the X and Y 

coordinate for the point of origin. Unfortunately there are two major problems that 

prevented the actual implementation of this plan. 

The first is the greedy algorithm implementation, which only works effectively when it 

has been extended so it can deal with vector parameters instead of just scalar parameters 

it was originally designed for. The result is a heavily modified greedy algorithm that is 

efficient in solving nesting problem, but incredibly awkward to use with simple scalar 

parameters. 

The second is the enormous computational cost associated with the second stage 

solution, particularly when simulation-based solution algorithms are used. Only the 

greedy algorithm is efficient enough to find a solution for the second stage problem to 

make it appropriate as part of fitness evaluation of the MCPO problem. The other two 

are slower typically by the order of two or three, requiring execution time of up to a few 

hours for a single moderate sized second stage problem. This level of computational 

expense is unacceptable for the industry partners of the project, and considerable further 

work will be needed to develop heuristic algorithms that increase the quality of solution 

in an acceptable timescale. 

Because of the above problems, the optimization algorithms are used only to find the 

second stage solution. The parameters for the first stage solution are to be specified 

explicitly by the user. 

The first stage task is to partition the container area both vertically and horizontally 

using the stock panels as a template. The result is a set of small pieces that either fit 

perfectly to a stock panel because of their identical size and shape, or smaller with 
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possibly an irregular outline. The irregular panel becomes the input for the second stage 

optimization. 

For the second stage optimization, the greedy algorithm is relatively simple to code. The 

algorithm attempts to fit a piece with the largest surface area into the vacant space in the 

container at every turn. When such a piece is found, there is typically more than one 

valid way to position and orient the piece within the container. The first-fit strategy 

simply accepts the first valid solution, resulting in a solution found faster but with 

potentially sub-optimum efficiency. 

The best-fit strategy is meant to seek better solution by considering all valid placement 

options before selecting the best. Naturally, the best placement is the one that conserves 

the most contiguous space. This is not possible to implement however, due to the lack 

of a reliable means of measuring such a quality. As an alternative, the length of shared 

edge is used instead. The rationale is that even though contiguous space is not 

conserved, more shared edge would mean less effort in cutting the pieces off the 

material. This is typically one of the concerns of the targeted end user, builders, who 

wish to simplify installation as much as possible. It was also believed that maximizing 

the shared edge may have the side effect of making the piece less likely to become 

obtrusive in the vacant space. 

Modeling the second stage parameters into a binary string is a major issue in the 

implementation of both the Monte Carlo and the Genetic Algorithm. Unlike other layout 

optimization problems commonly found in the literature, the second stage problem 

requires a number of pieces to be nested in multiple containers. The optimization task 

therefore becomes twofold: to minimize the number of containers and to map the pieces 

to those containers in a way that minimizes the containers’ vacant surface area. 

No suitable model has been found to satisfactorily map all the parameters to a single 

binary string. Only a subset of the parameters is used in the model that prevailed. In this 

model, the pieces are mapped to clusters to indicate to which panel they will be nested. 

Greedy search is then used to actually put those pieces together within the assigned 

panel. 

Although the cluster-based model is workable, it has an important issue of handling 

invalid clusters where the corresponding panels cannot accommodate all pieces assigned 

to them. A correction strategy of redistributing surplus pieces is used to split an invalid 
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cluster to multiple valid clusters. The actual software uses the append at tail strategy, 

where new cluster is added at the end of the list to hold excess pieces from the invalid 

cluster. It is acknowledged that such strategies may have an impact on the effectiveness 

of the GA implementation. Other strategies, such as the redesign of the penalty function, 

could be considered in the future if this approach does not yield adequate results. 

Whilst the Monte Carlo technique was very easy to implement because it only needs to 

do a random walk in the search space to find the solution, the Genetic Algorithm is 

more complex because of the number of sub-processes involved, of which adopting 

different strategies for which may have significant impact on the overall performance of 

the algorithm. A version of a GA as implemented by Goldberg (1989) is used to avoid 

unnecessary complications. Again, it is acknowledged that this implementation may 

lack the sophistication required to solve complex problems. 

