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Abstract—The big data revolution began when the volume,
velocity, and variety of data completely overwhelmed the systems
used to store, manipulate and analyze that data. As a result, a
new class of software systems emerged called big data systems.
While many attempted to harness the power of these new systems,
it is estimated that approximately 75% of the big data projects
have failed within the last decade. One of the root causes of this
is software engineering and architecture aspect of these systems.
This paper aims to facilitate big data system development by
introducing a software reference architecture. The work provides
an event driven microservices architecture that addresses specific
limitations in current big data reference architectures (RA). The
artefact development has followed the principles of empirically
grounded RAs. The RA has been evaluated by developing a
prototype that solves a real-world problem in practice. At the end,
succesful implementation of the reference architecture have been
presented. The results displayed a good degree of applicability
with respect to quality factors.

Index Terms—Reference architecture, Architecture, Big data
reference architecture, Big data architecture, Big data systems,
Big data software engineering, Event driven, Microservices

I. INTRODUCTION

The ubiquity of digital devices, the networking infrastruc-
ture of today, and the proliferation of software applications,
have augmented users’ capability to produce data at an un-
precedented rate [1]. In a world where we have an average
processing power of 1.5 GHz on smart phones, and up to
8 GHz on laptops running on a network infrastructure that
will support up to 25 Mbps of transmission per second, data
becomes the new oil, the atom, the dot that lays the foundation
of a nexus [2].

Big data (BD) is a term that was initially coined to refer
to the gradual growth and availability of data [3]. BD is an
endeavor to harness patterns behind vast amounts of data for
the purposes of improvement, control, and prediction. Roughly
10 years ago, the BD revolution began when the volume,
velocity, and variety of data completely overwhelmed the
systems used to store, manipulate and analyze that data [4],
[5]. The concept of BD is a game-changing innovation [6],
heralds the dawn of a new industrial revolution [7], and creates
a new category of economic asset.

Nevertheless, BD is not always better data or a magic wand
that enchants any business or process. Actually, it can very
easily cause losses [8]. It is estimated that approximately

75% of the BD projects have failed within the last decade
according to multiple sources [9], [10], [11], [4]. Among
challenges of adopting BD, the most repeatedly discussed
are 1) Architectural and system development challenges, 2)
Organizational challenges, and 3) Rapid technology change
[6], [1], [12]. The focus of this study is on architectural and
system development challenges.

Today, most BD systems are developed as ad-hoc and
complicated architectural solutions that do not tend to adhere
to many principles of software engineering [13], [14]. In
addition, as the ecosystem of BD grows and new technologies
are introduced, architects will have harder time to select and
orchestrate the right technology to produce the right results
[14].

This can create a foundation for an immature architectural
decision that results in a solution that is hard to maintain,
hard to scale, and may raise high-entry barriers. Since the
approach of ad-hoc design for BD systems is undesirable and
leaves many engineers in the dark, novel software engineering
approaches specialized for BD systems are required. To con-
tribute towards this goal, we explore the notion of RAs and
present a software reference architecture, Neomycelia.

In the case of ambiguity towards what should be developed
to address what needs, RA can play an overarching role to
describe the building blocks of the system and the ways in
which these blocks communicate to achieve the overall goal
of the system [15]. This in turn produces manageable modules
that each address a different aspect of the problem, and
provides stakeholders with a high-level medium to observe,
reflect upon, communicate with and add into.

II. WHY REFERENCE ARCHITECTURES?

BD is an interplay of analytics methods, software engineer-
ing through development and data engineering, and organiza-
tional workflows [16], [17]. Such complex systems are best
approached through the lens of architecture and well-thought
out design documents.

Utilization of RAs for complex systems is not something
new. In fact, practitioners of complex systems, software en-
gineers, and system designers have been frequently using
reference architectures to have a collective understanding of
system components, functionalities, data-flows and patterns



which shape the overall qualities of system and help further
adjust it to the business objectives [18], [19]. In software prod-
uct line (SPL) development, reference architectures are generic
schemas that can be configured and instantiated for a particular
domain of systems [20]. In software engineering, reference
architecture (RA) can be defined as means to represent and
transfer knowledge that bridges from the problem domain to
a family of solutions [21].

