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Abstract 

The subject of this research is mining data stream. It is one of the most challenging and 

widely researched areas in Knowledge Discovery and Data Mining (KDD).  A data stream is 

a continuous, voluminous, and unpredictable flow of data which occurs in many application 

domains. In a previous study (Kadam, 2009), Data Stream Mining (DSM) algorithm was 

proposed  to overcome these problems on association rules mining. It was built using 

various techniques such as closed frequent itemsets, tree data structures, itemsets pruning, 

and statistical sampling. We have developed Near Closed Nodes algorithms, which can be 

applied to algorithms for mining association rules that utilised closed itemsets structure. 

In this study, we look into the characteristics of closed frequent itemsets and propose a 

novel concept called Near Closed Nodes (NCN). This concept was thoroughly explored and 

later developed in conjunction with an existing DSM algorithm. By incorporating NCN into the 

DSM algorithm, we were able to increase the performance of both speed and memory 

usage.  A comprehensive experimental study was performed to compare the performance of 

DSM and DSM-NCN using both simulated and real world datasets. Based on the results 

from the experimental study, we concluded that DSM-NCN outperformed DSM in most 

circumstances, especially when the datasets were dense. 
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Chapter 1 Introduction 

Data stream mining arises with the ubiquity and affordability of computing as well as growth 

of the Internet. Knowledge Discovery and Data Mining (KDD) on data streams is essential in 

many application domains. These domains include but are not limited to computer networks, 

finance, and web usage. 

KDD is the term given to the processes and technologies used to extract useful information 

and knowledge from data. Data mining can be classified into four main categories; 

classification, clustering, prediction and association rule mining. These data mining 

categories can be utilised with a wide variety of data including; Offline (static database), and 

Online (stream data). Offline mining is characterised by data that is processed in bulk form; 

data is static and all data can be processed at once. On the other hand, online data mining is 

characterised as mining on data that arrives continuously and is dynamic in nature.  Online 

mining is essential for many applications where data is continuously arriving at high speed. 

Data stream mining encompasses many mining techniques including Association Rules 

mining which is a technique that finds relationships between items within a given dataset. 

There are many applications that benefit from this type of data mining on a data stream 

including network security (Lee & Stolfo, 2000), and web usage (Bamshad, Honghua, Tao, & 

Miki, 2001). However traditional method such as the Apriori algorithm(Rakesh Agrawal, 

Imieliński, & Swami, 1993) alone is inadequate in a data stream mining environment due to a 

variety of technical issues (Jiang & Gruenwald, 2006b). 

1.1 Research Motivation 

Data streams pose unique and challenging characteristics that differentiate them from 

traditional databases. These characterise by behaviours including continuous arrival of data, 

unbounded length, high rate of arrival, and ever changing data distribution (Jiang & 

Gruenwald, 2006b). These characteristics pose great challenges to researchers to find 

algorithms that can extract patterns from such an unbounded stream of data.  

High speed data streams pose problems to algorithms as the rate of processing needs to 

keep up with the speed with which data arrives in order to ensure that valuable data is not 

lost as new data arrive. Therefore it is crucial that algorithms utilise techniques such as 

incremental model building and statistical sampling to accelerate the mining process (Gaber, 

Zaslavsky, & Krishnaswamy, 2005).  
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Continuous arrival of unbounded data presents many problems to association rules mining 

algorithms as accumulative data can be limitless. This poses major challenges for 

researchers to design algorithms that are capable of exploiting compact storage methods 

and ways to efficiently access and update models that accurately capture patterns inherent 

in the data stream. 

Together with the continuous arrival of data there is also the possibility of changes in the 

underlying stochastic data distribution. This phenomenon is referred to as concept drift 

(Haixun, Wei, Philip, & Jiawei, 2003), a term which is used in the data mining literature to 

describe changes in the underlying data distribution. 

These three characteristics of data streams have created great opportunities and incentives 

for researchers to develop efficient algorithms that mitigate the effects from these issues. 

This research will focus on making improvement on mining efficiency to the existing Data 

stream mining implementation(Kadam, 2009). 

1.2 Research Objectives 

The broad objectives of the research are as follows. 

• Investigate methods for reducing processing time for generating association rules in 

a data stream environment. 

• Investigate methods for improving memory utilisation in the context of association 

rule mining in a data stream environment. 

• Perform a comparative performance study with contemporary association rules data 

stream miner.   

From these three broad objectives, we are aiming to develop improved methods which can 

be applied to an already developed implementation and to make comparison between the 

improved and original versions. We selected a developed implementation called Data 

Stream Mining or DSM (Kadam, 2009). This implementation was selected as it outperformed 

the existing state-of-the-art algorithm in association rule data stream mining.  

1.3 Dissertation Structure 

This chapter introduced the concept of data stream mining while discussing major 

challenges with generating association rules on data streams. These challenges arise from 

the continuous, unbound, and unpredictable nature of data streams. Chapter 2 will review 
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existing techniques and approaches to association rules mining on a data stream 

environment. 

In chapter 3, we will present the underlying research methodology and discuss methods that 

we propose to overcome various issues imposed by the data stream environment. 

Chapter 4 will present an experimental plan for a comparative performance study with an 

existing algorithm (DSM). It will outline various aspects of the experiments including 

performance metrics tested, chosen datasets, and the variables used in the experimentation. 

Chapter 5 will present the experimental results and discuss the impact made by the methods 

that were introduced to improve the performance. 

In the final chapter we will provide a discussion and summarise our research. It will conclude 

with directions for future work and further improvement.  
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Chapter 2 Literature Review 

2.1 Introduction 

The Apriori algorithm and its variants (R. Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 

1996; R. Agrawal & Srikant, 1994) were the catalyst for widespread research  in the area of 

association rules mining. The Apriori algorithms are far superior to the brute-force approach 

at finding frequent itemsets (Tan, Steinbach, & Kumar, 2005). However, as stated in the 

previous chapter algorithms based on Apriori alone are not efficient and suitable to mine a 

data stream.  

Association rules analysis from data stream environment poses various issues. These 

issues arise by the very nature of a data stream and were briefly discussed in the previous 

chapter. In this chapter we will discuss these issues in more depth and review past research 

that addressed them. 

The past research that we are reviewed in this chapter can be classified into three distinct 

research domains. The three research domains according to Jiang and Gruenwald (Jiang & 

Gruenwald, 2006b) are as follows; data extraction, memory management, and mining 

approaches. This will now be discussed in turn. 

2.2 Data Extraction Methods 

Data streams pose key concerns over the ways in which data is processed. As streams are 

continuous, unbound, and unpredictable they require fundamental changes in the way which 

data is to be processed and extracted. Previous research has proposed three different 

processing models for data streams (Zhu & Shasha, 2002), which are Landmark, Damped 

and Sliding Window.  

The Landmark model mines all frequent itemsets over the entire data stream from a specific 

data point called the landmark to the present point in time.  

The Damped model, streams are weighted according to their age in the stream. 

Transactions in the stream have weights assigned to them with older transactions weighted 

less than more recent transactions. 

The Sliding Window model finds and maintains frequent itemsets within specific sliding 

windows. Processing and storing of frequent itemsets occurs within sliding windows thus 
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enabling the mining to capture the most recent patterns. Figure 2.1 illustrates the differences 

in processing between the models. 

Transaction id Landmark Damped Sliding Window 

1    

2    

3    

4    

5    

6    

7    

8    

9    

Figure 2.1: Transaction processing in the Landmark, Damped and Sliding windows 

models. 

Choosing which models data stream mining depend on variety of reasons: application 

needs, expected input rate, expected outcome, and available resources. These mining 

models can be tailored to suit their needs and limitations.  

2.3 Memory management and Data structures 

The volume of arrival data from a data stream poses a major challenge as data streams are 

continuous and unbounded. Therefore it is crucial for algorithms designed to work with data 

streams to employ memory management techniques that store information effectively while 

enabling efficient retrieval and update of information. 

There have been a number of attempts to reduce memory usage. These techniques are 

essential to effectively handle the large number of candidate sets that arise, unlike with finite 

static datasets. Techniques using data structures such as Frequent-pattern tree (FP tree) 

provide great improvement over Apriori methods in both speed and memory usage. This is 

achieved by optimized node sharing, reduced candidate generation, and reduction in the 

search cost by using divide-and-conquer-method (Han, Pei, Yin, & Mao, 2004).    

To further improve mining efficiency many researchers have adopted estimation methods by 

maintaining estimated or reduced information. The Count-sketch data structure only keeps 

the most frequent itemsets (Charikar, Chen, & Farach-Colton, 2004) while discarding 

information about infrequent itemsets. The algorithm proposed by Yang keep support 

information on frequent short itemsets only (itemsets size < 3) thus keeping memory usage 

low (Yang & Sanver, 2004). 
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Mining association rules in a data stream environment can lead to generating and 

maintaining a vast number of itemsets. Thus researchers have resorted to more compact 

forms of representation such as Closed and Maximal itemsets (Tan et al., 2005), which 

require a smaller memory footprint to maintain. 

Maximal frequent itemsets are frequent itemsets for which none of its immediate supersets 

are frequent. This representation significantly reduces the number of itemsets that need to 

be maintained since all frequent itemsets can be derived from the set of maximal itemsets. 