7.4. Experimental Results 
The MC and GA implementations have been subjected to a series of test problems to 

verify their correctness. The purpose of the procedure was to ascertain that the logic of 

the algorithms remains fully preserved in the program code. Such verification is 

important because unlike the deterministic greedy search where the solution for a 

certain problem is singular, MC and GA contain stochastic elements that make solutions 

vary between runs and the exact process non-repeatable. 

The verification problems took the form of continuous multi-variable mathematical 

functions. Such functions are characterized by the existence of multiple peaks in their 

ranges, which present local optima the search algorithm must negotiate in its attempt to 

find a global optimum. There are numerous such functions available in the literature, of 

which the Rastrigin and Schwefel functions have been selected. The optimization task 

of both was to find the global minimum. 

In general, both the MC and GA methods are proven able to consistently find solutions 

with improved function values as the search progresses. When only two variables are 

used ( 2=n ), both algorithms succeeded in finding the global minimum after the same 

number of evaluations. The GA has a clear performance advantage over MC for 

minimizing the Schwefel function with 4=n . In this case the GA was able to find the 

global minimum with a relatively small number of evaluations, whereas MC only 

managed to find a local minimum after six times as many evaluations. 
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Both algorithms failed to find the global optimum for the Schwefel function 

with 10=n , although the GA consistently achieved better solutions compared to that of 

the MC. This result is not surprising since there are 1024 possible values for each 

variable, making the total number of possible solutions 101024 . The Schwefel function, 

with n≥10 is considered a complex function, of comparable difficulty to solve as many 

real world optimization problems. Clearly a much more advanced implementation of 

GA is required to effectively solve a search problem of that magnitude. 

The algorithms’ obvious lack of power in solving optimization problems involving 

multiple variables may have a profound impact on the actual software performance 

solving the MCPO problem. This is especially true since the second stage problem of 

MCPO typically deals with large numbers of pieces, each being mapped to an 

optimization variable. The problem is further compounded by the computational 

expense associated with each fitness evaluation. Nevertheless, the verification tests 

served their stated purpose and the correctness of the algorithms is confirmed. 

The actual experiments were conducted with various MCPO problems with increasing 

complexity. More straightforward problems were used to provide empirical proof that 

the software actually performs the way it was designed and all the search algorithms 

apply their underlying logic to find this domain-specific solution. More complex 

problems were used to gain insight into comparative performance of the optimization 

algorithms, particularly in terms of computation time and solution quality. Solution 

quality is defined by the efficiency of material usage (or minimization of wasted 

material) and the length of shared edges (indicating the effort of cutting the pieces off 

the stock panels). 

The greedy search proves to be very effective by consistently outperforming other 

algorithms on both accounts. Greedy search has a decisive advantage in computation 

time because the task of constructing the solution using this method is equivalent to just 

one fitness function evaluation on MC and GA. It also converges to a local optimum 

every time, of which the efficiency is always higher than that of MC and GA. 

Table 7.1 shows the solution efficiency of each optimization algorithm in more detail. 

The figures have been averaged from experiment results given in Appendix A. As 

mentioned above, the key parameters of solution efficiency are the material usage and 

the shared edge length. The number of irregular panels is included to indicate the 

complexity of the second-stage optimization. 
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Multiple stock panels of varying size have been provided for each layout optimization 

problem. It has been observed that stock panels of smaller size would typically yield 

better efficiency, though in reality may suffer from higher installation costs. The single 

wall problem seems like an anomaly where both MC and GA had found solutions of 

better efficiency with a stock panel larger than that used by greedy algorithm, as 

indicated by the number of irregular panels. Recall that an identical point of origin at (0, 

0) is used for all cases, meaning the number of irregular panels resulting from the first 

stage solution is identical for a given stock panel dimension. The lower efficiency of the 

solutions, however, indicates that the decision to use a larger panel was sub-optimal. 

Similar to the validation functions, the performance difference between MC and GA is 

only slight when only a small number of pieces are involved. Both are able to find 

reasonable solution, compared to that achieved by greedy search, with only marginal 

difference in efficiency. 

When a larger number of irregular panels are involved, such as the case with a complex 

roof, the GA performance advantage over MC becomes evident. Much in the same way 

GA obtained better solutions than MC did in solving the Schwefel function with n = 10. 

At the same time however, the superior performance of the greedy search over both 

becomes even more pronounced. 

