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Abstract 

The system of global connectivity of sensing devices for monitoring and automation is known as 

Internet of Things (IoT). Adoption of this technology has made tremendous contribution to increase the 

productivity, efficient monitoring, and communication in various application domains. The numerous 

IoT applications have driven industry to adopt the technologies facilitating the IoT implementation for 

their specific use cases. The rapid adoption and diverse applications of IoT have presented novel use 

cases and challenges. To address these challenges, multiple vendors joined the race of IoT service 

provision. One of the challenges in IoT adoption is low powered long distance transmission that is 

addressed by Low Powered Wide Area Network (LPWAN) technologies. Another challenge is the 

limited computing power and storage that makes these devices resource-constrained and unable to 

utilise state of the art security mechanisms, making them vulnerable to attacks. To fulfil the 

requirements of minimal processing and long node lifetime, most of the IoT devices provide minimal 

security features. LPWAN technologies are no exception when it comes to security provision in 

communication security. LPWAN technologies follow a star topology where the nodes are deployed in 

remote locations, and they transmit data directly to an Internet facing gateway. The end devices in the 

networks often use commodity hardware to achieve low cost and do not provide physical security to 

the devices. In addition, the communication to the gateways is wireless. Given the state of the device 

and communication medium, they become an easy target for the attackers in the network. 

This thesis analyses the security features provided by various LPWAN technologies in detail and 

explains their security vulnerabilities. Based on the investigation, the requirement for better lightweight 

session key and attack detection mechanisms for LPWAN networks is identified. The research proposes 

a lightweight and security mechanism for nodes in LPWAN networks. Additionally, this study explores 

the applicability of Software Defined Networks (SDN) in the provision of security for LPWAN and 

embeds the SDN framework in the proposed security mechanism. The proposed security mechanism 

utilises an SDN controller as a centralised entity for key distribution and attack detection. The 

framework has four major components to achieve a secure security framework for LPWAN: key 

distribution for end nodes, node activation and session key mechanism, energy-aware adaptive 

encryption, and machine learning based attack detection using SDN. 

The proposed framework provides a lightweight session key mechanism and a robust SDN-based attack 

detection mechanism for LPWAN nodes. The framework targets energy-aware operations while 

providing efficient security to the network by shifting the computational tasks towards the 

computationally efficient end of the network by leveraging the star topology of LPWAN networks. The 

framework is validated using various simulation tools to verify its capabilities and operations. The 

correctness of the key calculation employed for the session key mechanism is verified using the 

Mininet-WiFi emulator and the session key process includes calculating the session keys on the server 
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and end node using the public key information. Data flow security is verified for its protection against 

various attack models using the Scyther security analysis tool. In addition, the energy consumption of 

the session key mechanism is measured by implementing an energy model on top of the LoRaWAN 

protocol in the NS3 simulator. The simulation results verify that the data flow of the session key 

mechanism is not vulnerable to any attack model in the Scyther tool and is functioning correctly. On 

comparing the power consumption of the proposed session key mechanism with LoRaWAN protocol, 

it is confirmed that the session key mechanism has minimal impact on the end nodes.  

Furthermore, along with the session key mechanism, this research has proposed an attack detection 

strategy. This approach is employed/tested on the publicly available dataset, AWID-CLS which include 

samples of three types of wireless networks attacks: “Flooding”, “Injection”, and “Impersonation”. This 

thesis proposes a two-tier architecture for attack detection and profiling for the security of the network. 

The first tier uses a binary classifier to classify “attack” and “normal” traffic from entering the Internet 

facing network. The second tier of attack detection mechanism implements a consolidated voting 

mechanism to profile the attack on the network. The dataset is divided into train and test sets for training 

and testing purposes for machine learning classifiers, respectively. The prediction results on the test set 

show that the trained classifiers have high efficiency in detecting and profiling the attacks on the 

network. The application of the two-tier architecture provides a distributed approach for early detection 

of attacks on the gateway and redirects the malicious traffic before it can enter the IoT network. 
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Chapter 1  
 
Introduction 
 
 

“If you think that the Internet has changed your life, think again. The Internet of things is about to 

change it all over again.”  -Brendan O’Brien (Chief Architect & Co-founder, Aria Systems) 

With the evolution of wireless communication technologies and mobile computing, numerous novel 

use cases of network-based applications are evolving. One of the paradigms recently gaining attention 

is the Internet of Things (IoT). IoT can be described as a network of smart devices at a global scale that 

provides the facilities to automate the real world through monitoring, data collection, and data analysis 

[1]. IoT impact on humankind was realised when this technology was in its early stages. The numerous 

applications of IoT promoted academic as well as industrial research. As the area of IoT is growing, so 

are the challenges in IoT.  The concept of IoT is an amalgamation of communication technologies with 

commodity hardware. Devices with sensing and transmission capabilities are connected to Internet 

facing entities, giving these devices global connectivity. IoT has given birth to various business models. 

Devices like Radio Frequency Identifiers (RFID), sensors, actuators, mobile phones, smart watches, 

and other intelligent devices are used for data gathering, and the data is used to extract insight. Analysed 

results from the data are used to make business decisions and personalise the user’s experience [2]. 

The applications of IoT are numerous and require various modes of communications amongst the 

devices in the networks. IoT covers various types of communications between the entities, i.e., machine-

to-machine (M2M), human-to-machine (H2M), machine-to-human (M2H) and human-to-human 

(H2H). M2M communication refers to the interconnection and data exchange between devices without 

any human intervention. M2M communications have vast applications in security systems, tracking, 

remote monitoring, smart grids, because of which IoT is expected to grow exponentially with the 

number of devices in coming years [3]. Figure 1.1 shows a representation of IoT domain interconnection 

as explained by Dave Evans in [4]. It can be observed how IoT can play major roles in various domains 

of our everyday life and bring new business opportunities to benefit both users and industries.  

As IoT shows the possibilities of huge business opportunities, it is vital to understand the components 

of IoT networks and the role these components play in network functioning. Figure 1.2 shows an 

overview of a typical IoT network and how the components interact to provide services that end users 

are utilising. Then sensing devices generate the data and transfer it to gateways. The communication to 

a gateway can be direct or multi-hop, depending on the transmission technology and its range. The 

gateways are the Internet facing entities that forward data to a cloud platform where data is processed 
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and made available to end-users with some Application Programming Interfaces (APIs). Finally, the 

APIs provide services to the applications utilised by end-users on their smartphones, tablets or other 

devices used by them for IoT applications. 

  

 

Figure 1.1: Internet of Things as Networks of Networks [3] 

 

 

Figure 1.2: IoT Connectivity Overview 

Figure 1.3 shows the four layer IoT architecture illustrating a simplified understanding of the IoT 

system's data flow. The first layer includes sensing devices, and it is responsible for data generation 

in the network; it is called the perception layer. The sensing devices in the perception layer use 

various transmission technologies such as 6LoWPAN, ZigBee, WiFi, or LoRaWAN to transmit 
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data to the gateways in the network as the communication layer. The gateways in IoT networks are 

Internet facing, and they forward the data from sensors to centralised servers of service providers 

and can be considered under the network layer. Finally, the application layer is responsible for 

analytics and final results that are to be used for various applications. 

 

Figure 1.3: IoT layered Architecture [5] 

1.1. IoT Applications 

The applicability of IoT can be realised in almost everything today. The power of data-based 

intelligence and task automation are catalytic in the growth of IoT. IoT applications can be industry-

oriented and user-facing, where applications are developed for the device to device and device to human 

interactions [5]. Figure 1.4 shows the domains of IoT applicability. 

 

Figure 1.4: IoT Applications 
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1.1.1. Smart Environment 

IoT facilitates the concept of smart surroundings using intelligent devices in homes, offices, industry, 

and other places involved in our daily lives. Sensors and actuators are distributed and used to control 

and monitor room temperature, power consumption, area monitoring, and alarm systems. 

IoT applications are also being used for monitoring events in nature, like the monitoring of greenhouse 

gases, planet temperature and monitoring deforestation. Previously these were covered by sensor 

networks. However, the reach of sensor networks is limited as they are isolated systems disconnected 

from the Internet. Low-cost manufacturing of sensors and connectivity to the Internet had decreased 

deployment cost and massively increased the range of monitoring [6], increasing the use of IoT 

technologies for smart environments. 

1.1.2. Smart Healthcare system  

The applicability of IoT in healthcare is increasing for improved quality and reduced cost of care. IoT 

can offer smart personalised healthcare solutions based on an individual’s biological, social, and 

cultural characteristics, resulting in better care of the patients. In recent times, hospitals have started 

using Electronic Health Record (EHR) systems where patients' medical records are kept on servers that 

can be accessed from any location. However, the maintenance of EHR is not as easy as it requires 

training and efforts to manage and update. IoT devices can play a significant role in monitoring the 

patients and simultaneously updating the health records using wireless transmission. Applications like 

real-time patient monitoring systems can be implemented and used to trigger an alarm in emergencies. 

IoT is being used to monitor patients in hospitals and transmit their information to a central server 

periodically. Kyoto University hospital has implemented real-time workflow monitoring using barcode 

scanners and Bluetooth transmitters and deploying barcodes on patients, nurses and supplies [7]. The 

automation of patient monitoring and record management tasks can benefit both hospital staff and 

patients, making the applicability of IoT in healthcare even more appealing. 

1.1.3. Smart Transport 

Recent advancements in automobile production increased the use of IoT in transportation systems as 

well. RFID tags and sensors are used to identify and transfer vehicle information and use it for analytics. 

IoT is used to track and monitor vehicles, automate toll collection, augmented mapping for directions, 

and the monitoring of road conditions and accidents. These smart devices are also being used for 

assisted driving, where the real-time information of traffic in the route can be transferred to the drivers, 

and better routes can be suggested [8]. The carbon emissions of the vehicles are monitored, and 

suggestions for repairs or maintenance are provided to drivers using sensing devices. The applicability 

of IoT in transportation is vast as it can cover a wide area and monitor remote locations without human 

interventions. IoT can play a crucial role in decreasing the maintenance cost of transportation systems. 
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1.2. IoT Requirements 

The requirements are mostly application dependent, but all IoT applications share some common 

principles that effectively ease the integration of these remotely located devices and thus the overall 

IoT deployment gets smoother.  In [9], the authors explained various aspects of IoT as shown in Figure 

1.5. 

 
Figure 1.5: Elements of IoT System [10] 

Every element in IoT has a functional role that leads to successful IoT implementation. The elements 

and their functions are discussed as below: 

• Identification: Every device in the system must have a unique identity for unambiguous 

communication with other entities in the network. 

• Sensing: Sensing capability is required to generate data related to the environment. 

• Communication: the data generated by the sensors are to be transferred to users or other entities 

using communication technologies. 

• Computation: Computation power is required to process the data obtained from objects in the 

network 

• Services: The functionalities provided by the object in the system are the services. 

• Semantics: The ability to extract knowledge from the data gathered by the objects to fulfil the 

application requirements 

1.3. Challenges in IoT 

IoT based applications are expected to be almost everywhere in the coming future. However, along with 

a massive range of applications, IoT also produce challenges in seamless service delivery to end-users. 

An IoT network can have billions of devices connected. These devices can be using different 

transmission technologies to communicate sensitive information to gateways and servers. Such 

scenarios brings in three significant challenges in IoT networks: Scalability, Heterogeneity and Security 

as described below: 
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Scalability: Considering the number of devices that are being targeted to be connected to the Internet 

under the Internet of Things, the current network architecture is not ready to accommodate the 

humongous number of devices yet. With the decrease in manufacturing cost of wireless devices, billions 

of devices are joining the Internet every year. The high volume of devices will be generating vast 

amounts of data and transferring data of this magnitude can cause congestion and create data 

aggregation challenges in the network. The increased traffic in the network will require better traffic 

management mechanisms [10] for the required QoS provision. Most of the devices in IoT are energy 

constrained but they can send minimal information periodically, and the routing mechanisms are 

necessary to identify the applications and handle the packets according to their requirements. Efficient 

data aggregation mechanisms will be required to control the amount of data uploaded to cloud backend.   

Interoperability: The devices used in IoT networks use different transmission technologies and may be 

working on various applications at the same time.  The heterogeneous nature of devices requires flexible 

interfacing for them to communicate. With most of the communications in IoT being machine to 

machine, effective interoperability is a must for all devices for seamless data transfer. IoT has numerous 

technologies working together, which may increase in future. The integration platforms for all these 

technologies must be flexible and robust to cope up with continuous changes in IoT networks.  

Privacy: IoT is a major medium of data collection from users and machines. With such scale of data 

being transferred and stored on servers for analytics and decision making, it is necessary maintain user 

privacy. As the volume of data increases, it becomes challenging to differentiate sensitive information 

that may be of serious concern to the users from other types of data. For applications carrying sensitive 

user information, such as healthcare applications, user privacy must be a priority. A user’s privacy 

breach can cause ethical and legal issues for the service providers.  

Security: Out of all challenges in IoT, security is the most discussed [11, 12]. With such a tremendous 

number of devices and such a huge volume of data, IoT networks are likely to be attacked with malicious 

intent. Security consists of several aspects that must be considered while developing applications, they 

are: 

• Confidentiality: To ensure that data is unreadable to unauthorised individuals, entities or 

processes. 

• Integrity: It ensures that the data has not been modified before being delivered to an authorised 

entity. 

• Authentication: It is to verify the legitimacy of the data source. 

• Non- Repudiation: To ensure the non-deniability of data being sent by the sender. 

• Availability: To ensure that valid users have access to the services at all times. 

To fulfil all the attributes of security discussed above, several cryptographic mechanisms are used 

depending on application requirements. As IoT has a large variety of applications, the requirements 
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vary from application to applications. To fulfil the application requirements, IoT has a range of 

transmission technologies coming together for different applications. 

1.4. LPWAN Communications for IoT 

Low Powered Wide Area Networks (LPWAN) are a set of technologies targeting long-range 

communications. Contrary to existing long-range technologies such as WiFi and cellular technologies 

(3G/4G), LPWAN does not target high data rates. Instead, it focuses on larger area coverage, scalable 

networks, and energy efficient operations for IoT networks [13]. LPWAN technologies achieve 10-40 

km coverage in rural and 1-5 km in urban areas. LPWAN devices are also extremely inexpensive, with 

a chipset cost of less than $2.5 and an operational cost of $1.25 per year [14]. Because of the cost 

effective and energy efficient characteristics of LPWAN, it perfectly fits the requirements of IoT 

networks. LPWAN is a comparatively new technology but has gained tremendous attention for the 

industry. Because of this, there have been numerous communication technologies such as LoRaWAN, 

SigFox, and NB-IoT [14] has been added under its umbrella. LPWAN technologies are further 

discussed in Chapter 2 where various LPWAN communication technologies are discussed with their 

advantages and disadvantages. 

1.5. Motivation 

IoT end nodes are usually deployed in a hostile environment where it is very challenging to re-energise 

the node, and they are vulnerable to various physical threats [15]. In [8, 16-19], the authors discussed 

some of the open issues related to security in IoT, and it is pointed out that IoT is highly vulnerable to 

multiple attacks. Also, authentication of the nodes, data confidentiality and integrity are considered 

some of the most critical issues. Nodes require numerous message exchanges with the servers to 

authenticate themselves and to exchange secret keys. However, sensor nodes (constrained nodes) are 

limited in their energy sources. An increase in the number of transmissions from end nodes can shorten 

the node lifetime and break network connectivity.  

In [20], the authors performed a detailed analysis of wireless communications in IoT and discussed 

several open challenges in this area. The authors addressed the impact of security vulnerabilities because 

of the resource constrained devices on the users. The authors mentioned several use cases and security 

requirements. It has been pointed out that for IoT to be successful in areas like smart cities, healthcare 

and smart grids, the security requirements are relatively high. There is a lack of security in current 

wireless technologies for IoT because of the various factors highlighted. In [21], possible security 

threats are  discussed for every layer of the IoT architecture. The paper pointed out that inadequate 

physical security is in the top ten IoT vulnerabilities. Security mechanisms of current communication 

layer technologies in IoT are discussed in detail along with their vulnerabilities to various attacks. The 

authors highlighted that the security of the communication layer protocols is very crucial as it is most 
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likely to be attacked. LoRaWAN is one of the most recent protocols for communication layer in IoT. 

Authors in [19, 22-24] have discussed how this protocol can be penetrated to send false information to 

a gateway using UART pins in the device. LoRaWAN’s join procedure attack is vulnerable to replay 

attack of join accept messages which can lead to the creation of fake gateways in the network. Also, in 

the encryption process of end devices, the transceiver is used for encryption of the data, and the 

microcontroller has no knowledge of the keys used in the process. This makes it possible to send fake 

data from the devices using the UART pins of the transceivers. 

In a large scale IoT network, it is imperative to identify and authenticate the end devices generating the 

data. Any unauthenticated or impersonated node can transmit false data. Public key algorithms for 

authentication are widely used when it comes to networks having nodes with sufficient processing 

capability. However, it does not apply to constrained nodes. They neither have memory nor have the 

processing capabilities for sophisticated operations that are required in public-key cryptography 

algorithms like RSA or ECC. LPWAN technologies have their own mechanism for preserving the 

authenticity, integrity and confidentiality of data. However, most technologies do not use session key 

mechanisms for data encryption; as per our preliminary research, LoRaWAN is the only transmission 

technology that uses session key mechanisms. However, the session key generation is not very dynamic. 

Furthermore, LoRaWAN uses two mechanisms for node authentication, i.e. Activation by 

Personalisation (ABP) and Over the Air (OTA) activation. The OTA activation mechanism provides a 

session key mechanism, and the ABP mechanism uses the same key for the node lifetime. 

Security flaws in current transmission technologies can lead to leakage of data or, at worst, compromise 

the entire transmission. In some IoT applications, such as healthcare monitoring, the compromise of 

confidentiality and integrity could have severe implications leading to the patient's death. The security 

vulnerabilities of communication technologies must be attended for secure IoT service provision. 

1.6. Research Questions 

The thesis aims to develop a lightweight authentication and session key mechanism with an identity 

theft detection mechanism for compromised nodes by taking advantage of the flexibility of the Software 

Defined Networking framework (SDN). 

RQ1. How can we design an SDN based lightweight authentication and session key exchange 

framework for IoT nodes? 

RQ2. How can SDN controllers be used to detect node identity theft in the IoT network? 

RQ3. What kind of performance trade-offs the IoT nodes may face with the addition of the new security 

scheme?  
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1.7. Research Significance 

The delivery of strong security for constrained node IoT networks is a challenging proposition 

considering the limitations of the end nodes in the network. As discussed in earlier sections, most IoT 

communication protocols use static secret keys instead of session keys, which increases the odds of the 

deduction of secret keys used for data encryption.  

This research proposes a lightweight authentication and session key exchange mechanism. The frequent 

changes in session keys would make the deduction of the keys difficult. However, session key exchange 

can cause additional transmissions for the end nodes, resulting in a faster energy drain. An SDN 

framework will be used as resource support for constrained IoT nodes to minimise the processing load. 

Most of the energy consumed by IoT nodes is due to transmissions; thus, minimising processing and 

transmissions at the end node would make authentication and the session key exchange mechanisms 

energy efficient. Also, the detection of identity theft in the network in real-time will also be addressed. 

Furthermore, in the case of a node being compromised in the network, the study proposes a software 

fingerprint-based node identification mechanism to detect identity theft, spoofing and impersonation 

attacks in the network. The data gathered by the SDN controller would be used to identify the 

impersonation attack in the network. 

The major contributions of this research are summarised below where the first and the second 

contribution of the thesis relates to the RQ1. The third and the fifth contribution of the thesis are 

addressing the RQ2 and the fourth contribution relates to RQ3 discussed in section 1.6:  

i. Design and implementation of a lightweight authentication mechanism for IoT nodes in 

LPWAN networks. 

ii. Implementation of a session key mechanism is proposed for enhanced data security. 

iii. Implementation of identity theft detection to identify network breach and node compromise. 

iv. Employment of session management according to node energy level incorporating energy 

efficient security features.  

v. Implementation of a two-tier machine learning based attack detection mechanism to filter attack 

data from the IoT network traffic. 

1.8. Thesis Outline 

The primary objective of this research is to introduce a lightweight session key and identity theft 

detection mechanism for LPWAN based IoT networks. To realise the outcomes of the research, a 

lightweight security framework is designed by combining multiple modules to perform specific security 

tasks towards a common goal of a secure LPWAN IoT network. Simulations are performed for each 
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module to investigate the outcomes. The research follows a constructive approach beginning from 

problem formulations, framework design, evaluation and validation of the research outcomes. 

The architecture proposed in providing solutions is built by utilizing multiple platforms and combined 

by implementing multiple modules. The first module targets the session key mechanism in the 

framework. Simulation and emulation are used to implement the first module to realise the outcome. 

The simulators and emulators provide a platform to mimic large network systems and test the proposed 

approach that can be challenging to achieve in the real world. Various mathematical models for the 

proposed frameworks can be implemented and tested quickly in a simulator, facilitating faster testing 

of the framework outcomes. On the other hand, the second module requires the implementation of 

machine learning models for the detection of attacks on the networks. It uses python programming 

which provides rich libraries for implementations of machine learning models. The machine learning 

models utilise a verified publicly available data containing samples of network traffic for different 

classes for training and testing. Multiple simulation tools and platforms are utilised to study the output 

of the proposed framework. As each simulation tool and platform studies different aspects of the 

performance of the proposed framework. Hence, all the aspects of proposed framework cannot be tested 

using a single simulator or platform currently available for network simulations. 

Chapter 2 explores the communication technologies currently utilised by IoT applications while 

categorising them based on their transmission ranges. Along with the study of technologies, their 

security mechanisms and security vulnerabilities are discussed in detail. Furthermore, various possible 

threats on each layer are discussed, along with their degree of possibility. Considering the security 

threats on IoT networks, the applicability of SDN and machine learning techniques are discussed for 

IoT networks. 

Chapter 3 analyses the existing literature for security in IoT like constrained networks. The literature is 

classified based on the aspects of IoT security addressed by the different papers and sources. 

Chapter 4 introduces the research methodology incorporated by this research. Various activities that are 

performed to realise the output of the study are discussed in detail. This research follows the Design 

Science Research methodology that aims to achieve a security framework for LPWAN based IoT 

networks that provides session key mechanisms and identity theft detection in the network. The session 

key exchange module uses public key information to generate session keys for secure communications 

between the centralised servers. Additionally, the attack detection mechanism uses machine learning 

models trained on a dataset containing network traffic samples. An SDN controller is used as a central 

sever acting as the key exchange authority and as an attack detector in the network. 

Chapter 5 explains the experimentation procedures carried out during the study. The chapter explains 

all the tools utilised to validate the outcomes of the frameworks based on different aspects. Modules of 
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the frameworks are implemented according to features available in the simulators. The results of the 

experiments are analysed and discussed in detail. 

Finally, Chapter 6 provides a conclusion by revisiting the research questions. Also, the research 

limitations are explained along with a discussion about the possible future studies that can extend this 

research. The structure of the thesis is shown in Figure 1.6 below. 

Chapter 2
Background Literature Review

Chapter 3
Related Work

Chapter 5
Experimentation and Result Discussions

Chapter 4
Methodology

Chapter 6
Conclusion and Future Work

• Adopted research methodology
• Proposed Framework
• Simulation and Validation tools utilised in 

research

• Implementation of modules in proposed 
framework

• Result validation and discussions

• Background study of IoT communication 
technologies

• Security mechanisms in existing IoT 
communications

• Security threats in existing IoT communication 
technologies

Analysis and review of existing studies in IoT security 
using various frameworks 

• Conclusion based on experimentations 
results

• Shortcomings and limitations of research
• Future work

 
Figure 1.6: Thesis Outline 
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Chapter 2  
 
 Background Literature Review 
 
 
2.1. IoT communication Technologies 

As IoT covers a range of applications, various communication technologies are used with this type of 

networks depending on the requirements. They can be loosely categorised based on their transmission 

ranges, i.e. short and long-range communication technologies.  Depending on the application 

requirements like power efficiency, data rate, security, reliability and flexibility, one can choose a 

suitable communication technology for the application at hand. Figure 2.1 shows the communication 

technologies with their data rates and range, as explained in  [20].  

 
Figure 2.1: Communication Technologies based on Data rate and Range [17] 

2.1.1. Short Range Communications 

Technologies that fall under short-range can cover from several feet to several hundred meters. There 

are primarily technologies with comparatively low power consumption, but there are exceptions as well. 

Some of the short-range communication technologies are discussed as follows: 
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2.1.1.1. Radio Frequency Identification (RFID) 

RFID [25, 26] is the first technology that communicated information from “things” to the Internet. RFID 

enables the identification of objects from a distance even if the object is not in the line of sight [26]. 

RFID uses the change in the magnetic field to identify the information being sent from the RFID source. 

Figure 2.2 shows an RFID tag used in devices. 

 
Figure 2.2: Radio Frequency Identification tag [22] 

2.1.1.2. ZigBee 

ZigBee [27] is said to be one of the most widely used technologies. It was released in 2005 by the 

ZigBee Alliance. It follows a layered architecture where the lower layers: Physical and Medium Access 

Control (MAC) sub-layers, are defined by the IEEE 802.15.4 standards, and the ZigBee alliance built 

the network and application layers [28]. Figure 2.3 shows the ZigBee Architecture developed by the 

ZigBee Alliance. 

 
Figure 2.3: ZigBee Layered Architecture [24] 
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ZigBee supports star, tree and mesh topologies and has three categories of nodes in the network: End 

node, Router node and Coordinator node [29]. 

• An End Node is a standard radio frequency device located at the edge of the network. 

• A Router Node is used as a relay point and has the capability of maintaining routing tables and 

of forwarding packets. It is not required in the star topology, but it is used in the mesh and tree 

topologies. 

• A Coordinator Node is the root node that receives all the data either through a router or directly 

from end nodes. The Coordinator is also responsible for assigning a 16-bit address to a node 

when it joins the network. 

Figure 2.4 shows the arrangement of nodes in a ZigBee network for various topologies 

 
Figure 2.4: ZigBee supported topologies (a) Mesh Topology; (b) Tree Topology; (c) Star Topology 

2.1.1.3. WirelessHART 

WirelessHART was introduced by the HART communication foundation in 2007. Just like ZigBee, it 

also adopts IEEE 802.15.4 at the physical layer, but it defines its own time synchronised MAC layer 

[30]. The WirelessHART MAC layer is specially designed for industrial environments with strict time 

constraints and security features [20]. WirelessHART has the following components in the network 

[31]: 

• Field Device: It is the instrument deployed at the edge of the network, and it is integrated with 

the WirelessHART communication module. 

• Handheld: It is a device that is used to configure and diagnose the network. 

• Gateway: It acts as the bridge between field devices and an external industrial network allowing 

field devices to communicate to external networks and vice versa. 

• Network Manager: It is an application used to manage the network and the devices. 
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• Security manager: It is responsible for generating and storing the session keys in the network. 

It is also responsible for the secure network joining of field devices. 

2.1.1.4. ISA 100.11a 

Developed by the US-based non-profit organisation International Society of Automation (ISA) [32]. It 

is also a protocol that targets the industrial environment explicitly, just like WirelessHART. ISA 

100.11a also uses IEEE 802.15.4 as the physical layer. Its datalink layer implements graph routing, 

frequency hopping and time-slotted time domain multiple access. Every device in the network has a 

specific task, and the device can be either input /output devices or forwarding devices [1]. There are 

significant differences between WirelessHART and ISA100.11a. WirelessHART was designed to 

address end-user concerns like security, reliability, and delay;  ISA100.11a targets flexibility by 

providing multiple build options to the manufacturer. 

2.1.1.5. Z-Wave 

It is a wireless protocol developed by Zenesys and extended by the Z Wave alliance [33]. Unlike 

WirelessHART and ISA 100.11a that target industrial environments, Z-Wave targets specifically home 

automation. Each device is distinguished by a home id or a network id and a node id for the 

unambiguous identification of nodes in a common neighbourhood. A smart home that uses the Z-Wave 

protocol can have 232 appliances that are divided in two categories: controllers and slaves. 

Slaves receive information from controllers and act upon them, and they also forward controller 

instructions to other nodes. The controller has all the routing information about the network. The 

controller also updates routing tables and strikes out “bad” routes from routing tables. There are two 

types of controllers: portable and static controllers. Portable controllers have the tendency to change the 

location and control the network remotely. The static controller must not change its location and have 

to be powered all the time. There are categories of slave nodes as well: Slave and routing slaves. Routing 

slaves are the same as slave nodes. In addition, they have the capability to send unsolicited messages to 

limited nodes and can store several static routes. Figure 2.5 shows the network structure of Z-Wave. 
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Figure 2.5:  Z-Wave Network structure [33] 

2.1.1.6. DASH7 Alliance Protocol 

It is a wireless protocol designed for low power applications such as sensors and active RFID networks 

and operates on the sub-GHz ISM band [34]. DASH7 has three device classes: Endpoint Class, Sub 

controller Class and Gateway Class. Table 2.1 shows the device class features in DASH7.  

Table 2.1: DASH7 Alliance Protocol Device class Features [29] 

Device Class  Transmits Receives Wake on scan cycle Always on Reciever 

Endpoint Yes Yes Yes NA 

Sub Controller Yes Yes Yes NA 

Gateway Yes Yes NA Yes 

DASH7 defines all the layers of the OSI stack, including the application and presentation layers. Figure 

2.6 shows the DASH7 protocol layer overview. 
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Figure 2.6: DASH7 Alliance Protocol layer overview [31] 

2.1.2. Long Range Communications 

Short-range technologies have advantages with low power consumption. However, their limited 

transmission range can be a barrier for many IoT applications. Cellular networks have indeed provided 

long-range coverage. However, it was not designed for machine to machine communication and to 

provide machine to machine services for a massive number of devices [35]. To provide a long-range 

and power-efficient solution to IoT applications, several commercial communication technologies 

compete against each other that are called LPWAN. Most of the LPWAN technologies follow star 

network topologies where end devices are connected directly to a gateway. Various LPWAN 

communication technologies are discussed in detail in the following sub-section. 

2.1.2.1. SigFox 

Sigfox is a French network operator founded in 2009; their network targets wireless connectivity of low 

powered devices. SigFox uses a proprietary ultra-narrow band (UNB) with limited uplink connection 

[36]. SigFox operated on publically available 192 KHz and can achieve data rates of 100 or 600 bps 

with a maximum payload of 12 bytes and up to a range of 10 km. SigFox is designed for small messages 

ranging from 0 to  12 bytes keeping the cost and autonomy of remote devices. Table 2.2 shows the sizes 

of some typical SigFox messages.  
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Table 2.2: SigFox Payload Size [34] 

Payload Size 

GPS coordinates 6 bytes 

Temperature 2 bytes 

Speed reporting 1 byte 

Object status 1 byte 

Keep alive payload 0 byte 

  

SigFox has multiple modules in its network, with task divided for each module. However, it can majorly 

be divided into two layers: Network Equipment and SigFox Support System. 

• Network Equipment essentially covers end devices responsible for generating  data of the object 

and base stations that receive data from objects in the network and forward it to the SigFox 

Support System. 

• SigFox Support System is the backend of SigFox and covers the core functionalities where the 

messages are processed and forwarded to customer systems. APIs are provided as entry points 

to interact with this layer. This layer is also responsible for network monitoring, maintenance, 

billing and radio planning for network deployment. In addition, it provides tools for data 

analytics on collected data. 

 Figure 2.7 shows the overview of the network architecture of SigFox with functionalities provided by 

the two layers mentioned above. 

 
Figure 2.7: SigFox Network Architecture [34] 
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2.1.2.2. Weightless 

Weightless is backed by the UK Company Neul, recently acquired by Huawei. The technology is 

described in a set of three standards which were developed by a non-profit standard organisation, 

“Weightless SIG” [37]. It has three standards: weightless N, P and W. Weightless-N [35] supports a 

star topology. It uses Ultra-Narrow Band (UNB) on a sub-GHz spectrum, uses DBPSK digital 

modulation with frequency hopping and has a promising range of several kilometres. Weightless-P uses 

a narrow band with TDMA and FDMA and can be considered an extension of Weightless-N for 

bidirectional communications. It uses TDMA and FDMA, and it operates on a 12.5 kHz narrow band 

[1]. In addition, it uses energy-efficient modulations with an adaptive data rate. Lastly, Weightless W 

operates in the television whitespace spectrum, and it is designed for comparatively higher data rates; 

the modulation techniques supported are DBPSK and 16-QAM.  

2.1.2.3. NB-IoT 

Narrow Band Internet of Things (NB-IoT) operates on low bandwidth. It supports a large number of 

devices with low data rates. It can efficiently use small parts of the re-framed spectrum. It uses repetition 

of transmitted data over different channels to increase the coverage. NB-IoT can provide coverage of 

up to 40 Km in rural areas [38]. NB-IoT can be deployed as standalone or along with the existing LTE 

spectrum and requires a minimum bandwidth of 180KHz [39]. 

2.1.2.4.  LoRa-WAN 

 Developed by Semtech, LoRa is a wireless modulation for long-range, low-power and low-data-rate 

applications [40]. It follows a star topology, where nodes transmit data to their gateway directly, and 

the gateway forwards the data to the Internet facing components of the network. It follows the SS Chirp 

modulation, and it is capable of transmitting data up to 5 km in urban settings and up to 45 km in rural 

areas with data rates up to 50Kbps, and the life of a LoRa device can go up to 10 years. LoRa-WAN 

has three classes: Class A, Class B and Class C. Class A (Bi-Directional End Device): Class A devices 

are the lowest power-consuming devices. They support bi-directional communications where two short 

downlink windows follow the uplink transmission. Any communication from the server can be done in 

the two short downlink windows; else, it has to wait till the subsequent scheduled downlink. 

• Class B (Bi-directional end-devices with scheduled receive slots): In comparison to Class A, 

Class B has more receive slots. It provides a scheduled receive window in addition to class A’s 

two short downlink windows. The gateway sends a beacon to the end node to open the 

scheduled window for communication. 

• Class C (Bi-directional end-devices with maximal receive slots): Class C devices have 

continuous receive windows, and it only closes when the device is transmitting. Class C is the 
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most power consuming device class in LoRa-WAN. It also has lower latency than Classes A 

and B. 

Figure 2.8 shows the overview of the LoRa-WAN architecture. The network server manages the 

network services like routing and node activation. It receives data from gateways and forwards it to 

application servers from where the respective applications use the data. 

 
Figure 2.8: LoRaWAN Architecture [39] 

2.2. Security Mechanisms in IoT Communication Technologies 

2.2.1. Security in Short Range Communication Technologies 

Short range technologies play a vital role in communication between devices in IoT network. This 

sub-section explains the security mechanisms of various short range communication technologies in 

IoT 

2.2.1.1. RFID 

RFID is the most famous technology for the automatic identification of objects. As discussed earlier, 

the identification tags transmit magnetic information to the receiver for identification. RFID does not 

provide any fundamental security feature for authentication, integrity, confidentiality, and availability 

unless additional security mechanisms are added to the system [41].  
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Confidentiality: In most cases, the communication between the RFID tag and a reader is not encrypted 

except in some ISO 14443 systems [42]. There is a high possibility of data leak if an attacker eavesdrops 

on the devices. 

Integrity:  In the case of protection against data integrity, few high-end systems (ISO 14443) provide 

message authentication codes (MAC). However, most systems employ checksums (CRC) that not very 

effective and works only against random failures. 

Authentication: The RFID tags are not tamper-proof and can be manipulated. The unique identifier of 

the tags can be changed. Hence, destroying the authenticity of the devices. 

Availability: RFID devices are highly prone to jamming attacks. Blocker tags [42] can be used to disrupt 

the communication between the reader and the tags. 

In [43], various RFID standards are discussed along with their security features, as shown in Table 2.3 

Table 2.3: RFID Technologies and features 

Technology/ 

Standard 

Application Technical Features Standard Security Features 

Band Range(meters)  Confidentiality Integrity 

EPC Class 0 Supply 

Chain 

Ultra High 

Frequency 

(UHF) 

3 None • Parity bit 

• CRC 

EPC Class 1 

Generation 1 

Supply 

Chain 

UHF 3 None • Parity bit 

• CRC 

EPC Class 1 

Generation 2 

Supply 

Chain 

UHF 3 One-time pad stream 

cipher 

CRC 

ISO/IEC 18000-

2 

Item 

management 

Low 

Frequency 

(LF) 

<0.01 • No encryption 

• No read protection 

• No authentication 

• CRC 

• Permanent 64- 

bit ID 

• Lockable 

identifier code 

(optional) 

ISO/IEC 18000-

3 

Item 

management 

High 

Frequency 

(HF) 

<2 • 48-bit password 

protection on reading 

operations 

• Reader talks first 

protocol 

• CRC 

• Password 

protection on 

write 

command 

ISO/IEC 

11784/11785 

Animal 

Tracking 

LF <0.01 • Reader talks first 

protocol 

• Retagging 

Counter 
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Technology/ 

Standard 

Application Technical Features Standard Security Features 

Band Range(meters)  Confidentiality Integrity 

• Tags addresses with 

random numbers 

• CRC 

ISO/IEC 10536 Contactless 

smart cards 

HF <2 • Masked reader to tag 

communication. 

• Tags addresses with 

random numbers 

CRC 

ISO/IEC 15693 Vicinity 

smart cards 

HF <1.5 No read protection and 

no encryption 
• Error 

checking on 

the wireless 

interface 

• Write 

protection 

(optional)  

 

2.2.1.2. ZigBee:   

ZigBee is efficient and one of the most used short-range transmission technologies for wireless sensor 

and IoT networks. ZigBee employs AES-124 CCM for data confidentiality, authenticity and integrity 

in the network. The data is encrypted and signed with a key shared amongst the devices in the network. 

For integrity, a MIC code of the data is calculated and transferred with the data. The receiver calculates 

the MIC of the data received and compares the calculated MIC with the received MIC for the integrity 

of the data. Table 2.4 shows the security modes provided in ZigBee. 

Table 2.4: ZigBee Security Modes [44] 

Security 

Level ID 

Security level 

Sub field 

Security Suit Security 

Attributes 

Data 

Encryption 

Frame Integrity 

(Length of MIC) 

0x00 000 None None OFF NO (M=0) 

0x01 001 AES-CBC-MAC-32 MIC-32 OFF YES (M=4) 

0x02 010 AES-CBC-MAC-64 MIC-64 OFF YES (M=8) 

0x03 011 AES-CBC-MAC-128 MIC-128 OFF YES (M=16) 

0x04 100 AES-CTR ENC ON NO (M=0) 

0x05 101 AES-CCM-32 ENC-MIC-32 ON YES (M=4) 

0x06 110 AES-CCM-64 ENC-MIC-64 ON YES (M=8) 

0x07 111 AES-CCM-128 ENC-MIC-128 ON YES (M=16) 
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2.2.1.3. WirelessHART 

WirelessHART focuses on industrial communications. Hence, it needs to be reliable and secure. All 

communications in WirelessHART are encrypted with AES-128. Similar to ZigBee, a shared key is 

used. The protocol also uses a four-bit counter to create a random nonce. MIC is used for data integrity 

in the network. The protocol uses the same key for both encryption and MIC calculation. 

2.2.1.4. ISA 100.11a 

ISA 100.11a [32, 45] provides similar security as WirelessHART with some additional features. It uses 

timestamp as protection against replay attacks on the network. And, for data integrity in the network, it 

uses MIC like WirelessHART.  The transport layer uses a nonce to indicate the time of packet 

generation. The receiver checks for the valid nonce within a timeframe to check the validity of the 

packets. Also, ISA 100.11a provides a joining procedure for nodes where they can use public-key 

encryption to be authenticated and join the network for the first time. The joining procedure enables the 

nodes to be authenticated without sharing any information over the air hence, securing the joining 

procedure against multiple attacks. 

2.2.1.5. Z-Wave 

Z-wave is another well-known home automation communication technology used for short-range 

communications. The earlier Z-wave version also provides a comparatively light triple DES with a 56-

bit key [46]. Z-wave has recently announced an S2 security framework that uses 128-bit AES. It divides 

the network into three security classes [47]: S2 access control, S2 authenticated, and S2 unauthenticated. 