However, maximal itemsets have one significant drawback: while it is possible to derive all 

frequent itemsets, it is not possible to derive their support (Tan et al., 2005). Many 

researchers such as (Mao, Wu, Zhu, Chen, & Liu, 2007) and (Gouda & Zaki, 2001) have 

exploited the compact nature of maximal frequent itemsets in their research. 

Alternatively, closed frequent itemsets also provide a compact and lossless representation of 

frequent itemsets. A closed frequent itemset is defined as a frequent itemset for which none 

of its immediate supersets have the same support. Unlike maximal itemset, closed itemset 

do not suffer from loss of support information. Researchers, including (Chi, Wang, Yu, & 

Muntz, 2004), (Zaki & Hsiao, 2002), (Pei, Han, & Mao, 2000) have adopted closed frequent 

itemsets properties in their mining algorithms. 

Closed frequent itemsets offer a lossless compact representation of frequent itemsets, 

although they are not quite as compact as frequent maximal itemsets counterparts as Figure 

2.2 illustrates. As such in this research we will exploit closed frequent itemsets due to its 

compact representation as well as its lossless property.  

 

Figure 2.2: Relationship between frequent, closed frequent, and maximal frequent 

itemsets (Tan et al., 2005). 

Frequent itemsets 

Closed frequent 

itemsets 

maximal frequent 

itemsets 
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2.4 Mining approaches 

Association rules mining research falls into either approximate or exact approaches (Gaber 

et al., 2005). The approximate approaches trade off the accuracy of the rules generated with 

mining speed, while exact approaches do not compromise accuracy. 

The approximate approach generally provides association rules which contain either false-

positives or false-negatives (Yu, Chong, Lu, & Zhou, 2004). Some approaches generate 

false-positive which mean the algorithms generate non frequent itemsets in the final result as 

well as frequent itemsets. On the other hand false-negative misses some frequent itemsets. 

Approximate approaches offer opportunities for researchers to develop a variety of novels 

techniques to increase mining speed and/or reduce memory usage. 

2.5 Statistical sampling techniques 

Statistical techniques, particularly sampling methods offer an attractive mechanism for 

reducing the volume of data to be processed in a data stream.  However prior assumptions 

regarding the statistical distribution of data in a data stream are best avoided as each stream 

is unique in character and subject to change continuously over time.  In circumstance data 

stream subjected to countless type of influences over a long period of time (Hulten, Spencer, 

& Domingos, 2001).  

Common ways of dealing with an ever changing distribution of data in a data stream is to 

either discard old information or apply less weight to the older information (Kifer, Ben-David, 

& Gehrke, 2004). However these methods alone are not sufficient as they cannot predict the 

level of error from either discarding and/or discounting older information. Thus many 

researchers have chosen Hoeffding bound (Domingos & Hulten, 2001) or Chernoff 

bound(Chi et al., 2004; Zaki & Hsiao, 2002) to determine sampling size with a guarantee on 

the level of error.  

2.6 Notable Research 

There has been significant research in association rules mining in a data stream context. 

This research used various types and combination of techniques to improve memory 

utilisation and speed of association rules mining. Four of the most notable research works 

are reviewed in detail as they form the basis of the research discussed in this dissertation. 

2.6.1 FPDM 

Yu proposed the Frequent-Data-Stream-Pattern-Matching (FDPM) algorithm that can mine 

frequent itemsets from a data stream (Yu et al., 2004).  FDPM is a false-negative 
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approximate one-pass algorithm. According to the literature FDPM has good accuracy and 

speed compared to previous approximate algorithms. FDPM allows control over accuracy 

using a combination of error and reliability parameters that operate on a version of 

probability theory  known as Chernoff bound (Ravikumar & Lafferty, 2004) which dictates the 

partitioning of a data stream into segments. Yu proposed two versions of FPDM known as 

FPDM-1 and FPDM-2. 

The FPDM-1 algorithm finds frequent items (1-itemsets), while FPDM-2 algorithm generates 

frequent itemsets of size n ≥ 2 . FPDM-2 uses two data structures to maintain frequent 

itemsets. The Chernoff bound is used to break up the data stream into a number of 

identically sized segments. Each segment represents that minimum number of data 

instances that are required to make statistically valid decisions. Structure P maintains the 

current batch of frequent itemsets within the current segment, while F stores potential 

frequent itemsets that have been discovered in the data stream up to the current point in 

time. When FPDM-2 processes the transactions it first updates the support information of 

itemsets that exist in P. Then at the end of the segment it determines frequent itemsets from 

P and transfers these to F. FPDM-2 controls its memory usage by pruning infrequent 

itemsets in F. 

2.6.2 Moment 

In contrast to FDPM, Moment is an exact approach that takes advantage of closed frequent 

itemsets (Chi et al., 2004). Moment uses the sliding windows scheme to incrementally 

maintain current closed frequent itemsets and the boundary. These itemsets are maintained 

in closed enumeration tree (CET) memory structure. CET stores four different categories of 

itemsets (nodes) including infrequent gateway nodes (infrequent itemsets which have 

frequent parents or parent’s sibling nodes), unpromising gateway nodes (infrequent itemsets 

that have the same support as its superset), intermediate nodes (frequent itemsets having 

the same support as itself), and closed nodes (itemsets with no supersets that have greater 

or equal support). These nodes represent closed nodes and nodes that may change their 

status in the near future. 

Whenever a transaction arrives, Moment traverses all itemsets composed from the 

transactions that belong in CET that is related to that transactions. It updates support 

information and, if necessary, classifies itemsets into one of four categories of closed or 

boundary nodes and adds them to the CET. It also deletes the oldest transactions from the 

window and updates the CET accordingly. 
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Moment uses less memory and CPU to mine closed nodes compared to the CHARM 

algorithms (Zaki & Hsiao, 2002), which is another exact associated rules mining algorithm 

using frequent closed itemsets. According to the research it performs an order of magnitude 

faster than CHARM. This is due to the incremental update model used by Moment. Their 

experimentation revealed that the majority of updates during incremental update result in a 

small proportion of CPU-intensive operations which correspond to category change or 

growth in CET. 

2.6.3 CFI-stream Algorithm 

CFI-stream was another algorithm proposed by Jiang. CFI-stream incrementally mines 

frequent closed itemsets in a data stream environment (Jiang & Gruenwald, 2006a). CFI-

stream incrementally computes closed itemsets in one pass. It maintains only closed 

itemsets and their support information in a data structure referred to as Direct Update (DIU) 

tree. It generates closed nodes using a closure function to determine itemsets status. 

Whenever a new transaction arrives, it performs an update only on associated closed 

itemesets which are determined by the closure function that it employs. CFI-stream use 

sliding windows mechanism; therefore the oldest transaction is dropped when new 

transaction arrives and a deletion operation is performed on DIU tree. Frequent closed 

itemsets can be generated per user’s request by traversing the DIU tree. 

In the research literature, CFI-stream outperformed Moment (Chi et al., 2004) in both CPU 

and memory usage at lower minimum support threshold, and dense datasets. 

2.6.4 The Data Stream Mining Algorithm (DSM) 

Data Stream Mining (DSM) is chosen to be the basis of this research for both techniques 

and actual implementation, a recently developed algorithm proposed by Omkar Kadam 

(Kadam, 2009). DSM uses an incremental approach to mine frequent itemsets using closed 

frequent itemsets. It uses a hash tree structure to maintain closed and related itemsets. It 

creates and uses a hash function to provide access to retrieve nodes and traverse a tree 

structure. The design details of this algorithm will be described in the next chapter. 

Experimentation showed that DSM proved to have at least the same or better performance 

in term of accuracy than FPDM2 (Yu et al., 2004). In term of CPU and memory utilisation, 

DSM outperformed FPDM in all the experiments that were conducted. 



17 

 

2.7 Summary 

In this chapter, we discussed various research opportunities to improve performance of 

association rules mining in data stream environment. This chapter concentrated on literature 

and algorithms that inspired this and previous research. In the next chapter we will choose 

appropriate research methodologies in order to design and implement an algorithm that will 

take advantage of these researches. 
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Chapter 3 Research Paradigm and Methods 

3.1 Introduction 

This chapter presents the methodology and framework that was used to conduct the 

research described in this dissertation. It offers an overview of various methods that were 

used in this research and explains the reasoning behind the chosen approaches. 

In the field of KDD it is fundamentally important that the knowledge that results from the 

discovery process is useful while maintaining efficiency within the discovery process.  The 

patterns generated must be validated for accuracy through a rigorous quantitative process. 

This suggests that the research be based on the positivist methodology (Popper, 1959).  

3.2 Research Paradigms 

In Information Systems research there are three fundamental research methodologies: 

Positivist, Interpretivist, and Critical. These different methodologies provide researchers with 

approaches and guidelines on which to base their research (Orlikowski & Baroudi, 1991).  

The Positivist research methodology is based on the premise of discovering theory which 

can be investigated with structured and rigorous methods (Straub, Gefen, & Boudreau, 

2004). The theory produced by Positivist research must provide formal propositions, 

quantifiable measures of variables and methods of hypothesis testing in order to make 

sound interferences about phenomenon (Orlikowski & Baroudi, 1991). 

Orlikowski and Baroudi described Interpretivist research as a contrast to Positivist research 

as it based on the assumption that phenomena can be observed and understood through 

social constructs that participants interact with during the conduct of the research. In the 

Critical research methodology the goal is to critique the conventions or “status quos” in order 

to find novel ways of solving problems. 