Such a finding naturally raises a question of why such a crude algorithm can perform so 

much better than its much more sophisticated counterpart. Especially when compared to 

a GA, which is widely accepted as a powerful tool for solving the multi-variable 

optimization class of problems to which the second-stage problem of MCPO belongs. 

Because the optimization algorithms have been implemented as integral parts of a 

computer application solving real rather than hypothetical problems, there is a number 

of contributing factors to be considered for an answer. The first is the relatively low 

level of sophistication possessed by the GA implementation. As discussed in Chapter 5, 

the implementation has been based on a simple variant of GA once coded for the benefit 

of students and researchers new to the subject. Such an implementation is characterized 

by a single crossover point, pair selection for breeding exclusively based on fitness 

value alone without regard to the actual bit patterns in the chromosome, and a lack of 

elitism. These deficiencies alone may be directly responsible for the algorithms failure 

to solve complex problems such as the ten-variable Schwefel function. 
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The second fundamental problem with the use of a GA in solving MCPO problem is the 

parameter modeling, which also applies to the MC method. As the analysis in section 

5.5.2.2 demonstrates, inter-dependencies exist between the number of stock panels 

required and the actual nesting result for a given stock panel. The latter further 

introduces the problem of handling the invalid cluster, of which the attempt to put 

together pieces allocated for a stock panel within its boundaries is unsuccessful. 

The concept of clustering is used in the prevailing model to address the problem of 

mapping the irregular panels to an undetermined number of stock panels. Whilst the 

model solves this particular problem quite well, it completely disregards a host of 

crucial parameters to be solved in the individual nesting tasks. Relegating the actual 

nesting of irregular pieces from the clusters to individual stock panels to greedy search 

has been done as a pragmatic measure taken in the interests of generating a valid nesting 

layout at minimum computational cost. Special provisions were also needed to 

effectively deal with invalid clusters. 

By only partially solving the second stage problem, the MC and GA optimization have 

no direct impact on the final result. It may also be the main reason why the efficiency of 

the MC and GA solutions is only marginally different in the majority of cases. GA 

solutions only become visibly better than those of MC when a large number of irregular 

pieces are involved. This is consistent with the result of verification procedure using the 

Schwefel test function, where the GA performs noticeably better when more variables 

were used. The most likely explanation is that the performance disparity between the 

two algorithms is such that relegating the rest of the nesting task to an external entity 

does little to hide the difference in the final result. 

In any case, the current parameter modeling has been found far from ideal. It is quite 

possible that a better model may realize the true potential of the GA in solving MCPO 

problems. Constructing such a model however is beyond the scope of this thesis. 

Further interest in achieving better MCPO solutions using the GA may warrant future 

study in this area. On a smaller scale, various aspects of the current model, such as 

better realization of the best-fit strategy and invalid cluster handling, can also be subject 

to more thorough study. 

Lastly, the nature of the actual data itself may contribute to the efficiency of the 

solution. Take the simple and complex roof problems for instance. The simple roof has 

smaller search space, allowing the heuristic algorithms to find the good solutions in a 
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relatively few evaluations. The complex roof on the other hand, presents a much larger 

search space, requiring increased number of evaluations while making it less likely for 

those algorithms to find good solutions. At the same time, the complex roof has larger 

surface area. In effect, the ratio of the surface area of the stock panel with the container 

is smaller in complex roof problem than it is in simple roof counterpart. Bearing in mind 

that smaller stock panels tend to produce more efficient results, it is understandable that 

the result obtained by the greedy search is better on complex roof problem. This effect, 

however, is negated by the increased search space in the case of heuristic algorithm. The 

increased difficulty is reflected by the lower efficiency obtained by the MC and the GA 

on solving the complex roof problem compared to that of simple roof. 

From the user perspective, the experiment results reveal that the use of novel 

optimization algorithms such as MC and GA has not been justified at the current stage 

of the software maturity. Employing the greedy search is the most logical choice for 

solving MCPO problems due to its low resource requirements and high quality 

solutions. However, it is important to point out that all three methods are finding 

solutions that have better material utilization than those created by a builder. 

As a commercial application, the MCPO software delivers value to the user in at least 

three different ways. The first is that a great amount of manual work involved in 

planning for a panel layout project has been automated. The automated process gives 

the user detailed information regarding the number of stock panels required, the nesting 

plan for each panel, and the layout plan for the actual sections of the physical building. 