RAs serve as a mechanism that embodies domain relevant
qualities and concepts, breaks down the solutions, generates
a terminology to facilitate effective communication, and illu-
minates various stakeholders and system designers [21]. This
allows RAs to provide an opportunity for early identification
of design issues, when making changes is still cheap. This
has several side-benefits such as: 1) Ensuring cross-cutting
concerns are addressed, 2) Scales the knowledge of architects
and engineers across the organization, 3) Helps achieving con-
sensus around major design choices, 4) Creates the foundation
of organization memory around design decisions, 5) Acts as
a blueprint and a summary artefact in the portfolio of the
architects and software engineers

III. RESEARCH METHODOLOGY

To increase systematicity and allow for reproducibil-
ity of Neomycelia, we follow the guidelines presented in
empirically-grounded RAs [22]. In essence, “empirically
grounded” implies two major aspects: 1) “empirical foun-
dation” which implies that Neomycelia must be grounded
in proven principles (domain problems, practical concepts),
and 2) “empirical validity” which implies that RA needs
to be evaluated for applicability and validity. This research
methodology is based on two main pillars: 1) existing RAs
and 2) literature on RAs. The process follows these 6 steps:

1. Decision on type of the RA: A classification framework
presented by Angelov et al ([23]) is applied. In this study, five
types of RAs have been described from which our RA matches
type five (facilitation architectures designed to be implemented
in multiple organizations). Thus, this RA aims to facilitate the
design of BD systems across multiple organizations. Examples
of similar RAs are ERA [24], AHA [25], and eSRA [26]

2. Design Strategy: There are two general approaches to
the development of RAs; developing RAs from scratch or from
existing architectures. Our RA is developed based on existing
architectures and available literature.

3. Empirical acquisition of data: Data acquisition consists
of two major phases, data sources identification and capturing
architecture data. It is proposed by Nakagawa et al ([27]) that
good data sources for classical RA development can be people
(researchers, practitioners), available literature (publications,
technical reports, white papers) and systems (source codes,
documentations). Howbeit, the guidelines presented by Galster
and Avgeriou ([22]), provide no means or instructions on how
these data should be identified and captured.

Therefore, to increase systematicity and transparency of this
research, we conducted a systematic literature review (SLR) to
capture current best evidence from the available literature. For

this purpose we follow the guidelines of PRISMA presented
by Shamseer et al. ([28]).

Our aim was to find all available BD reference architectures
in literature in order to identify common components of
big data systems. This has grounded a solid formation for
development of Neomycelia.

We’ve selected IEEE Explore, ScienceDirect, SpringerLink,
ACM library, MIS Quarterly, Elsevier, AISel as well as
citation databases such as Scopus, Web of Science, Google
Scholar, and Research Gate. The search keywords used are
’Big Data Reference Architectures’, ’Reference Architectures
in the domain of Big Data’, and ’Reference Architectures and
Big Data’;

In the first phase of the SLR (identification), 84 literature
has been pooled. Out of this pool, 57 study has been selected
based on our inclusion, exclusion and quality criteria. Studied
that provided with detailed analysis and practice have been
included. Studied that provided with substantial case studies
have been included. Papers that discussed current BD RAs,
it’s ecosystems and drivers have been included. Papers that
are recent (in the range of 2010-2020) have been included.

On the other hand, papers that are duplicates, do not directly
address the SLR aim, and are not written in English are ex-
cluded. For our quality factors, we paid extensive attention to
how rich the study is in terms of its case studies and relevance
to practice. The length and volume of the information provided
by the studies has been considered as well. Very short and
information lacking papers did not get pass through the quality
assessment framework.

In the pool of selected articles, 24.5% are from Springer-
Link, 16% are from ACM, 33% are from IEEE Explore,
5.2% are from ScienceDirect, and the rest are from Google
Scholar. 13 conference proceedings, 30 journal articles, 12
book chapters, and a whitepaper has been selected. 33%
belonged to years 2013-2015, 51% of the articles were selected
from the years 2016-2020, and the rest to years 2010-2013.

We used the software Nvivo for classifying and coding the
literature. We defined 3 nodes namely ‘big data architecture
data’, ‘big data reference architecture limitations’, and ‘big
data components”. Once we coded and attributed texts to our
nodes, we then synthesized and inferred findings.

The result of this SLR administered 23 RAs from extant
literature, 18 RAs from academia, 4 from practice, 1 through
the collaboration of both domains. Majority of the RAs have
been in the form of short papers, but there has been few
detailed RAs as well. The exact detail and listing of the RAs
are out of the scope of this study, however, there will be
mentions to various RAs for comparison, inference purposes.

We found three common components among all RAs which
are; BD management and storage nodes (relational, non-
relational, graph, data lake, data finery, polyglot persistence),
BD infrastructure nodes (latency, data transformation, in-
memory data grids), and BD analytics and application nodes
(real-time processing, batch processing, predictive analysis,
spatial analysis). This underpinned our understanding for
actual design and construction of the RA.



4. Construction of the RA: Based on the findings captured
in previous step, the initial design of the RA took place.
Integral to this phase, was the underlying method to creation
and design of RA. We followed ISO/IEC 42010 for architec-
tural descriptions [29]. The standard mostly revolves around
concrete architectures and because of that, our descriptions do
not 100% conform to it.

For instance, the standard has bolded the identification
of system stakeholders (clause 5), however RAs are highly
abstract and do not have a clear group of stakeholders [30].
Another focal point in conveyance of architectural descriptions
is the concept of views. In this case, ISO/IEC 42010, being
the standard for concrete architectures, prescribe architecture
views and viewpoints in the context of business and actual
models (clause 4). This does not apply to this RA as well.

