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ABSTRACT

This thesis proposes and presents several novel methods to address some of
the real world stream data modelling issues through the use of global and local
modeling approaches. A set of real world stream data modelling issues such
as dealing with large size and, high dimensionality data, skewed class distribu-
tion, different formats of data and visualisation problem are reviewed and their
impact on various models are analysed.

The thesis has made nine major contributions to information science, that
include four evolving modelling methods, three real world application systems
that apply these methods and two stream data visualisation software proto-
types. Four novel methods have been developed and published in the course
of this study. They are: (1) Online Core Vector Machines (OCVM); (2) Hi-
erarchical CVMs (HCVM) - aloca modelling system based on hierarchical
labelling data; (3) Dynamic Evolving CVMs (DE-CVM) - akernel based dy-
namic evolving learning system; (4) Meta-Learning String Kernel CVM.

OCVM addressestheissue of one-pass, large size, high dimensionality stream
data through a kernel-based online learning process. OCVM is proposed for
large-scal e classification by leveraging connections between |earning and com-
putational geometry. It imposes the constraint that only a single pass over the
datais alowed. Standard support vector machines (SVM) training has O(m3)
time and O(m2) space complexities, where m isthe training set size. It isthus
computationally infeasible on very large data sets. Our proposed OCVM in-
herits the advantage of the Core Vector Machine (CVM) algorithm which can
be used with non-linear kernels and has a time complexity that islinear in m
and a space complexity that is independent of m.

HCVM solves the skewed-class distribution problem for hierarchical stream
data by identifying them through the sub-classes clustering process, creating
child CVMs based on the hierarchical labels and applies supervised learning
to update the core vectors. This puts strong emphasis on the unique problem
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subspaces and allows easy to discriminate parent classes by local modelling on
their child classes.

DE-CVM takes HCVM a step further by implementing an evolving clus-
tering process. DE-CVM evolves through incremental, hybrid learning and
accommodates new input stream data, including new features, new classes,
etc. through local element tuning. New core vectors are created and updated
while the system is operating. In contrast to HCVM, DE-CVM can work not
only on hierarchical data but also on any numerical stream data.

Meta Learning String Kernel CVM is proposed to satisfy the string format
stream data learning. Recently, string kernel based support vector machines
have shown competitive performance in tasks such as text classification and
protein homology detection. Meta Learning String Kernel CVM improves the
effectiveness of traditiona string kernels SVMs by learning the meta knowl-
edge and adopting CVMs.

The novel stream learning methods outlined above have been applied to the
following three real world data modelling problems:

1. Hierarchical network dataintrusion detection:;
2. Face Membership Authentication;
3. String data(i.e. Spam email, news and malicious software) classification.

These solutions constitute the main contribution of this research to the area of
applied information science.

In addition to the above contributions, two stream data visualisation systems
were developed: the network intrusion detection visualisation system (NIDVS)
and the HCVM prototype system. These systems overcome the difficulty of
monitoring stream datalearning progress and also provide a better understand-
ing of local modelling.

In summary, real world problems consist of many smaller problems. It was
found beneficial to acknowledge the existence of these sub-problems and ad-
dress them through the use of local models.

The core vectors extracted from the local models also brought about the
availability of new knowledge for researchers and would allow more in-depth
study of the sub-problems to be carried out in future research.
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INTRODUCTION

1.1 BACKGROUND

Data mining is concerned with the process of computationally extracting hid-
den knowledge structures represented in models and patterns from large data
repositories. Itisaninterdisciplinary field of study that hasitsrootsin databases,
statistics, machine learning, and data visualisation. Data mining has emerged
as a direct outcome of the data explosion that resulted from the success in
database and data warehousing technol ogies over the past two decades (Frawley,
Piatetsky-Shapiro, & Matheus, 1992; Fayyad, 1998).

The conventional focus of data mining research was on mining resident data
stored in large data repositories. The growth of technologies such as wireless
sensor networks (Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002) have
contributed to the emergence of data streams (Muthukrishnan, 2003). The dis-
tinctive characteristic of such dataisthat it is unbounded in terms of continuity
of data generation. This form of data has been termed as data streams to ex-
pressits flowing nature (Henzinger & Raghavan, 1998).

Table 1.1 shows the major differences between data stream processing and
traditional data processing. The objective of thistableisto clearly differentiate
between traditional stored data processing and stream processing as a step to-
wards focusing on the data mining aspects of data stream processing systems.



1.2 RESEARCH GOAL AND OBJECTIVES

Stream Processing \ Traditional Processing
Real-time processing Offline processing
Rapid data generation relative to Normal or slow data generation relative
the available computational resources | to the available computational resources
Storage of datais not feasible Storage of dataisfeasible
Approximate results are acceptable Accurate results are required
Processing of samples of Processing of every data
dataisthe usual task item/record is the usual task
Linear and sublinear computational Techniques with high space and time
techniques are widely used complexity are used if necessary
Table 1.1:

Stream processing vs Traditional processing

1.2 RESEARCH GOAL AND OBJECTIVES

The goal of thisresearch isto develop novel information methods and systems
for stream data modelling and specifically for network intrusion detection and
string classification applications. In order to achieve the goal, this study will
investigate this new and promising area, and build an on-line modelling envi-
ronment using evolving systems for stream data classification.

1.2.1 Specific Research objectives

More specifically, the research includes the following objectives:

1. To criticaly analyse the problems related to stream data mining. Al-
though plenty of computational intelligent models have been developed
so far for stream data learning, there are few effective and integrated sys-
tems. There are avariety of issues that have not been resolved yet.

2. To develop anew on-line kernel based learning method with low compu-
tational cost and to analyse its performance under different scenarios.

3. Todevelop evolving clustering methods based on alocal modelling frame-
work. Loca modelling breaks down the entire problem into many smaller

<



Lo THESIS STRUCTURE

sub-problems, based on its position in the problem space. Thus, evolv-
ing clustering is a fundamental step to the creation of alocal modelling
system.

4. To develop anovel string classification method for string format stream
data mining. One mgor task for stream data mining is to categorise
texture. This study aims to develop a kernel based classification method
for texture categorisation and to investigate its performance over network
string data.

5. To develop dynamic visualisation systems for monitoring stream data
learning. These will present the stream data mining progress and local
modelling evaluation.

In summary, the ultimate objective of this research is to develop new methods
and systems for evolving stream data mining that leads to improved classifi-
cation performance and various capabilities. Such methods and systems will
integrate novel machine learning and modelling techniques for:

e On-line adaption;
o fast learning;

evolving clustering;

classification;

knowledge discovery and model validation.

1.3 THESIS STRUCTURE

The structure of the thesis follows the research objectives presented in the pre-
vious section and is outlined below.

CHAPTER 2  reviewscurrent developmentsin the area of stream data min-
ing by providing background information, and describing existing modelling
techniques, along with learning algorithms and applications.
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CHAPTER 3  presents an overview of arange of computational intelligent
techniques that are relevant to this research. A brief description of batch and
on-line learning techniques that have been used for global, local and person-
alised modelling is provided.

CHAPTER 4  proposes an on-line, novel kernel based learning algorithm
on-line core vector machine (OCV M), for which computational complexity is
independent from the size of training samples. An experimental comparison
between the proposed and traditional support vector machine is undertaken.

CHAPTER 5 proposes a novel learning method hierarchical core vector
machine (HCVM) for local modelling of hierarchical structure stream data.

CHAPTER 6  proposesanovel kernel based method dynamic evolving core
vector machine (DE-CVM), which improves the original HCVM algorithm
by adopting evolving clustering processing that evolves through local element
tuning.

CHAPTER 7  proposesanovel string classification method, Meta L earning
String Kernels CVM, that is capable of string format stream data learning.

CHAPTER 8 demonstrates the inherent suitability of ussng HCVM on hi-
erarchical structure stream data (i.e. network data flow). The experimental
results validate the effectiveness of HCVM by comparing with the winner of
KDD’99 cup (KDD99, 1999).

CHAPTER 9 presentsacase study onface membership authentication with
DE-CVM. The results attest that local modelling is able to capture more valu-
able knowledge from sub-spaces than global modelling does.

CHAPTER 10 presentsexperimentswith MetaL earning String Kernel CVM
for string classification. The results demonstrate the capability of Meta Learn-
ing String Kernel CVM for string format stream data learning.
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CHAPTER 11 conclusionsaredrawn and futuredirectionsfor research are
given.

APPENDIX A AND B  describes two dynamic visualisation systems de-
veloped for monitoring stream data learning progress.
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1.4 CONTRIBUTIONS

During my PhD study, | have published or delivered 3 conference paper, 3
technical reports, 1 journad article, 4 novel methods and 2 prototype systems.

1.4.1 Publications

The material presented in this thesis was partially published in a number of
peer-reviewed international conference and journal articles:

e Pang, S, Dhoble, K., Chen, Y., Kasabov, N., Ban, T. & Kadobayashi, Y.
(2009) Active Mode Incremental Nonparametric Discriminant Analysis
Learning. Proceedings of the Eighth International Conference on Infor-
mation and Management Sciences. 407-412 July 2009 Kunming, China.

e Chen, V., Pang, S, Kasabov, N., Ban, T. & Kadobayashi, Y. (2009) Hi-
erarchical Core Vector Machines for Network Intrusion Detection. 16th
International Conference on Neural Information Processing of the Asia&
Pacific Neural Network Assembly, APNNA” (ICONIP09) 520-529 De-
cember Bangkok, Thailand.

e Chen, Y., Pang, S., Kasabov, N. & Ban, T. (2010) Factorizing class char-
acteristics via group MEBs construction. Proceedings of the 17th in-
ternational conference on Neura information processing: models and
applications, 283-290, Sydney, Australia.

e Chen, Y., Kasabov, N. & Pang, S. (2012) Class Factorizing through Dis-
tinctive Core Vectors Extraction using Dynamic Evolving Minimum En-
closing Ball. Evolving System (submitted).

1.4.2 Technical Reports

3 technical reports have been completed and delivered to Nationa Institution
of Information and Communication Technology (NICT), Japan:
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Pang, S. Chen, Y. Kasabov, N. & Dhaoble , K. (2009) FY-2008 High
Speed Algorithms for Outlier Detection and Classification over Huge-
size Network Data Streams. Auckland, New Zealand: Auckland Uni-
versity of Technology, Knowledge Engineering and Discovery Research
Institute (KEDRI).

Pang, S. Chen, Y. Kasabov, N. & Song, L. (2010) FY-2009 High Speed
Algorithms for Outlier Detection and Classification over Huge-size Net-
work Data Streams. Auckland, New Zealand: Auckland University of
Technology, Knowledge Engineering and Discovery Research Institute
(KEDRI).

Pang, S. Chen, Y. Kasabov, N. & Song, L. (2011) FY-2010 High Speed
Algorithms for Outlier Detection and Classification over Huge-size Net-
work Data Streams. Auckland, New Zealand: Auckland University of
Technology, Knowledge Engineering and Discovery Research Institute
(KEDRI).

1.4.3 Novel Methods

Total 4 novel methods are presented in thisthesis:

On-line Core Vector Machine (OCVM) (Chapter 4)
Hierarchical Core Vector Machine (HCVM) (Chapter 5)
Dynamic Evolving Core Vector Machine (DE-CVM) (Chapter 6)

Meta Learning for String Categorization (Chapter 7)

1.4.4 Prototype Systems

We devel oped 2 prototype systems:

Network Intrusion Detection Visualization System (Appendix A)

HCVM Prototype System (Appendix B)



MINING DATA STREAM

This chapter reviews the theoretical foundations of data stream analysis. Tech-
niques for mining stream data are critically reviewed. Finally, research prob-
lems in the streaming mining field of study are outlined and discussed. These
research issues should be addressed in order to realize robust systems that are
capable of fulfilling the needs of data stream mining applications.

Intelligent data analysis has passed through a number of stages. Each stage
addresses new research issues that have arisen. Statistical exploratory data
analysisrepresentsthefirst stage. The goal wasto explore the available datain
order to test a specific hypothesis. With the advances in computing power, the
field of machine learning has emerged. The objective was to find computation-
ally efficient solutions to data analysis problems. Along with the progress in
machine learning research, new data analysis problems have been addressed.
Due to the increase in database sizes, new algorithms have been proposed to
deal with the scalability issue. Moreover, machinelearning and statistical anal-
ysis techniques have been adopted and modified in order to address the prob-
lem of very large databases. Data mining is an interdisciplinary field of study
and is used to extract models and patterns from large amounts of information
stored in datarepositories (Hand, 1999; Hand, Mannila, & Smyth, 2001; Him-
berg, Tikanmaki, Toivonen, Korpiaho, & Mannila, 2001).

Advances in networking and parallel computation have lead to the introduc-
tion of distributed and parallel data mining. The goal is to extract knowledge
from different subsets of a dataset and integrate these generated knowledge
structures in order to build a global model of the whole dataset. Client/server,
mobile agent based and hybrid model s have been proposed to address the com-
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munication overhead issue. Different variations of algorithms have been devel-
oped in order to increase the accuracy of the generated global model. More de-
tails about distributed data mining could be found in (Park & Kargupta, 2002).
Recently, the data generation rates in some data sources has become faster
than ever before. This rapid generation of continuous streams of information
has challenged the storage, computation and communication capabilities of
computing systems. Systems, models and techniques have been proposed and
developed over the past few years to address these challenges (Babcock, Babu,
Datar, Motwani, & Widom, 2002).

The chapter is organised as follows. Section 2.1 presents the theoretical
background of data stream analysis; mining data stream techniques and sys-
temsarereviewed in sections 2.2 and 2.3 respectively; finally section 2.4 sum-
marizes this review chapter.

2.1 EXISTING TECHNIQUES

Research problems and challenges that have arisen in the area of mining data
streams have been addressed by using well established statistical and com-
putational approaches. We can categorise these solutions into data-based and
task-based ones. In data-based solutions, theideaisto examine only asubset of
the whole dataset or to transform the data either vertically or horizontally to an
approximate, smaller size data representation. On the other hand, in task-based
solutions, techniques from computational theory have been adopted to achieve
time and space efficient solutions. In this section we review these theoretical
foundations.

2.1.1 Data-based Techniques

Data-based techniques refer to summarising the whole dataset or choosing a
subset of the incoming stream to be analysed. Sampling, load shedding and
sketching techniques represent the former one, while synopsis data structures
and aggregation represent the latter one. Here is an outline of the basics of
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these techniqueswith pointersto their applicationsin the context of datastream
analysis.

Sampling

Sampling refers to the process of probabilistic choice of a data item to be
processed or not. Sampling is an old statistical technique that has been used
for along time. Boundaries of the error rate of the computation are given
as a function of the sampling rate. As a fast Machine Learning technique,
Hoeffding bound has been used to measure the sample size according to some
derived loss functions (Domingos & Hulten, 2001).

The problem with using sampling in the context of data stream analysisisthe
unknown dataset size. Thus the treatment of data streams should follow a spe-
cia type of anaysisto find the error bounds. Another problem with sampling
Is that it would be important to check for anomalies for surveillance analysis
as an application in mining data streams. Sampling may not be the right choice
for such an application. Sampling aso does not address the problem of fluc-
tuating data rates. 1t would be worth investigating the relationship among the
three parameters. datarate, sampling rate and error bounds.

Load Shedding

Load shedding refers to the process of dropping a sequence of data streams
(Mayur, Babcock, Datar, & Motwani, 2003). Load shedding has been used
successfully in querying data streams. It has the same problems as sampling.
Load shedding is difficult to be used with mining algorithms because it drops
chunks of data streams that could be used in the structuring of the generated
models or it might represent a pattern of interest in time series analysis.