3.3 Research Framework 

To successfully conduct Positivist research in order to achieve the specific objectives set out 

for this research we need to ensure that the methods used must be aligned to the chosen 

paradigm and provide the way in which ‘valid’ knowledge can be discovered. 

Design science, unlike Natural science, attempts to create artefacts that are of practical use 

and provide improvement on the status quo (Hevner, March, Park, & Ram, 2004). The 

artefacts built can be evaluated using rigorous methods and thus the process aligns with the 
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Positivist methodology. Accordingly, we have decided to use the Design science framework 

for this research. Design science research, as proposed by Hevner et al consists of the two 

basic activities: build and evaluate which are used over a number of cycles to produce the 

desired artefacts, as presented in figure 3.1.  

 

 

 

 

 

Figure 3.1: Research Framework for this dissertation, diagram adapted from (Hevner et 

al., 2004) 

3.4 Research Methods 

According to the Design science framework previously stated, the main activity consists of a 

series of Build and Evaluate cycles. These activities will play a major part in this research. 

Continuing in this chapter we will look into theory and implementation of DSM-NCN which 

were used in the build stage of our research, while chapter 4 will discuss further on 

evaluation activities (experimental plan). 

Over the course of this research the build stage will play a critical role. This section presents 

the major building blocks that we used to build a new method of mining association rules 

over a data stream environment.  

The starting point for the build phase is the existing DSM implementation (Kadam, 2009) that 

we have introduced in Chapter 2. The following sections present concepts and techniques 

that were used for in the current DSM implementation as well as novel methods that we 

have adopted to improve the current implementation.    

3.4.1 Chernoff Bound 

Association rules mining over data streams impose challenges on how transactions can be 

processed due mainly to the open-ended nature of streaming data. As a consequence 

streams must be processed differently to traditional static datasets. As opposed to mining on 

a traditional static dataset, one method that has been used to cope with open-ended streams 

of data is statistical sampling. In this approach the data stream is split into an infinite number 

of discrete partitions. Each partition represents the minimum number of transactions required 
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to make statistically reliable inferences about the average support of items taken across the 

entire data stream.  

The Chernoff bound (Ravikumar & Lafferty, 2004; Yu et al., 2004) is used for this estimation. 

The bound specifies that the estimated average support of an item obtained via sampling is 

within an error margin (Є) for range of given variables (R), degree of reliability (δ ) and (n) is 

the number of instances seen so far in the data stream.  

 

Given known error margin we can determine the partition size n which produces result that 

statistically lies within the user specified error margin. 

 

3.4.2 Data Structure 

In data stream mining the type of data structure that is used to store information on the 

frequent items is crucial in determining memory utilization (Jiang & Gruenwald, 2006b). 

Again, this is dictated by the open-ended nature of data streams.  

Much research in the field of association rule mining in data streams has focused on 

variations of tree-like structures. Following are two examples of tree -like structures that 

have been proposed in various research papers. The Frequent Pattern tree (FP-tree) 

provides a compact and efficient data structure to maintain frequent itemsets (Han et al., 

2004). The Itemset-tidset search tree reduces memory usage and computation that is 

required to stored closed itemsets and its lattices (Ching-Jui, 2005). There is general 

agreement in the association rule mining community that tree-like structures are optimum 

with respect to both storage and computational efficiency. The fact that DSM (Kadam, 2009) 

also features this structure was an added bonus given that this research seeks to extend the 

capabilities of DSM. 

3.4.3 Frequent Closed Itemsets Mining 

Frequent itemset mining is an essential part of association rule mining. However mining 

association rules based on frequent itemsets alone is inefficient as discovering a single 

frequent pattern size x alone requires the generation of at least 2x candidates (Han et al., 

2004). When dealing with dense datasets or mining at very low support thresholds (for 
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example > 0.1%) can result in a large amount of frequent patterns. Such exponential growth 

has a direct performance impact on both storage and computational overhead involved in 

the mining process. 

Closed frequent itemsets have been shown to provide a much smaller search space when 

compared to frequent itemsets, thus resulting in reduced memory usage, while still 

preserving the ability to generate frequent itemsets without any information loss unlike 

maximal frequent itemsets discussed in previous chapter (Pasquier, Bastide, Taouil, & 

Lakhal, 1999). 

3.4.4 Itemsets Pruning 

In order to mine frequent Itemsets (in this case frequent closed itemsets) from a data stream 

it is crucial to generate a powerset from the items that comprise in the transaction. The 

following example illustrates the generation of a transaction's powerset. 

Transaction (X) = (A, B, D, E).   

Powerset (X) = (A, B, D, E, AB, AD, AE, BD, BE, DE, ABD, ABE, ADE, BDE, ABDE) 

From the example above, a given transaction of size 4 will result in a powerset of size 15. 

Thus powerset generation can substantially increase computation time and memory usage 

as it generates 2n -1 elements, where n is number of items in the transaction. 

Given the explosion in computation time to generate powersets, the DSM implementation 

has employed the frequent singleton mining technique to reduce the volume of powerset 

generation (Kadam, 2009). The DSM implementation took advantage of the Apriori property 

(R. Agrawal & Srikant, 1994) which states that any subset of a itemset must first be frequent 

in order for that itemset to become frequent. The DSM implementation took advantage of 

this property by only generating powersets from singletons which are known to be frequent 

in the data stream, thus greatly reducing the size of the powersets generated. The example 

below shows the powerset X generated with the same example transaction given that the 

current frequent singleton is A and E. 

Transaction (X) = (A, B, D, E)  Powerset (X) = (A, E, AE). 

Thus it can be seen that the size of the powerset has reduced from 15 to 3 as a result of this 

strategy. The Frequent singletons strategy was implemented by using a list of frequent 

singletons that is initially compiled at the end of the first frame and is continuously 

maintained and updated at subsequent frames.  
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3.4.5 Frequent itemsets generation from Closed Frequent Itemsets 

As stated before, DSM uses Closed frequent itemsets. The DSM implementation generates 

frequent itemsets from frequent closed itemsets by using the principle of closed nodes (Tan 

et al., 2005) and the following principle: 

“The support value of a non-closed frequent itemset must be equal to the maximum 

support among its supersets” (Kadam, 2009). 

From these principles DSM determines frequent itemsets from the tree of frequent closed 

nodes and non-closed nodes. As mentioned earlier the support of value of a given frequent 

closed node must be equal to the highest support value amongst its supersets.  

Therefore frequent itemsets are contained within frequent closed nodes and all of its subsets 

except in the case when the supersets of the frequent closed nodes themselves happen to 

be frequent closed nodes. Based on this simple rule DSM can identify frequent itemsets from 

the set of closed frequent itemsets that were previously generated. 

3.4.6 Tree Pruning 

The DSM implementation maintains closed itemsets in a tree structure. As mining 

progresses the tree data structure that we maintain may contain closed nodes that are no 

longer frequent. The DSM implementation minimises the impact of this issue by pruning the 

closed tree at regular intervals to ensure that the tree contains only closed itemsets that are 

frequent or have the potential to be frequent. 

3.4.7 Near Closed Nodes 

Near Closed Node (NCN) is a new concept that was developed in this research to improve 

the efficiency of the closed frequent itemsets generation processes of DSM implementation. 

NCNs can be generated using closed nodes, and as the name suggests NCN itemsets are 

subsets of closed nodes which are on the verge of becoming closed. Figure 3.2 is a 

simplified transaction tree used to provide example of NCNs and explanation to the 

principles that were used in this research. 
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Transaction ID Items 

1 ABC 

2 ABCD 

3 ACD 

4 BC 

Table 3.1: showing transaction ID and items in that transaction 

 

 

 

 

 

 

 

 

Figure 3.2: tree illustrates closed nodes (grey shading) and frequency for each itemset 

after the arrival of transactions 1, 2, and 3. 

 

Observation 1: Nodes such as A, B and AB have the potential to become closed at the 

same time. 

Observation 2: If A becomes closed it does not necessarily mean that AB or AD will 

become closed. 

Observation 3: If transaction 5 is AB then, AB as well as its subsets (A and B) to become 

closed.  

A B C D 

AB AC AD BC BD CD 

ABC

 

ABD ACD BCD 

ABCD 

 

 3  3  3  2 

 2  3  2          3        1      2 

 2  1  2  1 

1 
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Observation 4: If transaction 5 is CD then, CD and C to become closed but not D. 

Observation 5: If transaction 5 is AC then, it does not trigger any change in the closure 

status of A, C or AC. 

From Observations 1 through 5 the following general principles can be derived. 

Principle 1: Itemsets with closed node status never change to non-closed status, regardless 

of the arrival of any new transactions. This is due to the “landmark” model that we adopt in 

this research which captures the cumulative status of events that took place in the data 

stream from a given starting point in time. This is contrast to the sliding window model that 

tracks only the latest events. Principle 1 does not hold for the latter type of model. 

Principle 2: Any non-closed subsets of closed nodes can become closed as long as an 

arrival transaction contains that subset but not the closed node itself. 

Principle 3: If a subset of a closed node becomes closed (we will call it a ‘new closed node’) 

then any subset of the new closed node will become closed if frequency of that subset is 

greater than its supersets (ie. the new closed node).  

Principle 4: (Stems from Principle 3) On the other hand if the frequency of any subsets of a 

new closed node is equal to the frequency of the new closed node itself, then no change in 

status results for the subset in question. 

From Principles 1 through 4 we derive the following rules and example from previous 

scenario. These rules governing the generation of near closed nodes that we used 

extensively in our implementation.  

