
POC OF KI-NGĀ-KŌPUKU SYSTEM

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisors

Dr Alan T Litchfield

July 2017

By

Yuzhu Chen

School of Engineering, Computer and Mathematical Sciences

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the library, Auckland University of Technology. Details may be

obtained from the Librarian. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions may not

be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the Auckland University of Technology, subject to any prior agreement

to the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions of

any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Librarian.

© Copyright 2017. Yuzhu Chen

2

Declaration

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the qualification of any other degree or diploma of a

university or other institution of higher learning.

Signature of candidate

3

Acknowledgements

I would first like to thank my supervisor Dr Alan Litchfield of the SECMS of the

Auckland University of Technology, who is always helping me with my thesis whenever

I ran into a trouble spot or had a question about my research or writing. I would also like

to thank the expert who build up the research basement of my thesis: Monjur Ahmend,

who is my research corporator and helped me during the research. Finally, I would

like to thank my parents and the cast of thousands who supported me in my journey of

discovery. Thank you.

4

Abstract

With the rapid development of technology, most of people and companies have chosen

to develop services in the cloud environment. As the cloud computing technology

become more and more popular, security and performance issues are considered to

be important parts to be concerned. Applications that are implemented into the cloud

environment still face many challenges, such as easy to be exposed and tracked, need

extra cloud solutions for fault recovery, etc.

In this project, we want to proof the concept of a newly proposed distributed security

system, and use the proofed concept to develope a decentralized distributed security

system in the cloud environment, which brings absolute redundancy, availability, and

fault-tolerant ability to user’s applications. In this research, Design Science Research

(DSR) methodology and Rapid Application Development (RAD) methodology are both

used during the whole research process. Within the DSR research circle, RAD takes

the role to lead the prototype development, and reflect the potential requirements and

problems back to DSR for further theory support. This research covers cloud security

problems, distributed systems, and also decentralized systems. Based on the research

in these fields, a great theory background of this prototype system is established. This

prototype system will act like a management framework when working with user’s

applications. The only thing that the developers should consider is how to fit their

applicaiton into it. Moreover, since this framework aims to provide a generic solution

for different purpose (security, serving custome applications, etc.), so there will be

5

less boundaries when developers try to choose what technologies should work with

this framework. As considered to be a security system provided to users, it focues on

providing an extensible way to achieve application security and infrastructure security,

which makes developers be eligible to implement any security mechanisms and solutions

into it. As considered to be a decentralized distributed system, it is able to be resilient

and no single point of failure, so that developers can focus on developing their products

by following the rules of the system: Ki-Ngā-Kōpuku. The redundancy and availability

of applications are handled by Ki-Ngā-Kōpuku automatically.

The limitations of this research are the big research scope and limited research time.

Ki-Ngā-Kōpuku is a really big project, which requires enough time and various tech-

nologies to accomplish. It is hard to achieve the expected output within a limited time.

Moreover, the selected research methodology (Design Science) doesn’t fit this research

perfectly. As a result, another research methodology (Rapid Application Development)

is taken into this research and work with Design Science research methodology.

In general, Ki-Ngā-Kōpuku will distribute application’s components into different

network locations, and implement security mechanisms to the system. In this research,

the system architecture of Ki-Ngā-Kōpuku has been designed, some basic and critical

part of the system are also developed in ErLang programming language, such as com-

ponent distribution, and component communication. Moreover, the ideal environment

and limitations of Ki-Ngā-Kōpuku are also discussed in this research.

6

Contents

Copyright 2

Declaration 3

Acknowledgements 4

Abstract 5

1 Introduction 12
1.1 Background . 12
1.2 Vision . 13

1.2.1 Ki-Ngā-Kōpuku Basic Concept 14
1.2.2 Ki-Ngā-Kōpuku System Concept 15

1.3 Approach . 15
1.4 Research Questions & Challenges . 16
1.5 Contributions . 17
1.6 Outline . 18
1.7 Conclusion . 19

2 Literature Review 21
2.1 Introduction . 21
2.2 Cloud Computing Security . 22

2.2.1 Security Requirements . 22
2.2.2 Cloud Threats . 23
2.2.3 Security Models in Cloud Computing 24
2.2.4 Data Security in Cloud Computing 26

2.3 Distributed System . 33
2.3.1 Fault-Tolerant . 35
2.3.2 Load Balancing . 38

2.4 Decentralized System . 42
2.5 Random Distribution . 45
2.6 Conclusion . 46

7

3 Method 49
3.1 Introduction . 49
3.2 Methodology . 50

3.2.1 Design Science Research Methodology 50
3.2.2 Rapid Application Development 52

3.3 Research Design . 53
3.3.1 Research Goals . 54
3.3.2 Research Process . 54
3.3.3 Research Evaluation Criteria 56

3.4 Research Limitations . 57
3.5 Hypothesis . 59
3.6 Possible Solutions . 60
3.7 Conclusion . 62

4 System Design 64
4.1 Introduction . 64
4.2 Ki-Ngā-Kōpuku Brief Introduction . 65

4.2.1 System Features . 65
4.2.2 System Requirements . 65
4.2.3 Programming Language . 66

4.3 Ki-Ngā-Kōpuku System Design . 68
4.3.1 Ki-Ngā-Kōpuku System Cluster 68
4.3.2 Application Group . 70
4.3.3 Network Topology . 70
4.3.4 System Architecture . 71

4.4 Ki-Ngā-Kōpuku System Interface . 73
4.4.1 System Action . 74

4.5 Traffic Handler . 78
4.5.1 General Process . 78
4.5.2 Message Pattern . 78

4.6 Application Components . 81
4.6.1 Component Definition . 81
4.6.2 Component Storage . 82
4.6.3 Component Action . 84
4.6.4 Component Communication . 88

4.7 Component Distribution . 93
4.7.1 Distribution Factors . 94
4.7.2 General Distribution Steps . 95
4.7.3 Distribution Workflow . 97

4.8 Conclusion . 104

8

5 Discussion 107
5.1 Introduction . 107
5.2 Summary of Related Work . 108

5.2.1 Cloud Security Models . 108
5.2.2 Data Security in Cloud Computing 109
5.2.3 Distributed System . 110
5.2.4 Decenralized System . 112
5.2.5 Random Distribution . 113
5.2.6 Conclusion . 113

5.3 Summary of Ki-Ngā-Kōpuku System 115
5.3.1 Erlang Programming Language 115
5.3.2 System Design . 116
5.3.3 System Communication . 117
5.3.4 Application Component . 118
5.3.5 Component Distribution . 119
5.3.6 Distribution Status . 120
5.3.7 Conclusion . 120

5.4 Research Questions . 121
5.4.1 Hypothesis . 121
5.4.2 Discussion . 122
5.4.3 Conclusion . 129

5.5 Design Evaluation . 129
5.5.1 Goal Evaluation . 130
5.5.2 Environment Evaluation . 130
5.5.3 Structure Evaluation . 131
5.5.4 Activity Evaluation . 131
5.5.5 Evolution Evaluation . 131
5.5.6 Evaluation Conclusion . 132

5.6 System Limitations . 132
5.6.1 System Environment . 132
5.6.2 Server Network Interface Single-Point-Of-Failure (SPF) . . . 133
5.6.3 Distribution Times . 134
5.6.4 Malicious Components . 135
5.6.5 Communication Efficiency . 135

5.7 Conclusion . 136

6 Conclusion 138
6.1 Introduction . 138
6.2 Research Summary . 138
6.3 Future Work . 140
6.4 Conclusion . 141

Appendices 143

9

List of Figures

3.1 Rapid Application Development Methodology (Ramsoft Consulting, n.d.) 53
3.2 Hierarchy of criteria for IS artifact evaluation (Prat, Comyn-Wattiau, &

Akoka, 2014) . 56
3.3 Evaluation Criteria . 57

4.1 Ki-Ngā-Kōpuku Supervision Tree . 68
4.2 Basic Network Topology . 71
4.3 Basic System Architecture . 72
4.4 Basic Communication Architecture . 73
4.5 Brief Start Steps . 76
4.6 Traffic Handler Process . 79
4.7 Component Type Identification . 85
4.8 Component Registry Approvement . 86
4.9 Register Component via Types . 89
4.10 Component Registry Message Processing 90
4.11 Component Communication . 92
4.12 General Distribution Steps . 95
4.13 Distribution Requestor Workflow . 98
4.14 Distribution Sender Workflow . 101

10

CHAPTER : INTRODUCTION

Introduction

Literature Review

Methodology

System Design

Discussion

Conclusion

1. Background
2. Vision
3. Approach
4. Research Questions & Challenges
5. Contributions
6. Outline
7. Conclusion

Chapter 1

Introduction

1.1 Background

Currently, cloud computing is playing an important role in our daily lives. Most of

the services are moving to the cloud environment, and services are becoming increas-

ingly convenient and intelligent due to the fast development of the cloud environment.

Moreover, increasingly, companies and organisations are changing their service struc-

tures from locally based to cloud based, which are easy to manage. A number of key

characteristics of cloud computing have been identified (Zissis & Lekkas, 2012):

1. Flexibility / Elasticity

2. Scalability of infrastructure

3. Broad network access

4. Location independence

5. Reliability

6. Economies of scale and cost effectiveness

7. Sustainability

Based on the benefits from cloud computing, according to (Internet Security Threat

12

Chapter 1. Introduction 13

Report, 2017), from July to December in 2016, the average number of cloud apps

used per organization are 928, and 25% of data are broadly shared. However, the

fast-growing cloud environment also faces more problems, such as security, unstable

environment, and enormous cost. As reported from (Internet Security Threat Report,

2017), it takes only 2 minutes for an IoT device to be attacked, and the number of

attacks against Symentec honeypot per hour is 9. Even more, (Cisco 2017 Annual

Cybersecurity Report, 2017) shows 57% of security professionals concern about the

cloud environment is the target of Cyber Attacks. (Koshan, 2015) also shows web

application attacks, brute force attacks, and vulnerability scans each impact 44% of the

cloud hosting customer impact.

Having applications become distributed is a trend in current computing field, a few

of distributed computing frameworks are provided for developers, such as The Message

Passing Interface (MPI), Hadoop, and Spark (maxdml, 2017). However, some of these

frameworks can’t gurantee a stable environment for users’ applications because of its

own design. Furthermore, cloud providers, such as Windows Azure, and Amazon Web

Service (AWS), provide their own Hadoop solution as a distributed computing service

for customers, which may arise cost concern when customers start using it.

In general, efficient tools that can bring security, high availability, and redundancy

to applications are required by developers and customers.

1.2 Vision

To bring security, redundancy, and availability to user’s applications, Ki-Ngā-Kōpuku is

introduced in this research thesis. Ki-Ngā-Kōpuku is a decentralized distributed security

system, which works like a framework that can distribute application components into

different network locations, and help developers manage components in the whole

network environment without centralised controllers. Ki-Ngā-Kōpuku also implements

Chapter 1. Introduction 14

its own security mechanisms to protect any system actions related to application com-

ponents, preventing malicious operations affect the whole system. By implementing

Ki-Ngā-Kōpuku, users’ applications won’t experience single point of failure, or hard to

be being compromised.

This research thesis intends to proof the concept of Ki-Ngā-Kōpuku in both theoret-

ical and technical way, and prove the value and availability to the cloud computing and

industry environment. The concept of Ki-Ngā-Kōpuku is that distributing application

components can improve application’s fault tolerant, redundancy, and availability. In

order to proof the concept, the application component concept has to be clarified first.

Then each application component has to be able to be replicated and distributed to

different places. After that, each component should work properly, and multiple replicas

of each component should exist in the whole network. The most important part is that

when a component fails, its replica can take over the task and carry on the computation

task.

To better understand what Ki-Ngā-Kōpuku is, the next two subsections describe the

theoretical backup concept of Ki-Ngā-Kōpuku, and also the concept that directs in the

system development.

1.2.1 Ki-Ngā-Kōpuku Basic Concept

The idea of Ki-Ngā-Kōpuku comes from a distributed security model which is first

addressed in Litchfield, Ahmed, and Sharma (2016). The addressed distributed security

model illustrates one distributed security system which has great fault-tolerant ability

and scalability by achieving random component distribution in the whole network.

In real life, a system is less prone to successful attack if it is hard to discern and

difficult to take down. It is also a tough task for a system to perform online repair while

it is being attacked. As a result of that, Ki-Ngā-Kōpuku focuses on maintaining stability

Chapter 1. Introduction 15

and performance of the overall system. To do that, the architecture is decentralized

(avoiding single-point-of-failure problem), distributed (improving system performance

and reducing computation resources pressure), highly redundant (meaning that failure

problems of any part of the system won’t affect the rest of the system), and components

are randomly distributed (meaning that the system configuration is hard to discern).

1.2.2 Ki-Ngā-Kōpuku System Concept

As mentioned in the previous subsection, Ki-Ngā-Kōpuku is decentralized, and applying

its own mechanism to distribute components to achieve the system goal. To bring this

concept into production, the component mentioned in the concept will be application

components, so that users can provide application’s components to Ki-Ngā-Kōpuku, and

it is able to randomly distribute application’s components to make sure the redundancy

of user’s applications.

In general, using Ki-Ngā-Kōpuku can create multiple replicas of application’s

components in the network environment, therefore, applications won’t have single-

point-of-failure problems because if one component fails, then there will be another

active component running. Moreover, security mechanisms implemented with in Ki-

Ngā-Kōpuku is able to secure communication data between different components, and

data that stored in network locations.

1.3 Approach

To develop a system that provides security, redundancy and availability to users’ appli-

cations, the cloud environment is studied first. This includes the cloud infrastructure,

cloud security issues, and existing cloud solutions. Then, distributed and decentralised

systems are studied because Ki-Ngā-Kōpuku is supposed to be designed as a distributed

system with decentralised system features. After that, Erlang programming language is

Chapter 1. Introduction 16

chosen to develop Ki-Ngā-Kōpuku. The reason for choosing Erlang as the development

language is its value for the distributed system, and its usefulness for dealing with

massive concurrency traffic. On top of that, users are required to undertake appli-

cation componentisation before importing applications into Ki-Ngā-Kōpuku. After

that, Ki-Ngā-Kōpuku can replicate application components and distribute components

into different locations. Thus, it is possible for one application component to have

multiple replicas in the network, and each component replica can serve application

users, which gives applications redundant ability and high availability. For providing

security to user’s applications, encryption algorithms for transmission data, and data

security architectures should be imbedded into Ki-Ngā-Kōpuku.

The Design Science Research (DSR) methodology is applied to the whole research

process. Application domains are identified firstly, then relevant literature research

fullfills the knowledge base of this project. After that, based one the existing knowl-

edge, Ki-Ngā-Kōpuku system modules are developed. For developing Ki-Ngā-Kōpuku

technically, the Rapid Application Development (RAD) methodology is chosen to be

used. Problems and new findings coming from system development process is reflected

to DSR, and being used in the evaluation process in DSR.

1.4 Research Questions & Challenges

The following are the research questions proposed in this research:

1. How to improve security among components?

2. How to design a component distribution mechanism to distribute components

into several servers?

3. How to maintain communication between components which are located on

different servers?

Chapter 1. Introduction 17

There are several challenges to researching the approach; these include:

1. How to use Erlang to design a distributed system?

2. How to address theoretical and technical gaps?

3. How to define replicas of application components in Ki-Ngā-Kōpuku?

4. How to make application components work as a whole application when each

component is in different locations?

5. How to provide redundancy and availability to users’ applications?

6. How to provide security mechanisms to user’s applications?

Some challenges, such as using Erlang to design a distributed system, can be met

with existing solutions such as using Erlang OTP design principles and nodes features

to design an Erlang-based distributed system. However, while using one programming

language, we still have to solve language problems. This paper also represents proof

of concept research, which is based on existing theoretical models, so sometimes

the current chosen technology tools are not able to achieve theoretical goals, and the

research result is limited by the author’s technical skills level or the overall project

scope.

This research addresses the above challenges to move closer towards proving the

concept and bringing the project to life.

1.5 Contributions

This research makes three contributions.

Firstly, This research proves the feasibility of Ki-Ngā-Kōpuku and its basic concept

in both theoretical and technical way. Ki-Ngā-Kōpuku is based on a distributed security

system which is proposed in Litchfield et al. (2016). The distributed security system

uses component distribution to achieve redundancy and availability, which is totally

Chapter 1. Introduction 18

new to the cloud computing. In this research, the concept of the distributed security

system and Ki-Ngā-Kōpuku are both proofed.

Secondly, this research designs Ki-Ngā-Kōpuku which is a decentralized distributed

security framework for user’s applications. It uses the distribution features of Erlang

programming language to build up multiple self-manageable nodes, and group each

Ki-Ngā-Kōpuku node to form a stable environment for user’s applications. Each

Ki-Ngā-Kōpuku node is able to exchange information with other nodes or its applica-

tion components, and, for redundancy purpose, it can randomly distribute application

components to other Ki-Ngā-Kōpuku nodes in different network locations. By using Ki-

Ngā-Kōpuku, application components are replicated and randomly distributed among

the network, which brings redundancy, availability and reliability to user’s applications.

Thirdly, this research proposes using Linux ssh and rsync tools to transfer compiled

code files to different network locations for achieveing component distribution in Ki-

Ngā-Kōpuku. The hash value of compiled code files will be checked to ensure the

integrity.

1.6 Outline

The remainder of this research thesis is organised as follows:

Chapter 2 presents related work and overall background research for this thesis. This

includes the cloud environment background, fault-tolerant technologies implemented

in the cloud, cloud security issues, distributed systems, decentralised systems, and the

theory that supports this research.

Chapter 3 describes the two research methodologies used in this research. One is

the design science research methodology. Another is the rapid application development

methodology, which is used for the technical aspects of the project. This chapter also

proposes hypotheses related to the research questions and corresponding solutions.

Chapter 1. Introduction 19

Chapter 4 introduces details of Ki-Ngā-Kōpuku, which include the system design,

system architecture, system actions, and system behaviours.

Chapter 5 is the discussion chapter, which discusses the major findings in chapter 4,

literature review in chapter 2, and whether or not these findings can help solve research

questions and prove the hypotheses. Moreover, contributions of this research thesis,

system limitations and problems are also mentioned in this chapter.

Finally, Chapter 6 summarises this research, and discuss extensions and future work.

1.7 Conclusion

This chapter has described the purpose of this research, the concept of Ki-Ngā-Kōpuku,

approaches to achieve the system goals in both theoretical and technical ways, chal-

lenges that might have during the research, and contributions to the existing knwoledge

body.

To find possible solutions to research questions and challenges, the next chapter 2

has done the research on multiple related articles including cloud computing security,

distributed system, decentralized system, and component distribution.

CHAPTER : LITERATURE REVIEW

Introduction

Literature Review

Methodology

System Design

Discussion

Conclusion

1. Introduction
2. Cloud Computing Security
3. Distributed System
4. Decentralized System
5. Random Distribution
6. Conclusion

Chapter 2

Literature Review

2.1 Introduction

In chapter 1, background of Ki-Ngā-Kōpuku and challenges are discussed briefly. As

described before, Ki-Ngā-Kōpuku is based on one newly proposed system concept,

which has no related models or productions invented before, so all aspects of Ki-Ngā-

Kōpuku are researched for theoretical backup and seeking the success in technical

achievement.

In this chapter, section 2.2 describes the security mechanisms in the cloud computing,

and security solutions that are implemented in the cloud environment. In section 2.3,

distributed system is studied, especially the common techniques that are used in the

distributed system. Decentralized system is studied in section 2.4. In section 2.5, related

distribution design and techniques are discussed. The last section 2.6 gives an overall

conclusion of all contents mentioned in this chapter, and research questions are also

proposed in this section.

21

Chapter 2. Literature Review 22

2.2 Cloud Computing Security

This section describes the security of the cloud environment, including security require-

ments, security threats, security models, and data security.

Cloud computing is an advanced technology and its popularity makes it a target

of network attacks. In that case, the security of cloud computing has to be researched

in several aspects, such as security requirements, network attacks, resolutions for

network attacks, and also security models implemented in the cloud environment. By

researching the current security situation for cloud computing, Ki-Ngā-Kōpuku is able

to use advantages of existing security solutions, and also find possible ways to deal with

drawbacks of current cloud environment.

2.2.1 Security Requirements

Cloud computing is one popular technology that people commonly use in daily life.

For developing systems on cloud environment, security requirements must be clarified

in the first place for setting up minimal goals for the future system development. The

security is the main factor in cloud environment. There are six security requirements

(Lombardi & Di Pietro, 2011):

Identification and Authentication Assurance of identity of person or originator of

data.

Authorization Unauthorised persons can’t reach data.

Integrity Maintaining and assuring data consistency and accuracy.

Non-repudiation Originator of communications can’t deny it later.

Availability Legitimate users have access when they need it

Access Control Legal users can be authorized by the owner to access the data.

Furthermore, identification, authentication, and authorization (IAA) is represented

Chapter 2. Literature Review 23

as the cyclic security principles applied to service provisions, transactions and almost

every action (Chang, Walters, & Wills, 2015).

Lombardi and Di Pietro (2011) has clarified the security requirements of cloud

computing. Each of the system requirement leads the direction of each security solutions.

As for Ki-Ngā-Kōpuku, the above six security requirements should all be satisfied,

especially identification and authentication, integrity, and availability. Having the

identification and authentication requirement satisfied can reduce malicious users.

Integrity and availability are also the features that Ki-Ngā-Kōpuku must have.

2.2.2 Cloud Threats

After knowing what the security requirements the system must achieve, threats to the

cloud environment have to be analyzed as well. Moreover, the cloud security protection

is based on security issues in the Cloud Service Delivery Models (Fernandes & Soares,

2014),so that different security solutions are implemented according to different models.

The three delivery service models are the Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), and Software as a Service (SaaS).

Indeed, normal cloud computing architecture will cause a lot of security problems.

The Service Provider (SP) uses the resources provided by the Cloud Provider (CP),

which leads to Service Users (SU) and SP have no physical control over cloud servers

(Lombardi & Di Pietro, 2011). Possible attacks against the cloud system can be

classified as follows (Smith et al., 2006):

1. Resource attacks against CPs

2. Resource attacks against SPs

3. Data attacks against CPs

4. Data attacks against SPs

5. Data attacks against SUs

Chapter 2. Literature Review 24

Dan, Michael, et al. (2010) also mentioned seven top threats to cloud computing:

1. Abuse and nefarious use of cloud computing

2. Insecure interfaces and APIs

3. Malicious insiders

4. Shared technology issues

5. Data loss or leakage

6. Account or service hijacking

7. Unknown risk profile

Security protection methods can be different according to different service delivery

models. IaaS is the bottom model which provides VMs to customers. Firewalls,

Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Load

Balancing are the basic security protection methods for IaaS. Instead, Virtual Machine

Monitors (VMMs) is the critical component in cloud computing (Fernandes & Soares,

2014). The VMMs should be isolated from VMs. Moreover, Anything-as-a-Service

(XaaS) is also one important part of service delivery model, but the security methods

depend on what exactly the content of XaaS is.

The above literature all listed threats to cloud computing. However, there is one

point that haven’t take into consideration, which is the cloud providers itself. As

described before, only cloud providers have the access to hardware resources, so there is

no access limitation to cloud providers. As a result, users should put the cloud providers

to untrusted party.

2.2.3 Security Models in Cloud Computing

In this section, cloud security models and other general security methods are discussed.

There are four cloud computing security models analyzed in Che, Duan, Zhang,

and Fan (2011): the Cloud Multiple-Tenancy Model of NIST (Brunette, Mogull, et al.,

Chapter 2. Literature Review 25

2009), the Cloud Risk Accumulation Model of CSA (Brunette et al., 2009), Jericho

Forum’s Cloud Cube Model (Formu, 2009), and the Mapping Model of Cloud, Security

and Compliance (Brunette et al., 2009). Cloud Multiple-Tenancy Model of NIST

allows multiple applications share the same computing resources, such as processes,

storage, and memory. However, the technology difficulties of multiple-tenancy model

are data isolation, architecture extension, configuration self-definition, and performance

customization. The Cloud Risk Accumulation Model of CSA is a layer dependent

model, which is consisted of SaaS, PaaS, and IaaS. SaaS is built on PaaS, and IaaS is

the foundation of PaaS. As described in this research paper (Che et al., 2011), the lower

service layer that a cloud service provider lies in, the more management duties and

security capabilities that a customer is in charge of. As a result of that, this model doesn’t

guarantee the security on the cloud environment because it requires cloud providers and

customers to make up the security gap in some circumstances. Jericho Forum’s Cloud

Cube Model is a description of security attributes information implied in the service

and deployment models of cloud computing and the location, manager and owner of

computing resources and so on. On the other hand, Jericho Forum’s Cloud Cube Model

uses multiple parameters to define the security level of cloud services in theoretical

level (Formu, 2009). The Mapping Model of Cloud, Security and Compliance (Brunette

et al., 2009) presents a good method to analyze the gaps between cloud architecture and

compliance framework and the corresponding security control strategies. In general,

the above four security models can be applied to evaluating the security level of cloud

computing, and providing basic techniques to cloud development. The above four

cloud computing security models have analyzed cloud security in multiple perspectives.

However, there is no single model which combines these four security models, so that

users can get all security information by applying one single model. Besides, (Che

et al., 2011) also lacks experimental analysis or evaluation to each cloud computing

security model.

Chapter 2. Literature Review 26

Jing and Jian-jun (2010) introduced one security concept called Security Access

Control Service (SACS). It includes Access Authorization, Security API, and Cloud

Connection Security. User’s identification is verified in Access Authorization layer;

Security API keeps users use specific services safely after accessing to the cloud; Cloud

Connection Security ensures the safety of resources provided by the bottom resource

layer. In this case, the Access Authorization is located on the top of service layer,

Security API lies between SaaS and PaaS in service layer, and Cloud Connection

Security is placed between service layer and resource layer. This security model is ideal

for the cloud computing because it provides three security layers and can have more

stable performance. The SACS described in Jing and Jian-jun (2010) considers cloud

security from higher level to lower level. However, only Security APIs can be used

by users will not only limit system scalability, but also put more pressure on API key

management. Furthermore, authors didn’t consider API abuse and malicious usage can

also harm the system, so monitoring user activities should be placed in this model. On

the other hand, Cloud Connection Security may limit backend response time due to

security check to both user identification and requested data.

2.2.4 Data Security in Cloud Computing

In this section, data security in cloud computing is discussed. Data security is the crucial

part of cloud computing, as described in Sathyanarayana and Sheela (2013), data security

becomes more important when using cloud computing at all "levels": IaaS, PaaS, SaaS.