Sketching

Babcock et al. (2002) describe the process of randomly projecting a subset of
features. It isthe process of vertically sampling the incoming stream. Sketch-
ing has been applied in comparing different data streams and in aggregate
queries. The maor drawback of sketching is that it has low accuracy. It is
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hard to use it in the context of data stream mining. Principal Component Anal-
ysis (PCA) would be a better solution in streaming applications.

Synopsis Data Sructures

Creating synopsis of datarefersto the process of applying summarisation tech-
niques that are capable of summarising the incoming stream for further analy-
sis. Wavelet analysis, histograms, quantiles and frequency moments have been
proposed as synopsis data structures. Since synopsis of data does not represent
al the characteristics of the dataset, approximate answers are produced when
using such data structures (Gilbert, Kotidis, Muthukrishnan, & Strauss, 2003).

Aggregation

Aggregation is the process of computing statistical measures such as means
and variance that summarise the incoming stream. This aggregated data could
be used by the mining algorithm. The problem with aggregation is that it does
not perform well with highly fluctuating data distributions. Merging online
aggregation with offline mining has been studied by Aggarwal, Han, Wang,
and Yu (2003, 2004).

2.1.2 Task-based Techniques

Task-based techniques are methods that modify existing techniques or invent
new ones in order to address the computational challenges of data stream
processing. Approximation algorithms, sliding window and algorithm output
granularity represent this category. The following subsections, examine each
of these techniques and its application in the context of data stream analysis.

Approximation algorithms

Approximation algorithms have their rootsin algorithm design (M uthukrishnan,
2003). It is concerned with design algorithms for computationally hard prob-
lems. These algorithms can result in an approximate sol ution with error bounds.
The idea is that mining algorithms are considered hard computational prob-
lems given their features of continuality and speed and the generating environ-

11
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ment that isfeatured by being resource constrained. Approximation algorithms
have attracted researchers as a direct solution to data stream mining problems.
However, the problem of data rates with regard with the available resources
could not be solved using approximation algorithms. Other tools should be
used along with these algorithms in order to adapt to the available resources.
Approximation algorithms have been used by Cormode and Muthukrishnan
(2003).

Siding Window

The inspiration behind the technique of sliding window isthat the user is more
concerned with the analysis of most recent data streams. Thus a detailed anal-
ysis is done over the most recent data items and summarised versions of the
old ones. Thisidea has been adopted in many techniques in the comprehensive
data stream mining system MAIDS project (Dong et a., 2003).

Algorithm Output Granularity

The algorithm output granularity technique (AOG) (Bandyopadhyay, Holder,
& Maulik, 2006) introduces the first resource-aware data analysis approach
that can cope with fluctuating very high data rates according to the available
memory and the processing speed represented in time constraints. The AOG
performs the local data analysis on a resource constrained device that gener-
ates or receives streams of information. AOG has three main stages. Mining
followed by adaptation to resources and data stream rates represent the first
two stages. Merging the generated knowledge structures when running out of
memory represents the last stage. AOG has been used in clustering, classi-
fication and frequency counting (Bandyopadhyay et al., 2006). Having dis-
cussed the different existing approaches to data stream analysis problems, the
following section is devoted to stream mining techniques that use the above
approaches in different ways.
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2.1.3 Mining Techniques

Mining data streams has attracted the attention of the data mining commu-
nity for the last three years. A number of algorithms have been proposed for
extracting knowledge from streaming information. This section reviews clus-
tering, classification, frequency counting and time series analysis techniques.

Clustering

Guha, Mishra, Motwani, and O’ Callaghan (2000) have studied analytically
clustering data streams using the k-median technique. The proposed algorithm
makes a single pass over the data stream and uses small space. It requires
O(nk) time and O(ne) space where k is the number of centres, » is the num-
ber of points and ¢ < 1. They have proved that any k-median algorithm that
achieves a constant factor approximation can not achieve a better run time than
O(nk). Theagorithm starts by clustering a calculated size sampleinto 2k, and
then, at a second level, the algorithm clusters the above points for a number of
samplesinto 2k. This processis repeated until it clusters the 2k clustersinto &
clusters.

Babcock, Datar, Motwani, and O’ Callaghan (2003) have used an exponential
histogram (EH) data structure to improve the algorithm proposed by Guha et
a. (2000). They use the same method described above, however they address
the problem of merging clusters when the two sets of cluster centres to be
merged are far apart by maintaining the EH data structure. They have studied
their proposed algorithm analytically.

Charikar, O’ Calaghan, and Panigrahy (2003) have proposed another k-median
algorithm that overcomes the problem of increasing approximation factorsin
the algorithm (Guha et al., 2000) with the increase in the number of levels
used to result in the final solution of the divide and conquer algorithm. The
algorithm has aso been studied analytically.

Domingos and Hulten (2000) have proposed a general method for scaling up
machine learning algorithms. They have termed this approach Very Fast Ma-
chine Learning VFML. This method depends on determining an upper bound
for the learners loss as a function in a number of dataitems to be examined in
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each step of the algorithm. They have applied this method to K-means clus-
tering VFKM and decision tree classification VFDT techniques. These algo-
rithms have been implemented and evaluated using synthetic data sets as well
as real web data streams. VFKM uses the Hoeffding bound to determine the
number of examples needed in each step of k-means agorithm. The VFKM
runs as a sequence of k-means executions where each run uses more examples
than the previous one until a calculated statistical bound (Hoeffding bound) is
satisfied.

Ordonez (2003) has proposed severa improvements to k-means algorithm
to cluster binary data streams. He has devel oped an incremental k-means algo-
rithm. The experiments were conducted on real data sets as well as synthetic
ones. He has demonstrated experimentally that the proposed algorithm outper-
forms the scalable k-means in the majority of cases. The proposed algorithm
Isaone pass agorithm in O(Tkn) complexity, where T' is the average transac-
tion size, n is number of transactions and & is number of centres. The use of
binary data ssmplifies the manipulation of categorical data and eliminates the
need for data normalisation. The main idea behind the proposed algorithm is
that it updates the cluster centres and weights after examining a batch of trans-
actions which equalizes the square root of the number of transactions rather
than updating them one by one.

O’ Callaghan, Mishra, Meyerson, Guha, and Motwani (2002) have proposed
stream and local search algorithmsfor high quality data stream clustering. The
stream algorithm starts by determining the size of the sample and then ap-
pliesthe local search algorithm if the sample sizeislarger than a pre-specified
equation result. This processis repeated for each data chunk. Finaly, the lo-
cal search algorithm is applied to the cluster centers generated in the previous
iterations.

Aggarwal, Han, Wang, and Yu (2003) have proposed a framework for clus-
tering data steams called CluStream algorithm. The proposed technique di-
vides the clustering process into two components. The online component
stores summari sed stati stics about the data streams and the offline one performs
clustering on the summarised data according to a number of user preferences
such as the time frame and the number of clusters. A number of experiments
on real datasets have been conducted to prove the accuracy and efficiency of
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the proposed algorithm. Aggarwal et a. (2004) have recently proposed HP-
Stream; a projected clustering for high dimensional data streams. HPStream
has outperformed CluStream in recent results.

Keogh and Lin (2005) have shown empirically, that most highly cited clus-
tering of time series data streams algorithms proposed so far in the literature
come out with meaningless results in subsequence clustering. They have pro-
posed a solution approach using k-motif to choose the sub-sequences that the
algorithm can work on to produce meaningful results.

Bandyopadhyay, Holder, and Maulik (2006) have developed Lightweight
Clustering LWC. It is an AOG-based algorithm. AOG has been discussed in
section 2.1. The agorithm adjusts a threshold that represents the minimum
distance measure between data items in different clusters. This adjustment is
done regularly according to a pre-specified time frame. It is done according
to the available resources by monitoring the input-output rate. This processis
followed by merging clusters when the memory is full.

2.1.4 Classification

H. Wang, Fan, Yu, and Han (2003) have proposed a general framework for
mining drifting data streams. They have observed that data stream mining
algorithms proposed so far have not addressed the concept of drifting in the
evolving data. The proposed technique uses weighted classifier ensembles to
mine data streams. The expiration of old data in their model depends on the
data distribution. They use synthetic and real life data streams to test their
algorithm and compare between the single classifier and classifier ensembles.
The proposed algorithm combines multiple classifiers weighted by their ex-
pected prediction accuracy. Also the selection of number of classifiersinstead
of using all is an option in the proposed framework without loosing accuracy
in the classification process.

Ganti, Gehrke, and Ramakrishnan (2002) have devel oped analytically an al-
gorithm for model maintenance using insertion and deletion of blocks of data
records. Thisalgorithm can be applied to any incremental data mining model.
They have aso described a generic framework for change detection between
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two data sets in terms of the data mining results they induce. They formalise
the above two techniques into two general algorithms. GEMM and FOCUS.
The algorithms have been applied to decision tree models and the frequent
itemset model. The GEMM algorithm accepts a class of models and an in-
cremental model maintenance algorithm for the unrestricted window option,
and outputs a model maintenance algorithm for both window-independent and
window-dependent block selection sequence. The FOCUS framework usesthe
difference between data mining models as the deviation in data sets.

Domingos and Hulten (2000) have developed VFDT. It is a decision tree
learning systems based on Hoeffding trees. It splits the tree using the cur-
rent best attribute taking into consideration that the number of examined data
items used satisfies a statistical measure which is Hoeffding bound. The algo-
rithm also deactivates the least promising leaves and drops the non-potential
attributes,

Papadimitriou, Brockwell, and Faloutsos (2003) have proposed Arbitrary
Window Stream mOdeling Method (AWSOM) for interesting pattern discov-
ery from sensors. They developed a one-pass agorithm to incrementally up-
date the patterns. Their method requires only O(logN) memory where N isthe
length of the sequence. They conducted experiments with real and synthetic
data sets. They use wavel et coefficients as compact information representation
and correlation structure detection, and then apply alinear regression model in
the wavelet domain.

Aggarwal et a. have adopted the idea of microclusters introduced in CluS-
tream in On-Demand classification (Aggarwal et a., 2004) and it showsahigh
accuracy. The technique uses clustering results to classify data using statistics
of class distribution in each cluster.

Last (2002) has proposed an online classification system that can adapt to
concept drift. The system rebuildsthe classification model with the most recent
examples. Using the error rate as a guide to concept drift, the frequency of
model building and the window size are adjusted. The system uses info-fuzzy
techniques for model building and information theory to calcul ate the window
Size.



<.l EXISTING TECHNIQUES

Ding, Ding, and Perrizo (2002) have developed a decision tree based on
Peano count tree data structure. It has been shown experimentally that it isa
fast building algorithm that is suitable for streaming applications.

Bandyopadhyay et al. (2006) have devel oped Lightweight Classification LW-
Class. Itisavariation of LWC. It is aso an AOG-based technique. The idea
Isto use K nearest neighbours with updating the frequency of class occurrence
given the data stream features. In case of contradiction between the incoming
stream and the stored summary of the cases, the frequency is reduced. In the
case when the frequency is equal to zero, all the cases represented by this class
are released from the memory.

2.1.5 Frequency Counting

Giannella, Yang, Zhang, Yan, and Yu (2008) have developed a frequent item
sets mining algorithm over data stream. They have proposed the use of tilted
windows to calculate the frequent patterns for the most recent transactions
based on the fact that users are more interested in the most recent transactions.
They use an incremental algorithm to maintain the FP-stream which is a tree
data structure to represent the frequent itemsets. They conducted a number of
experiments to prove the algorithm efficiency.

Manku and Motwani (2002) have proposed and implemented an approxi-
mate frequency count in data streams. The implemented algorithm uses all the
previous historical datato calculate the frequent patterns incrementally.

Cormode and M uthukrishnan (2003) have devel oped an algorithm for count-
ing frequent items. The algorithm uses group testing to find the hottest k items.
The algorithm is used with the turnstile data stream model which allows addi-
tion aswell asdeletion of dataitems. An approximation randomized algorithm
has been used to approximately count the most frequent items. It isworth men-
tioning that this data stream model is the hardest to analyse. Time series and
cash register models are computationally easier. The former does not allow
increments and decrements and the latter one allows only increments.

Bandyopadhyay et al. (2006) have developed one more AOG-based algo-
rithm: Lightweight frequency counting (LWF). It has the ability to find an
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approximate solution to the most frequent items in the incoming stream using
adaptation and releasing the least frequent items regularly in order to count the
more frequent ones.

2.1.6 Time Series Analysis

Indyk, Koudas, and Muthukrishnan (2000) have proposed approximate solu-
tionswith probabilistic error bounding to two problemsin time seriesanalysis:
relaxed periods and average trends. The algorithms use dimensionality reduc-
tion sketching techniques. The process starts with computing the sketches over
an arbitrarily chosen time window and creating the so called sketch pool. Us-
ing this pool of sketches, relaxed periods and average trends are computed.
The agorithms have shown experimentally efficiency in running time and ac-
curacy.

Perlman and Java (2002) have proposed atwo phase approach to mine astro-
nomical time series streams. The first phase clusters sliding window patterns
of each time series. Using the created clusters, an association rule discovery
technique is used to create affinity analysis results among the created clusters
of time series.

Zhu and Shasha (2002) have proposed techniques to compute some statisti-
cal measures over time series data streams. The proposed techniques use the
discrete Fourier transform. The systemiscalled StatStream and is able to com-
pute approximate error bounded correlations and inner products. The system
works over an arbitrarily chosen sliding window.

Lin, Keogh, Lonardi, and Chiu (2003) have proposed the use of symbolic
representation of time series data streams. This representation allows dimen-
sionality/numerosity reduction. They have demonstrated the applicability of
the proposed representation by applying it to clustering, classification, index-
ing and anomaly detection. The approach has two main stages. Thefirst oneis
the transformation of time series data to Piecewise Aggregate Approximation
followed by transforming the output to discrete string symbols in the second

stage.
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Y. Chen, Dong, Han, Wah, and Wang (2002) have proposed the application
of so called regression cubes for data streams. Due to the success of OLAP
technology in the application of static stored data, it has been proposed to use
multidimensional regression analysis to create a compact cube that could be
used for answering aggregate queries over theincoming streams. Thisresearch
has been extended to be adopted in an undergoing project Mining Alarming
Incidents in Data Streams (MAIDS).

Himberg et al. (2001) have presented and analysed randomised variations
of segmenting time series data streams generated by on-board mobile phone
sensors. It has been proven in this study that Global Iterative Replacement
provides approximately an optimal solution with high efficiency in running
time.

Guralnik and Srivastava (1999) have developed a generic event detection
approach of time series streams. They have developed techniques for batch
and online incremental processing of time series data. The techniques have
proven efficiency with real and synthetic data sets.

2.2 SYSTEMS

Several applications have stimulated the devel opment of robust streaming anal-
ysis systems. They are discussed bel ow.

Burl, Fowlkes, Roden, Stechert, and Mukhtar (1999) have developed Dia-
mond Eye for NASA and JPL. The aim of this project was to enable remote
computing systems as well as observing scientists to extract patterns from spa-
tial objectsin real time image streams. The success of this project enables “a
new era of exploration using highly autonomous spacecraft, rovers, and sen-
sors?’ (Burl et a., 1999). This project represents an early development in
streaming analysis applications.

Karguptaet al. (2002) have devel oped thefirst ubiquitous data stream mining
system: MobiMine. It is a client/server PDA-based distributed data stream
mining application for stock market data. It should be pointed out that the
mining component is located at the server side rather than the PDA. There are
different interactions between the server and PDA untill the results are finally
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displayed on the PDA screen. The tendency to perform data mining at the
server side has been changed with the increase of the computational power of
small devices.