Every class has a distinct secret key, and every device joining the PAN must belong to one of these 

classes. Depending on the class the device belongs they have a corresponding secret key for 

communication.  Out of the three classes in Z-Wave, S2 access control is the most secure and S2 

unauthenticated is the least secure class in the network. In order to obtain keys from the network 

controller, the devices use the Elliptic Curve Deffie-Helman (ECDH) for secure key exchange.  

2.2.1.6. Dash7 

Dash 7 uses AES symmetric key cryptography for confidentiality and node authentications in the 

network. The secret key is stored in the node file system prior to deployment. DASH7 provides multiple 

options for providing various levels of security, as shown in Table 2.5.  
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Table 2.5: Security classes in DASH7 [34] 

Security 

class 

Encryption/ Authentication 

mechanism 

Description 

0 NONE No Security 

1 AES-CTR Encryption only, counter mode 

2 AES-CBC-MAC-128 No encryption, Authentication, Cipher-block 

chaining with 128 bit MAC 

3 AES-CBC-MAC-64 No encryption, Authentication, Cipher-block 

chaining with 64 bit MAC 

4 AES-CBC-MAC-32 No encryption, Authentication, Cipher-block 

chaining with 32 bit MAC 

5 AES-CCM-128 Authentication with CBC-MAC-128 and Encryption 

with Counter Mode 

6 AES-CCM-64 Authentication with CBC-MAC-64 and Encryption 

with Counter Mode 

7 AES-CCM-32 Authentication with CBC-MAC-32 and Encryption 

with Counter Mode 

 

2.2.2. Security in Long Range Communication Technologies 

2.2.2.1. SigFox 

SigFox is the most famous long-range communications technology used for IoT devices. As it operates 

on power constrained devices, it focuses on energy aware activities on the nodes. Lightweight security 

mechanisms are used for authentication, confidentiality and integrity. SigFox uses a stored symmetric 

key to authenticate the node and uses sequence numbers to avoid replay attacks. These sequence number 

counters are auto-incremented with every message and reset after one month with 140 messages/day. 

The integrity of the sequence number is confirmed by using a Message Authentication Code (MAC), 

which is sent with the data packet. SigFox does not provide message encryption by default. However, 

depending on the application, customers can either use their end to end encryption mechanism or use 

the end to end encryption solution provided by SigFox. Figure 2.9 shows the checks performed in 

SigFox during message transmission. In addition to node and data security, SigFox also has a built-in 

Firewall, so the nodes are not directly connected to the Internet.  
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Figure 2.9: SigFox Procedure during Message Transmission [36] 

2.2.2.2. LoRaWAN 

LoRaWAN is another protocol with long-range transmission capabilities. It operates on LoRa [48] and 

aims to provide support for mobility and secure communication. LoRaWAN provides both 

authentication and data security. Symmetric key operations are used for node authentication and data 

confidentiality. In LoRaWAN, when the node tries for the first time to join the network, a join procedure 

is initiated. There are two types of activation procedures in LoRaWAN: 

i. Over-The-AIR-Activation (OTAA): In this method, every node uses its 128-bit Appkey (given to 

the node at deployment time). The Appkey is used to calculate a four-byte Message Integrity 

Check(MIC) (it is the first 4 bytes of the MAC calculated on join request message) Code to sign 

the join request [49]. Figure 2.10 shows the procedure for OTA activation in LoRaWAN. 

MAC = aes128_cmac (AppKey, MHDR | AppEUI | DevEUI | DevNonce)  

MIC = MAC[0..3] 

AppEUI is unique to the owner, and DevUI is unique to the device; they act as Identifiers for the 

application and the end device, respectively. DevNonce is a random number sent by the device to avoid 

the replay of the packet. The sender node does not encrypt the join request. Upon receiving the join 

request, the network server checks the MIC for message integrity, and it checks the DevNonce if it has 

already been used previously. After that, the server responds with a join accept, which is encrypted with 

AppKey by using the decrypting module of AES, which can be decrypted using the encrypt module of 

AES. Using only a decrypt module in the device makes it possible to load only one module in the end 

node. The MIC for join accept is generated with AppKey [49]. 

MAC = aes128_cmac(AppKey, MHDR | AppNonce | NetID | DevAddr | RFU | RxDelay | CFList) 

MIC = MAC[0..3] 
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AppNonce is a random number generated by the server to produce AppSKey and NwkSKey, i.e. 

Application Session Key and Network Session Key, respectively [49]. 

NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce | pad16) 

AppSKey = aes128_encrypt(AppKey, 0x02 | AppNonce | NetID | DevNonce | pad16) 

When the end node gets the join request from the server, it calculates the session keys with the above-

explained procedure. 

 

Figure 2.10: OTAA Join Procedure LoRaWAN [40] 

ii. Activation by Personalisation (ABP): In this procedure, the nodes are deployed with secret keys, 

and they can directly start transmitting data without any registration procedure. This process saves 

time and energy but is considered less secure as the same key is used for the lifetime of the node.  

Once the nodes join the network by either of the two procedures, the upcoming messages are encrypted, 

and MIC is calculated using the combination of network and application key, as shown in Figure 2.11. 
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Figure 2.11: Encryption mechanism in LoRaWAN [40] 

2.3. IoT Security Threats 

Numerous applications of IoT in multiple domains and the use of constrained devices can make IoT a 

feasible target of attackers. As mentioned in chapter 1, IoT is divided into a layered framework. Authors 

in [21] discuss vulnerabilities of IoT layers against various attacks. This section will discuss security 

threats that can target IoT applications. 

2.3.1. Perception Layer Security threats 

The Perception layer consists of the physical objects that are responsible for sensing and for data 

generation. The devices are deployed in hostile and unsecured environments. These devices can be 

physically accessed and manipulated by attackers. Security keys can be extracted, causing grave 

damage to the whole network of devices. Authentication of physical devices is crucial for the security 

of applications using the services of the devices. An unauthenticated device can transmit false data to 

the applications, causing damage to integrity in the network. 

In [50], threat analysis is performed on physical devices. The author explains the possibilities of attacks 

over the device’s lifetime. Various factors, including its manufacturing, can cause device vulnerabilities 

are explained. It is discussed how faulty device manufacturing can leave backdoors in the devices which 

attackers can exploit. The second and most crucial phase is device deployment. Devices are configured 

initially to join and operate in a network. In a large scale deployment, there are possibilities of hasty 

device configuration causing security vulnerabilities.  

Perception layer threats can be avoided to an extent with proper manufacturing and configurations 

during deployments. However, devices are still vulnerable to physical attacks. 
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2.3.2. Communication Layer Security Threats 

The Communication layer is responsible for transmitting data from devices to gateways and further to 

application servers. IoT devices majorly use wireless transmission to communicate. Communication is 

most likely targeted by attackers as it does not require any physical access to intercept data from the 

wireless medium. The communication medium is prone to various attacks that can cause severe damage 

to the performance of IoT networks. 

Possibilities of various attacks are discussed in [21, 23, 51-54]. In [1], the trade-off between energy and 

routing protocol is discussed. The author also discussed the requirement of an efficient routing protocol 

that considers the resource constrained nature of IoT network and can provide state of the art security 

in data transmission. Table 2.6 shows various attacks and their impacts on the networks. 

Table 2.6: Attacks and Impacts on IoT networks [21] 

Communication layer attack Impact on network Possibility 

Jamming attack Very High High 

Sinkhole attack High Medium 

Wormhole attack High Medium 

Hello Flooding attack Moderate Medium 

Man in the middle attack (MITM) High High 

Sybil Attack High Medium 

 

2.3.2.1. Jamming Attack 

The wireless transmission uses radio frequencies for communication. A jamming attack obstructs the 

nodes from communication by occupying the communication channels. Jamming attacks are divided 

into four categories [55], i.e. constant, deceptive, random and reactive jamming. Most wireless mac 

protocols use CSMA-CA, allowing them to access the channel when it is not occupied. However, in 

constant jamming attacks, the attackers continuously send radio signals to occupy the channel, causing 

nodes in the network to be unable to access the channel. In case of deceptive jamming, the attacker 

continuously sends packets, keeping nodes in receiving mode only. Every jamming strategy focuses on 

forcing the nodes to stop sending data, stopping the whole network from functioning. 

2.3.2.2. Sinkhole Attack 

Sinkhole attacks target the routing of the network and cause damage to the networks that are using 

multi-hop routing. A malicious node is planted in the network to break the network connectivity [56]. 

The malicious nodes advertise false route information to attract the nodes to use that path, causing the 

nodes in the network to start sending data through the malicious node. The sinkhole alone may not cause 
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grave damage. However, combined with other attacks, it can be lethal. Figure 2.12 shows the scenario 

of a sinkhole where the sinkhole is attracting all the network towards itself. 

Gateway Terminal Server

Network Nodes

Malicious Node

 

Figure 2.12: Sinkhole Attack 

2.3.2.3. Wormhole Attack 

A wormhole attack is a coordinated attack that requires at least two nodes [57]. The two attackers are 

connected through a “wormhole tunnel”. The attacker at one end receives packets from nodes and 

forwards them to the other attacker. The other attacker, after receiving the packets, replays them back 

in the network. The attack does not require any cryptographic information, and the replayed packets 

can disrupt smooth packet transmission. Figure 2.13 shows an outline of wormhole attacks and how it 

impacts nodes in the network. 

Gateway Terminal Server
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Wormhole Tunnel Link

Node to node link

Impact area

 

Figure 2.13: Wormhole Attack 
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2.3.2.4. Hello Flooding Attack 

The hello flooding is a special type of Denial of Service (DoS) attack. It can be launched on various 

routing protocols that use “hello” packets as control packet to update network connectivity in dynamic 

networks [58]. The malicious node sends hello packets to a neighbour node, causing the neighbour node 

not to participate in routing activities for legitimate nodes in the networks. This attack is not very 

effective if launched with a single malicious node; however, it can cause serious damage to network 

connectivity with multiple attackers. 

2.3.2.5. Man in the Middle Attack (MITM) 

MITM attack is a passive attack where the attackers intercept data being transmitted in the network. 

The intruder can monitor the communications between network nodes, creating a possibility of 

confidentiality breach in the network.  The attackers can use the sniffed packets in multiple attacks like 

Address Resolution Protocol (ARP) poisoning. The captured packets can be retransmitted to network 

nodes with a replay attack causing a breach in integrity. 

2.3.2.6. Sybil Attack 

The malicious nodes create multiple identities of a node in the network to create ambiguity in the 

network. Figure 2.14 shows an outline of a Sybil attack where the malicious node impersonates itself 

as multiple other nodes in the network. This attack can affect the integrity of the compromised node as 

the central servers will be receiving data from two nodes with the same identity and will have to either 

accept or discard data from both legitimate and malicious nodes. 
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Figure 2.14: Sybil Attack 
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2.3.3. Business / Application Layer Threats  

This layer is responsible for providing services and acts as the front end. Users Interact with this layer 

to provide inputs and receive outputs from the respective applications. This layer is vulnerable to attacks 

that can exploit applications and human errors in the provision of credentials. Following are some of 

the attacks that can be launched on the application layer.  

2.3.3.1. Social Engineering attacks 

Social engineering [59] is the art of getting users credentials by exploiting the users’ psychological 

aspects. The targets are users with information, and attackers persuade them into leaking information. 

The attackers use the collected information to access the applications and launch attacks using user’s 

access details. Technical defence mechanisms are usually useless against these attacks as the attackers 

use legitimate credentials to access information. The only way to avoid this is to train the users against 

these attacks. 

2.3.3.2. Buffer Overflow Attacks 

 Buffer overflow attacks are one of the most common attacks launched on applications by exploiting 

any bugs in the applicatios. The attacker tries to overflow the memory and stop the application from 

functioning. This attack can significantly affect the integrity of the application, leading to a significant 

disruption in service provision. 

As discussed above, IoT layers are prone to various attacks. Mostly the attacks target a particular layer 

of the system. However, some attacks target multiple layers of the IoT system, and they can severely 

damage the system performance.  

2.4. Software Defined Networking (SDN)  

SDN has introduced programmability to the networking devices that vendors usually hardcode in the 

traditional networking paradigm. Network programmability was introduced in the ’90s with projects 

like Open Signalling [60], Active Networking [61], DCAN [62], NETCONF [63] and Ethane [64]. 

However, ForCES  [65] and OpenFlow [66] are the most recent architectures used for SDN. Several 

groups of organisations have formed the Open Networking Foundation (ONF) [67] to standardise 

OpenFlow for SDN [68]. 

As shown in Figure 2.15, SDN decouples the control plane from the forwarding plane and allows the 

control plane to be programmed according to network requirements [68]. In traditional networking, the 

forwarding devices are controlled by predefined firmware installed by the vendors, and the control 

firmware cannot be reprogrammed, forcing the users to use what is provided by the vendors irrespective 

of the requirements. However, SDN makes it possible to program the network as required. This network 
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programmability feature opens new doors for other third-party software mechanisms that can be 

integrated with forwarding rules in the controller [69]. 

• Forwarding Plane/ Data Plane: The forwarding or data plane consists of forwarding (either 

software or hardware based) entities that use instructions or rules provided by the control plane 

to manage the incoming or outgoing traffic through the ports.   

• Control Plane: The control plane consists of policies or rules that forwarding devices follow. 

The control rules are communicated to the forwarding entities using a secure channel (this 

depends on whether or not the switches support secure communications with the controller). 

The control plane is the actual brain behind the behaviour of the networks and their policies.  

 

Figure 2.15:  Software Defined Networking Architecture 

2.4.1. Challenges and Opportunities for SDN based Security in IoT 

The introduction of SDN has opened new doors in multiple areas of networking. However, there are 

multiple views of researchers when it comes to SDN-based security architectures. Some say that it will 

bring diverse opportunities for the networks, bringing revolutionary changes in the way network 

management and network security are handled. On the other hand, researchers claim that SDN will 

bring security threats to the network components. Both views have solid reasons for their claims. There 

are several potential SDN frameworks giving rise to opportunities as well as challenges [69-71] 

discussed as follows: 
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Centralised Control: In traditional networking, the controls are distributed over the routing devices, 

and the forwarding devices hold the authority to make routing decisions. 

On the other hand, SDN takes out the control plane from the device and gives it to a controller that can 

be remote or local. This centralisation brings a single point of failure in the network. It makes the work 

of an attacker easier, as they have to bring just one control entity down for the network to fail. However, 

this centralisation of control offers a hawk eye that helps the network react to the anomalies. When it 

comes to routing, network firewalls and network monitoring systems, having a global view can 

undoubtedly decrease the reaction time [71]. 

SDN Standards: OpenFlow has brought flexible network customisation where the routing devices can 

be controlled from a remote controller by pushing flow entries into OpenFlow switches. However, 

OpenFlow is still in its growing phase and still has few vulnerabilities in the standards adopted by 

various vendors [72, 73]. The communication between switches and controllers is highly vulnerable as 

the latest version of OpenFlow (v 1.5.1) has made the Transport Layer Security (TLS) for 

communication optional. Because of which the vendors have an option not to use the TLS in their 

switches as TLS brings complex configuration requirements with it [72]. The absence of TLS leaves 

the controller switch communication open for a man in the middle attacks as the control data is being 

transferred as plain text. Also, there other threats like switch authentication, controller authentication, 

and flow verification [72]. These challenges must be addressed in the coming versions of standard 

protocols in SDN for the technology to be successful. 

2.5. Machine Learning for Network Security 

A machine learning algorithm is a computational process that takes input information and produces a 

desirable output without being programmed (“hardcoded”) [74].  Machine learning algorithms tend to 

learn from a dataset to make accurate predictions in the learned domain based on specific sets of input. 

This capability of finding complex patterns in data gives a new dimension to network security and 

defence mechanisms.  

Machine learning can be majorly divided into three categories; Supervised, Unsupervised, and Semi-

Supervised. 

 Supervised Machine learning: Supervised learning [74] is used when we have a dataset with label 

outputs. The labelled dataset is given as input to a machine learning algorithm. The algorithm then 

learns to generalise based on the labelled data. Once the model is optimised to minimise the errors in 

prediction on the input data (training data), anonymous data is provided to the trained machine learning 

model to make predictions of the label based on the provided variables. 
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Unsupervised Learning: The significant difference between supervised and unsupervised machine 

learning [74] is the labelling of the dataset. In unsupervised learning, the data is not labelled. The 

learning algorithms automatically decide the label of the samples based on commonalities in the features 

of data samples. Majorly, the unsupervised learning algorithms work on the clustering principle where 

it clusters the data samples with common features and labels them. 

Semi-Supervised Learning: In several cases, there are limited labelled samples, and most training 

samples are unlabelled. In such cases, semi-supervised machine learning [74] is used. The dataset is 

divided into two categories of labelled and unlabelled data samples. Supervised techniques are used on 

the labelled data samples and unsupervised clustering mechanisms are used on the unlabelled data 

samples in the dataset. Supervised learning is used to find a relation between data samples of the same 

cluster, and unsupervised learning is used to create similar data samples. In this manner, semi-

supervised learning uses both supervised and unsupervised learning for classifications. 

2.5.1. Supervised Learning Algorithms 

Supervised learning is mainly a process to map an input set to an output set. Each sample in the input 

set is associated with one output set sample, and the learning algorithm has to find the best possible way 

for the input set to create a general mapping to the output set [75]. Supervised machine learning has 

shown great potential in classification and regression problems for whom labelled historical data is 

available. 

Supervised learning is one of the most common techniques used in classification problems. It provides 

a massive range of techniques that can be used to address different classification tasks based on 

available data. Some of the most common supervised learning algorithms are discussed as follows: 

2.5.1.1. Linear Classifiers 

Linear classifiers are the simplest yet effective supervised learning technique that uses linear 

combinations of the features to classify the data samples into output classes [76]. For a binary 

classification, the linear classifiers split the data samples into two classes. However, for multiclass 

classifications, multiple linear classes are trained against each class available to find a decision 

boundary. Linear classifiers are primarily used when the classification speed is the primary focus. Some 

of the most common linear classification techniques are logistic regression and Naïve Bayes classifiers 

[77]. Both classification techniques use linear classification with different mathematical approaches to 

decide decision boundaries in data samples. 

2.5.1.2. Support Vector Machines (SVM) 

SVM constructs an N-dimensional hyperplane to separate the data into two categories [76]. SVM is one 

of the most effective techniques that can be used on high dimensional data. Even when the data 
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dimension is higher than the number of data samples, SVM performs exceptionally well. However, 

SVM fails to perform well on huge dataset because of high training time. In cases of high dimensional 

data, it requires precise regularisation and hyper-parameter tuning to perform well. Also, SVM struggles 

to perform well when there is noise in the dataset, and there is overlap in output classes. 

2.5.1.3. Decision Trees 

Decision trees follow a multistage decision making approach. It breaks down a complex decision 

making process into multiple simple decisions [78]. Each node in the decision tree represents a feature 

of the sample to be classified, and each branch carries the value of the feature based on which the 

branches are divided in the decision tree [77]. Decision trees are simple to understand and visualise and 

require less data preparation to train the model. However, decision trees tend to overfit the data and 

require pruning and hyper-parameter tuning to avoid overfitting [79]. 

2.5.1.4. Neural Networks 

Neural Networks are one of the most well-known machine learning techniques that simulate learning 

in biological beings. Biological neurons are replaced by artificial neuron node, and the connections 

carry the weights for the connected neurons. The function of input is calculated by propagating the 

computed values from input neuron to output neurons with weights as intermediate parameters [80]. 

The neural networks are competent in doing complex classifications where non-linear learning is 

required. However, the Neural Networks have non-convex loss functions and can get stuck in local 

minima during optimisation; it can be prevented by random initial weight allocation. Also, the Neural 

Network is very sensitive to feature scaling and has many hyper parameters that require tuning for 

optimal performance [79]. 

2.5.2. Supervised Machine learning for IoT security 

Supervised learning techniques require historical data to predict the future occurrences of attacks on the 

networks. Machine learning techniques are mainly used to detect attacks on networks by monitoring 

the network node behaviour. 

2.5.2.1. Attack Detection Methodologies 

Attack detection methods are majorly categorised into three categories. The first one is Signature-Based 

Detection of attacks: a signature string or pattern is designed for known attacks on the networks based 

on knowledge gathered from previous attacks from the network. The incoming traffic is compared with 

the stored signature in a database. In case of a matching pattern, the Intrusion Detection Systems (IDS) 

raises a flag of possible intrusion on the network and suitable actions for blocking the attacks are taken 

by the IDS. The signature based detection is also known as Misuse and Knowledge Based Detection. 

The signature based detection mechanisms are simple and easy to implement and are fast to react to 

known attacks on the networks. However, they are ineffective in the detection of novel attacks on the 
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network. It is also challenging to update the signature of the attacks as new attacks are introduced to the 

system, and it can be tedious to maintain the knowledge base. 

The Second type is Stateful Protocol Analysis (SPA). SPA works on the comparison of the protocol’s 

profile and node behaviour in the networks. It uses profiles of vendor protocols used by network devices 

to establish a typical behaviour of the protocol. It compares it with the incoming traffic to identify 

attacks on the networks. Unlike signature based protocols, it does not create a list of signatures. Instead, 

it analyses the protocol behaviour it is working on comparing with incoming traffic. The analysis and 

learning of protocols can cause an overhead. However, it protects against unknown attacks, unlike 

signature based IDS. 

The third type of detection method is Anomaly Based Detection. It is a behaviour based detection 

mechanism that continuously monitors the node activities in the networks and reports any anomalous 

behaviour of the node in the network. Anomaly based IDS requires setting a baseline behaviour as the 

“normal” behaviour of nodes in the network. To define a baseline for incoming traffic, the IDS must be 

introduced to various protocols being used in the networks. The IDS must analyse all the protocols for 

their behaviour to draw a baseline for all of them. The mechanism of baseline design can be 

computationally extensive and time consuming. However, once the baseline is set, the anomaly based 

IDS can be very effective for attack or intrusion detection in the networks. An anomaly based detection 

system's significant advantage over a signature-based system is its capability of detecting unknown 

attacks on the network. As the anomaly based IDS does not depend on signatures, any node behaviour 

that deviates from the baseline is flagged as an attack on the network. 

Anomaly based IDS can be categorised into three major categories [81]: i) Statistical Based; ii) 

Knowledge Based; and iii) Machine Learning Based. All three categories are discussed as follows: 

Statistical Based: The statistical based anomaly detection techniques solely rely on the statistical 

information of various aspects of the data. It uses metric based profiling such as data rate, packet count 

for particular protocols, specific IP addresses. The statistical based anomaly detection uses two datasets 

of the network in the process. One is the current data from the network, and the second is past data to 

create the statistical profile. The current data is compared with the previous statistical profile to compare 

the network behaviour to calculate the anomaly score. If the anomaly score goes beyond a threshold, 

the system flags the event that occurred as an anomaly. Statistical based anomaly detection is fast and 

does not require huge amount of data to create the statistical profile of the network traffic. However, as 

it uses simple statistical rules, an attacker can be trained by an attacker so that the system starts 

identifying the attack as regular traffic.  

Knowledge Based: Knowledge bases anomaly detection, also known as expert systems, are intended to 

classify audit data based on specifications (set of rules) that determines legitimate system behaviour. It 

works in three steps. First, the data attributes and classes are recognised from the training dataset. 
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Secondly, the specification is designed from the selected attributes and classes for the network traffic. 

Finally, the specifications is used on audit data for classification based on rules designed in the 

specification of the network traffic. There are several ways to design the specification for the expert 

systems. It can be designed by human experts to classify the data, or it can be designed by some tools 

using finite state machines. The main advantage of this anomaly technique is its robust and flexible 

properties. However, developing an optimal specification for a system can be a very challenging and 

time consuming process. 

Machine Learning Based: Machine learning based anomaly detection techniques utilise the state of the 

art machine learning models to analyse the patterns in the dataset. It uses a labelled dataset, where the 

data samples are labelled as different classes based. The labelled dataset is provided as input to the 

machine learning models. The machine learning models learn for patterns in the dataset based on 

various features in the dataset. The machine learning based anomaly detections can utilise any machine 

learning algorithms that provide the best solution on the dataset. Some of the well-known machine 

learning algorithms are discussed in section 2.5. They are utilised for training a model, and the trained 

model monitors the traffic in the network. Based on the decision boundaries created during the model's 

learning process, it classifies the traffic based on its feature values. 
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Chapter 3  
 
Related Work 
 
 

There has been a considerable amount of work for security in LPWAN IoT networks. In [82], 

Wooyoung Jung et al. have used a lightweight SSL for sensor networks with insufficient processing 

power at nodes. The techniques use Elliptic Curve Cryptography (ECC) for authentication and key 

exchange, RC4 is used for data encryption and MD5 for hashing. The authors claim their system is fit 

for healthcare and military applications. However, their scheme uses rigorous algorithms to perform the 

tasks with high processing requirements that can increase overhead on the nodes, resulting in a faster 

energy drain. Datagram Transport Layer Security (DTLS) with 6LowPAN compression for the 

constrained devices is taken into consideration in [83] to reduce the header size of DTLS to fit in 

802.15.4 maximum transmission unit(MTU). The compressed DTLS is linked with a 6LowPAN 

standard mechanism for security. This scheme gives the ability to implement a complicated security 

mechanism in constrained nodes, as by compressing, we can reduce the size of the header information. 

The data compression reduces the bandwidth consumption; however, the compression is still to be 

performed by the end nodes. In [84] Swapped Huffman tree coding is used to compress and 

encode(encrypt) the data with a secret key. This technique is very lightweight but may not be very 

resilient against sophisticated attacks on the data. The encoding patterns can be analysed, and codes for 

plain text can be deduced. In [85], a load relieving scheme for the nodes is proposed, where each node 

can share the processing burden for encryption with a set of assisting nodes. This scheme can enable 

the nodes to overcome the problem of limited resources by combining the resources of multiple nodes. 

However, this scheme can lead to complications in encryption, like maintaining the integrity of the data 

that is being shared among the nodes for encryption. This also will lead to an increase in the duty-cycles 

of the network nodes, which will lead to high power consumption. A similar approach [86] uses a proxy-

based encryption scheme, where the nodes distribute the processing overhead of encryption with the 

proxy nodes. The technique tries to embed trust-based proxy node selection. The nodes select trusted 

proxy nodes and distribute their encryption load between them to save energy. It is assumed that the 

proxy node and the end nodes have a secure connection, which is challenging to provide in constrained 

networks. However, finding trusted nodes to perform the encryption and maintaining the integrity and 

authenticity of the data is itself a very challenging task. 

Researchers have also modified the well-known encryption techniques for constrained nodes in IoT to 

minimise the processing overhead. In [87], the Blowfish encryption algorithm for data encryption is 

implemented for constrained devices. The Blowfish algorithm may provide strong data confidentiality 
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and has a faster calculation of the ciphertext; however, it requires good hardware capabilities and 

processing cost in the devices to perform the data encryption. There is also a higher memory 

requirement for its long key setup.  

Xuanxia Yao et al. proposed attribute-based encryption(ABE) based on Elliptic Curved Cryptography 

rather than bilinear Diffie-Hellman pairing  [88]. The proposed encryption is no-pairing ECC- based 

ABE, suitable for constrained devices and to secure the communication in the network. The authors 

claim that the proposed encryption has a lower overhead than key-policy ABE and ciphertext-policy 

ABE. [89] Proposed a cypher-policy ABE (Attribute-based Encryption) using some precomputation 

techniques. The basic idea is to precompute and store the data obtained from expensive operations to 

decrease the ECC computation. This scheme can save a significant amount of processing cost. However, 

the precomputation data can take large memory in the devices to store all the generated pairs. In [90], 

prevention against side-channel in existing LEA(Lightweight Encryption Algorithm) is proposed. LEA 

was standardised in South Korea in 2013 for IoT devices. LEA is a block encryption algorithm used to 

provide confidentiality in a constrained environment. It uses addition, rotation and XOR operations and 

it does not use S-Box lookup like AES. The bit pattern of the original data is changed to prevent the 

side channel attack in LEA, and the change information is kept in the extra 4 bytes to decipher the data. 

By doing that, the differential power analysis used for side channel attacks becomes useless. The 

downside of removing the S-Box is that it may lead to a decrease in the strength of the encryption and 

it may enable easier cryptanalysis of the ciphertext. 

Symmetric key encryption is comparatively lightweight when compared with public key encryption 

techniques. Researchers have also proposed to embed public key cryptography to constrained IoT 

networks. In [91], Fagen Li et al. has proposed a solution for the secure sensor-server communication 

from sensors in Identity Based Cypher-text (IBC) environments to a server using a Public Key 

Infrastructure(PKI). The proposal is a “heterogeneous ring syncryption” technique, which can achieve 

integrity, authenticity, non-repudiation and confidentiality for the data. The framework uses a third 

party as a private key generator (PKG); it first generates a master key and later uses the node ID and 

the master key to generate a private key for every node. The end node receives the private key and 

calculates a public key with that. [92] Proposed a multi-key exchange using elliptic curve cryptography 

operations and an encryption key to exchange session keys between the nodes. The proposed protocol 

is claimed to be capable enough to handle 40 sessions at a time. The author claims the protocol to be 

suitable for IoT operations. However, ECC requires rigorous calculations. The constrained nodes in IoT 

are not capable of doing heavy processing for data encryption.   

Node authenticity is an essential factor for data integrity in IoT networks. As the number of nodes in an 

IoT network can be very high, the authentication of those nodes can be challenging and crucial. If not 

authenticated, any unauthorised entity can join the network and send false data to servers. Annie Gilda 
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Roselin et al. [93] proposed an authentication technique for the end node’s verification using MAC 

messages. The proposed algorithm uses a symmetric key without a pre-shared key. They have used four 

flights (stages) for establishing the authentication and session keys, where each flight uses existing 

information (PAN ID, node ID) to derive the new key. The authors suggest that the authentication is 

practical and lightweight. However, it has a long registration process and four tiers of key calculations 

from the edge routers. 

 A secure joining procedure for LoRa nodes is suggested in [94]. The author proposed a dual key based 

joining procedure for the new joining nodes in the network. They also mention that they can update the 

shared key in the initial deployment to enhance the security.  The proposed algorithm will take more 

energy because two keys are preloaded, and both the session keys are calculated separately from 

different keys. It can be considered a reasonable trade-off for better security. However, this scheme is 

limited to only LoRa nodes. 

In [95], a user and node authentication mechanism is proposed. The proposed scheme works in four 

phases; 1) Sensor registration: the sensors are deployed with predefined keys where a trusted authority 

generates keys. 2) User Registration: This phase is for the users to access the sensor data. The Gateway 

Node registers the user with the help of a username, password and a random nonce. A biometric ID is 

generated and stored in a smart card for future authentication. 3) Login and authentication: a smart card 

with a biometric Id is used for logging in by the user for sensor data access. 4) Password Change: The 

users can change the password without communicating with the gateway node. However, the scheme 

brings additional hardware requirements (smart cards). End nodes are not given much consideration 

and are use pre-stored keys for communication. In addition, most of the computation is performed by 

the gateway node creating a single point dependency.  

A lightweight cloud-based concealable biometric authentication mechanism for IoT client node id is 

proposed [96]. The mechanism uses the biometric prints of the user to generate the authentication 

information. The mechanism has two phases: Enrolment and Authentication. In the enrolment phase, a 

user is registered with their biometric print, the print is then further pre-processed, and features are 

extracted out of it to be used as authentication data. In the authentication phase, the reverse process is 

done, and authentication data is matched with the enrollment phase's data.  

To verify the authenticity of the data being received from nodes in an IoT network, a lightweight 

attestation mechanism “AAoT” is proposed in [97]. It uses a challenge-and-result pair to authenticate 

nodes and data. In the setup phase, the central entity gives a challenge to the node, and the node performs 

some calculations and returns the results to the authenticator. The challenge and result pair is stored in 

the server. To verify the authenticity of the node, a particular challenge is given to the node, and the 

result is compared to the data stored in the server. The scheme does not need to save any secret key 

information in the node. Instead, a function is used to generate results out of challenges provided by the 
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authenticator. Authentication preambles for LoRaWAN against DDoS attacks in class B LoRaWan are 

proposed in [98]. It is a mechanism against exhaustion attacks in which the attacker sends very long 

messages to the node in its receive cycle to exhaust the battery. The mechanism uses preamble 

authentication to reject unauthenticated packets without waiting for them to be received (just based on 

the preamble). 

In [99], the authors proposed a D2D communication mechanism for LoRaWAN. The LoRaWAN 

standard does not support D2D communications as the devices directly transmit data to the gateway 

node. However, the authors claim that it can be power efficient to use D2D communications and have 

proposed a key establishment mechanism with help from the network server in a LoRa network. The 

Two devices have to initially communicate with a network server to obtain key information for the 

nodes to communicate. D2D communications can be very useful in power constrained networks as the 

nodes do not have to transmit data for long distances, and they can use less energy for data transmission. 

Secure communication between devices can enable power efficient transmission in LoRaWAN 

networks. 

In [100], an authentication mechanism for sensor nodes is proposed where nodes can authenticate the 

gateway and any other sensor nodes in the network. The proposed algorithm focuses on resource 

constrained nodes and proposes an authentication mechanism for M2M communications. In the initial 

setup (Registration), the Mobile Service Provider (MSP) installs secret keys in gateways and every 

sensor node. During the first phase, the gateway is authenticated by the mobile user with the help of 

secret keys. In the later phases, the sensors authenticate the gateway with the help of a shared secret key 

and a random nonce. 

Most of the research conducted depends on pre-shared keys for authentication and confidentiality of 

data in the network. However, using a single key for the lifetime of the communication can be 

vulnerable to attacks on the network. A node authentication and session key mechanism using hash 

chains are proposed in [101]. The nodes are divided into virtual subdomains based on their capabilities 

and the scope of inter-domain communications to manage the communication flow among the nodes. 

For authentication and key exchange mechanisms, the whole process is divided into three phases. The 

first phase is for initialisation, where the system administrator selects a random master key for the 

network controller. The controller calculates three authentication parameters using a hash chain 

securely stored in nodes in the second phase and is used for authentication and session key exchange in 

the third phase. The scheme provides a mechanism for replay attack prevention along with 

authentication and key exchange. However, the node will have to perform quite a few computations for 

authentication and implement the key exchange mechanism. 

A CoAP [102] based lightweight mutual authentication mechanism is proposed in [103]. CoAP is one 

of the most famous application layer protocols used in IoT. The proposed scheme adds a security 
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mechanism to CoAP itself instead of adding an additional protocol for security. The nodes are pre-

stored with secret keys. The server sends an encrypted challenge to the node, decrypted by the pre-

stored secured key only, and nodes do the same to authenticate the server. An advantage of the scheme 

is that it incorporates the security mechanism in CoAP without adding any additional protocol overhead. 

However, the mechanism totally depends on the pre-stored keys, and encrypted text must be sent every 

time the session changes, which adds processing overhead to the nodes. 

Pre-stored keys are usually used for security mechanisms. However, they require memory/storage and 

can be leaked on a physical attack on a node in the network, jeopardising the security of the whole 

network. In several pieces of research, the physical attributes of nodes are used to generate key 

information. In [104], an authentication and key generation mechanism using physical layer parameters 

is proposed. The scheme utilises physical layer parameters to generate keys. The received signal 

strength over multiple frequencies is measured first. The standard deviation difference from the mean 

of the signal strength is used to produce a quantization parameter to filter the qualified keys. Both parties 

use a hash of the key to check if they have obtained the same keys. In case of failure, the process is 

repeated.  

M.N. Aman et al. [105] proposed an authentication mechanism based on a Physical Unclonable 

Function that works with a challenge-response mechanism. It eliminates the requirement to store keys 

in the node. The authors present a mutual authentication and session key mechanism for servers and 

IoT nodes. The server uses a challenge and response pair for every node and sends a challenge to IoT 

nodes for authentication. The challenge and response generation depend on FUP functions that, in turn, 

rely on the physical properties of the nodes. If one node wants to authenticate another node in the 

network, it must go through the central server for authentication. 

Authentication and secure data transmission in healthcare applications for 6LoWPAN devices is the 

topic in [106]. Every sensor node has two pre-stored arrays of random numbers that are used to 

authenticate the nodes. Nodes select five random numbers from the first array and perform 

multiplication, and the result of the multiplication is arranged according to the order given in the second 

array. The result is sent to the server, and the server does the same operation at its end to check the 

node’s authenticity. All the communications are encrypted by a pre-stored secret key shared by all the 

devices in the network. 

A secure data sharing mechanism implemented by breaking and storing information over a group of 

nodes is shown in [107]. The proposed mechanism works on splitting and sharing information amongst 

a group of nodes rather than entrusting all the information to a single node. The mechanism works in 

four stages: in stage 1, a dealer distributes secret information amongst a set of nodes, a key encrypts the 

information based on a client’s Physical Unclonable Function. In stage 2, the client retrieves the 

information by selecting a set of shareholders and authenticates the retrieved information. In case of 
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error, it moves on to stage 3, which is for error correction. In stage 4, the client does group testing if the 

data retrieved is correct and is from authenticated sources. However, a distributed approach like this 

can have a high possibility of errors because of node schedules and network scaling. This scheme is 

also not for sensor-based applications where the data is being generated by a device independently. 

3.1. Key Agreement Mechanisms for IoT 

Storing Keys in the devices and using the same key for the whole node lifetime can cause security 

vulnerabilities. Zero knowledge key agreement mechanisms enable two entities to calculate a shared 

secret key using some public information of the second party. The Diffie-Hellman [108] algorithm is 

one of the most famous key agreement schemes; as it is vulnerable to Man In The Middle attack, it must 

be used with other mechanisms to authenticate the public keys of the two parties [109]. Public key 

mechanisms require complex mathematical calculations, which is very challenging for IoT nodes with 

limited resources.  

There are several lightweight key agreement algorithms suitable for resource-constrained IoT nodes. 

Blom’s key agreement [110] uses simple mathematical calculations to generate a secret key for two 

entities using their public information. Blom’s scheme had a limitation with the number of nodes 

because the data that needs to be stored in the nodes increases as the network scales. Despite the 

limitations, Blom’s scheme is further developed into the Blundo scheme [111]. Blundo’s scheme uses 

bi-variate polynomials for secret key calculations for two parties; IDs of the participating entities are 

used to calculate the secret key.  

Several variants of Blom’s schemes were proposed by using it in several manners [112-118]; in [109], 

the author proposed an extension to Blom’s mechanism, i.e. the “Blom Yang key Agreement (BYKA)” 

algorithm uses multiple public and private keys. It uses its permutations to calculate common secret 

keys between the nodes. The algorithm can provide authentication and immunity from a man in middle 

attacks with very low overhead on end nodes. 

Mutual key agreement mechanisms while preserving user anonymity are proposed in [119, 120]. The 

mechanisms initiate user registration. Users set an ID and password to a third party or centralised server. 

The server uses a hash mechanism to calculate a smart card number for user authentication 

A mutual device to device authentication mechanism with forwarding secrecy is proposed for ZigBee 

devices [121]. The protocol uses symmetric key encryptions and enables devices to have a key 

agreement for a session key. The session key is changed frequently to provide forward secrecy. Pre-

deployment, every node has a unique ID and a key generated by using devices’ inner circuit chips. This 

key is considered the secret key for the device. All the devices register themselves to a controller. Access 

control for all the devices is also configured during device registration. For the device to device 
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communications, the nodes use a controller as a middleman to authenticate each other and then come 

to a session key agreement. 

Lightweight mutual authentication and key exchange mechanisms for Wireless Body Area Network 

(BAN) are proposed in [122, 123].  In [122], the proposed mechanism works in three phases: 

initialisation, registration and authentication phase. The system has sensors and hub nodes. The sensors 

transmit information to the Hub Node (HN). In the initialisation phase, the administrator chooses a 

master key for HN and stores it in HN’s memory. In the second phase, the administrator registers the 

sensor nodes by choosing secret identities and keys. Two authentication parameters are calculated using 

the secret identities, and keys are stored on both HN and the sensors’ memory. The advantage is that 

the secret key is not stored in the nodes. The results show that the proposed scheme calculates 0.3ms 

and energy consumption f 0.035mJ on a 32-bit Cortex-M3 microcontroller. 