Beneken et al ([31]) classified three different kind of RAs
based on views, namely functional, logical and technical.
Along the lines, Vogel et al. [32] classified RAs based on their
usage context, as platform-specific, industry specific, industry
crosscutting, and product line RAs.

Whereas different academic efforts aimed at classifying RAs
based on different criteria, arguably several distinct views can
adhere to one logical view as it has been seen in the case of
pattern based reference architecture for serviced based system
conducted by Stricker et al. ([33]). This implies, that modules
defined in technical review can potentially refine the modules
of the logical view. Furthermore, Cloutier et al. ([19]) suggests
that a RA should address business, technical and customer
context’s views.

For the purposes of this study we do not address the business
view of the RA, as this software RA aims at describing
a functional, technical and logical views of a BD system.
Business views and viewpoints can be developed later when
detailed architectures are needed (Galster and Avgeriou 2011).

After deciding on views and methods of describing archi-
tecture, and by analyzing the limitations of current RAs and
by in-depth studies of the BD systems, the construction of the
RA took place.

5. Enable RA with variability: To allow for easier creation
of concrete architectures from this RA, variability has been
enabled for some modules. Based on the guidelines of Galster
and Avgeriou ([22]), there are two ways to enable variability:
1) variability models and 2) annotation of the RA. We chose
the latter.

6. Evaluation of the RA: Quality of the RA is determined
based on two factors: 1) utility and correctness of the RA
and 2) the support for instantiation and adoption of the RA
[22]. To achieve these factors, we have created a prototype of
the RA and tested it in practice to solve a business problem.
Nevertheless, because the RA has not been built from scratch,
and has absorbed patterns and principles from existing RAs ar-
chitectures, and systems in practice, the focus of the evaluation
was more towards sufficient support for effective instantiation.
Additionally, we evaluated the prototype using architecture
tradeoff analysis (ATAM [34]). This was to increase evaluation
and adherence to’utility and correctness’.

IV. A MICROSERVICES EVENT-DRIVEN REFERENCE
ARCHITECTURE FOR BIG DATA SYSTEMS

In the first iteration of the research methodology discussed
in previous section, in step 3, we have captured architectural
data and studied common themes in current BD systems. This
has laid the foundation of Neomycelia and has illuminated us
on the architectural requirements of BD systems. Thus, before
the actual design and creation of the software RA, we have
first listed the principal characteristics of BD systems and how
they should be incorporated into the final artefact.

We have then introduced some of the well-known industrial
patterns into the reference architecture and justified it. In what
follows, we first discuss the principal characteristics of BD,
we then discuss related works, microservices, event driven
approaches, and justify each decision made. From there on,
we will represent the software RA and describe the building
blocks.

A. Big data system characteristics

BD has five principal characteristics: Volume, variety, ve-
locity, veracity, and variability [14], [1]. Volume refers to the
amount of data passing through various pipelines. In a tradi-
tional setup, a data analyst might typically import a fragment
of a data warehouse into specialized software for statistical
analysis [35] but this approach is often difficult to achieve
with BD deployments. Velocity is the pace at which data
flows into the system and gets processed. Commonly through
data streams and, to effectively handle arrival irregularities,
sliding windows [36]. Variety describes the heterogeneity of
data formats. Data often arrives in various formats; structured,
semi-structured, or pseudo-structured [37], [5].

Suitable architectural constructs must be created to address
variety by, for example, normalizing or reformatting. Veracity
refers to data quality, ensured by adherence to data governance
protocols [38]. Data provenance, data quality assessment, data
cleansing, and data liveliness are some of the architectural
factors that must be taken into consideration. Variability takes
into account the evolving nature of data and how data are
ingested, processed, and conveyed to the next node in the
pipeline [14]. Therefore, Neomycelia must provide:

• Volume: Capability of ingesting for massive data sets
• Velocity: Enable ingesting from multiple data sources at

different rates (scale to demand). It shall support batch-
mode and live-stream processing.

• Variety: Provide the means for rational processing
across different data formats (structured, semi-structured,
pseudo-structured)

• Veracity: Ensure data quality standards are maintained
and includes data provenance, quality, liveliness, and
cleansing

• Variability: Provide schema evaluation and effective in-
terconnection

Taking the innate characteristics of BD into consideration,
one should pay clear attention to quality attributes (Cloutier
et al. 2010). Quality attributes help identify architectural



requirements and key drives. Additionally, quality attributes
do play an important role in evaluation of the architectural
prototype.

For the purposes of this software RA, the main quality at-
tributes chosen are performance, availability and modifiability.

V. RELATED WORK

Most RAs and architectural patterns studied for this study
have been designed with no attention to microservices and
were mostly designed in the form of a monolith. For instance,
Lambda ([39]) addresses speed, batches, and serving layers.
The serving layer addresses the volume characteristics of
BD by storing large amounts of heterogonous data in the
master dataset.Velocity is addressed by having two different
approaches to data processing, speed, and batch processing.