This wealth of information in turn allows the user to more accurately predict the costs 

associated with material and labor required to undertake the project. 

The second benefit to the user is the optimization capability that helps them to minimize 

the project cost by making the necessary selection from different types of stock panel as 

well as making sure that a minimum number of panels need to be allocated. The amount 

of computational task needed to accomplish the optimization is such that manual 

optimization is unlikely to yield comparable results except in very simple cases. 

Finally, the software capability of solving multiple container problems means that 

optimization does not need to be performed on the basis of individual sections of the 

building. As previously mentioned, the use of a smaller stock panel typically results in 

better material efficiency. It follows that the material usage efficiency tends to improve 

when the ratio of container area to the stock panel area increases. Furthermore using 
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multiple containers for a single MCPO problem is a good way of improving the ratio. 

The important implication is that not only does solving MCPO for multiple sections of 

the building in a single optimization run become possible, but doing so actually 

generates less waste for the overall project than it would if the sections are optimized 

individually. 
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8. Conclusion 
The objectives of this research were stated in Chapter 1 as; 

• To develop a model of the MCPO problem into a series of parameters that can 

be optimized by numerical algorithms 

• To develop a software application which implements MCPO automated 

optimization processes using general-purpose programming tools 

• To demonstrate that optimization algorithms can be utilized to solve the MCPO 

problem effectively 

• To observe the relative performance of alternative optimization algorithms  

It is clear that each of these objectives have been addressed by the research undertaken, 

although at times with unexpected observations. 

Decomposing MCPO into a two-stage optimization model provides a solid ground for 

constructing a well-functioning solution. The study has also proven that with the 

support of appropriate analysis, software application to solve complex problems such as 

MCPO can be successfully implemented using standard modeling and programming 

tools. 

Various technical issues discovered throughout the development of the software have 

provided insight to the nature of the problem as well as the challenges of constructing a 

solution using contemporary programming tools. Pragmatic approaches have been taken 

to resolve some of those problems for the lack of access to better alternatives. The 

deficiencies of pragmatic solutions have manifested themselves in some sub-optimum 

performance in affected modules. 

Nonetheless the resulting software is capable of solving actual MCPO problems, thus 

offering a proof for the correctness of the two-stage optimization model. Successful 

implementation of the software also proves the feasibility of constructing MCPO 

solutions automatically for commercial use with current computing technologies. 

A series of experiments have demonstrated the outstanding performance of greedy 

search in comparison with simulation-based search algorithms represented by the Monte 

Carlo technique and a Genetic Algorithm. While this result is not surprising for the 

Monte Carlo technique given its inherent inefficiency, the unexpected lack of 



 153 

performance of such a sophisticated method as a Genetic Algorithm calls for further 

investigation in the area. 

There are a number of possible reasons for the Genetic Algorithm’s relative poor 

performance. The first is the efficiency of the coded implementation, which has been 

based of an unsophisticated version of the algorithm featuring naïve strategies in 

accomplishing its key sub-tasks. The second possible reason is the accuracy of the 

parameter modeling that prevailed, in which many important parameters of the nesting 

problem have been omitted to be optimized by external processes. Finally, the MCPO 

class of problems may have certain characteristics that make Genetic Algorithms 

unsuitable to solve them. None of these assertions have been proved however, implying 

the need for further research in the area. 

8.1. Suggestions for Future Work 
At present the MCPO application has limitations indicating its lack of maturity as 

solution, both as research and commercial software. There are quite a few areas where it 

can be improved to expand its capabilities. There are also opportunities of exploring 

various theoretical aspects of MCPO problem. 

A degree of uncertainty regarding the correctness of the program code exists because of 

the practice of manual coding and the absence of rigorous mathematical analysis in 

constructing various algorithms. These are the byproduct of the Rapid Application 

Development (RAD) model used for the project. While the use of RAD was justified by 

the need to construct the solution software while simultaneously identifying various 

issues unknown at the time the project was conceived, further development can use 

different development models to take advantage of knowledge of key issues discovered 

during the course of this project. 

Many programming errors can be eliminated when automated coding is used. In this 

case, 4th Generation Technique (4GT) is a good candidate as alternative development 

model. Similarly, Formal Methods can increase the efficiency of many underlying 

modules by its rigorous mathematical analysis. Future studies may discover the benefit 

of employing these two development models in improving the quality of MCPO 

software. 