Tanner, Alshayeb, Criswell, lyer, and Mcdowell (2008) have developed En-
Vironmen for On-Board Processing (EVE). The system mines data streams
continuously generated from measurements of different on-board sensorsin as-
tronomical applications. Only interesting patterns are transferred to the ground
stationsfor further analysis preserving the limited bandwidth. This system rep-
resents the typical case for astronomical applications. Huge amounts of data
are generated and there is a need to analyse this streaming information in real
time.

Srivastava (2003) have developed a NASA project for onboard detection of
geophysical processes represented in snow, ice and clouds using kernel clus-
tering methods. These techniques are used for data compression. The moti-
vation of the project is to preserve the limited bandwidth needed to send im-
age streams to the ground centers. The kernel methods have been chosen due
to their low computational complexity in such resource-constrained environ-
ments.

2.3 RESEARCH ISSUES

Data stream mining is a stimulating field of study that has raised challenges
and research issuesto be addressed by the database and data mining communi-
ties. The following is a discussion of both addressed and open research issues
(Dong et a., 2003; Bandyopadhyay et al., 2006; Golab & Ozsu, 2003; Kar-
guptaet a., 2002). Thefollowing isabrief discussion of previously addressed
issues.

e Unbounded memory requirements due to the continuous flow of data
streams. machine learning techniques represent the main source of data
mining algorithms. Most of machine learning methods require data to be
resident in memory while executing the analysis algorithm. Due to the
huge amounts of datain the generated streams, it is absolutely crucial to
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deign space efficient techniques that can have only one-pass learning of
the incoming stream. (Chapter 4)

e Required result accuracy: designing space and time efficient techniques
should be accompanied with acceptable result accuracy. Approximation
algorithms as mentioned earlier can guarantee error bounds. Also sam-
pling techniques adopt the same concept as it has been used in VFML
(Domingos & Hulten, 2001). (Chapter 5)

e Modelling changes of mining results over time: in some cases, the user is
not interested in mining data stream results, but how these results change
over time. For example, if the number of clusters generated changes,
it might represent some changes in the dynamics of the arriving stream.
Dynamicsof data streams using changesin the knowledge structures gen-
erated would benefit many temporal-based analysis applications. (Chap-
ter 6)

¢ Visualisation of data mining results on small screens of mobile devices:
visualisation of traditional data mining results on a desktop is still are-
search issue. Visualisation in small screens of a PDA for exampleis a
real challenge. Imagine a businessman and data is being streamed and
analysed on his PDA. Such results should be efficiently visualised in a
way that enables him to take a quick decision. This issue has been ad-
dressed in (Kargupta et al., 2002). (Appendix A and B)

The above issues represent the grand challenges to the data mining com-
munity in this essential field. Thereis a rea need inspired by the potential
applicationsin astronomy and scientific laboratories as well as business appli-
cations to address the above research problems.

24 SUMMARY

The dissemination of the data stream phenomenon has necessitated the devel-
opment of stream mining algorithms. The area has attracted the attention of
the data mining community. The proposed techniques havetheir rootsin statis-
tics and theoretical computer science. Data-based and task-based techniques
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are the two categories of data stream mining algorithms. Based on these two
categories, anumber of clustering, classification, frequency counting and time
series analysis have been developed. Systems have been implemented to use
these techniquesin real applications. Mining data streamsis still in itsinfancy.
They are discussed in this thesis along with open issues in data stream mining.



MODELING TECHNIQUES FOR COMPUTATIONAL
INTELLIGENCE

This chapter gives an overview of different categories of computational intel-
ligence models with their modelling methods in batch mode and online mode.
Several research questions are formulated at the end of the chapter.

“Complex problems usually require a more complex intelligent system for
their solution, consisting of several models. Some of these models can be
evolving models.” Kasabov (2007b)

Kasabov (2007c) put predictive models into three different categories.

1. A Global Model isasingle model that learns from the entire dataset. The
developed model is then applied on future data.

2. A Local Model is afixed mixture of models trained on the entire dataset.
However, whenitisapplied to future data, only one or a subset of relevant
models will contribute to the prediction.

3. A Personalised Model is an individualised model that is created dynami-
cally for each prediction, using only relevant input vectors through trans-
ductive reasoning.

A graphical representation of an integrated multimodel system is depicted
in Figure 3.1 For every single input vector, the outputs of the tree models are
weighted. The weights can be adjusted and optimised for every new input
vector in a similar way to the parameters of a personalised model (Kasabov,
2007a).

(global) )(local)

yi = wi g¥i(;) + w; 1y (7 + w py; (;) Personalised) (3.1)
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Global
Model
New input Weighted
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Local Model

Personalised
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Database

Figure 3.1: A graphical representation of an integrated global, local, and personalised
multimodel system. For every single input vector, the outputs of the tree
models are weighted (Kasabov, 2007a)

The chapter is organised as follows. Section 3.1 presents the global model.
Local and personalised models are reviewed in sections 3.2 and 3.3 respec-
tively. Section 3.4 describes the differences between batch mode and on-line
mode learning. Sections 3.5 and section 3.6 reviews batch and on-line mode
methods. Finally section 3.7 summarises this review chapter and gives open
questions.

3.1 GLOBAL MODEL

The global model is a single, fixed, reusable model, trained with the entire
dataset and can be applied to future data.

Most of today’s predictive models are global (inductive) models, where the
model learns from the training data and then is applied to future data. Lin-
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ear Regression (Hastie, Tibshirani, & Friendman, 2001), Multi-layer Percep-

tron (MLP) (“Multilayer feedforward networks are universal approximators’,

1989; S. Yang, Ho, & Lee, 2006), Support Vector Machine (SVM) (Vapnik,

1998), Adaptive-Network-Based Fuzzy Inference System (ANFIS) (Jang, 1993;
Jang & Sun, 1995; Jang, Sun, & Mizutani, 1997) and Echo State Network

(ESN) are examples of global models. MLP and SVM machine learning algo-

rithms were proposed many years ago and are still the two most widely used

neural network models.

There are two limitations with this type of model:

First, if a new pattern emerges in the future, the existing model will not be
able to handle it as the model has not been trained to recognise this pattern
and a new model may need to be developed. This can be time consuming
depending on the model and the complexity of the problem.

Second, asthe model is developed based on all available datawith the objec-
tive of minimising overall prediction error, it will be biased toward the majority
of the data. A pattern without enough support will have little influence on the
model.

Thisissimilar to theissue with interpol ation versus extrapolation. If the new
pattern is similar to some existing pattern, then it is considered interpolation,
wherethereisenough support of the prediction madefor this pattern. However,
if the new pattern is very different from any of the existing patterns, theniit is
considered extrapolation, where the prediction made for thisnew patternisless
meaningful and subject to greater uncertainty.

Recent research in the field of machine learning has focused on model en-
sembles that use a mixture of models to achieve better overall accuracy. Sev-
era studies have reported that an ensemble of models works better than a
global model (Cevikap & Polikar, 2008; Islam, Yao, Shahriar Nirjon, Islam,
& Murase, 2008; H. C. Kim, Pang, Je, Kim, & Bang, 2002; Nguyen, Abbass,
& McKay, 2008; Pang & Kasabov, 2004; Yao & Liu, 1998, 1996; Zhou &
Jiang, 2003).

There are many strategies that are commonly used to create an ensemble:
bagging (H. C. Kim et a., 2002), boosting (Islam et al., 2008) and clustering
(Kasabov & Song, 2002) arewell known strategies. Depending on the strategy
used, the ensembles generaly try to either generate different views of one
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problem or break down the problem into smaller problems and tackle each
problem independently. Sometimes both approaches are used.

3.2 LOCAL MODEL

The loca model (Fontenla-Romero, Alonso-Betanzos, Castillo, Principe, &
Guijarro-Berdias, 2002; Kasabov, 2001; Kasabov & Song, 2002; Lucks & Oki,
1999; Song & Kasabov, 2005; Yamada, Yamashita, Ishii, & Iwata, 2006) is a
type of model ensemble that breaks down the problem into many smaller sub-
problems, based on their position in the problem space. The sub-problems can
be defined through a clustering process such as k-means, fuzzy c-means and
hierarchical clustering that group similar input vectors based on their similarity
(distance measure).

This type of model assumes that each cluster is a unique problem subspace
and a sub-model should be developed for it. The quality of the cluster is,
therefore, the foundation of this type of model.

The data clustering parameters often need to be adjusted, according to the
sub-model’s requirements or the characteristic of the problem. Many models,
such as linear regression, need the number of input vectors to be significantly
greater than the number of variables and, therefore, the clusters must be large
enough to support this type of sub-model. Hence, local models may require
more training data than the global model to ensure that each sub-model is
trained with a sufficient amount of input vectors.

In addition, the clustering processis strongly affected by the amount of noise
in the data of irrelevant or redundant features, asit affects the distance measure
used by most clustering methods.

3.3 PERSONALISED MODEL

Transductive reasoning (Vapnik, 1998; Kasabov & Pang, 2003; Kasabov, 2007b)
was originally proposed by Vapnik in 1998 for the development of an individ-
ualised model through transductive reasoning for a given input vector without
first developing a generalised model in the intermediate stage.



o4 BATCH VS ON-LINE MODE LEARNING <l

This approach has been widely used to solve various red life problems like
text classification (“Learning with progressive transductive support vector ma-
chine”, 2003; Joachims, 1999), speech recognition (Joachims, 2003), image
recognition (Li & Chua, 2003) and language translation (Ueffing, 2007).

The main difference here is that transductive reasoning focuses on finding a
solution for each prediction instead of creating a generalised solution for the
problem and then uses it for each prediction.

The model is created dynamically for each prediction, which utilises all
avail able dataand uses the most suitable parameters, features or model to make
the prediction.

3.4 BATCH VS ON-LINE MODE LEARNING

The on-line and batch modes are slightly different, although both will perform
well for parabolic performance surfaces. One major differenceisthat the batch
algorithm keeps the system weights constant while computing the error asso-
ciated with each sample in the input. Since the on-line version is constantly
updating its weights, its error calculation (and thus gradient estimation) uses
different weights for each input sample. This means that the two algorithms
visit different sets of points during adaptation. However, they both convergeto
the same minimum.

An online model can be: global (e.g. Incremental Support Vector Ma-
chine (SVM), Incremental Principal Component Analysis (PCA), Incremen-
tal Linear Discriminant Analysis (LDA)), local (e.g. Evolving Takagi-Sugeno
(eTSt), Evolving Fuzzy Neural Networks (EFUNN), Dynamic Evolving Neural-
Fuzzy Inference System (DENFIS)) or personalised (e.g. Weighted Nearest
Neighbor (WkNN and wwKNN)).

A batch model can be global (e.g. SVM) or local but no adoption(e.g. SVM
tree).
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3.5 BATCH MODE METHODS

3.5.1 Support Veector Machines

Support vector machines (Vapnik, 1998) are a set of related supervised learn-
ing methods that are used for classification. In Support Vector machine, each
instancein thetraining set contains one “target value” (classlabels) and severa
“attributes’ (features). The goa of SVM is to produce a model that predicts
instances in the testing set given only their features.
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Figure 3.2: An example of the linear separating hyperplanesin SVM. Note: the sup-
port vectors are encircled

SVM works on the principle that it tries to form the hyperplane between
the data points given it separates these data points into two sets in higher di-
mension space by mapping these data points into the higher dimension using
the feature vectors that are obtained using the attributes of the data. One set
contains positive class labels and the other set contains negative class labels.

Thetraining dataisgivenas X = {z;,y;},i=1,...,n,y; € {—1,1},2; € R™,
where z; isan m-dimensional data vector, y; isthe corresponding class label.

In mapping the point from one dimension to a higher dimension in linear
SVM, adot product is used between them but there exist non-linear kernels
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that use other functions to achieve this task. Thisis needed because at times
the distribution of the data is such that we cannot find a linear separating hy-
perplane even in higher dimensions. The kernel functionsthat we explored are
asfollows:

1. Polynomia : (z.z + 1)
2. Radia : exp(—|jz —2'||2);
3. Sigmoid Kernel : tanh(kz.z + c).

Assume there exist some hyperplanes that separate positive (label *+1’) and
negative (label ‘-1') samples. The data points z; falling on such a hyperplane
should satisfy the following equation:

w-z;+b=0 (3.2

where w is a normal vector perpendicular to the hyperplane, a parameter b
specifies the perpendicular offset from the hyperplane to the origin, and ||w|| is
an Euclidean normal vector of w.

The shortest distances from the separating hyperplane to the closest positive
and negative data points are denoted by d, and d_, respectively. Let 4, and
d_ be the “margin” of a separating hyperplane. Then, the given problem is
simplified by using a SVM algorithm to find the separating hyperplane with
the largest margin. If the training data are linearly separable, all the training
data samples should satisfy the following constraints:

i w+b>+1,Vy; = +1 (3.3)

ri-w+b< —1,Vy; = —1 (3.4

They can be further combined and written as:
yi(z;-w+b)—1>0,Vie {1,2,--- ,n} (3.5)

The data points satisfying the equality in Eq.3.3 will fall on the hyperplane
H1:x;-w+ b= +1, with vector w and perpendicular distance from the origin
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|1 —b|/||w]|. Inthe same way, the data points satisfying the equality in Eq.3.4
will fall onthe hyperplane H2 : z;-w+b = —1, with vector w and perpendicul ar
distance from the origin | — 1 — b|/||w||. The margin can be calculated by
2/||lw||, asdy = d— = 1/||w]||. Thus two parallel hyperplanes H1 and H2 are
constructed, and there are no data points lying between them. Consequently,
the pair of hyperplanes giving the maximum margin through minimising ||w||?
will be found and subjected to Eq.3.5. Finally, an optimal separation can be
achieved by the hyperplane that has the greatest distance to the neighbouring
data points of both classes, asisillustrated in Figure 3.2. The data points are
referred as support vectorsif they satisfy the equality in Eq.3.3 or 3.4 and their
removal would change the solution to the discovered hyperplane. In Figure
3.2, support vectors are indicated by extra circles. Generadly, the larger the
margin, the lower the generalisation error of the classifier (Burges, 1998a).

For non-linear classification problems, a kernel function is introduced into
SVM to find the maximum-margin hyperplane (Boser, Guyon, & Vapnik, 1992).
The SVM based classifiers can be mathematically formulated by:

n

y(x) = sign [Z a;y;®(z, ;) + b

1=1

(3.6)

where q; is a positive real constant and b is a real constant, ® is a mapping
function used for SVM kernel function construction (Suykens & Vandewalle,
1999),which typically has the choices from linear, polynomia and radial ba-
sis function (RBF) function. The solution to a nonlinear optimisation prob-
lem with inequality constraints is given by the saddle point of the Lagrangian,
which is computed by:

max min £(w, b, &; a;, v;) (3.7

@i, Vi w,b,&;

where £ is the Lagrangian constructed by:

n

L(w,b, & ai,vi) = J(w, &) = > aifyilw o)+ - 1+&} = _vi& (3.8)

=1 i=1
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wherea; > 0,0; > 0(i =1,--- ,n) are Lagrange multipliers, J istherisk bound
minimised by:

rﬁig?ﬁ(w, &i) = %wTw + C; &i (3.9)
where the parameter ¢; isintroduced by:

Although SVM has been extensively used for solving real world problems
in different research areas, there are some issues that we have to consider if
we would like to have a successful implementation. One main limitation of
SVM methods lies in the choice of kernel for solving real world problems,
which remains an open research question in computer science and engineering.
Another concern of SVM implementation for real world problems is speed
and size, especially during training stage. This issue might make the learning
processfor avery large dataset (alarge number of support vectors) particularly
difficult (Burges, 1998a). Additionally, SVM is difficult to adapt to new data
and the knowledge discovered by it is very limited (Kasabov, 2007c).