In [124], a lightweight key establishment mechanism for wearable devices in IoT is proposed. It works 

on the principle of one-way cryptographic hash functions and XOR operations. The mechanism works 

in four phases: system setup, registration, authentication and key exchange, and password change 

phases. The authors have argued that the scheme protects against attacks like impersonation attack, 

insider attack, eavesdropping and password guessing attacks. The proposed algorithm also provides 

forward secrecy and node anonymity.  

In Ruotsalainen, H. [125], a key generation and refreshment mechanism for LoRaWAN communication 

devices are proposed. The mechanism works in seven stages to generate AES128 keys for devices. (1) 

Channel probing: The devices communicate with the gateway and stores received signal strength 

(RSSI), signal to noise ratio (SNR), and packet counter value at both parties. (2) Measurement 

preselection: Gateway analyses the RSSI and SNR, and the gateway select only the values that match 

with antenna configuration. (3) Measurement match: The end device performs a measurement 

calculation based on uplink message information received from the gateway to achieving no packet 

drop. (4) Precorrection: The correction of synchronization measurements is performed in this stage 

using a cosine transformation process. (5) Quantization: The received measurements are converted into 

key bits. (6) Reconciliation: The errors in calculated bits are corrected in this stage. (7) Privacy 

affiliation: To remove the possibility of key information leak, SHA256 is used for final key generation. 

The authors state that security keys can be regenerated every three hours by using this scheme. 

However, no analysis of the energy consumption is performed. As the process requires end nodes to 

perform several calculations, it most probably will have an adverse effect on the node lifetime. 

 Han, B. [126] follow a similar approach to generate keys for LPWAN devices with a four-step 

procedure: (1) channel probing; (2) reconciliation; (3) quantization; and (4) privacy affiliation. The 

authors have used signal strength sequences to quantize into a secret key. A two-step quantization 

mechanism is used. In the first step, the RSSI sequence is converted into binary bits. In the second step, 
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a level crossing algorithm generates an initial sequence of the secret key. As the key agreement requires 

the end nodes to probe and collect channel information to generate the keys, there can be probable 

negative impacts on node lifetime. The authors have not done any analysis of the energy consumption 

of the scheme. 

A key management and update mechanism is proposed in Xing, J. [127] for LoRa devices. Elliptic-

curve Deffie–Helman (ECC-DH) is used for key agreements, and a hierarchical deterministic (HD) 

wallet is used for key management in the system. The server and the devices generate a public and 

private key pair in their HD wallet using the BIP32 algorithm [128]. After the key pair generation, the 

end devices register themselves to the server by sending their public keys. The server generates a root 

key pair based on the information received from the device and stores it for communication. The 

mechanism uses ECC-DH for a key agreement after receiving the public information from devices in 

the network. The proposed mechanism enables the devices to update the security keys for better 

security. The key generation mechanism adds communication and processing overhead by using eight-

step for key generation. However, the authors argue that it is a reasonable trade-off for the security of 

the network. LPWAN networks are vulnerable to attacks like identity theft or the impersonation of 

legitimate nodes. These attacks can cause substantial damage to the authenticity of nodes that are 

transmitting data to users. It becomes essential to have a robust attack detection mechanism.  

3.2. Machine Learning Based Node Identifications 

The node authentication and encryption techniques are essential for data confidentiality and 

authenticity. Also, IoT networks are vulnerable to attacks like identity theft or the impersonation of a 

legitimate node. These attacks can cause substantial damage to the authenticity of nodes that are 

transmitting data to users. There are many attempts in constrained network environments to minimise 

the effect of these attacks by identifying the devices for early detection of an attack and for taking the 

necessary actions.  

The authors in [129, 130] discuss the usability of node fingerprinting for security in a sensor network. 

The approach in [131] uses the time difference between the acknowledgement and authentication 

packets to create a node's fingerprint. In [132, 133], the neighbour information is used to create 

fingerprints and identify clones in the network. In [134], GTID (Georgia Tech ID cards inspire the 

name) is proposed for device type fingerprinting. It has four components: feature extraction, signature 

generation, similarity measure and enrolment. GTID primarily relies on the Inter-Arrival Time (IAT) 

of the packets from devices and generates their fingerprint based on the traffic rate distribution of 

devices. Once the signatures are generated, they are used to train artificial neural networks and patterns 

are registered to add the devices to the network. 
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A radio frequency feature based node fingerprinting is proposed using entropy in RF features in [135]. 

The authors have proposed to use Permutation Entropy and Dispersion Entropy on features sets to 

calculate a node’s fingerprint. In experimentation, nine devices were used, and 900 packet samples were 

processed. Various machine learning models like KNN, SVM and Decision Tree were trained on 

selected features from samples. The models were able to achieve accuracy up to 82%. 

 In [136] authors introduced the “PARADIS” technique, which uses the defects in hardware to identify 

the nodes. Differences in individual frames in the modulation domain are analysed, and machine 

learning classification tools are used to identify the end nodes. Deviation in the clock skews of 

transmitting devices to create fingerprints to identify the devices is used [137]. The authors in [138-

140] have used radio frequencies to create device fingerprints. In [141], the authors used the signal's 

preamble to generate node fingerprints to identify impersonators in the network. In [142], the feasibility 

of using signal power distribution in space to fingerprint nodes for identification is discussed. The 

authors argue that instead of using clock skew for identification, it is more feasible to use signal power 

distribution as it is harder to forge for an intruder. The authors in [143] described various statistical 

methods used on node and packet properties to identify 802.11 based nodes. In [144], the authors extend 

[143] and add an anti-forgery mechanism so that forging node fingerprint becomes more challenging. 

The authors argue that the mechanism works well without hindering the performance of 802.11. 

3.2.1. Classification 

The attack sophistication on networks is increasing; attackers use intelligent and layered techniques to 

launch attacks. These sophisticated attacks are difficult to detect with straightforward rule-based 

detection mechanisms. Hence, researchers have tried to use machine learning techniques to detect these 

sophisticated attacks. 

 In [145] the author has trained multiple machine learning and neural network models to compare their 

accuracy over each other. The models are trained over simulated data on various attacks like Blackhole, 

Greyhole, Flooding and scheduling. The neural network model trained in the experiment detected the 

attacks with 92.8%, 99.4%, 92.2% and 75.6% for Blackhole, Flooding, Scheduling and Greyhole 

attacks, respectively. However, the model was trained over simulated data, so accuracy variations are 

possible when implemented for real traffic.  

A real-time dataset was collected in [146]. The data set “BoT-IoT” was captured from a test-bed 

environment, and various attacks were launched. The dataset contains several sophisticated attacks, 

including DoS, DDoS, and theft, with all these attacks further divided into sub-categories. There were 

several models trained on the datasets to detect these sophisticated attacks in the datasets. Deep neural 

networks were also trained to classify these attacks. The neural networks were able to attain a promising 

accuracy of up to 99% on the dataset. However, the deeper the neural network, the more time and 
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resources required to train the models. These deep neural network models will require efficient 

machines to classify the attacks in the network.   

In [147], binary classification is done. The dataset contains attack and normal data samples. The trained 

classifier focuses on differentiating the traffic between attack and normal. The authors argue that their 

model can attain 99% accuracy in classification. However, the model is trained on DDoS attacks and 

can only detect single attacks. Binary classification can be simpler in comparison to multiclass 

classifications and consume fewer resources. However, immunity against multiple attacks is crucial in 

networks supporting multiple applications.  

Node Identification based on radio signal irregularities is proposed in [148]. The authors proposed an 

Identification mechanism for nodes based on their signal irregularities. The receiver fingerprints every 

node based on attributes like frequency offset, I-Q imbalance, DC offset channel information. On top 

of these attributes, a neural network is trained to identify the nodes in the network. No secret key is to 

be stored in the node for authentication. The gateway performs all the processing. Although no key is 

required for authentication, a secret key will be needed for secure data transmission. 

A deep learning architecture is used to detect anomalous structures in traffic datasets in the so-called 

social internet of things [149]. The NSL-KDD dataset is used to train, test and validate the deep learning 

model. The algorithm works in two steps. First, the data samples are classified into two categories of 

attack and normal traffic. In the second phase, multiclass classification is performed on categories of 

the attacks that include DoS, Probe, R2L and U2R attacks. Two types of models, deep and shallow 

models, are trained over the dataset. The results indicate that the deep models outperform shallow 

models with accuracy in both binary and multiclass classifications. However, a downside of the deep 

architecture is that it takes too long to train and run the models. Also, the experiment was conducted by 

deploying the model on a centralized configuration (i.e. on a single fog node) and a distributed 

configuration, i.e. using multiple fog nodes. The results show that the model implemented on a 

distributed system can detect sophisticated attacks better than those used in a centralized system.  

3.2.2. Anomaly Detection 

Anomaly based network IDS are quite capable of detecting outliers or anomalous traffic in the network. 

There have been several projects conducted by researchers using various methods. In [150], 

collaborative anomaly detection is proposed by the authors. The UNSW-NB15 [151] dataset is used to 

train and evaluate the accuracy of proposed models. The authors argue that the model can achieve a 

promising accuracy of up to 96.7%, and it is ready to be implemented on a cloud system handling large 

scale data. However, a system implemented on the cloud will detect higher layer attacks, but attacks on 

communication layers may go undetected. AN IoT environment is focused in [152], where a lightweight 

anomaly detection mechanism for constrained networks is proposed. The proposed anomaly detection 
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approach uses game theory to activate a detection mechanism. It is argued that the proposed mechanism 

is lightweight and energy conscious, and highly accurate. The authors argue that the nodes in sensor 

networks and IoT networks should check for anomalies continuously. The continuous anomaly check 

can increase the overhead and decrease the lifetime of the network.  [152] Proposes to use a Nash 

Equilibrium (NE) to calculate an equilibrium state when the nodes will train models and build signatures 

for anomaly detection to save resources in the nodes. The Anomaly Detection System for IoT (HADES-

IoT) is proposed in [153]. HADES focuses on low performance overhead, and it is suitable for IoT 

systems. It is a host-based detection system implemented on a Linux kernel as most of the IoT based 

devices are Linux based. The system creates a whitelist of devices that are allowed in the system after 

profiling them. The authors tested the system on seven IoT devices and argued that it is highly effective 

and suitable for energy constrained IoT nodes. Maede Zolanvari et al. performed a vulnerability analysis 

on IoT in [154] and discussed how vulnerabilities in IoT systems are different from vulnerabilities in 

traditional networks. The authors built a dataset that contains normal traffic, backdoor traffic, command 

injection and SQL injection traffic where 99.81% is normal traffic and 0.19% is attacks’ traffic. Multiple 

machine learning models like Random Forest, Decision Tree, KNN, ANN, SVM, Logistic Regression, 

and Naïve Bayes were trained on the datasets. In conclusion the authors emphasise on the abilities of 

machine learning algorithms in detecting anomalous traffic in the network. A use case of smart building 

is taken by  authors in [155] for detection of anomaly in application traffic. A context aware anomaly-

based detection mechanism is proposed that focuses on Building Automation Systems (BAS). The 

Building Automation Control networks (BACnet) protocol that is used for building automation control 

is analysed and the security threats are discussed in detail. The authors used a building at the University 

of Arizona as a suitable testbed for experimentation.  The proposed system was able to detect attacks in 

real-time and proved to be highly accurate. In another attempt of intrusion detection for WiFi networks, 

SVM is proposed as a potential classifier. MAC layer information is analysed from MAC headers and 

useful features are extracted to train the classifier.  

A two-tier classification mechanism for network intrusion is proposed in [156]. The NSL-KDD [157] 

dataset is used to train and test the classification model. The proposed model has two modules, i.e. a 

dimension reduction and a classification module. The dimension reduction module is used to filter out 

useful features, as using every feature in the dataset can cause an error in decision making. Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used in the first module to 

extract features out of the dataset. After choosing the required features with the first module, a 

classification is performed in the second module. Two well-known classifiers, K-Nearest Neighbours 

and Naive Bayes are used. The results show that the proposed algorithm efficiently detects attacks 

where user machines are compromised or attacks where a user tries to use root privileges to exploit the 

network. 
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Table 3.1 summarises the key contributions discussed in the literature for constrained networks along 

with their possible shortcomings for the researches using traditional approaches for security. Table 3.2 

and table 3.3 summarise the contributions and possible shortcomings of key agreement and machine 

learning based security approaches in constrained networks respectively. 

Table 3.1:  Summary of Key Contributions from Literature in Constrained Networks Using 
Traditional Approach 

Security 

Domain 

Paper Name Contributions Shortcomings 

Authentication A three-factor 

anonymous 

authentication 

scheme for wireless 

sensor networks in 

Internet of Things 

environments [95] 

Proposes Authentication 

mechanism for nodes and 

users with 4 phases. The 

proposed algorithm 

covers user authentication 

to ensure that no 

unauthenticated users can 

log in to the system to 

access the sensor data 

from the gateway. 

It brings additional 

hardware requirement 

(smart cards). End nodes 

are not given much 

consideration and are using 

the pre-stored key for 

communication. In 

addition, most of the 

computation is performed 

by the gateway node 

creating a single point 

dependency. 

Authentication A lightweight 

machine learning-

based 

authentication 

framework for 

smart IoT devices 

[96] 

The paper proposes a 

lightweight cloud-based 

concealable biometric 

authentication mechanism 

for IoT client nodes. The 

algorithm uses biometric 

print. However, feature 

extraction and random 

matrix generation 

authentication data can be 

updated even with the 

same biometric prints. 

Focus is given only to user 

authentication. Sensors in 

the networks are not 

targeted to make the whole 

system secure. 

Authentication AAoT: Lightweight 

attestation and 

authentication of 

low-resource things 

A lightweight mutual 

authentication and 

attestation procedure for 

“things” in the network to 

The number of challenge 

and result pair stored per 

node will be limited. How 
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Security 

Domain 

Paper Name Contributions Shortcomings 

in IoT and CPS 

[97] 

provide integrity and 

tamperproof features. The 

scheme does not need to 

save any key information 

in the node. Instead, a 

function is used to 

generate results out of 

challenges provided by 

the authenticator 

the scheme will scale is not 

discussed. 

Authentication Authenticated 

Preambles for 

Denial of Service 

Mitigation in 

LPWANs [98] 

Introduction of 

authentication preambles 

for LoRaWAN. Analysis 

of DDoS attack in class B 

LoRaWan. The solution is 

simple and effective for B 

Class devices. Authors 

argue that the scheme is 

power efficient 

The Methodology is 

focusing on Class B nodes 

in LoRaWAN networks.  

Authentication Secure mutual 

authentication and 

automated access 

control for IoT 

smart home using 

cumulative Keyed-

hash chain [101] 

 

Node Identification and 

session key exchange 

mechanism is proposed 

using hash chains. The 

scheme provides a 

mechanism for replay 

attack prevention along 

with authentication and 

key exchange. 

Node has to perform quite a 

few computations for 

authentication and key 

exchange mechanism. 

Authentication A payload-based 

mutual 

authentication 

scheme for Internet 

of Things [103] 

 

CoAP base lightweight 

mutual authentication 

without adding additional 

protocol layer, unlike 

DTLS. The advantage of 

the scheme is that it 

incorporates the security 

The mechanism depends on 

the pre-stored and 

encrypted text that has to be 

sent every time the session 

changes, adding processing 

overhead on the nodes. 
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Security 

Domain 

Paper Name Contributions Shortcomings 

mechanism in CoAP 

without adding any 

additional protocol 

overhead. 

Authentication A Novel Physical-

layer Security 

Scheme for Internet 

of Things [104] 

Authentication and key 

generation mechanism 

using physical layer 

parameters. The use of 

physical layer properties 

can avoid pre storing of 

keys in the nodes 

Nodes may require special 

hardware to generate 

multiple frequencies used 

to obtain the signal strength 

in the mechanism. 

Authentication Design of a Secure 

Password-Based 

Authentication 

Scheme for M2M 

Networks in IoT 

Enabled Cyber-

Physical Systems 

[100] 

 

 

An authentication 

mechanism for sensor 

nodes is proposed where 

nodes can authenticate the 

gateway and any other 

sensor nodes in the 

network. The mechanism 

is lightweight and suitable 

for constrained nodes, and 

secret keys are never 

transferred over the air. 

The hash mechanism is 

used to authenticate the 

data sent by each entity 

The mechanism depends on 

the pre-stored key. In the 

case of a sensor to sensor 

authentication, the nodes 

have to communicate to the 

gateway for getting 

authentication. 

Authentication Security of 

6LoWPAN IoT 

Networks in 

Hospitals for 

Medical Data 

Exchange [106] 

Authentication and secure 

data transmission in 

healthcare applications for 

6LoWPAN devices is 

proposed. The scheme is 

lightweight as there is no 

complex calculation in the 

mechanism. 

However, sharing same key 

with every device is not 

considered very safe in the 

network. The mechanism 

perform. The Encryption 

process mentioned is not an 

AES but simple mod 

operation. Which can be 

easy to break. 
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Security 

Domain 

Paper Name Contributions Shortcomings 

Authentication Mutual 

Authentication in 

IoT Systems Using 

Physical 

Unclonable 

Functions [105] 

Proposed an 

authentication mechanism 

based on a physical 

Uncolonable Function 

that works on a challenge-

response mechanism. It 

eliminates the 

requirement to store keys 

in the node. The 

mechanism does not store 

any keys in the memory, 

and any data generated for 

authentication is 

temporary and deleted 

once the authentication is 

successful. 

As mentioned by the 

authors themselves that the 

protocol has high latency 

for delay-sensitive 

applications. 

Confidentiality A secure and robust 

scheme for sharing 

confidential 

information in IoT 

systems [107] 

 

Secure data sharing 

mechanism proposed by 

breaking and storing 

information over a group 

of nodes. Distributing 

information can be 

beneficial in case of node 

compromise. 

There can be high chances 

of errors because of node 

schedules and also as the 

network scales. This 

scheme is also not for 

sensor based application 

where the data is being 

generated by a device 

independently. 

Confidentiality SSL-Based 

Lightweight 

Security of IP-

Based Wireless 

Sensor Networks 

[82] 

The authors proposed a 

lightweight SSL based 

transmission for sensor 

network using ECC for 

key exchange and 

authentication, RC4 for 

data encryption, and MD5 

for hashing mechanisms. 

The use of public-key 

cryptographic mechanisms 

such as ECC can have 

higher requirements of 

processing and energy. The 

paper does not discuss how 

using the three mechanisms 

for SSL in sensor networks 
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Security 

Domain 

Paper Name Contributions Shortcomings 

impacts the node lifetime in 

the network.  

Network 

Integrity 

6LoWPAN 

Compressed DTLS 

for CoAP [83] 

A security mechanism for 

6LoWPAN networks is 

proposed on top of the 

DTLS security 

mechanism. The header of 

DTLS is compressed to 

achieve the Minimal 

Transmission Unit (MTU) 

in 6LoWPAN networks. 

The compression 

mechanism of the DTLS 

header enables the 

network to use the 

sophisticated security 

features of DTLS in 

constrained IoT networks. 

The compression 

mechanism enables the 

constrained nodes to use 

DTLS. However, the nodes 

are required to compress 

the headers for every 

packet, causing an 

overhead on the nodes that 

can lead to a lower lifetime 

of the node. 

Confidentiality Swapped Huffman 

tree coding 

application for low-

power wide-area 

network (LPWAN) 

[84] 

The authors target the 

challenge of huge data 

transmission and security 

in IoT. Swapped Huffman 

Tree coding technique is 

used to perform 

compression and 

encoding of data for 

security and compression. 

The proposed mechanism 

performs Huffman tree 

encoding for every data 

packet. The research does 

not explain how it affects 

the node lifetime and its 

sophisticated defence 

cryptanalysis.  

Confidentiality C-CP-ABE: 

Cooperative 

Ciphertext Policy 

Attribute-Based 

Encryption for the 

Considering the resource 

constrained nature of the 

nodes in IoT networks, a 

cooperative encryption 

approach is proposed. The 

Data division and joining 

can be complicated 

scenario. There can be a 

possibility of data integrity 
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Security 

Domain 

Paper Name Contributions Shortcomings 

Internet of Things 

[85] 

nodes share the burden of 

data encryption to avoid 

overhead on a single 

node. 

breach while sharing and 

recollecting the data. 

Confidentiality Enhancing the 

security of the IoT 

LoraWAN 

architecture [86] 

The nodes share the 

encryption overhead by 

choosing trusted proxy 

nodes in the network. The 

data is distributed 

amongst the proxy nodes 

for encryption. 

The proposed mechanism 

presumes a secure 

connection between end 

nodes and the proxy nodes, 

which is challenging to 

achieve in constrained 

networks. 

Confidentiality An implementation 

of data encryption 

for Internet of 

Things using 

blowfish algorithm 

on FPGA [87] 

 A well-known encryption 

algorithm, “Blowfish”, is 

implemented on 

constrained FPGA 

devices. Blowfish is a 

faster and powerful 

encryption algorithm and 

is suitable for secure 

transmission in IoT 

networks. 

The Blowfish algorithms 

have requirements for 

compatible hardware to 

work. In addition, it has a 

higher memory requirement 

to store its long key setup 

in the node.  

Confidentiality Lightweight 

Attribute-Based 

Encryption for the 

Internet of Things 

[89] 

The proposed mechanism 

focuses on minimising the 

processing overhead of 

data encryption on the 

node. Pre-Computed 

encryption information is 

stored in the node to 

minimise the 

computations required for 

encryption.  

The proposed approach is 

effective in decreasing 

computations. However, 

introduces additional 

memory requirement at end 

nodes to store the pre-

computed encryption data. 
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Security 

Domain 

Paper Name Contributions Shortcomings 

Network 

Integrity 

An improved LEA 

block encryption 

algorithm to 

prevent side-

channel attack in 

the IoT system [90] 

The proposed mechanism 

uses an LEA encryption 

algorithm to protect IoT 

nodes from side-channel 

attack. It changes the bit 

pattern of the original data 

and stores the change 

information is kept in 

extra 4 bits added to the 

data. 

The LEA encryption 

removes the S-Box and 

uses XOR and rotation 

operations for encryption. 

That can lead to a decrease 

in encryption strength. 

Authentication TTP Based High-

Efficient Multi-Key 

Exchange Protocol 

[93] 

A multi-staged node 

authentication technique 

is used to authenticate the 

nodes using MAC layer 

information of the nodes. 

The proposed mechanism 

does not require any pre-

shared information 

between nodes and server 

for authentication. 

The process of registration 

is long and requires 

multiple exchanges 

between nodes and edge 

routers for authentication. 

Authentication A Dual Key-Based 

Activation Scheme 

for Secure 

LoRaWAN [94] 

The paper outlines the 

limitations of current 

LoRaWAN node 

activation mechanisms 

where a single key is used 

to generate session key 

with the network server. 

The application server is 

not involved in session 

keys. In the proposed 

scheme, two keys are 

used to generate session 

keys. Moreover, two 

separate session keys are 

The dual key procedure 

requires the nodes to store 

two keys instead of one. 

Furthermore, the scheme is 

limited to LoRaWAN 

platform. 
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Security 

Domain 

Paper Name Contributions Shortcomings 

generated at the network 

and application server.   

Authentication A Secure Device-

to-Device Link 

Establishment 

Scheme for 

LoRaWAN [99] 

A secure D2D 

communication scheme 

for LoRaWAN is 

proposed. D2D 

communication can be 

very useful in power 

constrained networks as 

the nodes do not have to 

transmit data for long-

distance and use less 

energy for data 

transmission. Secure 

communication between 

devices can enable power-

efficient transmission in 

LoRaWAN networks 

As both devices 

communicate with the 

network server to obtain 

key information. It can be 

challenging to synchronise 

node clocks, and it will 

become even challenging as 

the number of nodes 

increase. As nodes do not 

have any information about 

each other. 

 

 Table 3.2: Summary of Key Agreement Based Contributions from Literature in Constrained 
Networks 

Security 

Domain 

Paper Name Contributions Shortcomings 

Authentication Anonymous mutual 

IoT interdevice 

authentication and 

key agreement 

scheme based on 

the ZigBee 

technique [121] 

 

The protocol uses 

symmetric key 

encryptions and enables 

devices to a key 

agreement for a session 

key. The session key is 

changed frequently to 

provide forward secrecy. 

Using a controller as an 

intermediary can cause a 

delay in the authentication 

process. 
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Domain 

Paper Name Contributions Shortcomings 

The session keys can 

provide strong forward 

secrecy in the network 

Authentication  A lightweight 

anonymous user 

authentication and 

key establishment 

scheme for 

wearable devices 

[124] 

A four-step key 

establishment mechanism 

is proposed for wearable 

devices using XOR and 

hash operations.  

The proposed mechanisms 

have a long registration 

process and require 

multiple transmissions 

between node and gateway. 

Authentication Experimental 

Investigation on 

Wireless Key 

Generation for 

Low-Power Wide-

Area Networks 

[125] 

A key generation and 

refreshment mechanism 

for LoRaWAN is 

designed. The proposed 

mechanism works in 

seven stages. It uses the 

physical layer parameters 

like Signal to Noise Ratio 

(SNR) and RSSI to 

calculate the keys on 

LoRaWAN nodes. 

The proposed mechanism 

can achieve a secure key 

generation at long ranges. 

However, the seven-step 

procedure can create 

overhead on the nodes. The 

impact of key generation on 

node lifetime is not 

discussed in the research. 

Authentication An Improved 

Secure Key 

Management 

Scheme for LoRa 

System [127] 

The proposed mechanism 

follows an eight-step 

procedure of node 

registration and key 

generation using ECC 

with the Diffie-Hellman 

algorithm. It provides 

secure key generation 

using public information 

to achieve superior 

security for LoRa nodes. 

The eight-step procedure 

and ECC, a public key 

algorithm, can add 

additional overhead on the 

end nodes and shorten the 

node lifetime. 
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Table 3.3: Summary of Key Contributions from Literature in Constrained Networks Using Machine 
Learning Techniques 

Security 

Domain 

Paper Name Contributions Shortcomings 

Authentication RF-PUF: 

Enhancing IoT 

Security Through 

Authentication of 

Wireless Nodes 

Using In-Situ 

Machine Learning 

[148] 

Node Identification based 

on radio signal 

irregularities. All the 

burden of processing is 

shifted to the gateway, 

and no key is stored in 

node memory 

Although no key is required 

for authentication, the 

secret key will be needed to 

secure data transmission.  

Authentication Implications of 

radio fingerprinting 

on the security of 

sensor networks 

[129] 

The proposed mechanism 

uses radio parameters 

from captured packets to 

create a fingerprint of a 

node. The fingerprint can 

be used to identify every 

node uniquely and 

prevent the network from 

various attacks. 

The fingerprinting 

mechanism has a 

probability of incorrect 

identifications of the nodes 

in the network. The authors 

mention in the research that 

the mechanism needs 

improvement for higher 

accuracy.  

Network 

Integrity 

Real-time detection 

of clone attacks in 

wireless sensor 

networks [132] 

A clone attack detection 

mechanism is proposed 

for sensor networks. A 

social fingerprint of the 

network is created based 

on the neighbour 

information of the node. 

The social fingerprint is 

used to identify the real 

node from the clone 

nodes. 

The use of social 

fingerprinting can create 

challenges in a dynamic 

network where the topology 

changes. 

Authentication GTID: A technique 

for physical device 

and device type 

fingerprinting [134] 

A physical layer 

information based 

fingerprinting mechanism 

is proposed to identify 

The fingerprinting 

mechanism focuses on the 

devices already in the 

networks and detects the 
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Security 

Domain 

Paper Name Contributions Shortcomings 

unknown devices to the 

networks with the help of 

Artificial Neural 

Networks (ANN). The 

applicability of the 

fingerprinting 

mechanisms for the 

authentication of nodes in 

the networks is discussed. 

intruder based on its 

signature. However, as the 

network changes, new 

devices are introduced in 

the networks with no 

previous information. How 

will the proposed 

fingerprinting mechanism 

will cope with that change 

is not discussed in the 

research? 

Authentication Physical layer 

authentication of 

Internet of Things 

wireless devices 

through 

permutation and 

dispersion entropy 

[135] 

Radio frequency 

fingerprinting of devices 

is proposed. The 

permutation Entropy 

mechanism on top of the 

fingerprinting is discussed 

for node authentication in 

the network. 

The fingerprinting 

mechanism targets IoT 

networks that are highly 

diverse and constantly 

changing. The 

fingerprinting mechanism 

requires historical data 

sample from devices for 

Identification. The 

fingerprinting mechanism 

may face challenges in 

keeping up with the 

dynamic nature of the 

networks as new nodes join 

the network with no 

historical data samples.  

 

3.3. SDN and IoT Security 

As discussed in section 2.4, SDN provides multiple features that can be used to administer the network 

efficiently. Because of the versatility of SDN, multiple types of research are being conducted on SDN 

applicability in different areas of the network, and network security is no exception to this.  Table 3.5 

shows a few of the attempts to amalgamate SDN with IoT security. 
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Table 3.4: SDN based security in IoT networks 

Paper Name Brief review/ Contribution Shortcomings 

Black SDN for The 

Internet of Things [158] 

An SDN architecture for IoT is proposed 

to manage the traffic and network 

resources to provide better services in the 

network. The architecture shows a 

multilayer controller design to manage the 

heterogeneous networks in the IoT 

environment. The architecture comes up 

with the concept of resource matching that 

identifies the requirement of the 

application and confirms the capability of 

the network to fulfil the requirement. This 

architecture manages to get better 

throughput, end to end delay and jitter than 

existing load balancing and bin packing 

approaches. 

The resource matching 

technique will need to send 

requests to the controller for 

a new application, adding an 

extra delay in the process. 

A Hierarchical Security 

Framework for 

Defending Against 

Sophisticated Attacks 

on Wireless Sensor 

Networks in Smart 

Cities [159] 

A hierarchy-based framework is proposed 

for the higher security of wireless sensor 

networks. Detection of attacks is divided 

into two parts, sensor end and base station 

end. The sensor nodes perform low-level 

detection with basic rules that require less 

computation. The base station performs 

detection with sophisticated rules with 

higher computation requirements. Once 

the attack is detected, SDN and network 

virtualisation are used to mitigate the 

attacks on the network. 

The involvement of sensor 

nodes in detection will 

require the active 

participation of sensor 

nodes, where they will 

require gathering data and 

using decision-making 

algorithms to detect attacks 

on the network. Sensor 

nodes are energy 

constrained. The more end 

nodes participate in the 

detection mechanism, the 

more energy is consumed. 

Identity-Based 

Authentication Scheme 

An authentication mechanism proposed 

for a heterogeneous environment. The 

technique is divided into three phases: 1) 

Gateway public key certification; 2) 

The controller is powerful 

enough to perform the 

complicated operations of 

ECC. However, it is not very 
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Paper Name Brief review/ Contribution Shortcomings 

for the Internet of 

Things [160] 

Things Registration; 3) Authentication 

Phase. Gateway is certified by the 

controller in the first phase. In the second 

phase, end nodes register their identities to 

the controller using the controller’s public 

key with ECC. The third phase is for node 

authentication, where the node’s public 

key is used to send encrypted data to the 

end node. 

efficient to perform such 

rigorous calculations at the 

constrained node. 

Dynamic Attack 

Detection and 

Mitigation in IoT using 

SDN [161] 

The attack on end nodes is detected by 

continuously analysing network traffic. 

SDN controller continuously monitors 

traffic patterns from nodes and uses 

learning modules from stored attack 

models. An anomaly in traffic pattern is 

detected using a machine learning 

algorithm to identify an attack on the 

network.  

Using learning modules of 

past data can have 

limitations with accuracy; 

the controller will also have 

to gather a considerable 

amount of data to perform 

anomaly detection in 

network traffic and increase 

the attack detection time.  

Software Defined 

Intelligent Building 

[162] 

A lightweight security mechanism was 

proposed for intelligent buildings. Mutual 

authentication between the SDN controller 

and sensors is proposed. Controller and 

devices share a secret key before any 

communications. In the first phase, the 

device authenticates the controller where 

devices generate a Nonce and controller 

calculates HMAC on receiving the nonce 

and data including the secret key in MAC 

controller sends it to end node. The end 

node again calculates the HMAC on its 

end to compare and verify the authenticity 

of the controller. Nodes are verified by the 
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controller in the same manner, using 

Nonce and secret key. 

S2 Net: A Security 

Framework for 

Software Defined 

Intelligent Building 

Networks [163] 

An extension of [162], SDN based 

network model. SDN controller is 

introduced in the control layer to interact 

with smart devices and applications as an 

intermediary. Usually, the SDN controller 

interacts with a switch to control, but 

SNET (controller) directly interacts with 

the end devices. The proposed model tries 

to attain integrity, confidentiality, 

authenticity, and lightweight with session 

keys management. 

 

A Secure IoT 

Architecture for Smart 

Cities [67] 

The author proposes a secure architecture 

for IoT using, Black network, an SDN 

controller and a key management registry. 

The black network is used to add privacy, 

the key registry is used for key 

management, and SDN controllers are 

used for secure routing in the network. 

The proposed black network 

uses traditional security 

approaches for IoT nodes 

that are not very efficient for 

IoT networks. 

IOT SENTINEL: 

Automated Device-

Type Identification for 

Security Enforcement 

in IoT[164] 

IOT SENTINEL is proposed as a system 

that can identify the types of devices 

connected and enforce the rules to 

minimise the damage from node 

compromise. Device fingerprint is created 

by using previous network traffic. SDN 

controllers are used to identifying the 

fingerprints of the new devices and 

enforce security rules on them. 

Using only traffic data for 

device fingerprint can have 

errors in classification and 

identify the devices; 

multiple criteria should be 

used to identify devices 

instead. 
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Chapter 4  
 
Methodology 
 
 
This chapter discusses the process of designing the methodology for the research conducted in this 

thesis. The chapter begins with a general definition of research and attempts to understand the type of 

research appropriate for this thesis. Further, the chapter explores various research approaches to 

understand and follow a suitable research approach to follow to achieve the goals of this thesis. After 

exploring and understanding the research approaches, a justification for the research approach's choice 

is provided. After the finalisation of the approach, the methodology for the research is explained along 

with its justification. Subsequently, the research methods utilised to achieve the final goal of the thesis 

are explained and justified for their use. 

4.1. Different types of research 

Research, in general, can refer to a search for knowledge. It can also be defined as a scientific and 

organised search for meaningful information on a particular topic [165]. Research leads to the 

discovery of different forms of knowledge related to practices in various fields.  

In general, research relates to the discovery of knowledge. However, as we look closely at the 

research, it can be categorised into different types; in [166] categorisation of research is explained 

according to different perspectives: 

1. Application perspective of research: Considering the prospect of the application of the 

research, it can be categorised into two categories: pure research and applied research. Pure 

research focuses on formulating a theory to generalise and understand a phenomenon. Pure 

research mostly deals with theories and developing hypotheses. It may not have immediate 

practical applications in the near future. On the contrary, applied research concerns the 

practical challenges affecting individuals or masses. 

2. The objective perspective of research:  from the point of the objectives of the research, it can 

be categorised into four classes: descriptive, correlation, exploratory, and explanatory. 

Descriptive research attempts to describe or explain the properties of events being studied. It 

does not concern the questions of “how”,” when”, and “why”. It focuses on the question of 

“what”. Correlation research focuses on relationships of events in which one situation or 

event impacts another event and then another; it finds the dependence of phenomenon on 

other phenomena, and that’s why it is called correlation research. The next category is 

explanatory research that addresses the “why” or “how” of the phenomenon. How one event 
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relates to another occurrence? It explains the details of the dependencies of the events on one 

another. Finally, exploratory research focuses on understanding or exploring an area or 

subject.  

Considering both perspectives of the research, this thesis can be categorised as applied research 

because it attempts to address a practical task that is a current requirement of IoT communications 

technologies. The security of communication technology can have a huge impact on the 

applications that depend on these technologies and the users who benefit from those IoT 

applications. 

From the Objective prospect of research, this research has multiple objectives it attempts to achieve. 

The thesis proposes an initial security framework using SDN and explores the framework's impact 

on various IoT network performance metrics. 

4.2. Process of Research 

Every research, irrespective of its category, requires following a process to achieve its objectives. The 

research process provides a general guide that any research can follow to achieve its goals and answer 

the research questions. In [166], the research process is explained to have three phases covered by eight 

operational steps. The steps are not necessarily in a particular sequence and can be iterative, depending 

on the research requirements. The three phases of research are deciding, planning, and undertaking. The 

three phases focus on addressing different requirements of the research. The first phase is the initial 

phase of the research, where the researcher explores and attempts to understand what can be done. The 

first phase includes exploring the research areas and designing a hypothesis based on the literature 

review for the initial formulation of the research problem. The phase dives deeper into the literature and 

attempts to conceptualise the research design. A more extensive literature review is performed to design 

methods or frameworks for data collection and the research tools utilised for data collection. By the end 

of phase two, the research proposal is formulated, and research components are more concrete as to 

what needs to be done and how it can be done. The third and final phase is about conducting a study on 

the collected information. It focuses on results obtained from the data processing and verifying the 

hypotheses formulated for the research. The third phase utilises mathematical tools to interpret the 

information gathered from the collected data and to obtain insights from it. By the end of phase three, 

a research report is formulated containing details of the research. 

This thesis also follows a similar research process to organise the work, and it has a streamlined 

operational understanding. Figure 4.1 shows the research process followed by this research to organise 

and achieve the objective of the study. 
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Figure 4.1: Research Process 

As mentioned in the definition, research is an organised way of discovering knowledge. Depending on 

the subject area and type of research, there are a few approaches that can be utilised to realise the 

goals of the research. 

4.3. Research Approach 

The research process provides a general idea of the flow or steps that are carried out for the organised 

execution of the research. To provide a more specific idea about the research procedure, research 

approaches are utilised. A research approach is a plan that provides a funnelled vision for data 

collection, analysis, and result interpretations. The selection of the research approach relies on the 

research problem, researcher’s experience and the area of study. In general, research approaches are 

categorised as qualitative, quantitative, and mixed methods. This section attempts to explore all three 

approaches and determine the most appropriate approach for this research. 

1. Qualitative Research Approach: Qualitative research approach deals with the subjective 

evaluations of opinions, behaviours, and attitude [165]. It targets human behaviour and social 

problems [167]. The research is designed mostly to collect data through participants and the 

researchers attempt to find the meaning from the data based on their interpretations. The 

conclusion from the collected data can be subjective and dependent on the researchers 

understanding and experience in the study area.  

2. Quantitative Research Approach: Quantitative approach follows a more mathematical approach 

towards data collection and analysis. It focuses on realising the relationship between various 

variables [167]. The variables are extracted using various instruments and provides a numeric 

output. The numeric data can be then analysed using statistical methods. The researcher then 
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interprets the statistical information to provide an outcome and conclusion of the research. The 

quantitative approach can be divided into subcategories  [165] of inferential, experimental, and 

simulation. Inferential research is used when data is collected through surveys and depends on 

the population and their opinion. Experimental research collects data by conducting 

experiments in a controlled environment and by manipulating various variables to analyse their 

impact on each other. The third approach is the simulation approach which collects data in an 

even more controlled environment. An artificial environment generates data based on 

mathematical models for various variables to analyse the correlation between variables.  

3. Mixed Method Approach: The mixed method approach follows a hybrid research approach by 

mixing quantitative and qualitative data. It follows both philosophical assumptions and 

theoretical frameworks to conclude the outcome of the research based on the collected data. It 

relies on the fundamental assumption that the amalgamation of both quantitative and qualitative 

data results in better insight than provided by either a qualitative or a quantitative approach 

alone. 

4.4. Research Design 

In addition to selecting research approaches, the researchers also need to select one of the three research 

designs [168]. Research design provides the strategy to address the research questions. As the scope of 

research has grown, the number of research designs have also increased for the researchers. In this sub-

section three key research designs are discussed: 

1. Quantitative Research Design:  The quantitative research design follows the postpositivist 

worldview and mostly follows an experimental approach. Quantitative research designs can be 

categorised further into four major types: descriptive, correlational, quasi-experimental, and 

experimental [168]. The four design branches have different methods, and features they 

provides to conduct experiments.  The descriptive design focuses on describing and interpreting 

the information collected about a sample's natural phenomenon or properties in their natural 

environments. The findings of descriptive research are useful in explaining a natural 

phenomenon that is novel and little knowledge is available. However, it fails to provide the 

cause of the phenomenon that can be used to establish a hypothesis for further research. 