Furthermore, data security is the key component to ensure the popularity of cloud

computing (Xin, Song-qing, & Nai-wen, 2012). Data can be divided into three types

(Chang et al., 2015; “Enhanced data security model for cloud computing.”, 2012): data at

rest (storage data), data in transit (transmission data), and data in processing (processing

data). For securing various types of data in the cloud environment, cloud providers use

Chapter 2. Literature Review 27

symmetric encryption to encrypt data in storage, homomorphric encryption to encrypt

processing data, and secret socket layer to encrypt transmission data. However, two

issues about data security were issued in Mackay, Baker, and Al-Yasiri (2012):

1. The data encryption technology might affect the service performance

2. The security of shared resources

The above issues show the necessary to design efficient data encryption technology

that cost few computing resources. However, data encryption and decryption don’t

consume too much resources, and the need for encrypting and decrypting data is not so

frequent, so the first issue mentioned in Mackay et al. (2012) won’t happen in common

scenarios, which don’t have so many data interaction. The second security issue of

shared resources is really important. Protecting shared resources is efficient to gurantee

data availability and data integrity. But restricting resources to be shared can reduce the

security risk from the source.

Security for Data-at-rest

Chen and Zhao (2012) describes three security aspects that should be considered

for the data stored in cloud storage: confidentiality, integrity, and availability. Data

encryption is the common solution for data confidentiality. However, encryption al-

gorithms, key strength, and key management have to be considered. Data integrity is

challenged while users and cloud servers process massive data in the cloud storage. Data

availability is limited by cloud services and providers because the cloud environment is

not guaranteed to be safe and stable.

Data at rest normally means the data that is stored in a readable form on a cloud

computing service (Sedayao, Su, Ma, Jiang, & Miao, 2009). This article also proposed

using public key encryption to insure the confidentiality of data at rest. Its method is

using a trusted collection agent’s public key to encrypt data in memory layer, so that

encrypted data is stored in storage. Once processes fetch encrypted data at rest, processes

Chapter 2. Literature Review 28

use trusted collection agent’s private key to decrypt data. The method mentioned in this

article can protect data in some ways, but it requires some preconditions to be met in

order to achive data security. First of all, no snoop on memory content. If the original

data in memory layer is modified by hackers before processes fetching, then this method

won’t work. Second precondition is that those trusted collection agents must be secure.

If the private key of colleciton agents leaked out, then the data won’t be secure. The

third condition must be met is that hardware must have perfect performance. Everytime

one process fetch the data, it always require keys to do encryption and decryption,

which is a great pressure on CPU and I/O.

Wang, Wang, Ren, and Lou (2010) introduced a Third Party Auditor (TPA) which

enables public auditability for cloud data storage. TPA combines the public key based

homomorphic authenticator with random masking to audit the cloud data storage without

bringing any burden to cloud services and users, and user data privacy is also guaranteed.

Four algorithms (KeyGen, SigGen, GenProof, VerifyProof) are implemented in public

auditing scheme. KeyGen is run by the users to setup the scheme. SigGen is used by the

users to generate signatures. GenProof is used by the cloud servers to proof data storage

correctness. VerifyProof is run by the TPA to audit the proof from the cloud server. By

using this public auditing scheme, user’s identification, data correctness, and auditing

progress can be guaranteed. Yang and Jia (2013) introduced one improved privacy-

preserving auditing protocol of the protocol in Wang et al. (2010). The improved

protocol applies the Data Fragment Technique and Homomorphic Verifiable Tags in

the method. Since the data fragment technique can reduce number of data tags, so that

the performance is improved. Homomorphic Verifiable Tags is used to make the server

only responses the sum of data blocks and the product of tags to the auditor, whose data

block size is constant, so that the communication cost is reduced. Wang et al. (2010);

Yang and Jia (2013) didn’t mention much about the data availability within a specific

time. In general condition, security mechanisms will get different results in different

Chapter 2. Literature Review 29

time in order to be unpredictable. However, the above algorithms didn’t take time into

consideration.

Data segregation is the main security issue for data at rest in cloud computing

Brodkin (2008). Data segregation means data from different users may be stored in

the same hard disk So (2011). Since data storage is shared, so problems of one set of

data may affect other unrelated data that located in the same storage. Encryption is

effective in protecting data, but cloud providers should provide evidence to users, and

encryption schemes should be designed and tested by experienced professionals Singh

and Chatterjee (2017).

Security for data in transit

Securing data using encryption technologies while transforming in the network is

important in cloud computing. As proposed in Sreenivas, Narasimham, Subrahmanyam,

and Yellamma (2013), an encryption algorithm is a statistical procedure used to encrypt

data. As proposed in Ahmad and Habib (2010), symmetric encryption shares single key

between sender and receiver to encrypt and decrypt data, and asymmetric encryption

uses two keys, public key and private key between sender and receiver to encrypt and

decrypt data. Abhishek and Yadav (2013) addressed symmetric key encryption is effi-

cient for encrypting large amount of data. Example: Data Encryption Standard (DES),

Triple DES (3DES), Advanced Encryption Standard (AES), and Blowfish. Asymmetric

key encryption is slow and generally used for protecting the symmetric key. Example:

RSA, Digital Signature Algorithm (DSA), and Diffie-Hellman. Furthermore, symmetric

encryption algorithm runs faster and spend less memory than asymmetric encryption

algorithm (Agrawal & Mishra, 2012). The difference between symmetric encryption

and asymmetric encryption metioned in Abhishek and Yadav (2013), in fact, based on

different applications. Applcations which require frequent interaction is recommended

to use asymmetric encryption. Symmetric encryption can also encrypt data really well,

but it requires advanced key distribution techniques to secure keys. (Agrawal & Mishra,

Chapter 2. Literature Review 30

2012) analyzed the performance of symmetric encryption algorithms, but it lacks of the

performance comparison between symmetric encryption algorithms and asymmetric

encryption algorithms. It also don’t have an evaluation plan for testing algorithms

performance.

People prefer using strong encryption method to protect data in the public envi-

ronment. Mouhib and Driss (2015) presents a framework using traditional encryption

schemes (symmetric, asymmetric) and homomorphic encryption schemes (SHE and

FHE). If users choose traditional encryption schemes, the cloud provider can use cus-

tomer’s private key to decrypt data and send it to customer. When homomorphic

encryption is chosen to be used, the cloud provider will send the encrypted data to

customer, and customer will decrypt the message. In Bansal and Singh (2015), a hybrid

data encryption technique is developed. The hybrid encryption technique combines the

process of RSA and blowfish to provide symmetric and asymmetric cryptography. As a

result, it can use small key and execute really fast to provide uncrackable data due to

the advantages of RSA and blowfish.

Khan, Mishra, Santhi, and Jayakumari (2015) has also developed an encryption

technique that combines three encryption techniques: Fibonacci Series, XOR Cipher,

and PN Sequence. The encryption technique uses segmenting key to split data into

three parts, and different part uses different encryption techniques to encrypt, so that

three encrypted result are generated. The same segmenting key is required in decryption

process. Instead of combing multiple encryption schemes together, Ratha, Swain,

Paikaray, and Sahoo (2015) propose an encryption technique using an arbitrary matrix

with probabilistic encryption. It converts each value of the text file into a matrix,

and multiply with another random matrix to generate encryption key. Encryption and

decryption process use the generated encrypt key and data block. Multiple keys are

generated for a single data block by modifying the arbitrary matrix. Unruh (2015)

introduce the revocable quantum timed-release encryption and unknown recipient

Chapter 2. Literature Review 31

encryption method that allows the sender to get back the encrypted data before the

time T, and the encrypted data can’t be leaked before time T. Moreover, the unknown

recipient encryption allows users to send message to an unknown/unspecified recipient

over an insecure network. Kocarev and Tasev (2003) propose a public key encryption

algorithm based on Chebyshev maps. It generates one large integer and one random

number from -1 to 1, then calculate the Chebyshev value of random number as the

public key to encrypt data, and use large integer as the private key to decrypt data.

Evaluating the performance of each encryption algorithms is very important. In

Nadeem and Javed (2005), DES, 3DES, AES (Rijndael), and Blowfish algorithms were

chosen to be compared. The research used Java language as the platform, and execution

time as the main comparison metric. The result is slightly different when dealing with

block ciphers and stream ciphers. The performance results for block ciphers are shown

as follows: 1. Blowfish (fastest), 2. DES, 3. AES, 4. 3DES (slowest). For stream

ciphers, Blowfish is still the fastest, but 3DES is faster than AES. RSA, SHA1, and

MD5 are also encryption technologies commonly used. As a result of that, Blowfish is

an effective encryption algorithm as compared to other three algorithms. Sreenivas et

al. (2013) get the result that RSA is a great encryption algorithm, which can generate

more secure data and cost less time when uploading files on Windows Azure. Ratha et

al. (2015) propose an optimized encryption technique using an arbitray matrixis, and

also compared with DES, AES, and Blowfish. The execution time and throughout (in

KB/sec) is better than DES and AES, but blowfish has better performance than the

proposed encrypt technique.

Since the concept of public key encryption was proposed, key management has

become important problem to consider. The key management is an important component,

and is often used in any modern cryptographic protocol Shaheen, Yousaf, and Majeed

(2015). It is the management of cryptographic keys in cryptosystem, which deal with

key generation, key exchange, key storage, key usage, and key replacement.

Chapter 2. Literature Review 32

In Pradeep and Vijayakumar (2015), different states for keys were mentioned. These

states are: Generation, Activation, Suspension, Expiration, Destruction, and Archival.

In the generation state, key pair is rendered. In the activation state, private or public key

can be activated under specific conditions. If the status of key is unknown, or the owner

of the key is not recognized, the key will be suspended in the suspension state. If the

key is setup with crypto period, the key will be expired in the expiration state. When

the key is not used, it will be demolished in the destruction state. In the archival state,

key is archived after crypto process.

For securing the data in cloud computing environment, Xin et al. (2012) introduced

the Cloud Computing Multi-Dimension Date Security model (CCMDSM) which uses

three layers protecting data. These three layers are Authentication layer, File encryption

and privacy protection layer, and File Fast Regeneration layer. The authentication layer

is used to authenticate user by permissions or digital certificates. The second layer

is designed to encrypt users’ data, and the third layer is used to recover files. When

intruders attempt to access users’ files, the files will be locked and protected by privacy

protection layer.

Furthermore, in “Enhanced data security model for cloud computing.” (2012), one

data security model with three layers similar with CCMDSM is introduced. This model

consists of OTP authentication located in layer 1, data encryption, integrity, and private

user protection in layer 2, and data fast recovery in layer 3. Instead, eight encryption

algorithms were tested and evaluated to get the most appropriate algorithm in Amazon

EC2 environment by using the security model. Eight encryption techniques namely

RC4, RC6, MARS, AES, DES, 3DES, Two-Fish, and BlowFish. The evaluation is based

on Statistical Tests. Moreover, P-value, rejection rate and time consuming are the three

important metrics in comparison. The result shows the AES encryption technology is

suitable for Amazon EC2 users with the lowest P-value and less encryption/decryption

consuming time.

Chapter 2. Literature Review 33

An authentication framework for Peer-to-Peer (P2P) cloud is addressed in Poh et

al. (2013). The authentication model includes one security model and three phases of

authentication. It assumes three entities in a P2P cloud system: users, resources hosts

and trusted third party. On top of that, entity authentication and data origin authentica-

tion are the two main authentication requirements. Three phases of authentication are

designed to meet the main authentication requirements. Bootstrapping Authenticated

Users and Hosts is the first authentication phase which uses public key registration and

symmetric key predistribution to authenticate users. Authenticated Routing, which is

the second phase, uses digital signatures and MAC-based authentication to authenticate

hosts. The third phase is the Authenticated Message Delivery, which implements signa-

ture with freshness token, MAC-based authentication token to ensure the authenticity

of request message.

2.3 Distributed System

In this section, distributed system and techniques are discussed.

Distributed systems, cluster computing, and utility computing are relevant technolo-

gies to cloud computing (Khorshed, Ali, & Wasimi, 2012). The distributed system can

be represented as one single system to users, but it has several computers connected

together in different networks or physical regions. Two most well-known paradigms

for distributed systems are clusters and grids (Fernandes & Soares, 2014). Clusters are

designed in a more coupling and homogeneous approach with more power consumed,

and grids consisted of typical machines work as slave computation node. The distributed

systems have made cloud computing possible to offer storage resources and powerful

processing ability with scalability as an on-demand service (Mackay et al., 2012). When

dealing with large scale applications, using distributed systems is also a great solution

to deal with huge volume of data (Hamdeni, Hamrouni, & Charrada, 2016).

Chapter 2. Literature Review 34

However, it is hard to build and test distributed systems because of partial failure

and asynchrony (Mccaffrey, 2016). Partial failure is the idea components can fail along

the way, resulting in incomplete results or data. Asynchrony is the nondeterminism

of ordering and timing within a system. Centralized systems have less scalability

than distributed systems in system expansion, but when dealing with the state changes

and policy changes, the centralized system is a good choice (Jain & Paul, 2013).

Moreover, the distributed system has several problems and limitations. Mishra and

Tripathi (2014) introduces three types of distributed systems: distributed software &

hardware, distributed user, and distributed software hardware & user. This article

also mentions issues and challenges of distributed software system, such as resource

management, security and privacy, scalability, synchronization, and redundant testing

during integration. In Afek (2013), more problems and issues are listed, such as atomic

commit, atomic broadcast, and race condition. An atomic commit is an operation

that applies a set of distinct changes as a single operation. An atomic broadcast is an

operation that multiple processes deliver the same message in the same order. A race

condition is the behaviour that output is dependent on the sequence or timing of other

uncontrollable events.

Users various requirements are motivating the system to become reliable, flexible,

and extendable. The distributed system should be able to save users’ data, keep the

interactions stable, and be always available to users (Mittal, Sangani, & Srivastava,

2015). Instead, the data processing ability is also another important metric to measure

whether the system is good or not. However, cloud environment is very complex with

multiple components, it finds really hard to evaluate and predict the system performance.

To have a deep learning about the reliability of distributed systems, Ahmed and Wu

(2013) presents several models classified into three categories: User Centric, Architec-

ture, and State based models. User centric approaches can be characterized as a multi

stage problem solving processes where system is conceived in terms of user behavior.

Chapter 2. Literature Review 35

Measuring user’s behaviour and usage profile of the system can avoid difficulties in

measuring complex systems. Architecture based approaches predict reliability at de-

sign phase in a Service Oriented Architecture (SOA). It uses data sharing approach to

predict reliability for similar users and services based on past experience. State based

approaches use Markov chain process to record transition from one state to another

state. Various models use Markov chain to predict reliability according to the success

rate or failure rate of each independent service. However, (Ahmed & Wu, 2013) also

notify deficiency in these models: 1) Not all reliability factors are considered. 2) They

have considered hardware failure as an important factor, but reliability of software

application is ignored.

The following section describes some useful technologies used in distributed systems

to enhance reliability and availability.

2.3.1 Fault-Tolerant

This section discuss fault-tolerant techniques used in the distributed system to improve

the reliability of distributed systems.

Fault detection techniques play an important role in maintaining the health of

a system. To achieve fault-tolerance, a distributed system architecture incorporates

redundant processing components (Cristian, 1991). As stated in Sari and Akkaya (2015),

replication is used for general fault tolerance method to protect against system failure.

There are three major replication mechanism forms: The State Machine, Process Pair,

and Roll Back Recovery. In the state machine mechanism, the process state of the

system is replicated on autonomous system, and the input is sent to several replica

nodes at the same time. The process pairs mechanism has a structure of master and

slave. The master and slave is linked together and the master will send the same input

to the slave. The roll back recovery is a check-point based mechanism, which can

Chapter 2. Literature Review 36

use the check-point as a backup for the previous state. On the other hand, replicating

data in diverse locations can increase fault tolerance, data reliability, availability, and

accessibility (Hamdeni et al., 2016).

In order to design effecient fault tolerant system, Carlini, Ricci, and Coppola (2013)

propose an architecture for Distributed Virtual Environment (DVE) integrating cloud

and peer nodes to provide fault-tolerant for the P2P network. The architecture introduces

a new kind of replica called backup Virtual Server (bVS). The bVS is located on servers

that reside on the cloud, and it is used to backup data in peer servers. Peer servers

are located in the P2P network. When peer servers encounter severe problems and

cannot return to normal states, the bVS can detect the abnormality in peer servers, and

change user connections to itself. This new architecture uses bVS to provide reliability

to the system, but it assumes cloud nodes are absolutely save and secure. However,

security of cloud resources cannot be guaranteed. Borg, Baumbach, and Glazer (1983)

introduce a message system supporting fault tolerance via using back process for each

primary process. A primary process is a process which receives from and send to

messages to users. For achieving fault tolerant message system, a backup process

get replicated data from a primary process, so that the backup process can resume

the computation once its primary process is down. Using backup process as the fault

tolerant solution is acceptable, however, a primary process has to synchronous data to a

backup process, therefore extra resources are consumed while processing messages in

the system because of the data synchronous operation in processing.

Apart from using replication mechanism to provide fault-tolerant, Smara, Aliouat,

Pathan, and Aliouat (2016) propose a fault detection technique that uses acceptance test

in the action verification process, and build Fail-Silent cloud module. The Fail-Silent

cloud module has the ability to do self-fault detection, and self-block after detecting

fault situation. This module is based on component-based models, which uses the

Behaviour, Interaction, Priority (BIP) tool, and the Acceptance Test is used as the

Chapter 2. Literature Review 37

Self-Fault Detector. Moreover, the Fail-Silent system can provide the correct service,

or block any services if fault situation is detected. For example, when the component

receives one operation to make change, it will get the result and send the result to

the Acceptance Test to verify the result, if the result is acceptable, the change will be

saved and move to the next step, if the result is unacceptable, the change will not be

saved, and the previous state will be retrieved, after that, the module will block the

component to make sure it won’t affect other components. Using acceptance test is

effective in avoiding failures in the system, but more computing resources are required

in the process, and it affects the response time when processing synchronous requests

because of evaluation the acceptance of the result.

Instead of software or hardware problems causing system failures, message deliver-

ing problems can also cause system failures. Moser, Melliar-Smith, Agarwal, Budhia,

and Lingley-Papadopoulos (1996) propose a fault-tolerant multicast group communica-

tion system called Totem. Totem is an ordered multicast group communication system

which deals with problems in process message delivery within distributed systems.

This system ordered the sequence of each message, and process messages according

to sequence numbers. Within the Totem system, two protocols are used to manage the

sequence of messages: Single-Ring Protocol, and Multiple-Ring Protocol. In Single-

Ring Protocol, the system links several processes to a single circle, then it assigns a

special token to one process, after that the process is allowed to send multicast message

to the local area network (LAN). After the process finishes the message delivering task,

the Totem system will pass that special token to another process and allow it to send

multicast message later. The Multiple-Ring Protocol is providing the same service

as the Single-Ring Protocol, but it is operated over multiple LANs interconnected by

gateways, and it brings two reliable totally ordered message delivery services: agreed

delivery, and safe delivery. The agreed delivery services guarantee that, when a proces-

sor delivers a message, it has already delivered all prior messages. The safe delivery

Chapter 2. Literature Review 38

service guarantees, that before a processor delivers a message, it has determined that

every other processor in its current configuration has received the message. The Totem

system enables applications in distributed systems maintain the consistency of replicated

information by providing totally ordered multicasting message. However, it is useful

only when the system focuses on asynchronous messages. Moreover, the Totem system

uses the user datagram protocol (UDP) to send multicast message, so that the ideal

network environment is the LAN, which causes the working environment of the system

is limited.

In general, computers cannot achieve the intended reliability without redundancy

(Lyu et al., 1996). Software and hardware redundancy techniques are commonly used

in building up fault tolerant distributed systems. Most of fault tolerant techniques are

replicating data from the primary part to the backup part. However, the replication pro-

cess security is not mentioned in these articles, and no effective replication methods are

introduced. Furthermore, fault tolerant techniques, which are applied in asynchronous

systems are limited because of process failures.

2.3.2 Load Balancing

This section discusses Load Balancing (LB) techniques in distributed systems to improve

availability of services and system performance.

LB is designed to monitor traffic load of services and implement load balancing

algorithms to spread the input or output pressure on each server. LB is often used to

monitor service components continuously and redirect traffic when service components

become non-responsive (Xu, 2012). In cluster computing, LB technology is used on

high-traffic websites (Hussain et al., 2013). In Patel, Tripathy, and Tripathy (2016),

four basic steps of load balancing process in Grids are mentioned: Load Monitoring

Chapter 2. Literature Review 39

(Monitoring resource load and state), Synchronization (Exchanging load and state infor-

mation between resources), Decision Making (Calculating the new work distribution

and making work moment decision), and Job Migration (Data movement). In general,

the goals of load balancing (Escalnte & Korty, 2011) are to: 1) Improve the performance.

2) Maintain system stability. 3) Build fault tolerance system. 4) Accommodate future

modification.

Two types of load balancing algorithms (Desai & Prajapati, 2013) are static algo-

rithm and dynamic algorithm. In static algorithm the traffic is divided evenly among the

servers. The load balancing layer requires prior knowledge of server resources, so that

each server can get the same traffic without difference. In dynamic algorithm the server

with the lowest pressure in the whole network is preferred for balancing a load.

Shah and Farik (2015) point out strengths and weaknesses of static load balancing

algrithms, such as Round-Robin, Weighted Round-Robin, Opportunistic Load Bal-

ancing (OLB), Min-Min, and Max-Min algorithms. The round-robin algorithm uses

round-robin scheme for allocating jobs (Desai & Prajapati, 2013). It selects the first

node randomly and then allocates jobs to all other nodes in a round robin fashion. As

each task is assigned to processors on each node, so there is no starvation. However,

the processing time of each processor is different, which makes some nodes become

heavily loaded while others remain idle and under-utilized. Weighted round-robin

assigns a weight to each server (Khiyaita, Bakkali, Zbakh, & Kettani, 2012), so that

the server with the highest weight will receive more tasks. If the same weight value

is assigned to each server, then all servers will receive balanced traffic. Opportunistic

Load Balancing attempts to keep node busy. It does not consider the execution time of

each server, which cause OLB assign tasks to random available nodes regardless of the

node’s current workload (Khiyaita et al., 2012). Min-min and Max-min load balancing

algorithms are similiar, which calculates the execution time of all tasks and assign the

minimum or maxium time cost task to the corresponding server (Gupta & Sanghwan,

Chapter 2. Literature Review 40

2015). The above static load balancing algorithms are useful in common situation, but

each of them lacks the comprehensive design when dealing with traffic load and server

states such as task execution time, server’s availability, and server’s performance.

As described in Alakeel (2010), the advantage of dynamic load balancing algo-

rithms is that tasks can move dynamically from an overloaded server to an unoverloaded

server according to the current state of the system. However designing and imple-

menting dynamic load balancing algorithms is much more complicated and harder

than implementing static load balancing algorithms. Milani and Navimipour (2016)

discusses several popular dynamic load balancing algorithms: Tasked-based load bal-

ancing method (Ramezani, Lu, & Hussain, 2014), Honey bee behaviour inspired load

balancing (LD & Krishna, 2013), Enhanced bee colony algorithm (Babu & Samuel,

2016), Agent-based load balancing (Gutierrez-Garcia & Ramirez-Nafarrate, 2015), and

etc. A more comprehensive analysis to dynamic load balancing algorithms can be

seen in Milani and Navimipour (2016). In conclusion, with dynamic load balancing

mechanisms, the system response time can be improved significantly. Furthermore,

flexibility and scalability of cloud cna be guaranteed. However, decision-making for the

selection of resources are essential, so that the run-time overhead is a major issue. Also,

memory utilization and the complexity of dynamic load balancing algorithms are issues

need to be considered as well.

Besides using load balancing algorithms balance traffic load, many techniques and

systems are absorbing the idea of load balancing algorithms. The Hadoop MapReduce

platform (Chang et al., 2015) are used when processing big data. It is scalable, fault-

tolerant, and provide load balancing. The Hadoop process chunks data by using the

name and data nodes and give out small pieces of result stored on each data node. In

Hadoop, the name node receives user’s requests and perform necessary indexing and

searching by initiating a large number map and reduce processes. Once the operation

is completed, the name node returns the output value to servers and clients. The load

Chapter 2. Literature Review 41

balancer within Hadoop spreads the load equally across all available data nodes via

comparing states of each data node within the name node. However, the name node is

the entry point of load balancing, which makes load balancing unuseful when the name

node fails. However, name and data node structure splits searching and storing function

into different parts, so that Hadoop Mapreduce is efficient to deal with big data.

Sheng and Bastani (2004) mentions one load balancing technique which is based on

spread cache on each node in cluster. Each independent node can ask for different parts

of cache from the main cache server, and store in its own cache, so that the traffic load

on the main web server can be reduced and spread on other nodes. The main server

and nodes can also set up reference number which limits the total number of cache get

from other servers. Spreading cache into multiple locations can reduce the pressure

of the main server’s cache, but it requires data synchronization between master and

slave servers. On the other hand, spreading cache only optimize the performance in

resources layer, load coming from the upper layer is not considered. Virtual Layer 2

(VL2) (Bagchi, 2015) is a network topology that describes the load balancing method

implemented on physical switches. It can direct the traffic to a random core switch, and

then forward the traffic to the real destination. As a result of that, once unpredictable

traffic is detected, this routing method can deliver it to a random core switch as an

intermediate destination. VL2 is a simple load balancing technique which focuses

on the physical layer only, so that developers may not concern it as the main load

balancing solution to their applications or services. Also, VL2 is limited by the amounts

of physical hardware because if the physical layer has only one or two core devices,

then the traffic will always flood into the core devices, which has no load balancing at

all. Besides the hardware limitation, VL2 has to define whether the incoming traffic

is predictable or unpredictable, and the traffic has to arrive to core devices before

reaching to the real destination, which may cause massive delay for traffic transimission.

However, VL2 uses core switches as a buffer for the system, which is useful to handle

Chapter 2. Literature Review 42

massive incoming traffic.

2.4 Decentralized System

This section discusses basic concept of dencentralized systems, and efficient design and

security of decentralized systems.

Decentralized system is a system in which low level components operate on local

information to accomplish global goals “Hierarchical Decentralized Systems and Its

New Solution by a Barrier Method.” (1981). It is different from a centralised system

which has the specific controller to control everything in the system. However, the

decentralized system is known as distributed control Sandell, Varaiya, Athans, and

Safonov (1978). As described in Feiker (1979), a distributed control system is a

computerised control system for a process or plant, in which autonomous controllers are

distributed throughout the system, but there is central operator supervisory control. In

this case, if a processor fails, it will only affect one section of the plant process. Major

differences between decentralized system, centralized system, and distributed system

can be notified in various aspects (Goyal, 2015): maintenance, stability, scalability, ease

of development, and evolution. The centralized system is much easier to maintain and

develop because it has only one controller, but the distributed system and decentralized

system can avoid single point of failure.