3.5.2 SVMtree

The SVM treeis constructed by a divide-and-conquer approach using a binary
class-specific clustering and SVM classification technique; see, for example,
Figure 3.3 (Pang & Kasabov, 2004; Pang, Havukkala, & Kasabov, 2006).

Basically, we perform two procedures at each nodein the above tree genera-
tion. First, the class-specific clustering performs arough classification because
it splits the data into two disjoint subsets based on the global features. Next,
the SVM classifier performsa‘fine’ classification based on training supported
by the previous separation result.

Figure 3.3 is an example of the SVM tree which is derived from the above
SVM tree construction. As mentioned, the SVM test starts at the root node 1.
If thetest T1(x) = +1 isobserved, thetest 72(z) is performed. If the condition
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Figure 3.3: A SVM tree, where each node isa SVM (Pang & Kasabov, 2004)

T1(z) = +1 and T2(z) = —1 is observed, then the input data x are assigned to
class a, and so forth.

SV M trees can evolve new nodes, new local SVM to accommodate new data
from an input data stream. An example of an evolving SVM tree for CNS tu-
mor is shown in Figure 3.4 (Pang et al., 2006). Most of class 1 patients were
classified into one node of 26 patients. Class 2 patients were classified into
two main nodes with 16 and 8 individuals, suggesting a potential difference
in these two subsets of patients. The rest of individuals were classified into
nodes of only afew patients each, so the question arises, whether these are es-
pecially hard to classify patients, misclassifications or maybe represent some
other types of cancer. This exemplifies the potentially valuable additional in-
formation that the 2-SVMT can provide, compared to other algorithms.

Other cancer datasets produced similar trees, some simpler, some more com-
plex. It appears some cancers are inherently more difficult to classify than
others, and thisisreflected in the complexity of the classification trees.

oL
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Figure 3.4: An example of two-class support vector machine decision tree (2-SVMT)
for CNS tumor. Ellipses: Partitioning and SVM decision nodes, number-
ing indicates the sequence of decisions. Open circles. samples (patients)
assigned to class 1, filled circles: class 2, corresponding to Table 1. Num-
bers inside circles indicates the number of patients in the end of each de-
cision path. (Pang et al., 2006)

e

3.6 ON-LINE MODE METHODS
3.6.1 Incremental Support Veector Machine

Katagiri and Abe (2006a, 2006b) proposed an incremental training method
which based on the assumption that candidates for support vectors exist near
the separating hyperplane and are close to the surface of aregion that includes
training data of each class.

The incremental SVM method generates the minimum-volume hypersphere
in the feature space that includes the training data of class j(; = 1,2) with
radius R;. Next, it defines a concentric hypersphere with radius pR;, where
p(0 < p < 1) isthe user-defined parameter. Next, it defines the hypercone
whose vertex is at the centre of the hyperspheres and which opens in the

o0
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opposite direction of the separating hyperplane. The user-defined parameter
6(—90 < 6 < 90) defines the angle between the separating hyperplane and the
surface of the hypercone.

0 X1

Figure 3.5: Deletion of the data using the hyperspheres (Katagiri & Abe, 2006a).

If the added data are in the shaded regionsin Figure 3.5, they will be deleted.
Figure 3.6 shows the progress of deleting such new data. If the distance r;(x)
between ¢(x) and the center of the hypersphere, a;, is smaller than pR;, where
¢(x) isthe mapping function to the feature space:

rj(z) < pR; (3.11)

the datais deleted. Otherwise, if the angle between ¢(z) —a; and the separating
hyperplane, v;(z), islarger than ¢:

Yj(z) >0 (3.12)

then ¢(z) existsinside of the hypercone and = is deleted.
But even if equation 3.11 or 3.11 is satisfied, if = satisfies

y(@)D(z) < 1, (3.13)
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Figure 3.6: Judging whether the data are inside of the hypercone or not (Katagiri &
Abe, 2006a).

z is acandidate for support vectors, where D(z) = w?'¢(z) + b is the decision
function. In such a case, = will not be deleted. In addition, the data will be
saved that are support vectors for hyperspheres because the support vectors
for hyperspheres are candidates for the support vectors for hyperspheres at the
next training step.

The general procedure for incremental training is as follows:

1. Train the support vector machine using theinitial data set X,.
2. Add the additional data set X, to X, : X, = X, U X,.

3. If for z € X, equation 3.13 is not satisfied and x satisfies r;(z) < pR;,
where j is the class label for = or ¢j(z) > 6, delete z from Xa : Xa =
Xa — {z}.

4. If for z € X, equation 3.13 is satisfied, retrain the support vector ma-
chine.

5. Repeat (2), (3), and (4).

3.6.2 Incremental Principal Component Analysis

Ozawa, Pang, and Kasabov (2010) proposed a new scheme of incremental
learning in which feature extraction and classifier learning are simultaneously
carried out online. Incremental Principal Component Analysis (IPCA) (Hall,
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Marshall, & Martin, 1998) is adopted as the feature extraction method, and k-
nearest neighbour classifier with evolving clustering Method (ECM) (Kasabov
& Song, 2002). The capability of this on-line learning system was verified as
the classification accuracy was improved constantly even with a small set of
training samples.

Assume that N training samples »* € R*(i = 1,...,N) are initialy pro-
vided to a system and eigenspace model Q) = (z, Uy, i, N) IS obtained by
applying Principa Component Analysis (PCA) to the training samples. In
the eigenspace model 2, z is a mean vector of »' ¢ R"(i = 1,...,N), Uy
IS an n x k matrix whose column vectors correspond to eigenvectors, and
O = diag{\1, ..., \p} iIS@k x k matrix whose diagonal elements are non-zero
eigenvalues. Here, k isthe number of eigen-axes spanning the eigenspace and
the value of & is determined based on a certain criterion. After calculating €,
the system holds the information on © and all the training samples are thrown
away.

Now assume that the (V + 1) training sample 2V 1 = yy € R™ isgiven. The
addition of this new sample results in changes in the mean vector and the co-
variance matrix; therefore, the eigenspace moddl Q2 = (z, Uy, dx, N) should be
updated. Let us define the new eigenspace model by @' = (z',U},,0,.,, N + 1).
Note that the eigenspace dimensions might be increased from & to k + 1; thus,
K in QY isether k or k + 1. Intuitively, if y includes aimost al energy in the
current eigenspace spanned by the eigenvector U, there is no need to increase
its dimensions. However, if y includes a certain energy in the complementary
eigenspace, the dimensional augmentation is inevitable; otherwise, crucia in-
formation on the new sample y might be lost. Regardiess of the necessity in
el genspace augmentation, the eigen axes should be rotated to adapt to variation
in the data distribution.

To build a classifier under a dynamic enviroment, Ozawa et a. (2010) pro-
pose a nearnest-neighbor classifier whose prototypes are evolved by the ECM
(Kasabov & Song, 2002)
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3.6.3 Incremental Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) finds the linear projections of data that
best separate two or more classes under the assumption that the classes have
equal covariance Gaussian structure (Fukunaga, 1990). LDA is an effective
and widely employed technique for dimension reduction and feature extrac-
tion. It isoften beneficial tolearn the LDA basisfrom largetraining sets, which
may not be availableinitially. This motivates techniques for incrementally up-
dating the discriminant components when more data becomes available.

As noted by Fukunaga (1990), there are equivalent variants of Fisher’s crite-
rion to find the projection matrix U to maximise class separability of the data
Set:

e UtSgU o UTSU o UTSpU (3.14)
argUUTSWU = argUUTSWU = argUUTSTU7 .
where
C
Sp = Zni(mi — p)(m; — )T (3.15)
=1
IS the between-class scatter matrix,
C
Sw = Z Z (& —mq)(z —mi)" (3.16)
i=1 zeC;
is the within-class scatter matrix,
Sp=> (x—p)@—p" =Sp+Sw (3.17)

VY

isthe total scatter matrix; C the total number of classes; »; the sample number
of classi; m; isthe mean of classi, and 1. isthe global mean.

T. K. Kim, Wong, Stenger, Kittler, and Cipolla (2007) use the third criterion
in equation 3.14 and separately update the principal components as the mini-
mal sufficient spanning sets of Si and Sy . The scatter matrix approximation
with a small number of principal components (corresponding to significant
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eigenvalues) allows an efficient update of the discriminant components. The
St matrix rather than Sy, is used to avoid losing discriminatory data during
the update. If we only kept track of the significant principal components of
Sp and Sy, any discriminatory information contained in the null space of SW
would be lost (note that any component in the null space maximises the LDA
criterion). However, as Sy = Sg + Sy and both Si and Sy, are positive semi-
definite, vectors in the null space of S are also in the null space of S, and
are thus being ignored in the update. The two steps of the algorithm are: (1)
Update the total scatter matrix S, (2) Update the between-class scatter matrix
Sp.
Given two sets of data represented by eigenspace models

{mis My, Piy Ai}iz12 (3.18)

where 1; isthe mean, M; the number of samples, P; the matrix of eigenvectors
and A; the eigenvalue matrix of the i-th data set, the combined eigenspace
model {3, M3, P3, As} is computed.
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Figure 3.7: Concept of sufficient spanning sets of the total scatter matrix (a), the
between-class scatter matrix (b) and the projected matrix (c). The union
set of the principal components P, P, or ()1, ) of the two data sets
and the mean difference vector 1y — po can span the respective total or
between-class scatter data space (a and b). The dimension for the compo-
nent my; —ms,; should not be removed (cross=incorrect) from the sufficient
set of the between-class scatter data but retained in the set (circle=correct)
(b). The projection and orthogonalisation of the original components ()31,
(Y32 yields the principal components of the projected data up to rotation
(c). Seethe corresponding sections for detailed explanations
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As visualised in Figure 3.7a, the union of the two principal components
and the mean difference vector can span all data points of the combined set
in the three dimensional space. The principal components of the combined
set are found by rotating this sufficient spanning set. Note that this use of
the sufficient spanning set is only possible in the case of merging generative
models where the scatter matrix of the union set is represented as the sum of
the scatter matrices of the two sets explicitly as

St = St + Sra+ MiMay/Ms - (u1 — p2) (s — p2)”, (3.19)

where {S7;}; = 1,2 arethe scatter matrices of the first two sets. The method
can therefore not be used to directly merge the discriminant components of
L DA models.

The between-class scatter matrix Sp; can be written as

Ci
Spi = Z] 1 i (mig — i) (mag — i) (3.20)
= Z] 1 nzjme] T - MZ/’LZ/’LZ

The combined between-class scatter matrix can further be written as the
original between-class scatter matrices and an auxiliary matrix A as

Spas=Sp1+ Spa+ A+ M Msy/M;- (11 — p2)(p1 — p2)", (3.21)
where
A Z _nlkn2k mgk — mlk)(mgk — mlk)T. (322)
v + nag

Theset s = {k|k = 1,2,...,c} contains the indices of the common classes of
both data sets.

The incremental LDA allows highly efficient learning to adapt to new data
sets. A solution closely agreeing with the batch LDA result can be obtained
with far lower complexity in both time and space. Theincremental LDA ago-
rithm can also be incorporated into a classic semi-supervised learning frame-
work and applied to many other problems in which LDA-like discriminant
components are required.
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3.6.4 Evolving Takagi-Sugeno model

Angelov and Buswell (2003) proposed the evolving Takagi-Sugeno (eTS) fuzzy
system; after that, Angelov (2010) presented an enhanced version of eTS al-
gorithm which is called eTS+. This agorithm has been tested on time-series
prediction and a data stream from areal engine.

Evolving Takagi-Sugeno (TS) fuzzy systems (Angelov, 2004) can be of
multi-input-multi-output (MIMO) type. As seen from Figure 3.8, €TSt+ is
represented as a six-layer neuro-fuzzy system. The first am of data space
partitioning can be achieved by forming clusters around focal points that have
high density.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Inputs Fuzzy Sets  Aggregation Normalization Consequents  Outputs

!

Figure 3.8: eTS+ as aneural network (Angelov, 2010)

The aim of the eTS+ clustering method differs from typical clustering ap-
proaches as the clusters associated with antecedent parts of fuzzy systems
significant overloap. In this case, (Angelov, 2010) adopted centre of gravity
(CoG) aggregation (Yager & Filev, 1994) which weighs the average outputs of
individual fuzzy rules to produce the overall output. By doing this, the fuzzy
system is able to cope with uncertainties and has a cooperative nature.

4l



2.0 ON-LINE MODE METHODS

Once clusters are generated, eTS+ can monitor the quality of the clusters
online. Five quality elements are estimated in total: support, age, utility, zone
of influence and local density.

Once the structure of eT S+ is defined and established, (Angelov, 2004) pro-
posed weighted least square method (fwRLS) for local or global optimisation.
The test results show that local optimum, usually provides a lower error rate
than globally optimum.

3.6.5 Evolving Fuzzy Neural Networks (EFUNN)

Evolving Fuzzy Neural Networks (EFUNN) (Kasabov, 2002) isaconnectionist
model with neuro-fuzzy inference systems for implementing ECOS. EFUNNSs
are fuzzy neural network structures that evolve based on Evolving Connec-
tionist Systems (ECOS) principles. Fuzzy neura networks are connectionist
structures that can be interpreted by a set of fuzzy rules and a fuzzy infer-
ence system (Jang, 1993). EFUNN has afive-layer structure in which all nodes
represent membership functions (MF) and can be modified during learning.
Figure 3.9 illustrates an example of an EFUNN with a short term memory and
feedback connections.

The input layer is the first layer that contains input variables. The second
layer isafuzzy input layer where each input variable is represented by agroup
of neurons. These neurons denote the fuzzy quantisation of the input variable,
e.g. three neurons can be used to represent “best”, “good” and “bad” fuzzy
values of a variable. Different MFs can be attached to the neurons, such as
triangular or Gaussian MF. This layer aims to assign the input variables into
membership degrees to which they belong to the corresponding MF. Within
this layer, new neurons are created, when the corresponding variable value
of a given input vector does not belong to any of the existing MFs. An op-
tional short-term memory layer can be introduced through feedback connec-
tions from the rule node layer.

The rule (case) layer is the third layer in EFUNN which contains rule nodes
that evolve through supervised or unsupervised learning. The rule nodes rep-
resent prototypes of the associations between input and output data. Each rule



2.0 ON-LINE MODE METHODS

Outputs
Output layer

m Fuzzy outputs

Rule (case) layer

/ P
/ §
;s SN
/ EN
RQQ-Q00-) o
v \ l/
i

Input layer

Inputs x4, X2, ...
Xn

Figure 3.9: An example of an EFUNN with a short term memory and feedback con-
nections, adapted from Kasabov (2001)

node r is defined by two vectors of connection weights: w;(r) and wa(r). The
former is adjusted by an unsupervised learning model based on the similarity
measurement within a local problem space, while the latter is adjusted by a
supervised learning model based on the estimation of output error. The neu-
ronsin the fourth layer represent the fuzzy quantisation of the output variables.
Finally, the fifth layer gives the value of the output variables.

3.6.6 Dynamic Evolving Neural-Fuzzy Inference System

A Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) (Kasabov &
Song, 2002) is a fuzzy inference system that is capable of on-line and of-
fline learning through on-line clustering. This paper had over 380 citations on
Google Scholar at the time of writing.