Correlational design analyses the relationships between variables in the collected data. The 

research findings are conveyed using statistical methods as positive, negative, or no correlation 

between the variables of the data.  

Experimental and quasi-experimental designs focus on the analysis of intervention by 

manipulating the independent variables of the experiments. The quasi-experimental design 

follows comparatively less rigorous experiments and fits in scenarios where it is not feasible to 
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conduct randomised controlled experiments. Hence, it fits well for healthcare research studies 

[168]. 

2. Qualitative Research Design: the qualitative research design follows a non-experimental 

approach and relies on data provided by the research participants. Qualitative research is also 

categorised as narrative, phenomenological, grounded theory, and case study-based research. 

Narrative research relates well with the study of humanities, where the researcher studies the 

lives of individuals. The researcher collects information about participants' daily lives and 

narrates their stories according to the researcher’s interpretation. Phenomenological research 

enquiry describes the experience and prospects of participants about a certain scenario. The 

research follows an interview approach where participants can describe the impact of a 

phenomenon on them. Then the researcher conveys a collective interpretation of the collected 

data from participants. On the other hand, grounded theory designs an abstract theory 

considering the view of the participant and then refines the theory by conducting data collection 

in multiple stages.  Finally, case studies are one of the most common designs followed by many 

types of research where the researchers derive in-depth knowledge about a case. The cases are 

usually events, processes, or activities. The researchers collect data about the case by using 

various data collection techniques and in-depth knowledge about the case from various 

prospects. 

3. Mixed Method Research Design: Mixed method involves the combination of both quantitative 

and qualitative research methods. The qualitative data collection is open, and quantitative 

research targets close-ended questions. The mixed method uses multiple methods to collect data 

from the participant with an amalgamation of both open and close-ended questions to the 

research participants. The mixed method focuses on combining both types of questions using 

various research designs. The first method is the convergent mixed method, where the 

researcher collects both types of data simultaneously and assimilates the information based on 

their interpretations to produce overall results. The second is the explanatory sequential mixed 

methods, where the qualitative data is collected first, and interpretations are made based on the 

data. Once the researchers have formulated results from the qualitative data, those results are 

used as a basis of collection for quantitative data collection to achieve further understanding. 

The reverse of the explanatory sequence is the third method, the exploratory sequence mixed 

methods, where the quantitative data is collected first. Results formulated from the first phase 

of data collection is then used to formulate open-ended questions for qualitative data collection 

in the research  [168]. 

4.5. Selecting a Research Approach 

 Section 4.3 explains the traditional approaches used for researches to study natural phenomenon around 

us. The traditional research approaches adopted by science aim to understand reality by developing 
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theories to explain certain phenomena. Natural science research consists of two major activities: 

discovery and justification [169]. The discovery is the phase when scientists are formulating theories 

and making claims. In the second phase the validation and justification about the claims are provided 

based on data collected using various methods adopted by research. 

Information Technology (IT) researches, on the other hand, are concerned more with manmade 

phenomenon. It focuses on systems created by humans, such as network or information systems [169]. 

This thesis also falls under the category of IT research as it aims to understand and enhance LPWAN 

based IoT network security mechanisms. To achieve the research objectives, it is crucial to adopt a 

research approach that aligns with the research requirements and provides effective methods for the 

research. The traditional approaches used in the social sciences and natural sciences try to formulate a 

theory and understand the problems. However, the information sciences are better suited to a research 

methodology that tries to create a product as a solution to an existing problem; Design Science Research 

(DSR) introduces the concept of building a model or a product in the research as a solution [170-174]. 

The concept of developing a model or a framework aligns with the requirements of this thesis, where a 

security framework is designed to equip LPWAN IoT networks with authentication and attack detection 

mechanisms. Hence, DSR appears as an ideal approach to be adopted for this research. 

4.6. Design Science Research Methodology 

Jay F. Nunamaker et al. [170] proposed a multi-methodological approach that describes how the final 

product is developed using multiple activities like theory building, observation and experimentation, 

and how they are interdependent. Figure 4.2 shows different activities included in DSR. Each activity 

includes multiple tasks towards completing the final output of the research proposed in [170]. 
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Figure 4.2: A Multi-methodological Approach for Information Science Research [162] 

Figure 4.2 formulates an iterative approach that carries out several activities based on feedback from 

each step in the direction of system development that can be used as evidence or proof in achieving the 

research objective. 

Theory Building:  Theory building’s objective is to create a knowledge base that can be utilised in 

formulating theories, framework conceptualisation, mathematical or simulation models. The theory 

building requires rigorous literature survey and analysis. The knowledge collected during the literature 

review serves as the foundation of the theory or it can be used for framework building. The theories, 

frameworks, or models built during this phase can act as an initial guiding principle of the research. 

During the theory building phase of this research, a detailed study of standard communication 

technologies utilised in IoT applications is performed. The features and security mechanisms of 

communication mechanisms are analysed as discussed in chapter 2 of this thesis. Further, the literature 

analysis related to security mechanisms of constrained network environments such as LPWAN and 

Wireless Sensor Networks is carried out and discussed in chapter 3 of this thesis. The literature analysis 

in chapters 2 and 3 act as the knowledge base for this research and it is utilised for the problem 

formulation and research question design parts of this thesis. The literature review also explores the 

SDN framework and its applicability in IoT security which further provides insights towards developing 

an SDN-based security framework. 

Similarly, the literature studies how machine learning mechanisms can be utilised for attack detection 

and how they can be embedded within the SDN framework for early attack detection. Finally, 

considering the insights from the literature, an initial framework for node authentication and attack 
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detection for LPWAN-based IoT networks using SDN is designed to address the research objectives 

and answering the research questions. Further, the proposed framework can be refined based on 

feedback from other phases of the research. 

Experimentations: Experimentation consists of the research strategies used to prove the theories built 

in the previous phase. It consists of activities such as lab experiments and simulations. It acts as the data 

generator that is utilised in the observation phase. Hence, we can say it acts as a bridge between the 

research's observation and theory building phase. The experiment designs are guided by the theories 

designed and to enable the system development.  

This thesis utilises multiple experimentations targeting different components of the proposed 

framework. Simulation, emulation and machine learning frameworks are utilised to validate the 

components of the framework. The detailed experiment design and experimentation tools are discussed 

in details later in the chapter. Based on the results received in the experimentation phase and 

interpretations from the results, the theories and model are refined for the efficient functioning of the 

framework. 

Observations: In the observation phase, the researcher attempts to collect information when there is 

little knowledge about the subject. For observation, case studies, field studies, or sample survey can be 

conducted to get a general idea of the components involved in the research. It can help formulate an 

initial hypothesis that can be tested in an experiment or act as a base to formulate a theory for 

investigation. This research carries out an initial literature survey towards the IoT networks and 

communication technologies to identify the glitches in the existing technologies. During the initial 

literature survey, IoT communication technologies are lacking in providing security mechanisms to the 

applications, which lead to further investigations in that direction for theory building and research 

question formulations. 

System Development: System Development sits at the centre of all the phases of the research, and 

every phase is carried out in the direction of system development. In general, it consists of five stages: 

concept design, architecture construction, prototyping, product development, and technology transfer. 

The concept design is to combine the theoretical and technical advancements into a possible practical 

application. Prototyping has used a proof of concept to validate the feasibility of the application. The 

research can be stopped if the application fails the feasibility test during prototyping. If the prototyping 

is successful, the product then goes to development, and finally, the technology transfer represents the 

final success for the research. The system development serves at the centre of the research that interacts 

with other research techniques to create a robust research platform. 

A finalised security framework for authentication and attack detection on LPWAN IoT networks is 

produced in this thesis. The framework is conceptualised as the literature reveals the requirement of a 

lightweight authentication and session key mechanism for IoT networks. BYKA key agreement 
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provided a possible solution that can be extended to be used as a session key mechanism for LPWAN 

IoT networks. Based on the requirements and technical understanding, the framework was 

conceptualised and architected. To validate the feasibility and the correctness of the framework, it is 

divided into two modules. Both modules are validated separately because of their disjoint nature. The 

framework is refined based on the results from experimentation and finalised once performance of both 

the modules is optimised. The modules are programmed on simulators and emulators as prototypes and 

for performance validation. The final framework is presented as output with all the artefacts once each 

component and module is optimised by iterating over framework refinement and result in analysis from 

experiments conducted on simulation tools.  

This thesis exercises adaptation of the multi-methodological model proposed in [170] with 

modifications in research activities aligning with the research aim, as shown in Figure 4.3.  

 

 

Figure 4.3: Adaptation of Multi-methodological Approach for this Research 

Salvatore T. March and Gerald F. Smith [169] say that the framework for IT research lies in the 

interconnection of design and natural sciences. Their research includes both utility and theory to get the 

final research output. They proposed a framework with two dimensions one is a research activity, and 

the other is the research output. The framework tries to relate the design science research activities and 

the research output. 
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In [169], DRS outputs or artefacts are discussed to be of four types: construct, models, methods, and 

implementation, and for each output, there are four natural science research activities: build, evaluate, 

theorise, and justify. Every output requires at least one of these activities to be performed to achieve the 

outputs. 

Figure 4.4 shows the relation between the activity that will be performed and the research output for 

this research using the framework of March & Smith [169]. The research outputs are divided into four 

categories construct model, method and instantiation. A different set of research activities are to be 

performed for different research outputs. 

 

Figure 4.4: Relation between Research activity and research output 

Figure 4.5 shows the flow of DSR activities that are to be performed to finalise the output of the current 

research. The initial phase targets the extensive literature review for finding research gaps in current 

technologies being used for LPWAN security, and a problem statement is defined. Research question 

formulation is followed by problem identification, questions that are going to be answered by research 

are formulated based on problem statements. The framework proposed aims to provide answers to the 

design research questions, and further experimentation will be conducted, and the results will be 

analysed. 
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Figure 4.5: Research methodology 
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Chapter 5  
 
Security Framework Design 
 
 
5.1. Proposed Framework  

The proposed framework incorporates the principles of DSR to address the research questions 

developed on the grounds of literature review. The following sub-sections describe the process of 

framework design, working and how it can contribute as an energy efficient, secure platform for 

LPWAN networks used in IoT. 

5.1.1. Artefact Design  

As discussed in [169], DSR produces research outputs as artefacts. Figure 4.5 shows the four general 

artefacts and their relationship with each other that helped in the evolution of this research. The research 

begins by constructing a knowledge base and designing research questions based on gaps identified in 

the literature review. 

The literature review identifies research gaps such as inefficient modules for node authentications and 

session key management in current security mechanisms used by IoT devices for data transfers. IoT 

devices are being used in many applications for automation and monitoring in multiple areas. Some IoT 

applications like health monitoring might carry sensitive data that should not be forged or leaked to an 

unauthorised user. The problems such as lack of node authentication and session key mechanism for 

end nodes, energy-aware security mechanism and protection against attacks like spoofing or node 

identity theft were identified in current security mechanisms. At the same time, the applicability of the 

SDN framework is analysed based on existing literature. The literature shows that SDN can be applied 

as a centralised entity in networks to carry out security related tasks. Considerations on how SDN can 

be utilised to perform security tasks in LPWAN networks are given, and research questions are 

formulated based on the consideration. 

The research questions developed a path for exploration that opened a variety of perspectives, research 

areas and responses to answer these questions. This research majorly focuses on two methodologies to 

answer these questions. First is the necessity of a lightweight session key mechanism where the 

computationally intensive operations can be shifted to resource efficient end of the network. And second 

is the requirement of a robust attack detection mechanism for early detection of impersonation attacks 

at the network layer. SDN showed promising potential in addressing both the challenges to provide 

security for LPWAN networks. Hence, the framework utilises the SDN controller as a central entity for 
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session key management and attack detection. The design and functioning of the proposed framework 

are discussed in the next subsection. 

5.1.2. Framework Design 

The proposed framework consists of six components as described below along with their functionalities: 

i. End Nodes: These are the end/ terminal nodes in the network deployed in the fields. These 

nodes act as the data generators in the network and their numbers can tens of thousands in the 

network. Most of the end nodes in the network are limited with resources (processing and 

energy). These nodes must be authenticated before their data is entertained in the network. 

ii. Gateways: Gateway nodes play a significant role in the network by acting as bridge between 

the end and external IP networks. Gateway nodes are also deployed in fields but are much less 

in number in comparison to end nodes. A single gateway node can manage hundreds of end 

nodes as the gateway nodes have better resources than the end nodes.    

iii. SDN Enabled Switches: The Gateway nodes relay the network data to SDN enabled switches. 

The SDN enabled switches are different from traditional switches. These devices are 

programmable and support SDN communication protocols such as OpenFlow. The switches 

receive forwarding rules from the server based on the programs determined by administrators. 

The flexibility of programmability in these switches enhances packet control in the networks 

and makes it possible to identify various packet signatures. 

iv. SDN Controller: SDN controller acts as the brain of the network as it is responsible for the 

behaviour of SDN enabled switches that forward the data in the network. The SDN controller 

performs major operations of key management and identity theft/ impersonation attack 

detection in the network in the proposed framework. The SDN controller is programmed with 

a key management mechanism and a multi-tier machine learning model for attack detection in 

the network. The SDN controller pushes the forwarding rules for packets in SDN enabled 

switches based on packet signatures, and the switch saves the rule for a period and forwards the 

packets accordingly. 

v. Key Base: In the proposed framework, key bases act as a database for the generated keys in the 

network. It is directly connected to the SDN controller and stores all the key tokens that are 

being generated during key agreement in the network for each node in the network  

vi. Application Server: Application servers are responsible for providing services to the end users. 

The end users connect to the application servers to fetch the information from the end nodes in 

the networks. The application servers are responsible for providing smart analytical results and 

user-friendly representations of the data which it receives from the end nodes in the network.  
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Figure 5.1 shows an outline of the proposed framework, including all the components as discussed 

above. The detailed working of the framework is explained in the next section: 

  

Application Server

Key Base

Gateways

SDN Enabled 
Switch

SDN Controller
End Nodes

 

Figure 5.1: Proposed Initial Framework 

5.2. Framework Functioning 

Information flow across various components of the proposed IoT based system is show in Figure 5.1. 

The system architecture is divided into four phases: i) Key Distribution for end nodes. ii) Node 

activation and session key agreement. iii) Energy-aware adaptive encryption mechanisms. iv) Real-time 

radiometric monitoring for identity theft attack detection. Figure 5.2 illustrates the interactions among 

these different phases achieving the research objective. 
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Key Distribution for End 
Nodes

Node Activation and Session 
Key Mechanisms

Energy Aware Adaptive 
Encryption

Radiometric monitoring for 
Identity theft using SDN

  

Figure 5.2: Phases in Proposed Framework 

5.2.1. Key Distribution for End Nodes  

Key distribution is the initial phase which is initiated before the deployment of the nodes in the fields. 

Each node is assigned two secret keys which is stored in the memory before deployment. The two pre-

stored keys are 1) Application Key: Application keys are assigned by the application server in the 

network and is unique for applications in the network. The application key is used only to sign the 

message before sending the packets to the network. The application key is used to generate a MIC code 

of the data which is sent along with each data packet. The same process of MIC code generation is 

followed at the receiving end and compared against the MIC sent with the packet to ensure there is no 

tampering in the data. As the application key is unique to the applications, a node can have multiple 

application keys if it runs multiple applications (Note: the number of applications on one node is very 

limited as its constrained node environment). 2) Private Key: The private keys are assigned by the SDN 

controller and are unique to every node in the network. The sole purpose of the private key is to generate 

the session keys for the node. They are never used for either encryption or message signing. The 

generated session keys are unique to every data transmission session by the node and are used to encrypt 

the data by using AES-128 before sending it to the network gateway. 
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As mentioned earlier, the key distribution for end nodes is carried out before deploying nodes. It follows 

the procedure similar  BYKA scheme [109]. In this research, the SDN controller is used as the trusted 

authority for a key generation securely transferred to respective nodes.  

BYKA scheme uses Blom’s key agreement mechanism [110] for primitive operations of key 

calculation. But, further enhance it by incorporating multiple public and master keys for private key 

generation. 

There are N master keys where each key is a random (m x m) matrix, n public keys, q is the prime 

modulus for the public key, p is the prime modulus for other key operations. The values of N, m, n, p 

and q are considerably small but capable enough to provide 128-bit equivalent security.  

Notations used in BYKA procedure: 

S: Seed value for the public key 

V: Public key, an (m X 1) column vector 

R: Set of integers for the generation of  pairwise key between two nodes 

M: Master key, a secret symmetric (m X m) matrix stored in SDN controller 

p: Prime modulus for key operation 

n: Number of public keys assigned to each node 

N: Number of master keys 

The public keys of a node are Vandermonde matrices and which are calculated as follows: 

𝑉𝑉𝑖𝑖𝑇𝑇 = [1, 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖2, 𝑠𝑠𝑖𝑖3 … 𝑠𝑠𝑖𝑖𝑚𝑚−1](𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  (1) 

si = Node ID + i-1, for i=1,2,…,n 

The private key set S = {K11…, KnN} for every node is a permutation of N master keys and n public 

keys. In the proposed scheme, we assume that the SDN controller has a database of node IDs. The SDN 

controller calculates private keys for all the node IDs and securely transfers them to every node before 

its deployment, and is calculated as follows: 

𝐾𝐾𝑖𝑖𝑖𝑖 =  𝑉𝑉𝑖𝑖𝑇𝑇𝑀𝑀𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  (2) 

For i=1, …, n and j=1,…,N 
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5.2.2. Node Activation and Session key Mechanism 

The proposed approach is inspired by the BYKA scheme for node authentication and activation [109]. 

However, it takes a different approach in session key generation by exploiting the capabilities of the 

SDN controller.  

The existing BYKA scheme mainly focuses on secure key agreement between sensor nodes without the 

involvement of any third party. The end nodes utilises the pre-loaded information to generate the 

encryption key. The BYKA scheme targets the sensor networks with no standard topology and no 

centralised entity. The nodes cannot independently generate new keys as the stored information in all 

the nodes in the network are static. Because of which same node-pairs will generate the same key for 

every communication session. To implement a session key mechanism, they will require to exchange 

the session keys after encrypting it with the generated pairwise key using BYKA. The encryption and 

decryption of the session keys during the data exchange increases the number of transmissions and the 

number of operation for a session key exchange.  

The main intent of the proposed approach is to utilise the star topology of the LPWAN networks as 

every node transmits data to the base station directly without using any multi-hop routing. This property 

of LPWAN has been exploited to randomise the generated session key. Virtual base stations are created 

with different IDs at the SDN controller. These virtual IDs and end node IDs are used as a pair for a 

key agreement. As node pairs will be different for every session, the generated key during the key 

agreement will also be different every time, which will create a session key mechanism without having 

to transfer any additional secret information over the air. Creating a virtual base station require resources 

like memory and processing power, so the number of virtual base stations depends on the platform 

where the SDN controller is deployed. Also, let us consider a scenario where a malicious entity is 

creating virtual base stations without the master key (only know to the SDN controller). They will not 

be able to decrypt the data. 

Figure 5.3 shows the key agreement process in the BYKA scheme. The session key for each session is 

calculated using the BYKA scheme as follows: 

The pairwise key set is calculated using permutations with a private key set of the node using the 

following process: 
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Figure 5.3: The BYKA Process [106] 

For i, k=1,..., n, and j=1,...., N. 

Node A: 

𝑠𝑠𝐵𝐵𝑘𝑘 = 𝐼𝐼𝐼𝐼𝐵𝐵 + 𝑘𝑘 − 1  

𝑉𝑉𝐵𝐵𝑘𝑘
𝑇𝑇 = [1, 𝑠𝑠𝐵𝐵𝑘𝑘 , … 𝑠𝑠𝐵𝐵𝑘𝑘

𝑚𝑚−1] 

𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 = �𝐾𝐾𝐴𝐴𝑖𝑖𝑖𝑖𝑉𝑉𝐵𝐵𝑘𝑘� = � �𝑉𝑉𝐴𝐴𝑖𝑖
𝑇𝑇𝑀𝑀𝑗𝑗�𝑉𝑉𝐵𝐵𝑘𝑘  �(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) (3) 

Node B: 

𝑠𝑠𝐴𝐴𝑘𝑘 = 𝐼𝐼𝐼𝐼𝐴𝐴 + 𝑘𝑘 − 1  

𝑉𝑉𝐴𝐴𝑘𝑘
𝑇𝑇 = [1, 𝑠𝑠𝐴𝐴𝑘𝑘 , … 𝑠𝑠𝐴𝐴𝑘𝑘

𝑚𝑚−1] 

𝑅𝑅𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 = �𝐾𝐾𝐵𝐵𝑖𝑖𝑖𝑖𝑉𝑉𝐴𝐴𝑘𝑘� = � �𝑉𝑉𝐵𝐵𝑖𝑖
𝑇𝑇𝑀𝑀𝑗𝑗�𝑉𝑉𝐴𝐴𝑘𝑘  �(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) (4) 

After calculation of all the elements of R (elements in R for both nodes are the same, but not in the 

same order), the pairwise key can be calculated by: 

1. Multiplying them together. 

2. Sorting the set elements. 

3. Counting of occurrence of an integer. 

5.2.3. The Session Key Extension to BYKA 

The proposed strategy for LPWAN is an extension to the existing BYKA scheme that highly exploits 

the star structure of these networks where computationally efficient devices are on the internet-facing 

end of the network. The processing is offloaded from end nodes to these efficient devices to minimise 



96 
 

the processing at the end node. The extended BYKA scheme will be using a central key management 

server for all session key management operations our proposal. The server will generate all the private 

keys and store all the master keys using all the operations discussed in the BYKA scheme.  

5.2.3.1. Public Key Data Management for Session Keys 

BYKA uses node ID’s to generate public keys for the nodes, and these public keys in combination 

with the private keys are used to generate secret keys. In the proposed extension, a mechanism to 

randomise the public key data is implemented. The server employs two data structures to maintain the 

randomness of the public key data. 

The server maintains a set E = {ID1, ID2, ID3, …} consisting of all the nodes in the network. A 

different set U contains unused node ID’s U ꓵ E = Ø.  

Step 1: The server chooses a random ID from U. 

Step 2: The chosen random ID is broadcasted in the network for pairwise key generation using BYKA. 

Step 3: The ID used earlier is removed from U and is stored in a different set of used IDs’. 

A new random ID is chosen from U to broadcast for a new pairwise key generation for every session. 

The randomisation of ID at one end causes the change in node pair for every session. Hence, for every 

session, the pairwise key will be different. If a new node joins the network such that U ꓵ E ≠ Ø, that 

particular node ID is removed from U while maintaining the condition of U ꓵ E = Ø. This condition of 

mutual exclusion enables the system to ensure that there is a new node pair during in session key 

calculation for every session, resulting in a new key every session. 

As the transmission of data from the server to the node is wireless, there are probabilities of other attacks 

like a replay of the captured packet and a data modification attack. To avoid attacks, some additional 

measures are added to the key exchange mechanisms. Figure 5.4 shows the sequence of operations 

performed for session key generation. 

5.2.3.2. Infrastructure setup 

The Server (SDN Controller): 

The server stores the master key M; 

E = {ID1, ID2, ID3, …, IDn}, E is the set of ID’s of the nodes in the network 

U is a set of random IDs such that U ꓵ E = Ø. 

The Node: 

Nodes are preloaded with and APP_Key and private keys.  
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The App_key is shared between server and nodes and is unique to all the applications in the networks, 

and the private key is calculated using the Master Key by the server. 

Step 1: the server initiates the communication with a message a Random Nonce (RD) taken from the 

set U, a timestamp (TS). AES128 message authentication code (MAC) calculated with App_key shared 

by both node and the server. 

Server Message = aes128_mac[App_key, RD| TS] 

Step 2: The gateway forwards the message to the end node 

Step 3: Upon receiving the message from the gateway, the node verifies the MAC to confirm the 

integrity of the message. 

Step 4: RD is used to calculate a public key of the sender using equation (1). 

Step 5: The node uses its private key to calculate the session key Sk using equation (3). 

Step 6: The node uses Sk to encrypt the data with AES128, appends the encrypted data with its ID, 

calculated the MAC using App_key, and sends it to the server. 

Node Message = Aes128_mac(App_Key, E(Esk, Data),|Node ID) 

Step 7: Upon receiving the message from the node, the MAC of the message is verified. 

Step 8: If the integrity of the message is intact. The node ID sent by the end node is used to generate a 

public key using equation (1). 

Step 9: The RD sent in step 1 is used to generate a private key from the server-side by using equations 

(1) and (2). 

Step 10: The private key generated in step 9 is used to generate session key Sk (same as node side) 

using equation (4). The generated Sk is used to decrypt the message from the node. 

Step 11: For every session, a different value from U is picked to generate a new node pair, resulting in 

a new session key generation. 

The operations for key calculation performed at the node and server-side are shown below: 

Node A (End Node): 

𝑠𝑠𝐵𝐵𝑘𝑘 = 𝑅𝑅𝐷𝐷 + 𝑘𝑘 − 1  

𝑉𝑉𝐵𝐵𝑘𝑘
𝑇𝑇 = [1, 𝑠𝑠𝐵𝐵𝑘𝑘 , … 𝑠𝑠𝐵𝐵𝑘𝑘

𝑚𝑚−1] 

𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 = �𝐾𝐾𝐴𝐴𝑖𝑖𝑖𝑖𝑉𝑉𝐵𝐵𝑘𝑘� = � �𝑉𝑉𝐴𝐴𝑖𝑖
𝑇𝑇𝑀𝑀𝑗𝑗�𝑉𝑉𝐵𝐵𝑘𝑘  �(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) 
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Node B (Server): 

𝑠𝑠𝐴𝐴𝑘𝑘 = 𝐼𝐼𝐼𝐼𝐴𝐴 + 𝑘𝑘 − 1  

𝑉𝑉𝐴𝐴𝑘𝑘
𝑇𝑇 = [1, 𝑠𝑠𝐴𝐴𝑘𝑘 , … 𝑠𝑠𝐴𝐴𝑘𝑘

𝑚𝑚−1] 

𝑠𝑠𝐵𝐵𝑘𝑘 = 𝑅𝑅𝐷𝐷 + 𝑘𝑘 − 1  

𝑉𝑉𝐵𝐵𝑘𝑘
𝑇𝑇 = [1, 𝑠𝑠𝐵𝐵𝑘𝑘 , … 𝑠𝑠𝐵𝐵𝑘𝑘

𝑚𝑚−1] 

𝐾𝐾𝐵𝐵𝑖𝑖𝑖𝑖 =  𝑉𝑉𝐵𝐵𝑘𝑘𝑘𝑘
𝑇𝑇 𝑀𝑀𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

𝑅𝑅𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 = �𝐾𝐾𝐵𝐵𝑖𝑖𝑖𝑖𝑉𝑉𝐴𝐴𝑘𝑘� = � �𝑉𝑉𝐵𝐵𝑖𝑖
𝑇𝑇𝑀𝑀𝑗𝑗�𝑉𝑉𝐴𝐴𝑘𝑘  �(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) 
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Figure 5.4: Sequence Diagram for node activation and Session Key Generation 

5.2.4. Energy-Aware Adaptive Encryption 

End nodes in LPWAN networks are energy constrained because of which security mechanisms must be 

energy efficient. As discussed before, the authentication mechanism minimises the transmissions from 

end nodes. Moreover, the SDN controller monitors the number of transmissions performed by nodes to 

estimate the energy level of the node. As the SDN controller initiates the session key mechanism, 

session lengths can be customised based on the applications running on the end node. With the 

customisation of session length for the nodes, the overhead of session key calculation is controlled, 

resulting in further optimisation of the node energy consumption even further. 

The energy required to transmit the data is ETx, to receive the data is ERx, BYKA calculation is EBK, 

for AES MAC calculation is EMAC and for AES encryption is EAES.  
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As shown in Figure 5.4, for every transmission, the end node performs two operations before 

transmitting data to the server. Hence, the Energy of Operation (EOP)  for each transmission can be 

calculated as follows: 

EOP  =  SUM(E𝑅𝑅𝑅𝑅, EBK, EMAC, EAES)   (5) 

In (5), it is assumed that for every transmission, a new session is created. However, if the length of the 

sessions is decided based on the number of transmissions m for the total n number of transmissions. 

Then the node energy consumption will be reduced and calculated as follows: 

EOP = ∑ (E𝑅𝑅𝑅𝑅𝑅𝑅 + EMACi + EAESi)𝑛𝑛
𝑖𝑖=1 + � EBKj

𝑛𝑛/𝑚𝑚

𝑗𝑗=1
  (6) 

5.2.5. Attack detection in the network using SDN 

Authentication and session key mechanisms are effective ways to secure networks from unauthorised 

access of data. The BYKA scheme provides an effective authentication mechanism but, is vulnerable 

to identity theft/impersonation attacks. As the nodes are deployed in an un-monitored environment, 

physical attacks on these devices are likely to happen. As these devices are not physically secured, 

attackers can extract the secret keys from the devices are act as a legitimate node, which can cause 

damage to the integrity of the networks. The attacker impersonate as a network node and transmit false 

information to the application server without being detected because they have the keys and can act as 

a legal node in the network. 

To overcome these limitations, in the proposed framework, a dynamic real-time attack detection 

mechanism is proposed to be implemented on the SDN controller to monitor incoming traffic in the 

network. 

There are several techniques that can be used for attack detections in IoT networks. Mechanisms in 

[136, 139, 175] depict how radio properties can identify nodes in the networks. The proposed 

framework adopted a similar approach and uses node behaviour and data fields to identify normal and 

attack traffic. The prime focus of the attack detection mechanism is the early detection of attacks in the 

network before the attackers can damage the network. As a result, it is vital to deploy the attack detection 

mechanism close to the end nodes. The gateway nodes have more capability than the nodes but are still 

limited. Hence, the attack detection mechanisms should be light enough to be deployed on gateway 

devices. Considering all the limitations and the requirements, the attack detection is divided into two 

tiers. The first tier is a simple, lightweight binary machine learning classifier responsible for filtering 

attack from the normal traffic in the network.  Tier two implements a more complex machine learning 

model at SDN controller to profile the attack traffic received from the gateway. The controller redirects 

the data to designated ports based on the type of the traffic (normal, attack) by pushing ruled into SDN 

enabled switch. 
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Two Tier Network Attack Detection: The proposed two-tier attack detection mechanism is divided into 

two stages; i) Early detection; ii) Attack Profiling. The machine learning model implementation is for 

the wireless transmissions in IoT networks. Hence, the attack detection mechanism uses features of 

wireless traffic to detect the attack on the network. To implement the two tier mechanism AWID [176] 

dataset is used to train and test the detection mechanism. 

5.2.5.1. The Dataset 

To implement a machine learning based solution for attack detection, an appropriate dataset is required 

to train the machine learning models. As the research question for this thesis focuses on impersonation 

attacks, a dataset with impersonation attack samples must be chosen to train the classifiers. Considering 

the requirement of impersonation attack samples, AWID dataset is chosen for experiments in this thesis. 

The AWID dataset is generated on a testbed consisting of access points, smartphones and laptops as 

clients using 802.11 for data transmission [176]. The dataset has two sets of data: AWID-CLS and 

AWID-ATK. The difference in both the datasets is the number of classes, AWID-CLS has four classes, 

and AWID-ATK has sixteen (16) classes. 

The dataset is generated over the period of one hour, 60% of the time, normal traffic was transmitted, 

and 40% of the time, the network was exploited. The total dataset contains 37,817,835 records, out of 

which 1,085,372 are attack traffic. Most of the studies are performed on 5% of the AWID-CLS dataset, 

containing 1,795,575 and 575,562 in the training and testing set respectively. The samples in the dataset 

belong to one of the following classes: "normal", "flooding", "impersonation", and "injection". Table 

5.1 shows the composition of the AWID dataset 

Table 5.1: AWID-CLS Dataset class composition 

Class Train Set Instances Test Set Instances 

Normal 1,633,190 530,785 

Injection 65,379 16,682 

Impersonation 48,522 20,079 

Flooding 48,484 16,682 

 

5.2.5.2. Attack Profiles 

As discussed in section 2.3, wireless networks are vulnerable to several attacks. However, the AWID-

CLS dataset focuses on three major attacks on wireless networks as discussed below: 

Flooding Attack: Flooding attacks are a type of Denial of Service (DoS) attack that abruptly increases 

the management frames per unit time; it aims to exhaust network resources resulting in performance 

degradation for legitimate users. Flooding attacks may look straightforward, but they can do serious 
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damage to network performance [176]. For instance, the de-authentication flooding attack is one of the 

most effective DoS attacks on wireless networks. However, it is very challenging to identify it 

accurately. The other type of flooding attack is probe flooding. In IEEE 802.11, probe request to access 

points are transmitted in an insecure way, because of which they can be captured and read by an 

adversary. In probe flooding, the captured probe requests are flooded in the network, drastically 

decreasing the network's throughput [177]. 

Injection Attack: Injection attack focuses on rushing valid encrypted packets into the network. Injection 

attacks include ARP injection and Fragmentation attacks. ARP attacks can be further used for password 

cracking of clients in the network [178]. The ARP injection attack is used to force the network to 

regenerate Initialisation Vectors (IV), and these newly generated IVs are captured to feed key cracking 

algorithms. The attacker constructs an ARP packet and sends it to an access point in the network. The 

access point further broadcasts the ARP packet in the network. For every ARP request, a new IV is 

generated that can be used by attacker for cracking the key. 

Impersonation Attack: Impersonation attacks are common in wireless networks where the attackers act 

as a legitimate node of the network to obtain unauthorised access of the wireless network. There are 

various ways to launch an impersonation attack like cloning a device, rogue access point, spoofing and 

replay attack [179]. In various cases, attackers use the honeypot approach to launch an evil twin or 

Rogue Access Point. Attackers create fake access points with inviting names or with the name of an 

existing SSID. Once the clients connect to the fake access points, the attackers can control their system 

or extract information, including security keys of their original SSID. 

Impersonation attacks do not affect the network performance like DoS attacks. However, they can cause 

a serious breach in network security by damaging node authenticity and data credibility. Furthermore, 

as the nodes do not show any anomalous activities in the network, it can be challenging to spot an 

impersonator. 

The proposed approach focuses on separating the attack and normal traffic in the first tier while 

minimising the computational costs of the classifier. Then, in the second tier, the attacks are profiled 

based on their attack patterns to take suitable actions against the originators of the attack traffic. Figure 

5.5 shows the outline of the proposed two-tier attack detection mechanism. 
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Figure 5.5: Two-Tier Network Attack detection 

5.3. Features of The Extended BYKA Scheme  

As mentioned in sub-section 5.2.3, the extended BYKA scheme takes advantage of the star 

topology of LPWAN. BYKA is originally designed for wireless sensor networks. Hence, it has to 

use static keys stored in the node to generate the secret key during key agreement. However, 

LPWAN is not restricted to such limitations. Therefore, there are several advantages of extending 

BYKA for LPWAN that follows a star topology. 

5.3.1. Prevention Against Replay Attacks 

In wireless transmission technologies, the possibilities of packet sniffing are always possible by 

an adversary. An attacker can use a transceiver to capture the packets sent by nodes to the 

gateways or vice versa. The possibility of using these captured attacks to be injected back into 

the network without being detected can breach the network’s integrity and data authenticity. 

These type of attacks are called replay attacks, where old packets are replayed in the networks. 

Current LPWAN techniques provides various mechanisms to counter the possibility of replay 

attacks in the networks by using frame counters or Nonces. However, LoRaWAN is the only 

LPWAN technology that provides the session key mechanism when it comes to using dynamic 

keys for data transmission. As mentioned in sub-section 2.2.2.2, LoRaWAN uses join request to 

initiate the session keys from end nodes; and the end nodes receive join accept message from 

servers as a reply. LoRaWAN uses DevNonce to avoid the replay of join request messages. 

However, there is no mechanism available to avoid the replay of join accept messages [180]. The 

replay of join accept in the network can cause an end node to trust a fake gateway.  

In the proposed session key mechanism, the sessions are initiated from the central server, and the 

packets consist of timestamps that identifies the packet’s age. Thus, the nodes can compare the 
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timestamps with their clocks and decide whether the packet is fresh or being replayed by an 

attacker. 

5.3.2. Robust Session Control 

The BYKA scheme is designed for wireless sensor networks where nodes have to communicate 

with each other to relay the data to the gateway node. The originator of the data initiates the key 

exchange with whom it wants to communicate. Similarly, every node initiates the key agreement 

process with the successor node in the routing path as the data moves towards the gateway. 

However, the proposed mechanism targets the LPWANs where a gateway directly receives data 

from the end nodes and is aware of the node scheduling. Hence, the proposed scheme uses the 

gateway to initiate the sessions with the end nodes. As the central servers are aware of the 

applications running on the nodes in the network, the sessions can be customised based on the 

application’s security requirements. The centralised session control provides the power to 

consider multiple factors based on the status of the end nodes (application, remaining energy, 

transmission frequency, location). The granular session control can be used to minimise or 

maximise the session length based node status to optimise the energy consumption of the end 

node. 

5.3.3. Lightweight 

BYKA is originally designed for sensor networks where the sensor nodes can use it for key 

exchange for data encryption. It uses a simple matrix-based calculation using significantly 

smaller prime numbers for the key calculations. The simple operations of BYKA and the reduced 

number of transmissions in the proposed framework by shifting the extensive calculations 

towards the SDN controller makes the proposed key exchange framework usable in IoT 

environment where constrained nodes are used for operations. The lightweight nature of the 

proposed framework lowers the burden of complex operations from end nodes, enabling the 

nodes to have a longer lifetime with better security. 

5.3.4. Node Authentication 

The proposed framework session key mechanism enables the automatic authentication of the end 

node without additional transmission. Only the nodes pre-loaded with a private key from the 

central server can generate the same session key as the SDN controller on receiving the public 

information. Providing an implicit authentication of the nodes in the network. 

5.3.5. Minimal Transmission Requirements  

Considering the limitations of the end nodes for limited energy availability, the proposed session 

key mechanism tries to shift most of the session key responsibilities towards the SDN controller. 
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Unlike LoRaWAN session key mechanism, the proposed mechanism makes the central SDN 

controller responsible for initiating the session key considering the sleep cycles of the nodes 

running different applications. Hence, the nodes only have to receive the session key information, 

generate the session keys, apply encryption, and start transferring data. The SDN controller is 

responsible for validating the data authenticity by using the session key generated at its end. In 

case the SDN controller finds any errors, it simply discards the packets. Hence, the transmissions 

from the end nodes are minimal and can maximise the lifetime of the nodes while using the 

session key mechanism. 

5.3.6. Key Localisation 

Using a single secret key for all the nodes in the network can cause severe damage to the network 

in case even a single node gets compromised. The proposed mechanism uses the BYKA scheme 

ensuring that all the nodes get a distinct private key to generate the session key upon receiving 

information from the server. If a node's private key gets compromised in a physical attack on the 

nodes, only that node gets affected. The attackers can use the compromised node to impersonate 

as a legal node in the network and send false information to the server. Considering this situation, 

the proposed mechanism incorporates machine learning attack detection as a second line of 

defence deployed on an SDN controller. It filters the impersonator’s data from entering the 

internet facing segment of the network. 

5.4. Trade-offs for Proposed Security Framework 

The proposed framework aims to provide a dynamic session key and attack detection mechanism for 

LPWAN based IoT networks. However, adding security mechanisms to existing technologies that do 

not provide such features can have several trade-offs for adding new features. 

i) Additional Transceiver Overhead: The proposed session key mechanism aims to minimise the 

number of transceiver operations on the end nodes. As most of the existing LPWAN protocols 

do not provide a session key mechanism, they do not have to do any additional data transmission 

and reception for a key generation or key transfer operations, In other words, they can directly 

encrypt and send data by using the pre-stored key in the end node. However, the proposed 

session key mechanism requires the node to do some transceiver operations to receive the public 

key information from the server. Transceiver operations are the most intense operations 

concerning high energy requirements and can shorten the node lifetime depending on frequency 

of such operations. Hence, the implementation of proposed session key mechanisms will have 

certain effects on the node lifetime. However, by regulating the frequency of the session key 

operations, the transceiver operations can be moderated to not exert the end node excessively. 