At a more technical level, there are a number of ad-hoc algorithms employed in the 

current MCPO software that can be replaced with more efficient substitutes. 
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Mathematically proven algorithms are especially valuable in increasing the efficiency of 

difficult geometric operations such as polygon triangulation, polygon overlap detection, 

and polygon clipping. Only pragmatic solutions have been implemented to solve these 

three problems, resulting in possibly sub-optimal performance. The use of more 

advanced algorithms, even in the form of third-party software components, may have 

direct impact on the performance of MCPO software. 

There also a number of unresolved problems with the second-stage optimization. The 

most glaring problem is the unsatisfactory implementation of the best-fit strategy, which 

calls for a better model in calculating the convex vacant space. Better models resulting 

from study in this area will enable the correct realization of a best-fit placement 

strategy. Similarly, the ability to automatically identify the best point of origin is likely 

to lead to significantly improved results. 

Another problematic aspect of the second-stage optimization is the parameter modeling 

into chromosome used by simulation algorithms such as the Monte Carlo technique and 

Genetic Algorithm. The current solution seems inadequate from a performance 

standpoint, with many important parameters missing from the bit string representation 

of the chromosome. It is used regardless because the task of constructing a better model 

is not trivial. Given the existence of inter-dependencies between the second-stage 

parameters, simple mapping of the parameters to the bit string is unlikely to be 

workable. A more thorough exploration of possible parameter modeling is necessary to 

find a better alternative. 

On a smaller scale, further investigation can be made to improve the effectiveness of the 

Genetic Algorithm using the current chromosome structure. For all its flaws, the current 

parameter modeling serves a critical role of making it possible to employ such an 

advanced optimization technique to solve MCPO problems. A major problem 

encountered with utilizing Genetic Algorithms in this particular problem is the 

abundance of invalid chromosomes, in which stock panels are assigned with more 

pieces than they can accommodate. An invalid chromosome complicates the task of 

calculating the fitness function of the individual. 

At present, invalid chromosomes are turned into their valid equivalents through a 

correction procedure of redistributing the surplus pieces found in the overcrowded 

panels. Although this approach effectively enables a fitness function to be calculated 

directly, its potentially adverse impact on the survival of better individuals has not been 



 155 

explored. An investigation into reintroducing modified strings back into the population 

could lead to a significant improved in performance. 

An alternative solution is to penalize the chromosome for the invalid clusters it contains. 

For example, the surface area of the pieces that fall outside the stock panel boundaries 

may be used to calculate the penalty applied to the chromosome. More solutions are 

likely to result from a closer study in this area. 

The use of a more sophisticated implementation of the Genetic Algorithm should also 

be explored. Given the lack of sophistication of the current implementation, it is 

possible that improvement in the evolution mechanism of the algorithm will have direct 

impact on the result of the second-stage solution. Key aspects of the algorithms that 

need improvement are the selection policy, crossover mechanism, and the introduction 

of elitism where best individuals are carried over to the succeeding generations. 

Successful use of the Monte Carlo technique and the Genetic Algorithm has proven that 

optimization algorithms can be used to solve the second-stage problem. The implication 

is that other optimization techniques could also be used in their place. Various 

optimization techniques such as Swarm Intelligence, Simulated Annealing, and Tabu 

Search can potentially increase the effectiveness of the search for the second-stage 

optimization. 

From a commercial point of view, study of the impact of the software to the practices of 

house construction has significant value. A particular point of interest is the deployment 

value of the greedy algorithm, which perfectly matches the needs of an industry solution 

for quick optimization and high quality results. The software has been intended to 

streamline the process of covering sections of a building. It has been envisioned that 

successful deployment of the software may also lead to its usage for assisting related 

tasks. For instance, the availability of MCPO solutions for covering a house section 

with drywall can be used to design the wooden frame of that section. The resulting 

design can then be used by the frame manufacturer to assist the calculation of the 

amount of required timber as well as it cutting plan. Study in such areas will reveal 

which aspects of the software that gives most value to the user, which in turn will allow 

improvement efforts for the software to be directed towards areas that benefit the user 

most. 
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Appendix A: Experiment Results 
 