While the speed layer usually deals with streams of data
that need to be processed in real-time, the batch layer forwards
data to the serving layer, and then batch views to allow query
processing. Bolster [14] augments this architecture by adding
a semantic layer which supports metadata.

Meanwhile, the NIST BD RA [40] is the most compre-
hensive BD RA found in the SLR. The RA is delineated in
terms of fabrics, providers, and services. Withall, we could not
identify the notion of independent services or clearly defined
contexts for the services. Along the lines, there is the pattern
based approach conducted by Stricker et al. ([33]) that is
heavily inspired by the works of Gamma et al ([41]).

A. From monolith to microservices

Recent approaches to software architecture tends towards
increases in modularity and clearly defined boundaries [42].
The benefits derived of this shift sees organizations mov-
ing to design architectures as series of inter-communicating,
yet independent services. Benefits include lower maintenance
costs, increased ownership, more agile development, and better
support for DevOps, versioning, and scaling [43]

Most legacy systems today run on some kind of monolithic
architecture. As monolithic applications grow, complexity and
overheads increase, making maintenance a daunting task.
Adopting new technologies in monolithic systems is difficult
and if there exist design changes, the development team
may need to put an immense amount of effort to meet new
requirements.

In addition, many monolithic systems are not integrated with
recent cloud technologies and DevOps trends, for example
introducing change or modification to an existing module is
prone to side-effects and hard-to-find bugs [44], [43]. Teams
are not hundred percent autonomous and holocracy, if it has
been adopted, is compromised.

These factors can hinder the development of complex sys-
tems such as big data systems, and create architectural risks
when it comes to tradeoff points, sensititivity points, and
quality attributes such as modifiability. Therefore, Neomycelia
aims to move away from monolithic designs and is founded
based on event-driven microservices.

Whereas the concepts aformentioned can be beneficial to
any system and not only big data systems, they can address
some of the major challenges of adopting big data systems
such as horizontal scaling, data quality and provenance, and
throughput [45].

B. The microservices challenge
Microservices architecture offers a promising solution to

issues related to monolithic systems, however the imple-
mentation of it can be challenging. Sometimes referred to
as a consequence of ‘monolithic microservices’, one of the
key challenges of a successful microservices architecture is
effective communication between services [46].

The basic approach to asynchronous communication be-
tween services, is through REST API calls, where a service
makes a REST call to another service. This is referred to as
point-to-point communication and is useful for cases where
no response is required or when an admin task needs to be
executed.

But as services grow, the need for inter-communication
increases and if one service is in a blocking state (for example,
running a time consuming process), it will affect other services
that rely on that service, and thus a ripple effect through the
whole system is created. This is called ’distribution tax’ [47].
Network heavy nature of microservices architecture can also
results in other issues such as ’scaling with tail latency’ ,
’context switch’, and ’gridlocks’ [48][49][50].

Another approach to interservice asynchronous messaging
in a microservices architecture is the publisher-subscriber
(pub-sub) model. In this model, a central pub-sub construct
(usually a message broker) sits at the heart of the architecture
and facilitates communications. This means that, instead of
microservices directly calling each other, they publish a new
message to the message broker on a specific topic and all the
subscribers to that topic will be notified.

Any computational effort is then handled by the subscribers.
Furthermore, a subscriber can be a publisher of message too
[51]. In this case, the message broker is at the heart of the
communications process. Whereas this approach is better than
the former, it still can introduce coupling and affect quality
attributes such as modifiability and performance. Moreover,
the ways in which services register, publish, subscribe and
communicate is still is at risk.

C. An event driven approach
The approaches to microservices communication described

require some sort of coupling. Thus, interfaces need to be
declared, services need to know what other services are
responsible for, how messages will be processed, and services
may have dependencies related to other microservices. As
microservices increase in number, the maintenance of mi-
croservice coupling becomes increasingly challenging and this
affect the overall quality of the architecture. These should not
the aim of a microservices architecture.

On solution to this, is asynchronous communication be-
tween serious through events. An event driven model provides
an effective means of addressing the aforementioned issues.



Point-to-point or pub-sub communication between microser-
vices means that each service should recognize related in-
terfaces and the requirements for downstream microservices
[52], [53].The underlying mechanism of this model is to issue
a ‘command’, where one microservice sends commands to
another microservice or topic.

We provide a ‘dispatch and forget’ approach, in which a
service dispatches an event to a central event backbone [54]. In
this way, services do not need to know what happens after an
event has been dispatched, they are only responsible for event
dispatching through well-defined contracts. The underlying
mechanism of this model is ‘event’. Thus, new services can
be added, removed, configured, and scaled easily and more
simply.