A balanced trade-off between the number of transceiver operations and security is maintained 
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by analysing the security requirements of the applications running on the end nodes and 

regulating the sessions of the applications accordingly from the SDN controller. Further, the 

SDN controller can also monitor the number of transmissions made by a node and estimate the 

remaining energy of the nodes. Based on the remaining energy of the end nodes, the SDN 

controller can regulate the sessions to extend the node lifetime in the network. 

ii) Continuous Listening at End Node: In constrained network environments such as IoT, nodes 

have to last for a long period of time on battery power. In some applications, the nodes are 

deployed in remote locations, so it is challenging to recharge the batteries frequently. 

Considering the adverse working conditions, the end nodes are designed to minimise the energy 

consumption and only perform operations when required. The end nodes mostly stay in sleep 

mode to save energy and wake up when they are required to either receive or transmit data. In 

the current LPWAN technologies, the end nodes are mostly involved in sending data. The end 

nodes do not receive any data from server side except in LoRaWAN. Where LoRaWAN sends 

a reply from the server during OTAA node activation. However, in the proposed session key 

mechanism, the end nodes have to receive public key information from the SDN controller to 

generate the session keys for encrypting data before transmissions. The proposed approach will 

require the nodes to continuously listen to the channel to receive the SDN controller data. In 

order to listen to the channel, the nodes have to stay in an awake state for a longer period of 

time than usual, causing the transceiver to draw extra energy from the battery. The longer awake 

cycle will eventually cause the battery to drain quicker than usual, shortening the operational 

period of the node in the network.  

iii) Processing Overhead at End Node: The session key mechanism will require the end nodes to 

calculate the session keys using the public key which they receive from the SDN controller. In 

the standard protocols, end nodes do not perform session key operations or utmost perform only 

when nodes join the network. Hence, there is no overhead of session key operations. As we add 

the functionality of session key mechanism, the nodes will have to do session key operations 

frequently, causing them to use the battery power. The session key operations can be regulated 

by managing the session lengths and frequency based on the security requirements of the 

applications running on the end nodes. 

iv) Increased Payload Size: The proposed session key mechanism requires the end nodes to send 

some additional information to the SDN controller used to calculate the session key at the server 

end. This requires the nodes to send more information than the standard protocols in LPWAN. 

Sending more data means that the transmitter needs to be functional for a long period for each 

transmission, leading it to draw more energy and resulting in a shorter lifetime of the nodes.  

v) Additional Delay: The proposed framework targets a secure transmission and prevention from 

possible attacks on the network. To achieve the secure transmission, the session keys are 

introduced so that the encryption keys can be updated frequently and attackers cannot collect 



106 
 

enough information to perform cryptanalysis. Attack prevention is introduced by 

implementation a machine learning based attack detection system at SDN controller to filter 

the malicious traffic from network. For session keys, the nodes need to perform additional 

operations that introduce operational delay at end nodes. Moreover, the attack detection parses 

every incoming packet as input to the attack detection system. The filtering process also adds 

delay in the transmission of the data packets to the application server. Hence, adding the 

proposed security framework may cause additional delays or packets to reach the destination. 

However, the proposed framework performs the traffic filtering at the network's gateway on 

the network layer. The machine learning algorithm utilises the mac layer information and uses 

a multi-tier approach to minimise the delay in packet delivery.
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Chapter 6  
 
Experimentation and Results Analysis 
 
  
In the previous chapters, we discussed the specifics of this research, the tools and techniques to be used 

for the implementation of the proposed framework. As mentioned in Chapter 5, this research is divided 

into four phases. The first three phases implement the session key mechanism of the framework and the 

fourth phase deals with solving the classification problem into attack traffic and normal traffic. 

In this chapter, the experimentation is carried out to verify the working and impact of the proposed 

security framework. The experiments are conducted separately on both the module to validate and verify 

the impact of session key exchange mechanism and attack detection framework. 

6.1. Simulations Tools for Experimentation  

The proposed framework has mainly two modules coupled together; i) Node Authentication and 

Key Exchange; ii) Identity Theft (Impersonation Attack) Detection. Multiple tools are available to 

validate the correctness and effectiveness of each module implemented in the proposed 

architecture. Various available tools are studied to understand their applicability at various level. 

After analysing the use cases of these tools, three simulation/emulation tools were identified to be 

used for experimentation. Following are the tools analysed for wireless network simulation: 

Network Simulators: 

i) Network Simulator (NS) 2: NS2 [181] is one of the most popular open source discrete 

event simulators for wireless networks. NS2 support several network protocols for 

wireless networks and energy models. For Wireless Sensor Networks (WSN), it provides 

802.11 and 802.15.4 mac protocols. NS2 is written in C++ and OTCL languages. NS2 

libraries are in C++, while OTCL is used to control the simulation environment. For 

visualisation of networks, NS2 provide Network AniMator (NAM). While NS2 provides 

an accurate simulation environment for wireless networks, it does not have the capability 

of running real-time Operating System (OS) command executions. 

ii) Omnet ++: Omnet ++ [182] is another discrete event simulator available for wireless 

networks. It supports standard wireless and wired IP networks along with various WSN 

protocols. Like NS2, it also uses C++ for simulation modelling. In addition, it also 

provides TinyOS simulation support. However, Omnet++ lacks the support for 

sophisticated energy models and mac layer protocols required in WSN.  
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iii) Riverbed Modeller (OPNET): OPNET [183] is a commercially available network 

simulation tool created originally for military purpose but later was highly accepted as 

commercial network modelling tool. It was designed to support static networks because 

of which it provide extensive and accurate support for fixed network hardware and 

protocols. The higher versions of OPNET also started providing supports for wireless 

protocols such as 802.15.4 used in WSN. In addition to the matured library for simulation 

modelling, it also provides an interactive user interface to create simulation environments. 

iv) Cooja Simulator: Cooja simulator [184] is a Java based network simulator for WSN. It 

provides a capable platform to simulate large WSN. It provides an interactive user 

interface with underlying support for wireless communication protocols for WSN. In 

addition, Cooja also provides the capability to integrate with external tools. Cooja is 

designed for the Contiki Operating System (OS) and provides all the features to emulate 

a mote with Contiki OS. 

v) Common Open Research Emulator (CORE): CORE [185] is a platform for network 

emulation. It provides the features to emulate PC, wireless hosts, routers, and links. CORE 

emulations are exactly like live networks, and it also provides the feature to connect the 

emulation network with external networks. In addition, the CORE provides support for 

wireless networks with 802.11. However, it lacks the availability of an energy model and 

other WSN mac layer support. 

vi) NS3: NS3 [186] is another open source discrete event simulator and emulator for the 

wireless network built in C++ with optional Python scripting. NS3 provides support both 

for IP and non-IP based networks and provides the capability to connect NS3 emulated 

network with an external network like CORE. NS3 also provides support for OpenFlow, 

an SDN protocol, making it possible to implement SDN networks in NS3. 

vii) Mininet-WiFi: Mininet-WiFi [187] is another lightweight emulator that uses wireless 

networks supporting 802.11 transmission for nodes in the network. It uses virtualised 

Linux kernel to act as network devices like PC, routers, switch, and access points. It 

provides extensive support for SDN with multiple controller integration like PoX, Ryu 

and Open Floodlight. It also provides running Linux command on every virtualised node 

in the network, making it possible to run custom scripts on every network node.
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Table 6.1: Comparison of Wireless Simulation/Emulation Tools 

Simulation/Emulation 

Tool 

Wireless Support Real-time OS 

commands 

SDN 

Support 

Energy 

Model 

Support 

NS2 802.11, 802.15.4 No No Yes 

Omnet++ 802.11 No No Yes 

OPNET 802.11, 802.15.4 No No Yes 

Cooja 802.11, 802.15.4 No No Yes 

CORE 802.11 Yes Yes No 

NS3 802.11, 802.15.4, 

6LowPAN, 

LoRaWAN 

No Yes Yes 

Mininet-Wifi 802.11 Yes Yes No 

Table 6.1 summarises wireless simulation tools based on features required for experimentations in this 

research. Several tools are providing various features for wireless network simulations. Most of the 

simulation tools provide simulations for wireless protocols such as 802.11, 802.15. However, NS3 is 

the only tool providing the simulations of LPWAN protocol LoRaWAN. SDN framework 

implementation being one of the research the research focuses, NS3, Mininet-WiFi, and CORE are 

fitting tools that provide the SDN support. In order to meet the research objective of having energy 

efficient key session mechanism, the availability of the energy model in LPWAN protocols is given 

high considerations in choosing the tool. NS3 is the only tools that provide LPWAN protocols 

LoRaWAN support and an energy model for it. Hence, NS3 is chosen for the validation of energy 

consumption of the proposed session key mechanism.  

Furthermore, as it is also required to test the correctness of the key exchange protocol on SDN 

framework, Mininet-WiFi is chosen because it seamlessly integrates with SDN protocol OpenFlow and 

supports various SDN controllers. It emulates wireless nodes as Linux kernel and provides functionality 

to execute high level programming. Python is used on the wireless nodes in Mininet-WiFi for 

implementing the session key mechanism to test the correctness of the algorithm. 

6.1.1. Security Protocol Analysis Tools 

i) Failures-Divergence Refinement (FDR)/Casper: Casper [188] is a compiler to analyse security 

protocols. It takes the flow description of a security protocol as input. The input is then 

converted into Content Security Policy (CSP) description and the description is further verified 

with FDR3 [189]. It can be used to identify loopholes in a security protocol or to show that no 

attacks are possible 
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ii) Automated Validation of Internet Security Protocols and Applications (AVISPA): AVISPA 

[190] is an automatic validation tool for network security algorithms. The protocol specification 

is written in High−Level Protocol Specification Language (HLPSL) converted into 

Intermediate Format (IF) by HSPL2IF. The converted specification is verified against four 

checkers for the correctness of flow and attacks. The final outcome is provided about possible 

loopholes and attacks possible on the protocol. 

iii) Scyther: Scyther [191] is a formal analysis tool for security protocols. Scyther takes protocol 

description in Security Protocol Description Language (.spdl). It is assumed that cryptographic 

functions are perfect, and the adversary learns nothing from encrypted messages unless they 

have a decryption key. This tool is used to find vulnerabilities in the models used for 

investigating security protocols. The protocol is formulated in the form of “roles” and “events”. 

The “roles” are designed based on the knowledge and operations performed by an entity in the 

protocol model. “Event” describes the events of sending and receiving of the data. Based on the 

operations, the roles make claims regarding secrecy, integrity, and authenticity. These claims 

are verified over several threat models defined in Scyther. Based on the analysis, possible 

attacks are shown on the security protocol model. 

The security protocol analysis tools are utilised to perform the semantic testing of the algorithm. It tests 

the data flow of the algorithms against various attacks and highlights if any attack is possible on the 

sequence along with the process of how that attack would take place. There are three well-known tools 

listed that are used to perform semantic analysis of security protocols. All of them utilise different input 

languages to frame a protocol and to run attack models on them. This research utilises Scyther [191] as 

a security analysis tool because of its diverse attack models and intuitive input mechanism. The security 

protocol mechanism uses roles of different entities in security protocol, making it easier to simulate the 

roles of server and end nodes. The events are used to represent the data exchange. Scyther provides 

easy to uses graphical user interface that provides detailed results and traces run by the tool to validate 

the security protocol. 

6.1.2. Machine Learning Tools and Techniques for Attack Detection  

The correctness of the first module, the session key mechanism, is validated in network simulators and 

security analysis tools. The second module of the framework deals with the Identity Theft attack (or 

Impersonation attack) detection in the network. The attack detection mechanism incorporates a machine 

learning approach to learn from an existing dataset and use the learned parameters to classify the 

incoming traffic in the network based on the traffic attributes. 

Many tools and frameworks are available to implement machine learning-based classifiers, such as 

Konstanz Information Miner (KNIME), Weka, RapidMiner, Apache Machine Learning Library 
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(MLLIB), and Orange. These tools provide easy to use user interfaces for fast and easy implementations 

of machine learning algorithms. 

i) Weka [192, 193]:  Weka is a Java based tool that provides a graphical user interface to model 

machine learning algorithms. It provides extensive data exploration and manipulation features that 

facilitates understanding and data pre-processing. Weka is designed to take input from multiple 

sources ranging from simple CSV files to complex SQL queries to a database. It provides all the 

classes of machine learning algorithms such as classification, regression, and clustering. One of 

the major advantages of the Weka tool is that it is an open source and can be maintained easily by 

the contribution of researchers. Secondly, it includes almost all the standard machine learning 

algorithms that let the researchers conduct various experiments using different algorithms and 

choose the best suitable for their use case without writing complex codes for testing purposes. The 

third advantage is the java implementation that enables the platform independence and lets it run 

on any operating system. However, despite being a handy tool for the quick implementation of 

machine learning algorithms, several limitations of this tool can sometimes create challenges in 

implementing machine learning techniques. The first disadvantage is that all the data being 

processed by the tool is held in main memory, creating a limitation on the dataset size used in 

Weka. Weka can be very useful as the first step of machine learning protocol testing. However, it 

will fail to be useful in scenarios where the machine learning algorithms are highly customised 

from the standard ones. 

ii) KNIME [194]: It is an environment that provides an interface for the interactive execution of a 

machine learning pipeline. It provides a graph like structure to run various flows of different steps 

on a machine learning algorithm. The users can utilise a Graphical User Interface (GUI) to 

assemble different data pre-processing steps, machine learning algorithms, and result calculations 

as part of a pipeline. These pipelines can be executed to further explore the results. The tools enable 

a quicks deployment of a data pipeline to test several pre-processing and machine learning 

algorithms intuitively and easily.  Each node in the flow of KNIME performs an operation it 

receives from the previous step in the dataflow. The connectors in the dataflow show the order of 

the operations being performed on the dataset. Moreover, KNIME provides an integration with 

Weka and R statistics software to enhance the data analysis experience of the users. It also provides 

the feature of exporting the pipeline and Predictive Model Markup Language (PMML) file and can 

be used in R, SAS and other tools that support PMML files. However, in the current version, the 

pre-processing steps are not included in the PMML file. 

iii) Rapid Miner [195]: Rapid Miner is a commercial product and provides similar platforms like 

KNIME. Rapid Miner provides a user-friendly platform for flow design to implement and analyse 

performances of machine learning algorithms on the dataset. The data pipeline can be created by 

adding steps and connecting them in the desired order for processing. The output from one block 
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is passed as an input to the immediate next block. It provides an easy drag and drops feature to add 

and remove pipeline steps that enable users to create flows for data processing easily. In addition 

to the easy and quick pipeline deployment, it provides comprehensive result analysis tools with 

various filters and visuals. 

iv) Apache Machine Learning Library (MLlib) [196]: MLlib is a distributed machine learning library 

provided by Apache Spark that can handle huge amount of data. As Spark is designed to handle 

huge amounts of data, MLlib being designed has given huge consideration to iterative 

computations required while handling huge datasets. The open-source community of Spark keep 

up with the high increase in speed and complexity of ML models by continuous improvement in 

their libraries. MLlib provides powerful features for machine learning development such as: i) 

Methods and Utilities: It provides implementations of standard machine learning algorithms like 

linear models, naïve Bayes, ensemble methods for classifications and regression. It also provides 

implementations of unsupervised learning algorithms like K-Means clustering and Principal 

Component Analysis (PCA). It offers various utilities like convex optimisation techniques, feature 

extraction methods and tools for statistical analysis; ii) Optimisation: MLlib provide mechanisms 

to optimise distributed systems for distributed learning and predictions. It implements an efficient 

map and reduces algorithms for efficient distribution of data over worker nodes for calculations 

while maintaining the integrity of the algorithms. iii) Pipeline API:  To implement a successful 

machine model, preparing high quality of data is imperative which involves various steps like data 

exploration, data cleaning, feature engineering, data quality and finally preparing the training-

testing datasets. MLlib provides pipeline API to create a sequence of these steps that can be 

performed on the dataset to train a model and make predictions. iv) Extensive Documentations: 

Spark provides a detailed documentation of all the features provides by MLlib for easy 

understanding and implementation. 

v) Scikit-Learn [79]: Scikit-Learn is a python based machine learning library specially designed to 

for machine learning research. It has extensive and full support for Python language as Python is 

widely used for scientific computing. Scikit-learn utilises the versatile and rich environment of 

python programming to implement state of the art machine learning algorithms. Scikit-Learn 

utilises python libraries to perform various operations related to machine learning 

implementations. Python library NumPy is used to lay down the underlying data structure. The 

Input data is represented as NumPy arrays. Scipy, another Python library, is used for sparse matrix 

representation, statistical functions, and linear algebra operations. Finally, Cython, a language for 

including C in Python, is utilised to introduce precompiled code as a boilerplate for faster execution 

of machine learning algorithms. Scikit-Learn provides a huge collection of machine learning 

implementations while providing the flexibility to choose from the available optimisation 

techniques. As it uses Python as the programming language for implementations, it provided 

integrations into advanced framework such as TenserFlow, Karas, and Pytorch where highly 
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customised machine learning models can be designed using Scikit-Learn building block. In 

addition to implementations of state-of-the-art machine learning algorithms, it provides a rich 

collection of data pre-processing packages that are used for data transformation suitable for 

machine learning algorithms. The toolkit provides features such as data scaling, normalisation, 

data encoding, and imputation of missing values. Other than out of the box transformers, it also 

facilitates custom transformer implementations id required for effective data pre-processing for 

machine learning algorithms sensitive to data variance. Being an open-source library, it is easily 

accessible and regularly updated by the machine learning community, keeping it up to date with 

the latest machine learning algorithms. Furthermore, the detailed documentation of the library 

makes it easier to understand for quick use of sophisticated machine learning algorithms. 

Considering all the above mentioned machine learning tools. There are various advantages of every tool 

in various aspects. Some of them provide interactive user interfaces for easy and quick prototyping of 

machine learning models. Tools like MLLIB show great potential in handling a huge amount of data 

and create highly custom machine learning models. Scikit-Learn provides the capability of building 

custom machine learning models with extensive support of Python for data pre-processing. 

In this research, a two-tier attack detection framework with a consolidated voting mechanism 

implemented that makes predictions by summing the results from various binary classifiers is aimed to 

be tested on a wireless network dataset. Taking into consideration the structure of data, and the problem 

to be solved, this research adopts a programmatic approach to implement the machine learning classifier 

for attack detection in the network by using Python programming language. 

Python is one of the most popular and convenient programming languages available to implement 

machine learning-based solutions. Python provides a huge range of libraries such as Scikit-Learn, 

Pytorch, TensorFlow, and Karas to implement complex machine learning and deep learning 

architectures. Before implementing any machine learning classifier, the pre-processing of the data must 

be done for the machine learning classifier to perform effectively. Python provides libraries such as 

NumPy, Pandas for data cleaning and wrangling. In addition, Python provides tools like “imblearn” to 

handle data imbalance in the dataset. SHAP is available in Python to explain and visualise the learning 

process of the machine learning algorithms. Also, matplotlib in python provides a flexible platform to 

visualise results produced by machine learning classifiers. 

All the steps beginning from data cleaning till explaining the machine learning models and interpreting 

the results which form the basis for the classification are described in following subsection. 

6.1.3. Machine Learning based Attack Detection Experimentation Process 

Data pre-processing is considered one of the most important aspects of any machine learning based 

project. As it increases the quality of data which has a great impact on the prediction accuracy of a 



114 
 

classifier [197]. In this section, we will discuss about the various data manipulation / pre-processing 

steps applied on AWID-CLS dataset as shown in Figure 6.1. 

 

Figure 6.1: Data Pre-processing Steps 

6.1.3.1. Data Cleaning 

Data in the real world are mostly unclean and heterogeneous in nature. The AWID dataset was created 

in a lab environment, and a separate device was used in monitor mode with a T-shark to capture the 

network traffic. Many attributes of T-shark captures did not apply to packets in the monitored network, 

so there were plenty of missing values that were replaced by "?" in the dataset. As the dataset included 

lots of missing values, data cleaning was a very crucial step here. Ignorance in handling the missing 

data can lead to wrong predictions or classifications and can also cause high bias for the model being 

used. The dataset consist of 154 attributes with 1795575 records. Figure 6.2 shows the snapshot of the 

original AWID-CLS dataset before data cleaning. There were 72 attributes with more than 50% of 

missing values. Due to high proportion of missing values, these attributes were dropped off. If we do 

not remove these missing values, they cause various issues. Firstly, we already have less information 

about these attributes and secondly if not handled properly, they have capacity to devour the true data. 

As this dataset would be propagated further in many iterations, the adverse impact would be huge. Next, 

three attributes amongst others were converted from hexadecimal to integer values. Some attributes 

such as feature 0 and 2 had no distinct values and even they were excluded as such data is incapable of 

contributing towards better decision making. In summary, with an objective of increasing the quality of 

data, we ended up using 23 out of 154 attributes for further steps. 
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Figure 6.2: AWID-CLS Dataset Snapshot 

6.1.3.2. Data Scaling 

Data or Feature Scaling is the next important step in machine learning modelling. Machine learning 

algorithms only understands numeric values – if few features are in the range of thousands, few other 

in tens, then machine learning model gives more weightage to high ranging numbers. On analysing we 

realised that our dataset contains outliers which stands true as it a dataset with network-based attack 

information. Applying feature scaling techniques based on mean and variance would not consider the 

effect of these outliers. As a result, we chose to apply Robust Scaler. Robust scaler preserves the outliers 

in the dataset, hence is very effective for our case [79]. 

 The Robust Scaler uses an inter-quartile range between first quartile (Q1) and third quartile (Q3) to 

scale the data using the following formula where xi is a sample of the dataset: 

𝑥𝑥𝑖𝑖 =  
(𝑥𝑥𝑖𝑖  −  Q1(𝑥𝑥))

( Q3(𝑥𝑥)) 
− 𝑄𝑄1(𝑥𝑥) 

6.1.3.3. Managing Dataset Imbalance 

As shown in Table 5.1, the composition of the dataset is highly imbalanced with 1,633,190 samples for 

“Normal” class, 65,397 samples for “Injection”, 48,522 samples for “Impersonation” and 48,484 

samples for “Flooding” class. The number of records with Normal traffic are much higher as compared 

to the number of the records with attack instances. Therefore, training a machine learning model on an 

imbalanced dataset can reduce the precision of the model [198]. Oversampling and undersampling are 

the highly used strategies to deal with imbalanced datasets. 

 Oversampling is a method in which new samples are generated for the minority class of the dataset. 

There are several techniques like Random over-sampling, SMOTE [199] and ADASYN [200]. Random 

over-sampling simply duplicates the instances of the minority class in the dataset. On the other hand, 

SMOTE and ADASYN generate data points with K-Nearest neighbours between two existing data 

points. In addition to the mentioned oversampling techniques, data augmentation using neural networks 

like Generative Adversarial Networks (GANs) [201] are gaining popularity on image datasets. In 
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GANs, two neural networks compete against each other to learn the data distribution. Later, the learned 

distribution is used to generate synthetic data to balance the dataset. 

 Undersampling works on the contrary of oversampling. The instances of majority class are trimmed 

down to level with the minority class. Thus, removing the samples with majority from the training set 

reduces the skew present in the class distribution.  

In AWID-CLS dataset, the number of “normal” data samples is excessive compared to all the attack 

samples combined.  The biased sample size can cause the trained model to overfit. Two standard 

techniques to manage the data imbalance are discussed. In case of oversampling, the samples of the 

attack classes are to be generated from the sample distribution of the attack classes. However, 

synthesising the samples can cause the change in properties of the attacks. With this consideration, we 

decided to use under-sampling to manage the imbalanced dataset. The “normal” samples are removed 

randomly to match the number of “attack” packets using the undersampling technique. Although 

undersampling reduces the number of samples in the dataset, it maintains the originality of the attribute 

values, thus increasing the confidence in machine learning model results as they were built on true data. 

6.1.3.4. Feature Selection 

After the dataset cleaning process, we decided to use 23 features shown in Table 6.2 for training the 

machine learning model as mentioned earlier. Other features were excluded as they could be a noise to 

the machine learning model. It is not ensured that even these 23 features are the best in distinguishing 

the attack traffic from the normal one. Hence, the next important step is feature selection technique. 

The aim is to provide rich knowledge to the model with minimal features while training for building 

simple models and making faster classification decisions. For example, amongst these 23 features, there 

would be features which are high correlated to each other. Such correlated features cannot improve 

models and sometimes may cause instability.  

The Random Forest uses Gini indexing to calculate the information gain while using each feature in the 

process of decision making. Figure 6.3 shows the feature importance in the current dataset. 

Table 6.2: AWID-CLS dataset features after data cleaning 

Feature 

Number 

Dataset 

Feature 
Feature Name 

Feature 

Description 

Feature Value 

Data Type 

1 3 frame.time_epoch 
Time epoch of packet 

arrival. 
Time offset 

2 4 frame.time_delta 

Time delta from 

previous captured 

frame. 

Time offset 
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Feature 

Number 

Dataset 

Feature 
Feature Name 

Feature 

Description 

Feature Value 

Data Type 

3 5 frame.time_delta_displayed 

Time delta from 

previous displayed 

frame. 

Time offset 

4 6 frame.time_relative 

Time from the 

reference of the first 

frame. 

Time offset 

5 7 frame.len 
Frame length of the 

captured packet. 
Unsigned Integer 

6 8 frame.cap_len 
Frame length stored I 

captured file. 
Unsigned Integer 

7 37 radiotap.mactime MAC timestamp Unsigned Integer 

8 46 radiotap.datarate Data rate (Mb/s) 
Floating Point (single 

decimal) 

9 47 radiotap.channel.freq Channel Frequency Unsigned Integer 

10 49 radiotap.channel.type.cck 
Complementary Code 

Keying flag. 
Boolean 

11 50 radiotap.channel.type.ofdm 

Orthogonal 

Frequency-Division 

Multiplexing 

(OFDM) flag. 

Boolean 

12 60 radiotap.dbm_antsignal 
Antenna Signal 

Strength 
Signed Integer 

13 63 wlan.fc.type_subtype 
WLAN frame control 

type subtype 
Unsigned Integer 

14 65 wlan.fc.type 
WLAN frame control 

type 
Unsigned Integer 

15 66 wlan.fc.subtype 
WLAN frame control 

sub type 
Unsigned Integer 

16 67 wlan.fc.ds 

Frame Control 

Distribution System 

indicator 

Unsigned Integer 

17 68 wlan.fc.frag 
Frame control more 

fragment flag 
Boolean 

18 69 wlan.fc.retry Retry  flag Boolean 
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Feature 

Number 

Dataset 

Feature 
Feature Name 

Feature 

Description 

Feature Value 

Data Type 

19 70 wlan.fc.pwrmgt 
Power management 

flag 
Boolean 

20 71 wlan.fc.moredata Mored data flag Boolean 

21 72 wlan.fc.protected Protected flag Boolean 

22 74 wlan.duration Transmission duration Unsigned Integer 

23 75 wlan.ra Receiver’s address 

Ethernet or other 

MAC address 

(Hexadecimal) 

 

 

 
Figure 6.3: Feature Importance in AWID-CLS 

Figure 6.3 shows that some of the features are not contributing at all to decision making. Figure 6.4 

shows the Pearson correlation computes on the 23 features after data cleaning. The dense orange and 

blue shade in Figure 6.4 denotes high positive and negative correlation between those features 

respectively. Also, some features that are monotonically increasing in the dataset as they represent time 
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(feature 3, 5 and 37). Since the model must work in any session which is independent of the time of 

use, dropping these features before training is necessary.  

 
Figure 6.4: Correlation Matrix of Dataset 

After considering all the factors mentioned above, 15 out of 23 features listed as below were finalised 

for the first-tier classifier to filter attack and normal: 

Feature Number: 4, 6, 8, 46, 49, 60, 63, 65, 66, 68, 69, 71, 72, 74, 75 

6.1.4. Attack Classification 

Better data is better than using complex algorithms; and data cleaning is the main foundation of machine 

learning. After data cleaning and feature selection, the data is ready to be fed as an input to the 

classifiers. There are various machine learning algorithms that can be applied for categorising the type 

of traffic. In this research, we have considered the two most widely used methods namely: Ensemble 

and Neural Network model. 

Ensemble methods construct a set of multiple classifiers using different splits of the same training 

dataset and same algorithm or same dataset with different algorithms, and then uses weighted voting 

between the classifiers to make a final decision [202]. We experimented with two tree based ensemble 

models: Random Forest and Extra Tree classifier [79]. The classifiers are trained on pre-processed 
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datasets with ten estimators (trees), and the results are discussed in the coming sections. Figure 6.5 

describes the method of ensemble (voting). 

Train Set

Weighted Voting Mechanism

Model-1 Model-nModel-2

P-1 P-2 P-3

P

Test Set

…..Tree Based 
Classifiers

Predictions

Final Prediction

 

Figure 6.5: Ensemble Method Architecture 

Artificial Neural Networks (ANN) are one of the most widely used classification methods to detect 

complex patterns in a dataset, especially when the data is non-linear in nature. It follows a multi-layer 

architecture i.e., input layer consists of the input dataset, where the number of input nodes in same as 

the number of attributes in the dataset, the hidden layer (one or multiple) consists of artificial neurons 

which consists of non-linear activation functions and finally the output layer consisting of artificial 

neurons makes the classification decision. Figure 6.6 shows the general architecture of a neural network.  

In this research Multi-layer Perception classifier (MLP) which is a type of neural network is used for 

experiments. Various ANN architectures with different number of layers, number of neurons and 

learning rates were used. The efficiency of neural network models with various parameters was 

compared. Finally, considering the input and output dimension of 15 and 1 respectively, the neural 

network with four layers with 15 nodes in the input layer, 50 in first hidden layer and 10 nodes in the 

second hidden layer, and 1 node in output layer. We used Adam optimisation technique that incorporates 

different learning rate and can handle sparse gradients while training. The learning rate of 0.001 is used 

during the training process of the neural network. For both of the hidden layers and the output layer, 

Tanh activation function was used. 
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Figure 6.6: Neural Network General Architecture 

6.1.5. Machine Learning Model Output Explanation and Interpretation 

The experimentation utilises two different types of supervised machine learning techniques for the 

attack detection module of the proposed framework. Both machine learning techniques utilise the 

dataset features differently for classifications. Understanding the underlying mechanism of what is the 

model is learning is equally important other than interpreting the accuracies of the model [203]. To 

explain the behaviour of the machine learning models,  SHapley Additive exPlanations (SHAP) [204] 

is utilised. SHAP provides insights on the feature impact on different machine learning techniques and 

how the values of the feature impact the machine learning models. It follows a game theory approach 

to explain the output of the machine learning models [204]. It provides an additive feature importance 

measure that relates to “Local Accuracy”, “Missingness”, and “Consistency” [203].   

The python library for SHAP is used to calculate the SHAP values of the classifiers trained on the 

datasets. This library will help us analyse the contribution of different features in making the 

classification decision describing the relationship between the attribute and the class label. 

6.1.6. Model Evaluation Metrics 

 After training, the models are evaluated using various model evaluation metrics. However, every 

performance metric cannot be used for all classifiers. Furthermore, every performance metric has some 

shortcomings that might get overlooked if the evaluation metric is not selected carefully. It is crucial to 

consider the application and the data on which the classifier is trained while selecting the performance 

metric for a classifier [205]. Some of the performance metrics used for ML classifiers are as follows: 

i) Confusion Matrix: It shows the relationship between True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN). It provides deep knowledge about the performance 

of the model. As Figure 6.7 shows, TP is when the sample is a positive (or 1) and is identified 
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as positive. FN is when the sample is positive but being falsely identified as negative by the 

classifier. FP is when a negative sample falsely identified as positive and TN is when a negative 

sample being correctly identified as negative. 

Negative
(0)

TNFNNegative
(0)

Positive
(1)

Positive
(1)

FPTP

 
Figure 6.7: Confusion Matrix 

ii) False Positive Rate (FPR):  False positive rate is defined by the number of negative samples 

incorrectly classified as positive by the classifier. 

𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝐹𝐹𝐹𝐹

(𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇)
 

iii) Recall: Recall is the capability of a model to classify the positive samples from all the available 

samples and is also called sensitivity. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

iv) Precision: Precision depicts the correctness of the classifier in not labelling a sample positive 

when the true label is negative. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

v) F1-Score: F1-score is weighted harmonic mean of precision and recall with the best value as 1 

and worst as 0. 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

 

vi) Accuracy: The accuracy metric is the ratio of correct predictions over the total number samples. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑦𝑦 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

vii) Receiver Operating Characteristic (ROC) Curve:  ROC curve is a performance metric that plots 

a curve between True Positive Rate (TPR). 
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6.2. Key Exchange Mechanism 

6.2.1. Correctness of Key Exchange Mechanism 

The key exchange mechanism uses the SDN controller as a trusted entity for key generation. The SDN 

controller is responsible for session management in the network. To verify the applicability of the 

proposed mechanism in a Software Defined Network, Mininet-WiFi [187] emulator is used.  

Mininet-WiFi is a wireless network emulator built on top of Mininet emulator [206] for rapid 

prototyping of wireless SDN. Mininet-WiFi provides lightweight network nodes by virtualising Linux 

kernel. In our experimental framework setup, we emulate a wireless network with one SDN controller 

to validate and demonstrate the efficiency of the proposed key exchange algorithm. Figure 6.8 illustrates 

design/structure of the wireless topology created in Mininet-WiFi to implement SDN based key 

exchange mechanism with parameters shown in Table 6.3. 

Table 6.3: Simulation Parameters in Mininet Emulator 

Parameters Value 

Number of Nodes 
3 (2 end devices, 1 SDN 

controller) 

SDN Controller POX Controller 

Wireless Transmission 802.11 (WiFi) 

SDN Protocol OpenFlow 

Device Kernel Linux 

 

OpenFlow Switch

SDN Controller

Wireless Access Point

Wireless Host  

Figure 6.8: Mininet-WiFi Experiment Topology 

The algorithm explained in subsection 5.2.3 is implemented on the POX SDN controller using Python 

3.7 to validate the correctness and applicability of the proposed framework in a wireless SDN network. 

The successful key exchange between nodes is shown in Figure 6.9. “Node h1” is acting as an SDN 

controller responsible for initiating the session key mechanism. “STA 2” is the wireless station for 
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session key exchange. The screenshot shows that both entities (Node h1 and STA 2) get a common key 

calculated by using the public key information. 

 

Figure 6.9: Session Key Exchange Validation in Mininet-WiFi 

6.2.2. Semantic Analysis 

The proposed key exchange mechanism has various aspects that require verification of effective 

operations. The first aspect is the secure agreement of session keys without losing the integrity of the 

public key information transmitted between the server and the nodes over the air. A security verification 

tool named Scyther [191, 207] is used to verify the successful transmission of key information. 

Scyther is a tool used for the analysis of security protocol models. It is assumed that cryptographic 

functions are reliable, meaning the adversary learns nothing from encrypted messages unless they have 

a decryption key. The tool is used to find loopholes in the model of the security protocol. The protocol 

is formulated in the form of “roles” and “events”. “Roles” are designed based on the knowledge and 

operations an entity performs in the protocol model. “Events” the activities of sending and receiving of 

the data. Based on the operations, the “roles” make “claims” regarding secrecy, integrity, and 

authenticity. These claims are verified over several threat models defined in Scyther. Based on the 

analysis, Scyther shows the possible attacks on the security protocol model. 
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The security model shown in Figure 5.4 is implemented in Scyther’s input language to verify the secrecy 

of the session key, server, and device agreement against possible attack models. Figure 6.10 shows the 

verifications of the claim and possible attacks on the session key agreement. The screenshot shows the 

verified claims and no possible attacks available in the attack model of Scyther. 

 
Figure 6.10: Semantic Analysis Results of LPWAN Session Key Mechanism 

6.2.3. Computational Analysis 

In addition to the semantic analysis of the security, the next important step is to analyse the 

computational cost while executing the proposed framework. The use of computationally intensive 

security mechanisms can shorten the end node lifetime, causing disruptions in network function. Since 

our research focus is LPWAN based IoT networks where we have constrained nodes, the operational 

overhead should be less. 

Hence, our objective is to minimise the overall overhead on nodes by reducing the number of 

transmissions and processing overhead for end nodes. To investigate the energy consumption of the 

proposed scheme, we have created an energy model in NS3 based on the energy consumption of various 

operations such as data transmission, data reception, data encryption, and BYKA key calculation. The 

sections below throw light on the analysis of energy consumption by the proposed architecture. 

6.2.4. Simulation Parameters: 

In our experimentation, we have modified the energy model of LoRaWAN in Network Simulator 

3(NS3) [208] to simulate the effects of the calculations on the end nodes. The energy model follows the 

standard energy consumption for transmission and reception of data packets for transceivers in 

LoRaWAN. In addition, the energy consumptions for cryptographic activities are added for each 
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transmission in the NS3 energy model of LoRaWAN. The energy model for AES encryption and MAC 

operations is derived from cryptographic algorithms' energy consumption described in [209].  The 

implementation of energy consumption for the BYKA key agreement is based on the experimental 

framework on sensor nodes described in [210]. 

In NS3 a simulation with a single gateway and end node is designed to analyse the energy consumption 

and node lifetime in the LoRaWAN network. The end node transmits a packet every five seconds to the 

gateway while energy consumption is calculated according to equation (5). Table 6.4 shows the 

simulation parameters used in experiments in NS3 simulator. 

Table 6.4: Simulation Parameters in NS3 Simulator 

Parameters Value 

Simulation Time 24 Hours 

Initial Energy of Node 1,000 J 

Supply Voltage 3.3 V 

Packet Transmission Current 0.028 A 

Packet Reception Current 0.0112 A 

Number of Gateways 1 

Number of Nodes 1 

Data Rate 12 packets/Minute 

 

 
Figure 6.11: Energy Consumption of LPWAN Session Key Mechanism 

Figure 6.11 shows the energy consumption of the end node over twenty-four hours of transmissions 

with a data rate of 12 packets per minute. Our experiment considered every transmission as an individual 
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session, and for every transmission different key generation operations were performed. Therefore, the 

number of packets for each session can be decreased, and the overhead of session key generation can 

be reduced on the end nodes as per security requirements by the following equation (6). 

To show the benefits of our proposed algorithm on the energy consumption, we considered the worst-

case scenario of maximum overhead on nodes. If the energy consumption of the end node remains the 

same as shown in Figure 6.11, the node can remain functional for one and a half months with 10,000 J 

energy which is equivalent to an 850 mAh battery with a 3 Volt supply. 

In the previous scenario the transmission time was 24 hours, however, this study further investigates 

the impact of overhead caused by the proposed session key mechanism. In the second level of 

investigation, we conducted experiments to compare the energy consumption with and without session 

key mechanism on LoRaWAN protocol. For this comparison, the simulation time was extended to 30 

days.  

Table 6.5 compares LoRaWAN protocol with and without session key mechanism based on different 

data rates on end nodes. It is observed that with high data rates on the end nodes, the change in the 

session key for each packet causes extensive overhead on the end nodes. However, as the data rate 

decreases and the frequency of session key decreases, the difference between power consumption with 

and without session key mechanism narrows. It can be observed in Table 6.5 that the power 

consumption with session key in the case of 1 packet/minute is more than double the power 

consumption without session key mechanism. The difference between them comes down to almost 50% 

where data rate 1 packet/30 minutes. For applications with 1 packet / 6 hours, the difference between 

the energy consumptions is just one Joule over a month. Moreover, as we move on to the cases of even 

lower data rate, the difference between the power consumption in both cases becomes negligible. 

Table 6.6 shows a comparison of the number of transceiver operations required by some existing and 

the proposed session key mechanisms in LoRaWAN. The table shws that the proposed session key 

mechanism achieves successful session key mechanism wit just a single transmission, reducing 

the transceiver operations to a half of the existing session key mechanisms for LoRaWAN, and five 

times less than session key mechanism discussed in [211]. 

IoT nodes are usually designed to last longer while sending data with low data rates (depending on the 

applications running on the nodes). Considering the session key mechanism’s impact with high data 

rates, changing session key for each packet may not be ideal. However, suppose the session length is 

increased to even one hour. In that case, the impact of the session key mechanism can be minimised 

significantly and made suitable to run on applications with high data rates. On the other hand, 

applications with lower data rate can afford to change the session with each packet without having any 

severe impact on the power consumption of the end nodes. Hence, the application nodes with lower 
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data can have a similar lifetime as standard LPWAN protocols while utilising the session key 

mechanism. 