DENFIS starts by clustering the data and creates a fuzzy inference system
that is based on the clusters. A maximum distance-based clustering algorithm,
Evolving Clustering Method, isused to cluster theinput data. Oncethe clusters
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are derived, a Takagi-Sugeno fuzzy ruleis created for each cluster. These rules
are then optimised through the back-propagation method. For each predic-

tion, m most activated rules are dynamically chosen to derive the final output.
New rule sets can be inserted into or extracted from the model. The DENFIS
algorithm is described in Algorithm 1

Input: Input vectorsz; € X
Output: n clusters’ centers C., and corresponding radius R,,, where

i=1,2,....n

1: Createtheinitial cluster C; and set the position of thefirst training data as

acluster center C., with the cluster radius R,,,0.

2. while do
3 if Vo, € C = {C1,Cs,...,C,} then
4 Terminates the algorithm.
5 dse
6 Calculate the distance between the current training input vector z;
and the cluster center C..,. D;j = ||z; — C,|| ,j =1,2,...,n.
7. endif
8 if 3|z — C.,. || < Ry, then
o: x; iIsassumed to belong to cluster C,,, and no new cluster is created
and no existing cluster is updated.
10: Go back to step 3.
1. endif
12:  Find acluster C, from all existing cluster centerswith S;; = D;; + Ry,
j=1,2,...,n,and select the cluster center C,., with the smallest
Sia = Dia + Rua = min{Sij},j =1,2,....n.
13:  if S;, > 2 x Dthr then
14: x; does not belong to any of the existing clusters and a new cluster is
created as described in first Step.
15: Go back to step 3.
16:  endif
17 if S, <2 x Dthr then
18: The cluster C,, is updated by moving C.., and enlarging the cluster
radius R, = S;,/2 and the new cluster center C., is set asfollows:
Coger = 17 — ((Ce, — a7) x 282
19: endif
20: end while

Algorithm 1: Evolving Clustering Method (ECM): afast one-passagorithm
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Dthr is the distance threshold of the cluster, which defines the maximum
radius of the cluster. S;, defines inverse the level how much the xi belongs
to cluster centers C,. The smaller the S;,, the more z; belongs to cluster C,,.
Note that =; can belong to multiple clusters as there may be overlapping of the

cluster radius. Euclidean distanceis used as the distance measuring method in
ECM.

o *
Xy Xy
Ce
. R, =0
Cloi * X, -
/ ok R
‘e, /
c N
1 1 ., N,
R =0 G ~ . * X,
1
CC‘
(@ (b)
Xy I
cl C /C2
* —— ' x, e / 2 * * -
* R, p
C{”‘ 2 : e i x9 *
RO —0 , R“‘ C;1 / . B %
Uy C( 2 . * .
o . - .
o " ’ . o Rm
' *x Xs *
| * / * '
* X * : \ 3
CZ/'/ 6 C{
1

(© (d)

Figure 3.10: Example of ECM Clustering algorithm. x;: input vector (*), ij . cluster
center, C: cluster, R};. cluster radius (Kasabov & Song, 2002)

Figure 3.10 shows the ECM clustering process step by step.

(@) Theinitial cluster is created for the first input vector z; .



2.0 ON-LINE MODE METHODS

(b) zo: update cluster €Y — C}
z3: create anew cluster CY

z4: belongsto C1, no action required.

(c) x5: update cluster Ci — C?
z6: belongs C1, no action required
z7: update cluster C9 — C3

xzg: create anew cluster CY
(d) zo: update cluster C? — C3

ECM processes input vectors in a one-input-vector-at-a-time manner, and
therefore the order of the input vectors being processed affects the final output.
Thisis evident in the way the first cluster is created for the first input vector.
This design was necessary since ECM is an on-line clustering method where
datais made available one input vector at atime. However, this does not prove
to be a significant problem in practice as the cluster centre may be dightly
different based on the order of input vectors being process, when inspected
closely by visualising the input vectors in each cluster, the input vectors were
very similar, as ECM originally intended.

The consequence of the Takagi-Sugeno fuzzy rule is created and updated
by a (weighted) least-square estimator. The linear function is expressed as
follows:

y = Bo + Brr1 + Boxg + - - + By (3.23)
The coefficient 3 is obtained through the following formula

_ T
f = [b1 by ... by | (3.2

= (AT A)"1ATy
or for the weighted version of the LSE

b= (ATWA)tATwy (3.25)

40
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where
I 11 712 -+ 14
Ao I o1 x99 -++ Ty
L xpr a2 o0 g
and
y=[ny ..yl (3.26)

Assume 1V isadiagonal matrix:

w1 0 0
0 e 0

w=| . P (327)
0 Wy

eguation 3.24 and 3.25 can be rewritten as

P = (ATA)~!
Weighted — LSE = ( ) (3.28)
b =PATy
P, = (ATwA)~!
LSE = ( ) (3.29)
by = P,ATWy

In the DENFIS on-line mode, the weighted recursive LSE is used with the
following equation:

bet1 = b + Wei1 Prr1ah41 (W1 — af1be)
WRLSE =4 et (3.30)
k+1 - X( k — )\+0/£+1Pkak+1 )

The forgetting factor ) is set between 0.8 and 1. The DENFIS on-line model
learning procedure is explained below:

40
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1. Perform ECM clustering on the initial set of datanO to obtain M clusters
2. For every cluster C;, find p; datapointsareclosestto C;,i = 1,2,..., M;

3. Create a fuzzy rule for each cluster. The antecedent of the fuzzy rule
is the cluster center. The consequent function is created using equation
3.28 or 3.29. The distance between p; and the cluster center is used to
create the weight matrix.

4. Thesizeof p; isamodel training parameter. It defines the number of data
points used to derive the consequent function of the fuzzy rules.

As new input vector enters the system, new fuzzy rules may be created and
some rules updated. A new fuzzy rule is created if a new cluster isfound in
ECM. If no new clusters are created, one or more fuzzy rules are updated by
using equation 3.30.

For each input vector, the DENFIS on-line model dynamically creates a
Takagi-Sugeno fuzzy inference system using m activated rules. m is a model
training parameter that should be adjusted based on the characteristic of the
problem. The rules are chosen based on the position of the input vector. Since
the rules are updated constantly, two input vectors with the same values at dif-
ferent time points may have different inferences as the fuzzy rule may have
been updated before the second input vector entered the system.

3.6.7 Weighted Nearest Neighbor: WKNN & WWKNN

In aweighted distance KNN algorithm (WKNN) , the output y; is calculated
not only based on the output values (e.g. class |abel) y;, but is also dependent
on the weight w; measured by the distance between the nearest neighbours and
the new data sample z;:

K;
2w Yy
yi = (3.31)

K;
> wj
Jj=1

where:
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y; isthe predicted output for the new vector z;;

y; isthe class |abel of each sample in the neighborhood of z;.

K; isthe number of K nearest samplesto z;;

w; is the is the weight value calculated based on the distance from the
new input vector z; to its K nearest neighbours.

The weight w; can be calculated as follows:

max(d) — (dj — min(d))

Y= max(d) o J=Le K (332
where:
- . min(d) )
e thevalue of weights w; ranges from max(d) to 1,

o d = [d1,ds, - ,dk] denotes the distance vector between the new input
data d; and its K nearest neighbouring samples,

e max(d) and min(d) are the maximum and minimum values for vector d.

The distance vector d is computed as.

d; = J Z(%‘,l —a)?, j=1,--- K (3.33)

=1

wherem isthe number of variables (features) representing the new input vector
x; within the problem space; z;; and z;; are the /** variable values correspond-
ing to the data vector z; and x;, respectively.

The output from a WKNN classifier for the new input vector z; is a “per-
sonalised probability” that indicates the probability of vector z; belonging to a
given class. For atwo-class classification problem, aWKNN classifier requires
athreshold 6 to determine the class |abel of z;, i.e., if the output (personalised
probability) isless than the threshold 6, then z; is classified into the group with
“small” classlabel, otherwise into the group with “big” class label.

Weighted distance and weighted variables K-nearest neighbors (WWKNN)
Is a personalised modeling algorithm introduced by Kasabov (2007c). The
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main idea behind WWKNN algorithm is: the K nearest neighbor vectors are
weighted based on their distance to the new data vector z;, and also the contri-
bution of each variable isweighted according to their importance within thelo-
cal areawhere the new vector belongs (Kasabov, 2007¢). In WWKNN, the as-
sumption is made that the different variables have different importanceto clas-
sifying samples into different classes when the variables are ranked in terms
of their discriminative power of class samples over the whole m-dimensional
space. Therefore, it will be more likely that the variables have different rank-
ing scores if the discriminative power of the same variables is measured for
a sub-space (localised space) of the entire problem space. The calculation of
Euclidean distance d; between anew vector z; and aneighbor z; is mathemat-
ically formulated by:

K
dj = J D el -z j=1- K (3.34)
=1

where: ¢;; is the coefficient weighting z; in relation with its neighborhood
of z;, and K is the number of the nearest neighbors. The coefficient ¢;; can
be calculated by a SNR function that ranks variables across all vectors in the
neighbourhood set D, (x;):

ciyp ={ci, 2, ..., CiK}

—classli—;la552| 5 (3.35)

where z¢asst i = {1,2} and ofle*st i = {1,2} are the mean value and stan-
dard deviation of the (** feature belonging to class i across the neighborhood
Dy () Of 5, respectively.

Comparing to a conventional KNN algorithm, the contribution of WWKNN
lies in the new distance measurement: all variables are weighted according to
their importance as discriminating factors in the neighborhood area (person-
alised sub-space), which might provide more precise information for classifi-
cation or prediction of the new data vector.
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3.7 SUMMARY AND OPEN QUESTIONS

This chapter reviews methods and techniquesthat are used or are highly related
totheresearch inthisPhD study. Each of thework carried out in thisPhD study
are elither improvements made on previous studies reviewed in this chapter or
integrate existing methods in a new way to achieve better results.

As aresult of the reviews presented in chapter 2 and 3, several research
questions related to stream data mining can be formulated as follows:

1. Can we (successfully or accurately) train/test large amount of data at
real-time? (Chapter 4, page 51)

2. Can we extract more knowledge from hierarchically labelled data that is
often seen in stream datasets? (Chapter 5, page 67)

3. Can thelocal knowledge discovered from stream data help us in achiev-
ing better results? (Chapter 6, page 80)

4. How can we produce more accurate on string classification? (Chapter 7,
page 95)

5. How to monitor the process of dynamic stream datalearning? (Appendix
A and B, page 143-154)

These question will be answered in the rest of the thesis.
In the next chapter, a novel method is proposed for on-line kernel based
stream data learning which related to research question 1.



ON-LINE CORE VECTOR MACHINES - A NOVEL
ONE-PASS, FAST KERNEL BASED LEARNING
METHOD

This chapter presents a one-pass, fast kernel based |earning method called On-
line Core Vector Machine (OCVM). It is based on the minimum enclosing ball
(MEB) of streaming data. We show that the MEB updates for the streaming
case can be easily adapted to learn the CVM weight vector in away similar to
using on-line stochastic gradient updates.

Therest of chapter is structured as follows: Section 4.1 discusses the reason
for using kernel methods for stream data mining. Section 4.2 reviews the batch
mode MEB and CVM; Section 4.3 presents the novel OCVM method based
on CVM. The evaluation of OCVM on 12 benchmark datasets is presented in
Section 4.4. Section 4.5 gives the conclusion.

4.1 WHY USE ON-LINE KERNEL METHODS FOR STREAM DATA
MINING (E.G. NETWORK INTRUSION DETECTION)?
- ANSWER FOR QUESTION 1

The existing machine learning methods for Network Intrusion Detection (NID)
fall into two categories. unsupervised learning and supervised learning. Un-
supervised learning methods, such as clustering, are useful for NIDS, as mali-
cious activities could be clustered, and better distinguished from non-malicious
activities. Some successful stories have been reported in literature, Frank and
Mda-c (1994) demonstrated that clustering is an effective way to find hidden
patternsin datathat humans might otherwise miss; Eskin, Arnold, Prerau, Port-

51
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noy, and Stolfo (2002) detected network connection logs outliers which rep-
resent anomalies in the network traffic using fixed-width and k-nearest neigh-
bour; and Marin, Ragsdale, and Sirdu (2001) detected network intrusions by
learning vector quantization (LV Q) and locating the Bayes Optimal boundary
between classes.

Unlike unsupervised learning capturing threats through outliers detection,
supervised learning detects network intrusion by using classification meth-
ods, categorising network traffics into normal and abnormal groups. Diver-
sity of classification methods have been proposed for NID applications. Frank
and Mda-c (1994) used recurrent neural networks, and some other neural net-
works, such as Kohonen, Hoppfield for intrusion detection. Dickerson, Juslin,
Koukousoula, and Dickerson (2001) classified intrusions based on the combi-
nation of various statistical metrics and fuzzy logic rules. Apart from that, it is
worth noting that SVM, because of its promising classification performance,
is popularly used for NIDS. W.-H. Chen, Hsu, and Shen (2005) used a sin-
gle polynomial kernel SVM for classifying network intrusions, which outper-
formed artificial neural networks (ANNs) method on both computational time
and classification accuracy. Also, Mukkamala and Sung (2003) used multiple
SVM’s for identifying normal traffic against four types of malicious activity,
which demonstrated the super discriminability of SVM on intrusion detection.

In spite of the current success of SVM in NID applications, it istoo slow for
NIDS due to the high-speed computing requirement from the Internet. Thus,
we need on-line kernel based methods because on-line learning is concerned
with learning data as the system operates (usually in real time) and the data
might exist only for a short time (Kasabov & Song, 2002).

4,2 CORE VECTOR MACHINES

Standard SVM training has O(m?) time and O(m?) space complexities, where
m is the training set size. It is thus computationally infeasible on very large
data sets. By observing that practical SVM implementations only approximate
the optimal solution by an iterative strategy, Tsang, Kwok, and Cheung (2005)
scaled up kernel methods by exploiting such “approximateness’’. They found
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that many kernel methods can be equivalently formulated as MEB problems
in computational geometry. Then, by adopting an efficient approximate MEB
algorithm, Tsang obtained provably approximately optimal solutions with the
idea of core sets. The CVM algorithm can be used with non-linear kernels
and has a time complexity that is linear in m and a space complexity that is
independent of m.

4.2.1 Minimum Enclosing Ball

Given aset of points S = {z1,...,2,}, z; € R?, the minimum enclosing ball
of S isthe smallest ball that contains all the pointsin S (denoted by MEB(S)).
Welzl (1991) proposed (1 + ¢)-approximation MEB which can be efficiently
obtained based on those called Core Set. The core set is a subset of given
dataset that contains the instances located in the outer area.

Let Bg(c,r) be an exact MEB of the data set S with center ¢ and radius
r, and Bg(c,7) be another exact MEB with center ¢ and radius 7. Note that,
different from Bg, MEB B, is constructed on the Core Set of S : Q,Q C S.
Givenane > 0, aball Bg(c, (1 + €)7) isa(1 + ¢)-approximation of Bg(c,r), if
S D Bgc,(1+¢)r)andr <r.

Formally, subset Q isjudged asthe core set of S, if an expansion by afactor
(1 +¢) of its MEB contains S (i.e. S C Bg(c, (1 +¢)r). Fig. 4.1 gives an
example of exact MEB, Core set MEB, and Core set MEB expansion, where
the dotted-line circle identifies the exact MEB of the entire dataset Bg, and the
inner solid-line circle gives the exact MEB of Core set B, (denoted in square).
B does not cover the whole data points, but its (1 + ¢) expansion (the outside
circle) does.

4.2.2 Kernel MEB: Core \ector Machine

By adopting the above MEB agorithm to enhance a support vector machine
(SVM), Tsang developed the kernel MEB method called core vector machine.