The subtlety lies in the underlying approach, and philosophy
of ‘event’ instead of ‘command’, which implies that modules
react to a change of state rather than a command for action
from another module. This approach solves the issue of long-
running tasks that block and a service does not need to wait for
another to complete its process. In this approach, we aim for a
eventual consistency or a BASE model, but ACID transactions
can also take place. The logical data flow or data consistency
is outside the scope of this paper.

VI. NEOMYCELIA

In this section, Neomycelia is described. Strong points for
Neomycelia are its attention to metadata and data caching.
With the exception of Bolster [14], RAs scarcely include
metadata. Metadata addresses a wide range of needs like
security, privacy, scalability, and efficiency. In the context of
a distributed system, metadata bridges data stored in different
functions such as in the Cloud versus that on premise [55].

Furthermore, there was no evidence of an RA that provides
for data caching. Avoiding issues related to monolithic sys-
tems, and by adhering to principles of event-driven communi-
cations, the Neomycelia RA (1) provides improved modular-
ity, extendibility, modifiability, scalability, and maintainability.
This is in line with quality attributes that has been set for
evaluation purposes.

A. Components

Neomycelia is comprised of 14 essential architectural com-
ponents. Our aim is to provide a high level overview of these
services, and detailed explanation of each service is outside
the scope of this study. The terms node, and service are used
interchangeably.

Gateway: This is the main entry point and determines how
messages are handled. Gateway acts as a reverse proxy that
accepts all incoming requests from Application Programming
Interfaces (API) and appoints them to appropriate services.
This mechanism provides the performance and modifiability
aspects of the RA. In addition, gateway can bring other benefits
such as increased security, logging, and load balancing.

Stream processing controller: This service forwards re-
quests to the stream processing service mesh. Low impact
processes like basic sanitization, authentication, and potential

validation take place here. Computationally expensive events
are not processed in this node. The stream processing con-
troller provides stream provenance and may decide which
one-pass algorithm should run over what event stream. This
services serves as the initial invocation.

Batch processing controller: The function of this service
is to forward requests to the batch processing service mesh.
Low impact pre-processing such as preliminary normalization
can take please in this node. It is necessary to avoid com-
putationally expensive processes in this service. This service
serves as the initial invocation.

Stream processing service mesh: Based on the require-
ments for specific stream processing approaches, this service
is comprised of an arbitrary number of nodes for stream
processing. A cache manager keeps track of values processes
in the event queue and keeps an event archive with a list of
associated computed values. Each service has its own local
database. Most stream processing algorithms are operating on
in-memory stateful data structures, such as HyperLogLog, to
compute distinct values and provide summary output. Dif-
ferent services can adopt unique processing and windowing
approaches such as micro-batch processing and tuple-at-a-time
[56].

To avoid obfuscation of the event backbone, each service
in the service mesh will communicate its results through an
internal message broker (an event queue) that is responsible
for communication to the external entities. Linking service
results to a message broker that communicate with the event
backbone provides parallelism, encapsulates stream processing
to its own service mesh, and provides abstraction.

Any service may have a sidecar, or service proxy, attached
to it. These proxies act as an intermediary to encapsulate
networking and infrastructure needs of the service. Sidecars
abstract out all the platform requirements necessary for the
service to run. This allows software engineers to focus on
what matters, development, and avoid being distracted by
infrastructure issues.

Finally, every service mesh will have a control tower which
communicates with sidecars and acts as a centralized unit that
registers, updates, and passes changes to the services through
their proxy. For example, if all services in this service mesh
need to update their SSL certificate monthly, they can do it
through sidecar communication to the control tower.

Batch processing service mesh: Similar to the stream
processing service mesh, except that this does not require a
message broker (event queue). Batch processes do not need
to happen in real-time, so there is no advantage in providing
parallelism. Every service can dispatch directly to the event
backbone.

Service discovery: As the number of services increases and
deployment and configuration demands become more frequent,
identification and invocation of appropriate services become
daunting. Service discovery addresses this problem by being
a central register for all services. This means, services can
now utilize a central node to register their functionalities.
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Fig. 1. Neomycelia Software Reference Architecture.

Monitoring: A challenge for a microservices architecture
is the ability to track, monitor, and log services behaviors.
An event is dispatched from a service, which invokes another
service, which in turn results in another dispatch. It’s a difficult
task to identify errors in this chain with loosely coupled
services but the monitoring service solves this problem by
tracking usage and behavioral data from services. Data collec-
tion is provided by the service discovery unit. The architect
and system designer decide on the granularity of data collected
from each service and log aggregation mechanisms.

Event backbone: This is the heart of Neomycelia, facili-
tating communication between the parts of the system. Every
service in the system communicates through event backbone
as choreographed events, analogous to a dance troupe where
everyone responds to the rhythm of the music and moves
according to their specific role. Each service (dancer) listens
to the event backbone (the music) and takes action only as
required. Thus, a service is responsible only for dispatching
an event in a ‘dispatch and forget’ model. Services listening on
a specific topic execute the desired process and may dispatch
another event to the event backbone.