Autonomous Decentralized System (ADS) is an advanced system architecture

to provide fault-tolerance, on-line expansion, and on-line maintenance (Coronado-

Garcia, Gonzalez-Fuentes, Hernandez-Torres, & Perez-Leguizamo, 2011). The ADS

is composed of modules and components that each of them is designed to perform

their own functions independently to achieve the overall system goal (autonomous

decentralized computer control systems). The Autonomous Decentralized Test System

(ADTS) (Zhao & Xiao, 2015) fully describes the advantages of using ADS. The

Chapter 2. Literature Review 43

ADTS consists of Autonomous Decentralized Test Units (ADTU) which are placed in

the double-ring structure. The ADTU are autonomous and can finish assigned tasks

independently. In order to do online system expansion, for example adding nodes, the

ring will break at the target point, and the information transmission between other nodes

will not be affected, after that, the ring will be restored when new nodes are added

successfully. When dealing with the node failure, the ring will break and block the failed

node. Moreover, one data protocol ADP is introduced to work with ADTS. The ADP

contains five parameters: serial number (SN), data type (ICD), priority (PRI), duration

time (DUR), and data (DATA). The network control processor (NCP) is a controller

that controls the transmission line in the double-ring structure in decentralized system

(Ihara & Mori, 1984). Two NCPs are connected to a host processor, and each NCP

is independent to other NCPs, so that no receiver’s information is required when the

message is transmitted. Moreover, the ADS also has fault detection and fault recovery

ability by using minor loop check signal and major loop check signal. Failed NCPs can

be detected by signals, and the transmission route will be changed at the same time.

ADS doesn’t have the central controller, but uses the Autonomous Control Processor

(ACP) to control each subsystem. Each subsystem connects to each other through the

Data Field (DF), which is used to send and receive messages. As stated in (Coronado-

Garcia et al., 2011), the DF is designed to have private key and public key. When one

DF tries to send the message, it uses receiver’s public key to encrypt the message with

the signature and one random number. The receiver DF will establish the connection

only if the sender’s identification is authenticated. Asymmetric key encryption is used

in DF, but author didn’t mention how to secure the communication happened within the

subsystem. A secure message send methods in decentralized systems is introduced in

Peyravian, Matyas, and Zunic (2002). The method generates a random secret key on the

first node of node group, and distribute the random secret key to other remaining nodes,

then the second node of the node group generates a random number and use a one-way

Chapter 2. Literature Review 44

hash to create a working key. The working key is also distributed to other remaining

nodes. As a result of that, all nodes can use the working key, the random number,

and its signature to decrypt secured message. Besides the data security in autonomous

decentralized systems, the network security is also one major problem. Generating key

from the first node to the last node will cost a lot of time and lower the response speed.

In Guo and Wang (2005), the Secure Connective System, Threat Defence System, and

Trust and Identity Management System is mentioned. The Secure Connective System

uses data encryption technologies such as SSL and IPsec to secure communication

between each node. The Threat Defence System aims to provide protection mechanism

to network attacks and unknown attacks. The Trust and Identity Management System

manages user’s privileges and permissions to specific business. The Secure Connective

System, Threat Defence System, and Trust and Identity Management System seem

professional to secure decenralized system. However, this solution requires various

techniques to accomplish, which is a constrain to the solution.

Low latency for data querying is an important metric for cloud computing. In order

to reach the high speed of read/write requests, cache technology is normally used on

servers. In Takahashi, Mahmood, and Lakhani (2015), an autonomous decentralized

system based URL filtering system is introduced. The filtering system uses L3 cache on

each decentralized node which stores the relationship of text. The L3 cache consists

of two modules: RAMDISK and Cache control. The RAMDISK is the virtual device

driver for caching the most frequently used data, and the Cache control handles the

incoming read/write request. Using cache can boost I/O speed, and this system uses

two cache modules to manage data read and write, which is a great design. However,

this system does not mention the backup solution. If one node is accidently shut down,

then all the record will be lost without backup. P2P routing protocol and P2P caching

technology are great choice for improving querying data (Sheng & Bastani, 2004).

Pastry is an example of P2P routing protocol. Each node in Pastry has a unique nodeID

Chapter 2. Literature Review 45

with a key, and one routing table to store the information of other nodes. The proxy

cache server is used in P2P caching technology. It is the centralized location of each

node cache, if the requested data doesn’t exist in the proxy server, the requestor will

search the cache among other nodes, and the closet node is preferred. For Pastry, having

one central cache location is not a good idea. If the centralized location is compromised,

then all cache data will be lost. The routing table within each node is also vulnerable.

2.5 Random Distribution

In this section, similiar component distribution services are researched.

Distributed system can improve the stability and performance because of the network

load is spread into several server instances in the group or cluster. However, the services

running on each server instance is previously designed, so that specific type of user

request has to go to the specific server. Integrating random elements into the distributed

system can be a good way to have uncertainty and strong security level for the whole

system.

Assigning different parts in the system makes the overall architecture more complex.

As part of the grid system, services are always expected to have nondeterministic

behaviours (Zhang, Zagorodnov, Hiltunen, Marzullo, & Schlichting, 2004). In Carlini

et al. (2013), the recent client/server DVE architecture was mentioned which split

multiple Virtual Environments (VE) into several nodes randomly. But the problem

was also notified that when several heavy-load VE were located on the same node, the

node would be under severe pressure. The authors introduced the Positional Action

Manager (PAM) and the State Action Manager (SAM) to manage the position of each

VE and organize the state of each VE and node. GreenMap is a VM-based management

framework which dynamically allocates and reallocates VM resources within a cluster

Chang et al. (2015). One of the algorithms in the framework starts by randomly

Chapter 2. Literature Review 46

generating new placement configuration in order to save more power when dealing with

reallocating live VMs into physical resource. The previous papers only focused on

VM-based resources allocation and distribution scenario, but the service-based random

distribution is not covered.

The MAIS-IDS is a distributed intrusion detection system using multi-agent Arti-

ficial Immune System (AIS) approach Afzali Seresht and Azmi (2014). It is able to

randomly select multiple agents to clone, and migrate cloned agents to new environment

to aid scanning, which is similar to the service-based random distribution.

2.6 Conclusion

Ki-Ngā-Kōpuku is a new concept of system. It is a distributed security system, which

is supposed to be highly available, and provide fault-tolerant ability in the system. As

Ki-Ngā-Kōpuku is based on the cloud environment, so the common problems happened

in the cloud environment are concerned. As a result of that, data security, system

distribution, system performance and system availability are key problems to be solved.

Based on the research of literature review, cloud computing security can be achieved

by implementing general security policy and data security mechanism. The general

security policy is supposed to do user authentication and authorization. Data security

is achieved by using encryption techniques and designing efficient architecture based

on low level technologies such as hypervisor and hardware. On top of that, users can’t

control their own data on the cloud directly, because the data is stored on network

resources which are provided by cloud providers, so it’s not secure even though the

security mechanism is implemented. Cloud environment is normally built up on the

distributed system and the decentralized system, so that fault-tolerant and availability

is guaranteed. Data replication is the common technology researched on both system,

however how to check the integrity of data replicas and how to manage the access

Chapter 2. Literature Review 47

to data replicas were not mentioned. Besides, no articles were found to research the

component random distribution which is a key feature in Ki-Ngā-Kōpuku to distribute

components into multiple servers randomly. Private-public key pair can be used on user

authentication and server authentication, but the key management is the critical problem.

Designing key exchange mechanism and protocol for key management is important

in key encryption research, but most of the research relies on extra key servers which

is not secure if the key server is compromised. In order to evaluate the performance

of system, several comprehensive evaluating plans should be made based on different

scenarios and multiple metrics.

In general, challenges and chances are obvious in this research project. In order to

complete this project, the following questions will be researched in this project:

1. How to improve security among components?

2. How to design a component distribution mechanism to distribute components

into several servers?

3. How to maintain communication between components which are located on

different servers?

The next chapter 3 will discuss what methodologies are used during the research. It

also propose hypothesis for each researh question.

CHAPTER : METHODOLOGY

Introduction

Literature Review

Methodology

System Design

Discussion

Conclusion

1. Introduction
2. Methodology
3. Research Design
4. Research Limitations
5. Hypothesis
6. Possible Solutions
7. Conclusion

Chapter 3

Method

3.1 Introduction

To achieve the research objectives, the appropriate research methodologies and plans

should be addressed clearly. This research project not only focuses on the proof of

concept of a new system concept, but also focuses on developing the system and bring

out the prototype. As a result of that, the research methodology should be useful

in both research and developing area. Besides knowing what kind of methodology

should be followed during the research, operation details should also be clear so that

the developing process can stick onto the research process. In this chapter, research

questions from the previous chapter will be restated. Several hypothesis related to

research questions will be mentioned.

Research Questions

1. How to improve security among components?

2. How to design a component distribution mechanism to distribute components

into several servers?

3. How to maintain communication between components which are located on

different servers?

49

Chapter 3. Method 50

The above three research questions were proposed according to the literature review.

Ki-Ngā-Kōpuku is a decentralized distributed security system based on cloud environ-

ment, because the cloud is the public network environment, so the security is the first

problem to be concerned. As the cloud resources are totally controlled by the cloud

provider in the aspect of fundamental hardware, so 100% of security on the cloud is

not granted. Being motivated by this security problem, the first research problem is

proposed.

Component distribution is rarely seen on research papers. It is one important

function in Ki-Ngā-Kōpuku. In this case, the second research question is proposed.

Separating one application into multiple parts is the main goal in distributed computing,

especially in designing the fault-tolerant system with high scalability. Splitting tasks

into several parts and deliver each part into different servers can improve the system

performance. However, systems are mostly designed with centralized controller, and

component communication relies on the centralized controller, which makes it difficult

to fully separate the system into parts and deploy into different machines. In order to

keep the communication between components, most of systems deliver agendas with

the component. As a result of that, if the agenda of one component goes down, that com-

ponent cannot communicate with other components again. Ki-Ngā-Kōpuku is supposed

to get rid of the agenda, and still have the ability to maintain communication between

different components, and make all components look like one single application.

3.2 Methodology

3.2.1 Design Science Research Methodology

Design Science Research (DSR) is a set of analytical techniques and perspective for

performing research in Information Systems A. Hevner and Chatterjee (2010). As

Chapter 3. Method 51

stated in Peffers, Tuunanen, Rothenberger, and Chatterjee (2007), three elements are

included for a design science research: conceptual principles, practice rules, and a

process for carrying out and present the research. Six steps of design science are

also introduced in McPhee (1996): programming (to establish project objectives),

data collection and analysis, synthesis of the objectives, data collection and analysis,

synthesis of the objectives and analysis results, development (to produce better design

proposals), prototyping, and documentation (to communicate the results).

DSR has three cycles: Relevance Cycle, Design Cycle, and Rigor Cycle. As pro-

posed in A. R. Hevner (2007), the Relevance Cycle connects application environment to

design science activities. The Rigor Cycle connects design science activities to knowl-

edge base with science theories and methods. The Design Cycle connects evaluation

activity to building design artifacts and processes activity. In more details, the envi-

ronment contains application domain, which includes people, organizational systems,

and technical system. It also has problems and opportunities. The environment defines

basic milestone for the design science research activity. The Relevance Cycle passes re-

quirements and field testing in the middle of Environment and Design Science Research.

In this case, the Environment defines application problems and requirements. Resign

Science Research activity build the application according to requirements gathering

from the Environment and evaluate whether it is possible to run. On the other hand, the

Rigor Cycle brings theories and experience in design science research activity. It also

update knowledge and experience getting from the research activity.

During the research, DSR methodology is used through the project. The reason to

use DSR methodology is that the whole research part is mainly divided into three parts.

One part is define system requirements, another part is develop and evaluation. The last

part is experience management. In the whole research, three main research phases are

implemented. Phase I is Define System. This phase includes identifying what system

requirements should be achieved, finding out possible opportunities of the project, and

Chapter 3. Method 52

what problems happened during the system development. Phase II is developing system,

and system evaluation. This phase is the most practical part of this project, and is the

place to find out what should be improved of the system. Phase I will also be updated.

Phase III is directly related to Phase II because this phase is the theories background

of the whole project. Once the system needs improvements, the theories background

should be updated first.

3.2.2 Rapid Application Development

While due to the time restriction, bringing out one running system prototype is the

most important task, so the development methodology used in developing system phase

is Rapid Application Development (RAD) methodology. As stated in Hough (1993),

RAD puts more emphasis on processing and developing, rather than planning. Martin

(1991) defines the key objectives of RAD as: high quality systems, fast development

and delivery and low costs. As stated in Beynon-Davies, Carne, Mackay, and Tudhope

(1999), RAD projects are typically small-scale and of short duration, which is about

two to six months. Projects expected to finish in six years are available to use RAD

methodology.

Except the time measurement, the type of project also affects the methodology usage.

When the project is supposed to build up a prototype system with iterative process, RAD

methodology is still a good choice. When develop a prototype, developers and users

can have time to communicate to identify system requirements and user requirements.

Fig. 3.1 shows the process of RAD. First process is Analysis & Quick Design. This

process defines system requirements, and gives priority to each task. The task with

highest priority has to be completed first. The next cycle has three process: Develop,

Demonstrate, and Refine. Once one part of the system is developed, demonstrate

and review the part can help find problems. After the cycle, testing process bundle

Chapter 3. Method 53

Figure 3.1: Rapid Application Development Methodology (Ramsoft Consulting, n.d.)

everything into one part and test it as one unit. If the testing result is good, then the

prototype can be deployed.

The reason to use RAD as the methodology in developing system phase is that the

project is supposed to build up one prototype, and only six months to finish the project.

As a result of that, RAD is the right methodology to use.

3.3 Research Design

In order to achieve the research outcome, the research processes have to be designed.

At this point, it is useful to follow the chosen research methodologies: DSR and RAD.

First of all, the overall research goals are divided into three levels:

• Level 1: A theoretical background for prototype system.

• Level 2: Executable units for specific purpose.

• Level 3: A compatiable solution that meets theoretical and technical requirements.

The level 1 research goal is to make sure the whole research project has a strong

theory background, so that it is achievable in the aspect of academic level. The level

2 research goal is for implementing this project in the aspect of technical level. Even

Chapter 3. Method 54

though some requirements can be proved by theories, but still need available techniques

to prove it. The level 3 research goal intends to make this project become achievable

not only in academic theory, but also in industry practical development.

3.3.1 Research Goals

To begin the research, research goals have to be clarified. Based on the literature review,

research questions have to be analyzed during this research. Moreover, besides research

questions, the research outcome should also be valuable for current or future computer

science development. Hence, to understand the research goals, I must have a clear view

about what the current industry needs and what can this research bring.

3.3.2 Research Process

The DSR methodology is chosen to be used during the whole research. Based on the

research processes of DSR, the following research processes will be described:

1. Research Purpose.

2. Infrastructure and Applications.

3. Applicable Knowledge.

4. Develop / Build.

5. Justify / Evaluate.

The first research process is to clarify the purpose of this research. As 3.3.1 men-

tioned, the research purpose should be clear before starting the whole research. Due to

a conceptual model has been created in Litchfield et al. (2016), as a project to proof this

new model, implementing techniques to work as the conceptual model describes is the

main purpose of this project. During the research, the research questions summarized

from 2 should also be analyzed according to the findings.

Chapter 3. Method 55

The second research process is to define the system infrastructure and what the

application should be presented after the research. Ki-Ngā-Kōpuku is deisgned to run

on the cloud environment. Based on the conceptual model mentioned before, Ki-Ngā-

Kōpuku must be distributed and decentralized. As the serving target of Ki-Ngā-Kōpuku

is customer’s application, so Ki-Ngā-Kōpuku should be flexible to implement and

require less dependencies. Based on these considerations, the artifact type of this

research will be Instantiation. Ki-Ngā-Kōpuku will be designed as a framework, and

has the ability to handle unexpected conditions or errors without interfering the status

of user’s application.

In order for design science to achieve the objective of being rigorous, the research

must draw on existing knowledge from a number of domains. Besides, DSR must also

make a contribution to the archival knowledge base of foundations and methodologies

(A. R. Hevner, 2007). In general, journal articals and conference papers will be searched.

In addition, practical papers may offer even more specific and current knwoledge. To

start this research, the following areas will be researched for the knowledge base: Cloud

Environment, Cloud Security, Distributed System, and Decentralized System. The point

for cloud environment research is collecting cloud environment features and discover

potential problems that may consider during the research. For example, the research

on cloud security can identify what kind of security problems that the system will face.

Distributed system and decentralized system are popular in cloud computing. As a

result of that, studying on related literatures can get a clear view of useful design or

architecture which might be helpful to design the system during research. The research

on existing knowledge will meet the level 1 research goal.

In DSR methodology, it must produce and evaluate a novel artifact (A. R. Hevner,

2007). Moreover, the artifact in DSR does not have to be a fully functional system, so

this process will fullfill the level 2 research goal. As a result of that, system modules

will be the milestone of this research. In order to design the system module, firstly,

Chapter 3. Method 56

system architecture and features have to be designed. Then domains and objectives of

each system module must be clarified (level 1 research goal). After that, the scope has

to be defined, and choose appropriate techniques and tools to develop system modules.

After the system modules development, each system module has to be evaluated. In

order to evaluate system modules, based on (Peffers, Rothenberger, Tuunanen, & Vaezi,

2012), the evaluation method within DSR is Prototype. A prototype is implementation

of an artifact amied at demonstrating the utility or suitability of the artifact (Peffers et

al., 2012). In this case, the prototype will be composed of each system module. By

evaluating the prototype, each system module is able to be evaluated according to its

own purpose. This process will achieve the level 3 research goal.

3.3.3 Research Evaluation Criteria

According to 3.3.2, the evaluation method is prototype.

Figure 3.2: Hierarchy of criteria for IS artifact evaluation (Prat et al., 2014)

Chapter 3. Method 57

As shown in Fig. 3.2, there are five dimensions in artifact evaluation. In order

to evaluate the prototype of this research, the evaluation criteria has to be defined as

follows:

Figure 3.3: Evaluation Criteria

3.4 Research Limitations

The following list is the limitations of this research:

Chapter 3. Method 58

1. Research Scope.

2. Research Time.

3. Prototype Evaluation

The first limitation is the scope of this research. As mentioned in 3.3, this research

needs to research various areas, and the whole project requires many techniques to ac-

complish. However, I am the only one who is responsible for prototype implementation,

so it is a massive task. The project must cover techniques about distributed systems,

decentralized systems, and also cloud computing. Within each of these areas, there are

many constrains need to be considered, and also many techniques that require a lot of

time to master. As a result of that, there will be a long period of time to go through

the three cycles in DSR. On the other hand, this research is supposed to prove a new

concept which is new to current existing knowledge. During the research, few related

literatures were found, so it is difficult to update knowledge base within DSR.

The second limitation is the research time. As described before, this project requires

a long period of time to finish. However, the given time is not enough to finish this

research project, so DSR methodology is not suitable for the research which is required

to have the output in a short time. In this case, RAD is used in the second research

process (Infrastructure and Applications) and fourth research process (Develop / Build)

within DSR. With the help of RAD, time can be saved in system modules development,

and more time can be spared for prototype evaluation.

The third limitation is the prototype evaluation. The prototype is the final outcome

of this research. However, within DSR, the prototype is evaluated when the design is

updated or completed, which requires too much cost. In this case, by implementing

RAD methodology, the prototype can be evaluated after system modules are fully

functional.

Chapter 3. Method 59

3.5 Hypothesis

• Hypothesis 1: Independent temporary public-private key pair authentication can

improve security among components.

Protecting network traffic is very important in the cloud environment. In nor-

mal situations, encryption techniques are always applied to encrypt data and

authenticate communicate peers. However, in most of the systems, centralized

key management server is always used to provide user authentication by using

key pairs or other multi-factor authentication methods. If the centralized key

management server is attacked by hackers, then user credentials will be lost.

Besides, if the key management server contains keys related to servers under its

network, then the whole network will be under danger.

Using temporary public-private key pair can reduce risks of key pairs leaking.

Without centralized key management server, temporary key pair is useful to

protect data integrity and secure system message. The reason is that key pair is

always different from previous key pairs, and it won’t last forever because it is

temporary, which makes hackers hard to track.

• Hypothesis 2: Randomly distribute components into multiple network locations

can improve the redundancy and performance level of overall system.

Replicating the service and store replicas on different servers or locations make

the system become distributed. The performance and stability is greater than the

centralized system. However, the service may have many components, so that

replicating all services can be a great burden to other servers. Splitting services

into multiple service components and distribute random number of components

into random number of servers can be an efficient way to solve the problem. The

size of each component is smaller than the original service, so less resources

will be cost while transferring and running. On the other hand, because of

Chapter 3. Method 60

randomization, the amount of server and components can be various. In this case,

randomly distribute components can improve redundancy and performance of

overall system.

• Hypothesis 3: Using sockets and distribution feature of Erlang can maintain the

communication between component.

Opening sockets on each server to communicate with outer world might be a good

way. Sending and receiving data by using sockets is a common way to transfer

data for the system. In the system design, Erlang nodes can listen to sockets to

receive data from other servers, and use specific port to maintain communication

between each node.

In normal condition, agents are used in distributed system to communicate with

other agents on different servers. It is useful to manage and control the system.

However, it is painful to install agents while installing system on each server, and

hacking agents could cause serious problems in the system. As a result of that,

using Erlang to build distributed system is a good choice, because Erlang nodes

have the ability to communicate via different servers and network. One Erlang

node is a small virtual machine running one the server, it has the remote procedure

call function to call functions on other remote nodes, so that it is flexible to build

distributed system and distribute services into multiple servers.

3.6 Possible Solutions

• Hypothesis 1: Independent temporary public-private key pair authentication can

improve security among components.

Temporary public-private key pair can be used to encrypt data and authenticate

components in the system. Once the connection is going to be established, random

seed and current timestamp can be used to create public-private key pair. The

Chapter 3. Method 61

initiator and responder can exchange the public key, then encrypt message by

using public key, and decrypt message by using private key.

• Hypothesis 2: Distribute service components into multiple servers can improve

the redundancy and performance level of overall system.

Randomly select components to distribute can be achieved by implementing

pseudo-random mechanism, and sorting components by total number that has

been distributed into the system. Developers can design how many components to

be distributed, and randomly amount numbers to be replicas. Because components

and its number are not fixed, so it might be helpful, when nodes find one related

node on local server, then the request can go to local components first.

• Hypothesis 3: Using sockets and distribution feature of Erlang can maintain the

communication between each server.

For building up the communication channel between each node on different

servers, sockets are opened to exchange message among servers. In this case,

Ki-Ngā-Kōpuku listens to specific port, then send and receive message by using

the specific port. However, for avoid system collision, Ki-Ngā-Kōpuku will be

application-dependent, which means the relationship between Ki-Ngā-Kōpuku

node and application is one to one, and only one single port is used for one

specific application.

Ki-Ngā-Kōpuku node should be designed to listen the socket and responsible for

handling traffic for system and application components. Application components

can be designed as one single node, which makes it flexible to communicate with

other nodes and be managed by system node. When an application component

wants to communicate with components on other servers, that components can

talk to system node first by using Erlang distribution feature, then Ki-Ngā-Kōpuku

node talks to other servers by using specific opened port for communication.

Chapter 3. Method 62

3.7 Conclusion

According to research questions from previous chapter, related hypothesis and possible

solutions are declared. During the whole process of the project, Design Science (DS)

Research Methodology is used to support the project, because DS has three cycles,

one is identify and update system requirements and problems, another cycle is develop

system and evaluate system. The third cycle is update theories and experience. Each

cycle is important to this project. In more details, in the system develop process, Rapid

Application Development methodology is used because of the project is prototype, and

the time limit is six months, which is a short develop period of prototype.

By following the DSR methodology, at the very beginning of this research, the

objectives of Ki-Ngā-Kōpuku is clarified in the Environment phase. The objectives of

this research are designing a new system which is based on a new concept. According

to the basic concept, security and distribution are two important parts that need to be

achieved by Ki-Ngā-Kōpuku. In this case, related research questions are proposed,

and articles are studied according to the research objective in Knowledge Base phase.

After evaluating useful information of each article, the researched theories are applied

to design the basic system architecture. Then a system prototype should be developed

by following the basic system architecture. While developing the prototype, more

advanced design or problems may be discovered. In that case, these new discovery

will be reflected to the existing system design. For seeking the achievement of new

discovery, related theory ad technology will be researched in Knowledge Base phase,

so that theoretical foundations will be updated. In the end, new ideas or solutions will

be implemented into the prototype development.

Next chapter 4 describes details of Ki-Ngā-Kōpuku, including system architecture

and system behaviours.

CHAPTER : SYSTEM DESIGN

Introduction

Literature Review

Methodology

System Design

Discussion

Conclusion

1. Introduction
2. Ki-Nga-Kopuku Brief Introduction
3. Ki-Nga-Kopuku System Design
4. Ki-Nga-Kopuku System Interface
5. Traffic Handler
6. Application Components
7. Component Distribution
8. Conclusion

Chapter 4

System Design

4.1 Introduction

The Methodology chapter 3 has introduced two methodologies used during the theo-

retical research and development. The design science research methodology is used

to support the whole theory research process. For developing Ki-Ngā-Kōpuku in the

correct way, the rapid application development methodology is used. Besides two

methodologies, six research questions are proposed by researching related theories and

reviewing related works. This research aims to proof the concept of Ki-Ngā-Kōpuku,

so this chapter will discuss the system design of Ki-Ngā-Kōpuku in both theoritical and

technical way,

This chapter describes details about Ki-Ngā-Kōpuku. In section 4.2, system features

are described in subsection 4.2.1. System requirements for Ki-Ngā-Kōpuku is discussed

in subsection 4.2.2. The subsection 4.2.3 describes the system architecture in the

aspect of its programming language. In section 4.3, information details of Ki-Ngā-

Kōpuku are described. The subsection 4.3.1 discuss the concept of Ki-Ngā-Kōpuku

cluster, subsection 4.3.2 introduces a concept of application group in Ki-Ngā-Kōpuku.

Subsection 4.3.3 discusses the network environment and topology of Ki-Ngā-Kōpuku.

64

Chapter 4. System Design 65

System architecture is described in subsection 4.3.4, which describes system and

communication architecture. Section 4.4 describes the functionality of the system

interface of Ki-Ngā-Kōpuku. Next section 4.5 discusses the message delivery service

in Ki-Ngā-Kōpuku. Section 4.6 discusses application components which are used

in Ki-Ngā-Kōpuku. It first defines the concept of application components, then the

component storage, actions, and communication methods are introduced. Next section

4.7 discusses component distribution service of Ki-Ngā-Kōpuku, which gives details

about how to accomplish component distribution and requirements that have to be

achieved for distribution.

4.2 Ki-Ngā-Kōpuku Brief Introduction

4.2.1 System Features

As Ki-Ngā-Kōpuku is designed as a framework that can be used by developers to

provide redundancy and distribution to their applications, so Ki-Ngā-Kōpuku has to

deliver related, flexible abilities for applications.

The following shows what Ki-Ngā-Kōpuku can do:

1. Receive traffic from application interface or user interface.

2. Record application’s component information.

3. Automatic component distribution and implementation.

4. Prevent single points of failure for any application components.

5. Enable component intercommunication.

4.2.2 System Requirements

Before implementing and running Ki-Ngā-Kōpuku, some requirements have to be met.