Rule 1: Near closed nodes can be generated from non-closed subsets of a given closed 

node.  

Example for Rule 1: near closed nodes from AC, BC, ABC, ACD, and ABCD are A, B, C, D, 

AB, AD, CD, ABD, and BCD (derived from Principle 4). 

Rule 2: If a powerset of a new transaction contains all of the items within a closed node, 

then there will not be any changes in status of that closed node or any subset of that node. 

We simply update the frequency of all items in the transaction (derived from Principle 2).  

Example for Rule 2: if a new transaction with items A and C arrives then no changes in result 

in the closure status of A, C or AC. 
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Rule 3: If the arrival transaction does not trigger Rule 2 then the following applies: If any 

powersets of arriving transaction contains a near closed node then that near closed node 

must become closed (derived from Principles 1, 2, and 4).  

Example for Rule 3: if a new transaction with items A and B arrives then AB will become 

closed as it is part of the near-closed node list generated from Rule 1. 

Rule 3A: If the requirement of Rule 3 was met then the following rule applies. If a subset of a 

near closed node has a greater frequency then that subset will become closed. 

Example for Rule 3A, If AB become closed from new transaction then A and B will become 

closed since A and B has higher frequency than AB. 

Rule 3B: If the requirements of rule 3 were met then the following rule applies. If a subset of 

a near closed node has a frequency equal to that of the near closed node then no change 

results to that subset. 

Example for Rule 3B, If CD becomes closed due to a new transaction then C will also 

become closed according to Rule 3A but no change in status results with D as the frequency 

of CD is equal to that of C. 

The above three main rules and two sub-rules can be used to generate near closed nodes 

which in turn may result in identifying new closed nodes. These rules can be applied to the 

original DSM implementation to reduce the processing time to generate new closed nodes. 

Given below is the pseudo code for near closed node generation. 

Generate near closed nodes; genNearClosed() 

After each pass genNearClosed() will traverse recently generated closed nodes. For each 

newly created closed node it will perform a traverse bottom-up traversal through the lattice of 

nodes. It selects supersets of closed nodes with the highest support which are not currently 

closed and flags those selected as near closed nodes. 

Description 
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1. For all new Closed nodes (recently generated from previous 
pass) repeat 

a. While a closed node has more parent (subset) nodes 
i. While parent node has more subsets  

1. If a node has greater support than previous 
nodes, not currently closed, then store that 
node in maxNode 

ii. End While 
iii. Commit maxNode into hash table consisting of NCNs  

b. End While 
2. End For 

3.5 Overall Implementation 

The previous section explains concepts and techniques used to implement NCN to the 

original DSM implementation. In this section we will discuss overall design through brief 

description of key procedures with simplified pseudo code explaining the DSM-NCN 

implementation. This implementation is a modified version of the original DSM 

implementation incorporating the near closed concept as a method of reducing time for 

generating closed nodes. 

DSM-NCN, like its DSM counterpart, contains three main procedures; firstPass(), 

secondPass(), and mineData(). The first two procedures run at the beginning stage of data 

stream collects necessary information for mineData() to routinely generate closed nodes. 

The modules, firstPass() and secondPass() on both implementations employ identical code 

while changes in the mineData() module were used to incorporate the novel near closed 

nodes concept.  

minSup; is user configurable minimum support threshold. 

Global Parameters 

frameSize; is transactions per frame determined by Chernoff bound. 

LA; is list of frequent singletons found across all previous pass. 

LC; is list of frequent singletons found in current pass. 

LT; is list of frequent singletons of interest in current transaction. 

H is hash table contains identify of frequent itemsets. 

frequentSingletons; is list of frequent singletons (1 itemsets) found in this frame. 
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Description: The purpose of this pass is to generate frequent singletons which are required 

for subsequent passes to generate pruned powersets. This pass generates frequent 

singletons by reading transaction and tokenised into 1-itemsets (singletons) which are 

constantly being updated as more transaction are read. At the end of this pass a list of 

frequent singletons is populated using minimum support threshold. 

First Pass; firstPass() 

1. For index=0 to frameSize 
a. Read the transaction from data file 
b. Tokenised the transaction to obtain singleton items 
c. For all token repeat 

i. If the token have already seen update its support 
information 

ii. Else, create a node entry in hash table H  
d. End for 

2. End for 
3. Populate the list of frequentSingletons(LA) with minSup 

minimum support threshold. 
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Description: The purpose of this pass is to generate frequent duo-itemsets to facilitate 

subsequent mineData() passes. secondPass() incorporated  steps from 1-a to 1-e to 

generate frequent singletons mining similar to firstPass(). Intersection operating between 

previously frequent singleton and arrival singleton to ensure the singleton was frequent. 

Once overall frequent singletons were identified, then powersets can be generated result in 

frequent duo-itemsets. 

Second Pass; secondPass() 

LC = null 

1. For index=0 to frameSize 
a. Read the transaction from the data file 
b. LT = null 
c. Tokenised the transaction to obtain singleton items 
d. For all tokens repeats 

i. If the token have already seen update its support 
information 

ii. Else, create a node entry in hash table H for new 
singletons 

e. End for  

f. LT = LT ∩ LA 
g. Generate powerset of LT 
h. For every elements of powerset, repeat 

i. If the element is already seen then update its 
support information 

ii. Else, create a node entry in hash table H for new 
element 

i. LC = LC ∪ LT 

j. End for 
2. End for 

3. LA = LA ∪ LC 
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Description: The purpose of this module is to generate frequent closed itemsets and is 

called from the third pass onwards. The initial steps from 1-a-i to 1-a-vi mirror those taken in 

secondPass() that generated 2-frequent itemsets (ie. Itemsets of size 2). Then, after the 

infrequent 2-itemsets have been eliminated this list is used to generate higher level itemsets 

(i.e. n-itemsets, with n>2). In general, the generation of a frequent n- itemset requires the 

identification of two frequent (n-1)-itemsets which have common prefixes. 

Mine Data; mineData() 

Several checks required after frequent itemsets have been generated. First, check whether 

frequent itemsets already existed in the “near closed node” list, if it does then the itemset will 

be transferred to the “createNode” and “removeNode” list, otherwise update itemset’s 

support and continue on with the next itemset. If neither condition is met then checked 

itemset for closed node eligibility which then adds to “createNode” list and itemsets’s support 

can be calculated. 

At the end of each transaction the “createNode” list is incorporated into the closed node tree 

while the nodes in the “removeNode” is removed from the near closed node tree data 

structure. 

At the end of each frame the list of singletons, the closed nodes tree as well the near closed 

node tree are pruned and refreshed. These processes remove redundant nodes and ensure 

faster runs for future passes. 

As mentioned earlier the differences in implementation between DSM and DSM-NCN exist 

manifest mainly in the mineData() module. These differences are extensions that perform 

near closed node generation and update these are highlighted in grey colour. 
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1. Repeat while data file is not empty 
a. For index=0 to frameSize 

i. Read the transaction from the data file 

ii. Tokenised the transaction to obtain singleton items 
iii. For all tokens repeats 

1. If the token have already seen update its 
support information 

2. Else, create a node entry in hash table H for 
new singletons 

iv. End for  

v. LT = LT ∩ LA 
vi. Generate powerset of LT 

vii. For every elements of powerset, repeat 

1. If the element was mark as frequent in 
previous pass then add to temporary list T  

2. Else, continue to next element 
b. End for 
c. For all element in temporary list T, repeat 

i. Retain only those elements that have common prefixes 

ii. Add them to list “powersetElements” 
d. End for  

e. For all elements in powersetElements list, repeat 
i. If the element exists in the near closed node tree, 

then it is removed from the “createNode” list and 
added to “removeNode” list 

ii. Else If element exists in closed node tree, then 
retrieve the node and update its support information 

iii. Else if this node qualifies to be added to 
createNode list 

1. Check if there exists superset ‘e’ of current 
node ‘f’. If so support (f) = support(e)+1 

f. End for 
g. Commit createNode list into frequent closed tree. 
h. Remove node from removeNode list in the near closed tree. 
i. End of frame 

2. LA = LA ∪ LC 
3. Prune closed node tree removing children of infrequent nodes, 

but keep infrequent nodes which may change in future. 

4. Traverse closed node tree, generating near closed nodes from 
newly create frequent closed nodes.  

5. End of data file 
6. Traverse closed node tree and determine closed frequent 

itemsets (node that meet minSup threshold). 

7. Generate frequent itemsets from closed frequent itemsets. 
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3.6 Summary 

In this chapter, we discussed and outlined research paradigms and methods used to achieve 

our objectives, along with some of the principles governing our new approach of using near 

closed nodes. The next chapter will provide a discussion on evaluation processes that we 

utilized in this research. 
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Chapter 4 Experimental Design  

4.1 Introduction  

In this chapter we will be describing the experiments designed to evaluate various 

performance indicators of our implementation that was intended to be an improvement over 

the original proposed Data Stream Mining (DSM) algorithm. The following sections will 

further explain how the experiment will be carried out and the reasoning behind the chosen 

methods. 

4.2 Datasets  

The experimentations are carried out using both synthetic data and real world data. 

Synthetic data was generated using the Data synthesizer component of Java implementation 

from ARtool (Cristofor, 2006). Real world data was from Frequent Itemset Mining 

Implementations Repository (Goethals & Zaki, 2003). 