Table 6.5: LoRaWAN Energy Consumption Analysis 

Data Rate 
Energy Consumption (With 

Session Key Mechanism) 

Energy Consumption 

(Without Session Key 

Mechanism) 

1 packet/min 692.16 272.122 

1 packet/30 min 35.4716 21.4703 

1 packet/hour 24.1464 17.1457 

1 packet/6 hours 14.6801 13.5133 

1 packet/12 hours 13.6992 13.1158 

1 packet/24 hours 13.1527 12.8611 

1 packet/7 days 10.992 10.9531 

1 packet/15 days 10.6205 10.6011 

 

Table 6.6: Transceiver Operation Comparison with Existing Session Key Mechanisms 

Session Key Mechanisms Number of Transceiver 

Operations 

An enhanced key management scheme for LoRaWAN 

[211] 

5 

A Dual Key-Based Activation Scheme for Secure 

LoraWAN [94] 

2 

LoRaWAN OTA Activation [40] 2 

Proposed Session Key Mechanism 1 

 

6.3. Identity Theft Detection 

The second module of the proposed framework is to develop a prevention mechanism against 

impersonation attacks on the LPWAN networks by distinguishing attack from normal traffic using 

machine learning techniques. As discussed in sub-section 5.2.5.1, the research utilises various machine 

learning mechanisms on AWID-CLS traffic dataset created on a WiFi network. The data quality is 

improved using various pre-processing steps as mentioned in sub-section 6.1.3. At this point, the data 

is prepared to be fed as an input to the machine learning model for the classification purpose. 
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6.3.1. Training and Testing Attack Classifiers 

The proposed framework for attack detection in IoT networks adopts (is based on) two-tier 

implementation strategy. The first tier of the attack detection platform focuses on distinguishing 

between attack and normal traffic and hence this tier deals with binary classification problem. It is 

implemented on the network gateways allowing early filtering of attack traffic from entering the 

network. After being classified as attack traffic, the second tier further distinguishes between the three 

types of attacks mentioned in the dataset. This tier deals with the multiclass classification problem.  

The training and testing processes are carried out on a Windows machine with an Intel i5-6500 CPU 

and 16 GB of RAM is used for machine learning modelling. Sci-Kit Learn [79] a Python machine 

learning library is used for building the ML models as mentioned in sub-section 6.1.2.  

In the following sections, the machine earning implementation details and the results produced in both 

tiers are discussed.  

6.3.2. First Tier Classifier for Attack Detection 

AWID-CLS dataset is trained on three different models for the binary classification. Different models 

are evaluated on the test dataset using various performance metrics. The training and testing of the 

trained classifiers are discussed as follows: 

Random Forest: As mentioned earlier, three classifiers were tested on the dataset using various 

performance metrics for their classification. The first classification algorithm tested is Random Forest. 

Random Forest is an Ensemble Learning method that uses several tree classifiers on sub-samples of the 

dataset and averages the outputs of these multiple trees for better accuracy and to avoid overfitting [79]. 

The total training time taken to train the Random Forest model was 2.559 seconds. 



130 
 

 
Figure 6.12: ROC values with Random Forest Tree Depth 

The Random Forest tree classifier has various parameters that can impact the output of the classifier. 

One of the most important parameters is tree depth, as it plays a major role in classifiers size [79]. 

Hence, the tree depth was considered for optimisation during the training process for tree based 

algorithm. Random Forest classifier was trained on multiple tree depth to achieve the best performance 

with minimal tree depth. Figure 6.12 shows that the performance of Random Forest reaches saturation 

at tree depth of 30 and remains constant till 75. Hence, tree depth of 30 is considered the best parameter 

for tree depth.  

After training the Random Forest with multiple parameters, finally Random Forest with 10 trees and 

tree depth of 30 is finalised based on its results.  Figure 6.13 illustrates the contribution of each feature 

on the classifier’s predictions. X-axis shows the magnitude (mean) of feature contribution and the Y-

axis shows the feature number (refer to Table 6.2 to map feature number to feature names). It can be 

observed that feature 8 is the highest contributor while feature 71 is the lowest contributor for each class 

for the Random Forest classifier.   
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Figure 6.13: Average Feature Impact Random Forest Classifier 

Figure 6.13 shows the summary of the impact of dataset features on the classifier’s output. Along with 

feature importance, the interpretability of model’s individual predictions is equally crucial. Figure 6.14 

provides further detail on how different sample values impact the output of the classifier. Every sample 

can have a positive or a negative impact on a class. Figure 6.14 shows the feature SHAP values 

calculated for class 1, i.e., normal traffic in the network. It shows the positive or negative impact of a 

feature values on class 1 decision making. As it is calculated on a binary classifier, the negative impact 

on class 1 means a positive impact for class 0 classification. 

It can be observed in the figure how the classifier’s output shows the relationship between the feature 

values and class prediction. Feature 46 representing data rate information of the packet shows that most 

of the time when the data rate value is higher in the dataset, it has a positive impact on class 1. In other 

words, most of the data samples with higher data rate falls in “normal” category. 

Similarly, we can deduce the relationship between other MAC layer information and the predictions of 

Random Forest classifier. Feature 60 represents signal strength information in the dataset. According 

to Figure 6.14, lower signal strength values impact positively on class 1. From this finding, we can 

conclude that attackers send information in the network with higher signal strength (using more 

transmission power). Additionally, feature 4 that characterises the time difference between packets from 

a source shows that “Normal” packets are mostly has a lower time delta between packets than attack 

traffic. 

Feature 69 shows the number of retries for a packet. The number of retries is mostly high for “normal” 

traffic, and this can probably be happening because of lower received signal strengths, as shown by 

feature 60 discussed earlier. Finally, feature 11 is the representative of frame control information about 

“more data” flag. The dataset shows that “more data” flag values has a positive impact on class 1.  
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Figure 6.14: Feature Impact on Class 1 in Random Forest 

Figure 6.15 provide further details on the dependence of dataset features deduced by the Random Forest 

classifier. The SHAP value of the feature shows how responsible that feature is for model output change. 

In each subplot of Figure 6.15, each dot represents a sample value from the dataset, Y-axis shows the 

SHAP value of the feature. The X-axis shows the values of the feature, and the colour map corresponds 

to a second feature selected that may have interaction with the feature that is being plotted. Figure 6.14 

provides an overall summary of relationship between the feature values and model output i.e., the 

impact of volume and range of positive and negatives values on the model output. Figure 6.15 reveals 

the reasoning behind model’s behaviour for each sample by considering the impact of each feature on 

classifier’s output for each instance.  

The subplot for feature 4 shows its relation to feature 66 and the SHAP values. The inference from this 

subplot coincides with the one from Figure 6.14: lower values in time delta in packets positively impact 

class 1 (“Normal” data). Feature 8 shows captured packet length and has a mostly positive impact on 

class 1 except for the packets smaller in length.  

Another interesting behaviour is seen for feature 49 which contains Boolean value about channel type 

with Complementary Code Keying (CCK). Feature 49 value “0” (False) Pushes the output of the 

classifier as class 1 whereas the negative values lead to class 0 (“Attack”) predictions. Similarly, feature 

69 also shows a clear separation of positive and negative impacts. It shows that higher transmission 

retries values in dataset positively impact class 1 outcome. Similarly, other features can also be observed 

for their impact on the Random Forest classifiers output during the training process.  
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Figure 6.15: Random Forest Classifier Feature Dependence 

At this point, a detailed analysis on the feature importance for the trained Random Forest classifier is 

provided. The internal strategies for decision making of Random Forest is revealed during its learning 

process i.e., the training process. Now we will discuss about the model performance on the unseen data 

i.e., test samples.  
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Figure 6.16 shows the confusion matrix for the trained Random Forest classifier on the test set. The 

figure shows that most of the normal and attack packets are correctly identified except for a few 

incorrect (1.5%) “Attack” and normal traffic classifications. The FPR for the Random Forest classifier 

is 0.1036, 0.9411 as TPR and 0.9463 F1-Score. 

  

 
Figure 6.16: Confusion Matrix for Random Forest Classifier 

Extra Tree: The Extra Tree or Extremely Randomised Tree is another ensemble based machine learning 

technique. The training process of the Extra tree classifier is similar to Random Forest Classifier. As 

tree depth plays an important role in the model’s efficiency and size, the tree depth is optimised based 

on the ROC score of the model. Figure 6.17 shows the performance of the Extra Tree classifier as the 

tree depth increases. The figure shows that the best performance is achieved when tree depth is 25. The 

performance of the classifier does not increase as we increase the tree depth. Considering the tree depth 

and performance, the best value for the tree depth parameter is 25. 

 

Figure 6.17: ROC values with Extra Tree Depth 
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Figure 6.18 shows the overall feature contribution for the trained Extra Tree Classifier. It can be 

observed that the feature learning is different for Extra Tree classifier and Random Forest as the feature 

contribution in Extra Tree is different to that of Random Forest.  

Feature 49 containing Boolean value about the channel modulation information for CCK is identified 

as the most informative and discriminating feature by the Extra Tree model. The second most influential 

is feature 66, containing frame control subtype. On the other hand, Random Forest as shown in Figure 

6.13 relies mostly on feature 8 that is, frame captured length and feature 3, the data rate. Thus, the least 

two influential features are the same for both classifiers. 

 
Figure 6.18: Average Feature Impact Extra Tree Classifier 

Figure 6.19 shows further details of feature impact on Extra Tree classifier for class 1, i.e., “normal” 

data samples. Feature 4 has the most influence on the Extra tree decision making as discussed above. 

Figure 6.19 shows how the values of feature 4 impact class 1 (“normal”) samples. The low values for 

feature 4 have a positive impact on class 1.  

It can be observed in Figure 6.19 that the overall implications are similar to Figure 6.14. However, the 

Extra Tree classifier provides a clear relationships with feature values and its impact on output class for 

some features. Other than feature 49, feature 68 also shows a clear relationship between values and 

decision class. The impact of Feature 69 is similar to Random Forest. The higher values of the feature 

are pushing the decision of the model towards class 1. 
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Figure 6.19: Feature Impact for Class 1 in Extra Tree Classifier 

In Figure 6.20, further details on feature impact on Extra Trees decision making are shown. Each subplot 

shows the impact of every feature sample in the dataset on the output of the classifier. The final 

implications of Figure 6.20 are similar to Figure 6.15. However, the dependence of the Extra Tree 

classifier on the dataset feature is different. Like Random Forest, the Extra Tree Classifier is trained on 

the same pre-processed dataset and tested on the test set. The Extra-Tree Classifier achieved better 

results than Random Forest, which can be seen by comparing the confusion metrics shown in Figure 

6.16 and Figure 6.21. Extra Tree classifier achieves TPR 0.9631, FPR 0.0724, and F1- Score 0.9755. 

The confusion matrix in Figure 6.21 shows that the Extra Tree classifier shows a great capability in 

correctly identifying “normal” traffic with very few “normal” samples incorrectly identified. Also, the 

Extra Tree has a much lower FPR than the Random Forest classifier. Hence, it can be deduced that the 

Extra Tree classifier is better at classifying bot “attack” and “normal” traffic with higher F1-Score than 

the Random Forest classifier. 
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Figure 6.20: Extra Tree Classifier Feature Dependence 

 
Figure 6.21: Confusion Matrix for Extra Tree Classifier 
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Neural Networks: The third type of machine learning technique employed for this research Neural 

Networks. Figure 6.22 shows the feature contribution in the decision making of the Neural Network 

classifier trained on the pre-processed dataset. The Neural Network classifier has different decision 

making than the other two previously trained classifiers. The Neural Network finds feature 63, the 

information about the frame controller subtype as the most distinguishing feature in classifying the 

samples. The second most informative features are 66 and 74, representing frame control subtype and 

the duration of the transmission respectively.  The Least contribution features are feature 49, 68 and 71. 

On the contrary, Figure 6.18 shows that feature 49 is the highest contributor for extra tree’s decision 

making. “attack” traffic are 68 and 71. 

 
Figure 6.22: Average Feature Impact Neural Network Classifier 

 
Figure 6.23:  Feature Impact on Class 1 Neural Network 
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Figure 6.22 and Figure 6.23 Provides more information about the relationship between SHAP values 

and feature values.  The SHAP values for Neural Networks are computed on 2000 random samples 

from the training dataset because of computational constraints. Figure 6.23 shows a clear relationship 

between the feature values and the classifier’s output. Feature 63 with high range in the training 

instances have a positive impact on class 1 and pushes the decision towards class 0. On the other hand, 

higher values of feature 72 and 74 impacts negatively on class 1 decision making.  Figure 6.24 shows 

how every sample in the dataset contributes by plotting the SHAP value for samples of every feature of 

the dataset in each subgraph. In addition to the feature contribution, Figure 6.24 also shows how the 

Neural Network finds a correlation between two features in the dataset. 

 
Figure 6.24: Neural Network Classifier Feature Dependence 
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Figure 6.25 shows the confusion matrix of the trained Neural Network classifier on the test set. 

Compared to the performance of Random Forest and Extra Tree classifier, the Neural Network has 

lower performance. However, it has a lower FPR than the other two classifiers. It achieves TPR 0.9573, 

FPR 0.0166, and F1- Score 0.9319. 

 
Figure 6.25: Confusion Matrix for Neural Network Classifier 

After training all the three classifiers on the pre-processed dataset, their correctness is tested on the test 

set, a different set of samples unseen to the trained model. Table 6.7 shows the comparison of the 

performance of the three classifiers based on various performance metrics and their training time. In 

addition to performance metrics, Table 6.7 also shows the training time of the three classifiers on a 

windows machine with 16 GB RAM and Intel i5-6500 CPU. The table shows that the Extra Tree 

classifier produces the most promising results on the test set out of all the classifiers. On the other hand, 

as seen from the performance metrics, Neural Network performs poorly in comparison with other 

classifiers, the exception being the FPR value. Low FPR for Neural Network means that it identifies 

the attack data better than other classifiers 

The objective of the first tier classifier is to separate “normal” and “attack” from incoming traffic on 

the network gateway. As the classifier in tier-1 is deployed on network layer, the classifiers are trained 

only on MAC layer information available on the gateway. The gateway devices in networks have 

comparatively more resources than end nodes. However, they still have limited computational power 

and hence it is vital to deploy a lightweight machine learning model on the gateways. The requirement 

of the lightweight classifier caused us to train a binary classifier only for “attack” and “normal” traffic 

rather than training a multiclass classifier for all the attack classes in the dataset. The binary classifiers 

are simple and have lower computational requirements. Considering the memory requirements, the 

Extra Tree classifier proves to be the lightest amongst three trained classifiers in tier-1 capable of 

achieving the highest performance amongst the three classifiers. This makes the Extra Tree classifier 

the fittest model to be deployed as tier -1 classifier on gateways.  
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Table 6.7: Classification Model Results for Classifiers trained in Tier-1 

Classification 

Method 

Training 

Time 

ROC-

AUC 

Score 

Precision Recall 

(TPR) 

FPR F1-

Score 

Random Forest 2.559 sec 0.944244    0.948458 0.941178 0.103615 0.946339 

Extra Tree 1.567 sec 0.963111 0.988770 0.963111 0.072473    0.975526 

Neural Network 181.068 sec 0.957373    0.909776  0.957373 0.01665    0.931961 

 

6.3.3.  Second Tier Classifier for Attack Profiling 

 The objective of tier-1 classification is to segregate the “attack” and “normal” traffic. However, there 

are three types of attacks in the dataset. The tier-2 is designed to identify the type of attacks to take 

appropriate actions against the network attacks. The tier-1 classifier deployed on the gateway redirects 

the “attack” traffic to the tier-2 classifier for attack profiling.  

Table 6.8: Dataset Features for Tier-2 Classifiers 

Dataset Feature Feature Name 

4 frame.time_delta 

8 frame.cap_len 

47 radiotap.channel.freq 

60 radiotap.dbm_antsignal 

63 wlan.fc.type_subtype 

65 wlan.fc.type 

66 wlan.fc.subtype 

67 wlan.fc.ds 

68 wlan.fc.frag 

70 wlan.fc.pwrmgt 

71 wlan.fc.moredata 

72 wlan.fc.protected 

74 wlan.duration 

75 wlan.ra 

140 Wlan.wep.key 

153 data.len 
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Figure 6.26 shows the architecture design for tier-2 classifier used to profile attacks in the networks. 

The architecture takes the pre-processed attack training dataset. The training set has additional features 

as compared to tier-1 phase are added to the model at this stage with an assumption that the model will 

perform better. Table 6.8 shows the features used in training the tier-2 classifiers. The training set is 

divided into three subsets with combinations of two classes in each subset. A separate binary classifier 

is trained on each subset of the dataset. In addition, one multiclass classifier is trained on the whole 

dataset. Thus, in total four classifiers are trained on attack classes. A majority voting mechanism is 

designed for the binary classifiers trained on subsets of attack data in the next step. The testing set is 

given to the all the four classifiers for predictions. Each classifier provides a label (attack type) to the 

test samples. Finally, the class predicted by the majority of the classifiers is assigned as the label to the 

test samples. Now, there can be a scenario where the binary classifiers in the voting mechanism cannot 

come to majority example. In other words, each classifier can predict different class as we have three 

attack categories and three classifiers. In this situation, a multiclass classifier is used as a tie-breaker to 

come to a final concrete result. 

Similar to tier-1, tier-2 also implements three classifiers for training and testing phase. Three different 

subsets with each subset containing two types of attack samples are created. The fourth subset includes 

the complete training set. Using multiple types of classifiers help in developing a more generalised 

outcome for the tier-2 classifiers for attack profiling.  

Consolidated Voting For Final Classification

Dataset Subset 1
(Impersonation & 
Injection attack)

Binary Classifier 1

Dataset Subset 2 
(Impersonation & 
Flooding attack)

Dataset Subset 3
(Flooding & Injection 

attack)

Binary Classifier 2 Binary Classifier 3

Pre-Processed Dataset (Attack Classes)

Final Output (class)
Impersonation/Flooding/

Injection

Tie-Breaker 
Multiclass Classifier

 
Figure 6.26: Tier-2 Classifier's Architecture 
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6.3.3.1. Impersonation and Injection Attack Classifiers 

The first subset of the dataset take has instances of two classes of “attack” samples: “Injection” and 

“Impersonation” attack.  

Table 6.9 shows the number of samples from each class in the training and testing set in the subset. As 

Table 6.9 shows, this “attack” data subset does not have a considerable data imbalance; hence the data 

subset does not need to be balanced. Furthermore, the whole “attack” dataset is pre-processed and scaled 

before the subsets are created. Therefore, there is no requirement to scale the data subset again.  

Table 6.9: Impersonation and Injection Attack Data-Subset Class Instances 

Class Name Train Set Instances Test Set Instances Class Label 

Injection 65,379 16,682 2 

Impersonation 48,522 20,079 1 

 

Radom Forest: The first classifier trained on the “Impersonation” and “Injection” attack data subset is 

the ensemble based Random Forest classifier. Provide interpretability for Random Forest model 

behaviour, SHAP values are calculated for each classifier. Figure 6.27 shows the overall contribution 

of dataset features on the decision making of the classifier. The highest contribution on “Impersonation” 

and “Injection” classes are made by feature 75 and feature 74 containing information about the 

receiver’s address and transmission duration of the packets, respectively. There are several features in 

the subset that are not contributing towards classifier's decision-making. Such as feature 68, 8, 47, and 

71 where Feature 68 and 71 represents frame control information; feature 8 represents information about 

data length captured, and feature 47 samples represent the channel frequency information.  
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Figure 6.27: Average Feature Impact Classifier 1 (Random Forest) 

Figure 6.28 shows the association of feature values and classifier’s decision for class 1 

(“Impersonation”) attack samples. It shows that feature 75 contributes positively towards class 1 when 

the samples have a higher value. Similarly, feature 74 has information about transmission duration that 

contributes positively towards class 1 when it has lower values. Alternatively, it can be said that samples 

with lower transmission duration are more likely to be an “impersonation” attack and with a higher 

duration “injection” attack. Feature 70 also shows the same trend where higher values are contributing 

positively towards class 1. Feature 72, 153, 140, and 65 contribute positively towards class 1 in an 

opposite manner, the lower values for these features pushes the decision making of the Random Forest 

classifier towards class 1. 

The SHAP describes how and what the classifier has learned from the training set. After training the 

classifier on two classes, the classifier is validated on the test set. During validation, the test set with all 

the three classes of attack data are used to check how the classifier classifies the unknown samples. 

Figure 6.29 shows the confusion matrix of the Random Forest classifier on “Impersonation” and 

“Injection”. It shows that the classifier accurately classifies the samples of class 2 (“Injection” attack). 

However, class-1 has considerable True Negatives in the classification and are labelled as class 2, which 

means that the classifier has difficulties creating a decision boundary for many cases.  
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Figure 6.28: Feature Impact on Class 1 Classifier 1 (Random Forest) 

 
Figure 6.29: Confusion Matrix Classifier 1 (Random Forest) 

Extra Tree: The second classifier tested for the “Impersonation” and “Injection” attack dataset is 

another ensemble based machine learning model named Extra Tree Classifier. It is trained on the same 

pre-processed as Random Forest classifier. Figure 6.30 shows the learning of the Extra Tree classifier 

from various features in the data subset and how they impact the classifier's decision making. 

Figure 6.30 shows that the Extra Tree classifier gives different priorities to various features during the 

learning process as compared to the Random Forest classifier. Feature 74 has been identified as the 

most contributing attribute in deciding the class label for the training process. The second most 

important feature is feature 67 that contains the information about frame control Distributed System 

Status. And the third most contributing feature is feature 75 which represents the information about the 

receiver’s address. 
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The Random Forest classifier finds feature 75, 67, 74 in the dataset as the top three impactful features 

but in a different order. The Random Forest relies most on the receiver’s address while keeping feature 

74 and feature 67 at positions second and third, respectively. 

Figure 6.31 provides further details on the relationship of feature values and decision making of the 

Extra Tree classifier. Although the order of feature contribution is different for the Extra Tree classifier, 

the relationship of the feature values and the classifier’s decision for “impersonation” class is the same 

as Random Forest. The higher values for the transmission duration shown by feature 74 are impacting 

negatively on class 1, meaning the impersonation attack samples mostly have lower transmission 

duration than the injection attacks. Feature 67 signifies which direction the packets are travelling. The 

higher values of feature 67 are mostly positively impacting class 1 as they were in Random Forest. 

Feature 70, containing the value of power management flags with higher values are more likely to be 

“impersonation” attack than “injection” attack as shown with the SHAP value in Figure 6.31. Further, 

for features 63, 60, and 65 samples with lower value impacts positively on “impersonation” attack 

samples. 

 
Figure 6.30: Average Feature Impact Classifier 1 (Extra Tree) 
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Figure 6.31: Feature Impact on Class 1 Classifier 1 (Extra Tree) 

Figure 6.32 shows the confusion matrix on how the classifier performs on the test set with all three 

classes in the dataset. It shows that the Extra Tree classifier has better performance in classifying both 

“Impersonation” and “Injection” attack. It has much lower number of True Negatives for 

“impersonation” attack than Random Forest. It is also evident that both the Random Forest and Extra 

Tree classifier label all the “Flooding” attack data unknown to the classifier as “Impersonation” attack. 

This signifies that “Flooding” and “impersonation” attack samples have similar properties that are being 

used by the classifiers to decide on label 1, the “Impersonation” attack. 

 
Figure 6.32: Confusion Matrix Classifier 1 (Extra Tree) 

Neural Networks: After Experimenting with Random Forest and Extra Tree classifier on the first 

subset of the dataset, a different type of machine learning technique i.e., neural network is tested on 

the same data subset of “Impersonation” and “Injection” attack. A three layer Neural Network was 
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trained with 16 input nodes, 50, and 10 nodes in hidden, and 3 nodes in output layers with Adam 

optimiser and tanh activation function (same as tier-1 neural network classifier).  

Figure 6.33 shows how the Neural Network learns from the features in the dataset. It shows that Neural 

Network is highly influenced by feature 75 and 74 while having low impacts from all the other feature. 

It can be observed that the Neural Network classifier's decision-making uses almost all the features 

available in the dataset. On the contrary, Extra Tree and Random Forest classifiers ignore the less likely 

features to contribute to the decision making. 

Figure 6.33 shows that the Neural Network decision making is also getting highly influenced by feature 

74, similar to Extra Tree. In other words, transmission duration of the packet in the dataset contains 

enough information that has helped the classifiers in categorising different attacks. The second most 

important feature is 74, followed by feature 70. However, the rest of all the features have a very low 

impact on Neural Network’s decision making. 

 
Figure 6.33: Average Feature Impact Classifier 1 (Neural Network) 

Figure 6.34 shows the dependence of class 1 decision of the values of feature samples. Neural Networks 

have the same correlation for class 1 decision making and feature values as ensemble methods. Feature 

74 contains the value of transmission duration impacts positively. All the tree trained classifiers 

implicate that “Impersonation” attackers have lower transmission duration than “Injection” attacks on 

the network. 
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Figure 6.34: Feature Impact for Class 1 Classifier 1 (Neural Network) 

Features 70 and 67 have positive contribution with high value data samples. On the contrary, features 

63, 65, 72, 140, and 153 with lower values favour the model towards “Impersonation”. The only feature 

that is not contributing to the decision making of Neural Network is feature 71. 

After the training, the test set is introduced to the trained classifier to make predictions. Figure 6.35 

shows the confusion matrix of the Neural Network. It can be seen that True Negative for 

“Impersonation” attack is the highest amongst all the three other classifier. The performance in the 

classification of “Injection” attack is the same for all three classifiers. However, Neural Network fails 

to identify the “Impersonation” attack samples effectively. All the class 0 (“flooding” attack) samples 

unknown to the Neural Network are classified as class 1, which is the common observation in other two 

classifiers as well. 

 
Figure 6.35: Confusion Matrix Classifier 1 (Neural Network) 
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In the above sections we described how the three different classifiers learnt from various features in the 

training dataset for their decision making process. Table 6.10 shows the brief summary about the various 

features and their level of contribution to the classifiers’ decision making.  It can be observed that some 

features like 74, 75 and 70 of the features constantly play important role in decision making, whereas 

many features are not utilised by some of the classifiers. For example, the Extra Tree depends on the 

least number of feature in this data subset, whereas the Neural Network relies on most of the features 

in the data subset. 

For “Impersonation” and “Injection” attacks, the most decisive feature is proven to be feature 74, 

containing the information about transmission duration, followed by feature 75 that carries information 

about the receiver’s address. On the other hand, feature 70 representing frame control information about 

power management consistently contributes to all the classifiers. It is assumed that signal strength 

(feature 60) carries important information about the network nodes. However, it has a comparatively 

lower contribution in classification of the “Impersonation” and “Injection” attacks. Feature 71, on the 

other hand, is not contributing to the decision making of any classifier. 

In this subset, the results on “Flooding” attack samples are ignored as these classifiers are not trained 

on “flooding” attack samples .Looking at the performance of the three trained classifier, it is evident 

that even after learning from the least number of features, Extra-Tree Classifier is the most effective 

classifier amongst the three trained classifiers. It has the lowest True Negatives and False Positives for 

“Impersonation” and “Injection” attack samples. On the other hand, the Neural Network has the lowest 

performance amongst the tree three with a high True Negative for “Impersonation” attack samples. 

Neural Network could not learn effectively from the features and hence could not detect patterns to 

distinguish the two attack grows. Because of this, the performance of Neural Network is comparatively 

poor. 

Table 6.10: Feature Contribution Summary for Classifiers on "Impersonation" and "Injection" Attack 

Data-Subset 

Dataset Feature Feature Name Random Forest Extra Tree Neural Network 

4 frame.time_delta Average Nil Very Low 

8 frame.cap_len Nil Nil Very Low 

47 radiotap.channel.freq Nil Nil Very Low 

60 radiotap.dbm_antsignal Low Low Very Low 

63 wlan.fc.type_subtype Low Low Low 

65 wlan.fc.type Very Low Very Low Low 

66 wlan.fc.subtype Very Low Very Low Very Low 

67 wlan.fc.ds Average Very High Low 

68 wlan.fc.frag Nil Nil Very Low 



151 
 

Dataset Feature Feature Name Random Forest Extra Tree Neural Network 

70 wlan.fc.pwrmgt Average Average Average 

71 wlan.fc.moredata Nil Nil Nil 

72 wlan.fc.protected Very Low Low Low 

74 wlan.duration High Very High High 

75 wlan.ra Very High High Very High 

140 Wlan.wep.key Very Low Nil Low 

153 data.len Very Low Nil Very Low 

 

6.3.3.2. Impersonation and Flooding attack Classifier 

The second subset of data comprises samples of “Impersonation” and “Flooding” attack from the 

original attack subset. The pre-processed attack dataset is filtered for these two classes to train binary 

classifiers. Table 6.11 shows the summary of the data subset with the number of test and train samples. 

In each attack group the dataset is also already cleaned during the pre-processing steps. Further, we 

discuss how the three classifiers perform on this data subset and how the classification algorithms learn 

from the features. 

Table 6.11: Impersonation and Flooding Attack Data-Subset Class Instances 

Class Name Train Set Instances Test Set Instances Class Label 

Impersonation 48,522 20,079 1 

Flooding 48,484 8,097 0 

Random Forest: Similar to the first subset of “Impersonation” and “Injection” attack samples, the first 

classifier trained on the current data subset is the Random Forest ensemble classifier.  

Figure 6.36 provide details of the overall impact of various features on the classifier’s decision making 

process. It shows that the most impactful feature for “Flooding” and “Impersonation” classes is feature 

153. Feature 153 contains information about the data length of the packet. The second most impacting 

feature is feature 8 which contains information about frame length. Interestingly, these two particular 

features had almost no contribution in the decision making of Random Forest for “Impersonation” and 

“Injection” attack data-subset. The addition of “Flooding” samples causes feature 153 and feature 8 to 

contribute heavily implicate how the packet’s data length and frame length are different from the 

average for “Flooding” samples. Also, feature 63 and 65 had very low contribution in decision making 

of Random Forest in the absence of “Flooding” attack samples but have high contribution with flooding 

attack data samples. 
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Figure 6.36: Average Feature Impact Classifier 2 (Random Forest) 

Figure 6.37 shows the relationship of sample values and decision making of Random Forest in current 

dataset. Figure 6.37 shows the impact on class 0 (“Flooding” attack) with correlation to feature value 

of each sample. The lower values of feature 153 have a positive impact on the class 0 decisions of 

Random Forest. Similar trends can be seen with feature 8 where the lower values have a positive impact 

on class 0. Based on implications from Figure 6.37, data with low data length and frame length are most 

likely to be “Flooding” attack samples. Similarly, lower values of features 65, 67, 140, and 72 positively 

impact class 0 decisions of the Random Forest classifier. The low contributing features in the 

“Impersonation” and “Injection” data-subset stated are contributing in “Flooding” and “Impersonation” 

attack data subset in classifications. It show that some features are very specific to certain types of 

attacks. 
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Figure 6.37: Feature Impact on Class 0 Classifier 2 (Random Forest) 

Figure 6.38 shows the confusion matrix of the Random Forest classifier trained on the second attack 

data subset. The current data subset contains class 0 and class 1. The samples of Class 2 are not known 

to the current Random Forest classifier. The confusion matrix in Figure 6.38 shows that the Random 

Forest classifier has promising performance on both “Flooding” and “Impersonation” attack samples. 

Unlike with the “Impersonation” and “Injection” attack, the current Random Forest has much lower 

False Positives and True Negatives. Also, almost all the samples from unknown class (class 2) are being 

classified as class 1. Which means all “Injection” attack samples are being classified as “Impersonation” 

attack.  

 
Figure 6.38: Confusion Matrix Classifier 2 (Random Forest) 

Extra Tree: The second classifier tested of “Flooding” and “Impersonation” attack dataset is Ensemble 

based Extra Tree ensemble based classifier. Figure 6.39 shows the overall summary of various features 

with their level of contribution towards the classification. Similar to Random Forest, feature 153 
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remains the most impactful feature in the Extra Tree classifier's decision-making. However, feature 8 

contributes comparatively less for Extra Tree than Random Forest. In addition, feature 70 that holds the 

information about power management was not being used by Random Forest, is seen to be contributing 

much more in this case. On the other hand, feature 140 that was seen contributing highly to Random 

Forest’s decision making is not being used by the Extra Tree classifier. 

The Extra Tree classifier was not using all the features in the “Impersonation” and “Injection” attack 

data-subset. The features that were not contributing in the Extra Tree classifier for first data-subset  

 
Figure 6.39: Average Feature Impact Classifier 2 (Extra Tree) 

Feature contribution of Extra Tree and Random Forest have many differences shows how different each 

model learn from the different features. Figure 6.40 shows more details on the learning of the Extra 

Tree classifier from the data-subset features by highlighting the feature’s value impact on the classifier’s 

decision making. 

The range of positive and negative values of the features impacting the classifier’s decision is similar 

to the Random Forest classifier. Feature 153 lower values have a positive contribution towards the 

“flooding” attack and favours the “Impersonation” attack with higher values. Feature 8 had a high 

contribution in Random Forest and is contributing comparatively lower in Extra Tree. However, similar 

to Random Forest, feature 8 contributes positively towards “Flooding” with lower valued samples and 

favours “Impersonation” attack samples with higher values. Also, feature 140 had a high contribution 

for the Random Forest classifier of the second data subset which was not being used by the Extra Tree 

classifier on first data subset. In the case of Random Forest, the lower valued samples of feature 14 

contributed positively to class 0 decisions. However, it does not show any effect on Extra Tree 

classifiers decision making.  Other than feature 140, Extra Tree also does not use features 47, 71, and 
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68. Similar behaviour was seen in the decision making process of Random Forest for classifying 

samples with “Impersonation” and “Flooding” attacks. 

 
Figure 6.40: Feature Impact on Class 0 Classifier 2 (Extra Tree) 

Figure 6.41 shows the confusion matrix of the Extra Tree classifier trained on the second data subset. 

The test-set samples are fed to the classifier, and the confusion matrix is calculated on predicted and 

actual samples. As shown in Figure 6.41, the Extra Tree classifier for class 0 and class 1 (“Flooding” 

and “Impersonation”) performs well on the test set. It has very low true negatives and false positive for 

both “Flooding” and “Impersonation” attack samples. However, compared to Random Forest, the True 

negative for “Flooding” attack (class 0) samples are higher. The Extra Tree shows better performance 

in classifying “Impersonation” attack (class 1) samples. Similar to Random Forest, the unknown class 

2 (“Injection” attack) samples are labelled as class 1. 

 
Figure 6.41: Confusion Matrix Classifier 2 (Extra Tree) 
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Neural Network: The third classifier trained on the second subset of data is Neural Network. The two 

Ensemble based classifiers trained on “Flooding” and “Impersonation” attack dataset have shown 

promising results. The Neural Network is fed the same data to learn. The Neural Networks shows a 

different learning behaviour, as shown in Figure 6.42. It shows a different level of contribution each 

feature is showing towards the learning process of the model. Unlike the ensemble methods, the Neural 

Network decision making is highly impacted by transmission duration information of the data packet 

contained in feature 74. Feature 74 had a low contribution in the decision making of Extra Tree and 

Random Forest Classifiers. Neural Network gives high importance to the receiver address in the 

decision making. On the other hand, the ensemble method’s decision making does not learn from the 

receiver’s address. 

Similar to the previous modelling of “Impersonation” and “Injection” using Neural Network, the current 

model also tries to learn from all the given features. Most of the features can be seen contributing fairly 

to Neural Networks decision making. On the other hand, ensemble methods have comparatively fewer 

high contributing features in decision making. 

 
Figure 6.42: Average Feature Impact Classifier 2 (Neural Network) 

Figure 6.43 has more details on feature contribution, how they impact class 0 decision making in Neural 

Network. Neural Network shows similar behaviour with respect to feature values and its decision 

making as ensemble methods. Despite of different feature contributions for each classifier, the 

relationship between the SHAP values and the feature values for each sample is the same across all the 

classifiers. 
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Figure 6.43: Feature Impact on Class 0 Classifier 2 (Neural Network) 

The Neural Network’s learning follows a different route in weighing the features to decide the output 

label. Figure 6.44 shows the confusion matrix for Neural Network trained on the second subset of data. 

The confusion matrix shows that Neural Network performs much lower in identifying class 0 and class 

1 samples than Extra Tree and Random Forest classifiers. The Neural Network performs comparatively 

well on class 0 (“flooding” attack) samples. However, it has a high True Negative for class 1 samples 

(“Impersonation” attack). Class 2 is the unknown class to the Neural Network, the Neural Network 

classifies it as Class 1 similar to ensemble based classifiers. 

 

Figure 6.44: Confusion Matrix Classifier 2 (Neural Network) 

The tree classifiers tested on the second dataset of “Impersonation” and “Flooding” attack samples. The 

performance of every classifier varies on the test set. Comparing the confusion matrix for all the three 

classifiers, it is evident that Random Forest performs best in classifying “Flooding” and 

“Impersonation” attacks. Neural Network performs the worst out of the three classifiers. It has very 
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high false positives for class 0. The Neural Network shows incapability in classifying the 

“Impersonation” attack samples.est impact for decision making. 

Table 6.12 shows the summary of how the features are impacting all the classifiers. The table shows 

how all the classifiers are using features with different importance. In some cases, the features are not 

being used by any classifier. For the second dataset of “Impersonation” and “Flooding” samples, all the 

classifiers do not give much importance to the time delta between packets represented by feature 4. 

Also, several features are not being utilised by any classifier, i.e. feature 68 and feature 71. The captured 

frame length in feature 8 contributes high in ensemble methods, and Neural Network gives it less 

importance. Feature 65 that carries the frame control information, is being utilised by all classifiers. 

Considering the performance of the three classifiers, the ensemble methods are performing much better, 

and the Random Forest classifier proves most capable in classifying “Flooding” and “Impersonation” 

attack samples. The Random Forest uses frame length and data length features with the highest impact 

for decision making. 

Table 6.12: Feature Contribution Summary for Classifiers on "Impersonation" and "Flooding" Attack 

Data-Subset 

Dataset Feature Feature Name Random Forest Extra Tree Neural Network 

4 frame.time_delta  Low Very Low Low 

8 frame.cap_len Very High Average Low 

47 radiotap.channel.freq Nil Nil Very Low 

60 radiotap.dbm_antsignal Low Very Low Low 

63 wlan.fc.type_subtype High Average Average 

65 wlan.fc.type High High High 

66 wlan.fc.subtype Average Average Average 

67 wlan.fc.ds High High High 

68 wlan.fc.frag Nil Nil Nil 

70 wlan.fc.pwrmgt Very low Average Average 

71 wlan.fc.moredata Nil Nil Nil 

72 wlan.fc.protected Average High Average 

74 wlan.duration Low Low Very High 

75 wlan.ra Low Low High 

140 wlan.wep.key High Nil Average 

153 data.len Very High Very High Average 
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6.3.3.3. Flooding and Injection Attack Classifier 

The third and final attack subset of the data is for “Flooding” and “Injection” attack samples. Table 6.13 

shows the overview of the current subset of dataset. The “Flooding” class is labelled as 0 and “Injection” 

as 2. As the data is already pre-processed, it can directly be fed to the classification algorithm for 

training.  In the third subset, the number of samples for “Injection” attack are higher than the “Flooding” 

attack samples. However, the bias is not very high as the class 0 samples are 42.5% of the totals samples. 

Since the imbalance is not too severe, class balancing is not considered. 

Table 6.13: Flooding and Injection Attack Data-Subset Class Instances 

Class Name Train Set Instances Test Set Instances Class Label 

Flooding 48,484 8,097 0 

Injection 65,379 16,682 2 

Random Forest: Following a similar pattern as before, Ensemble based method Random Forest is 

trained first on the third data subset. Figure 6.45 shows the summary of the Random Forest’s learning 

from the features in the dataset. 

The Random Forest classifier decision making is mostly impacted by the captured frame length stored 

in feature 8, followed by the data length values stored in feature 153. Comparing the learning of Random 

Forest in the second subset of “Impersonation” and “Flooding” attack samples, the feature impact on 

decision making for Random Forest is almost similar. The Random Forest gets highly impacted by the 

data length and frame length fields of the received packets in both cases. However, the case is different 

in the first subset of “Impersonation” and “Injection” attack samples.  