Chapter 4. System Design 66

1. Ki-Ngā-Kōpuku is written in the Erlang programming language, so Erlang has to

be installed on the server.

2. Ki-Ngā-Kōpuku requires some shell script files for the specific task, so the ideal

running environment is Linux.

3. Applications should be written in Erlang supported programming language

4. Currently, Ki-Ngā-Kōpuku can only be used within the Local Area Network

(LAN).

4.2.3 Programming Language

Ki-Ngā-Kōpuku is written in the Erlang programming language, and its structure is

designed to follow the Erlang Open Telecom Platform (OTP) structure. OTP is a set of

modules and standards designed to help build applications. As described in (Mccaffrey,

2016; Afek, 2013), partial failure and asynchrony are typical problems for distributed

systems. (Mittal et al., 2015) also propose the distributed system should be able to be

reliable and flexible. Luckily, Erlang is able to use its OTP structure to solve these

problems.

Erlang OTP has supervisor, gen_server behaviour. Each behaviour plays different

roles in the Erlang project (Building an Application With OTP, 2017):

supervisor The supervisors are responsible for the monitoring and control of the child

process. In normal conditions, if one process is unconditionally going down,

other processes might be affected by the unconditional status. The system might

encounter problems because of that. However, the Erlang supervisor can handle

any crashes that happen with its child process, which means supervisors can

prevent crash errors from affecting the whole system. A child process can either

be another supervisor ro worker process. Moreover, supervisors can define restart

strategies and stop time intervals for the child process. By defining the child

Chapter 4. System Design 67

process restart strategies, supervisors can manage the child process to restart

when the child process is stopped, which makes the whole system remain healthy.

gen_server The Erlang gen_server works like a generic server in the Client-Server

structure. It can receive messages from clients and computing the results. There

are three types of request that can be received by the gen_server: synchronous

requests, asynchronous requests, and normal requests. When the gen_server

receives the synchronous request, it will send the result as soon as the process is

finished. When the gen_server receives the asynchronise request, it will send the

reply message ok immediately without waiting.

By comparing each behaviour in Erlang OTP, the supervisor and gen_server be-

haviours are mainly used in Ki-Ngā-Kōpuku. The Erlang gen_server is responsible

for processing the user and system request, which acts like general servers, and the

supervisor is responsible for monitoring the gen_server and handling errors coming

from the child processes. The Erlang supervision tree describes this system action.

Within the supervision tree, two factors are used: supervisors and workers:

supervisors Responsible for supervising workers and handling errors. If workers

encounter problems, the supervisor can restart workers according to predefined

restart strategy.

worker Workers are processes which perform computations, and responsible for

performing specific user or system actions.

By following the Erlang supervision tree design, the Erlang programming language

has fault-tolerant features that make Ki-Ngā-Kōpuku highly reliable and feasible.

The supervision tree is a basic system architecture implemented in the Erlang

programming language. Fig. 4.1 shows the supervision tree of Ki-Ngā-Kōpuku. The

circles represent supervisors, and the square boxes represent workers. In the supervision

Chapter 4. System Design 68

tree, Ki-Ngā-Kōpuku is mainly separated into three parts: socket, main server, and

local storage. The socket is used to communicate with the outside world. The main

server holds critical functions for Ki-Ngā-Kōpuku. The local storage is responsible for

storing local system information. As shown in Fig. 4.1, each worker is connected to a

supervisor, which means that when any server encounters problems, its supervisor will

handle the error and restart the server. As a result of that, the failure condition of one

server won’t affect other parts of the system.

KNK Main
Supervisor

TCP
Socket
Server

Socket
Supervisor

Server
Supervisor

KNK
Server

Traffic
Handler

Local
Storage

Supervisor

Local
Storage
Manage
Server

Local
Storage
Server

TCP
Supervisor

UDP
Supervisor

UDP
KNK

Server

KNK Log

Distribut
ion

Server

Figure 4.1: Ki-Ngā-Kōpuku Supervision Tree

4.3 Ki-Ngā-Kōpuku System Design

4.3.1 Ki-Ngā-Kōpuku System Cluster

Ki-Ngā-Kōpuku system cluster is a general group of Ki-Ngā-Kōpuku system nodes.

Within the cluster, there are many application groups. Each application group consists

of one single or multiple Ki-Ngā-Kōpuku system nodes, which only serve that partic-

ular application. As described in Brodkin (2008); Singh and Chatterjee (2017), data

Chapter 4. System Design 69

segregation is the main security issue for data at rest in cloud computing, so avoid

multiple applications being hold by one node is helpful to reduce data segreation risk.

Each Ki-Ngā-Kōpuku system node can only serve one particular application, and one

single server can only host one Ki-Ngā-Kōpuku system node for one application or

multiple system nodes for different applications. So the rule between application and

server system nodes is, “One system node serves one application. One system node is

hosted on one server. One server can hold multiple system nodes that work for multiple

applications.”

The reason for a Ki-Ngā-Kōpuku system node serves one specific application is

that Ki-Ngā-Kōpuku works like a typical Client-Server structure that provides ports

for the application interface to connect. Moreover, a Ki-Ngā-Kōpuku system node can

also become the Server for application components that belong to the same application.

In which case, application components become Clients to a Ki-Ngā-Kōpuku node.

Erlang’s gen_server behaviour is effective in Client-Server structure. Based on the

ADS described in (Coronado-Garcia et al., 2011), each component within the system is

independent, and each one of them is able to calculate the result by themselves. As a

result, each Ki-Ngā-Kōpuku system node is the same as long as they are working for

the same application. Consequently, developers can make their application interfaces

connect to any Ki-Ngā-Kōpuku system node without worrying about what components

are working under a Ki-Ngā-Kōpuku node. On the other hand, because Ki-Ngā-Kōpuku

requires local component information for application message passing, managing com-

ponents that work for the same application can reduce the complexity of the system,

and the rest of the structure can’t be affected by another application’s failure.

Chapter 4. System Design 70

4.3.2 Application Group

As mentioned in Ki-Ngā-Kōpuku system cluster, one application group is composed

of one or more Ki-Ngā-Kōpuku system nodes that only serve that application. Group

members can be hosted on one server or the whole network. In this research, Ki-

Ngā-Kōpuku relies mostly on broadcasting traffic for communication, so one system

port should remain open for Ki-Ngā-Kōpuku. Erlang programming language is great

for handling massive concurrency traffic, one application group can be set to one

specific port to receive broadcast traffic. Alternatively, the whole cluster can be made to

listen to the same port, which sends and receives broadcast traffic through the whole

Ki-Ngā-Kōpuku cluster.

4.3.3 Network Topology

Ki-Ngā-Kōpuku is a distributed system, so multiple servers should be included in the

network design. As shown in Fig. 4.2, servers with Ki-Ngā-Kōpuku installed are called

Ki-Ngā-Kōpuku group network. Servers within the group network handle requests from

the outside world and play different roles according to the developer’s design. The

Ki-Ngā-Kōpuku group network can also be called Ki-Ngā-Kōpuku cluster. However,

the cluster is different from other clusters in general purpose. The reason is that the

general cluster is always designed to serve one specific purpose, such as cache cluster

and database cluster. However, Ki-Ngā-Kōpuku cluster includes features of the general

cluster because each single server in Ki-Ngā-Kōpuku cluster is highly flexible. Each

server in Ki-Ngā-Kōpuku cluster can run one single part of a service of one application

or multiple services of multiple applications at the same time, so that its serving ability,

performance, and redundancy are stronger than common clusters.

Two general activities are also described in Fig. 4.2. As Ki-Ngā-Kōpuku cluster

is flexible, it can make new servers join in once new servers have Ki-Ngā-Kōpuku

Chapter 4. System Design 71

Server 01 Server 02

Server 03

New Server

Join

Figure 4.2: Basic Network Topology

installed. On the other hand, if users want to remove some servers, or some servers are

undergoing severe unrecoverable problems, the cluster can delete those servers to keep

the whole cluster healthy, which is like crossing out server 02 in the network topology

figure.

4.3.4 System Architecture

Single Server Architecture

Ki-Ngā-Kōpuku on each server can be different because of the random ability. To give

a general view of Ki-Ngā-Kōpuku on one single server, Fig. 4.3 below is used.

On one single server, there are two main Ki-Ngā-Kōpuku parts. One is Ki-Ngā-

Kōpuku node; another is the application component. As shown in Fig. 4.3, Ki-Ngā-

Kōpuku nodes and application components are connected to form one service on the

server. Inspired by the decentralized system architecture in (Coronado-Garcia et al.,

2011), Ki-Ngā-Kōpuku nodes act like autonomous controllers for each application

Chapter 4. System Design 72

Server

KNK System
Application_01

Node

Application_01
Component 01

Application_01
Component 02

Application_01
Component 03

KNK System
Application_02

Node

Application_02
Component 01

Application_02
Component 02

Application_02
Component 03

Figure 4.3: Basic System Architecture

component. Moreover, applications components can work together even if the location

is different. One Ki-Ngā-Kōpuku system node is designed for one specific application,

which means if one server wants to run five different application services, then that

server must have five Ki-Ngā-Kōpuku system nodes for the applications. Application

components have to be controlled by one Ki-Ngā-Kōpuku system node that belongs to

the same application. By following this design, different applications are controlled by

different system nodes, so that each application is not affected by other applications on

the server.

Chapter 4. System Design 73

KNK System
Application_01

Node

Application_01
Component 01

Application_01
Component 02

Application_01
Component 03

KNK System
Application_01

Node

Application_01
Component 02

Application_01
Component 04

Application_01
Component 03

Application_01 Interface

Shift

Figure 4.4: Basic Communication Architecture

Basic Communication Architecture

In Fig. 4.4, Ki-Ngā-Kōpuku lies between the application interface and application

components. It is the pathway to pass application traffic between frontend and backend.

However, each Ki-Ngā-Kōpuku system node plays an equal role for the application,

which means that no matter which Ki-Ngā-Kōpuku system node the application interface

connects to, the application communication won’t be affected.

4.4 Ki-Ngā-Kōpuku System Interface

The system interface for Ki-Ngā-Kōpuku is the command-line interface, which has no

GUIs. Since it is running in the Linux environment and using shell scripts, creating the

system interface is a good option. In the shell script, the Linux environment can run the

Erlang command to perform specific functions, such as starting the Erlang shell and

Erlang node. On top of that, the shell script can also automate the process to compile

all code in Ki-Ngā-Kōpuku and prepare the necessary working environment, so that

Chapter 4. System Design 74

using the shell script can be very convenient for users.

4.4.1 System Action

As the system interface interacts with Ki-Ngā-Kōpuku, so the interface should provide

all options. The following describes what users can do through the system interface.

1. Prepare Environment

Preparing the working environment for Ki-Ngā-Kōpuku is necessary before

starting Ki-Ngā-Kōpuku. First, all source code related to Ki-Ngā-Kōpuku has

to be compiled and stored in a specific directory. After that, the Erlang runtime

system will read the configuration source file of Ki-Ngā-Kōpuku. The application

configuration source file of Ki-Ngā-Kōpuku is called knk_app.app, which

contains the necessary system parameters and the entry point to start the whole

system.

The following parameters have to be configured in the application source file:

app, app_port, knk_port, log, data, app_dir, and nic.

app The name of the application that Ki-Ngā-Kōpuku works for.

app_port Application port number which is used to connect to the application’s

interface to receive the application’s data.

knk_port Ki-Ngā-Kōpuku port number which is used for system communica-

tion within Ki-Ngā-Kōpuku cluster.

log Directory to store log files.

data Data directory, which stores the ETS table and necessary system files.

app_dir Application directory, which stores application source code and relative

files. The compiled application source file should be stored in this directory.

nic Network interface which used by Ki-Ngā-Kōpuku.

2. Start Ki-Ngā-Kōpuku

Chapter 4. System Design 75

After the working environment is prepared, users can start Ki-Ngā-Kōpuku. There

are three ways to start the Erlang application. One way is to enter the Erlang

shell, and type application:start(knk). Another way is typing a command on

the Linux system: $erl –pa ebin –eval “application:start(knk)”. The third way

is to use the shell script still to run the Erlang command. However, it is slightly

different from the previous way. The third way is to type the command $erl –pa

ebin –s knk_app start in the Linux system. In general, the last two ways are

preferred in Ki-Ngā-Kōpuku interface because they are convenient for working

with multiple, customised parameters because users can work with different

parameters according to their requirements.

When Erlang is told to start an application, it will look for the application

source file knk_app.app to find the entry point to start an application. In

knk_app.app, the entry point is configured as {mod, {knk_app, []}}.

It means Erlang will look for the module named knk_app, and run the start()

function to start the whole application. To start Ki-Ngā-Kōpuku properly, the

node name and node cookie have to be passed as parameters to the system inter-

face. The complete command to start Ki-Ngā-Kōpuku will be like this: erl –pa

ebin $nodeName –setcookie $cookie –s knk_app start.

‘nodeName’ and ‘cookie’ are the parameters that are passed to the shell script.

The Fig. 4.5 shows what will happen when starting Ki-Ngā-Kōpuku via system

interface. If users want to start Ki-Ngā-Kōpuku, the start option has to be

passed to the system interface. Once the interface receives the start option, it

will create one Erlang node to start Ki-Ngā-Kōpuku application. Then another

Erlang node, which is a local storage node, will be created to work with Ki-Ngā-

Kōpuku node.

On the other hand, Ki-Ngā-Kōpuku will be initialised when the system has

started. Three factors will be initialised while starting the system: application,

Chapter 4. System Design 76

Start KNK Application

Start KNK System Node

KNK Shell Script Interface
receives start option

Start KNK Local Storage
Node

Figure 4.5: Brief Start Steps

component storage, and system status. Application refers to the application

that Ki-Ngā-Kōpuku works for. This factor is used to distinguish different

applications and related application components. As described in the system

design, one Ki-Ngā-Kōpuku node has to work for one application, and nodes

working for the same application can only work together. By doing it this way,

the application traffic can’t be affected by other applications, which reduces the

burden on Ki-Ngā-Kōpuku unless cross application communication is required.

Besides restricting communication between different applications, specifying the

application can also help prevent unwanted application components, so that the

component environment is clean.

Component storage is another factor that needs to be initialised when the system

fully starts. In fact, the local storage node works with Ki-Ngā-Kōpuku node. The

system node and local storage node build up the entire system. The reason to

Chapter 4. System Design 77

have local storage for Ki-Ngā-Kōpuku node is to prevent shared data storage for

the whole Ki-Ngā-Kōpuku cluster. As one local storage node only works for one

system node, if something goes wrong within the system it won’t affect other

system nodes and data. Furthermore, other system nodes can’t connect to the

local storage node. Only the system node that it works with can modify the data.

The last factor is system status. There are three kinds of system status used in

Ki-Ngā-Kōpuku: new, active, and running. The following indicates details of

each system status:

New System can run, but has no application components. components.

Active System can run, but its registered application components are not run-

ning.

Running System is running with registered components.

In this case, the system status will become new when it is started for the first

time.

3. Stop Ki-Ngā-Kōpuku System

When users want to stop Ki-Ngā-Kōpuku, the option stop has to be passed to

the system interface. Once the stop option is received, then the shell script will

tell the Erlang system to run the application:stop(knk) command to stop the

whole Ki-Ngā-Kōpuku.

As Ki-Ngā-Kōpuku uses memory storage to store necessary data in the system,

so data will be lost when the system is shutdown. To avoid data loss when

stopping the system, the local storage node, which holds necessary data for Ki-

Ngā-Kōpuku, will save data on the disk and flush the memory before the system

shuts down. In this case, Ki-Ngā-Kōpuku can still work properly when it restarts.

4. Request Components

Typing command request_comp in the system interface starts the request for

Chapter 4. System Design 78

application components. When the interface receives request_comp, it will

first check the system status. Only systems with new system status are allowed

to request application components from the whole network.

4.5 Traffic Handler

Handling traffic between the different nodes and maintaining communication with

the other systems are very important to Ki-Ngā-Kōpuku. Due to Ki-Ngā-Kōpuku

distribution feature, multiple nodes with different usage purpose are bundled together

to make the system operate successfully. As a result of that, managing and maintaining

traffic among the different nodes should be well designed.

The traffic handler is receiving socket message or node message from other servers

or nodes and then taking operations to the traffic according to specific rules or patterns.

Even more, the traffic handler can also send messages to one specific destination, or

broadcast message to all servers in the whole network.

4.5.1 General Process

As shown in Fig. 4.6, the traffic handler will receive any incoming data and parse data

according to any pre-defined message patterns or routeing rules. The traffic handler is

the message hub for Ki-Ngā-Kōpuku and it manages all process behaviours and traffic

directions in the system. Consequently, traffic coming from the socket or node should

be passed to the traffic handler.

4.5.2 Message Pattern

Message patterns are critical in the Erlang programming language when dealing with

messages (Concurrent Programming, 2017). Messages are the communication traffic

Chapter 4. System Design 79

Incoming Data

Data

Message

Data is in binary
type

Convert Data to list
type

YComes in

Parse to term type
(easy to be

processed by
ErLang)

N

Parse Data in
Message Pattern

Map

End

Figure 4.6: Traffic Handler Process

between processes. When a message arrives at one process, that process can be used to

pre-define message patterns to quickly process data and operations. In addition, message

patterns limit the kind of data that the process receives This means the process is set

to receive specific messages that can reduce the pressure of developers or processes

handling unexpected messages.

The traffic handler processes two main types of message. One type is sys, another

type is socket. The sys type message is the system traffic, which can be traffic

between nodes or traffic within the system itself. The socket type message comes

Chapter 4. System Design 80

from the port that Ki-Ngā-Kōpuku listens on. The following example code shows how

the traffic handler processes incoming data:

message_map(Data) ->
{DataType, DataContent} = Data,
case DataType of
sys ->

[DataRequest, DataInfo] = DataContent,
case DataRequest of
register_comp ->

handle_register(DataInfo);
request_distribute ->

knk_socket:send_bcast({socket, [request_distribute,
DataInfo]});

tar_transfered_info ->
knk_socket:send_ucast({socket, [tar_transfered_info,
DataInfo]})

end;
socket ->

[DataRequest, _DataInfo] = DataContent,
case DataRequest of
request_distribute ->

handle_distribute_request(DataContent);
tar_transfered_info ->

handle_tar_transfered_info(DataContent)
end

end.

As shown in the example code, the traffic handler uses the message_map function

to receive requests. The message type will be checked, and then the traffic handler

will take actions according to message content. For example, if the traffic handler

receives a request {sys, request_distribute}, it will broadcast, or distribute,

the request among all of the network. The reason that the request has sys tag is that the

distribution request is generated by the system itself. After the traffic handler directs the

distribution request to its socket process, the request will be wrapped with the socket

tag because it is going to be sent to the outside world. Once the traffic handler for

other Ki-Ngā-Kōpuku systems receives the distribution request from the socket, it will

Chapter 4. System Design 81

process the distribution request.

4.6 Application Components

In this research, Ki-Ngā-Kōpuku is designed to provide redundancy and availability to

the user’s applications. To achieve these goals, it requires users to undergo application

componentisation before fully implementing their applications in Ki-Ngā-Kōpuku.

As Ki-Ngā-Kōpuku is written in the Erlang programming language, each application

component will play a different role when integrated with Erlang to build up the

distributed system. The role for each component is Node.

Each node in Erlang is a single unit working in the whole system, and the communi-

cation between each node is convenient and flexible. In this case, the user’s application

should be able to work with Erlang, and each application component should work like a

Node in Ki-Ngā-Kōpuku.

4.6.1 Component Definition

Application componentisation involves separating one single application into several

small pieces, and each piece can effect computations by using its functions or methods.

Consequently, one single application component can finish one task without any help

from other components. To work with Ki-Ngā-Kōpuku, each application component

should have a node name and their own major process. The node name is the identity

of each application component, which should be unique on one single server because

Ki-Ngā-Kōpuku will use the node name to find specific components (Distributed Erlang,

2017). On the other hand, the major processes running on each component will be used

to exchange messages between Ki-Ngā-Kōpuku and other application components. In

general, one single application component can work like a mini-server, and Ki-Ngā-

Kōpuku plays a role to establish the connection between these mini-servers.

Chapter 4. System Design 82

Erlang programming language has already provided APIs for multiple programming

languages, the communication between different languages won’t be a problem. If the

application is written in Erlang, then it’s a matter of simply using the command

erl -name nodename@ip_address

to start one Erlang node. If the application is written in Java, then users can import

Jinterface java library, and use

OtpNode myOtpNode = new OtpNode("server", "mycookie");

to start one node.

4.6.2 Component Storage

Component storage stores all information about application components work under

Ki-Ngā-Kōpuku framework. In Ki-Ngā-Kōpuku, the Erlang ETS table is used for

creating the local component storage. The reason to store information locally is that

distribution requires sharing information between different servers or hosts, which

means the location of Ki-Ngā-Kōpuku node is known by other servers. Consequently,

if hackers compromise the shared information, then all servers in the distributed system

will be in danger. On the other hand, component storage can be stored with the Erlang

hidden node. Common nodes in Erlang can share node information as long as they

are connected to each other. However, Erlang hidden nodes can hide their information

when nodes connect to them. In this case, using hidden nodes can prevent the node

information from being exposed to unnecessary operations.

-hidden option is required to start hidden node, and the command is

erl -name nodename@ip_address -hidden

There are four ETS tables used to store application component information: App

table, Component table, Component Attributes table, and Component Distribution Count

Chapter 4. System Design 83

table. The App table stores the name of the application that Ki-Ngā-Kōpuku works for.

The component table stores a list of components that are working under Ki-Ngā-Kōpuku.

The Component Attributes table stores the name of application components, but also

the node name, the functions within it, the name of the directory holding the component

source file, and even the command to start the application components.

1. Table Structure

• App Table Data Structure: {app, {AppName}}.

• Component Table Data Structure: {comp, [CompName]}.

• Component Attributes Table Data Structure: {comp_atts, CompName,

CompNode, [{FuncName, N}], CompSrc, RunEnv}.

• Component Distribution Count Table Data Structure: {comp_dist, {Comp-

Name, CountNumber}}.

2. Component Attribute Format Example

To give a more direct view of component attributes, the calculator application

is used in this section. In the real world, one calculator can receive numbers

typed by users and calculate results according to different operations. In this

example, addition and subtraction are used. The addition function will receive

two integers and add both numbers. The subtraction function is similar to the

addition function; however, instead, it will use one integer to minus another one.

The addition and subtraction function in Erlang will be like this add(X, Y)

-> X + Y.; minus(X, Y) -> X - Y..

Addition and subtraction are two different functions, so that calculator appli-

cation can be separated into an addition and subtraction component. Then the App

Table data structure will be like this, {app, {calculator}}. The Compo-

nent Table data structure will be like this, {comp, [calculator_addition,

Chapter 4. System Design 84

calculator_subtraction]}. The Component Attributes Table data struc-

ture is

{comp_atts,

calculator_addition,

’calculator_addition@192.168.1.1’,

[{add, 2}],

"/usr/local/calculator/src/calculator_addition.beam",

"erl -s calculator_addition start"}

4.6.3 Component Action

Component Type Identification

Identifying types of application components are necessary for the component registry.

There are four types of application components for Ki-Ngā-Kōpuku. As shown in

Fig. 4.7, the component table, component attributes table and component distribution

count table are checked to identify component types. In general, if one component can’t

be found in any of these tables, then it is very new to the cluster. If one component can’t

be found in the component table and component attributes table, but the distribution

count table has a record of it, then the component is new to the local Ki-Ngā-Kōpuku

system. The reason is that the component and component attributes table are local tables

that store component information in local environments. However, the distribution

count table records application components information among the whole network, so

components recorded in the distribution count table indicate that these components exist

outside of a local environment. If a component can be found in all these tables, then

its attributes will be checked because Ki-Ngā-Kōpuku doesn’t want to have duplicate

application components running under its management.

Chapter 4. System Design 85

Start

Component
exists in comp

table

Component
exists in

distribution
count table

Component
exists in

comp_atts table
N N

Error

Y

New component for
the whole system

New component for
the local system

N

YY

Component
exists in

comp_atts table

Component
exists in

distribution
count table

Component
attribution is the

same

Y

Y

N

N

Duplicated
component

Y

Component should
be updated
(replaced)

N

Figure 4.7: Component Type Identification

Component Registry

The component registry is the process to get component information from applica-

tion components and store component information into the local component storage.

Components have to register their attributes in a Ki-Ngā-Kōpuku node, and then Ki-

Ngā-Kōpuku can store component information in the local storage node. This process

is used when users use Ki-Ngā-Kōpuku for the first time. When Ki-Ngā-Kōpuku is

initialised, it doesn’t have component information. In this case, users have to add

Chapter 4. System Design 86

application components into Ki-Ngā-Kōpuku manually. Consequently, registering appli-

cations component is required. On the other hand, component registry is also the final

approval step for component distribution. Once application components are distributed

to new destinations, Ki-Ngā-Kōpuku will need to register component information in its

local storage. As shown in Fig. 4.8, application components have to be registered after

distributing and manually adding components.

Register
components

Distribution Manually adding

Local component
storage

Figure 4.8: Component Registry Approvement

For registering components in Ki-Ngā-Kōpuku, the component has to send a mes-

sage to Ki-Ngā-Kōpuku socket, which is listening to a specific UDP port. Registered

message sent from application components contain the name of the application that it

belongs to, the properties of functions within it, the source file location, the node name,

and a script for starting itself. Once Ki-Ngā-Kōpuku receives component information,

it will test the basic connection of application components. If the connection fails, then

Ki-Ngā-Kōpuku will report the error and reject this registration process.

The component register message structure is

{register_comp, [AppName, CompName, [{Fun_01, N}, {Fun_02,

N}], NodeName, CompSrc]}.

Chapter 4. System Design 87

The register message contains the message type: register_comp, and a list

of component attributes. Ki-Ngā-Kōpuku will identify the message type first. If

the message type equates to register_comp, then it will receive the component

attributes one by one. Ki-Ngā-Kōpuku will check the AppName in component storage

to make sure of the existence of the application. If the application does not exist in the

storage, then Ki-Ngā-Kōpuku will ignore the registration message. If AppName can

be found in the component storage, then Ki-Ngā-Kōpuku will check any component

duplication according to CompName. If the component name is duplicated, then

Ki-Ngā-Kōpuku will ignore the message and report duplication status. Furthermore,

the node name duplication will also be checked. When NodeName already exists

in the component storage, the system will report duplication status and ignore the

registration message. The reason for rejecting the registration message is because of

node duplication and the regulation that each component or node must be unique in

Ki-Ngā-Kōpuku. The last component attribute CompSrc is the file directory, which

stores the component source file. This attribute is used by Ki-Ngā-Kōpuku to validate

the existence of the source file. If the source file can’t be found in CompSrc, Ki-Ngā-

Kōpuku will report an error and notify users to check the existence of the component

source file.