Synthetic datasets provided advantage over real world data as key characteristics of the 

datasets can be altered. These characteristics include number of transactions, average size 

of each transaction, number of unique items, and number of items that appear to be frequent 

in dataset. 

The difference in these characteristic will allow experiments to test for sensitivity of the 

algorithms and allow us to provide an explanation for the difference in performance. 

On the other hand using real world data on the experiment is by itself not effective to provide 

an explanation for the result performance due to limited amount of known datasets 

characteristics. However real world data could provide confirmation about result validity on 

real world application better than any synthetic data(Zheng, Kohavi, & Mason, 2001). 

4.2.1 Synthetic Datasets  

The ARtool package is a collection of tools and algorithms for mining of association rules. It 

enables users to generate datasets and perform association rules analysis. The synthetic 

data generator within the ARtool is used to generate synthetic data with configurable 

characteristics. Following are seven characteristics that can be altered using synthetic data 

generator from ARtool. 
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1. Number of transaction (num_transactions); define number of transactions to generate 

for a given dataset. 

2. Average transaction size (avg_transaction_size); defines average size of each 

transaction. 

3. Number of large itemsets (num_large_itemsets); defines number of large itemsets in 

the generation of transactions. 

4. Average size of large itemsets (avg_large_itemset_size); defines the average size of 

large itemsets. 

5. Number of item in transaction (num_items); defines number of unique items to 

appear in the transactional database.  

6. Correlation mean (correlation_mean); defines the amount of mean correlation 

between the large itemsets  

7. Corruption mean (corruption_mean); define mean of the corruption coefficient which 

indicates how much a large itemset will be corrupted before being used. This 

parameter simulates noise that occurs in a real-world dataset. It introduces an 

element of non-determinism in an artificial dataset. 

Given these configurable characteristics the following four parameters will be 

independently altered for the experimentation. Table 4.1 shows the parameter values 

with a set of fixed characteristics include; number of transactions (100000 transactions), 

correlation mean (0.5), and corruption mean (0.5). 
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Datasets name 
 

Average size of 
large itemsets 
(Default 4) 

  

Average 
transaction 
size (Default 
6) 

Number of 
item in 
transaction 
(Default 
1000) 

Number of large 
itemsets (Default 
300) 

D1A 3 Default Default Default 

D1B 4 

D1C 5 

D1D 6 

D2A Default 6 

D2B 8 

D2C 10 

D3A Default 1000 

D3B 2000 

D3C 10000 

D4A Default 200 

D4B 300 

D4C 400 

D4D    500 

Table 4.1: Configurations used to synthesize datasets. 

4.2.2 Real World Datasets 

For this research two real-world datasets was chosen. These datasets was available from 

the Frequent Itemset Mining Dataset Reposity (Goethals & Zaki, 2003). Most of the 

characteristics of these datasets are unknown. Table 4.2 exhibits known information and 

characteristics of these datasets. 
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Datasets name 
 

Description 
 

Number of transactions 

kosarak_click_stream.txt  annonymized click-stream 
data of Hungarian online 
news portal provided by 
Ferenc Bodon (REF) 
 

990,002 
 

retail.txt  annonymized retail market 
basket data from Belgian 
retail store donated by 
Tom Brijis (REF) 
 

88,162 
 

Table 4.2: Real world datasets and their characteristics 

4.2.3 Datasets from previous work 

These datasets were generated using the IBM generator previously used with DSM (Kadam, 

2009) and FPDM2 (Yu et al., 2004) implementations to provide accuracy performance 

comparison. 

Datasets name 
 

Average 
Transaction Size 

Average 
Frequent 
Itemset Size 

Unique Items Number of 
Transactions 

T10I4D100K 10 4 10,000 100,000 

T5I4D500K 5 4 10,000 500,000 

Table 4.3: Previous work dataset and their characteristics 

4.3 Performance Metrics  

The original DSM implementation and modified implementation are evaluated against major 

performance matrices including Accuracy (recall and precision) and Resource usage (in term 

of processing power and memory consumption). Table 4.4 defines the performance metrics 

captured utilised by the experimentation. 
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Metrics 
 

Description  Definition 
 

Recall The proportion of 
generated frequent 
itemsets against the 
actual number of 
frequent itemsets 
(FIs)** 
 

datain  itemsets Actual
itemsetsfrequent  Generated  datain  itemsets frequented Actual 

 

Precision The accuracy 
proportion of 
generated frequent 
itemsets (FIs) 
 

itemsetsfrequent  Generated
itemsetsfrequent  Generated  datain  itemsets frequented Actual 

 
 

Processing 
time 

amount of time in 
milliseconds (msec) to 
perform an analysis 
 

Elapsed time between time stamp at the end of last 
frame and the beginning of first frame in millisecond 
 

Memory 
Consumption 
 

amount of memory 
used to perform an 
analysis 
 

Average number of closed nodes and near closed 
nodes (for DSM-NCN implementation) at the end of 
each pass 

Table 4.4: Description of performance metrics used and measurement definition.  

**Actual number of frequent itemsets can be calculate using Apriori based frequent itemsets 

mining software developed by Christian Borgelt (Borgelt & Kruse, 2004) and further 

explanation will be provided in the next chapter. 

4.4 Hypotheses 

The following three hypotheses will be investigated during experimental stage of this 

research. 

Ho1: The use of near closed itemsets accelerates the mining process over original DSM 

implementation. 

Ho2: The use of near closed itemsets increase memory utilisation. In the other word it will 

reduce the number of nodes created by the algorithms. 
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Ho3: The use of near closed itemsets does not affect performance accuracy over original 

DSM implementation. 

4.5 Experiment Plan and Execution 

The new NCN algorithms were implemented over original DSM implementation which had 

been implemented in Java programming language. We re-use DSM code to reduce 

implementation time while keeping results of the previous work relevant. We also ensure that 

results of the experiments come from the additional of NCN algorithms and not from how 

they been implemented.  

We design our experimentation into three separate parts which are to be performing on three 

different PCs with similar software and hardware outfit. Following are experiments that were 

design to measure performance matrices of the implementation; Accuracy, and Resource 

usage. These performance matrices will then we use for analysis and provide conclusion to 

given hypotheses. 

4.5.1 Experiment 1: Accuracy performance comparison  

Near Closed Nodes implementation (DSM-NCN) was designed and implemented to 

generate the same set of association rules as the original DSM implementation when mining 

on identical set of data and settings. Therefore there is no need to run multiple experiments 

on performance accuracy as long as we can run on few datasets to ensure validity of our 

accuracy performance hypothesis. In these experiments we are using two datasets that were 

used from previous research and one real world dataset. These experiments will enable us 

to verify that DSM-NCN implementation does not reduce performance of the original 

implementation to generate association rules at a variety of minimum support and reliability 

settings (Delta). The following are steps taken for these experiments  

1. Execute T10I4D100K with both DSM and DSM-NCN implementations  

2. Run datasets with variable support threshold and a fixed reliability of 0.1. 

3. Run datasets with variable reliability and fixed support of 0.05 

4. Repeat step 1) to 3) on T5I4D500K and retail datasets 

5. Collect frequent itemsets generated on both implementations for all the experiments. 
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This experiment was designed to measure only frequent itemsets produce by the algorithms, 

therefore specification of this experiment run of this PC is irrelevant. However entire 

experiment 1 will run on one machine. 

4.5.2 Experiment 2: Resource performances Comparison 

NCN was design and implement to reduce processing times for each pass by predicting and 

storing future closed nodes thus potentially increase memory usage.  

Average processing time was calculated using total running time from multiple identical runs 

(5 runs). Total running time was calculated using time different between firstPass() started 

and last transaction was completed by the algorithms.  

Memory usage was calculated and provide as relative estimation using average closed 

node. Average closed node is the average number of closed nodes at the end of each pass 

(for DSM-NCN implementation average near closed nodes is also includes as part of 

memory usage). 

Following are the two main experiments that will allow us to compare on both processing 

time and memory consumption on synthetic and real world datasets.  

4.5.3 Experiment 2A: Experiments on synthetic data  

Experiments on synthetic datasets were design to measure the difference of resource 

performance matrices between two implementations. Synthesising data allow us to modify 

various characteristic of the datasets. This enables us to test and identify datasets 

characteristics that may have effects on performance of the implementations. There are 14 

synthetic datasets use for these experiments shown in table 4.1. Following are steps taken 

for these experiments 

1. Execute synthetic data with both DSM and DSM-NCN implementations using fixed 

support and reliability. 

2. Repeat step 1) until the datasets have been executed for five runs. 

3. Repeat step 1) and 2) until all synthetic datasets have been executed. 

4. Collect all data on per pass processed time, per pass nodes, running time, and 

number of nodes created. 
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All the synthetic experiments were run on PC with 1.86 GHz Core 2 Duo CPU, 2 GB of 

memory. A minimum support threshold of 0.05 with Delta value of 0.1 was used in the 

experimentation 

4.5.4 Experiment 2B; Experiments on real world data  

Real world datasets experiments were designed to measure and compare the effect of 

various minimum support threshold values and reliability on performance of two 

implementations while confirming the validity of the implementation with real world situations. 

Following are the steps taken for experiments which measure the effect of minimum support 

threshold on two implementations. 

1. Execute kosarak_click_stream and retail datasets with both DSM and DSM-NCN 

implementations. 

2. Run both datasets with variable support threshold of 0.1, 0.05, and 0.01 with a fixed 

reliability of 0.1. 