The similarity of learning in the Random Forest classifier becomes clearer as the samples of “Flooding” 

attack are added to the data subsets. This indicates that the “Flooding” attack samples have difference 

in the properties of data from “Injection” and “Impersonation” attack, and the classifiers have clearer 

decision boundaries between “Flooding” and other attack samples in the dataset. Features for both the 

classes have clear difference, this means the quality of data is good and hence classification is effective 

i.e., the decision making.  
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Figure 6.45: Average Feature Impact Classifier 3 (Random Forest) 

Figure 6.46 has more details on feature contribution, how they impact class 0 decision making in 

Random Forest. It shows that the samples with smaller frame length and data length contribute 

positively towards class 0. The feature value and decision making correlation for Random Forest on the 

third data subset also similar to that for the second data subset. Other than the top two contributing 

features, feature 63, 65, 67, 140, 72 with lower values positively impact class 0. 

 
Figure 6.46: Feature Impact on Class 0 Classifier 3 (Random Forest) 

Figure 6.47 shows the confusion matrix for the attack test set for Random Forest trained on the third 

data subset. In the case of “Flooding” and “Injection” attack samples (class 0 and class 2), the Random 

Forest shows exceptional results in the classification of both classes. The model performance in this 
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case is better than the Random Forest model while trying to classify Flooding” and “Impersonation” 

attack samples. It can be observed that most of the class 1 samples that were unknown to the classifiers 

are mostly classified as class 2. But there are several samples classified as class 0. 

 
Figure 6.47: Confusion Matrix Classifier 3 (Random Forest) 

Extra Tree: The second classifier trained on the third subset of data is the Extra Tree classifier. Figure 

6.48 summarises the learning of the Extra Tree classifier from features in the third subset. The top 

contributing feature for Extra Tree is feature 153 which contains information about the data length of 

the captured packet. The Extra Tree classifier shows similarity in learning from features with the Extra 

Tree classifier on the second data subset. Both Random Forest and Extra Tree classifier’s show 

similarity learns from the same features for their decision making process. “Flooding” attack samples. 

However, the Extra Tree classifier has does not find feature 140 to be containing distinguishing 

information which had a high contribution in the case of the Random Forest classifier. It uses feature 

70, which was not utilised in the case of the Random Forest classifier. 
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Figure 6.48: Average Feature Impact Classifier 3 (Extra Tree) 

Considering details shown in Figure 6.49 on feature values impact on the class 0 (“Flooding” attack) 

decision making and comparing it with the Random Forest classifier shown in Figure 6.46 on third data-

subset; the Random Forest classifier has a clearer decision boundary based on how it differentiates 

between the classes while learning from the features. For instance, feature 67 in Figure 6.46 shows that 

Random Forest finds a clear correlation where lower values positively impact class 0. Similarly the 

Random Forest shows clear learning from feature 75 values and how they impact the class 0 decision 

making as shown in Figure 6.46: Feature Impact on Class 0 Classifier 3 (Random Forest)Figure 6.46. 

As mentioned earlier, the Extra tree ignores feature 140 that had a high contribution in Random Forest. 

However, it uses feature 70 for decision making that Random Forest did not use, as shown in Figure 

6.45 and Figure 6.46. Figure 6.49 shows that even though feature 70 contributes to decision making, 

the classifier uses all the feature values in favour of class 0 decision making. That means that the 

classifier does not find information to utilise feature 70 well in decision making. 
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Figure 6.49: Feature Impact on Class 0 Classifier 3 (Extra Tree) 

Figure 6.50 shows the confusion matrix for the trained Extra Tree Classifier on the test set. The 

performance of Extra Tree classifiers is comparatively lower than Random Forest classifier trained on 

the same data subset. The Extra Tree has comparatively higher false positives for class 0 samples. 

However, for class 2, they both perform the same. If we compare the performance on class 0 with Extra 

Tree trained on the second data-subset of “Flooding” and “Impersonation” attack samples, the current 

Extra Tree classifier has comparatively lower performance. As for class 1 that was not known to the 

classifier, both Random Forest and Extra Tree have the same results in the confusion matrix. 

 
Figure 6.50: Confusion Matrix Classifier 3 (Extra Tree) 

Neural Network:  The Neural Network is trained after the ensemble methods to test how it performs on 

the third subset comprising “Flooding” and “Injection” attack samples. Figure 6.51 summarises the 

learning of the Neural Network from the features of the dataset. The contribution rank of features is 

different from ensemble based classifiers. The ensemble methods were affected mostly by the data 
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length or frame length of the captured packets. However, the Neural Network relies more on feature 75 

and feature 74 containing information about the receiver’s address and transmission duration, 

respectively. The Neural Network mostly utilises the features that were not contributing much in 

ensemble based classifiers. Also, the neural network utilises a higher number of features for decision 

making. The only feature that is not contributing in the case of Neural Network is feature 71. In the 

second subset, the Neural Network relies on more features and prioritises transmission duration over all 

the other features for decision making. 

 
Figure 6.51: Average Feature Impact Classifier 3 (Neural Network) 

Explaining the Neural Network further, Figure 6.52 shows details on how different feature values are 

impacting class 0 decisions. Features 75 and 74 on the top in Figure 6.52  shows that lower values for 

feature 75 and higher values of feature 74 contribute negatively for class 0. However, the Neural 

Network is not able to clearly distinguish between the feature values contributing positively to class 0 

decisions. However, the Ensemble-based classifiers can differentiate how the values contribute to class 

0 in both directions. As Figure 6.52 suggests, for most features in the case of Neural Network, it is not 

able to find how a feature contributes positively towards class 0. 
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Figure 6.52: Feature Impact on Class 0 Classifier 3 (Neural Network) 

As shown in Figure 6.53 as a confusion matrix on the test set. The Neural Network performs the same 

as the ensemble methods on the test set and has very high performance in detecting both class 0 and 

class 2 sample correctly. Moreover, for the unknown class 1 to the classifier, it shows the same results 

as ensemble based classifiers. 

 
Figure 6.53: Confusion Matrix Classifier 3 (Neural Network) 

Table 6.14 shows the summary of how the features contribute to the classifiers trained on the third data 

subset. The table shows how the three classifiers use features for their decision making. Feature 71 that 

store the value of frame control more data flag is not being used by any classifier trained on the third 

subset. Features 74 and 75 are not utilised by any ensemble classifiers trained. However, it contributes 

a lot to Neural Networks. Feature 153 and feature 8 is being utilised most by ensemble, but underutilised 

by the Neural Network. However, the performance of all the three classifiers is almost similar for the 

third subset. 
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Table 6.14: Feature Contribution Summary for Classifiers on "Injection" and "Flooding" Attack 

Subset 

Dataset Feature Feature Name Random Forest Extra Tree Neural Network 

4 frame.time_delta Very Low Very Low Very Low 

8 frame.cap_len Very High Average Very Low 

47 radiotap.channel.freq Nil Nil Very Low 

60 radiotap.dbm_antsignal Low Very Low Low 

63 wlan.fc.type_subtype High Average Average 

65 wlan.fc.type High High Average 

66 wlan.fc.subtype Low Low Average 

67 wlan.fc.ds High Average Low 

68 wlan.fc.frag Nil Nil Very Low 

70 wlan.fc.pwrmgt Nil Low Average 

71 wlan.fc.moredata Nil Nil Nil 

72 wlan.fc.protected Average High Average 

74 wlan.duration Very Low Nil Very High 

75 wlan.ra Low Low Very High 

140 wlan.wep.key Average Nil Average 

153 data.len Very High Very High Average 

 

6.3.3.4. All Attack Classifier 

Once the classifiers are trained on each subset of data, finally, a multi-class classifier on all the attack 

classes is trained as a tie breaker classifier if all the classifiers classify the test samples to different 

classes and don’t come to a majority agreement in the classifiers voting. Table 6.15 shows the 

composition of the attack dataset in AWID-CLS dataset, since the dataset is fairly balanced and was 

pre-processed, it is directly fed to the three multi-class classifiers trained on the attack dataset. 

Table 6.15: Attack Dataset Class Composition 

Class Name Train Set Instances Test Set Instances Class Label 

Injection 65,379 16,682 2 

Impersonation 48,522 20,079 1 

Flooding 48,484 8,097 0 

Random Forest: The first multi-class classifier trained on the attack dataset is the Random Forest 

classifier. Figure 6.54 shows a summary of feature impact on Random Forest’s decision making. It 

shows that Random Forest learns a lot from feature 153 that stores information about the data length of 
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the captured packet. This feature contributes highest towards class 0 and lowest for class 1. The second 

most contributing feature is 67 containing the information about the direction of the frame. Feature 67 

is the least contribution to class 0 and mostly contributes to class 1. The figure shows some features like 

74 and 70 that only contribute for class 1 and 2 and not for class 0. Feature 8 that stores information 

about frame length has not contributed to class 1. And out of all features, four features are not being 

used by the classifiers for the decision making. 

 
Figure 6.54: Average Feature Impact Multi-Class Random Forest 

Figure 6.55 shows further details on how the features contribute to each class in the multi-class Random 

Forest classifier. Figure 6.55(a) describes the feature impact on class 0 during the training process. It 

shows that feature 153 has a high positive impact on class 0 when the values are lower. However, in 

most cases, the higher values of the feature push the decision making towards other classes. The same 

is the case with feature 63. It can also be observed in Figure 6.55(a) that a few samples with values for 

feature 153 and 63 are contributing positively for class 0, which can cause difficulty in generalisation 

of classifier for class 0. The higher values of feature 8 have a very high negative impact on class 0. The 

other features have comparatively lower contribution in class 0 decision making. 

Figure 6.55(b) shows learning for class 1. Feature 67 with high values have a positive impact on class 

1 decision making. The second most contributing feature is feature 74 that contains the information 

about the transmission duration of the packet. The lower values of the transmission duration influence 

the Random Forest classifier towards class 1. Feature 153 contributing the most for class 0 shows a 

mixed correlation between values and the influence for class 1.  Feature 4 that stores the frame time 

delta, also shows a clear relationship between its values and contribution for class 1. The higher values 

of the time delta influence the classifier towards class 1. 
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Figure 6.55(c) shows the information on how Random Forest learns for class 2. In the case of class 2 

the Random Forest is not utilising many features. It has detected a correlation between class 2 and 

feature 75 that contains the information about the receiver’s address of the packet. The second most 

contributing feature is 74, which is common for class 1 and class 2. However, the correlation with class 

2 and feature 74 values is the opposite of class 1. Feature 153 also contributes to class 2. However, the 

correlation of values and class 2 shows similarity with class 1. Figure 6.55(c) shows that the classifier 

cannot clearly draw a decision boundary for class 2. It struggles to find a clear correlation between 

feature values and class 2 and does not utilise most of the features for class 2. 

 
Figure 6.55: Feature Impact Multi-Class Random Forest for Attack Classes (a) Class 0 (b) Class 1 (c) 

Class 2 

After training the Random Forest on the attack dataset, it was validated on the attack test set. Figure 

6.56 shows the confusion matrix for the multi-class Random Forest classifier. Figure 6.56 shows that it 

performs very well on class 0 with very low false positives and true negatives. It means that “Flooding” 

attack samples are very well detected. 

Similarly, for class 2, it classifies the samples correctly most of the time. However, in the case of class 

1, it has a very high true negative where class 1 samples are misclassified as class 2. This implicates 

that when the Random Forest is trained on all the attack classes, it struggles to differentiate between 

“Impersonation” and “Injection” attack samples. 
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Figure 6.56: Confusion Matrix Multi-Class Random Forest Classifier 

Extra Tree: The second multi-class classifier trained on the attack dataset is the Extra Tree classifier. 

Figure 6.57  summarises how Extra Tree learns from features for all the classes. In the case of Extra 

Tree, feature 74 is the most influential factor in its decision making. It mostly impacts class 1 and class 

2. It has a very low contribution for class 0, which means that Extra Tree uses transmission duration 

values to differentiate between “Impersonation” and “Injection” attack samples. Unlike Random Forest, 

Extra Tree has not given much importance to Feature 153. The second most contributing feature is the 

same for both Extra Tree and Random Forest, i.e., feature 67. Features 72 and 65 are the third and fourth 

most influential features. However, they contribute higher towards class 0 and class 2 and have less 

contribution for class 1.  

Several features only contribute to the learning of class 0 and class 2, for example, features 140, 60, and 

4. Feature 8 has a very low influence on class 2 decision making. It is evident from Figure 6.57 that the 

features 153, 63, 65 and 72 have a comparatively stronger influence on class 0 and class 2. However, 

class 1 has a lower contribution by most features in the attack dataset. 
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Figure 6.57: Average Feature Impact Multi-Class Extra Tree Classifier 

Figure 6.58 shows how feature values influence the decision making of the Extra Tree classifier for the 

three classes available in the attack dataset. Figure 6.58(a) shows the feature value impact on the model 

output of class 0. For class 0, features 72, 65, and 67 are the top three influencers. The model can find 

the relationship between the feature value and how they influence the classifier’s output for class 0. The 

top three contributing features have a positive impact on the class 0 decision with lower values. Feature 

153 also shows a clear relationship with values and class 0 decisions as the lower values of the feature 

153 have a positive impact on class 0 outputs. For all the other features, the model does not find a 

relationship between class 0 and feature values as shown in Figure 6.58(a). 

Figure 6.58(b) shows how Extra Tree relationship between feature values and SHAP values for class 1 

during the training process.  The most noteworthy feature for class 1 is feature 74 with information 

about the transmission duration of the captured packet. The lower duration packets have a positive 

impact on class 1. In other words, packets with lower transmission duration have a high probability of 

being an “Impersonation” attack sample in the dataset. The second most influential is feature 67 with 

higher values mostly positively contributing to class 1. Other than the top two contribution features, the 

higher values of features 70, 4, 140, and 153 have a positive impact on class 1 output. The rest of the 

features do not show a clear correlation between their values and class 1 output of the Extra Tree 

classifier. 

The Extra Tree Classifier’s learning for class 2 is shown in Figure 6.58(c). Feature 74 is the most 

influential feature and shows a clear relationship with class 2. The higher values of feature 74 influences 

positively to class 2. The second most influential feature 72, also shows the same relation with class 2 

decisions. The Extra Tree fails to use many features of the dataset in class 2 decision making and relies 
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only on a few of them. In some cases, like feature 67, 60, 4, and 140 the relation to the feature values 

is unclear to the model output as shown in Figure 6.58(c). Similar to multi-class Random Forest trained 

on attack dataset, Extra Tree also is not effective in creating a decision boundary for class 2. 

 
Figure 6.58: Feature Impact Multi-Class Extra Tree for Attack Classes (a) Class 0 (b) Class 1 (c) 

Class 2 

Figure 6.59 shows the confusion matrix of the multi-class Extra Tree classifier on the attack test set. In 

comparison to Random Forest, Extra Tree has lower performance for class 0. It has a higher number of 

samples incorrectly identified as class 1. For class 1 and class 2, both Random Forest and Extra Tree 

have similar performance. They both struggle to correctly identify the class 1 samples as they have a 

high True Negative for class 1. 

 
Figure 6.59: Confusion Matrix Multi-Class Extra Tree Classifier 

Neural Network: The multi-class Neural Network is trained after the ensemble methods on the attack 

dataset to explore the learning and performance of Neural Networks on the attack dataset. Figure 6.60 

show the summary of feature contribution for the attack classes in the dataset. The Neural Networks are 

utilising more features for decision making than the ensemble based methods. 
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The highest contributing feature 8, containing the values for captured frame length has a very low 

contribution in class 2 decision making. However, it highly contributes to class 1 and class 0. The 

second most influential feature is feature 74 that has information about the transmission duration of the 

packet. However, the difference between the impacts of the top two contributors is huge, implicating 

that the Neural Network has a high reliance on feature 8 for decision making, and other features have 

comparatively lower contribution. Also, most of the features have a low contribution for class 2 decision 

making. Meaning like ensemble methods, Neural Network also finds it difficult to detect pattern for 

class 2 samples. 

 
Figure 6.60: Average Feature Impact Multi-Class Neural Network Classifier 

Figure 6.61 shows further details on how feature values impact decisions of all the classes. Figure 

6.61(a) shows how the Neural Networks is learning for class 0 from the feature values in the dataset. 

Class 0 is getting the most influenced by the values of feature 8. The higher values of feature 8 have a 

positive impact on class 0. The neural network finds a high correlation between the receiver’s address 

and class 0 in feature 75. Neural Network shows a higher inclination towards the top 3 features and 

consumes the other features with low impact.  

Figure 6.61(b) shows the learning of Neural Network for class 1. The highest contributing is feature 8, 

and its higher values have a positive impact on class 1. The second most influential feature is 74 that 

contains information on the transmission duration of the packet. The lower values of feature 74 have a 

positive influence on class 1 decision making. Feature 70 also shows how its high values positively 

impact class 1 decisions of Neural Network.  
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Figure 6.61(c) shows the learning of Neural Network for class 2. The highest impact is made by feature 

74 in the case of class 2. The higher values of feature 74 influences the Neural Network decision towards 

class 2. The second highest is feature 75, containing the receiver’s address. 

 
Figure 6.61: Feature Impact Multi-Class Neural Network for Attack Classes (a) Class 0 (b) Class 1 (c) 

Class 2 

Figure 6.61 shows that Neural Network finds a clear correlation for all the features in each class output. 

However, it relies on few features highly while underutilising most of the features for decision making 

for each class. Figure 6.62 shows the confusion matrix on the attack test set for Neural Network. The 

Neural Networks performance is comparatively lower than the ensemble methods. It is evident from 

the confusion matrix that Neural Network struggles in differentiating between the different attacks 

classes in the dataset. The confusion matrix shows that the best performance of Neural Network is for 

class 0. However, it still has comparatively higher False Positives and Negatives for class 0 than Extra 

Tree and Random Forest trained on the same dataset. For class 1 majority of the samples are 

misclassified as class 2, which means that Neural Network poorly performs on creating decision 

boundary for class 1 and class 2. The poor performance of Neural Network is caused as it fails to learn 

any patterns from the features for different attacks. Figure 6.60 shows that it relies on very few features 

heavily and underutilises most of the dataset feature. The top contribution features in the Neural 

Network do not show patterns for some classes in the dataset causing instability in the decision making. 
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Figure 6.62:  Confusion Matrix Multi-Class Neural Network Classifier 

The Multi-class classifiers have to learn for all the classes in the dataset simultaneously from all the 

available samples. In the learning process of multi-class classifiers, there are possibilities that samples 

of one class can have an influence on the other classes. Because of noise caused by samples belonging 

to a particular class, the multi-class classifier can struggle in finding optimal decision boundaries for all 

the classes. 

Table 6.16 summarises how each classifier utilises the features for their decision making. All multiclass 

classifiers have shown a pattern in the receiver’s address attribute stored in feature 75 by showing high 

utilisation. The other feature that has a strong influence on the decision making of all the classifiers is 

feature 74 with values of transmission duration of the captured packets. Considering the confusion 

matrices from Figure 6.56, Figure 6.59, and Figure 6.62, it is evident that the ensemble methods perform 

much better with their learning approach than the Neural Network. Both Extra Tree and Random Forest 

classifiers have almost similar performances on the attack classes.  

Table 6.16: Feature Contribution Summary for Multi-Class Classifiers on Attack Dataset 

Dataset Feature Feature Name Random Forest Extra Tree Neural Network 

4 frame.time_delta Low Very Low Low 

8 frame.cap_len Average Low Very High 

47 radiotap.channel.freq Nil Nil Nil 

60 radiotap.dbm_antsignal Very Low Very Low Very Low 

63 wlan.fc.type_subtype High Average Average 

65 wlan.fc.type Average High Low 

66 wlan.fc.subtype Very Low Average Low 

67 wlan.fc.ds Very High High Average 

68 wlan.fc.frag Nil Nil Low 

70 wlan.fc.pwrmgt Low Average Average 
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Dataset Feature Feature Name Random Forest Extra Tree Neural Network 

71 wlan.fc.moredata Nil Nil Nil 

72 wlan.fc.protected Average High Low 

74 wlan.duration High Very High High 

75 wlan.ra High Average High 

140 wlan.wep.key Nil Low Low 

153 data.len Very High Average Low 

 

6.3.3.5. Consolidated Voting Classifier 

The concept of dividing the dataset into three sub-sets of two classes each and then training separate 

binary classes on each subset of the dataset simplifies the learning of classifiers. The binary classifiers 

show a better tendency to create a decision boundary as only two types of samples are available in the 

dataset subset. Since the third class is not available, its samples are not hindering the decision making 

for other classes. 

The consolidated voting mechanism combines three previously discussed binary classifiers trained on 

all three subsets of data and a multi-class classifier trained on all the attack classes available in the 

dataset. Four classifiers using same machine learning algorithm are brought together in the voting 

mechanism where three are binary classifiers trained on different subsets of data containing two attack 

classes and fourth is a multiclass classifier trained on all attacks in dataset.   

The attack test set is passed to all the binary classifiers trained for the consolidated voting mechanism. 

Each classifier makes its decisions and votes on the decided class. The class that receives the most votes 

is projected as the final decision of that sample by the consolidated framework. Suppose a class does 

not receive a mandate and all binary classifiers vote for different classes. In that case, the multiclass 

classifier is used to break the tie and finalise the decision of the voting framework. Figure 6.63, Figure 

6.64, and Figure 6.65 show the confusion matrix of Random Forest, Extra Tree, and Neural Network 

consolidated voting classifier on the attack test set.  

The confusion matrix for all the three voting classifiers achieves the same results on the attack test set. 

The consolidated voting approach shows impressive results in classifying all the available attack classes 

in the attack dataset. The consolidated voting by using multiple binary classifiers on the data subset 

proves to be much more effective in comparison to the multiclass classifiers trained on attack dataset 

discussed in sub-section 6.3.3.4. 

Interestingly, all the classifiers achieve the same results when clustered in proposed consolidated voting 

mechanisms irrespective of their differences in their learning and results on the test set. It proves that 
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the three binary classifiers, when put together, balances the shortcomings of each other and find an 

optimal decision boundary for each class in the attack dataset. 

Figure 6.56, Figure 6.59, and Figure 6.62 show that all the classifiers struggle to classify 

“Impersonation” attack samples labelled as class 1. The false positive for the “Impersonation” attack is 

high for all of the multi-class classifiers. The results from Figure 6.56, Figure 6.59, and Figure 6.62 

prove that the detection of the “Impersonation” attack is more challenging than the other two attack 

classes in the dataset. However, the consolidated voting mechanism shows very low false positives for 

“Impersonation” attack samples. It shows high competence in detecting “Impersonation” attacks that 

are otherwise challenging to identify by all the three multi class classifiers accurately on their own. 

 
Figure 6.63: Confusion Matrix for Random Forest Classifier with Consolidated Voting 

 
Figure 6.64: Confusion Matrix for Extra Tree Classifier with Consolidated Voting 
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Figure 6.65: Confusion Matrix for Neural Network Classifier with Consolidated Voting 



178 
 

Chapter 7  
 
Conclusion and Future Work 
 
 
This thesis explores the security mechanisms available in LPWAN communication technologies used 

in IoT networks. The literature shows that LPWAN networks use static keys for data authentication and 

confidentiality and create vulnerabilities in LPWAN networks. The literature highlights that LPWAN 

network nodes are susceptible to physical attacks. The attackers can gain the key information of the 

node by physically accessing the nodes, which creates a possibility of an impersonator in the network. 

Considering the finding from literature, this thesis aims to propose a lightweight key exchange 

mechanism for LPWAN networks; and an effective attack detection mechanism that can help in early 

attack detection on LPWAN and IoT networks. The proposed framework explores the possibility of 

using the SDN framework for security in LPWAN networks. The proposed key exchange mechanism 

uses BYKA, which was designed for sensor networks. BYKA key exchange mechanism is extended to 

integrate with a centralised SDN controller and provide a session key mechanism. Furthermore, a two-

tier machine learning based attack detection mechanism is proposed to defend against network attacks. 

The proposed session key mechanism follows a communication flow between the server and the end 

nodes. To test the vulnerabilities in the communication flow of the session key mechanism, a security 

analysis tool “Scyther” is utilised. The communication flow is tested across various attack models 

available in Scyther. Considering the results of simulations, the proposed communication flow proves 

to have no vulnerabilities from the attack models available in Scyther. It also shows that the session key 

remains confidential in during communications for session key mechanism.  

Achieving a secure data transmission is a vital feature for a network. However, in case of low powered 

networks, it is necessary to achieve the security while being energy efficient because of the limited 

energy available to the network nodes. Hence, to further validate the proposed session key mechanism, 

it is tested on the NS3 simulator for its energy consumptions. The LoRaWAN energy model is modified, 

and energy modules for key exchange and encryption mechanism are added to the LoRaWAN energy 

model. The experiment is performed for worst case scenarios so that performance can be tested on worst 

case scenarios. The proposed session key mechanism proves to be energy efficient and show the 

possibility of a node lifetime of one and a half months with an 850mAH battery on a 3 Volt supply. 

In addition, the proposed session key mechanism is implemented on Mininet-WiFi to validate its 

correctness. The Mininet-WiFi emulator is used with the POX controller to facilitate the session key 
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exchange in an SDN based wireless network. The experimentation proves the applicability of the SDN 

framework in the security of LPWAN and IoT networks. 

The second module of the thesis was to provide a prevention mechanism against impersonation, 

flooding and injection attacks on IoT networks. AWID-CLS, a public dataset, is used to train and 

validate the proposed attack detection framework. A two-tier attack detection and profiling mechanism 

are proposed for attack detection on IoT networks. The proposed attack detection approach uses a binary 

classifier to differentiate between “attack” and “normal” traffic in tier-1 and use multiple binary classes 

into a voting mechanism to profile network attacks on the network in tier-2.  

There have been various encounters with challenges in the research and its implementations that led to 

alternate paths to peruse the outcomes and accomplish this study. Based on the outcomes of the 

proposed framework, this report is being concluded. However, there are outstanding issues and must be 

addressed in the future, as discussed in the next section. 

7.1. Research Contributions 

This thesis focuses on the research questions derived from the literature review. Three research 

questions were derived from the gaps identified from the literature, and the thesis aims to contribute 

around the three research questions. The major contributions of the thesis are as follows: 

7.1.1. An SDN based Lightweight Session Key Mechanism for an IoT Network 

The first research question states, “How can we design an SDN based lightweight authentication and 

session key exchange framework for IoT nodes?” The literature highlights the requirement of a 

lightweight session key mechanism as most of the transmission technologies in IoT use a single static 

key for node authentication and data encryption. The use of a static key over a long period is not 

recommended as it creates a possibility of the key being deduced from the data being transferred over 

the air. The literature also shows LPWAN transmission standards to be one of the most popular amongst 

IoT vendors. Hence, this thesis targets the LPWAN networks for the session key mechanism. 

A lightweight session key mechanism using the BYKA scheme is implemented that exploit the star 

topology of the LPWAN. The proposed session key mechanism requires only one transceiver operation 

from the end node and uses lightweight mathematical operations for the session key calculations. The 

lightweight operations and minimal transmission for the end nodes facilitates a longer node lifetime in 

the network. The experimentation shows that the proposed session key mechanism is secure against all 

the attack models in Scyther security analysis tool and provides a correct calculation of the session keys. 

In addition, the simulations in NS3 show that even with a high data rate and frequent session changes, 

the proposed session key mechanism is energy efficient.  
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The proposed session key mechanism also shows the flexibility to tune the session lengths based on the 

application requirements and consumes similar energy as LPWAN standard technologies at a session 

length of 12 hours. The flexible nature of the proposed session key mechanism enables it to be used 

with any LPWAN standard technology and IoT applications respective to their requirements. Also, the 

proposed session key mechanism is implemented in an SDN controller that interacts with the network 

at a lower level (network layer), which provides more control over the network operations and 

monitoring. The capability of the SDN controller to monitor and control the network at a granular level 

can be utilised more in Identity theft detection, which is the focus of the second research question of 

the thesis. 

7.1.2. Exploring the Opportunities of SDN based Identity Theft Detection 

The BYKA scheme provides a strong and flexible session key mechanism for power constrained IoT 

networks. However, the BYKA key exchange mechanisms is vulnerable to identity theft or 

Impersonation attacks. The attackers can acquire the secret key information from the end nodes by 

accessing them physically and then impersonating a network node to transmit false data. The 

Impersonation attack breaches the integrity and data authenticity of the network. The proposed security 

framework aims to provide early detection and flexible actions for attack data and decides to utilise the 

SDN framework.  The second research question states, “How can SDN controllers be used to detect 

node identity theft in the IoT network?”. 

For Impersonation attack detection, machine learning algorithms are utilised. A public dataset AWID-

CLS is used as it contains the samples of impersonation attacks along with flooding and injection attacks 

on a wireless network. 

The proposed attack detection is divided into two phases. The first phase is for gateway devices, where 

the classification between attack and normal traffic takes place. The first phase uses a simple and 

lightweight binary classifier that requires less memory and computation and can be deployed on an IoT 

gateway device. Based on the classification of the first phase, the SDN controller can decide to redirect 

to the network or phase two, where a consolidated voting mechanism profiles the attack. The 

experimentation shows that the proposed two-tier classification mechanism is highly efficient in 

detecting and profiling all the attacks, including impersonation attacks. 

The use of the SDN controller provides the opportunity for early detection and filtering of attack traffic 

at the network layer. The SDN also provides granular control over traffic and can manage traffic based 

on a specific rule provided by network admin. The literature also suggests that using machine learning 

techniques with SDN can provide a flexible and efficient attack detection and prevention mechanism 

for IoT networks.  
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7.1.3. Trade-offs With Proposed SDN based session key and attack detection mechanism  

The utilisation of SDN controller and the proposed security framework brings flexibility, control and 

better security for LPWAN based IoT networks. However, the addition of security and SDN controller 

also bring some trade-offs with the benefits. The third research question aims to analyse and discuss the 

trade-offs of the proposed security framework stating, “What kind of performance trade-offs may the 

nodes face with the addition of the new security scheme?”. The proposed security framework aims to 

provide security to low powered IoT networks that are currently using a static key for authentication 

and data encryption. The addition of a security mechanism on top of the current standards brings some 

performance overheads and trade-offs. This thesis also provides analysis and discussion on those trade-

offs in section 5.4. It is discussed that the implementation of the proposed security framework will bring 

additional processing overhead to the nodes as they will require to perform an additional transceiver 

and computational operations per session. Also, using an SDN controller as a key management authority 

and as an attack detection mechanism can bring some additional delays as the data needs to travel 

through the SDN controller. However, considering the advantages of the proposed security framework, 

it is argued that the trade-offs are affordable in exchange for higher security of the network. 

In summary, this research addresses the following research questions: 

1. How can we design an SDN based lightweight authentication and session key exchange framework 

for IoT nodes? 

2. How can SDN controllers be used to detect node identity theft in the IoT network? 

3. What kind of performance trade-offs the nodes may face with the addition of the new security 

scheme?  

7.2. Research Limitations and Future Work 

The proposed framework targets to provide a lightweight and robust security or LPWAN. However, 

there are a few limitations that should be taken under consideration for future work, discussed as 

follows: 

7.2.1. Optimisation of and Implementation of Energy Aware Key Exchange Initiation from 

Controller 

Power efficiency is one of the most important features that must be considered for security mechanisms 

in the IoT environment. The proposed session key mechanism can achieve that to an extent. However, 

as the result shows, the applications with high data rate need to have a better session management 

mechanism from the server side to regulate the power consumption of the end nodes. The proposed 

session key mechanism can be extended further to provide a more robust session mechanism that can 
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monitor the node status to their application requirements and remaining energy and manage the session 

length accordingly. Having flexible session lengths can provide more consideration to the energy 

consumption on the nodes to extend their lifetime. In addition to flexible session lengths, the servers 

can also implement a monitoring mechanism for node’s duty cycles based on applications running on 

them. Having a monitoring mechanism for the duty cycle can enable the servers to initiate the sessions 

according to the duty cycle of the nodes, which can prevent the nodes from continuous listening to the 

channel. If the nodes receive data according to their duty cycle, they will not require additional 

transceiver operations for the session key mechanism.  

7.2.2. Scalable and Robust Implementation of Key Exchange Mechanism 

This thesis focused on providing a lightweight session key mechanism for LPWAN. However, the 

implementation provided in this thesis is a prototype and requires further refinements around efficient 

public and private key management. As the number of nodes increase, the vanilla implementations will 

start to face challenges. Further implementations around the reusability of the public key at SDN 

controller can facilitate support to large scaled IoT networks. In addition, a distributed approach can be 

followed where multiple SDN controllers can be utilised to support multiple subgroups of the network. 

Following a distributed architecture for the session key mechanism can provide load balancing on the 

SDN controller and reusability of public keys within subgroups. 

7.2.3. Public Key Broadcast Optimisation 

The proposed session key mechanism requires the server to initiate the session by broadcasting the 

public keys in the network. Any node that receives the public key can generate a session key for data 

encryption. The SDN controller also uses an application key to sign the public key to control the nodes 

participating in the session. However, as the network size increases, it can be challenging to manage 

nodes participating in session key generation. The network can be divided into multiple multicast 

groups to address the issue, and the SDN controllers can use multicasting instead of broadcasting to 

limit the number of nodes participating in a session. The implementation of multicasting can also help 

in node localisation and group nodes based on various features such as applications, data rate, and power 

supply. 

7.2.4. Connectivity of SDN Controller and Controller Placement 

The proposed framework leverages the functionalities of SDN to detect and block attacks at the network 

layer. At the same time, the SDN controller is also being utilised as a key management entity. The 

network relies on the SDN controller for all the security mechanisms. Hence, it is crucial to manage the 

connectivity of the SDN controller. The SDN controller placement can play an important role in 

achieving optimal connectivity to minimise delays in session key and attack detection mechanism. As 

it plays an important role for network devices, it should be close to the network devices. However, it 
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also needs to be secured physically as it also stores the network key information. An optimal location 

for the SDN controller needs to be calculated for the effective functioning of the framework. 

7.2.5. Forward Secrecy 

The proposed session key mechanism uses a secret key stored at the end node and public key 

information to generate the session keys. Given a situation where an attacker acquires the secret key of 

a node and all the public keys, they can read all the data transferred from that node. The proposed 

session key mechanism must be extended to provide features to update the stored keys in end nodes 

periodically to provide forward secrecy. 

7.2.6. Consolidation of Key Exchange and Attack Detection Framework 

The proposed framework has two modules, one performs the tasks related to the session key mechanism, 

and the other is for attack detection on the network. Both modules are validated on different simulators 

during experimentation as all aspects could not be validated on a single simulation tool. The machine 

learning models for attack detection are designed and tested on public data and require training on real 

network traffic. Both modules are required to be consolidated and deployed on an SDN controller in a 

real network testbed for them to work together effectively. 