As mentioned above, Ki-Ngā-Kōpuku needs to make sure that the system node can

connect application components. To test the connection status, the temporary node

will be used. The temporary node defines basic communication behaviours between

components and Ki-Ngā-Kōpuku. For enabling a connection between nodes, the node

cookie has to be the same on both nodes. The net_adm:ping() function in Erlang

can be used to test basic connection between nodes. If the connection is established

successfully, this function will return, pong; otherwise, the return message will be,

pang. Instead of just building a connection between the components and Ki-Ngā-

Kōpuku, it is also very important to test the main process availability of application

Chapter 4. System Design 88

components. To do that, the node template pre-defines one simple connect function

called conn_test, which can send and receive specific message patterns. By doing that,

the temporary node can use the connect function to exchange messages with the main

process running on application components. After the temporary node has finished its

task, it will be shut down and deleted.

The temporary node is the proxy for a Ki-Ngā-Kōpuku node. It uses basic functions

to communicate with application components and get the result required by a Ki-Ngā-

Kōpuku node. Using the temporary node not only reduces the burden of the system

node but also improves the security of Ki-Ngā-Kōpuku because it is the gateway to

blocking unhealthy or malicious components.

Fig. 4.9 shows application components registry process according to component

types.

Fig. 4.10 shows how Ki-Ngā-Kōpuku processes application component registry

messages. Once Ki-Ngā-Kōpuku receives the registration request from application

components, it will start the component registry process. If the register is successful,

then the system will send message to all other Ki-Ngā-Kōpuku systems notifying them

to update the distribution count table because it is related to the component distribution

status in the cluster.

4.6.4 Component Communication

Since the user’s application is separated into different components that individually

hold different functions, then the communication between each component is key to

making those components work as one whole application. A comunication method

is introduced in Peyravian et al. (2002). The method is to generate keys and relative

signature on all nodes, so that other nodes can use these key information to decrypt data

sent from that node. Since Ki-Ngā-Kōpuku is implemented between user interfaces

Chapter 4. System Design 89

Start

Check component
types

New system
component

Add component
related information

into local
component storage

New local
component

Check component
information
availability

N

Y Y

Add new
component into

distribution count
table

Broadcast distribute
adding information

through network

End

Check component
information
availability

Add component
related information

into local
component storage

Update distribution
count number

Broadcast distribute
updating

information through
network

End

Duplicated
component

N

Ignore / Deny

End

Y

Components
need to be

updated
(replaced)

N

Check component
information
availability

Y

Add component
related information

into local
component storage

Set distribution
count to 1

Broadcast distribute
updating

information through
network

End

Figure 4.9: Register Component via Types

and actual application services (components), and one Ki-Ngā-Kōpuku system can

hold multiple application components at one time on one single server, and it is not

necessary to waste resources on other nodes, so a Ki-Ngā-Kōpuku system has to build

some communication tunnel with other Ki-Ngā-Kōpuku systems on other servers.

For security reasons, each server is isolated from each other. This means that one

Ki-Ngā-Kōpuku system on one server shouldn’t know what components are working on

other servers. However, the user’s request coming from the outside world might need

multiple application services and functions for support because of complex business

Chapter 4. System Design 90

Traffic HandlerComponent Server

register component request

component information

register component

register success

update distribute count table

ok, and update distribute count table

Other KNK's Traffic
Handler

Application
Component

Figure 4.10: Component Registry Message Processing

logics. It is highly possible that one server will not have all application components on it.

Hence, Ki-Ngā-Kōpuku has to be able to find those required components in the whole

network and transfer data to them to continuously process the user’s request. For the

redundancy of applications components, it is possible to handle multiple instances of the

same application component on one single server, but this requires Ki-Ngā-Kōpuku uses

the inter-balancing techniques or more advanced algorithms to pick up one component

to use among all related component instances, which makes Ki-Ngā-Kōpuku complex.

As a result of that, in the current phase, no duplicated application components should

be existed on a server, so that the redundancy of application components are relied to

other servers in the network.

Locating Components

A distributed system has to be fast to react to user’s request Ahmed and Wu (2013).

The Erlang programming language uses nodes to build up a distributed system. When a

node connects to another node, it will not only know the information of the connected

node but also knows the existence of other nodes that connect to that node. Since

Chapter 4. System Design 91

Ki-Ngā-Kōpuku system nodes have to require information from the outside world and

other Ki-Ngā-Kōpuku system nodes, it is highly risky to keep Ki-Ngā-Kōpuku nodes

connected to each other. If each Ki-Ngā-Kōpuku system node is connected, then the

connection information will be exposed if hackers compromise one of Ki-Ngā-Kōpuku

nodes.

Given that Ki-Ngā-Kōpuku systems are not connected to each other, Ki-Ngā-Kōpuku

implements two ways to help locate components in the whole network. One is local

first; another one is UDP broadcasting. In situations, when a request comes

from a user interface, a Ki-Ngā-Kōpuku node will find relative functions that are

required to process the request. If the component that holds the required function on

the local server is detected, the request will be directed to that local component. This

is called local first. If local components don’t have required functions, then

Ki-Ngā-Kōpuku will send broadcast message through the UDP port and try to find

required functions on other servers in the network. If other servers happen to have the

required functions, then remote application components will receive the request and

continue to parse it.

Component Intercommunication

Application components don’t talk to each other directly because Ki-Ngā-Kōpuku itself

holds all of the information about components. In this case, a Ki-Ngā-Kōpuku node is

the only bridge for application components to talk to the outside world.

Ki-Ngā-Kōpuku has to provide APIs that can be used by application components

to pass traffic to a Ki-Ngā-Kōpuku node so that application components can exchange

messages and work as a whole application. Each component in Ki-Ngā-Kōpuku uses its

node name to represent its unique network location. As a result of that, the node name

are used in for component communication. Moreover, calling functions on a remote

node normally requires the name of the remote component and the remote function

Chapter 4. System Design 92

name.

As shown in Fig. 4.11, application component A wants to get a result from ap-

plication component B, which is located in another Ki-Ngā-Kōpuku system. Thus,

component A has to tell its Ki-Ngā-Kōpuku system node to find the location of

component B. To tell a Ki-Ngā-Kōpuku node to find required components; appli-

cation components can use Remote Procedure Call (RPC) in the code. RPC is used

when an operation has to be executed for a remote address. In these cases, application

components can use RPC call-specific functions in Ki-Ngā-Kōpuku.

Replies Result

Replies Result

Replies Result

Process Data in Function X

KNK System A KNK System B

Application
Component A

Application
Component B

Require Component B, Function X

Pass Data to Component B, Function X

Data

Figure 4.11: Component Communication

The following code shows how to require functions on a remote node in Erlang:

require_fun(ServerNode, CompName, FunInfo, Data) ->
rpc:call(ServerNode, simple_handler, require_comp,
[node(), CompName, FunInfo, Data]).

The require_fun function requires four parameters: the name of its Ki-Ngā-Kōpuku

system node, the name of application components that it wants to communicate with,

the name of functions that it wants to use, and the data passed to functions. This

function uses the rpc module in Erlang to call the require_comp function in the

Chapter 4. System Design 93

simple_handler module which runs on a Ki-Ngā-Kōpuku node. When a Ki-Ngā-

Kōpuku node receives information from this function, it will search components and

pass data to them.

On the other hand, each Ki-Ngā-Kōpuku system spawns multiple temporary pro-

cesses to handle traffic from application components. When a component requires

information from a remote application component, a Ki-Ngā-Kōpuku node will use a

temporary process to handle the traffic so that the request status won’t affect the node

itself.

4.7 Component Distribution

In Ki-Ngā-Kōpuku, distribution happens when the system receives distribution requests

from other Ki-Ngā-Kōpuku systems. Distribution functions in Ki-Ngā-Kōpuku not

only deal with code but also take actions on the data that is stored in local storage. The

general purpose of distribution is to deliver the components of a user application to a

new destination, then make the new destination act like a part of the user application.

In this case, when some servers for that application can’t work as usual, other servers

may still be alive that hold the same function of those broken servers so the whole

application won’t be affected by server failure.

Since the user’s application can be written in different programming languages,

and distributing application components is a difficult task to do, so Ki-Ngā-Kōpuku

focuses on providing a general way for distributing compiled source code for different

programming languages.

Chapter 4. System Design 94

4.7.1 Distribution Factors

Distribution Count Table

Ki-Ngā-Kōpuku uses one table to count distribution numbers for each application

component. This table only stores the component name and total number that the

component has been distributed. When Ki-Ngā-Kōpuku receives a distribution request,

it will use the distribution count table to decide which components should be distributed.

Components are chosen by sorting the number of each component in the distribution

count table. Components with lower number will be chosen for distribution. The reason

is that lower number means the component has fewer replicas in the whole cluster

so that distributing those components with lower numbers can guarantee the balance

between each component. When Ki-Ngā-Kōpuku decides to distribute one component,

and that chosen component is successfully distributed, then the count number of that

component will be updated on all Ki-Ngā-Kōpuku systems.

Local Storage Node

The local storage node stores the information from each local application component.

Once the distribution request is received, Ki-Ngā-Kōpuku will retrieve the component

information from the local storage node. In current research, there are no efficient ways

to transfer components to different destinations because applications can be written in

different programming languages. In this context, transferring compiled files can be

a solution for component distribution. Besides preparing components for distribution,

the local storage node will also store component information once new application

components are registered.

Chapter 4. System Design 95

Linux Tools

For distributing application components, some Linux tools are used to perform critical

tasks in the distribution process. These Linux tools are SSH, MD5, TAR, and RSYNC.

MD5 is used to calculate the hash value for each component. TAR will compress

components into one file so that they are easy to manage and can reduce the bandwidth

burden. SSH and RSYNC are used to transfer compressed component tar file to new

servers. Currently, a password-less SSH connection has to be established so that there

is no need to type in a login password when using the SSH command.

4.7.2 General Distribution Steps

As shown in Fig. 4.12, there are seven steps for the applications component distribution

process.

Select dedicated
components to

distribute

Retrieve
component
information

Prepare
component

Transfer
Unpack

components
Load components

Update distribute
count table

Start

Figure 4.12: General Distribution Steps

The following shows details of seven general steps in the distribution process.

1. Select dedicated components to distribute.

Ascending the distribution count table, and gather all components with the lowest

(or lower) number. Then ascertain the total number of components that should

be distributed. The distributed number (N) is defined by users, which means

Ki-Ngā-Kōpuku will get the first N components to distribute.

Chapter 4. System Design 96

2. Retrieve component information.

Search the component name in component storage, and retrieve the source di-

rectory of each component and compiled code (for the current version). If no

components are found in local storage, then the request is ignored.

3. Prepare component.

Compress the necessary component files as well as the required boot up script or

procedure used for checking the integrity of components, starting components,

and registering components.

4. Transfer.

For the current version, SSH and RSYNC should be used. SSH is used for remote

access, and Rsync is used for transferring component files.

SSH needs servers to establish the password-less SSH connection between desti-

nation servers. This requires both servers to provide the username and password

or certificate for SSH.

5. Unpack components.

Unzip component files, and check the MD5 hash value. If the hash value is the

same, then the component is ready to load and start. If the hash value is not the

same, then the component files are dropped and return message are sent to other

servers.

6. Load components (depends on Step 5)

Following the load steps to start distributed application components.

7. Update distribute count table.

If distributed components successfully load on the new server, then distributed

components should be registered in the local component storage. Then the

distribution count table will be updated. The component receiver will send

broadcast messages notifying that distribution has succeeded. After that, other

Ki-Ngā-Kōpuku system nodes will receive distribution success messages and

Chapter 4. System Design 97

update their own distribution count table.

4.7.3 Distribution Workflow

Two distribution workflows are used for the distribution requestor and distribution

sender. The distribution requestor is Ki-Ngā-Kōpuku that sends distribution requests to

the whole network. The distribution sender is Ki-Ngā-Kōpuku that receives distribution

requests and transfers application components to the requestor.

Distribution Requestor

As shown in Fig. 4.13, the distribution process starts when the requestor sends a

distribution request to the whole network while the server is new to Ki-Ngā-Kōpuku

cluster or attempting to request application components from other servers. After

sending the request, the requestor has to wait for senders to send compressed application

component files. However, it is hard for requestors to detect new files coming to the

system because requestors won’t know the exact time that those compressed files came

to the system. On the other hand, because the distribution request is broadcast to the

whole network, the requestor will receive multiple compressed component files sent

from different Ki-Ngā-Kōpuku systems. The requestor won’t use all of those files; it

will randomly select one file to use. However, the requestor won’t know how many

compressed files will come, and when those files will come.

To be able to detect new compressed application components files the requestor will

start one process to check one ETS table, and another process to monitor the check result.

The ETS table checked by the process is called selection_pool, which is used

to receive messages from distribution senders. The message contains the information

about the compressed file that is transferred by distribution senders, which means when

the sender successfully transfers the file to the requestor, it will send the file information

Chapter 4. System Design 98

Start

Calculate MD5 hash
value for tar file

Hash value
matches

Decompress tar file

Report {error,
wrong_distribute_file}

Y

N

Delete all tar files

End

Hash value
for each file

matches

Report {error,
wrong_distribut

e_file}

Transfer component
file to user_app

directory

N

Y

Delete all tar
files

End

Load distribute
count table to local
component storage

Component
can load in
KNK system

Report {error,
component_load_fai

led}

Send component
received

information to
sender(s)

N

Y

Y

Delete all tar file and
component file

End

Delete tar file

Update distribute
count table

End

Received
 Component Sent

message from Sender

Get a list of
component files (tar

files)

Randomly select one
tar file to use

System
status is
 new

N

Send distribution
request

Figure 4.13: Distribution Requestor Workflow

and the requestor will store the information in the selection_pool table. In this

case, the requestor won’t have to worry about how many files it will receive and where

to find them.

The following code describes the monitor process and table checking process.

Starting monitor process and table checking process:

Pid = spawn_link(?MODULE, monitor_loop, [0]),
register(monitor_loop, Pid),
TabChPid = spawn_link(?MODULE, table_check_loop, []),
register(table_check_loop, TabChPid).

The above Erlang code shows how to start the monitoring and table checking process.

To find these processes easily, the monitor process is locally registered with the name

Chapter 4. System Design 99

monitor_loop, and table checking process is named as table_check_loop.

Table checking process:

table_check_loop() ->
receive
check_table ->
Result = gen_server:call(knk_etssrv, check_select),
monitor_loop ! Result,
table_check_loop();

stop ->
exit(normal)

end.

As shown in the above code, the table checking process can receive two messages:

check_table and stop. When the process receives the check_table message,

it will check ETS table selection_pool, and applies the result to the monitor

process monitor_loop.

Monitor process:

monitor_loop(N) ->
receive
start ->
table_check_loop ! check_table,
monitor_loop(N);

’$end_of_table’ ->
send_check_signal(),
monitor_loop(N);

_Other ->
if

N < 3 ->
send_check_signal(),
monitor_loop(N + 1);

true ->
%% tells distribute process that files are coming
send_notification(),
table_check_loop ! stop,
exit(normal)

end
end.

Chapter 4. System Design 100

The monitor process is named as monitor_loop in the system, which can receive

start, ‘$end_of_table’, and other messages. When it receives ’$end_of_table’

message from the table checking process, it means the selection_pool table is still

empty, and no files are coming now. If the process receives messages other than start

and ‘$end_of_table’, it means that there are files that have been transferred to the

server. In this case, the monitoring process will still run for a while to give more time to

the system to receive more files. If the monitoring process reaches the limit, then it will

stop itself and send a signal to the table checking process to stop as well. Consequently,

Ki-Ngā-Kōpuku will randomly select one file from the selection_pool table to

use.

After selecting the compressed application components file to use, the requestor will

calculate the hash value of that file and request the hash value of the selected file from

the sender to check the file integrity. If the hash value of the compressed file doesn’t

match, then the file will be deleted, and the whole distribution process will be stopped.

If the hash value matches, then it will be uncompressed, and Ki-Ngā-Kōpuku will check

the integrity of component files within it. When all files pass the integrity check, the

requestor is ready to start those components and register the component information in

its local storage node; then the whole distribution process is finished.

Distribution Sender

The distribution workflow used for the distribution sender is different from the requestor

because senders have to prepare the application components files and necessary elements

for use by the requestors.

Fig. 4.14 describes the distribution process for senders. In general, two main tasks

have to be done from the sender side. One is selecting which components should be

distributed to the requestor; another task is transferring those application components

files to destinations.

Chapter 4. System Design 101

St
ar

t

G
et

 c
om

po
ne

nt

in
fo

rm
at

io
n

th
at

 a
re

 g
oi

ng

to
 b

e
di

st
rib

ut
ed

Sa
ve

 d
is

tr
ib

ut
e

co
un

t t
ab

le
 to

 d
isk

Co
m

po
ne

nt
 e

xi
st

in

us

er
_a

pp

di
re

ct
or

y
(lo

ca
l

co
m

po
ne

nt

st
or

ag
e)

Y

Co
py

 c
om

po
ne

nt

fil
e

an
d

di
st

rib
ut

e
co

un
t t

ab
le

 to
 ta

r
di

re
ct

or
y

Co
m

pr
es

s
ta

r
di

re
ct

or
y

w
ith

 h
as

h
fil

e

Ca
lc

ul
at

e
ta

r
fil

e
M

D5
 h

as
h

va
lu

e

Ca
lc

ul
at

e
M

D
5

ha
sh

va

lu
e

fo
r e

ac
h

fil
e,

an

d
st

or
e

ha
sh

va

lu
e

in
to

 fi
le

 (h
as

h
fil

e)

Sa
ve

 ta
r f

ile
 h

as
h

va
lu

e
in

 th
e

KN
K

sy
st

em

Se
nd

 ta
r f

ile
 to

de

st
in

at
io

n
by

 u
si

ng

SS
H

Re
ce

iv
ed

 c

om
po

ne
nt

re

ce
iv

ed

m
es

sa
ge

U
pd

at
e

di
st

ri
bu

te

co
un

t t
ab

le
Y

N

Re
ce

iv
ed

di

st
rib

ut
io

n
er

ro
r a

nd

di
st

rib
ut

io
n

re
qu

es
t

Re
di

st
ri

bu
te

Re
po

rt
 {e

rr
or

,
di

st
rib

ut
io

n_
sy

s_
er

ro
r}

N En
d

Re
tu

rn
 {i

nf
o,

di

st
rib

ut
e_

su
cc

ee
de

d}

En
d

En
d

Ig
no

re
 d

ist
rib

ut
e

re
qu

es
t

En
dN

Re
qu

es
to

r
st

at
us

is

 n
ew

Y

N

Sp
aw

n
te

m
po

ra
ry

di

st
rib

ut
e

pr
oc

es
s

to
 h

ol
d

di
st

rib
ut

io
n

pr
oc

es
s

Se
nd

Co

m
po

ne
nt

Se

nt

m
es

sa
ge

 to

re
qu

es
to

r

Fi
gu

re
4.

14
:D

is
tr

ib
ut

io
n

Se
nd

er
W

or
kfl

ow

Chapter 4. System Design 102

Once Ki-Ngā-Kōpuku receives a distribution request from the other Ki-Ngā-Kōpuku

system, it will first check the distribution status of each application component from the

distribution count table. As described in the distribution count table Section, components

with lower distribution count numbers will be selected by Ki-Ngā-Kōpuku.

1. Component Selection.

The Ki-Ngā-Kōpuku system first retrieves all components’ distribution status

recorded in the distribution count table:

full_distribute_list() ->
case ets:first(comp_dist) of
’$end_of_table’ -> empty_dist_count;

HComp ->
full_distribute_list(HComp, [])

end.

full_distribute_list(HComp, RList) ->
HCompCountL = ets:lookup(comp_dist, HComp),
case ets:next(comp_dist, HComp) of
’$end_of_table’ -> RList ++ HCompCountL;

NComp ->
full_distribute_list(NComp, RList ++
HCompCountL)

end.

The above code is used to check the ETS table comp_dist and replies to a list

as a result. The list contains the component name and its related count number,

so that the list structure will be like this [{CompName, CountNumber}].

After getting a full list of application components, Ki-Ngā-Kōpuku has to sort the

list to distribute candidate application components. The following code shows

how to sort the list in ascending order:

sort_distribute_list(RANGE) ->
case full_distribute_list() of
DistL when is_list(DistL) ->
[X || {X, _} <- lists:sublist(
lists:keysort(2, DistL), RANGE)];

Chapter 4. System Design 103

empty_dist_count -> no_count_list
end.

The RANGE parameter passed in the above function is defined by users, which

is then used by Ki-Ngā-Kōpuku to select a range of application components for

distribution.

2. Component Preparation

When Ki-Ngā-Kōpuku has decided which application components should be

distributed to the destination, the system will prepare the component files for

component transfer. First, Ki-Ngā-Kōpuku has to make sure those selected

components are running in its local environment. If those components can’t be

found in its local storage node, then Ki-Ngā-Kōpuku will ignore the distribution

request because it doesn’t want those application components. Instead, if Ki-Ngā-

Kōpuku finds component information in the local storage node, then it will check

whether or not those component source files exist.

In the current situation, Ki-Ngā-Kōpuku uses the shell script to prepare compo-

nent files. During the preparation process, the hash value of each application

component file and its distribution count table will be calculated. After that, Ki-

Ngā-Kōpuku will compress those files into one tar file. The following command

calculates the hash value for each component file and creates one compressed

file:

Calculate hash value for each component file
filename=$(echo $filePath | awk -F"/" ’{print $NF}’)
md5sum $filename > $metadata
datavalue=$(cat $metadata | cut -d " " -f 1)
dataname=$(cat $metadata | cut -d " " -f 3)
echo $datavalue,$dataname >> $hashFile
Calculate hash value for distribution count table
md5sum $distname > $metadata
echo $tabhash,$tabname >> $hashFile
Create tar file

Chapter 4. System Design 104

tar -zcf $tarName *

3. Component Transfer

For transferring components to the destination, the password-less SSH is used.

The following shell script command uses SSH and RSYNC to transfer the tar file

to the destination:

rsync -autH -e ssh $tarName $user@$DstHost:$storePath

$tarName, $user, $DstHost, and $storePath are parameters that should be passed

to this command. $tarName is the name of the tar file that will be transferred by

the distribution sender. $user is the system user name of distribution requestor.

$DstHost is the IP address of the destination server. The last parameter $storePath

is the directory where the tar file should be send to.

4.8 Conclusion

This chapter discussed details of system design of Ki-Ngā-Kōpuku. The Ki-Ngā-

Kōpuku system is used as a distributed security system for user’s applications. It is

efficient to provide absolute redundancy and availability to user’s applications by ran-

domly distribute application components to different locations, so that user’s application

will always have active application components running and serving for users. For

taking operations on user’s applications, Ki-Ngā-Kōpuku requires developers to com-

ponentize the applications first to generate application components. Then, developers

have to use the built-in function of Ki-Ngā-Kōpuku to register component information,

so that Ki-Ngā-Kōpuku is able to taking actions on application components. Communi-

cations between Ki-Ngā-Kōpuku and application’s components are achieved by using

remote procedure call (RPC) or service port. Application’s components can use RPC

to retrieve necessary data from Ki-Ngā-Kōpuku system nodes or other application’s

Chapter 4. System Design 105

components. The specific UDP port is used to establish connections between different

servers or Ki-Ngā-Kōpuku system nodes. In that case, different Ki-Ngā-Kōpuku system

nodes can exchange necessary information between each other, which brings much

more flexibility to the whole Ki-Ngā-Kōpuku cluster. The Ki-Ngā-Kōpuku system uses

SSH and RSYNC to securly transfer component compiled files to achieve component

distribution. In this case, as long as Ki-Ngā-Kōpuku can get the path of component’s

compiled source file, application components will always be suitable to be distributed.

The next chapter 5 will discuss the result of literature review, and proposed research

questions.

CHAPTER : DISCUSSION

Introduction

Literature Review

Methodology

System Design

Discussion

Conclusion

1. Introduction
2. Summary of Related Work
3. Summary of Ki-Nga-Kopuku System
4. Research Questions
5. Design Evaluation
6. System Limitations
7. Conclusion

Chapter 5

Discussion

5.1 Introduction

The System Design chapter 4 has introduced the specific system design information of

Ki-Ngā-Kōpuku, which includes system architecture, system features, traffic handler,

and component distribution. For better evaluating the result of the previous chapter,

this chapter will discuss the literature review, and proposed research questions. Then,

more detailed information will be discussed according to comparing the researched

theoritical articles and technical solution that has been described in chapter 4.

This chapter first discuss the literature review to summarize what can be learned

from these articles. Then an overview of Ki-Ngā-Kōpuku system design is given to

summarize what has been done in chapter 4. After that, the proposed research questions

are discussed by evaluating the result of this research. At the end of this chapter, the

limitations of Ki-Ngā-Kōpuku system are discussed to provide a basic direction for

further research.

107

Chapter 5. Discussion 108

5.2 Summary of Related Work

This section discusses what has been done in the Literature Review chapter 2, and

reflections on the literature that helps research and design Ki-Ngā-Kōpuku.

First of all, the concept of Ki-Ngā-Kōpuku is introduced: Ki-Ngā-Kōpuku is de-

signed to secure the cloud environment, and bring absolute redundancy and availability

to user’s applications. It is a decentralized distributed security system, which is con-

sisted of multiple independent self-controllers, and implement security mechanisms and

distribute user’s application components to different network locations.

5.2.1 Cloud Security Models

By studying the cloud security models, the basic design concept of Ki-Ngā-Kōpuku

is set up. Servers are the work environment of Ki-Ngā-Kōpuku. In the aspect of

cloud computing, Ki-Ngā-Kōpuku lies in the IaaS and PaaS layer. The Cloud Risk

Accumulation Model of CSA (Brunette et al., 2009) describes the security risks will

be accumulated when the service is located in lower layer. Cloud users have to put

more efforts into the security if low layer services are used. As a result of that, Ki-Ngā-

Kōpuku has to consider more security protections to protect the system itself. Moreover,

as described in the Cloud Multiple-Tenancy Model of NIST (Brunette et al., 2009),

the cloud providers allow multiple applications use the same computing resources,

Ki-Ngā-Kōpuku should have the idea of isolation in the system design, which makes it

hard to be affected by unrelated problems.

Jing and Jian-jun (2010) introduced one security concept called Security Access

Control Service. It verifies user’s identification in Access Authorization layer; user’s

access is secured by Security API; Cloud Connection Security ensures the safety of

resources provided by the bottom resource layer. Based in this model, each layer in

Ki-Ngā-Kōpuku should also implement security mechanisms, especially authenticating

Chapter 5. Discussion 109

identifications, and resources verification.

5.2.2 Data Security in Cloud Computing

Securing the data in cloud environment is one of the purpose of Ki-Ngā-Kōpuku. Ki-

Ngā-Kōpuku can use encryption algorithms to protect data in the cloud environment.