Let o be the feature map using kernel «, and provides a set of ¢-mapped
points S, = {¢(z1), ..., ¢(zy)}, theMEB of S, issuchasmallest ball B(c*, r*)
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Figure 4.1: An example of exact MEB, Core set MEB, and Core set MEB expansion

Input: Set of points X € RY; parameter e = 27™; subset Qp € X
Output: A batch mode MEB learning model €
1. for i — 1tom do

2 Q<—Qi
3:  Compute MEB center ¢ — >0 a;o(z;) wherez; € Q
radiusr « —/d/diag(K) — o’ Ka
4 includeAll — true,p «— (1 +¢) xr
5. for j — 1to|X|do
6: if p <|lz; —c|| then
7. includeAll — false
& pe oo
9 q < xj
10: end if
11:  end for
12:  if includeAll == true then
13: Return Q — {c,r, Q}
14:  end if
15. Qi < Qi-1U{q}
16: end for

17: Return Q «— {c,r, Q}

Algorithm 2: Original MEB algorithm

that encloses all data points of S, and has the ball center ¢* and radius r*
determined by,

(c*,r*) = cw“gmincﬂ,?“2 e — cp(mZ)HQ < r2 Vi, (4.1
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By the corresponding Wolfe dual,
m m m
Matqy, Z%’k(%’,zi) - Z aiagk(xg, x), 00> 0,0 =1,...,m, Zai =1, (4.2
i=1 ij=1 i=1

wherea = [ay, ..., ayy] arethe Lagrange multipliers and Ky, = [k(i, z5)] 1S
the kernel matrix, the MEB centre ¢ and radius » can be found from the optimal
a as(Tsang et a., 2005)

c= Zaicp(xi),r = —/d/diag(K) — o/ Ka. (4.3
i=1

Inakernel MEB, acore set instance is called a core vector, and the constructed
supervised learning model constructed by core vectors, is called a core vector
machine.

4.2.3 Time and Space Complexities for CVM

Existing decomposition algorithms cannot guarantee the number of iterations
and consequently the overall time complexity (Chang & Lin, 2001). This sec-
tion shows how this can be obtained for CVM. In the following, we assume
that a plain Quadratic Programming (QP) implementation, which takes O (m3)
time and O(m2) space for m patterns, is used for the QP sub-problem. The
time and space complexities obtained below can be further improved if more
efficient QP solvers were used. Moreover, each kernel evaluation is assumed
to take constant time.

Consider first the case where probabilistic speedup is not used. As proved
in (Badoiu, Har-Peled, & Indyk, 2002), CVM convergesin 2/¢ iterations at the
most. In other words, the total number of iterations, and consequently the size
of the final core set, are - = O(1/e¢). In practice, it has often been observed
that the size of the core set is much smaller than this worst-case theoretical
upper bound (Kumar, Mitchell, & Yildirim, 2003). As only one core vector
Is added at each iteration, |S;| = ¢ + 2. Initialisation takes O(m) time while
distance computations take O((t + 2)2 + tm) = O(t* + tm) time. Finding the
MEB takes O((t + 2)3) = O(t3) time, and the other operations take constant
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time. Hence, the ¢/ iteration takes atotal of O(tm + %) time. The overall time
for = O(1/e) iterationsis

T=3"0(tm —*) = O(x*m + %) = 0(%5 + ). (4.4)
t=1
whichislinear inm for afixed e.

Next, we consider its space complexity. Asthe m training patterns may be
stored outside the core memory, the O(m) space required will beignored in the
following. Since only the core vectors are involved in the QP, the space com-
plexity for the ! iteration is O(|S;|?). AsT = O(1/¢), the space complexity
for the whole procedure is O(1/¢2), which is independent of m for afixed e.

On the other hand, when probabilistic speedup is used, initialization only
takes O(1) time while distance computations take O((t + 2)?) = O(t?) time.
Time for the other operations remains the same. Hence, the " iteration takes
O(t3) time. As probabilistic speed-up may not find the furthest point in each
iteration, ~ may be greater than 2/¢ though it can still be bounded by O(1/¢2)
(Badoiu et al., 2002). Hence, the whole procedure takes

T =) 0()=0(") =0(%). (4.5)
t=1

For afixed ¢, it isthusindependent of m. The space complexity, which depends
only on the number of iterations 7, becomes O(1/¢4).

When ¢ decreases, the CVM solution becomes closer to the exact optimal
solution, but at the expense of higher time and space complexities. Such a
tradeoff between efficiency and approximation quality istypical of all approx-
imation schemes. Moreover, be cautioned that the O-notation is used for study-
ing the asymptotic efficiency of algorithms. As we are interested in handling
very large data sets, an algorithm that is asymptotically more efficient (in time
and space) will be the best choice. However, on smaller problems, this may be
outperformed by algorithms that are not as efficient asymptotically.
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4.3 THE PROPOSED ON-LINE CORE VECTOR MACHINES

This section introduces the proposed on-line CVM method for classification
tasks.

4.3.1 Motivationsfor using CVM for Incremental Learning

We found that the CVM updates for the streaming case can be easily adapted
to learn the SVM weight vector in a way similar to using online stochastic
gradient updates. D. Wang, Zhang, Zhang, and Qiao (2010) addressed thisis-
sue by proposing an online CVM classifier with adaptive minimum-enclosing-
ball (MEB) adjustment. This method performs polylogarithmic computation
at each example, and requires very small and constant storage. However, the
computational cost of Wang's agorithm is same as original CVM. To reduce
not only the constant storage requirement but also the learning time, we pro-
posed our on-line CVM learning algorithm that perform each updating using
geometry techniques. As the updating processing, which is the most impor-
tant part of incremental |earning, has been changed to a much faster algorithm,
our OCVM performs more efficiently. Experimental results show that, even in
such restrictive settings, the algorithm can learn efficiently in just one pass and
demonstrates accuracies comparable to other methods.

4.3.2 On-line Mode CVM Learning

Let x’ be the input point causing an update to the MEB and B’ be the resulting
ball after the update. From figure 4.2, it is easy to verify that the new centre ¢’
lies on the line joining the old center ¢ and the new point x’. The radius ' and
the centre ¢’ of the resulting MEB can be defined by simple update equations
asfollows:

v =1r49, (4.6)
5=l — ¢l 4.7)

of
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Figure 4.2: MEB expansion

Hence 25, which isthe closest distance of the new point x’ from the old ball B,
can be defined as:

26 = (||x' —c¢|| =) (4.8)

Using these, we can define a closed-form analytical update equation for the
new ball B’
0 /

/
c=c+——(x
[Ix" = <]

—c). (4.9

Thus, the updated MEB learning model Q' is obtained by conducting the fol-
lowing algorithm.

Kernelised On-line CVM

In order to extend the usability of OCVM from linear kernels to non-linear
kernels, we modify Algorithm 3. Instead of storing the weight vector ¢ =
ZleTQ , it stores Lagrange coefficientsc — > | a;(x;) asthe center of MEB.
The distance from an incoming data sample x; to the centreis calculated as

Ixi—cll®= Y ajogk(x;,x)+k(xi,x)—2 > ak(x;,x;)+&% (4.10)

X;,X1€Q x;€Q
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Input: Original CVM learning model Q2 = {c, r, Q}, incoming data matrix
X', MEB parameter ¢, and slack parameter ¢
Output: A batch mode MEB learning model Q'
L Initid ¢/ <« ¢, «—r,and Q' «— Q
2. for i — 1to|X’| do
3 Compute distance from z to ¢
d= ||z} — el + /1€
Compute MEB center ¢ and radius » on subset Q using equation 4.3
if (1+¢)*r <dthen
(lzi—ell=7)
2
c’<—c+(% —m)(x;—c)

!/
oy Ulizelon)

: Q —QuUx!
10: endif
11: end for
12 Return Q' — {c,', Q'}
Algorithm 3: Incremental mode On-line CVM algorithm

4

5

6: 0 «—
7

8

9

Once the new sample x; updates the MEB then Q' = Q U ¢(x}), the Lagrange
coefficient for the new core vector is a; = 5 — grr—r-

Contraction of On-line CVM

During the expanding of MEB, spare areais inevitably presented because the
size of the MEB depends on the most significant outlier. In order to preserve
the efficiency of MEB knowledge encryption, a contraction is conducted once
an outlier isfound. The approach of MEB contraction is similar to the expan-
sion approach.

Giveng € Qwhere Q € Q — Q;—1, and Vg € Q whereq # ¢, -3|[7 — ci—1]| <
ll¢ — ¢;_1]]. From equation 4.7 and 4.8, the relationship between § and ¢’ is
defined as &’ = 24. From figure 4.3, radius r;_; for the original MEB B;_; and
radius r; for the updated MEB B; are:

ric1=ri+0+||g—cil| + ¢, (4.11)
ri = |lg — ci—1l[ + 0. (4.12)

oY
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Figure 4.3: MEB contraction

From equation 4.7 and 4.8, the relationship between ¢ and 4’ is defined as
d" = 26. Thus, equation 4.11 is transformed as:

rie1 = |lg—cima|[ + 0+ +[lg — cial[ + &, (4.13)
ri—1 = QHQ — Cile + 39, (414)
§ ==t _Q’f_c“”. (4.15)

Once we have the value for § we can easily calculate r; and updated MEB
center ¢; as.

~ rim1+ [lg — el
r; =

i 3 , (4.16)
G =c1+——(q—ci—1). (4.17)
llg = ci1l|

4.4 EXPERIMENTS AND DISCUSSIONS

To evaluate the performance of on-line CVM we compared the classification
accuracy and the computational cost with two conventional classification meth-
ods on six two-class and six multi-class datasets. Table 4.1 and table 4.2 sum-
marise the characteristics of 12 datasets and five classification methods respec-
tively.
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Type Dataset No. of Features No. of Classes Complexity Size
synthetic binary 2 2 0.0743 200
liver-disorder 6 2 0.5432 345
two-class breast-cancer 10 2 0.1743 683
heart 13 2 0.7632 270
ionosphere 34 2 0.5163 351
web Spam 57 2 5.5188 4601
synthetic multi-class 2 3 0.0743 200
iris 4 3 0.0636 150
multi-class wi ne 13 3 0.3007 178
vehicle 18 4 2.7264 846
vowel 10 11 5.1335 990
KDD99(KDD99, 1999) 42 5 0.5163 100000

Table 4.1: Summarisation of data sets characteristics

Notation | Descriptions Parameters
KNN k-nearest neighbor k
Bayes Naive Bayes None
MLP Multi layer perception «

Kernel Method (K M)

Kernel Parameter (K P)
Kernel Method (K M)

Kernel Parameter (K P)
Epsilon (¢)

SVM Support vector machine

OCVM Hierarchical minimum enclosing ball

Table 4.2: Summarisation of classifiers characteristics

Accuracy of Binary Classification

For each two-class dataset, we conducted K -folds cross validation which ran-
domly partitioned original data into KX subsamples. Of the K subsamples, a
single subsample was retained as the validation data for testing the model, and
theremaining K — 1 subsamples are used astraining data. The cross-validation
process was repeated K times, with each of the K subsamples used exactly
once as the validation data. Then we can obtain the mean value and standard
deviation (std) value of the K resultsfrom thefolds. In our case, weset K = 10
as 10-fold cross-validation is commonly used.

Table 6.3 shows the classification accuracy of the two-class datasets using
different classifiers. The accuracy is represented by the mean value and the
std value of the 10-fold cross validation. To make sure that the results for the
conventional methods are not biased by an inappropriate choice of parameters,
we optimised all parameters (see table 4.4) by running cross validation.
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On the two-class datasets, MLP and SVM achieved the two highest accura-
ciesamong the conventional methods. Compared to the conventional methods,
OCVM obtained higher accuracies on three out of six datasets(i.e. breast-
cancer, ionosphere and web Spam). It can be found from table 4.1, these three
datasets have greater number of featuresthan the other datasets. That indicates
the proposed OCV M s effective for classifying higher dimensional datasets.

Dataset KNN Bayes MLP SVM OCVM
Synbinary 93.31% + 1.65% 89.93% + 3.12% 93.78% £ 2.51% 94.65% + 2.18% 88.13% £ 2.53%
liver-disorder 64.92% + 6.55% 63.17% + 6.31% 71.28% £+ 7.71% 64.92% +1.09% 59.13% £+ 4.91%
breast-cancer 96.63% + 1.71% 95.97% + 2.44% 96.65% + 2.38% 97.07% =+ 3.07% 97.07% =+ 2.82%
heart 82.59% =+ 8.20% 75.65% =+ 8.25% 83.33% =+ 5.25% 83.19% +6.06% 82.67% =+ 6.33%
ionosphere 64.11% =+ 1.09% 65.32% + 1.74% 89.16% + 5.35%  92.06% =+ 4.46% 93.73% + 4.57%
web Spam  93.32% + 0.78% 84.13% + 1.97% 94.62% +0.12%  94.60% + 0.10% 94.64% =+ 0.06%

Table 4.3: Classification accuracy comparison for five methods applied on the six two-

class datasets
classifier  parameters || liver-disorder | breast-cancer | heart [ ionosphere | web Spam
KNN k 3 5 5 3 5
MLP o 100 0.5 10 2 100
SVM KM RBF RBF RBF RBF RBF
KP 0.001 0.5 0.01 0.01 0.001
KM RBF RBF RBF RBF RBF
OCVM KP(v) 4 3 4 2 4
€ le—6 le — 2 le —3 le—6 le—3

Table 4.4: Summarisation of classifiers parameters for six two-class datasets

Accuracy of Multi-class Classification

Similarly to the experiments with two-class datasets, we conduct 10-fold cross
validation with optimised parameters (see table 4.6) on multi-class dataset.
The classification accuracy was represented by the 10-folds accuracies mean
value and std value in shown in table 4.5.
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On the multi-class datasets, except Naive Bayes all selected conventional
methods perform similar. Compared to the conventional methods, OCVM
which showed the 3 highest accuracies, performs better specially on KDD99
which has a much larger number of samples.

Dataset KNN Bayes MLP SVM OCVM
Synm-class 94.53% + 1.14% 88.57% £ 4.29% 93.86% + 2.68% 94.97% + 1.99% 90.95% =+ 3.67%
iris 94.67% £ 6.13% 90.35% =+ 7.11% 95.97% + 4.03% 96.00% =+ 5.62% 96.66% + 4.24%
wine  97.16% =+ 3.00% 71.31% =+ 8.53% 93.91% £ 8.01% 74.85% £9.15%  76.40% + 8.22%
vehicle  71.04% £+ 3.01% 66.24% £ 5.57% 77.78 + 3.96% 71.61% +3.88% 71.61% + 3.88%
vowel 96.89% + 1.00% 91.37% =+ 3.25% 98.08% + 1.21% 97.47% + 1.73% 98.56% + 1.34%
KDD99  89.32% + 1.12% 75.21% =+ 5.32% 90.53% + 2.83% 90.42% + 2.18% 94.95% + 1.47%

Table 4.5: Classification accuracy comparison for five methods applied on the six
multi-class datasets

classifier  parameters || iris | wine | vehicle [ vowel | KDD99
KNN k 3 5 5 3 3
MLP «@ 0.001 100 0.5 0.2 5
SVM KM RBF RBF RBF RBF RBF
KP(7) 001 | 0.001 | 0.001 | 0.5 0.05
KM RBF RBF RBF RBF RBF
OCVM KP(v) 3 2 4 4 4
€ le—6 | le—2 | le—6 | le—3 | le—4

Table 4.6: Summarisation of classifiers parameters for six multi-class datasets

Computational Costs and Speed Efficiency

We measured the computation cost by analysing the training time and number
of the support vectors (for SYM and OCVM). For each dataset, we train the
model based on 10% samples up to 100% step by 10%.