Rotation None 
180 

Degree 90 Degree 
Placement First Fit First Fit First Fit Best Fit 
Experiment # 1 1 1 1 
Regular Panels 10 10 10 10 
Partial Panels 14 14 14 14 
Total Panels 24 24 24 24 
Stock Panels 17 17 17 17 
Shared Edge 2450.00 2450.00 2450.00 2450.00 
Covered Area 85000.00 85000.00 85000.00 85000.00 
Stock Panel Area 85000.00 85000.00 85000.00 85000.00 
Wasted Material 0.00 0.00 0.00 0.00 
Solution Efficiency 100.00% 100.00% 100.00% 100.00% 
Search Duration 0:00:01 0:00:01 0:00:01 0:00:01 

Table A.1: Greedy Search Optimization on Simple Rectangular Container 

 
Rotation None 180 Degree 90 Degree 
Placement First Fit First Fit First Fit Best Fit 
Experiment # 1 1 1 1 
Regular Panels 11 11 11 11
Partial Panels 24 19 24 24
Total Panels 35 30 35 35
Stock Panels 25 22 25 25
Shared Edge 3013.00 2523.33 3013.00 3017.00
Covered Area 94300.00 94300.00 94300.00 94300.00
Stock Panel Area 108000.00 105600.00 108000.00 108000.00
Wasted Material 13700.00 11300.00 13700.00 13700.00
Solution Efficiency 87.31% 89.30% 87.31% 87.31%
Search Duration 0:00:01 0:00:01 0:00:01 0:00:01

Table A.2: Greedy Search Optimization on Single Wall 
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Rotation None 180 Degree 
Placement First Fit First Fit Best Fit 
Experiment # 1 1 1 
Regular Panels 8 8 8 
Partial Panels 24 24 24 
Total Panels 32 32 32 
Stock Panels 18 17 18 
Shared Edge 1698.24 1722.34 1781.21 
Covered Area 26067.20 26067.20 26067.20 
Stock Panel Area 28800.00 27200.00 28800.00 
Wasted Material 2732.80 1132.80 2732.80 
Solution Efficiency 90.51% 95.84% 90.51% 
Search Duration 0:00:01 0:00:01 0:00:01 

Table A.3: Greedy Search Optimization on Simple Roof 

Rotation None 180 Degree 
Placement First Fit First Fit Best Fit 
Experiment # 1 1 1 

Regular Panels 25 25 25 
Partial Panels 129 129 129 
Total Panels 154 154 154 
Stock Panels 65 65 64 
Shared Edge 9629.28 9586.05 9929.57 
Covered Area 124153.13 124153.13 124153.13 
Stock Panel Area 130000.00 130000.00 128000.00 
Wasted Material 5846.87 5846.87 3846.87 
Solution Efficiency 95.50% 95.50% 96.99% 
Search Duration 0:00:02 0:00:04 0:00:03 

Table A.4: Greedy Search Optimization on Complex Roof 
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Table A.5: Monte Carlo Optimization on Simple Rectangular Container 
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Table A.6: Monte Carlo Optimization on Single Wall 
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Table A.7: Monte Carlo Optimization on Simple Roof 
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Table A.8: Monte Carlo Optimization on Complex Roof 
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Table A.9: Genetic Algorithm Optimization on Simple Rectangular Container 
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Table A.11: Genetic Algorithm Optimization on Simple Roof 
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Appendix B: Data Flow Diagrams 

 

Input Device

4.
Extract
Solution

Data

3.
Extract
Layout
Objects

2.
Read

Input Type

6.
Generate
Solution
Panels

5.
Compose
Problem
Definition

9.
Construct
Graphical
Objects

7.
Nesting for

Irregular
Panels

Building
Material

Repository

8.
Combine
Solution

Data

Disk File

Visual Output
Device

1.
Validate

Input

Raw
Input Data

Valid
Input
Data

Valid
Input
Data

Candidate
Stock Panels

Valid
Input
Data

Layout
Objects

Solution
Objects

Layout
Objects

Formalized
Optimization

Problem

Irregular
Panels

Nested
Irregular
Panels

First Stage
Solution

Data

Complete
Solution

Data

Graphical
2-D

Shapes

User

Optimization
Settings &

Parameters

Solution
ObjectsDisplay-Only

Mode

Optimization
Mode

Optimization
Settings &

Parameters

 