In Sedayao et al. (2009), third party’s attributes are imported to encrypt and decrypt

data, it also assumes the third party is secure and isolated from the cloud environment.

However, this condition is hard to meet and the security of third party is not guaranted,

so Ki-Ngā-Kōpuku should use its own public or private key information to encrypt and

decrypt data. Wang et al. (2010); Yang and Jia (2013) propose a third party auditor to

protect data. It uses algorithms to generate signatures, proof data correctness, and audit

the proof from the cloud server. This audit model provides a way for Ki-Ngā-Kōpuku to

secure data from user access, data origin, and also the audit environment itself. Brodkin

(2008); So (2011); Singh and Chatterjee (2017) all mentioned imperfect design of data

segregation is easy to cause security issues for data in storage in cloud computing. In

this case, Ki-Ngā-Kōpuku should design advanced data segregation mechanism, and

distribute data into different locations can also reduce the risk.

In Mouhib and Driss (2015), a framework is introduced that provides two ways

for users to protect data. First way is that cloud providers use user’s private key to

decrypt data, and send decrypted data to users. This method is not acceptable, because

user’s private key is exposed. Second way is that cloud providers send encrypted data

to users, and users use their private key to decrypt data. This method can be used in

Ki-Ngā-Kōpuku, but selecting and extracting wanted data is a difficult task because

data is encrypted. Khan et al. (2015) developed an encryption technique combines three

encryption techniques. It splits the data in three parts, and different part uses different

encryption techniques to encrypt. If Ki-Ngā-Kōpuku use different encryption algorithms

Chapter 5. Discussion 110

to encrypt different parts of the data, then it is going to consume lots of computing

resources to encrypt and decrypt, the system also has to consider data processing. Unruh

(2015) propose a time-release encryption method. This method allows the sender to

get back the encrypted data before the time T, and the encrypted data can’t be leaked

before time T. Setting up a time limit for the encrypted data is a good idea. However,

Ki-Ngā-Kōpuku is possible to handle massive size of data, which affects the time of

data decryption. In this case, the time limit has to be set to a large value, otherwise the

data won’t have enough time to decrypt.

The Cloud Computing Multi-Dimension Date Security System is proposed in Xin

et al. (2012). It has three layers: Authentication layer, File encryption and privacy

protection layer, and File Fast Regeneration layer. The first layer authenticate user’s

identification. The second layer encrypts data. The third layer is used to recover files.

This model has a buff area for the data recovery in case of the data is compromised.

However, if the buff area is not secure, then it is highly possible to lose the data. But

it is useful for Ki-Ngā-Kōpuku to set up a special area for accessing data. A similar

model is also proposed in “Enhanced data security model for cloud computing.” (2012).

It uses OTP authentication in the first layer, and the last two layers are similar with the

Cloud Computing Multi-Dimension Date Security System.

5.2.3 Distributed System

Mccaffrey (2016) mentions partial failure is one difficult part for building distributed

system. Partial failure results in incomplete results. Jain and Paul (2013) discusses

the state changes and policy changes are difficult in distributed system. Mishra and

Tripathi (2014) mentiones issues and challenges of distributed software system, such as

resource management, security and privacy, scalability, synchronization, and redundant

testing during integration. In Afek (2013), message process and delivery are issues

Chapter 5. Discussion 111

in distributed system. Considering these problems, Ki-Ngā-Kōpuku should design a

fault-tolerant mechanism. In this case, if one part of the system fails, the rest of system

won’t be affected. State and policy change in Ki-Ngā-Kōpuku should be restricted,

and synchronising change operations within the system is useful. In order to process

messages correctly, Ki-Ngā-Kōpuku should design message protocols or message

brokers.

Fault-tolerance is one of the purpose of Ki-Ngā-Kōpuku. As stated in Sari and

Akkaya (2015), replication is used for general fault tolerance method to protect against

system failure. Carlini et al. (2013) propose an architecture for Distributed Virtual

Environment. It combines Peer-to-Peer network with cloud computing. This architec-

ture replicates servers in Peer-to-Peer network, and transfer the replicas to the cloud

envronment. Ki-Ngā-Kōpuku is software focused, so replicating servers or virtual

machines are not useful for Ki-Ngā-Kōpuku. Moreover, this method assumes the cloud

environment is absolutely secure, which doesn’t fit the system. Borg et al. (1983) uses

backup processes to achieve fault-tolerant in the aspect of processors. This method is

useful to Ki-Ngā-Kōpuku. Backup processes can synchronous data from the primary

processes, and take over the communication once the primary one are failed. However,

Ki-Ngā-Kōpuku has to consider the synchronous mechanism between primary and

backup processes. Backup processes should also be secured. For achieveing fault-

tolerant, Ki-Ngā-Kōpuku can also evaluate user’s actions or manage messages sequence.

In Smara et al. (2016), a fault detection technique that uses acceptance test in the action

verification process is introduced. It first check the result of actions, and evaluate

the results to define whether the results are acceptable to the system. If the result is

unacceptable, then the fail won’t affect other parts. The Totem is a fault-tolerant ordered

multicast group communication system. It manages the message sequence, so that

messages can be processed properly.

Load balancing is a technique to improve performance and availability of distributed

Chapter 5. Discussion 112

systems. There are two types of load balancing techniques: static and dynamic. As

described in Shah and Farik (2015), static load balancing algorithms lack resource

monitoring and task management. Most of static algorithms don’t check the execution

time of tasks and the availability of resources. However, in Alakeel (2010), the advan-

tage of dynamic load balancing algorithms is that tasks can move dynamically from

an overloaded server to an unoverloaded sercer according to the current state of the

system, but it is harder to implement dynamic load balancing algorithms. In the aspect

of Ki-Ngā-Kōpuku, dynamic load balancing algorithms can be used, because the traffic

destination can be changed via evaluating the state of resources.

5.2.4 Decenralized System

As described in Sandell et al. (1978), the decentralized system is known as distributed

control. A distributed control system is a computerised control system for a process or

plant, in which autonomous controllers are distributed throughout the system, but there

is central operator supervisory control. Ki-Ngā-Kōpuku is supposed to be developed as

a decentralized system, so autonomous controllers should be the basic component that

builds up Ki-Ngā-Kōpuku. Each controller should also have fault-tolerant ability, so

that the failure of a controller can’t affect other active controllers.

Zhao and Xiao (2015) introduces the Autonomous Decentralized Test System.

Double-ring structure is used in this model, Each test unit in the double-ring structure

can work independently and complte assigned tasks. Once adding/removing test unit ,

then structure is going to breakup, and find place for new test unit. From this research,

each Ki-Ngā-Kōpuku system node should work together in special scenarios, and

also provides a layer that blocks underlying infrastructure information from users. In

Coronado-Garcia et al. (2011), public-private key pair is implemented in the Data

Field, which is used to send and receive message in the decentralized system. Message

Chapter 5. Discussion 113

sender uses receiver’s public key and random number to encrypt data. The receiver

will establish connection only if the sender’s identification is authenticated. Since

Ki-Ngā-Kōpuku is a decentralized system with multiple autonomous controllers, so the

communication between each controller have to be encrypted. Using public-private key

pair is useful in Ki-Ngā-Kōpuku.

5.2.5 Random Distribution

Software based component distribution research are not found, but literature that have

similiar ideas have been discussed.

Carlini et al. (2013), the Distributed Virtual Environment architecture is discussed.

It is able to split multiple virtual machines into different location. Even though this

architecture doesn’t relate too much with the distribution feature in Ki-Ngā-Kōpuku.

From this research, Ki-Ngā-Kōpuku should distribute components, and manage com-

ponent’s infoormation. The reason is that if multiple components are distributed into

the server, then it is highly possible to make servers overloaded. Afzali Seresht and

Azmi (2014) propose a distributed intrusion detection system called MAIS-IDS. This

system has multiple security agents, and it is able to randomly select multiple security

agents migrating to new environment. The MAIS-IDS is useful to Ki-Ngā-Kōpuku

development. The idea of migrating security agents are similiar to Ki-Ngā-Kōpuku

distribute user’s application compnents.

5.2.6 Conclusion

The whole section 5.2 has discussed several theoretical and technical ways that are

related to Ki-Ngā-Kōpuku. By analyzing the findings of the literatures, advantages

and disadvantages of each literature are discussed. Moreover, the literature review

findings are compared with the objectives of Ki-Ngā-Kōpuku. Findings unrelated to

Chapter 5. Discussion 114

Ki-Ngā-Kōpuku objectives will be ignored.

Based on the research on cloud security models, Ki-Ngā-Kōpuku should have

advanced security mechanism implemented within it. In more detail, system isolation

and data security are the main parts that should be considered in the aspect of security.

From the literature, system isolation can be achieved by storing data in different

locations or making the system become distributed. Placing access control in each

system layer and securing the data can also improve the overall security level of Ki-

Ngā-Kōpuku. Most of the literature have mentioned applying encryption technique

are the direct way to secure data. In this case, Ki-Ngā-Kōpuku should use advanced

encryption mechanism in the system. However, the concept of Ki-Ngā-Kōpuku is new

by comparing to other systems, so the encryption mechanism should be designed to fit

the architecture of Ki-Ngā-Kōpuku. As proposed in many literature about fault-tolerant

system, hardware and system level fault-tolerant technique are always discussed. Due

to Ki-Ngā-Kōpuku is only a system running on cloud environment, which has no direct

access to physical resources, so Ki-Ngā-Kōpuku can use system level technique to

achieve fault-tolerance, such as using backup process or evaluating user’s actions. Load

balancing technique can also be implemented into the system. The reason is that Ki-

Ngā-Kōpuku is have to handle user’s requests from outside world, static or dynamic

load balancing technique can help reduce system burden.

Ki-Ngā-Kōpuku is also a decentralized system. From the literature, the decentralized

system is known as distributed control, so Ki-Ngā-Kōpuku should use autonomous

controllers to manage different parts of the system. Moreover, each controller should be

possible to work with other controllers, so that the system scability can be guaranteed.

Besides fault-tolerant ability of the system, literature also talk about communication

security between each part of the decentralized system, which should also be concerned.

By learning literature about component distribution, advanced distribution mechanism

should be used in Ki-Ngā-Kōpuku, otherwise the server is possible to face overload

Chapter 5. Discussion 115

problem.

In general, as Ki-Ngā-Kōpuku is a decentralized distributed security system, which

runs on the cloud environment, so cloud security, data encryption, distributed system,

decentralized system, and component distribution have to be researched.

5.3 Summary of Ki-Ngā-Kōpuku System

As described in the System Design chapter 4, Ki-Ngā-Kōpuku is a decentralized

distributed security system which brings security, absolute redundancy and availability

to user’s applications. This research aims to proof the concept of Ki-Ngā-Kōpuku in

both theoretical and technical way, so this section discusses the major findings of this

research.

5.3.1 Erlang Programming Language

First of all, the Erlang programming language is selected to develop Ki-Ngā-Kōpuku.

The main reason to use Erlang is that it is useful to build up distributed system because

of its node feature. Each node can be designed as an independent working unit, so that

each node can work on different computation task, or all nodes work together to achieve

the same goal. Moreover, Erlang’s message passing technique makes the system be

strong enough to do concurrent computing, which is ideal to serve massive requests. In

the aspect of development, Erlang can develop the prototype in a really short time, and

developers can get the benefit from Erlang’s hot-swap feature, which makes developers

easy to replace code without shutting down or restarting the service. In general, Erlang

is an ideal programming language to develop Ki-Ngā-Kōpuku.

Chapter 5. Discussion 116

5.3.2 System Design

Ki-Ngā-Kōpuku is designed to be implemented between frontend interfaces and backend

servers. Its function is to build up an infinite layer that lies on the top of user’s

applications, and provide stable services for users. In which case user’s applications

can always be available to users.

The building block of Ki-Ngā-Kōpuku is the Erlang node, which is the basic com-

ponent that builds up Erlang’s distributed system. Each Erlang node is an independent

Erlang runtime system, which is able to hold multiple Erlang applications. For imple-

menting Ki-Ngā-Kōpuku with user’s applications, users have to compontenize their

applications first. Each application component can be a service or some functions that

are used within the application. As a result of that, Ki-Ngā-Kōpuku doesn’t have to

distribute the whole application in the distribution process.

The cluster and application group is introduced in Ki-Ngā-Kōpuku. Ki-Ngā-Kōpuku

cluster is an organization of all Ki-Ngā-Kōpuku application groups in the whole network.

An application group is the combination of Ki-Ngā-Kōpuku nodes and user’s application

components. For isolating unrelated traffic between different applications, application

components that work for the same application are grouped in the same application

group. Moreover, components that reside in different network locations are also belong

to the application group. Therefore, a Ki-Ngā-Kōpuku cluster is consised of one or

more application groups, components that are located in different network locations

can also be in the same application group as long as they are working for the same

application, one application can only have one application group in the whole network,

and the application group will exist as long as there are components running in the

network.

A Ki-Ngā-Kōpuku node is an independent self-management controller to user’s

application components. Due to the application group concept, the system node can

Chapter 5. Discussion 117

work with application components only if both serves the same application. Also, only

one system node that works for an application is allowed to run in the network location,

so that if a network location attempts to run multiple applications, then it has to run

multiple system nodes, and each system node works for only one specific application.

The reason to avoid multiple system nodes working for the same application in one

network location is that the application’s components management will be easier, and

no collisions will happen between components.

While developing Ki-Ngā-Kōpuku, Erlang OTP design principles and Erlang super-

vision tree is used. Erlang OTP describes each system role in particullar behaviours,

which brings convenient while developing. The supervision tree is a design structure.

It has two roles: supervisor and worker. A worker is a specific part of the system that

do computation task. A supervisor is a monitor of workers. It is able to monitor the

behaviour of each worker, and handle errors that happened within the worker, so that

other parts of the system won’t be affected, and only the problem worker is catered

by supervisors. In general, the supervision tree gives Ki-Ngā-Kōpuku an absolute

fault-tolerance ability.

5.3.3 System Communication

For using Ki-Ngā-Kōpuku with user’s applications, the system has to provide communi-

cation methods for both user’s applications and the system itself. Due to Ki-Ngā-Kōpuku

is supposed to be an infinite layer for frontend interfaces and backend servers, so Ki-

Ngā-Kōpuku node is the element to build up the infinite layer. Application interfaces or

components can exchange data with the system node, then the system node is able to do

corresponding tasks according to each operation. Moreover, each system node is the

same, so no matter which system node that user’s applications are connecting to, the

system node will always provide appropriate services.

Chapter 5. Discussion 118

Erlang’s distribution feature makes each node be able to communicate with other

nodes among the network. However, this opens up a door for security threats. Once

a node is compromised by hackers, then other the information of other nodes will

be under danger. To prevent this security threat, Ki-Ngā-Kōpuku chooses to isolate

each server among the network, and use system port for the system communication.

Ki-Ngā-Kōpuku uses UDP port for transfering traffic to application’s components. A

Ki-Ngā-Kōpuku node uses the broadcast feature of UDP to send broadcast messages

among the network, which makes other system nodes able to receive the message, so

that each system node can still communicate with each other. Ki-Ngā-Kōpuku also

uses its own message management service called traffic handler. The traffic handler

can receive traffic from the system port, and analyze the traffic according to message

patterns, then encapsulate the traffic in the pre-defined data format, after that the system

node will send the new traffic to real destinations. A Ki-Ngā-Kōpuku node also uses

UDP broadcast messages to find the wanted communication targets. The wanted

communication targets can be a set of functions or services within the application. Each

system node uses the same finding mechanism and follows the “local first” rule to

manage the traffic processing order within Ki-Ngā-Kōpuku. “local first” rule refers to

the local components have the highest priority to be selected to process the traffic if the

local components are in the list of wanted components. Otherwise, the system node will

try to find wanted components in other network locations via communicating with other

system nodes.

5.3.4 Application Component

Ki-Ngā-Kōpuku uses its local storage to store the information of application’s compo-

nents. The local storage is another kind of Erlang node running on the system. Each

system node has a local storage node. Four types of application components are defined

Chapter 5. Discussion 119

in Ki-Ngā-Kōpuku: new component for the whole system, new component for the

local system, component that requires update, and duplicated component. Since an

application component has to be identical to its corresponding system node, so the

system node has to take actions on components by defining component types. However,

storing component information within the local storage node is a potential security risk

for the system. When the storage node is intruded by hackers, the local component

information will be exposed, which is against the system requirement that the system

information should be hard to determine.

5.3.5 Component Distribution

Ki-Ngā-Kōpuku distributes application components to different network locations to

achieve the redundancy of user’s applications. Once a Ki-Ngā-Kōpuku node receives

distribute a request from other system nodes, it checks the component distribution status

in the whole system first to identify which components should be distributed according

to the distribution record stored in the local storage. Then the system node checks the

existence of distribution candidate components in the local environment. If the system

node detects the existence of application components that should be distributed, then it

will prepare these components. Otherwise, the system node will ignore the distribute

request.

For distributing application components to destinations, the system node requires

users provide the directory of component’s compiled source file while storing component

information into the local storage. As a result of that, Ki-Ngā-Kōpuku node can use

Linux commands to transfer component’s compiled source file to the destination, and

the distribute receiver can use the compiled source file directly to start the component.

The distribute request is broadcast, so that each Ki-Ngā-Kōpuku node can react to the

request. Once the components are selected to be distributed, the system node calculates

Chapter 5. Discussion 120

the hash value of each component file, which ensures component integrity. The receiver

will randomly pick up application’s components coming from a system node, and update

the distribution status.

5.3.6 Distribution Status

Once a Ki-Ngā-Kōpuku node receives an application component, the types of compo-

nents will be identified. The reason is that Ki-Ngā-Kōpuku records the distribution

status of each application component in the whole network. The distribution record

has two attributes: component name, and count number. If the component is new to

the whole system, then a record of the new component will be added in all system

nodes; if the component is new to the local system, then the count number will add one,

and all other system nodes will update the count number together; if a new version of

component is received, then the count number will be set back to one; if the component

is duplicated, the distribution record will not be updated.

5.3.7 Conclusion

This research has researched Ki-Ngā-Kōpuku in the aspect of concept and technical

part. Erlang programming language is used to develop Ki-Ngā-Kōpuku. Its special

features make the system become distributed and decentralized. Using UDP within the

system makes each system node plays the same role within the cluster. Before using

Ki-Ngā-Kōpuku, users have to separate their applications into several components. A

component can be a set of functions or a single service. In order to distribute application

components, Ki-Ngā-Kōpuku uses Linux tools to create and transfer the compiled

source file of components. When the system receives a new component, it will check

the type of the new component first by checking its local storage and distribution status.

The distribution status is stored in each system node that belongs to the same application

Chapter 5. Discussion 121

group. The status reflects the number of a component has been distributed in the whole

network. Adding or removing components can change the distribution status in each

system node. In general, Ki-Ngā-Kōpuku can bring redundancy and availability to

user’s applications.

5.4 Research Questions

The research questions that have been proposed in chapter 2 are as follows:

1. How to improve security among components?

2. How to design a component distribution mechanism to distribute components

into different network locations?

3. How to maintain communication between components which are located on

different network locations?

These three research questions are proposed during defining what exactly Ki-Ngā-

Kōpuku is. Due to Ki-Ngā-Kōpuku is a decentralized distributed security system which

runs on the cloud environment, so this research has to focus on cloud environment, and

the functionality of the system itself.

5.4.1 Hypothesis

This hypothesis that have been proposed in chapter 3 are as follows:

1. Independent temporary public-private key pair authentication can improve secu-

rity among components.

2. Distribute service components into multiple servers can improve the redundancy

and performance level of overall system.

3. Using sockets and distribution feature of Erlang can maintain the communication

between each server.

Chapter 5. Discussion 122

In the following section, the research questions and hypotheses are addresed.

5.4.2 Discussion

This section discusses the relevance between the literature review and the system design.

Research questions and relative hypothesis will also be researched to ensure questions

and hypothesis are helpful to the overall research.

The first view of Ki-Ngā-Kōpuku is having distributed application components

among the network location. Ki-Ngā-Kōpuku encourages the developers to make

decoupled and independent components or services of applicaitons. In developers’

perspective, this may lead to more hard working on software and architecture design.

However, designing distributed decoupled components makes applications easy to scale

and manage. As for the cloud providers, deploying this framework makes the platform

itself be easy to recover from disasters. Moreover, efficient process can be taken when

users want to scale their applications, such as adding more website instances, and setting

up a new application server in a different country.

Component Security

According to Ki-Ngā-Kōpuku concept, security is the first part that need to be con-

cerned. As can be seen in the previous literature research, most of cloud security

models and methods are effective to secure the cloud environment. However, most

of security mechanisms assume some parts of it are absolutely secure, such as cloud

environment, and their own local computing environment. Since the cloud environment

is not absolutely secure in the real life, and Ki-Ngā-Kōpuku consists of distributed

components, so this research thesis propose the research question: 1. How to improve

security among components?

Chapter 5. Discussion 123

The related hypothesis is: 1. Independent temporary public-private key pair authen-

tication can improve security among components.

The public-private key pair can ensure identities at both ends, and the temporary

feature makes it hard for hackers to track and copy information. It is a good idea to use

the temporary public-private key pair for Erlang’s distributed system and component

authentication. Erlang’s distributed system mainly relies on a trustworthy network

environment, however, once this system is implemented on the cloud or any other open

network, Ki-Ngā-Kōpuku will become weak. In this case, implementing a temporary

public-private key pair can be a good way to improve data security and prevent malicious

activities.

In fact, Ki-Ngā-Kōpuku provides a great environment for implementing temporary

public-private key pairs. This is not because Ki-Ngā-Kōpuku environment is weak on

security when it is working on an open network; rather, the real reason is the unique

feature of nodes in Ki-Ngā-Kōpuku. Each Erlang node must have a unique node name

to build up one distributed system so that it is identical for each node working in the

same system. In this case, each node can use local information to create its temporary

public and private key pair. For example, one node can use its node name and its current

system time to create a random seed, and then use pseudorandom mechanisms to create

random seed, and then use the random seed to create a key pair. The following code

shows how Erlang uses unique node names, system times, and random numbers to

create random seed:

random:seed(erlang:phash2([node()]),

erlang:monotonic_time(),

erlang:unique_integer()).

However, using the temporary public-private key pair in Ki-Ngā-Kōpuku is not

Chapter 5. Discussion 124

considered here because the objective of this research is to develop one prototype of Ki-

Ngā-Kōpuku, and the larger project will need more developers and time for completion.

On the other hand, Ki-Ngā-Kōpuku mainly focuses on providing redundancy and

availability to applications, so the security issues for communication traffic are not

considered the main problems for this research to solve.

Component Distribution

Ki-Ngā-Kōpuku is designed to distribute application’s components into different net-

work locations, so that multiple component replicas exist in the network to achieve

redundancy for user’s applications. As described in the Literature Review, not much

literatures research on the service-focused components.

Since component distribution is the key point for Ki-Ngā-Kōpuku to provide ap-

plications redundancy, so the research question is: 2. How to design a component

distribution mechanism to distribute components into different network locations? The

relative hypothesis is: 2. Randomly distributing application components can improve

the redundancy and performance level of overall system.

However, while developing the system, randomly distributing application compo-

nents are not the best solution to the problem. The reason is that the random can’t

be achieved in computer science at all, which means the system has to do some spe-

cific computation to get the so called random result. While randomly choosing the

component to distribute, there is a chance for some components not being selected

by the system, which can cause unbalanced distribution status among all application

components in network. In this case, Ki-Ngā-Kōpuku has to evaluate the distribution

status of each component in the whole network.

In Ki-Ngā-Kōpuku system design, application components are distributed randomly.

Ki-Ngā-Kōpuku first defines a range of components according to component distribution

status, then it randomly picksing up components from the range to distribute. In the

Chapter 5. Discussion 125

distribution process, Ki-Ngā-Kōpuku should know which components have the least

number of replicas in the whole network, and also what components that the local

system is capable to distribute. In this case, two kinds of information are used: 1) the

overall distribution status of each component in the system. 2) information about local

application components. The overall distribution status will define which application

component has lower number of replicas as compared to other components in the

network, then Ki-Ngā-Kōpuku will know which component should be distributed, so

that the distribution status of each component can be balanced. The local component

information records the components that exist in the local system. It helps Ki-Ngā-

Kōpuku define which compoent can be distributed according to its own situation.

In more detail, three questions have to be considered for the distribution of applica-

tion components. These questions are: What to distribute? How to distribute? How to

run application components?

What to distribute?

In this research, the component distributed by Ki-Ngā-Kōpuku is compiled code

file. The reason is that most programming languages can directly run compiled code

files in its own language environment. These two languages, for example, Java and

Erlang, can transfer compiled code files to a different location and then run compiled

files directly once Java and Erlang environment have been installed. Moreover, if the

application is written in Erlang itself, then the components can be transferred by using

the function c:nl(Module). This function can load modules directly to other nodes

or destinations, even though other nodes don’t have the source code for that module.

However, Ki-Ngā-Kōpuku is not only serving the Erlang programming language, so

transferring compiled code files is a general way to distribute components.

How to distribute?

In the current research, SSH and RSYNC are used to transfer application compo-

nents. Ki-Ngā-Kōpuku chooses to use file transmission for component distribution,

Chapter 5. Discussion 126

so the size of each application component must be considered. In that case, Ki-Ngā-

Kōpuku will compress component files into one tar file, and transfer the tar file to

destinations. When Ki-Ngā-Kōpuku is ready to transfer the tar file, it will use the

password-less SSH for file transmission. However, password-less SSH still requires

details of login users and a password so that each server can login to the other with-

out providing user names and passwords, which is a serious security problem for the

whole system. However, this research aims to achieve system functionality. Moreover,

password-less SSH and Ki-Ngā-Kōpuku are suitable for working in a safe environment,

so it is still reasonable to use SSH to transfer application components.

How to run application components?

Once Ki-Ngā-Kōpuku receives application components from other servers, the

system should be able to run application components automatically. For doing this, ap-

plication components have to provide start up script or command to Ki-Ngā-Kōpuku so

that the system can use these mechanisms to start application components automatically.

In this research, Ki-Ngā-Kōpuku uses function os:cmd(Command) to run the start up

script for application components.

The component distribution mechanism used in Ki-Ngā-Kōpuku makes sure each

component is balanced in the whole network, so that no components will be missed

in the distribution process. Since Ki-Ngā-Kōpuku limits the amount of components

that to be distributed, so the server won’t be overloaded. In general, this mechanism

guarantees the balance of overall component distribution status, but it still need more

improvement because of the type of the components it distributes are limited.

Component Communication

Ki-Ngā-Kōpuku is designed as a layer on top of the application components. As a result

of that, the system should be able to exchange information with application components.

On the other hand, Ki-Ngā-Kōpuku also distribute components into different locations,

Chapter 5. Discussion 127

so that each component should be able to communicate with others.

The research question is: 3. How to maintain communication between components

which are located on different network locations? The relative hypothesis is: 3. Using

sockets and distribution feature of Erlang can maintain the communication between

each component.