3. Repeat step 1) and 2) until both datasets has been executed for five times. 

4. Collect all data on per pass processed time, per pass nodes, running time, and 

number of nodes created. 

On the other hand the reliability value quantifies the extent to which the support estimate 

produced by the Chernoff bound is in error. The reliability values used were 90%, 95%, and 

99%. Following are steps taken for the experiments which measure the effect of reliability 

parameter on the two implementations that we compare. 

1. Execute kosarak_click_stream and retail datasets with both DSM and DSM-NCN 

implementations. 

2. Run both datasets with variable reliability of 0.1, 0.05, and 0.01 with a fixed support 

of 0.05  

3. Repeat step 1) and 2) until both datasets has been executed for five times  

4. Collect all data on per pass processed time, per pass nodes, running time, and 

number of nodes created. 
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All experiments on datasets kosarak_click_stream.txt, and retail.txt were conducted on two 

identical PCs with identical specification of 2.13 GHz Core 2 Duo and 2 GB of memory to 

speed up the process. Each dataset was experimented on the same machine to ensure that 

results are comparable.  

4.6 Summary 

This chapter described in detailed the evaluation processes to be used to compare DSM 

with the DSM-NCN implementation. The evaluation of both implementations will incorporate 

both synthetic and real world dataset. The four metrics we presented were used as the basis 

to measure both accuracy and efficiency performance of the artefacts designed and 

implemented in this study. 



41 

 

Chapter 5 Research Finding 

5.1 Introduction 

The previous chapter presented the experimental design and the experimental 

configurations that will be used in the experimental study to be presented in this chapter. 

This chapter will describe findings, offer explanations and provide analysis for each finding. 

Both the original DSM and DSM-NCN implementations were thoroughly tested on wide 

range of synthetics datasets and real world datasets in order to compare accuracy and 

resource consumption. 

5.2 Accuracy performance comparison (Experiment 1) 

These experiments were designed to test and compare accuracy across the DSM and DSM-

NCN implementations on selected datasets.  

We recorded frequent itemsets generated from both implementations to make a comparison. 

The C implementation of the Apriori based algorithm was written by Christian Borgelt 

(Borgelt & Kruse, 2004) is available from http://borgelt.net/apriori was used to benchmark 

accuracy. We note that the Apriori algorithm cannot be used in an actual data stream 

environment, and so for our experimental testbed the data streams were simulated by static 

transactional datasets. 

Tables 5.1 to 5.3, exhibit the accuracy performance on each dataset. Accuracy is measured 

in terms of Recall and precision. In addition, number of frequent itemsets (FIs) generated 

were collected for comparison. 

http://borgelt.net/apriori�
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For the real world dataset retail.txt is used, which contains anonymous market basket data 

from a Belgian retail store (Goethals & Zaki, 2003), Table 5.1 summarises the findings. 

Experiment Support Delta Original DSM DSM-NCN 

recall precision no of FIs recall precision no of FIs 

Varied 
Support/ 
Fixed Delta 

0.1 0.1 100% 100% 13 100% 100% 13 

0.05 0.1 100% 100% 17 100% 100% 17 

Varied 
Delta/Fixed 
Support 

0.05 0.1 100% 100% 17 100% 100% 17 

0.05 0.05 100% 100% 17 100% 100% 17 

0.05 0.01 100% 100% 17 100% 100% 17 

Table 5.1: number of FIs generated and performance accuracy on retail datasets. 

Mining on the retail dataset, the DSM and DSM-NCN implementations, when run on the 

same minimum support and reliability settings, both generated the same set of frequent 

itemsets. Regarding accuracy performance, both generated frequent itemsets with100% 

Recall and Precision on all support and reliability settings when compared to actual frequent 

itemsets from the Apriori implementation. 

For the synthetic datasets T5I4D500K.txt, Figure 5.2 summarises the findings. 

Experiment Support Delta Original DSM DSM-NCN 

recall precision no of FIs recall precision no of FIs 

Varied 
Support/ 
Fixed Delta 

0.05 0.1 100% 100% 0 100% 100% 0 

0.01 0.1 100% 100% 0 100% 100% 0 

0.005 0.1 100% 100% 95 100% 100% 95 

Varied Delta 
/Fixed 
Support 

0.005 0.1 100% 100% 95 100% 100% 95 

0.005 0.05 100% 100% 95 100% 100% 95 

0.005 0.01 100% 100% 98 100% 100% 98 

Table 5.2: accuracy performance and number of FIs on T514D500K datasets. 

On the T514D500K dataset, the minimum support settings were lower compared to other 

experiments due to the sparse nature of the dataset (there are no frequent itemsets with 

minimum support greater than 1%). Both implementations, when executed with the same 

setting, produced the same set of frequent itemsets, thus they performed equally well in 
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regard to generating frequent itemsets. In regard to accuracy performance both 

implementations scored 100% on Recall and Precision on settings when compared to actual 

frequent itemsets from the Apriori implementation. 

For the synthetic dataset T10I4D100K.txt, Figure 5.3 summarises the findings. 

Experiment Support Delta Original DSM DSM-NCN 

Recall precision no of FIs recall precision no of FIs 

Varied 
Support/ 
Fixed Delta 

0.1 0.1 100% 100% 0 100% 100% 0 

0.05 0.1 100% 100% 24 100% 100% 24 

Varied 
Delta/Fixed 
Support 

0.05 0.1 100% 100% 24 100% 100% 24 

0.05 0.05 100% 100% 24 100% 100% 24 

0.05 0.01 100% 100% 24 100% 100% 24 

Table 5.3: Number of FIs generated and performance accuracy on T10I4D100K. 

As with the previous two datasets, the original DSM and DSM-NCN implementations, when 

run on the same settings, they generated exactly the same set of frequent itemsets. Thus in 

regard to accuracy on T10I4D100K both implementations have identical performance. Based 

on actual frequent itemsets from the Apriori implementation, both DSM and DSM-NCN 

generated 100% Recall and Precision rate. 

From all three experiments the results produced were identical, thus reinforcing our belief 

that DSM-NCN does not sacrifice accuracy compared to DSM. 

5.3 Resource usage performance comparison (Experiment 2) 

These experiments were designed to evaluate resource usage performance of both memory 

usage and processing time on DSM and DSM-NCN implementations. The experiments were 

once again conducted on both synthetic and real world datasets. Two experiments were 

designed to reveal the sensitivity of resource performance on a variety of key parameters 

that govern the association rules mining process. These performances metrics were 

discussed in chapter 4 in term of processing time (average processing time) and memory 

consumption (average nodes created) 
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5.3.1 Finding from experiments with synthetic data (Experiment 2A) 

Experiments on synthetic datasets were carried out to test the effect of varied characteristics 

of the datasets. These experiments were carried out to provide performance comparison 

between the two implementations across four dataset’s characteristics. Table 5.4 

summarises performance on time and memory for the synthetic datasets. These four 

characteristics were average large itemset size, average transaction size, the number of 

items, and the number of large itemsets. For full detail of datasets characteristics please 

refer to table 4.1. 

Experiment Average Total Time in 
milliseconds 

% diff Average nodes Created % diff 

DSM  DSM-NCN DSM  DSM-NCN 

Average large 
itemset size 
D1A-D1D 

 

3 302,888 237,732 21.5% 2,125 1,651 22.3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 289,378 236,657 18.2% 2,023 1,709 15.5% 

5 269,118 192,707 28.4% 2,261 1,812 19.9% 

6 192,429 151,765 21.1% 1,808 1,508 16.6% 

Average 
transaction 
Size D2A- D2C 

 

6 85,252 70,395 17.4% 1,315 1,157 12.0% 

8 1,423,733 1,011,309 29.0% 4,323 3,168 26.7% 

10 4,062,134 3,120,808 23.2% 6,210 4,752 23.5% 

Number of 
items D3A-
D3C 

1000 266,885 211,606 20.7% 1,944 1,612 17.1% 

2000 111,987 89,735 19.9% 1,290 1,099 14.8% 

1000
 

19,622 17,841 9.1% 544 520 4.4% 

Number of 
large itemsets 
D4A-D4D 

200 2,169,093 1,612,910 25.6% 4,477 3,336 25.5% 

300 362,707 284,524 21.6% 2,343 1,982 15.4% 

400 42,120 36,200 14.0% 855 709 17.1% 

500 21,920 23,644 -7.9%* 675 599 11.3% 

Table 5.4: Average time and average number of nodes created on the synthetic datasets. 

Table 5.4 shows that DSM-NCN implementation performs better overall in terms of 

processing time (only one test takes a longer time to run*) and uses less memory to maintain 

closed nodes in comparison to DSM. 

In the next section, we will provide analysis on the performance differences between DSM 

and DSM-NCN implementations as well as offer graphical comparison. 
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5.3.2 Result analysis of Synthetic data experiments 

We next investigated the effect of varying the average large itemset size characteristic. 

Figure 5.1 exhibits a chart of average time taken and memory usage across average large 

transaction size of 3, 4, 5, and 6. For this and subsequent experiments line graphs will be 

used to represent time taken (on the primary y-axis) and bar graphs to represent nodes 

created (on the secondary y-axis). 

Figure 5.1: Graph comparing time and memory usage on varying average large itemset 

size (datasets D1A-D1D). 