Resultsareshownin Table4.7. Asit can be seen, the CPU time cost by SVM
shot up with the growth of the training size, but it is the shortest while the size
of training set is smaller than 300. OCVM is much faster and produces far
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Dataset |Classifier Tio,  Toow Ts0%  Tuow  Tso% Teon Trow  Tsow  Toow  Thoon
SVM ~ 0 0.031 0.062 0.062 0.156 0.203 0.39 0.499 0.78 0.967
breast-cancer] MLP 0.437 0.343 0.562 0.624 0.811 0.92 0.983 1.326 1.56 1.42
OCVM 0.156 0.094 0.156 0.203 0.172 0.14 0.218 0.078 0.125 0.125
SVM ~0 =~O0 =0 0.031 0.031 0.031 0.062 0.062 0.062 0.062
liver-disorder] MLP 0.811 0.858 0.889 0.998 1.029 1.138 1.232 1.123 1.31 1.357
OCVM 0.156 0.094 0.094 0.094 0.125 0.109 0.062 0.078 0.062 0.094
SVM ~0 =0 =0 0.031 =0 0.016 0.016 0.031 0.062 0.062
heart MLP 0.811 0.858 0.889 0.998 1.03 1.139 1.232 1.123 1.31 1.357
OCvM 0.25 0.14 0.12 0.187 0.109 0.25 0.187 0.156 0.156 0.156
SVM 0.56 4.41 14.38 34.36 40.56 79.15 140.63 241.63 419.94 605.61
web Spam MLP  4.58 56 5.78 6.41 6.92 11.88 847 10.92 9.89 10.29
OCVM 0.8 0.936 0.858 0.889 0.842 0.75 0.905 0.905 0.874 0.8
SVM ~0 =0 =0 0.031 0.062 0.046 0.062 0.125 0.125 0.156
ionosphere | MLP  1.076 1.294 1.232 1.248 1.638 1.373 1.591 1.638 1.747 1.825
OCVM 0.234 0.25 0.25 0.187 0.25 0.34320.1716 0.312 0.187 0.187
SVM ~0 0.031 =0 0.031 =0 0.031 0.031 0.062 0.062 0.062
iris MLP 0.234 0.312 0.296 0.437 0.4056 0.499 0.312 0.358 0.421 0.484
OCVM 0.109 0.078 0.062 0.078 0.078 0.078 0.062 0.078 0.062 0.109
SVM ~ 0 0.016 0.016 0.016 0.062 0.062 0.062 0.078 0.171 0.203
wine MLP 1.107 0.982 0.858 0.795 0.982 1.014 1.326 1.372 1.310 1.076
OCVM 0.078 0.125 0.062 0.078 0.093 0.203 0.109 0.125 0.062 0.062
SVM 0.047 0.125 0.39 0.718 1.279 2.714 4.321 6.864 9.329 13.245
vehicle MLP 1.06 1.123 1.326 1.279 1.388 1.622 1.841 1.778 1.762 2.012
OCVM 0.125 0.172 0.156 0.14 0.125 0.187 0.187 0.218 0.218 0.14
SVM  0.109 0.437 0.983 2.636 5.834 9.547 14.929 22.48 33.135 48.048
vowel MLP 0.53 0.686 0.842 1.123 1.341 1.451 1.653 1.95 1.794 2.34
OCVM 0.468 0.515 0.546 0.53 0.53 0.593 0.546 0.64 0.64 0.499
SVM 14712 OM OM OM OM OM OM OM OM oM
KDD99 MLP 12.948 21.887 27.456 35.334 38.033 53.805 74.116 98.327 109.901 153.957
OCVM 7.21 7.503 7.871 7.323 7.525 7.619 7.28 7.324 7.234 7.101

Table 4.7: Comparison of training CPU time (in seconds). OM indicates out of mem-
ory caused by size of data input that was too large.

fewer support vectors (which implies faster testing) on large data sets. In par-
ticular, for web Spam data 5000 samples can be processed in lessthan 1 second,
which is 750 times faster than SVM. As we developed the evaluation environ-
ment based on MATLAB, the largest memory isrestricted. Thus, 10,000 isthe
maximum number of samplesthat can be used by SVM and training takes 200
times more CPU time than OCVM. The CPU time cost by MLP is not obvi-
ously greater than OCVM on a small training set. However, it is easy to see
that only OCVM keeps consistent speed once the size of training data is over
5000.

The comparison result for number of support vectors, which is shown in
Table 4.8, is similar to the CPU time comparison. For relatively small train-
ing sets, with fewer than 200 samples, the SVM produces |ess support vectors.
However, the number of support vectors obtained using SVM hoicks. Af-
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Dataset  |Classifier Thoy T20% T30% Tuo0% T50% Te0% T7o% Tso% Too% T100%
breast-cancer SVM 34 68 102 136 170 204 238 272 306 340
OCVM 215 178 102 133 223 196 166 136 118 176
liver-disorder SVM 17 34 51 68 85 102 119 136 153 170
OoCvM 171 171 171 170 170 170 171 170 170 171

heart SVM 13 27 40 54 67 81 94 108 121 135
OCVM 99 103 83 103 100 106 97 116 78 101

web Spam SVM 192 384 576 768 960 1152 1344 1536 1728 1920
OCVM 294 296 294 295 294 298 294 299 295 294

ionosphere SVM 17 35 52 70 87 105 122 140 157 175
OCVM 140 137 139 105 122 123 135 133 130 145

iris SVM 7 15 22 30 37 45 52 60 67 75
OCVM 67 70 70 64 67 69 64 67 70 66

wine SVM 8 17 25 34 42 51 59 68 76 85

OCVM 87 8 8 8 86 86 86 8 &7 &6

vehicle SVM 42 84 126 168 210 252 294 336 378 420
OoCvM 71 72 72 70 72 72 70 73 73 72

vowel SVM 49 99 148 198 247 297 346 396 445 495
OoCvM 111 110 110 110 112 110 110 112 111 110

KDD99 SVM 2500 OM OM OM OM OM OM OM OM OM
OCVM 122 134 134 142 145 145 146 146 147 148

Table 4.8: Number of support vectors/core vectors comparison. OM indicates out of

memory caused by too large size of data input.

ter training 10, 000 samples, SVM created 20 times more support vectors than

OCVM.

45 SUMMARY

Within the streaming framework for learning, we have presented an efficient,
on-line CVM learning algorithm using a streaming agorithm for the MEB
problem. OCV M, incrementally learning the stream data by extending the cor-
responding MEB towards a new sample which located outside of the existing
MEB and this sample will be saved by updating the core vectors. In addi-
tion, to preserve the efficiency of MEB knowledge encryption, a contraction is
conducted once an outlier is found. The experiments on batch mark datasets
show the on-line CVM obtained similar or higher classification accuracy than
the selected bench learning methods by taking significantly less computational

time.

In the next chapter, a novel method for hierarchical structure stream data

modelling is presented.
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HIERARCHICAL CORE VECTOR MACHINE - A
NOVEL HIGH-SPEED HIERARCHICAL MULTI-LABEL
CLASSIFICATION ALGORITHM

This chapter presents a high-speed hierarchical multi-label classification al-
gorithm, called the hierarchical core vector machine (HCVM), for labelling
hierarchical multi-label structure stream data.

We model the multi-label hierarchy into a data Hyper-Sphere constructed by
numbers of minimum enclosing balls/core vector machines (MEB/CVM). The
MEBS/CVMs are separating, encompassing and overlapping with each other
formed asatree structure, representing the multi-label hierarchy encoded. Pro-
vided an unlabelled sample, the HCVM seeksaMEB/CVM enclosing the sam-
ple, and multi-label the sample according to the MEB'’s position in the hierar-
chy. The proposed HCVM has been examined on a Gaussian synthetic data.

This chapter isstructured asfollows: Section 5.1 describesrelated researches
on machine learning method for network intrusion detection and multi-label
classification methods. Section 5.2 presents the proposed HCVM learning. In
Section 5.3, we cover experimentation and algorithm evaluation. Lastly, in
Section 5.4 we draw our conclusion and state future directions.

51 WHY HIERARCHICAL LEARNING? - ANSWER FOR QUESTION
2

Previous supervised learning methods group any network traffic into several

major clusters, disregarding the complexity fact that one major category com-
munication includes often several subcategories, and so on for those subcate-
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2. WHY HIERARCHICAL LEARNINGY?Y - ANSWER FOR QUESTION £

gories. In general, network traffic poses, by its nature, a complex multi-label,
rather than asingle-label status.

5.1.1 Review of Multi-labd Classification Methods

The existing multi-label classification methods can be grouped into two main
categories. a) problem transformation methods and b) algorithm adaptation
methods.

The problem transformation methods were defined in (Tsoumakas & Katakis,
2007) as those methods that transform amulti-label classification probleminto
amultiple single-label’s classification problem (Boutell, 2004; Diplaris, 2005).
Given adataset X with aset of classlabels L for multi-label classification train-
ing, acommon problem transformation method isto train | L| binary classifiers
H; : X — {l,-l}, onefor each individua label I in L. Thus, the original data
set is transformed into || data sets, for the /! dataset D, the same instance
of the origina dataset whose instances are labelled as [ or -/, and a binary
classifier is applied for the classification on the dataset. In this way, when an
unlabeled instance «x is provided for classification, a set of labels are produced
simultaneously by || classifiers,

H(z) = {1} : Hy(x) =1. (5.1)

leL

Algorithm adaptation methods extend the existing learning algorithms such

asAdaBoost to handle multi |abel datadirectly. Adaboost. MH and Adaboost. MR

(Schapire, 2000) are two extensions of AdaBoost (Freund, 1997) for multi-
label classification. Both extensions are used on weak classifiers represented
intheform H : X x L. — R. Given an unlabelled instance z, in AdaBoost.MH,
rislabelledasi, | € L if theweak classifier for [ ispositive. In AdaBoost. MR,
the output of the weak classifiers is considered for ranking each of the labels
in L and z islabelled as ! which is the top rank class |abel.

o/
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5.2 THE PROPOSED HCVM LEARNING METHOD

This section introduces the proposed HCVM method for hierarchical multi-
label classification in the context of network security stream data.

5.2.1 MEB/CVM and Motivations of CVM for HMC

The minimum enclosing ball computes the ball(s) of minimum radius enclos-
ing agiven set of points. Traditional algorithmsfor finding exact MEBS/CVMs
developed by Megiddo (Megiddo, 1983) and Welzl (Welzl, 1991) do not scale
well with higher dimensional datasets. Recently, approximation algorithms
for finding MEBS/CV Ms have been given by Badoiu (Badoiu et al., 2002) and
Kumar (Kumar et a., 2003). Badoiu indicated that a (1 + €) — approzimation
MEB can be efficiently obtained by using a subset of the input dataset, called
the core set. Additionally, Badoiu (Badoiu et al., 2002) found that the size of
the MEB core set is independent of both dataset dimensionality 4 and the size
of the dataset. Kumar et al. (Kumar et al., 2003) devel oped methods for com-
puting core sets and approximate the smallest enclosing hyper-spheresin high
dimension spaces. In this way, the MEB can be implemented in applications
with large numbers of numerical attributes.

As mentioned above, a straightforward method is to transfer a HMC prob-
lem to a number of single class classification problems using a certain trans-
formation method (Boutell, 2004; Diplaris, 2005), so that a HMC problem
can be managed as a typical multi-class classification. The disadvantage of
this method is, the original label hierarchy information (i.e. the partial order
of hierarchical multi-labels) of the data is changed or lost completely, which
eventually leads to an unsatisfied multi-label classification.

Alternatively, we consider here the HMC problem from the viewpoint of
MEB (Badoiu et al., 2002; Kumar et a., 2003), for each single class of the
HMC problem, wherever it is located in the label hierarchy, it can be ap-
proximated by an MEB. One class is represented as one MEB, meanwhile the
MEB may overlap with MEBS/CV Ms from other classes, or encompass MEB-
s/CVMsfromits child classes. In this way, the HMC problem is addressed by
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aset of related MEBSY/CV M, in which the relationship of MEB represents the
label hierarchy, so that the original hierarchy information of data get reserved
in MEB modelling.

5.2.2 HMC Problem Transformation

Hierarchical multi-label classification (HMC) isan extension of binary classifi-
cation where an instance can be label ed with multiple classesthat are organized
in ahierarchy (Hendrik, Leander, Jan, & Amanda, 2006).

In the example of network intrusion detection, Fig. 5.1 describes a typical
HMC adapted from the KDD’ 99 dataset, where different network connection
types are divided into 4 maor categories and 21 subcategories. The relation-
ship between these subcategory connection types and major connection cate-
gory typesare structured asaMarkov Tree. The mgor connection types are set
as the branch of the tree, and those subcategory types as the leaves of the tree.
In this way, the problem of Internet intrusion detection is interpolated into the
learning of hierarchical multi-label classification. Here, the definition of HMC
task is briefed as follows (Hendrik et al., 2006):

Given: (1) dataset S = {x1,...,z,}, Wwhere each z; € R¢, (2) class label set
C ={ci,...,cn},and (3) aclasshierarchy (C, <), where <, isa partial order
representing the parent class relationship (Vey, co € C' : ¢1 <j, co, if and only if
c1 Isasuperclass of ¢,).

Find: afunction f : + — C; wherez € S and C; C C, C; includes an leaf class
cand itsparent classes ¢ suchthat c € C; = Vd <, ¢: d € C;.

InHMC, f isableto classify an unlabelled message as normal, or as a subcat-
egory attack type together with all its parent category attack types.

5.2.3 Hierarchical Minimum Enclosing Ball

For HMC, the above kernel MEB is extended to the approximation of hierar-
chical minimum enclosing balls (HCVM) asfollows:
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Target network First-level Second-level
connection type types types
back dos [ back | [ land |
buffer_overflow u2r [ pod | [neptune |
ftp_write r2l
guess_passwd r2| [teardrop | [ smurf |
imap r2|
ipsweep pr-obe
land dos dos
loadmodule u2r - buffer loadmodule
multihop r2l uzr | 1 |overflow
e Eles [ rootkit | [ perl |
nmap probe
perl u2r 2l
phf r2l
pod dos .
portsweep probe probe | warezclient ]| _phf |
rootkit u2r e [warezmaster ||  spy |
satan probe multiho ima
smurf dos el ‘ ft writ: : gue:s ‘
spy r2l [_ftp write ]
teardrop dos assword
warezclient r2|
warezmaster r2|
nomal
[ nmap | [portsweep |
[ipsweep | [ satan |

Figure5.1: The label hierarchy of network connection types adapted from KDD’99
dataset

Given dataset S = (X x Y) where X € ®¢, and classlabel set Y isin such a
hierarchy asY = {Yi|y <, Vy'} whose y, v’ € Y;, and ' # y. To transform the
HMC problem to aHCVM problem, we seek the root class label set C; C YV
whereVy! € C1 : =3y <, ¢! 1/ €Y,y ¢ C1. For each root class label 3! € 1,
we create an MEB, B, and mark it with (1) its hierarchical level whichis1, (2)
the corresponding class label ¢!, and (3) its parent class. (we use 0 to represent
the parent class of aroot class). Thus, for each class ¢ in the root class |abel
set C4, we obtain the corresponding MEB Bi’l’o. Similarly, we address the next
level classset €, C Y whereVy! € Cy - Ipt <, vt - pt € Cy_q, and create the
MEB Bgl’pl for each class label 4! € C,. This process is continued until no
child classes can be found.