In Ki-Ngā-Kōpuku, the system node is responsible for communicating with outside

world. It opens two ports for communication. One port is defined by users and is used to

talk to the application’s interface. Another port is used for Ki-Ngā-Kōpuku itself, which

is used to send a message to other system nodes. In more detail, the traffic coming from

application’s interface won’t go directly to application components. The traffic will

be received by the system node, then the system node will parse the traffic to find out

the destination, which is the application component. If the component doesn’t exist in

local system, then the system node will send messages to all other system nodes in the

network to find the required component.

In fact, the main reason to use socket for component commuication among different

network locations is for securing the system. Since Ki-Ngā-Kōpuku is developed in

Erlang, every element of the Erlang distributed system has to be trusted. However, if one

part of the system is compromised, then it is highly possible to expose the information

of other parts. So in the system design, Erlang’s distribute features are only allowed

in local environment, and socket is ued to send and receive messages. There are two

general scenarios for using the socket for node communication:

Scenario One: Requesting Application Components

Ki-Ngā-Kōpuku is an empty framework when it is first initialised. To serve user’s

applications, the system has to request application components from other Ki-Ngā-

Kōpuku. Since cluster members are unknown to Ki-Ngā-Kōpuku, new Ki-Ngā-Kōpuku

will use UDP broadcast features to broadcast requests among all networks, so that

the network destination can be detected. In that case, all system nodes that are in the

Chapter 5. Discussion 128

same network can receive the request and prepare application components for new

Ki-Ngā-Kōpuku.

Scenario Two: Finding Application’s Components

Application components are supposed to work like a complete application under Ki-

Ngā-Kōpuku. However, the application is separated into several pieces, and it is possible

for each Ki-Ngā-Kōpuku node to hold different application components, so application

components need a way to exchange messages with other application components.

However, each Ki-Ngā-Kōpuku system node is not allowed to talk to each other directly

for security reasons. This means a Ki-Ngā-Kōpuku node can broadcast UDP traffic

to each system node and get the information that its components want. Moreover, if a

Ki-Ngā-Kōpuku system node wants to build a point-to-point communication, it can use

unicast UDP traffic for one specific destination.

Components in the same local environment can use Erlang features to perform

component communication. In Erlang programming language, it is possible to use RPC

functions to make synchronous or asynchronous calls. This is important for application

components because the applications have to have different operations according to

different requests or strategies. Besides using RPC to talk directly to the remote location,

Erlang also has its message-passing technique for distributed systems. Erlang uses Pid

! Msg and {Pid, NodeName} ! Msg to send a message to one process. In

the first example, Pid is the process id or identifier for where the message is going to

be sent. This method is used to send messages to a locally registered process. If the

message has to be sent to a process that runs on a remote node, then the second example

can be used.

In general, using socket and Erlang distribute features can maintain component

communication. However, Ki-Ngā-Kōpuku should consider providing efficient commu-

nication protocols for components because the system uses UDP broadcast messages

to find the message destination. If the system receives complex traffic which requires

Chapter 5. Discussion 129

multiple components to corporate, then whole Ki-Ngā-Kōpuku will face broadcast

flood.

5.4.3 Conclusion

Based on the Literature Review and System Design for Ki-Ngā-Kōpuku, three pro-

posed research questions are analyzed. The first question is about component security.

However, in current situation, this research haven’t apply all security mechanisms in Ki-

Ngā-Kōpuku. The second research question is about component distribution. In current

research, randomly distributing application components by comparing the distribution

status of each component can make sure each component is balanced. However, the cur-

rent distribution mechanism doesn’t have enough scalability, which are not convenient

for some programming languages. As a result of that, the distribution mechanism needs

further improvement. The last research question is about component communication.

Ki-Ngā-Kōpuku uses socket to build up communication channel between the system

and outside world. It also uses Erlang message passing techniques to maintain the

component communication in local system. But it also need improvent in the future.

5.5 Design Evaluation

As mentioned in 3, the prototype developed during this research will be evaluated by a

set of evaluation criteria. However, the expected prototype is not totally finished when

this research hits the deadline. As a result of that, only parts of the prototype will be

evaluated by the evaluation criteria.

Chapter 5. Discussion 130

5.5.1 Goal Evaluation

In Goal dimension, three criteria will be evaluated: efficacy, validity, and generality.

Efficacy means the prototype achieves research goals as expected. The goal of this

research is to prove a new concept by building a prototype with technique implementa-

tion. The prototype has to provide redundancy, availability, and fault-tolerant ability to

user’s application. As mentioned before, some parts of the prototype are able to provide

redundancy and availability 4.7, but the fault-tolerant ability 4.2.3 lacks experimental

test. Moreover, a researc question about component security is not fully analyzed during

this research. As a result, the efficacy of this research is not perfect.

The validity evaluation means the prototype should be able to handle each request

correctly. This research has developed a system module to handle coming request

and interact with backend services 4.5, and a system module to manage component

distribution 4.7. However, it doesn’t cover all scenarios about traffic communication.

As a result, the validity of this research is not perfect.

The generality evaluation is to measure the value of the prototype to current theory

and techniques. Based on 4, the concept and the architecture is totally new, so this

research and the prototype are valuable to current theory and techniques.

5.5.2 Environment Evaluation

In Environment dimension, the prototype has to be evaluated by two criteria: consis-

tency with people, and consistency with technology. In the aspect of consistency with

people, the prototype has to be easy to use and understand. This research tries to provide

a command line interface of the prototype 4.4, so that users can manage the whole

system by using the command line interface. The prototype also use Ki-Ngā-Kōpuku

system cluster concept 4.3.1 and application group concept 4.3.2 to explain how the

whole sytem works. As a reslt of that, the prototype is consistent to people.

Chapter 5. Discussion 131

The prototype is also consistent to technology. As described before, the concept is

new to current theories and technologies. And there won’t be any side effects.

5.5.3 Structure Evaluation

In Structure dimension, two criteria will be evaluated: completeness, and homomor-

phism. The completness is to evaluate whether the prototype covers all related modules.

In fact, the prototype is composed of socket module, distribtion module, traffic handler,

log module, and storagr module. However, only socket module, distribution module

and traffic handler are developed. As a result, the prototype is not fully completed.

The homomorphism means each module is capable of working with other modules

without errors. Ki-Ngā-Kōpuku works like a framework for user’s application, so each

module of Ki-Ngā-Kōpuku itself shoudn’t be separated. By following the design in

4.2.3, the prototype itself is able to consume errors occured within the system.

5.5.4 Activity Evaluation

Completness and performance are the criteria in Activity dimension. The complet-

ness in this dimension focuses on module’s functionality. In this case, the completness

is not perfect, because some of the moduels are not fully developed. In the aspect of

performance, the evaluation result is also not good. The reason is that the prototype is

not fully developed, and it requires additional applications to join in the evaluation.

5.5.5 Evolution Evaluation

Two evaluation criteria in Evolution: robustness, and learning capability. The

robustness evaluates the ability to take actions to the change of environment. In current

design, Linux is the only environment for Ki-Ngā-Kōpuku. Another environment that

Ki-Ngā-Kōpuku relies on is port. However, the prototype is able to change system

Chapter 5. Discussion 132

configuraiton according to user’s need, and it has the ability to handle errors. As a result,

it is robust.

Learning capability evaluates the prototype’s ability to learn from previous experi-

ence. In current design, the learning capability is bad.

5.5.6 Evaluation Conclusion

Based on the above evaluation, the current prototype should do the following:

1. Fully develop necessary system modules.

2. Test prototype with users’ applications.

3. Define metrics for performance evaluation.

5.6 System Limitations

It is clear from discussing research questions and research results that Ki-Ngā-Kōpuku

still has limitations and problems. This section will discuss the limitations that might

affect Ki-Ngā-Kōpuku.

5.6.1 System Environment

Ki-Ngā-Kōpuku has to be run in the trusted network. The reason is that the Erlang pro-

gramming language is used to develop Ki-Ngā-Kōpuku. In Erlang distributed system,

node is the basic part in the system. However, the security mechanism implemented

in nodes are weak, so that Erlang distributed systems have to stay in the trusted en-

vironment. On the other hand, Ki-Ngā-Kōpuku sends UDP broadcast messages to

communicate with other Ki-Ngā-Kōpuku. Since broadcast is only useful in the local

area network (LAN), so that Ki-Ngā-Kōpuku has to run in the closed environment.

Chapter 5. Discussion 133

5.6.2 Server Network Interface Single-Point-Of-Failure (SPF)

Ki-Ngā-Kōpuku is designed to provide redundancy and availability for the user’s

application. However, Ki-Ngā-Kōpuku is a framework that focuses on guaranteeing

an application’s functionality. The reason for putting more attention on the server side

instead of the network interface is that there are tools and technologies to help solve the

problem.

The ideal usage scenario for Ki-Ngā-Kōpuku is to put it between client interfaces and

actual servers. The client interface can connect to the server that runs Ki-Ngā-Kōpuku

nodes; then Ki-Ngā-Kōpuku becomes one kind of gateway for passing messages for not

only client interfaces but also backend servers. On the other hand, if a Ki-Ngā-Kōpuku

node that the client interface connects to is failed, then it won’t affect the whole system

because other Ki-Ngā-Kōpuku nodes can do the same work and be connected by client

interfaces to serve users continuously. However, the network interface of servers can

affect the whole Client-Server structure because it is on the top level of backend servers.

In general, Client-Server architecture always faces a problem with the connection

between frontend and backend. If the frontend needs to retrieve data from the backend,

it has to know where the backend server is located. So, in normal situations, domain

names or static public IP address are used to represent the location of servers. Moreover,

the TCP and UDP connection also need to know the specific destination address.

Consequently, if the client interface can’t connect to the backend servers’ address, then

the whole Client-Server structure will go down. This represents a network problem that

sometimes needs help from other tools, software, or even hardware.

There are ways to help reduce the damage of this problem. Firstly, putting more

public static IP addresses under one domain name, or using multiple domain names for

Client-Server connections. This is always implemented by the ISP, which guarantees

that if one destination is unreachable, the ISP will always direct messages to those

Chapter 5. Discussion 134

still alive at the destination. However, if the frontend uses IP address instead of using

domain names as the destination, it will need to change the destination. Secondly, some

keep-alive tools can be used on the server side. Keep-alive tools mainly use the floating

virtual IP address technology. This transfers the same IP address to another connectable

destination if the original one goes down so that the top level won’t notice the destination

change. Despite all these possible solutions, it is still not possible to completely get rid

of this problem with Ki-Ngā-Kōpuku because it works behind the network interface. If

the network connection is unstable or stopped, then Ki-Ngā-Kōpuku won’t work as well

as planned. Consequently, Ki-Ngā-Kōpuku works for backend servers and assumes that

the network interface is healthy.

5.6.3 Distribution Times

Distributing application components is a special feature of Ki-Ngā-Kōpuku. Each Ki-

Ngā-Kōpuku can request application components from other Ki-Ngā-Kōpuku. However,

it is also highly possible for one Ki-Ngā-Kōpuku to obtain all application components if

the system sends multiple distribution requests. In that case, if hackers compromise one

Ki-Ngā-Kōpuku then they can obtain all of the application components and endanger

the application.

Setting up distribution times for Ki-Ngā-Kōpuku might help resolve this problem.

However, if new application components are joined, this might affect the current

working system. The reason is that applications are always changing, so application

components have to change as well. No matter whether components are new to the

system or need to be updated, Ki-Ngā-Kōpuku still has to consider the redundancy and

availability of these components. If distribution times are limited, then Ki-Ngā-Kōpuku

might not be well prepared for guaranteeing components’ redundancy and availability.

Chapter 5. Discussion 135

5.6.4 Malicious Components

Application components are supposed to work under Ki-Ngā-Kōpuku. However, it

is hard to control the components. Currently, Ki-Ngā-Kōpuku can receive any users’

application components. This means that if one malicious component joined Ki-Ngā-

Kōpuku, it is not possible to detect it.

To reduce the risk coming from malicious components, Ki-Ngā-Kōpuku should

have an authentication process for users’ applications. This can be done by generating

a unique fingerprint for the application once the system is first initialised. If one

application component wants to join, it must provide the application fingerprint to prove

that it is a part of the application.

5.6.5 Communication Efficiency

In the current research, Ki-Ngā-Kōpuku uses the socket and Erlang message passing

techniques to establish node communication. It is designed as a framework that can

be used for any applications. Consequently, Ki-Ngā-Kōpuku does not contain any

application business logic, which means the system doesn’t know the logic to process

each request. In the case of a banking system application example, when a user wants

to login the banking system must first verify the user’s existence then make sure the

user’s identification is correct. However, Ki-Ngā-Kōpuku only provides APIs to search

the required functions for the application interface and components. Thus, it is not

so efficient for application communication because the system will spend much time

searching the required functions and components when no application logic controllers

are set in Ki-Ngā-Kōpuku.

In general, designing a more efficient way to establish the communication bridge

between each application component is an important task for Ki-Ngā-Kōpuku.

Chapter 5. Discussion 136

5.7 Conclusion

This chapter has discussed the Literature Review and what should be kept in mind based

on existing literatures. The system design of Ki-Ngā-Kōpuku, is also been discussed.

Moreover, this chapter evaluates the current prototype by following evaluation criteria,

and also trying to find possible solutions for the proposed research questions based on

the literatures and current Ki-Ngā-Kōpuku. System limitations are also discussed.

The next chapter 6 is Conclusion. It gives a conclusion of what this research thesis

is about, what has been done in this research, and the further research.

CHAPTER : CONCLUSION

Introduction

Literature Review

Methodology

System Design

Discussion

Conclusion

1. Introduction
2. Research Summary
3. Future Work
4. Conclusion

Chapter 6

Conclusion

6.1 Introduction

This chapter makes a conclusion about this whole research thesis. The section 6.2

makes a conclusion about what is this thesis, what is this research supposed to do, what

has been done in the thesis, and whether the research has achieved the ideal goals.

6.2 Research Summary

The cloud environment is a great platform for implementing the distributed system, but

the cloud can’t guarantee applications can work in a safe environment. The aim of this

research thesis is proof of concept of a new system called Ki-Ngā-Kōpuku, and develop

a prototype of the system. This system is a decentralized distributed security system,

which provides redundancy, availability, and fault-tolerant to user’s applications. In

order to proof the new concept, this thesis researched related literatures, such as cloud

security, distributed systems, and decentralized systems.

To develop the prototype, and step closer towards to the existing system concept,

several research questions were proposed:

138

Chapter 6. Conclusion 139

1. How to improve security among components?

2. How to design a component distribution mechanism to distribute components

into different network locations?

3. How to maintain communication between components which are located on

different network locations?

This research follows the above research questions, then using design science

research methodology for the overall research, and rapid application development

methodology for technical development development. For better understand and solve

research questions, relative hypothesis are proposed:

• Independent temporary public-private key pair authentication can improve secu-

rity among components.

• Distribute service components into multiple servers can improve the redundancy

and performance level of overall system.

• Using sockets and distribution feature of Erlang can maintain the communication

between each server.

Ki-Ngā-Kōpuku is developed in the Erlang programming language, which is de-

signed for building distributed systems. Hence, Erlang is an ideal language to design

such a system running in the cloud environment. According to Ki-Ngā-Kōpuku concept,

the system can provide redundancy and availability to applications by taking actions on

application components. Application components are important for Ki-Ngā-Kōpuku.

In the current research, components can be one single file running one single service, or

one single file running multiple services for one application. During the research period,

research questions about component distribution and component communication were

partly solved by using Erlang and other Linux software. The critical part of component

communication has been proven, but the solution still needs further improvement. For

Chapter 6. Conclusion 140

the component distribution research question, Ki-Ngā-Kōpuku evaluates the overall dis-

tribution status of application components in the network, then compare with the local

components in itself to randomly deceide which components can be distributed. On the

other hand, the form of application components may not work for some programming

languages because Ki-Ngā-Kōpuku transfers compiled code file, which is not secure

and flexible. The current distribution problem of this solution is that Ki-Ngā-Kōpuku

has to read specific record to get the overall component distribution status, which makes

Ki-Ngā-Kōpuku less secure. For solving the component communication problem, Ki-

Ngā-Kōpuku uses UDP socket and Erlang message passing features to transfer data.

UDP is normally used to send broadcast messages in the whole network. However,

massive broadcast messages will be a great burden for the whole network. The last

research question is about securing application components. In Ki-Ngā-Kōpuku design,

application’s name, system node’s name are used to authenticate users, applications,

and network traffic. But the temporary public-private key mechnasim is not used in

current research.

Based on the current research, Ki-Ngā-Kōpuku can perform critical functions on

users’ applications. Even though some research questions couldn’t be completely

answered, some advice was given for improvement, and possible system limitations

were listed for further research.

6.3 Future Work

Application Authentication

Each component is considered to belong to the same application as Ki-Ngā-Kōpuku.

Even though Ki-Ngā-Kōpuku has authentication methods for each application compo-

nent, the method is not strong enough to prove the relationship between components

Chapter 6. Conclusion 141

and applications. In the future, it will be possible to develop one authentication mecha-

nism to prove that each component belongs to one specific application. Any unrelated

components should not be used in Ki-Ngā-Kōpuku.

Security Components

As Ki-Ngā-Kōpuku works in the cloud environment, the system can implement

security solutions for itself or users’ applications. The Ki-Ngā-Kōpuku system is

consisted of several Erlang nodes, so the system can have specific components that

run firewalls, IDS, IPS, or other security solutions. The Ki-Ngā-Kōpuku system can

distribute these security components along with user’s application components so that

other systems or servers will also be protected.

Application Components Distribution

The compiled source code file is now the application component that is used by

Ki-Ngā-Kōpuku for distribution. Transferring the compiled file is a general way to

transfer one application component to another location. However it is neither safe nor

convenient. On the other hand, most code files require dependencies to run on the

system, so Ki-Ngā-Kōpuku should also have the ability to deal with components and

their dependencies while implementing component distribution.

In current design, Ki-Ngā-Kōpuku will only distribute components once it receives

distribution request from other systems. Since the distribution request is sent manually

by typing command, so the overall distribution process is not good enough. The ideal

distribution process for Ki-Ngā-Kōpuku is random and automatic. So the system should

be able to automatically distribute components once the requestor is detected.

6.4 Conclusion

This research is proof of concept of Ki-Ngā-Kōpuku. Ki-Ngā-Kōpuku is a brand new

architecture in the cloud computing, which is designed to make user’s applications

Chapter 6. Conclusion 142

become highly available and stable. In this research thesis, some critical parts of Ki-

Ngā-Kōpuku have been proved not only in theoretical way, but also in technical way,

such as the distribution mechanism of application components, and traffic communi-

cation between each application component. Even though the system security is not

achieved, but the prototype is able to perform simple authentication to network traffic

and components.

Ki-Ngā-Kōpuku is a large project, it includes many interesting ideas and cool

technologies. What I’ve down in this research is only a small part of the system. I

hope Ki-Ngā-Kōpuku become strong, and powerful. And one day, Ki-Ngā-Kōpuku can

change the world.

Chapter 6. Conclusion 143

Appendix A

Glossary

Application User-defined applications that work with Ki-Ngā-Kōpuku. Applicatoins

can be a bank system, an ecosystem, a calculator application, etc.

Application Component Modules separated from user-defined applications. Each

component should has less dependencies and be able to perform task indepen-

dently.

Application Group The collection of application components that belong to one

specific application.

Application Port The port that Ki-Ngā-Kōpuku system uses to communicate with

user-defined applications.

Availability Availability is the probability that a system will work as required when

required during the period of a mission.

Brodcasting It is a method of transferring a message to all recipients simultaneously.

Erlang It is a general-purpose, concurrent, functional programming language, as well

as a garbage-collected runtime system.

Erlang OTP It is a collection of useful middleware, libraries, and tools written in

Erlang programming language.

Erlang OTP gen_server It is a behavior module provides the server of a client-server

144

Appendix A. Glossary 145

relation.

Erlang OTP supervisor It is a behavior module provides a supervisor, a process that

supervises other processes called child processes. A child process can either be

another supervisor or a worker process.

Fault-tolerant Fault tolerance is the property that enables a system to continue oper-

ating properly in the event of the failure of (or one or more faults within) some of

its components.

Ki-Ngā-Kōpuku System The system that is designed to bring redundancy, availability,

and fault-tolerant to user-defined applicaitons.

Ki-Ngā-Kōpuku System Cluster A group of system nodes that run in the same net-

work environment.

Worker Process It is the processes which perform computations, and responsible for

performing specific user or system actions.

Redundancy Redundancy is a system design in which a component is duplicated so

if it fails there will be a backup.

Runtime System A runtime system is a collection of software and hardware resources

that enable a software program to be executed ona computer system.

Node An independent runtime system which is written in Erlang.

Server Devices that host specfic OS. Such as physical servers, virtual machines.

System Node Nodes that work for Ki-Ngā-Kōpuku system and user-defined applica-

tions. Manage application components that belong to the same application.

System Port The port that each system node uses to communicate with other nodes.

TCP Transmission Control Protocol. It is one of the main protocols of the Internet

protocol suite.

Traffic Handler A process that runs within Ki-Ngā-Kōpuku system. It is responsible

for receiving incoming traffic and deliver the result to the right destinations.

UDP User Datagram Protocol. It is one of the core members of the Internet protocol

Appendix A. Glossary 146

suite.

References

Abhishek, H., & Yadav, J. (2013). Data encryption techniques commonly used algo-
rithms and their security issues. International Journal of Research in Information
Technology, 1, 186–193.

Afek, Y. (2013). Distributed computing : 27th international symposium, disc 2013,
jerusalem, israel, october 14-18, 2013. proceedings. Heidelberg : Springer, 2013.

Afzali Seresht, N., & Azmi, R. (2014). Mais-ids: A distributed intrusion detection
system using multi-agent ais approach. Engineering Applications of Artificial In-
telligence, 35(1), 286–298. Retrieved from http://www.sciencedirect
.com/science/article/pii/S0952197614001444

Agrawal, M., & Mishra, P. (2012). A comparative survey on symmetric key encryption
techniques. International Journal on Computer Science and Engineering, 4(5),
877. Retrieved from https://pdfs.semanticscholar.org/20f3/
dd8943a17138c3eefa4258aa1b6837ffcb59.pdf

Ahmad, N., & Habib, M. K. (2010). Analysis of network security threats and vulnerabil-
ities by development & implementation of a security network monitoring solution.
Retrieved from http://www.diva-portal.org/smash/record.jsf
?pid=diva2%3A832701&dswid=-4344#sthash.1dvoeMva.dpbs

Ahmed, W., & Wu, Y. W. (2013). A survey on reliability in distributed sys-
tems. Journal of Computer and System Sciences, 79, 1243–1255. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0022000013000652

Alakeel, A. M. (2010). A guide to dynamic load balancing in distributed computer
systems. International Journal of Computer Science and Information Security,
10(6), 153–160.

Babu, K. R., & Samuel, P. (2016). Enhanced bee colony algorithm for efficient load
balancing and scheduling in cloud. In Innovations in bio-inspired computing and
applications (pp. 67–78). Springer.

Bagchi, S. (2015). Emerging research in cloud distributed computing systems.
Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, PA 17033, USA)
: IGI Global, [2015]. Retrieved from https://books.google.co.nz/
books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=
Emerging+research+in+cloud+distributed+computing+
systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK
-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%

147

http://www.sciencedirect.com/science/article/pii/S0952197614001444
http://www.sciencedirect.com/science/article/pii/S0952197614001444
https://pdfs.semanticscholar.org/20f3/dd8943a17138c3eefa4258aa1b6837ffcb59.pdf
https://pdfs.semanticscholar.org/20f3/dd8943a17138c3eefa4258aa1b6837ffcb59.pdf
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A832701&dswid=-4344#sthash.1dvoeMva.dpbs
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A832701&dswid=-4344#sthash.1dvoeMva.dpbs
http://www.sciencedirect.com/science/article/pii/S0022000013000652
http://www.sciencedirect.com/science/article/pii/S0022000013000652
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false

References 148

20distributed%20computing%20systems&f=false
Bansal, V. P., & Singh, S. (2015, Dec). A hybrid data encryption technique using rsa

and blowfish for cloud computing on fpgas. In 2015 2nd international conference
on recent advances in engineering computational sciences (raecs) (p. 1-5). doi:
10.1109/RAECS.2015.7453367

Beynon-Davies, P., Carne, C., Mackay, H., & Tudhope, D. (1999). Rapid application
development (rad): an empirical review. EUROPEAN JOURNAL OF INFORMA-
TION SYSTEMS, 8(3), 211 - 223. Retrieved from http://link.springer
.com/article/10.1057/palgrave.ejis.3000325

Borg, A., Baumbach, J., & Glazer, S. (1983). Message system supporting fault tolerance.
In Operating systems review (acm) (17th ed., Vol. 17, p. 90-99). Auragen Systems
Corp, Fort Lee, NJ„ USA. Retrieved from http://www.andrew.cmu.edu/
course/15-749/READINGS/optional/borg-1983.pdf

Brodkin, J. (2008). Gartner: Seven cloud-computing security risks. Infoworld, 2008,
1–3.

Brunette, G., Mogull, R., et al. (2009). Security guidance for critical areas of focus in
cloud computing v2. 1. Cloud Security Alliance, 1–76.