From Figure 5.1 we can see that as size of large itemset increases both time and memory 

usage improves. This is due to the fact that larger frequent itemsets will have less likelihood 

to appear in a transaction as opposed to smaller frequent itemsets. DSM-NCN 

implementation performs consistently better across the range of the average large itemsets 

size parameter in term of time taken and memory use to maintain frequent closed nodes. 

The next experiment was on assessing the impact of average size of a transaction. Figure 

5.2 exhibits a chart of time taken and memory usage needed to maintain frequent closed 

nodes for three datasets. These datasets were generated using the same settings (refer to 

table 4.1) except for the difference in average transaction size which varied in the range: (6, 

8, and 10).  
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Figure 5.2: Graph comparing time and memory usage on varying average transaction 

size (datasets D2A- D2C). 

Figure 5.2 above shows that the variation in average transaction size has a significant effect 

on time and memory usage for both implementations. DSM-NCN performs better overall, 

while the level of improvement increases with an increase in the average transaction size 

(widening gap in the line graph). This suggests that DSM-NCN is more efficient at 

processing larger transactions.  

The next experiment was on varying the number of unique items. Figure 5.3 displays the 

time taken and memory usage to maintain closed nodes for three datasets. These datasets 

were generated using the same setting (refer to table 4.1) except that they have different 

number of unique items (1000, 2000, and 10000). 
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 Figure 5.3: Graph comparing time and memory usage on varying number of unique 

items (datasets D3A-D3C). 

Figure 5.3 shows that variation in the number of unique items has a reverse impact on time 

and memory usage for both implementations. As the pool size increases, the dataset 

becomes sparser i.e. there is a smaller probability that a given group of items will occur 

together and this in turn will results in lesser itemsets to be processed. DSM-NCN performs 

better in all the experiments, while the level of improvement increases in the reverse 

direction of the number of unique items. From this evidence we can suggest that datasets 

with a smaller pool of unique items will have more frequent closed nodes which in turn will 

result in a greater improvement of DSM-NCN over DSM implementation. 

The next experiment was on varying the number of large itemsets available in dataset. 

Figure 5.4 displays the time taken and memory usage to maintain closed nodes for the four 

datasets. These datasets were generated using the same settings (refer to table 4.1) except 

for the differences in the number of large itemsets which varied in the range: (200, 300, 400, 

and 500).  
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Figure 5.4: Graph comparing time and memory usage on varying number of large 

itemsets (datasets D4A-D4D). 

Figure 5.4 above shows the result of varying the number of large itemsets available for the 

dataset. The result of time taken and memory usage show similarity to the effect produced 

by the previous experiment on varying the number of unique items (datasets D4A-D4C). As 

there are less large itemsets available in the pool there is more opportunity for the same 

large itemsets to appear in transactions and subsequently increase the proportion of 

frequent closed nodes. From the graph above we can see that DSM-NCN has a better 

performance advantage when the pool size is small. This advantage decreases as pool size 

increases until any gains in using NCN is outweighed by the extra processing overhead of 

generating NCNs.  
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5.3.3 Per pass analysis of synthetic data experiments.  

From the previous analysis we have provided explanations for the improvements that DSM-

NCN has been able to achieve. In this section we will examine how DSM and DSM-NCN 

perform with respect to time taken per pass. We use the Figure 5.5 to illustrate how per pass 

time is measured in our experimentation.  

1-200  201-400  401-600  

Pass 1 Pass 2 Pass 3 

Figure 5.5: Example DSM and DSM-NCN per pass process from pass 1 to 3. 

Suppose that the frame size is 200. The start time of pass 3 (x) is the time right before 

transaction 401 has been processed. The end time of pass 3 (y) is time after main and 

overhead processes of transactions 401-600 have been completed and the pass time in 

milliseconds for pass 3 is then given by y-x. 

From previous experiments on synthetic datasets (Experiment 2A), we have collected the 

per pass time data for four datasets. Each datasets was chosen to represent settings that 

provided the biggest difference in mining time between DSM and DSM-NCN 

implementations so that the differences can easily be identified. The following four 

characteristics were chosen: average large itemset size = 5 (dataset D1C), average 

transaction size = 8 (dataset D2B), number of unique items = 1000 (dataset D3A), and 

number of large itemsets = 200 (dataset D4A).  

During the experiments the time taken per each pass (in milliseconds) was collected for all 

synthetic datasets for both implementations. Figures 5.6 to 5.9 display trend lines graphs 

using a moving average method with a window size of 30. The trend lines show the average 

time taken from five samples per pass. Windows size of 30 were chosen as it provide a good 

compromise between reducing variation between passes while retaining trends that occur 

naturally within the mining process. 

The per pass analysis on all datasets (synthetics and real world) is shown in Figures 5.6 to 

5.11, the time taken for the first two passes for both implementations were omitted as they 

were running identical code across the two implementations. 

x y 
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Average moving pass time for average large itemsets size = 5 (Dataset D1C)
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Figure 5.6: Moving average (window size 30) of per pass time taken on average large 

itemset size = 5 with s=0.05, delta=0.1. 

Average moving pass time for average transaction size = 8 (Dataset D2B)
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Figure 5.7: Moving average (window size 30) of per pass time taken on average 

transaction size = 8 with s=0.05 delta=0.1. 
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Average moving pass time for number of unique items = 1000 (Dataset D3A)
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Figure 5.8: Moving average (window size 30) of per pass time taken on number of 

unique items = 1000 with s=0.05, delta=0.1. 

Average moving pass time for number of large itemsets = 200 (Dataset D4A)
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Figure 5.9: Moving average (window size 30) of per pass time taken on number of large 

itemsets = 200 with s=0.05, delta=0.1. 
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From the per pass analyses represented in Figures 5.6 to 5.9 the following observations can 

be made. 

• At the very beginning of the experiment (Starting at pass 3), the time taken on DSM-

NCN is higher than DSM implementation due to overhead needed to produce Near Closed 

Nodes (NCNs) and the lack of sufficient numbers of NCNs to benefit closed node 

generation.  

• After stage 1, the average time taken from DSM-NCN drops to match those from the 

DSM. Thereafter, pass times for both implementations start to increase at a consistent rate. 

• Rate of increase in per pass mining time of DSM is greater than that of DSM-NCN. 

These shown by overall improvement in DSM-NCN’s run time. 

From observation of stage 3 we can predict that DSM-NCN implementation could provide 

much better improvement if we increase the size of the datasets (as gap gets wider over 

time). Datasets with 100,000 transactions that we have used are too small to demonstrate 

the true benefit of the DSM-NCN implementation over DSM. 

5.3.4 Experiment 2B: Findings and Analyses from experiments of real world data  

Experiments on synthetic datasets were presented in previous sections. It provides the 

opportunity to control key parameters which is not possible with real world datasets. 

However, it is necessary that experimentation with synthetic data is augmented by 

experimentation with real world datasets as it provides the opportunity on assessing the 

extent to which synthetic data reflects conditions present in actual data. By extension; it also 

enables us to test whether the performance advantages of DSM-NCN over DSM translate 

into real world datasets. Table 5.5 shows the result summary of time and memory 

performance on synthetic dataset experiments. 

First we experiment with the kosarak_click_stream dataset (Goethals & Zaki, 2003) with 

varied minimum support values of 0.1 and 0.05, and Delta values of 0.1, 0.05, and 0.01. The 

support setting of 0.01 was omitted from this experiment due to time constraints.  
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Experiment Support Delta Average Total Time % Diff 

 

Average nodes 

Created 

Trans 

per 

pass 

DSM DSM-NCN 

DSM DSM-
NCN 

Varied 
Support/Fixe
d Delta 

0.1 0.1 676,729 548,446 18.96% 367 234 79 

0.05 0.1 3,761,316 1,972,024 47.57% 2,757 1,654 159 

Varied 
Delta/Fixed 
Support 

0.05 0.1 3,761,316 1,972,024 47.57% 2,757 1,654 159 

0.05 0.05 2,876,190 1,479,278 48.57% 2,099 1,259 187 

0.05 0.01 2,294,839 1,156,172 49.62% 2,051 1,261 251 

Table 5.5: average time and average number of nodes created on kosarak_click_stream. 

Table 5.5 shows that varying minimum support has a major impact on both processing time 

and memory usage that impact on both implementations. As minimum support decreases 

there are more closed nodes which require more processing time and memory. However 

decreasing the Delta value improves speed and memory usage as more transactions can be 

processed per pass thus reducing the amount of overheads involve in tree pruning and NCN 

generation (only for DSM-NCN).  

DSM-NCN provides significant improvement with an almost 50% faster speed advantage at 

minimum support of 0.05, while offering around a 19% improvement at the 0.1 support level. 

An increment of 1% in speed advantage is achieved when Delta is decreased in the range of 

0.1, 0.05, and 0.01. In terms of memory usage DSM-NCN takes around 40% less memory 

compared to the DSM implementation. 

Experimentation on the kosarak_click_stream datasets provide the best result for DSM-NCN 

implementation compared to all other experiments. At settings of s=0.05 and Delta=0.01 it 

take around 50% less time to complete than DSM. We used a moving average per pass time 

to understand how both implementations perform at various stages of the mining process. 
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Figure 5.10: Moving average (window size 30) of per pass time taken on 

kosarak_click_stream with s=0.05, delta=0.01. 

From average per pass time it shows that at the initial stage (first 100 passes) both 

algorithms perform similarly in terms of pass time. As more data streamed in, the average 

per pass time continued to grow. Figure 5.10 clearly shows constant rate of increase for both 

algorithms, however increase rate of DSM-NCN is lower. As a consequence the gap in 

processing widens continuously as the stream progresses in length. This result mirrors the 

trends observed with synthetic datasets (in previous section) but with much greater scale.  