7.2.7. Attack detection mechanisms for more type of attacks. 

The proposed two-tier attack detection and profiling mechanism is currently trained on three attacks 

available in AWID-CLS dataset. The attack detection module can be trained for more attack traffic for 

better efficiency in attack detection for the network. In addition, the attack detection mechanism should 

be extended to support online learning so that the classifier can learn as it functions on the network. 
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Appendix 
 
Source Codes 

A1 LoRaWAN Scenario for Validation of Energy Consumption 
LoRaWANScenario.cc 

/* 
 *This script simulates a simple network LoRaWAN network with single node to implement energy 
*model.  
 */ 
 
// Header Files from NS3 LoRAWAN module 
 
#include "ns3/end-device-lora-phy.h" 
#include "ns3/gateway-lora-phy.h" 
#include "ns3/class-a-end-device-lorawan-mac.h" 
#include "ns3/gateway-lorawan-mac.h" 
#include "ns3/simulator.h" 
#include "ns3/log.h" 
#include "ns3/constant-position-mobility-model.h" 
#include "ns3/lora-helper.h" 
#include "ns3/mobility-helper.h" 
#include "ns3/node-container.h" 
#include "ns3/position-allocator.h" 
#include "ns3/periodic-sender-helper.h" 
#include "ns3/command-line.h" 
#include "ns3/basic-energy-source-helper.h" 
#include "ns3/lora-radio-energy-model-helper.h" 
#include "ns3/file-helper.h" 
#include "ns3/names.h" 
#include <algorithm> 
#include <ctime> 
 
using namespace ns3; 
using namespace lorawan; 
 
NS_LOG_COMPONENT_DEFINE ("LoraEnergyModelExample"); 
 
int main (int argc, char *argv[]) 
{ 
 
  // Set up logging 
  LogComponentEnable ("LoraEnergyModelExample", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LoraRadioEnergyModel", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LoraChannel", LOG_LEVEL_INFO); 
  // LogComponentEnable ("LoraPhy", LOG_LEVEL_ALL); 
  // LogComponentEnable ("EndDeviceLoraPhy", LOG_LEVEL_ALL); 
  // LogComponentEnable ("GatewayLoraPhy", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LoraInterferenceHelper", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LorawanMac", LOG_LEVEL_ALL); 
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  // LogComponentEnable ("EndDeviceLorawanMac", LOG_LEVEL_ALL); 
  // LogComponentEnable ("ClassAEndDeviceLorawanMac", LOG_LEVEL_ALL); 
  // LogComponentEnable ("GatewayLorawanMac", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LogicalLoraChannelHelper", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LogicalLoraChannel", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LoraHelper", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LoraPhyHelper", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LorawanMacHelper", LOG_LEVEL_ALL); 
  // LogComponentEnable ("OneShotSenderHelper", LOG_LEVEL_ALL); 
  // LogComponentEnable ("OneShotSender", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LorawanMacHeader", LOG_LEVEL_ALL); 
  // LogComponentEnable ("LoraFrameHeader", LOG_LEVEL_ALL); 
  LogComponentEnableAll (LOG_PREFIX_FUNC); 
  LogComponentEnableAll (LOG_PREFIX_NODE); 
  LogComponentEnableAll (LOG_PREFIX_TIME); 
 
  /************************ 
  *  Create the channel  * 
  ************************/ 
 
  NS_LOG_INFO ("Creating the channel..."); 
 
  // Create the lora channel object 
  Ptr<LogDistancePropagationLossModel> loss = CreateObject<LogDistancePropagationLossModel> 
(); 
  loss->SetPathLossExponent (3.76); 
  loss->SetReference (1, 7.7); 
 
  Ptr<PropagationDelayModel> delay = CreateObject<ConstantSpeedPropagationDelayModel> (); 
 
  Ptr<LoraChannel> channel = CreateObject<LoraChannel> (loss, delay); 
 
  /************************ 
  *  Create the helpers  * 
  ************************/ 
 
  NS_LOG_INFO ("Setting up helpers..."); 
 
  MobilityHelper mobility; 
  Ptr<ListPositionAllocator> allocator = CreateObject<ListPositionAllocator> (); 
  allocator->Add (Vector (100,0,0)); 
  allocator->Add (Vector (0,0,0)); 
  mobility.SetPositionAllocator (allocator); 
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); 
 
  // Create the LoraPhyHelper 
  LoraPhyHelper phyHelper = LoraPhyHelper (); 
  phyHelper.SetChannel (channel); 
 
  // Create the LorawanMacHelper 
  LorawanMacHelper macHelper = LorawanMacHelper (); 
 
  // Create the LoraHelper 
  LoraHelper helper = LoraHelper (); 
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  /************************ 
  *  Create End Devices  * 
  ************************/ 
 
  NS_LOG_INFO ("Creating the end device..."); 
 
  // Create a set of nodes 
  NodeContainer endDevices; 
  endDevices.Create (1); 
 
  // Assign a mobility model to the node 
  mobility.Install (endDevices); 
 
  // Create the LoraNetDevices of the end devices 
  phyHelper.SetDeviceType (LoraPhyHelper::ED); 
  macHelper.SetDeviceType (LorawanMacHelper::ED_A); 
  NetDeviceContainer endDevicesNetDevices = helper.Install (phyHelper, macHelper, endDevices); 
 
  /********************* 
   *  Create Gateways  * 
   *********************/ 
 
  NS_LOG_INFO ("Creating the gateway..."); 
  NodeContainer gateways; 
  gateways.Create (1); 
 
  mobility.SetPositionAllocator (allocator); 
  mobility.Install (gateways); 
 
  // Create a netdevice for each gateway 
  phyHelper.SetDeviceType (LoraPhyHelper::GW); 
  macHelper.SetDeviceType (LorawanMacHelper::GW); 
  helper.Install (phyHelper, macHelper, gateways); 
 
  macHelper.SetSpreadingFactorsUp (endDevices, gateways, channel); 
 
  /********************************************* 
   *  Install applications on the end devices  * 
   *********************************************/ 
 
  // OneShotSenderHelper oneShotSenderHelper; 
  // oneShotSenderHelper.SetSendTime (Seconds (10)); 
 
  // oneShotSenderHelper.Install (endDevices); 
 
  PeriodicSenderHelper periodicSenderHelper; 
 
// Packet interval  
  periodicSenderHelper.SetPeriod (Hours (1)); 
 
  periodicSenderHelper.Install (endDevices); 
 
  /************************ 
   * Install Energy Model * 
   ************************/ 
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  BasicEnergySourceHelper basicSourceHelper; 
  LoraRadioEnergyModelHelper radioEnergyHelper; 
 
  // configure energy source 
// Initial Energy for end node 
  basicSourceHelper.Set ("BasicEnergySourceInitialEnergyJ", DoubleValue (1000));  
  basicSourceHelper.Set ("BasicEnergySupplyVoltageV", DoubleValue (3.3)); 
 
// Current withdrawn for transceiver operations in Ampere 
  radioEnergyHelper.Set ("StandbyCurrentA", DoubleValue (0.0014)); 
  radioEnergyHelper.Set ("TxCurrentA", DoubleValue (0.028)); 
  radioEnergyHelper.Set ("SleepCurrentA", DoubleValue (0.0000015)); 
  radioEnergyHelper.Set ("RxCurrentA", DoubleValue (0.0112)); 
 
  radioEnergyHelper.SetTxCurrentModel ("ns3::ConstantLoraTxCurrentModel", 
                                       "TxCurrent", DoubleValue (0.028)); 
 
  // install source on EDs' nodes 
  EnergySourceContainer sources = basicSourceHelper.Install (endDevices); 
  Names::Add ("/Names/EnergySource", sources.Get (0)); 
 
  // install device model 
  DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install 
      (endDevicesNetDevices, sources); 
 
  /************** 
   * Get output * 
   **************/ 
  FileHelper fileHelper; 
  fileHelper.ConfigureFile ("battery-level", FileAggregator::SPACE_SEPARATED); 
  fileHelper.WriteProbe ("ns3::DoubleProbe", "/Names/EnergySource/RemainingEnergy", "Output"); 
 
 
  /**************** 
  *  Simulation  * 
  ****************/ 
// Total Simulation time 
  Simulator::Stop (Hours (720)); 
  Simulator::Run (); 
  Simulator::Destroy (); 
  return 0; 
} 

A2 LoRaWAN Energy Model 
LoRaWANEnergyModel.h 

/* 
This Program was provided free under GNU license and is modified as required in this research 
*/ 
#ifndef LORA_RADIO_ENERGY_MODEL_H 
#define LORA_RADIO_ENERGY_MODEL_H 
 
#include "ns3/device-energy-model.h" 
#include "ns3/traced-value.h" 
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#include "end-device-lora-phy.h" 
#include "lora-tx-current-model.h" 
 
namespace ns3 { 
namespace lorawan { 
 
/** 
 * \ingroup energy 
 */ 
class LoraRadioEnergyModelPhyListener : public EndDeviceLoraPhyListener 
{ 
public: 
  /** 
   * Callback type for updating the transmit current based on the nominal tx power. 
   */ 
  typedef Callback<void, double> UpdateTxCurrentCallback; 
 
  LoraRadioEnergyModelPhyListener (); 
  virtual ~LoraRadioEnergyModelPhyListener (); 
 
  /** 
   * \brief Sets the change state callback. Used by helper class. 
   * 
   * \param callback Change state callback. 
   */ 
  void SetChangeStateCallback (DeviceEnergyModel::ChangeStateCallback callback); 
 
  /** 
   * \brief Sets the update tx current callback. 
   * 
   * \param callback Update tx current callback. 
   */ 
  void SetUpdateTxCurrentCallback (UpdateTxCurrentCallback callback); 
 
  /** 
   * \brief Switches the LoraRadioEnergyModel to RX state. 
   * 
   * \param duration the expected duration of the packet reception. 
   * 
   * Defined in ns3::LoraEndDevicePhyListener 
   */ 
  void NotifyRxStart (void); 
 
  /** 
   * \brief Switches the LoraRadioEnergyModel to TX state and switches back to 
   * STANDBY after TX duration. 
   * 
   * \param duration the expected transmission duration. 
   * \param txPowerDbm the nominal tx power in dBm 
   * 
   * Defined in ns3::LoraEndDevicePhyListener 
   */ 
  void NotifyTxStart (double txPowerDbm); 
 
  /** 
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   * Defined in ns3::LoraEndDevicePhyListener 
   */ 
  void NotifySleep (void); 
 
  /** 
   * Defined in ns3::LoraEndDevicePhyListener 
   */ 
  void NotifyStandby (void); 
 
 
private: 
  /** 
   * A helper function that makes scheduling m_changeStateCallback possible. 
   */ 
  void SwitchToStandby (void); 
 
  /** 
   * Change state callback used to notify the LoraRadioEnergyModel of a state 
   * change. 
   */ 
  DeviceEnergyModel::ChangeStateCallback m_changeStateCallback; 
 
  /** 
   * Callback used to update the tx current stored in LoraRadioEnergyModel based on 
   * the nominal tx power used to transmit the current frame. 
   */ 
  UpdateTxCurrentCallback m_updateTxCurrentCallback; 
}; 
 
 
/** 
 * \ingroup energy 
 * \brief A WiFi radio energy model. 
 * 
 * 4 states are defined for the radio: TX, RX, STANDBY, SLEEP. Default state is 
 * STANDBY. 
 * The different types of transactions that are defined are: 
 *  1. Tx: State goes from STANDBY to TX, radio is in TX state for TX_duration, 
 *     then state goes from TX to STANDBY. 
 *  2. Rx: State goes from STANDBY to RX, radio is in RX state for RX_duration, 
 *     then state goes from RX to STANDBY. 
 *  3. Go_to_Sleep: State goes from STANDBY to SLEEP. 
 *  4. End_of_Sleep: State goes from SLEEP to STANDBY. 
 * The class keeps track of what state the radio is currently in. 
 * 
 * Energy calculation: For each transaction, this model notifies EnergySource 
 * object. The EnergySource object will query this model for the total current. 
 * Then the EnergySource object uses the total current to calculate energy. 
 * 
 */ 
class LoraRadioEnergyModel : public DeviceEnergyModel 
{ 
public: 
  /** 
   * Callback type for energy depletion handling. 
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   */ 
  typedef Callback<void> LoraRadioEnergyDepletionCallback; 
 
  /** 
   * Callback type for energy recharged handling. 
   */ 
  typedef Callback<void> LoraRadioEnergyRechargedCallback; 
 
  /** 
   * \brief Get the type ID. 
   * \return the object TypeId 
   */ 
  static TypeId GetTypeId (void); 
  LoraRadioEnergyModel (); 
  virtual ~LoraRadioEnergyModel (); 
 
  /** 
   * \brief Sets pointer to EnergySouce installed on node. 
   * 
   * \param source Pointer to EnergySource installed on node. 
   * 
   * Implements DeviceEnergyModel::SetEnergySource. 
   */ 
 
//declaration of key exchange energy 
 
  double KeyExchangeEnergy (double time_duration);  
   
   
  void SetEnergySource (Ptr<EnergySource> source); 
 
  /** 
   * \returns Total energy consumption of the wifi device. 
   * 
   * Implements DeviceEnergyModel::GetTotalEnergyConsumption. 
   */ 
  double GetTotalEnergyConsumption (void) const; 
 
  // Setter & getters for state power consumption. 
  /** 
   * \brief Gets idle current. 
   * 
   * \returns idle current of the lora device. 
   */ 
  double GetStandbyCurrentA (void) const; 
  /** 
   * \brief Sets idle current. 
   * 
   * \param idleCurrentA the idle current 
   */ 
  void SetStandbyCurrentA (double idleCurrentA); 
  /** 
   * \brief Gets transmit current. 
   * 
   * \returns transmit current of the lora device. 
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   */ 
  double GetTxCurrentA (void) const; 
  /** 
   * \brief Sets transmit current. 
   * 
   * \param txCurrentA the transmit current 
   */ 
  void SetTxCurrentA (double txCurrentA); 
  /** 
   * \brief Gets receive current. 
   * 
   * \returns receive current of the lora device. 
   */ 
  double GetRxCurrentA (void) const; 
  /** 
   * \brief Sets receive current. 
   * 
   * \param rxCurrentA the receive current 
   */ 
  void SetRxCurrentA (double rxCurrentA); 
  /** 
   * \brief Gets sleep current. 
   * 
   * \returns sleep current of the lora device. 
   */ 
  double GetSleepCurrentA (void) const; 
  /** 
   * \brief Sets sleep current. 
   * 
   * \param sleepCurrentA the sleep current 
   */ 
  void SetSleepCurrentA (double sleepCurrentA); 
 
  /** 
   * \returns Current state. 
   */ 
  EndDeviceLoraPhy::State GetCurrentState (void) const; 
 
  /** 
   * \param callback Callback function. 
   * 
   * Sets callback for energy depletion handling. 
   */ 
  void SetEnergyDepletionCallback (LoraRadioEnergyDepletionCallback callback); 
 
  /** 
   * \param callback Callback function. 
   * 
   * Sets callback for energy recharged handling. 
   */ 
  void SetEnergyRechargedCallback (LoraRadioEnergyRechargedCallback callback); 
 
  /** 
   * \param model the model used to compute the lora tx current. 
   */ 
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  // NOTICE VERY WELL: Current  Model linear or constant as possible choices 
  void SetTxCurrentModel (Ptr<LoraTxCurrentModel> model); 
 
  /** 
   * \brief Calls the CalcTxCurrent method of the tx current model to 
   *        compute the tx current based on such model 
   * 
   * \param txPowerDbm the nominal tx power in dBm 
   */ 
  // NOTICE VERY WELL: Current  Model linear or constant as possible choices 
  void SetTxCurrentFromModel (double txPowerDbm); 
 
  /** 
   * \brief Changes state of the LoraRadioEnergyMode. 
   * 
   * \param newState New state the lora radio is in. 
   * 
   * Implements DeviceEnergyModel::ChangeState. 
   */ 
  void ChangeState (int newState); 
 
  /** 
   * \brief Handles energy depletion. 
   * 
   * Implements DeviceEnergyModel::HandleEnergyDepletion 
   */ 
  void HandleEnergyDepletion (void); 
 
  /** 
   * \brief Handles energy recharged. 
   * 
   * Implements DeviceEnergyModel::HandleEnergyChanged 
   */ 
  void HandleEnergyChanged (void); 
 
  /** 
   * \brief Handles energy recharged. 
   * 
   * Implements DeviceEnergyModel::HandleEnergyRecharged 
   */ 
  void HandleEnergyRecharged (void); 
 
  /** 
   * \returns Pointer to the PHY listener. 
   */ 
  LoraRadioEnergyModelPhyListener * GetPhyListener (void); 
 
 
private: 
  void DoDispose (void); 
 
  /** 
   * \returns Current draw of device, at current state. 
   * 
   * Implements DeviceEnergyModel::GetCurrentA. 
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   */ 
  double DoGetCurrentA (void) const; 
 
  /** 
   * \param state New state the radio device is currently in. 
   * 
   * Sets current state. This function is private so that only the energy model 
   * can change its own state. 
   */ 
  void SetLoraRadioState (const EndDeviceLoraPhy::State state); 
 
  Ptr<EnergySource> m_source; ///< energy source 
 
  // Member variables for current draw in different radio modes. 
  double m_txCurrentA; ///< transmit current 
  double m_rxCurrentA; ///< receive current 
  double m_idleCurrentA; ///< idle current 
  double m_sleepCurrentA; ///< sleep current 
  // NOTICE VERY WELL: Current  Model linear or constant as possible choices 
  Ptr<LoraTxCurrentModel> m_txCurrentModel; ///< current model 
 
  /// This variable keeps track of the total energy consumed by this model. 
  TracedValue<double> m_totalEnergyConsumption; 
 
  // State variables. 
  EndDeviceLoraPhy::State m_currentState;  ///< current state the radio is in 
  Time m_lastUpdateTime;          ///< time stamp of previous energy update 
 
  uint8_t m_nPendingChangeState; ///< pending state change 
  bool m_isSupersededChangeState; ///< superseded change state 
 
  /// Energy depletion callback 
  LoraRadioEnergyDepletionCallback m_energyDepletionCallback; 
 
  /// Energy recharged callback 
  LoraRadioEnergyRechargedCallback m_energyRechargedCallback; 
 
  /// EndDeviceLoraPhy listener 
  LoraRadioEnergyModelPhyListener *m_listener; 
}; 
 
} // namespace ns3 
 
} 
#endif /* LORA_RADIO_ENERGY_MODEL_H */ 
 
 
LoRaWANEnergyModel.cc 

/* 
This Program was provided free under GNU license and is modified as required in this research 
*/ 
#include "ns3/log.h" 
#include "ns3/simulator.h" 
#include "ns3/pointer.h" 



210 
 

#include "ns3/energy-source.h" 
#include "lora-radio-energy-model.h" 
 
 
namespace ns3 { 
namespace lorawan { 
 
NS_LOG_COMPONENT_DEFINE ("LoraRadioEnergyModel"); 
 
NS_OBJECT_ENSURE_REGISTERED (LoraRadioEnergyModel); 
 
TypeId 
LoraRadioEnergyModel::GetTypeId (void) 
{ 
  static TypeId tid = TypeId ("ns3::LoraRadioEnergyModel") 
    .SetParent<DeviceEnergyModel> () 
    .SetGroupName ("Energy") 
    .AddConstructor<LoraRadioEnergyModel> () 
    .AddAttribute ("StandbyCurrentA", 
                   "The default radio Standby current in Ampere.", 
                   DoubleValue (0.0014),      // idle mode = 1.4mA 
                   MakeDoubleAccessor (&LoraRadioEnergyModel::SetStandbyCurrentA, 
                                       &LoraRadioEnergyModel::GetStandbyCurrentA), 
                   MakeDoubleChecker<double> ()) 
    .AddAttribute ("TxCurrentA", 
                   "The radio Tx current in Ampere.", 
                   DoubleValue (0.028),        // transmit at 0dBm = 28mA 
                   MakeDoubleAccessor (&LoraRadioEnergyModel::SetTxCurrentA, 
                                       &LoraRadioEnergyModel::GetTxCurrentA), 
                   MakeDoubleChecker<double> ()) 
    .AddAttribute ("RxCurrentA", 
                   "The radio Rx current in Ampere.", 
                   DoubleValue (0.0112),        // receive mode = 11.2mA 
                   MakeDoubleAccessor (&LoraRadioEnergyModel::SetRxCurrentA, 
                                       &LoraRadioEnergyModel::GetRxCurrentA), 
                   MakeDoubleChecker<double> ()) 
    .AddAttribute ("SleepCurrentA", 
                   "The radio Sleep current in Ampere.", 
                   DoubleValue (0.0000015),      // sleep mode = 1.5microA 
                   MakeDoubleAccessor (&LoraRadioEnergyModel::SetSleepCurrentA, 
                                       &LoraRadioEnergyModel::GetSleepCurrentA), 
                   MakeDoubleChecker<double> ()) 
    .AddAttribute ("TxCurrentModel", "A pointer to the attached tx current model.", 
                   PointerValue (), 
                   MakePointerAccessor (&LoraRadioEnergyModel::m_txCurrentModel), 
                   MakePointerChecker<LoraTxCurrentModel> ()) 
    .AddTraceSource ("TotalEnergyConsumption", 
                     "Total energy consumption of the radio device.", 
                     MakeTraceSourceAccessor (&LoraRadioEnergyModel::m_totalEnergyConsumption), 
                     "ns3::TracedValueCallback::Double") 
  ; 
  return tid; 
} 
 
LoraRadioEnergyModel::LoraRadioEnergyModel () 
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{ 
  NS_LOG_FUNCTION (this); 
  m_currentState = EndDeviceLoraPhy::SLEEP;      // initially STANDBY 
  m_lastUpdateTime = Seconds (0.0); 
  m_nPendingChangeState = 0; 
  m_isSupersededChangeState = false; 
  m_energyDepletionCallback.Nullify (); 
  m_source = NULL; 
  // set callback for EndDeviceLoraPhy listener 
  m_listener = new LoraRadioEnergyModelPhyListener; 
  m_listener->SetChangeStateCallback (MakeCallback (&DeviceEnergyModel::ChangeState, this)); 
  // set callback for updating the tx current 
  m_listener->SetUpdateTxCurrentCallback (MakeCallback 
(&LoraRadioEnergyModel::SetTxCurrentFromModel, this)); 
} 
 
LoraRadioEnergyModel::~LoraRadioEnergyModel () 
{ 
  NS_LOG_FUNCTION (this); 
  delete m_listener; 
} 
 
void 
LoraRadioEnergyModel::SetEnergySource (Ptr<EnergySource> source) 
{ 
  NS_LOG_FUNCTION (this << source); 
  NS_ASSERT (source != NULL); 
  m_source = source; 
} 
 
double 
LoraRadioEnergyModel::GetTotalEnergyConsumption (void) const 
{ 
  NS_LOG_FUNCTION (this); 
  return m_totalEnergyConsumption; 
} 
 
double 
LoraRadioEnergyModel::GetStandbyCurrentA (void) const 
{ 
  NS_LOG_FUNCTION (this); 
  return m_idleCurrentA; 
} 
 
void 
LoraRadioEnergyModel::SetStandbyCurrentA (double idleCurrentA) 
{ 
  NS_LOG_FUNCTION (this << idleCurrentA); 
  m_idleCurrentA = idleCurrentA; 
} 
 
double 
LoraRadioEnergyModel::GetTxCurrentA (void) const 
{ 
  NS_LOG_FUNCTION (this); 
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  return m_txCurrentA; 
} 
 
void 
LoraRadioEnergyModel::SetTxCurrentA (double txCurrentA) 
{ 
  NS_LOG_FUNCTION (this << txCurrentA); 
  m_txCurrentA = txCurrentA; 
} 
 
double 
LoraRadioEnergyModel::GetRxCurrentA (void) const 
{ 
  NS_LOG_FUNCTION (this); 
  return m_rxCurrentA; 
} 
 
void 
LoraRadioEnergyModel::SetRxCurrentA (double rxCurrentA) 
{ 
  NS_LOG_FUNCTION (this << rxCurrentA); 
  m_rxCurrentA = rxCurrentA; 
} 
 
double 
LoraRadioEnergyModel::GetSleepCurrentA (void) const 
{ 
  NS_LOG_FUNCTION (this); 
  return m_sleepCurrentA; 
} 
 
void 
LoraRadioEnergyModel::SetSleepCurrentA (double sleepCurrentA) 
{ 
  NS_LOG_FUNCTION (this << sleepCurrentA); 
  m_sleepCurrentA = sleepCurrentA; 
} 
 
EndDeviceLoraPhy::State 
LoraRadioEnergyModel::GetCurrentState (void) const 
{ 
  NS_LOG_FUNCTION (this); 
  return m_currentState; 
} 
 
void 
LoraRadioEnergyModel::SetEnergyDepletionCallback ( 
  LoraRadioEnergyDepletionCallback callback) 
{ 
  NS_LOG_FUNCTION (this); 
  if (callback.IsNull ()) 
    { 
      NS_LOG_DEBUG ("LoraRadioEnergyModel:Setting NULL energy depletion callback!"); 
    } 
  m_energyDepletionCallback = callback; 
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} 
 
void 
LoraRadioEnergyModel::SetEnergyRechargedCallback ( 
  LoraRadioEnergyRechargedCallback callback) 
{ 
  NS_LOG_FUNCTION (this); 
  if (callback.IsNull ()) 
    { 
      NS_LOG_DEBUG ("LoraRadioEnergyModel:Setting NULL energy recharged callback!"); 
    } 
  m_energyRechargedCallback = callback; 
} 
 
void 
LoraRadioEnergyModel::SetTxCurrentModel (Ptr<LoraTxCurrentModel> model) 
{ 
  m_txCurrentModel = model; 
} 
 
void 
LoraRadioEnergyModel::SetTxCurrentFromModel (double txPowerDbm) 
{ 
  if (m_txCurrentModel) 
    { 
      m_txCurrentA = m_txCurrentModel->CalcTxCurrent (txPowerDbm); 
    } 
} 
 
void 
LoraRadioEnergyModel::ChangeState (int newState) 
{ 
  NS_LOG_FUNCTION (this << newState); 
 
  Time duration = Simulator::Now () - m_lastUpdateTime; 
  NS_ASSERT (duration.GetNanoSeconds () >= 0);     // check if duration is valid 
 
  // energy to decrease = current * voltage * time 
  double energyToDecrease = 0.0; 
  double supplyVoltage = m_source->GetSupplyVoltage (); 
  switch (m_currentState) 
    { 
    case EndDeviceLoraPhy::STANDBY: 
      energyToDecrease = duration.GetSeconds () * m_idleCurrentA * supplyVoltage; 
      break; 
    case EndDeviceLoraPhy::TX: 
      energyToDecrease = (duration.GetSeconds () * m_txCurrentA * supplyVoltage) + 
(KeyExchangeEnergy (duration.GetSeconds ())); 
      break; 
    case EndDeviceLoraPhy::RX: 
      energyToDecrease = duration.GetSeconds () * m_rxCurrentA * supplyVoltage; 
      break; 
    case EndDeviceLoraPhy::SLEEP: 
      energyToDecrease = duration.GetSeconds () * m_sleepCurrentA * supplyVoltage; 
      break; 
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    default: 
      NS_FATAL_ERROR ("LoraRadioEnergyModel:Undefined radio state: " << m_currentState); 
    } 
 
  // update total energy consumption 
  m_totalEnergyConsumption += energyToDecrease; 
 
  // update last update time stamp 
  m_lastUpdateTime = Simulator::Now (); 
   
  std::cout<<"energy cunsumed at: \t" <<int (Simulator::Now ().GetMinutes ()) << "\t is: \t"<< 
m_totalEnergyConsumption<<"\n"; 
 
  m_nPendingChangeState++; 
 
  // notify energy source 
  m_source->UpdateEnergySource (); 
 
  // in case the energy source is found to be depleted during the last update, a callback might be 
  // invoked that might cause a change in the Lora PHY state (e.g., the PHY is put into SLEEP mode). 
  // This in turn causes a new call to this member function, with the consequence that the previous 
  // instance is resumed after the termination of the new instance. In particular, the state set 
  // by the previous instance is erroneously the final state stored in m_currentState. The check below 
  // ensures that previous instances do not change m_currentState. 
 
  if (!m_isSupersededChangeState) 
    { 
      // update current state & last update time stamp 
      SetLoraRadioState ((EndDeviceLoraPhy::State) newState); 
 
      // some debug message 
      NS_LOG_DEBUG ("LoraRadioEnergyModel:Total energy consumption is " << 
                    m_totalEnergyConsumption << "J"); 
    } 
 
  m_isSupersededChangeState = (m_nPendingChangeState > 1); 
 
  m_nPendingChangeState--; 
} 
 
// Function added to update energy consumption for encryption and key exchange 
 
double 
LoraRadioEnergyModel::KeyExchangeEnergy (double time_duration)  //added for key exchange 
energy addition 
{ 
  double time_calculation = 0.290; //time it takes for BYKA calculation (in seconds)  
  double byka_current = 0.0087;    // current supply for BYKA calculation (in Ampere) 
  double byka_voltage = 3.1;       //voltage required for BYKA (in Volt) 
  double supplyVoltage = m_source->GetSupplyVoltage (); 
  double recv_energy = time_duration * m_rxCurrentA * supplyVoltage; 
  double byka_energy = time_calculation * byka_current * byka_voltage; 
  double mac_energy = 0.00000000033*408;  //energy/bit * number of bits in packet 
  double encryption_energy = 0.00000000022 *408; 
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  return recv_energy + byka_energy + mac_energy + encryption_energy;  
//this returns total energy from receiving the packet from server and BYKA calculation energy 
   
} 
 
 
void 
LoraRadioEnergyModel::HandleEnergyDepletion (void) 
{ 
  NS_LOG_FUNCTION (this); 
  NS_LOG_DEBUG ("LoraRadioEnergyModel:Energy is depleted!"); 
  // invoke energy depletion callback, if set. 
  if (!m_energyDepletionCallback.IsNull ()) 
    { 
      m_energyDepletionCallback (); 
    } 
} 
 
void 
LoraRadioEnergyModel::HandleEnergyChanged (void) 
{ 
  NS_LOG_FUNCTION (this); 
  NS_LOG_DEBUG ("LoraRadioEnergyModel:Energy changed!"); 
} 
 
 
void 
LoraRadioEnergyModel::HandleEnergyRecharged (void) 
{ 
  NS_LOG_FUNCTION (this); 
  NS_LOG_DEBUG ("LoraRadioEnergyModel:Energy is recharged!"); 
  // invoke energy recharged callback, if set. 
  if (!m_energyRechargedCallback.IsNull ()) 
    { 
      m_energyRechargedCallback (); 
    } 
} 
 
LoraRadioEnergyModelPhyListener * 
LoraRadioEnergyModel::GetPhyListener (void) 
{ 
  NS_LOG_FUNCTION (this); 
  return m_listener; 
} 
 
/* 
 * Private functions start here. 
 */ 
 
void 
LoraRadioEnergyModel::DoDispose (void) 
{ 
  NS_LOG_FUNCTION (this); 
  m_source = NULL; 
  m_energyDepletionCallback.Nullify (); 
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} 
 
double 
LoraRadioEnergyModel::DoGetCurrentA (void) const 
{ 
  NS_LOG_FUNCTION (this); 
  switch (m_currentState) 
    { 
    case EndDeviceLoraPhy::STANDBY: 
      return m_idleCurrentA; 
    case EndDeviceLoraPhy::TX: 
      return m_txCurrentA; 
    case EndDeviceLoraPhy::RX: 
      return m_rxCurrentA; 
    case EndDeviceLoraPhy::SLEEP: 
      return m_sleepCurrentA; 
    default: 
      NS_FATAL_ERROR ("LoraRadioEnergyModel:Undefined radio state:" << m_currentState); 
    } 
} 
 
void 
LoraRadioEnergyModel::SetLoraRadioState (const EndDeviceLoraPhy::State state) 
{ 
  NS_LOG_FUNCTION (this << state); 
  m_currentState = state; 
  std::string stateName; 
  switch (state) 
    { 
    case EndDeviceLoraPhy::STANDBY: 
      stateName = "STANDBY"; 
      break; 
    case EndDeviceLoraPhy::TX: 
      stateName = "TX"; 
      break; 
    case EndDeviceLoraPhy::RX: 
      stateName = "RX"; 
      break; 
    case EndDeviceLoraPhy::SLEEP: 
      stateName = "SLEEP"; 
      break; 
    } 
  NS_LOG_DEBUG ("LoraRadioEnergyModel:Switching to state: " << stateName << 
                " at time = " << Simulator::Now ().GetSeconds () << " s"); 
} 
 
// -------------------------------------------------------------------------- // 
 
LoraRadioEnergyModelPhyListener::LoraRadioEnergyModelPhyListener () 
{ 
  NS_LOG_FUNCTION (this); 
  m_changeStateCallback.Nullify (); 
  m_updateTxCurrentCallback.Nullify (); 
} 
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LoraRadioEnergyModelPhyListener::~LoraRadioEnergyModelPhyListener () 
{ 
  NS_LOG_FUNCTION (this); 
} 
 
void 
LoraRadioEnergyModelPhyListener::SetChangeStateCallback 
(DeviceEnergyModel::ChangeStateCallback callback) 
{ 
  NS_LOG_FUNCTION (this << &callback); 
  NS_ASSERT (!callback.IsNull ()); 
  m_changeStateCallback = callback; 
} 
 
void 
LoraRadioEnergyModelPhyListener::SetUpdateTxCurrentCallback (UpdateTxCurrentCallback 
callback) 
{ 
  NS_LOG_FUNCTION (this << &callback); 
  NS_ASSERT (!callback.IsNull ()); 
  m_updateTxCurrentCallback = callback; 
} 
 
void 
LoraRadioEnergyModelPhyListener::NotifyRxStart () 
{ 
  NS_LOG_FUNCTION (this); 
  if (m_changeStateCallback.IsNull ()) 
    { 
      NS_FATAL_ERROR ("LoraRadioEnergyModelPhyListener:Change state callback not set!"); 
    } 
  m_changeStateCallback (EndDeviceLoraPhy::RX); 
} 
 
void 
LoraRadioEnergyModelPhyListener::NotifyTxStart (double txPowerDbm) 
{ 
  NS_LOG_FUNCTION (this << txPowerDbm); 
  if (m_updateTxCurrentCallback.IsNull ()) 
    { 
      NS_FATAL_ERROR ("LoraRadioEnergyModelPhyListener:Update tx current callback not 
set!"); 
    } 
  m_updateTxCurrentCallback (txPowerDbm); 
  if (m_changeStateCallback.IsNull ()) 
    { 
      NS_FATAL_ERROR ("LoraRadioEnergyModelPhyListener:Change state callback not set!"); 
    } 
  m_changeStateCallback (EndDeviceLoraPhy::TX); 
} 
 
void 
LoraRadioEnergyModelPhyListener::NotifySleep (void) 
{ 
  NS_LOG_FUNCTION (this); 
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  if (m_changeStateCallback.IsNull ()) 
    { 
      NS_FATAL_ERROR ("LoraRadioEnergyModelPhyListener:Change state callback not set!"); 
    } 
  m_changeStateCallback (EndDeviceLoraPhy::SLEEP); 
} 
 
void 
LoraRadioEnergyModelPhyListener::NotifyStandby (void) 
{ 
  NS_LOG_FUNCTION (this); 
  if (m_changeStateCallback.IsNull ()) 
    { 
      NS_FATAL_ERROR ("LoraRadioEnergyModelPhyListener:Change state callback not set!"); 
    } 
  m_changeStateCallback (EndDeviceLoraPhy::STANDBY); 
} 
 
/* 
 * Private function state here. 
 */ 
 
void 
LoraRadioEnergyModelPhyListener::SwitchToStandby (void) 
{ 
  NS_LOG_FUNCTION (this); 
  if (m_changeStateCallback.IsNull ()) 
    { 
      NS_FATAL_ERROR ("LoraRadioEnergyModelPhyListener:Change state callback not set!"); 
    } 
  m_changeStateCallback (EndDeviceLoraPhy::STANDBY); 
} 
 
} 
} // namespace ns3 
 

A3 Session Key Mechanism Syntactic Analysis Simulation 
usertype Timestamp; 
usertype String; 
const HelloWorld: String; 
protocol LPWANSession(Dev,Srv) 
 
{ 
role Srv { 
fresh Rd:Nonce; 
fresh T1: Timestamp; 
send_!T1(Srv, Dev, {Rd, T1}k(Dev,Srv)); 
macro SKey={Rd}k(Dev,Srv); 
recv_!2(Dev, Srv, {HelloWorld}k(Dev,Srv)); 
claim(Srv,Alive); //assures the Aliveness of Srv 
claim(Srv,Weakagree); //minimum agreement check between partners according to Srv 
claim(Srv,Niagree); //validates the non-injective agreement according to Srv 
claim(Srv,Nisynch); //validates the non-injective synchronization according to Srv 
claim (Srv,SKR,SKey); //validate the secrecy of AppSKey according to Srv 
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} 
 
role Dev { 
var T1: Timestamp; 
var Rd: Nonce; 
recv_!T1(Srv, Dev, {Rd, T1}k(Dev,Srv)); 
macro SKey={Rd}k(Dev,Srv); 
send_!2(Dev, Srv, {HelloWorld}k(Dev,Srv)); 
claim(Dev,Alive); //assures the Aliveness of Dev 
claim(Dev,Weakagree); //minimum agreement check between partners according to Dev 
claim(Dev,Niagree); //validates the non-injective agreement according to Dev 
claim(Dev,Nisynch); //validates the non-injective synchronization according to Dev 
claim (Dev,SKR,SKey); //validate the secrecy of AppSKey according to Dev 
} 
} 
 

A4 BYKA Correctness Validation (Mininet-WiFi) Scenario  
MininetToppology.py 
 
#!/usr/bin/python 
 
from mininet.node import Controller, OVSKernelSwitch, Host, RemoteController 
from mininet.log import setLogLevel, info 
from mn_wifi.net import Mininet_wifi 
from mn_wifi.node import Station, OVSKernelAP, OVSSwitch 
from mn_wifi.cli import CLI 
from mn_wifi.link import wmediumd 
from mn_wifi.wmediumdConnector import interference 
from subprocess import call 
 
class InbandController( RemoteController ): 
 
    def checkListening( self ): 
        #"Overridden to do nothing." 
        return 
 
def myNetwork(): 
 
    net = Mininet_wifi(topo=None, 
                       build=False, 
                       link=wmediumd, 
                       wmediumd_mode=interference, 
                       ipBase='10.0.0.0/8') 
 
    info( '*** Adding controller\n' ) 
    c0 = net.addController(name='c0', 
                           controller=InbandController, 
                            ip='10.0.0.3', 
                            protocol='tcp', 
                            port = 6633) 
 
    info( '*** Add switches/APs\n') 
    ap1 = net.addAccessPoint('ap1', cls=OVSKernelAP, ssid='ap1-ssid', 
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                             channel='1', mode='g', position='474.0,277.0,0') 
    s2 = net.addSwitch('s2', cls=OVSSwitch, inband=True) 
 
    info( '*** Add hosts/stations\n') 
    sta1 = net.addStation('sta1', ip='10.0.0.1/8', 
                           position='271.0,384.0,0') 
    sta2 = net.addStation('sta2', ip='10.0.0.2/8', 
                           position='620.0,394.0,0') 
    h1 = net.addHost('h1', cls=Host, ip='10.0.0.3/8', defaultRoute=None) 
 
    info("*** Configuring Propagation Model\n") 
    net.setPropagationModel(model="logDistance", exp=3) 
 
    info("*** Configuring wifi nodes\n") 
    net.configureWifiNodes() 
 
    info( '*** Add links\n') 
    net.addLink(sta1, ap1) 
    net.addLink(ap1, sta2) 
    net.addLink(s2, ap1) 
    net.addLink(s2, h1) 
 
    #net.plotGraph(max_x=1000, max_y=1000) 
 
    info( '*** Starting network\n') 
    net.build() 
    info( '*** Starting controllers\n') 
    for controller in net.controllers: 
        controller.start() 
 
    info( '*** Starting switches/APs\n') 
    net.get('ap1').start(net.controllers) 
    net.get('s2').start(net.controllers) 
    s2.cmd('ifconfig s2 inet 10.0.0.10') 
 
    info( '*** Post configure nodes\n') 
 
    CLI(net) 
    net.stop() 
 
 
if __name__ == '__main__': 
    setLogLevel( 'info' ) 
    myNetwork() 
 

A5 Sessions Key Mechanism Implementation (BYKA Extension)  
Send.py 

## This file implements sending of data between nodes using socket 

import socket 
import time 
 
def sendPublicKey(publicKey): 
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    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    s.bind((socket.gethostname(), 1234)) 
    s.listen(5) 
    while True: 
        clientsocket, address = s.accept() 
        print(f"Connection from {address}") 
        clientsocket.send(bytes(str(publicKey), "utf-8")) 
        clientsocket.close() 
        if address: 
            break 
 
 
Receive.py 

## This file implements receiving of data between nodes using socket 

import socket 
import time 
 
def recvPublicKey(): 
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    while True: 
        try: 
            s.connect((socket.gethostname(), 1234)) 
            msg = s.recv(1024) 
            return int(msg.decode("utf-8")) 
        except OSError as ex: 
            time.sleep(1) 
 
Byka.py 
 
## This file implements the BYKA key calculation 
 
import numpy as np 
import random 
 
 
m = 16 
n = 6 
N = 7 
p = 31 
q = 65521 
 
 
def genMasterKey(m, N, p): 
    masteKeySet = [] 
    masterKey = np.empty(shape=[m, m], dtype=int) 
    for k in range(0, N): 
        for i in range(0, m): 
            for j in range(0, m): 
                random.seed(i + j) 
                masterKey[i][j] = random.randrange(p) 
                masterKey[j][i] = masterKey[i][j] 
        masteKeySet.append(masterKey) 
    return masteKeySet 
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# serverMasterKey is stored in server and is never transfered anywhere 
 
serverMasterKey = genMasterKey(m, N, p) 
 
 
def genPublicKey(ID, m, n, q): 
    publicKeySet = [] 
    publicKeyVector = np.empty(shape=[m, 1], dtype='int64') 
    for i in range(0, n): 
        seed = ID + (i + 1) 
        for j in range(0, m): 
            publicKeyVector[j] = pow(seed, j) 
        publicKeyVector = np.mod(publicKeyVector, q) 
        publicKeySet.append(publicKeyVector) 
    return publicKeySet 
 
 
def genPrivateKey(n, N, p, ID): 
    publicK = genPublicKey(ID, m, n, q) 
    privateKey = [] 
    for i in range(0, n): 
        for j in range(0, N): 
            privateKey.append(np.dot(publicK[i].T, serverMasterKey[j])) 
    return np.array(privateKey) 
 
 
n1PrivateKey = np.array(genPrivateKey(n, N, p, 1)) 
n2PrivateKey = genPrivateKey(n, N, p, 2) 
def genPairwiseKey(privateKey, n, N, ID2): 
    publicK = genPublicKey(ID2, m, n, q) 
    pairwiseKey = [] 
    for i in range(0, n * N): 
        for j in range(0, n): 
            pairwiseKey.append(np.dot(privateKey[i], publicK[j])) 
    return sum(np.array(pairwiseKey)) 
 
 
def serverOperations ( m,n,N,p,q, ID1= 3,ID2 = 2): 
    pkID1 = genPrivateKey(n, N, p, ID1) 
    pkID2 = genPrivateKey(n, N, p, ID2) 
    pairwiseID2 = genPairwiseKey(pkID1, n,N, ID2) 
    pairwiseID1 = genPairwiseKey(pkID2, n,N, ID1) 
    if (pairwiseID2==pairwiseID1): 
        return pairwiseID1 
    print("not matching") 
    return False 
 
 
serverOperations(m,n,N,p,q) 
 
Controller.py 
 
## This file implements the tasks performed by SDN controller 
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import byka as bk 
import senddata as sender 
import numpy as np 
 
m = 16 
n = 6 
N = 7 
p = 31 
q = 65521 
 
usedID = set({}) 
E = {1,2} 
U = set(np.random.randint(100, size=1)) 
U = U.symmetric_difference(E) # for mutual exclusion 
 
IDtosend = U.pop() 
usedID.add(IDtosend) 
 
sender.sendPublicKey(IDtosend) 
 
print(bk.serverOperations(m,n,N,p,q, IDtosend, 2)) 
 
EndNode.py 
 
## This file implements the tasks performed by end nodes 
import numpy as np 
import recvdata as receiver 
 
m = 16 
n = 6 
N = 7 
p = 31 
q = 65521 
 
publicID = receiver.recvPublicKey() 
 
privateKey = np.load("n2PrivateKey.npy", allow_pickle=True) 
 
def genPublicKey(ID, m, n, q): 
    publicKeySet = [] 
    publicKeyVector = np.empty(shape=[m, 1], dtype='int64') 
    for i in range(0, n): 
        seed = ID + (i + 1) 
        for j in range(0, m): 
            publicKeyVector[j] = pow(seed, j) 
        publicKeyVector = np.mod(publicKeyVector, q) 
        publicKeySet.append(publicKeyVector) 
    return publicKeySet 
 
def genPairwiseKey(privateKey, n, N, ID2): 
    publicK = genPublicKey(ID2, m, n, q) 
    pairwiseKey = [] 
    for i in range(0, n * N): 
        for j in range(0, n): 
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            pairwiseKey.append(np.dot(privateKey[i], publicK[j])) 
    return sum(np.array(pairwiseKey)) 
 
print(genPairwiseKey(privateKey, n, N, publicID)) 
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