Building an application with otp. (2017). http://learnyousomeerlang.com/
building-applications-with-otp. (Accessed: 2017-10-28)

Carlini, E., Ricci, L., & Coppola, M. (2013). Flexible load distribution for hy-
brid distributed virtual environments. Future Generation Computer Systems,
29(Including Special sections: High Performance Computing in the Cloud
& Resource Discovery Mechanisms for P2P Systems), 1561 - 1572. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0167739X1200177X

Chang, V., Walters, R. J., & Wills, G. (2015). Delivery and adoption of cloud com-
puting services in contemporary organizations. Hershey : Information Science
Reference, [2015]. Retrieved from https://books.google.co.nz/
books?hl=en&lr=&id=AWfCCAAAQBAJ&oi=fnd&pg=PP1&dq=
Delivery+and+Adoption+of+Cloud+Computing+Services+
in+Contemporary+Organizations&ots=n4Wwc4nBsT&sig=
HeepZAoAzY7IvcwjEx5S2qyiie0

Che, J., Duan, Y., Zhang, T., & Fan, J. (2011). Study on the security models and
strategies of cloud computing. Procedia Engineering, 23(PEEA 2011), 586
- 593. Retrieved from http://www.sciencedirect.com/science/
article/pii/S187770581105394X

Chen, D., & Zhao, H. (2012). Data security and privacy protection issues in cloud
computing. In Proceedings - 2012 international conference on computer sci-
ence and electronics engineering, iccsee 2012 (1st ed., Vol. 1, p. 647-651).
College of Information Science and Engineering, Northeastern University. Re-
trieved from http://ieeexplore.ieee.org/abstract/document/
6187862/

Cisco 2017 annual cybersecurity report. (2017). Cisco. Retrieved from http://b2me
.cisco.com/en-us-annual-cybersecurity-report-2017

https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
https://books.google.co.nz/books?hl=en&lr=&id=U4EfCgAAQBAJ&oi=fnd&pg=PR1&dq=Emerging+research+in+cloud+distributed+computing+systems&ots=sInpLd1N9o&sig=vLcPZ3o90fope9YS3POrK-tdRww#v=onepage&q=Emerging%20research%20in%20cloud%20distributed%20computing%20systems&f=false
http://link.springer.com/article/10.1057/palgrave.ejis.3000325
http://link.springer.com/article/10.1057/palgrave.ejis.3000325
http://www.andrew.cmu.edu/course/15-749/READINGS/optional/borg-1983.pdf
http://www.andrew.cmu.edu/course/15-749/READINGS/optional/borg-1983.pdf
http://learnyousomeerlang.com/building-applications-with-otp
http://learnyousomeerlang.com/building-applications-with-otp
http://www.sciencedirect.com/science/article/pii/S0167739X1200177X
http://www.sciencedirect.com/science/article/pii/S0167739X1200177X
https://books.google.co.nz/books?hl=en&lr=&id=AWfCCAAAQBAJ&oi=fnd&pg=PP1&dq=Delivery+and+Adoption+of+Cloud+Computing+Services+in+Contemporary+Organizations&ots=n4Wwc4nBsT&sig=HeepZAoAzY7IvcwjEx5S2qyiie0
https://books.google.co.nz/books?hl=en&lr=&id=AWfCCAAAQBAJ&oi=fnd&pg=PP1&dq=Delivery+and+Adoption+of+Cloud+Computing+Services+in+Contemporary+Organizations&ots=n4Wwc4nBsT&sig=HeepZAoAzY7IvcwjEx5S2qyiie0
https://books.google.co.nz/books?hl=en&lr=&id=AWfCCAAAQBAJ&oi=fnd&pg=PP1&dq=Delivery+and+Adoption+of+Cloud+Computing+Services+in+Contemporary+Organizations&ots=n4Wwc4nBsT&sig=HeepZAoAzY7IvcwjEx5S2qyiie0
https://books.google.co.nz/books?hl=en&lr=&id=AWfCCAAAQBAJ&oi=fnd&pg=PP1&dq=Delivery+and+Adoption+of+Cloud+Computing+Services+in+Contemporary+Organizations&ots=n4Wwc4nBsT&sig=HeepZAoAzY7IvcwjEx5S2qyiie0
https://books.google.co.nz/books?hl=en&lr=&id=AWfCCAAAQBAJ&oi=fnd&pg=PP1&dq=Delivery+and+Adoption+of+Cloud+Computing+Services+in+Contemporary+Organizations&ots=n4Wwc4nBsT&sig=HeepZAoAzY7IvcwjEx5S2qyiie0
http://www.sciencedirect.com/science/article/pii/S187770581105394X
http://www.sciencedirect.com/science/article/pii/S187770581105394X
http://ieeexplore.ieee.org/abstract/document/6187862/
http://ieeexplore.ieee.org/abstract/document/6187862/
http://b2me.cisco.com/en-us-annual-cybersecurity-report-2017
http://b2me.cisco.com/en-us-annual-cybersecurity-report-2017

References 149

Concurrent programming. (2017). http://erlang.org/doc/getting
_started/conc_prog.html. (Accessed: 2017-10-28)

Coronado-Garcia, L. C., Gonzalez-Fuentes, J. A., Hernandez-Torres, P. J., & Perez-
Leguizamo, C. (2011, March). An autonomous decentralized system architecture
using a software-based secure data field. In 2011 tenth international symposium on
autonomous decentralized systems (p. 331-334). doi: 10.1109/ISADS.2011.50

Cristian, F. (1991). Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2), 56–78.

Dan, H., Michael, S., et al. (2010). Top threats to cloud computing v1. 0. Cloud
Security Alliance, 2, 2012.

Desai, T., & Prajapati, J. (2013). A survey of various load balancing techniques and
challenges in cloud computing. International Journal of Scientific & Technology
Research, 2(11), 158–161.

Distributed erlang. (2017). http://erlang.org/doc/reference_manual/
distributed.html. (Accessed: 2017-10-28)

Enhanced data security model for cloud computing. (2012). 2012 8th Interna-
tional Conference on Informatics and Systems (INFOS), Informatics and Systems
(INFOS), 2012 8th International Conference on. Retrieved from http://
ieeexplore.ieee.org/document/6236556/

Escalnte, D., & Korty, A. J. (2011). Cloud services: policy and assessment. Educause
Review, 46(4).

Feiker, G. E. (1979, NOV). Distributed control system. Google Patents. (US Patent
4,173,754)

Fernandes, D. A., & Soares. (2014). Security issues in cloud environments: a survey.
International Journal of Information Security, 13(2), 113–170.

Formu, J. (2009). Cloud cube model: selecting cloud formations for secure collaboration.
Google Scholar. Retrieved from https://collaboration.opengroup
.org/jericho/cloud_cube_model_v1.0.pdf

Goyal, S. (2015). Centralized vs decentralized vs distributed. Retrieved
2015-07-01, from https://medium.com/@bbc4468/centralized
-vs-decentralized-vs-distributed-41d92d463868

Guo, Y., & Wang, C. (2005, March). Autonomous decentralized network security
system. In Proceedings. 2005 ieee networking, sensing and control, 2005. (p. 279-
282). doi: 10.1109/ICNSC.2005.1461201

Gupta, S., & Sanghwan, S. (2015). Load balancing in cloud computing: A review.
International Journal of Science, Engineering and Technology Research (IJSETR),
4(6).

Gutierrez-Garcia, J. O., & Ramirez-Nafarrate, A. (2015). Agent-based load balancing
in cloud data centers. Cluster Computing, 18(3), 1041–1062.

Hamdeni, C., Hamrouni, T., & Charrada, F. B. (2016). Data popularity mea-
surements in distributed systems: Survey and design directions. Jour-
nal of Network and Computer Applications, 72, 150 - 161. Retrieved
from http://www.sciencedirect.com/science/article/pii/
S1084804516301205

http://erlang.org/doc/getting_started/conc_prog.html
http://erlang.org/doc/getting_started/conc_prog.html
http://erlang.org/doc/reference_manual/distributed.html
http://erlang.org/doc/reference_manual/distributed.html
http://ieeexplore.ieee.org/document/6236556/
http://ieeexplore.ieee.org/document/6236556/
https://collaboration.opengroup.org/jericho/cloud_cube_model_v1.0.pdf
https://collaboration.opengroup.org/jericho/cloud_cube_model_v1.0.pdf
https://medium.com/@bbc4468/centralized-vs-decentralized-vs-distributed-41d92d463868
https://medium.com/@bbc4468/centralized-vs-decentralized-vs-distributed-41d92d463868
http://www.sciencedirect.com/science/article/pii/S1084804516301205
http://www.sciencedirect.com/science/article/pii/S1084804516301205

References 150

Hevner, A., & Chatterjee, S. (2010). Design science research in infor-
mation systems. In Design research in information systems (pp. 9–22).
Springer. Retrieved from https://pdfs.semanticscholar.org/
408c/622746e3c70297613167a960d00cc9a212d7.pdf

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian
journal of information systems, 19(2), 4.

Hierarchical decentralized systems and its new solution by a barrier method. (1981).
IEEE Transactions on Systems, Man, and Cybernetics, Systems, Man and Cy-
bernetics, IEEE Transactions on, IEEE Trans. Syst., Man, Cybern(6), 444. doi:
10.1109/TSMC.1981.4308712

Hough, D. (1993). Rapid delivery: An evolutionary approach for application develop-
ment. IBM Systems Journal, 32(3), 397–419.

Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N.,
. . . Rayes, A. (2013). Review: A survey on resource allocation in high perfor-
mance distributed computing systems. Parallel Computing, 39, 709 - 736. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S016781911300121X

Ihara, H., & Mori, K. (1984, Aug). Autonomous decentralized computer control
systems. Computer, 17(8), 57-66. doi: 10.1109/MC.1984.1659218

Internet security threat report (Vol. 22). (2017). Symantec. Retrieved from
https://s1.q4cdn.com/585930769/files/doc_downloads/
lifelock/ISTR22_Main-FINAL-APR24.pdf

Jain, R., & Paul, S. (2013). Network virtualization and software defined networking for
cloud computing: A survey. IEEE COMMUNICATIONS MAGAZINE, 51(11),
24–31. Retrieved from http://ieeexplore.ieee.org/abstract/
document/6658648/

Jing, X., & Jian-jun, Z. (2010, Aug). A brief survey on the security model of cloud
computing. In 2010 ninth international symposium on distributed computing and
applications to business, engineering and science (p. 475-478). doi: 10.1109/
DCABES.2010.103

Khan, M. A., Mishra, K. K., Santhi, N., & Jayakumari, J. (2015, April). A new
hybrid technique for data encryption. In Communication technologies (gcct),
2015 global conference on (p. 925-929). doi: 10.1109/GCCT.2015.7342801

Khiyaita, A., Bakkali, H. E., Zbakh, M., & Kettani, D. E. (2012, April). Load balancing
cloud computing: State of art. In 2012 national days of network security and
systems (p. 106-109). doi: 10.1109/JNS2.2012.6249253

Khorshed, M. T., Ali, A. S., & Wasimi, S. A. (2012). A survey on gaps, threat
remediation challenges and some thoughts for proactive attack detection in
cloud computing. Future Generation Computer Systems, 28, 833 - 851. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0167739X12000180 doi: 10.1016/j.future.2012.01.006

Kocarev, L., & Tasev, Z. (2003, May). Public-key encryption based on chebyshev maps.
In Circuits and systems, 2003. iscas ’03. proceedings of the 2003 international
symposium on (Vol. 3, p. III-28-III-31 vol.3). doi: 10.1109/ISCAS.2003.1204947

https://pdfs.semanticscholar.org/408c/622746e3c70297613167a960d00cc9a212d7.pdf
https://pdfs.semanticscholar.org/408c/622746e3c70297613167a960d00cc9a212d7.pdf
http://www.sciencedirect.com/science/article/pii/S016781911300121X
http://www.sciencedirect.com/science/article/pii/S016781911300121X
https://s1.q4cdn.com/585930769/files/doc_downloads/lifelock/ISTR22_Main-FINAL-APR24.pdf
https://s1.q4cdn.com/585930769/files/doc_downloads/lifelock/ISTR22_Main-FINAL-APR24.pdf
http://ieeexplore.ieee.org/abstract/document/6658648/
http://ieeexplore.ieee.org/abstract/document/6658648/
http://www.sciencedirect.com/science/article/pii/S0167739X12000180
http://www.sciencedirect.com/science/article/pii/S0167739X12000180

References 151

Koshan, M. (2015). Cloud security report: Honeypot findings. Retrieved 2015-05-
05, from http://www.cwps.com/blog/cloud-security-report
-honeypot-findings

LD, D. B., & Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks
in cloud computing environments. Applied Soft Computing, 13(5), 2292–2303.

Litchfield, A., Ahmed, M., & Sharma, C. (2016). A distributed security model for cloud
computing. In 22nd americas conference on information systems (pp. 1–10). San
Diego, CA.

Lombardi, F., & Di Pietro, R. (2011). Secure virtualization for cloud comput-
ing. Journal of Network and Computer Applications, 34(1), 1113 - 1122. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S1084804510001062

Lyu, M. R., et al. (1996). Handbook of software reliability engineer-
ing. Retrieved from http://s3.amazonaws.com/academia
.edu.documents/24969624/56257_handbook_of_software
_reliability_engineering_00_content_and_preface
.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=
1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%
3D&response-content-disposition=inline%3B%20filename%
3DHandbook_of_software_reliability_enginee.pdf

Mackay, M., Baker, T., & Al-Yasiri, A. (2012). Security-oriented cloud computing
platform for critical infrastructures. Computer Law & Security Review, 28(6),
679–686.

Martin, J. (1991). Rapid application development. Macmillan Publishing Co., Inc.
maxdml. (2017). An overview of distributed computing frameworks. Retrieved

2017-10-01, from https://users.cs.duke.edu/~maxdml/drupal/
?q=distributed-computing-intro

Mccaffrey, C. (2016). The verification of a distributed system. Communications of
the ACM, 59(2), 52 - 55. Retrieved from http://dl.acm.org/citation
.cfm?id=2844108

McPhee, K. (1996). Design theory and software design. Retrieved from https://
era.library.ualberta.ca/files/m613n029s/TR96-26.pdf

Milani, A. S., & Navimipour, N. J. (2016). Review: Load balancing mechanisms
and techniques in the cloud environments: Systematic literature review and
future trends. Journal of Network and Computer Applications, 71, 86 -
98. Retrieved from http://www.sciencedirect.com.ezproxy
.aut.ac.nz/science/article/pii/S1084804516301217
?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=
&md5=b8429449ccfc9c30159a5f9aeaa92ffb doi: 10.1016/
j.jnca.2016.06.003

Mishra, K. S., & Tripathi, A. K. (2014). Some issues, challenges and problems of
distributed software system. International Journal of Computer Science and
Information Technologies. Varanasi, India, 7, 3.

Mittal, M., Sangani, R., & Srivastava, K. (2015). Testing data integrity in

http://www.cwps.com/blog/cloud-security-report-honeypot-findings
http://www.cwps.com/blog/cloud-security-report-honeypot-findings
http://www.sciencedirect.com/science/article/pii/S1084804510001062
http://www.sciencedirect.com/science/article/pii/S1084804510001062
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
http://s3.amazonaws.com/academia.edu.documents/24969624/56257_handbook_of_software_reliability_engineering_00_content_and_preface.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1500821366&Signature=%2Fy5bleelxGDbPDXf8%2BwyXYHYwB0%3D&response-content-disposition=inline%3B%20filename%3DHandbook_of_software_reliability_enginee.pdf
https://users.cs.duke.edu/~maxdml/drupal/?q=distributed-computing-intro
https://users.cs.duke.edu/~maxdml/drupal/?q=distributed-computing-intro
http://dl.acm.org/citation.cfm?id=2844108
http://dl.acm.org/citation.cfm?id=2844108
https://era.library.ualberta.ca/files/m613n029s/TR96-26.pdf
https://era.library.ualberta.ca/files/m613n029s/TR96-26.pdf
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516301217?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516301217?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516301217?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516301217?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb

References 152

distributed systems. In Procedia computer science (45th ed., Vol. 45,
p. 446-452). Information Technology Department, DJSCOE. Retrieved
from http://www.sciencedirect.com/science/article/pii/
S1877050915003130 doi: 10.1016/j.procs.2015.03.077

Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A., Budhia, R. K., & Lingley-
Papadopoulos, C. A. (1996). Totem: A fault-tolerant multicast group com-
munication system. Communications of the ACM, 39(4), 54–63.

Mouhib, I., & Driss, E. (2015). Enhanced data security approach for
cloud environment based on various encryption techniques. Journal
of Theoretical and Applied Information Technology, 80(3), 439-446.
Retrieved from http://search.proquest.com/openview/
23e78381fcb4dcbbf7c7c7f8f8f06101/1?pq-origsite=
gscholar&cbl=2040122

Nadeem, A., & Javed, M. Y. (2005, Aug). A performance comparison of data encryption
algorithms. In 2005 international conference on information and communication
technologies (p. 84-89). doi: 10.1109/ICICT.2005.1598556

Patel, D. K., Tripathy, D., & Tripathy, C. (2016). Review: Survey of load balanc-
ing techniques for grid. Journal of Network and Computer Applications. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S1084804516000953 doi: 10.1016/j.jnca.2016.02.012

Peffers, K., Rothenberger, M., Tuunanen, T., & Vaezi, R. (2012). Design science
research evaluation. Design science research in information systems. Advances
in theory and practice, 398–410.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24(3), 45 - 77. Retrieved from http://www
.tandfonline.com/doi/abs/10.2753/MIS0742-1222240302

Peyravian, M., Matyas, S., & Zunic, N. (2002, March 26). Decentralized systems
methods and computer program products for sending secure messages among
a group of nodes. Google Patents. Retrieved from https://www.google
.com/patents/US6363154 (US Patent 6,363,154)

Poh, G. S., Mohd Nazir, M. A. N., Goi, B.-M., Tan, S.-Y., Phan, R. C.-W., & Shamsudin,
M. S. (2013). An authentication framework for peer-to-peer cloud. In Proceedings
of the 6th international conference on security of information and networks (pp.
94–101).

Pradeep, K., & Vijayakumar, V. (2015). Survey on the key management for securing the
cloud. In Procedia computer science (50th ed., Vol. 50, p. 115-121). VIT Univer-
sity. Retrieved from http://www.sciencedirect.com.ezproxy
.aut.ac.nz/science/article/pii/S1877050915005736
?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=
&md5=b8429449ccfc9c30159a5f9aeaa92ffb doi: 10.1016/
j.procs.2015.04.072

Prat, N., Comyn-Wattiau, I., & Akoka, J. (2014). Artifact evaluation in information
systems design-science research-a holistic view. In Pacis (p. 23).

http://www.sciencedirect.com/science/article/pii/S1877050915003130
http://www.sciencedirect.com/science/article/pii/S1877050915003130
http://search.proquest.com/openview/23e78381fcb4dcbbf7c7c7f8f8f06101/1?pq-origsite=gscholar&cbl=2040122
http://search.proquest.com/openview/23e78381fcb4dcbbf7c7c7f8f8f06101/1?pq-origsite=gscholar&cbl=2040122
http://search.proquest.com/openview/23e78381fcb4dcbbf7c7c7f8f8f06101/1?pq-origsite=gscholar&cbl=2040122
http://www.sciencedirect.com/science/article/pii/S1084804516000953
http://www.sciencedirect.com/science/article/pii/S1084804516000953
http://www.tandfonline.com/doi/abs/10.2753/MIS0742-1222240302
http://www.tandfonline.com/doi/abs/10.2753/MIS0742-1222240302
https://www.google.com/patents/US6363154
https://www.google.com/patents/US6363154
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1877050915005736?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1877050915005736?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1877050915005736?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1877050915005736?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb

References 153

Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in
cloud computing using particle swarm optimization. International journal of
parallel programming, 42(5), 739.

Ramsoft consulting. (n.d.). http://www.ramsoft.com.au/methodology
.php. (Accessed: 2016-11-28)

Ratha, P., Swain, D., Paikaray, B., & Sahoo, S. (2015). An optimized
encryption technique using an arbitrary matrix with probabilistic encryp-
tion. Procedia Computer Science, 57(3rd International Conference on
Recent Trends in Computing 2015 (ICRTC-2015)), 1235 - 1241. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S1877050915019511

Sandell, N., Varaiya, P., Athans, M., & Safonov, M. (1978). Survey of decentralized
control methods for large scale systems. IEEE Transactions on automatic Control,
23(2), 108–128.

Sari, A., & Akkaya, M. (2015). Fault tolerance mechanisms in distributed systems.
International Journal of Communications, Network and System Sciences, 8(12),
471.

Sathyanarayana, T. V., & Sheela, L. M. I. (2013, Dec). Data security in cloud
computing. In 2013 international conference on green computing, communication
and conservation of energy (icgce) (p. 822-827). doi: 10.1109/ICGCE.2013
.6823547

Sedayao, J., Su, S., Ma, X., Jiang, M., & Miao, K. (2009). A simple technique for
securing data at rest stored in a computing cloud. (Vol. 5931 LNCS). Intel Cor-
poration: Springer. Retrieved from http://barbie.uta.edu/~hdfeng/
CloudComputing/cc/cc15.pdf doi: 10.1007/978-3-642-10665-1_51

Shah, N., & Farik, M. (2015). Static load balancing algorithms in cloud computing:
Challenges & solutions. International Journal Of Scientific & Technology Re-
search, 4(10). Retrieved from http://www.ijstr.org/final-print/
oct2015/-Static-Load-Balancing-Algorithms-In-Cloud
-Computing-Challenges-Solutions.pdf

Shaheen, S. H., Yousaf, M., & Majeed, M. Y. (2015, Dec). Comparative analysis of
internet key exchange protocols. In 2015 international conference on information
and communication technologies (icict) (p. 1-6). doi: 10.1109/ICICT.2015
.7469595

Sheng, B., & Bastani, F. B. (2004, April). Secure and reliable decentralized peer-to-peer
web cache. In Parallel and distributed processing symposium, 2004. proceedings.
18th international (p. 54-). doi: 10.1109/IPDPS.2004.1302976

Singh, A., & Chatterjee, K. (2017). Cloud security issues and challenges:
A survey. Journal of Network & Computer Applications, 79, 88 - 115.
Retrieved from http://www.sciencedirect.com.ezproxy
.aut.ac.nz/science/article/pii/S1084804516302983
?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=
&md5=b8429449ccfc9c30159a5f9aeaa92ffb doi: 10.1016/
j.jnca.2016.11.027

http://www.ramsoft.com.au/methodology.php
http://www.ramsoft.com.au/methodology.php
http://www.sciencedirect.com/science/article/pii/S1877050915019511
http://www.sciencedirect.com/science/article/pii/S1877050915019511
http://barbie.uta.edu/~hdfeng/CloudComputing/cc/cc15.pdf
http://barbie.uta.edu/~hdfeng/CloudComputing/cc/cc15.pdf
http://www.ijstr.org/final-print/oct2015/-Static-Load-Balancing-Algorithms-In-Cloud-Computing-Challenges-Solutions.pdf
http://www.ijstr.org/final-print/oct2015/-Static-Load-Balancing-Algorithms-In-Cloud-Computing-Challenges-Solutions.pdf
http://www.ijstr.org/final-print/oct2015/-Static-Load-Balancing-Algorithms-In-Cloud-Computing-Challenges-Solutions.pdf
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516302983?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516302983?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516302983?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb
http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1084804516302983?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb

References 154

Smara, M., Aliouat, M., Pathan, A.-S. K., & Aliouat, Z. (2016). Acceptance test for fault
detection in component-based cloud computing and systems. Future Generation
Computer Systems. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0167739X16302151 doi: 10.1016/j.future
.2016.06.030

So, K. (2011). Cloud computing security issues and challenges. International Journal
of Computer Networks, 3(5), 247–55.

Sreenivas, V., Narasimham, C., Subrahmanyam, K., & Yellamma, P. (2013, July).
Performance evaluation of encryption techniques and uploading of encrypted
data in cloud. In Computing, communications and networking technologies
(icccnt),2013 fourth international conference on (p. 1-6). doi: 10.1109/ICCCNT
.2013.6726514

Takahashi, H., Mahmood, K., & Lakhani, U. (2015, March). Autonomous decentral-
ized semantic based url filtering system for low latency. In 2015 ieee twelfth
international symposium on autonomous decentralized systems (p. 9-16). doi:
10.1109/ISADS.2015.35

Unruh, D. (2015). Revocable quantum timed-release encryption. Journal of the ACM,
62(6), 49 - 49:76. Retrieved from http://dl.acm.org/citation.cfm
?id=2817206

Wang, C., Wang, Q., Ren, K., & Lou, W. (2010, March). Privacy-preserving public
auditing for data storage security in cloud computing. In 2010 proceedings ieee
infocom (p. 1-9). doi: 10.1109/INFCOM.2010.5462173

Xin, Z., Song-qing, L., & Nai-wen, L. (2012, Aug). Research on cloud computing data
security model based on multi-dimension. In Information technology in medicine
and education (itme), 2012 international symposium on (Vol. 2, p. 897-900). doi:
10.1109/ITiME.2012.6291448

Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and computer-
integrated manufacturing, 28(1), 75–86.

Yang, K., & Jia, X. (2013). An efficient and secure dynamic auditing protocol for
data storage in cloud computing. IEEE transactions on parallel and distributed
systems, 24(9), 1717–1726.

Zhang, X., Zagorodnov, D., Hiltunen, M., Marzullo, K., & Schlichting, R. D. (2004,
Sept). Fault-tolerant grid services using primary-backup: feasibility and perfor-
mance. In Cluster computing, 2004 ieee international conference on (p. 105-114).
doi: 10.1109/CLUSTR.2004.1392608

Zhao, X., & Xiao, M. (2015, Nov). Autonomous decentralized test system to enhance
ats’s survival probability and online maintainability. In Ieee autotestcon, 2015
(p. 324-328). doi: 10.1109/AUTEST.2015.7356510

Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security issues. Future
Generation computer systems, 28(3), 583–592.

http://www.sciencedirect.com/science/article/pii/S0167739X16302151
http://www.sciencedirect.com/science/article/pii/S0167739X16302151
http://dl.acm.org/citation.cfm?id=2817206
http://dl.acm.org/citation.cfm?id=2817206

	Copyright
	Declaration
	Acknowledgements
	Abstract
	Introduction
	Background
	Vision
	Ki-Nga-Kopuku Basic Concept
	Ki-Nga-Kopuku System Concept

	Approach
	Research Questions & Challenges
	Contributions
	Outline
	Conclusion

	Literature Review
	Introduction
	Cloud Computing Security
	Security Requirements
	Cloud Threats
	Security Models in Cloud Computing
	Data Security in Cloud Computing

	Distributed System
	Fault-Tolerant
	Load Balancing

	Decentralized System
	Random Distribution
	Conclusion

	Method
	Introduction
	Methodology
	Design Science Research Methodology
	Rapid Application Development

	Research Design
	Research Goals
	Research Process
	Research Evaluation Criteria

	Research Limitations
	Hypothesis
	Possible Solutions
	Conclusion

	System Design
	Introduction
	Ki-Nga-Kopuku Brief Introduction
	System Features
	System Requirements
	Programming Language

	Ki-Nga-Kopuku System Design
	Ki-Nga-Kopuku System Cluster
	Application Group
	Network Topology
	System Architecture

	Ki-Nga-Kopuku System Interface
	System Action

	Traffic Handler
	General Process
	Message Pattern

	Application Components
	Component Definition
	Component Storage
	Component Action
	Component Communication

	Component Distribution
	Distribution Factors
	General Distribution Steps
	Distribution Workflow

	Conclusion

	Discussion
	Introduction
	Summary of Related Work
	Cloud Security Models
	Data Security in Cloud Computing
	Distributed System
	Decenralized System
	Random Distribution
	Conclusion

	Summary of Ki-Nga-Kopuku System
	Erlang Programming Language
	System Design
	System Communication
	Application Component
	Component Distribution
	Distribution Status
	Conclusion

	Research Questions
	Hypothesis
	Discussion
	Conclusion

	Design Evaluation
	Goal Evaluation
	Environment Evaluation
	Structure Evaluation
	Activity Evaluation
	Evolution Evaluation
	Evaluation Conclusion

	System Limitations
	System Environment
	Server Network Interface Single-Point-Of-Failure (SPF)
	Distribution Times
	Malicious Components
	Communication Efficiency

	Conclusion

	Conclusion
	Introduction
	Research Summary
	Future Work
	Conclusion

	Appendices
	Glossary
	References