Figure B.1: Overall System Information Flow 
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Figure B.2: Validating Input 
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Figure B.3: Reading Input Type 
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Figure B.4: Extracting Layout Objects 
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Figure B.5: Extracting Solution Data 
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Figure B.6: Composing Problem Definition 
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Figure B.7: Generating Solution Panels 
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Figure B.8: Nesting for Irregular Panels 
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Figure B.9: Combining the Solution Data 
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Figure B.10: Constructing Graphical Objects 
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Figure B.11: Greedy Search 
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Figure B.12: Monte Carlo Search 

 

7.4.1.
Activate
Genetic

Algorithm

8.
Combine
Solution

Data

7.1.
Compose

Search
Data

Genetic
Algorithm

Data

Initial
Population

Nested
Panels

7.4.3.
Select
Pairs

7.4.4.
Perform

Crossover

7.4.5.
Perform
Mutation

7.4.2.
Maintain

Population

7.4.7.
Calculate
Fitness
Value

7.4.8.
Select
Best

Individual

7.4.6.
Decode

Chromosome

7.4.9.
Decode

Chromosome

New
Generation

Parent
Chromosomes

Child
Chromosomes

Current
Population

Complete
Chromosomes

Complete
Chromosome

Nesting
Solution

Chromosome
Fitness
Value

Final
Population

Best
Chromosome

 

Figure B.12: Genetic Algorithm Search 
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Appendix C: Data Dictionary 
 
 
name: XY real coordinates 
aliases: vertex, offset, pivot 
where used/ how used: point definition 
   polygon definition 
description:   
  XY real coordinates = X value + Y value 
  X value = *any real number* 
  Y value = *any real number* 

Figure C.1: 2-D Vertex Representation 

 

name: vertices 
aliases: raw polygon, primitive polygon 
where used/ how used: polygon definition 
description:   
  vertices = {vertex} 
  vertex = XY real coordinates 

Figure C.2: Basic Polygon Representation 

 

name: XY screen coordinates 
aliases: none 
where used/ how used: screen pixel coordinates (output) 
description:   
  XY screen coordinates = X value + Y value 
  X value = *any integer number* 
  Y value = *any integer number* 

Figure C.3: Two-Dimensional Coordinates for Screen Output 

 

name: panel ID 
aliases: none 
where used/ how used: solution definition (input) 
   solution definition (output) 
description:   
  panel ID = *unique integer ≥ 0* 

Figure C.4: Solution Panel Identifier 
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name: orient 
aliases: rotation 
where used/ how used: generic 
description:   
  orient = *real number r | -2π ≤ r ≤ 2π* 

Figure C.5: Object Rotation Constant 

 

name: rectangle definition 
aliases: stock shape, stock panel 
where used/ how used: stock panel definition 
description:   

  
rectangle = origin + pivot + orient + top + bottom + left + 
right 

  origin = *XY base coordinates* 
  pivot = *XY coordinates relative to origin* 
 top = XY real coordinates 
 bottom = XY real coordinates 
 left = XY real coordinates 
  right = XY real coordinates 

Figure C.6: Rectangle Shape Definition 

 

name: polygon definition 
aliases: single container, single obstacle, shape 
where used/ how used: generic shape definition (input & output) 
description:   
  polygon definition = origin + pivot + orient + vertices 
  origin = *XY base coordinates* 
  pivot = *XY coordinates relative to origin* 
  vertices = {vertex} 
  vertex = *XY coordinates relative to origin* 

Figure C.7: Standard Polygon Definition 
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name: raw input data 
aliases: complete solution data 
where used/ how used: layout problem definition (input) 
   resolved layout problem data (input) 
description:   
  raw input data = signature + document body 
  signature = "PolyWorkSpace" + content type 
  content type = ["ProblemSet" | "SolutionSet"] 
  document body = generic part [+ solution set] 

  
generic part = view parameters + container set + obstacle 
set 

  view parameters = zoom factor + viewing offset 
  zoom factor = *real number > 0* 
  viewing offset = XY screen coordinates 

Figure C.8: Program Main Input 

 

name: container set 
aliases: none 
where used/ how used: layout problem definition (input & output) 
   resolved layout problem data (input & output) 
description:   
  containers set = {single container} 
  single container = polygon definition 