The event backbone is the sole controller of communication
between services, through events. This allows development
teams to focus on various services and develop independently.
This also allows for simple plug-in and plug-out of a service,
reducing concerns about side-effects. Moreover, a failure in a

microservice is less likely to affect the whole system because
the loss of availability is periodically checked and prevented.

Event archive: Communications between services can
sometimes be faulty. Services can timeout, there could be
issues in the message contract, the existence of bugs, or type
problems. One way to achieve an effective failure handling and
recovery approach is through an event archive. This means,
if an event fails, it can be retried and recovered because it
was registered in an event archive. Furthermore, in the case
of an event backbone service going down during an event
transmission, the event backbone can recover itself by reading
the events it had to handle from the event archive. This can
be series of events or a single event.

Data Lake: This contains structured, pseudo-structured,
unstructured, and semi-structured data. In a generic setup, data
is usually stored in the data lake before it is stream or batch
processed. This may not provide the best-case scenario for all
situations, so it is up to the architect to decide if that is the
most appropriate data flow in the system.

Semantic Layer: This service mesh is the central hub for
all metadata processing, containing the MetaData Management
(MDM) system. The MDM is responsible for providing ser-
vices with information to define and model raw data. This is
where a domain vocabulary is defined and controlled by data
stewards. The semantic layer provides the opportunity to store
metadata, preparation rules, and data evolution and reduces



the need for the data analyst or scientist to repeat work.
Query Controller: This service determines the type of

query received (stream, batch, or other) that come from the
gateway and dispatches the event to the query engine. The
controller performs straight forward pre-processing or saniti-
zation as required but heavy computation should be avoided.

Query Engine: This service processes query requests. Once
values are created, an event is dispatched the subsequent
service to return results.

B. Variability

Neomycelia components are classified as required, variable,
and optional. This RA is governed by a strict decoupling rule,
such that the removal of any service shall not affect other
services.

Gateway, event backbone service, microservices and event
archive are required if the architect decides to adhere to the
decoupling rule. However, an architect can decide to utilize
another method of communication like orchestrated events or
point-to-point protocol.The required service gateway provides
load balancing, security, lower cumulative latencies, and code
simplification. The required service event backbone provides
communication between services. The required service event
archive is a retry/fail mechanism for the event backbone.

Variable services provided that a context is maintainable,
in which the data lake, stream processing service mesh, batch
processing service mesh, controller services (batch, stream,
query) and query engine are variable and can be substituted
to meet contextual demands.

Optional services include sidecars, control towers, event
queue, cache manager services, service discovery service,
monitoring service, semantic layer service mesh, and policy
manager service mesh. A semantic service mesh and policy
manager service mesh provides a solution for privacy and
metadata issues in BD systems. An architect may implement
a semantic service mesh but must determine if the company
cope with the complexity.

VII. EVALUATION

RAs lack clearly defined stakeholders, exist at a high level
of abstraction, and are highly adaptable [30].RA evaluation
is a challenge [24], [57] because they are not the same as
a concrete architecture. Based on the guidelines provided by
Galster and Avgeriou ([22]), utility, correctness and instanti-
ation support determine the quality of the RA, and therefore
an effective evaluation is critical. To achieve that, we have
first deduced a prototype architecture and then followed the
guideline of architecture tradeoff analysis method (ATAM
[34]) to evaluate the prototype in practice.

This is achieved by evaluating the correctness and utility
of the RA, and how efficiently adaptation can be instantiated
[22]. Quality is assessed by how the RA can be transformed
into an effective organization-specific concrete architecture
and through qualitative and quantitative methods discussed in
ATAM. This evaluation follows two phases. Phase 1 includes

gathering basic information about the company, practice, and
interaction with key stakeholders.

Phase 2 includes analysis and evaluation of the proposed
architecture, understanding quality attributes, tradeoff points
and risks. We do not describe every step of the ATAM for
brevity purposes. Additionally, some of the details have been
changed for academic purposes and to protect the intellectual
property of the practice. Nevertheless, the evaluation results
are not materially affected.

A. Phase 1
Evaluation is undertaken in an Auckland-based company

and being applied to new and existing workflows. The com-
pany provides practice management software to veterinary
professionals via a Software as a Service (SaaS) and serves
over 15,000 clients from New Zealand, Australia, USA, UK,
and Canada with some large equine hospitals and veterinary
clinics. The company aims to embark on big data and machine
learning endeavour, and seize abundance of business opportu-
nities that exist.

During the initial meeting, we first presented the ATAM
and Neomycelia, and the business stakeholders presented the
business case. We have then scoped down the business case
to one workflow that NeoMycelia can account for. We learnt
that countries adhere to local regulatory frameworks for drug
prescriptions for animals, which means local jurisdictions
control access to veterinary drugs as Restricted Veterinary
Medicines (RVM). Under this protocol, all patients should be
background-checked before a drug is dispensed. Therefore,
real-time stream processing for background-checks and batch
processing for billing triggers and reports generation is needed.