We experimented with the retail dataset using a support range of 0.1, 0.05, and 0.01 and 

Delta range of 0.1, 0.05, and 0.01. Table 5.6 exhibits the results of the retail datasets. 
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Experiment Support Delta Average Total Time % Diff 

 

Average nodes 
Created 

Trans 
per 
pass 

DSM DSM-NCN DSM DSM-NCN 

Varied 
Support/Fix
ed Delta 

0.1 0.1 15,837 15,588 1.58% 366 298 79 

0.05 0.1 55,084 47,254 14.21% 1,609 1,329 159 

0.01 0.1 57,299,777 54,678,019 4.58% 

44,809 43,005 627 

Varied 
Delta/Fixed 
Support 

0.05 0.1 55,084 47,254 14.21% 1,609 1,329 159 

0.05 0.05 36,675 31,156 15.05% 1,266 1,051 187 

0.05 0.01 31,311 25,449 18.72% 

1,266 1,036 251 

Table 5.6: average time and average nodes created on retail datasets. 

Table 5.6 shows decreasing the minimum support setting causes processing time and 

memory usage utilisation to increase similar to the experiment conducted with the 

kosarak_click_stream datasets. Interestingly processing time for support of 0.01 were more 

than 1,000 times greater than at 0.05 and gave rise to 30 times more closed nodes. This 

explosive increase in time and memory is a direct result of an exponential increase in the 

number of frequent itemsets at support levels between 0.05 and 0.01. Decreasing the delta 

value reduces both time taken and memory usage similar to the trend observed with the 

kosarak_click_stream datasets. 

Interestingly in retail, DSM-NCN does not provide the same level of improvement success as 

the result  for kosarak_click_stream. This may be  due to the fact that the number of 

transactions in retail is much smaller than the latter (88,162 compare to 990,002 in 

kosarak_click_stream). Thus it may not be representative of a data stream environment to 

the same extent as kosarak_click_stream. 

Settings of s=0.05 and Delta=0.01 provide the best improvement for retail. We used a 

moving average for the per pass time to understand how both implementations perform at 

various stages of the mining process.  
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Figure 5.11: Moving average (window size 30) of per pass time taken on retail with 

s=0.05, delta=0.01. 

From Figure 5.11 it can be seen that the improvement for the moving average time for DSM-

NCN is barely significant for passes below 300. However we can see the significant 

differences between average moving times at passes beyond 350. These observations 

provide support to our earlier assertions about the performance advantage of DSM-NCN on 

the retail dataset. 

Overall the DSM-NCN algorithm provides improvement in all of the retail datasets and its 

performance characteristics are similar to that of the kosarak_click_stream set of 

experiments. However time improvement for DSM-NCN when minimum support is set at 

0.01 decreases to 4.58 % (compared to 14.21% improvement when support set at 0.05). 

This could be due to the majority of frequent itemsets existing between the support of 0.05 

and 0.01 not been identified as NCNs and thus the benefits of DSM-NCN were not fully 

utilised.  
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5.4 Finding and Analysis Summary 

In experiment 1, DSM and DSM-NCN implementations perform equally in terms of accuracy. 

Both implementations generated the same set of association rules on all three test files 

which included both synthetic and real world datasets. 

In term of speed performance, varying in datasets characteristics and/or experiment 

parameters have major impact in the mining time. From observation, increase amount of 

frequent itemsets or reduce minimum support will greatly increase mining time. 

Experiment 2A and 2B exhibit that DSM-NCN implementation has performed better on 

almost all experiments on synthetic data (24 out of 25 experiments perform better). DSM-

NCN is faster in all experiments with real world datasets. These results agreed with our 

previous hypothesis, as NCN implementation bypasses many close nodes generation 

processes that require CPU intensive tree traversal operation. 

In term of memory utilization, varying various datasets characteristics and/or experiment 

parameters have a major impact on the utilization. From observation, increase in the number 

of large frequent itemsets in the transaction will generally increase the number of frequent 

closed itemsets maintained by both implementations. 

In experiment 2A and 2B, DSM-NCN performs better across all synthetic and real world 

datasets in term of memory utilisation (created fewer nodes). This confirmed our initial 

hypothesis, as NCN implementation bypass many of closed nodes generation processes 

that generate a lot of itemsets while maintained minimum amount of Near closed nodes.  

5.5 Chapter Summary 

The experimentation carried out on both synthetic and real world data confirmed all of our 

hypotheses that the use of near closed itemsets helped to improve both speed performance 

and memory utilisation while accuracy performance was maintained. The greatest 

performance was obtained when present with dense datasets and low minimum support (> 

0.05). 
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Chapter 6 Conclusion 

This chapter will provide some insights into possible directions for this research. It will 

provide overall observations, a summary of the research; design, implementation, 

experimentation, and the insights gained from this research. 

6.1 Observations 

In the previous chapter, we have shown that the Near Closed Nodes (NCN) technique 

provides up to fifty percent improvement in term of speed performance compare to the 

original DSM implementation with no loss in accuracy. The experiments conducted on both 

synthetic and real world dataset shown that NCN implementation improve both speed and 

memory usage in almost all circumstances. 

In far as the NCN implementation goes, it is a small add-on that was built on top of DSM 

implementation. As discussed in Chapter 3, the NCN routine was added to mineData() 

routine to avoid and reduce the amount of work required to generate new closed nodes. 

After NCN has been incorporated within DSM, only a small fraction of code was added and 

all of the original implementation has been maintained. The minimal amount of changes 

suggested that there is a lot of scope for further optimisation with the DSM-NCN 

implementation. 

The experimental results suggested that the performance advantage of NCN implementation 

increases with a greater number of closed nodes. This phenomenon can be seen from the 

experiment conducted on synthetic data as we artificially increase the number of frequent 

itemsets in the datasets, or as we decrease the minimum support setting on the experiment 

conducted with real world data. 

During the design stage of this research attention was focused on two optimisation 

techniques: optimization of powerset generation the use of Near Closed Nodes. Optimizing 

powerset generation procedures offer a high level of improvement as they occupy a major 

part of the mining process. However the NCN technique that was chosen was quite a 

conservative one compared to what will be discussed in the next section. 

6.2 Future Work 

In previous research (Kadam, 2009), the author incorporated and experimented with concept 

drift and compared performance to FPDM2 (Yu et al., 2004). However in this research we 
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could not investigate the effect of concept drifts due to time constraint and scope of our 

dissertation.  

Furthermore, we would like to incorporate much larger datasets into the experimentation to 

uncover any greater benefit of DSM-NCN. Based on the per pass analyses in Chapter 5 we 

have uncovered a growing gap between DSM and DSM-NCN. It suggests that DSM-NCN 

may possess greater speed when used with a real data stream. 

The author of the DSM implementation has suggested various techniques to improve the 

DSM implementation including deferring update of nodes’ support information until the end 

of frame, the use of estimation techniques, use of more efficient powerset generation 

techniques, and the use of maximal frequent itemsets. 

From observations there are several other improvements that can be made on DSM 

implementation and the NCN extension. There are two major DSM optimisations on frequent 

closed itemsets generation procedures which we would like to investigate further. 

One major problem with the DSM implementation is the amount of powersets that are 

required to generate at each transaction. These powersets are necessary for frequent closed 

itemsets generation, but they required a great deal of resources to generate and process. 

DSM had incorporated the Apriori principle preventing some unnecessary powersets 

generation. Nevertheless other pruning techniques could be incorporated to further reduce 

powerset generation. These techniques had been used by implementations such as 

CLOSET+ (Wang, Han, & Pei, 2003), CLOSET (Pei et al., 2000), and CHARM (Zaki & 

Hsiao, 2002).  

The other major constraint we encountered was the amount of resources consumed to 

identify frequent closed nodes and support information employed by DSM implementation. 

As the number of closed nodes glow it will take correspondingly longer to identify and 

generate new closed nodes.  

We believe that by increasing the capability of NCN generation we could further the improve 

speed of the implementation. At the moment the NCN algorithm is designed to heuristically 

detect some NCNs from closed node subsets. This design was chosen to minimize 

overhead from NCN processes and the possibility of false-positive results. However, if we 

increase the number of NCNs generated by using more aggressive NCN algorithms we 

could further increase the number of NCNs generated and potentially further improve run 

time performance. 
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6.3 Conclusion 

Data mining will be an increasingly important knowledge generation task in most 

organisations as data continues to grow in size. In our opinion data stream mining 

possesses one of the most challenging and exciting fields of data mining research. As 

hardware capabilities and improved mining techniques continue to grow it is natural that we 

take advantage of emerging data mining applications.  

In this research we have developed a simple method which provides improvements to both 

speed and memory utilisation for a closed itemset mining implementation. We selected near 

closed nodes (NCN) add-on to be implemented on top of the current DSM implementation. 

NCN is used to reduce time taken for DSM to determine frequent closed itemesets and 

support information. Experimental studies show that NCN add-on provides increase in 

performance on both mining time and memory usage of DSM algorithm. 

From the experiments we have found that NCN is particularly robust to changes of key data 

parameters. It outperforms the original implementation in most of our experiments. In terms 

of performance in closed nodes mining NCN particularly excels at low minimum support or in 

dense datasets. 
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