Figure C.9: Container Areas Defined in Layout Problem 

 

name: obstacle set 
aliases: none 
where used/ how used: layout problem definition (input & output) 
   resolved layout problem data (input & output) 
description:   
  obstacles set = {single obstacle} 
  single obstacle = polygon definition 

Figure C.10: Illegal Areas Defined in Layout Problem 
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name: solution set 
aliases: none 
where used/ how used: resolved layout problem data (input & output) 
description:   
  solution set = {single solution} 
  single solution = stock panel + solution panels + nested layouts 
  stock panel = rectangle definition 

Figure C.11: Complete Layout Optimization Solution 

 

name: solution panels 
aliases: none 
where used/ how used: resolved layout problem data (input & output) 
description:   
  solution panels = {solution panel} 
  solution panel = panel ID + polygon definition 

Figure C.12: Layout Solution Shapes Definition 

 

name: nested layouts 
aliases: nested irregular panels 
where used/ how used: layout solution definition (input & output) 
description:   
  nested layouts = nested pack + nested layouts 

Figure C.13: Nesting Plans Collection 

 

name: nested pack 
aliases: single layout 
where used/ how used: layout solution definition (input & output) 
description:   
  nested pack = {shape layout definition} 
  shape layout definition = panel ID + flip + offset + pivot + orient 
  flip = [TRUE | FALSE] 
  offset = XY real coordinates 
  pivot = XY real coordinates 

Figure C.14: Single Nesting Plan 
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name: layout objects 
aliases: none 
where used/ how used: problem definition (input) 
   extract layout objects (output) 
description:   
  layout objects = container set + obstacle set 

Figure C.15: Layout Problem’s Containers and Obstacles 

 

name: candidate stock panels 
aliases: none 
where used/ how used: problem definition (input) 
   formalized optimization problem (output) 
description:   
  candidate stock panels = {rectangle} 

Figure C.16: Available Stock Panels 

 

name: formalized optimization problem 
aliases: none 
where used/ how used: generate solution panels (input) 
description:   

  
formalized optimization problem = container set + obstacle set + 
candidate stock panels    

Figure C.17: Memory Representation of Layout Optimization Problem 

 

name: optimization parameters 
aliases: none 
where used/ how used: nesting for irregular panels (input) 
description:   

  
optimization parameters = search algorithm + shape orientations 
+ search parameters 

  
search algorithm = ["greedy search" | "monte carlo" | "genetic 
algorithm"] 

  shape orientations = shape orientation [+ shape orientations] 

  
shape orientation = ["allow none" | "allow flip" | "allow 180" | 
"allow 90" | "allow 3"] 

Figure C.18: Second Stage Layout Optimization Parameters 
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name: search parameters 
aliases: none 
where used/ how used: nesting for irregular panels (input) 
description:   

  
search parameters = [Greedy Search parameters | Monte Carlo 
parameters | genetic algorithm parameters] 

  Greedy Search parameters = ["first fit" | "best fit"] 
  Monte Carlo parameters = flip probability + iterations 
  flip probability = *real number r | 0 ≤ r ≤ 1" 
  iterations = *any non-zero integer" 

  
Genetic Algorithm parameters = population size + maximum 
generations + crossover probability + mutation probability   

Figure C.19: Optimization Search Parameters 

 

name: solution objects 
aliases: none 
where used/ how used: construct graphics objects 
description:   

  
solution objects = layout objects + solution panels + nested 
layouts 

Figure C.20: Complete Optimization Solution Package 

 

name: graphical 2D shapes 
aliases: screen shapes 
where used/ how used: screen & printer devices (output) 
description:   
  graphical 2D shapes = {graphical 2D shape} 

Figure C.21: Collection of 2-D Screen Shapes 



 188 

 

name: graphical 2D shape 
aliases: screen shape 
where used/ how used: screen & printer devices (output) 
description:   

  
graphical 2D shape = name + centre of mass + points + 
outline color + fill color 

  name = *any literal string* 
  centre of mass = XY screen coordinates 
  points = XY screen coordinates [+ points] 
  outline color = *any available color in the palette* 
  fill color = *any available color in the palette* 

Figure C.22: 2-D Screen Shape Definition 
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