B. Phase 2
In phase 2, We have first created an archetype of

Neomycelia. We utilised ISO/IEC 25000 SQuaRE standard
(Software Product Quality Requirements and Evaluation)
([58]) as a reference quality model for technology selection.
This model is described in terms of characteristics and sub-
characteristics. The explanation of these characteristics is out
of the scope of this paper.

This archetype incorporates Kafka as the event backbone,
AWS Lambda for the stream processing and batch pro-
cessing controllers, Amazon load balancer as the gateway
(application load balancer), Envoy for the sidecar services,
Kubernetes as cluster manager, Docker for container technol-
ogy, Resilience4J for a fault-tolerant communication module,
Prometheus for the monitoring tool, Zookeeper for the service
discovery tool, Istio as the service mesh control tower, Amazon
RDS for services’ private database, Amazon S3 for the event
archive, Amazon MQ as the message broker inside the mesh,
an Amazon data lake, and Amazon EC2 for services. To
account for better availability we have additionally setup
autoscaling groups targeting two different target groups in two
different zones.

We have then presented the architecture to the stakeholders,
identified architectural approaches, elicited quality attribute
trees, and prioritized scenarios.



1) Identifying architectural approaches: To identify ar-
chitectural approaches, we elicited information from the
archetype with respect to modifiability, availability, and per-
formance.

• for performance, application load balancer, lambdas and
service meshes have been described

• for availability, we discussed scaling groups, and event
archive

• for modifiability, we discussed the ’zero coupling’ phi-
losophy of Neomycelia and decentralized nature of it. We
discussed th event driven nature of it as well.

We probed each quality attribute for tradeoffs, sensitivity
points, and risks.

2) Scenario Prioritisation: Scenarios allow for the captur-
ing of stimuli to which the architecture has to react. These
are captured to identify system’s ability to meet functional
and non-functional requirements. In this step, we asked stake-
holders to come up with 3 different kind of scenarios namely
use-case scenarios (typical use of the system), growth scenario
(anticipated changes), and exploratory scenarios (extreme
changes). We have then gave each stakeholder time to vote
for each scenario. The result of this created over 30 scenarios,
out of which 5 has been selected.

We describe those 5 scenarios as two journeys;
• User needs to get restricted medication for his/her pet, or

farm animal, but he/she has to be background checked
before the medication can be dispensed.

• A large database of animals have been given to the system
to predict certain disease.

3) Ulitity tree elicitation: In this step, we learnt from
the stakeholders that privacy, availability, modifiability and
performance are the most important quality attributes, and we
adjusted to it. We have also learnt that whereas availability is
of concern, it still falls in a lower place than privacy. There-
fore, the quality attribute ’availability’ have been intentionally
omitted for the purposes of this study as we have not faced any
major challenge that would instigate change, which wasn’t the
case for the other quality attributes. Howbeit, we’ve utilized
many of AWS services to increase availability such as auto
scaling groups. Based upon this, utility tree has been generated
(Figure 2).

Utility

Privacy

Performance

Modifiability

Data scrubbing 

New service mesh < 1 p.m.
New Lambdas < 1 p.w.
New data format < 1 p.w.

Real time stream pro-
cessing < 2000ms
Response time < 1200ms

Fig. 2. Utility Tree

4) Analyze architectural approaches: At this stage, we
mapped our architectural approaches against a simulation
scenario that matches businesses’ case study. This approach
was used to provide for heuristic qualitative analysis, and to
understand risks, tradeoffs and sensitivity points.

A simulation scenario with a request that emulates the
system in production has been formulated. We created relevant
topic in the event backbone, and sent a mock API request with
a mock data to test the system’s response. Our mock data has
been duplicated from real data.

We engineered API gateway to pass the request to the rep-
resentative Lambda. The Lambda performed straightforward
preprocessing (adding properties or mutating JSON objects)
on the data and dispatched an event to Kafka.

We raised several screening questions to better probe our
approach and the business case, some of these questions were:

• What happens if event backbone goes out of service?
• How events are processed? in what order?
• If we need to remove sensitive data, how do we achieve

that?
• How easily can be extend and modify our services?
It is important to note that the Neomycelia itself as delin-

eated in the figure 1 does not entail all the details to understand
the system. Thus, scenarios, prototypes, and quality attribute
based analysis and screening questions can help illuminate the
architectural view, and tradeoff points. [34]. Tradeoff points
are points at which one service can affect various quality
attributes, and this can drastically affect the overall behavior
of the system.

Based on stakeholders feedback and utility tree, we can state
that system quality QS, is a function f of the quality attribute
performance QP, modifiability QM and privacy QPr:

QS = f(QM, QA, QP) (1)

• Privacy: We learnt that our prototype does not ac-
count for ’privacy’ quality attribute. Thus we added a
new service mesh called ’policy manager’. This service
mesh is responsible for applying or checking policies
about input data. The policy manager aligns policies
with various contexts to determine how data should be
retrieved or processed. The main responsibility of this
service mesh is to check if the input data is in line with
business predefined policies. It then flags and dispatches
subsequent event depending on the nature of the request.
This has addressed stakeholders concern for geopolitical
laws pertaining to data privacy. This has also addressed
an architectural risk as we have not forseen the need for
such service.

• Modifiability: for modifiability analysis, we followed
SAAM ([59]) and expanded on it to justify the utility
tree generated. The decoupled and distributed nature
of Neomycelia allowed us to easily account for the
requirements. The fact that we could ’plug-in’ and ’plug-
out’ services, service meshes and lambdas have proven
to account for great level of modifiability. This has also



helped in addressing other quality attributes such as
privacy. We added a privacy service mesh and measured
the time and effort it required. In our simple scenario, we
have created a manifest file out of existing ones for our
Kubernetes cluser, and deployed a new one. Depending
on the complexity of the system, this may vary, but our
result prove that we can account for 1 p.m. that is stated
in the utility tree.

• Performance: we implemented a simple performance test
by utilizing a cloud stress testing agent (StresStimulus).
The agent allowed us to simply execute an on-demand
stress on the system. It became clear to us that Lambdas
time to boot up (cold start) can affect our system’s
response time. We have captured an average of 250ms
up to 500ms cold start time for each Lambda to spin
up and handle the request. Whereas replacing Lambdas
with an EC2 or a Fargate on AWS could solve the
issue, we did not find that necessary, as even with the
cold start time, the system still could account for the
response time required. Furthermore, we have realized
that one solution to Lambda cold start problems could be
predictable start-up times with provisioned concurrency.
However this is outside the scope of this study. We
have also measured throughput between services. We
encapsulated our service meshes in private networks, thus
the communication were fast and our response time were
under 1200ms.

5) Tradeoff points: As a result of these analysis, we iden-
tified two tradeoff points. One of which is the controllers and
more specifically the Lambdas. We can refine this tradeoff
point as:

QP = g(λC, µC) (2)

That is, system performance is affected by the failure rate
of the controllers to address and dispatch requests in a timely
manner, implying λC is being the failure rate of the controller,
and µC being the time it takes for the controller to spin up and
address demand. Whereas there are solutions to this issue and
some cloud providers have addressed this problem (Cloudflare
workers), we have not taken that into consideration and our
evaluation is based on AWS services.

Therefore, we determine this as a risk. This is due to the
fact that practitioners may need to do a background check
up on the individual before dispensing a medicine, and this
should be stream processed in a timely manner. On the other
hand, substituting a Lambda for an EC2, would decrease the
modifiability of the system, as EC2 is a complete virtual
machine that needs to be maintained. This also means, the
concept of ’controller’ loses it’s context, as we have perceived
’controller’ as a very small traffic forwarding piece of our
architecture (like a traffic light).

Another aspect that challenged Neomycelia was the crit-
icality of the ’event backbone’. Being at the core of the
architecture, we’ve seen worries around how it would recover
in the case of failure and how does it scale to account for

all the communications necessary. Kafka recovery is achieved
through event archive that keeps track of all the events in a
separate storage. This allows for recovery from abrupt failures.
We have also realized that kafka can scale and effectively
address the demand during our stress test.

Therefore, we deduced that Kafka can account for the
performance quality attribute. However, different stream pro-
cessing platforms come with various schema registries that
sometimes need modification and do not adhere to the same
interface. This means modifiability is affected, and it would be
very difficult for a business to move to a new stream processing
technology if desired. We have realized that the distributed
nature of Kafka is really in line with our performance and
modifiability goals. But this also limits the number of choices
an architect has, and therefore modifiability can be compro-
mised.

6) Limitations: Whereas many of the developers and the
architect itself like the choreographed nature of our event-
driven system and it’s decoupled nature, Neomycelia has been
perceived complicated to implement. practitioners perceived
the prototype as requiring a lot of expertise in platform, specif-
ically in Kubernetes cluster management and deployment.
Furthermore, some stakeholder found internal message queue
of the service mesh unnecessary in the initial phase. Some
offered a monolith to begin with and gradual breakdown.

VIII. CONCLUSION

As data-oriented technologies emerge, long-established ide-
ologies toward the nature of system design and architecture
are revolutionized. Companies are required to be prepared
to tackle the apparent difficulty of this field and absorb the
complexity. RAs provide a starting point to manage the com-
plexity of BD. In the case of ambiguity towards what should
be developed against need, architectures play an overarching
role in describing the building blocks of the system and the
ways in which blocks communicate to achieve the goals of the
system. Future work on Neomycelia and other RAs address
security concerns and creating more complex and distributed
metadata management technologies.
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