As aresult, we have a multi-label hierarchy modelled as an HCVM struc-
tured asaset of MEBS/CVMsordered with itsclasslabel, level inthe hierarchy
and its parent class,

l 1 U1l
{(Yily <p vy} = {BY°,BY"?, .. ,BI P} (52)
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While we transfer a multi-label hierarchy to an HCV M, the knowledge of the
relationship between classes at the same level naturally appears. Thisis be-
cause that label represents the class as a signature, but HCVM represents the
classin adata distribution space, it captures not only the parenthood relation-
ship (i.e. parent class MEB encompasses the child class MEB) but aso the
relationship between classes at the same level of the hierarchical structure (i.e.
same level classes MEBS/CVMs may separating or overlapping).

For decision making, we expect that f(B) approximates the ground truth
multi-label f(z) better than f(X,Y) because each MEB in HCVM approxi-
mates accurately its associated class of Y, preserving perfectly the multi-label
hierarchy in Y. Thus, the HCVM eventually can be learned by an aggregation
of MEBS/CVMsas,

flz) = By Py = \/ \/ 5., (5.3)
1=11=1

where fp,, represents an elementary MEB model on class y!. In Eq. (5.3),
\/ denotes the union between models, in which \/, represents a natural parent
relationship. Asmodelling £, ,, classy' is addressed as a binary problem with
class ¢ as the positive and the remaining classes as the negative, and a set of
MEBS/CVMs are computed according to Eq. (4.1)- Eq. (4.3) to enclose only
the positive instances. Then, fg,, is formed by assigning the corresponding
MEB core sets as core vectors.

Given an instance = enclosed in one i*-layer MEB, due to the parent re-
lationship, it must also be enclosed in the (i — 1), (i — 2)* ..., 1st,0 layer
ancestor MEB; and \/, represents a relationship at the same layer of HCVM.
[ is often fixed by distances calculation. To compute the distance between x
and the center ¢; of By, = ismapped into the feature space by akernel function
k(z,z). By Eq. (4.3), the distance between x and ¢, is calculated as:

llee — o(@)|)* = Z aiak(zi, z5) — 2 Z aik(zi, x) + k(z, ). (5.4

2i,2 €St 2, €St
Fig. 5.2 gives an example of HCVM data approximation over a synthetic
dataset with 2 layers, A1 <;, [A2, A3, A4]. To approximate the data distribution
of the dataset, an individual MEB can be used to enclose data in class Al.

1
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A1,0
A B

\ on

Figure 5.2: Core set data approximation comparison: boundary on the MEB core set
from the parent class A1 versus boundary on the proposed HCVM (A1 <,
[A2, A3, A4]) core set.

As shown in Fig. 5.2, the resulting boundary (identified as the dashed curve)
summarizes the knowledge of MEB (represented as the solid line cycle) and
the MEB core set (identified as squared data points). Base on the fact that if
an instance isin a parent class, then it must belong to one of its child classes,
the proposed HCVM method approximates the dataset by combining core sets
from A1 MEB and MEBS/CVMs of A1's 3 child classes A2, A3 and A4, and
has the boundary for data approximation plotted in Fig. 5.2 right.

It clearly shows that the resulting boundary enclosed almost 2 times the
space then the obtained boundary did. However, no data point exists in the
extra space. Thus, the HCVM method gives a much smaller enclosing space
while discarding the non-essential areas from the MEB for the parent class
only.
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5.2.4 The Proposed HCVM Algorithm

According to the theories discussed above, we have developed the following
3 algorithms for hierarchical multi-label classification. Given dataset S =
(X x Y) where X € ®¢, and class label set Y is in such a hierarchy as
Y = {Yily <, W'} whose g,y € V;, and ¢/ # y. Algorithm 4 computes
the MEB and core set for S. Algorithm 5 constructs HCVM where Algorithm
4 is used for modelling kernel MEBS/CVMs on subclasses S; = (X;,y;) C S.
Note that the constructed HCVM B is an m level hierarchical MEB, B =
{Bi’l’pl, Bgl’pl, o Bg’l’pl} where /', p! denote the corresponding class label and
the parent-class |abel respectively.

Input: Set of points S € RY; parameter ¢ = 27™; subset Qg C S
Output: A (1 + ¢)-approximation MEB(S); O(1/¢)-Size core set @
1. for i — 1tom do

2. loop

3 Q — Qi1

4: Compute B, = MEB(Q)

5. if S C Bc,(1+e)r then

6: Return Be,r, Q

7: else

8: p < point of S maximizing distance, ||cp||, from ¢
o end if

10 Q +— Qi—1U{p}
11:  end loop

13: end for
Algorithm 4: MEB agorithm

Algorithm 6 tests the constructed HCVM for the multi-label classification
of a new instance z. In order to check whether = is located in the range of
the nearest MEB’s radius an iterative checking processis run until one nearest
MEB isfound at every level of the HCVM. Associating together as the set of
located MEBS/CVMSs, it comes up with a complete tree path from the root to
theterminal level of the HCVM. Along thetree path, the instance z is branched

o
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Input: Set of points S = (X x Y)whereY = {Yi|y <, Vy'} whosey,y’ € V;,
and ¢’ # v, e.
Output: HCVM B; the O(1/¢)-Size core set ().
L Initial ¢ — 1.
2 FndC; CY wherevy e C;: -3y <py:y €Y,y ¢ C,.
3: whileC; # ¢ do

4. t; — ‘Cz|

5 forl— 1tot; do

6: S ={p(x)},z=(X,y") wherey! € C; and Q = 0.
7: [MEB(b), CoreSet(q)] — Run Algorithm 4 with input S,Q, and e.
8: if i=1then

o pl — 0.

10: else

11: Pl — pwherep <;, .

12: end if L

13: Bf Y b,Qf Yo— gq.

14: 1=1+1.

15.  end for

16: FIndC; CYwhereVyeC;: Ip<,y:pecCi_.
17: end while
Algorithm 5: Hierarchical core vector machines training algorithm

from the root progressively to the terminal level of HCVM, meanwhile multi-
labeling = with the associated labels of MEBS/CVMs at every level.

5.2.5 Time and Space Complexities for HCVM

Note that CVM has the computational complexity O(y/nd2(n + d)log(n/e))
(Kumar et al., 2003). Using CVM for HMC problem, the expected computa-
tional complexity is O(y/nd2(n + d)log(n/e) + Y it | \/nid?(n; + d)log(n;/e)),
where m is the number of child classes. This obvioudly is less expensive
than the quadratic programming (QP) methods, such as SVM, whose train-
ing time complexity is O(n?). In this sense, a HMC problem can be modelled
by MEB more efficiently, especially for problems involving large size dataset.
CVM core set estimates the boundary of a given class in O(1/¢) (Kumar et
al., 2003), thus MEB in the nature is independent on dataset size (n) and di-
mension (d), which indicatesthat MEB is deterministically robust to any class-




2.0 VALIDITY EXAMINATION ON SYNTHETIC DATASET

Input: Instance z; HCVM B

Output: labelsof x Label
1. Transfer = to kennel & (z, z) by putting it in feature map .
2. Label + 0. .

3 indexr =1,1,... 1.

4. ¢ — 1.

5. whilei < m do

6: for j « index(i) ton do

7 Find MEB BY ¥ € B wherep! == Label(i), BY " 's center is jth
nearest to k(z, x).

8: iIf k(z,«) inside of boundary formed by core set of By, then
o Label « Lable U .

10: Break.

11: eseif j == n then

12: Label «— Label — Label(1).

13: i—1—1.

14: end if

15:  end for

16: if Label isempty then

17: Return Label < 0.

18 endif

19:  index(i) = index(i) + 1.

20 1+— 1+ 1.

21: end while

Algorithm 6: Hierarchical core vector machines testing algorithm

imbalanced and/or high dimensional datasets. In HCVM, maximum m MEB-
S/ICVMs are used for HMC problem solving where m represents the number
of child classes. Thus, the O((m + 1)/¢) computational complexity of HCVM
enable solving of any HMC problem more efficiently, meanwhile immune to
the class-imbalanced and/or high dimensional difficulty.

5.3 VALIDITY EXAMINATION ON SYNTHETIC DATASET

For testing the capability of the proposed HCVM for multi-label, in particular
for hierarchical multi-label classification, we examined the developed HCVM
on a synthetic dataset.
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The synthetic dataset for HCVM examination is a mixture of severa 2D
Gaussian labelled with a 2-level multi-label hierarchy, H ={class 1: {class(1,

1),class(1,2),class(1,3) }; class 2:{class(2,1), class(2,2), class(2,3)} }, inwhich
the distribution of class 1 datais shownin Fig 5.3.

5.3.1 Resultsand Discussion

Using MEB, class 1 can be approximated by constructing a single independent
MEB as Fig. 5.4a, and the obtained core set, as support vectors for build-
ing class 1 de scripting plane, is presented in Fig. 5.4c. Alternatively using
HCVM, the MEB can be constructed instead as Fig. 5.4b for both the parent
and the child classes asclass 1 in fact has 3 child classes. Thus, a2-level HMC
problem is modelled by HCVM since a set of correlated MEBS/CVMs (i.e a
hierarchical MEB). Fig. 5.4d gives accordingly the obtained core sets from 4
correlated MEBS/CVMs. Asseen, it isapparently that the core set in Fig. 5.4d
approximates class 1 data more accurate than the core set in Fig. 5.4c. This
demonstrates that the developed HCVM derives important additional discrim-
inant information from the 2-level label hierarchy.

o child class 1
o child class 2
o child class 3

Feature 2

2 1
Feature 1

Figure 5.3: Synthetic data for HMC, where data points of different classes are repre-
sented as different colors.
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Feature 2
Feature 2
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(@) aMEB for classl (b) 4 MEBYCVMSs for class1, class(1,1),
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(c) the distribution of core set from () (d) the distribution of core sets from (b)

Figure 5.4: An example of using MEB for HMC, where * represents a MEB core set
point. Note that this figureis best seenin color.

Theresultsa so showsthat, HCVM isaloca modelling method whichlearns
the local information from sub-classes. And local modelling beat global mod-
elling by obtaining a much more accurate class boundary.

54 SUMMARY

In this chapter, we studied HM C problem aiming to multiply |abelling network
intrusions for Internet security. The HMC differs from typical classification in
two aspects. (1) an instance belongs often to more than one class simultane-
oudly; (2) every instance from any class belongs automatically to its ancestor
classes, asclassesin HMC are in hierarchical tree structure.

By aggregating MEBS/CVMs, we proposed a novel HCVM model in which
MEBS/CV Ms separate, encompass and overlap with each other representing an
organized multi-label tree structure. Moreover, we have modified the origina
MEB algorithm using the Gaussian kernel method, enabling MEBS/CVMs to
be applicable for kernel computing in a higher dimensional space.
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In general, the proposed HCVM method has the following desirable proper-
ties. First, HCVM models adifficult hierarchical multi-label problem asasim-
ple MEB association analysis. Second, MEB excludes the existing sparseness
of data, which enables HCVM to approximate data more accurately. However,
the proposed method inhibits alimitation that the classification performance of
the terminal classes might be inferior to that of non-terminal classes since the
boundariesfor theterminal classesin amulti-label hierarchy are not optimized.

The next chapter introduces a on-line local modelling method which is ca
pable of not only hierarchical structured stream datasets but normal datasets.



DYNAMIC EVOLVING CORE VECTOR MACHINES - A
FAST CONNECTIONIST-BASED KERNEL LEARNING
SYSTEMS

This chapter introduces anew type of kernel-based |earning algorithm, denoted
as dynamic evolving core vector machines (DE-CVM). This method is devel-
oped for adaptive on-line stream datalearning. Similar to DENFIS (Kasabov &
Song, 2002), DE-CVM evolve through incremental, hybrid (supervised/unsu-
pervised) learning, and accommodate new input data, including new features,
new classes, etc., through local element tuning.

This chapter is structured as follows: Section 6.1 explains why DE-CVM
Is essential for stream data learning. Section 6.2 gives the motivations for the
proposed DE-CVM. The agorithm is presented in section 6.3. Section 6.4
covers experimentation and algorithm evaluation. Lastly, in section 6.5 we
draw our conclusion.

6.1 WHY EVOLVING SYSTEMS ARE ESSENTIAL FOR
STREAM DATA MINING?
- ANSWER FOR QUESTIONS 3

Kasabov and Song (2002) maintained that, the complexity and dynamics of
real-world problems, especially in engineering and manufacturing, require so-
phisticated methods and tools for building on-line, adaptive intelligent systems
(I1Ss). Such systems should be able to grow as they operate, to update their
knowledge and refine the model through interaction with the environment.
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Stream data mining focuses on real-world applications, such as network in-
trusion detection, texture categorisation and image recognition. These applica-
tions need machine learning methods that have the following characteristics:
fast learning, on-line incremental adaptive learning, open structure organisa
tion, memorising information, active interaction, knowledge acquisition and
self-improvement, and spatial and temporal learning (Kasabov & Song, 2002).

We adopt evolving connectionist systems (ECOSs) (Kasabov, 1998) for stream
data mining because ECOSs evolve their structure and functionality from a
continuous input data stream in an adaptive, life-long, modular way. An-
other important reason is that ECOSs employ local learning as they create
connectionist-based modules and connect them, if that is required according
to the input data distribution and the system’s performance at a certain time
moment.

6.2 MOTIVATION OF DE-CVM

The minimum enclosing ball (MEB) problem is to compute a ball of mini-
mum radius enclosing a given set of objects (points, balls, etc.) in R?. It has
been widely implemented for clustering applications, such as spatial hierar-
chies (Hubbard, 1996), and support vector clustering (Ben-Hur, Horn, Siegel-
mann, & Vapnik, 2002); classification applications, such as area gap tolerant
classifiers (Burges, 1998b), and core vector machine (CVM) (Tsang €t al.,
2005); as well as approximation applications, such as fast farthest neighbour
query approximation(Goel, Indyk, & Varadargjan, 2001), and 1-cylinder prob-
lem approximation (Badoiu et al., 2002).

Classic CVM for classification computes a (1 + ¢)-approximation (Badoiu
et a., 2002) for aminimum radius ball learning, and extracts those data points
located at the outer areaof aCVM for classification modelling. The set of those
extracted data points characterise the entire given dataset, and thus are called
core vector set or core set. For classification modelling, CVM can be used to
approximate each class data distribution, so that one class can be distinguished
from another by core set computing.
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However, in practice such classic MEB has the following difficulties: (1)
CVM often encloses sparseness together with data. To enclose an isolated
outlier point, ahuge MEB is required, which makes the MEB include actually
more sparseness than the data occupation; (2) MEB is keen on enclosing data,
and thus disables the detection of any outliers despite the outliers producing
the sparseness of MEB.

To mitigate the above problems, we propose anovel dynamic evolving CVM
(DE-CV M) approach to learning the core set in agroup manner. DE-CVM sets
MEB/CVM in different data distribution area, reducing the sparsenessin CVM
by decomposing data space based on data distribution density, discriminating
core vectors on classinteraction hyperplanes, and enabling outlier detection to
decrease the effects of noise.

To have abetter and clear presentation of the proposed one-pass MEB, Table
6.1 presents the symbols that will be used in this chapter.

Notation | Descriptions
X data matrix

X; data matrix for i-th class
n number of training data instances
n; number of instances for i-th class
l number of classes
Bx minimum enclosing ball/balls (MEB) based on data set X
Ci i-th class j-th MEB center/centers
Tij i-th class j-th MEB radius
k; total number of MEBs for i-th class

Qi i-th class j-th MEB core set

Ques | classic MEB learning model

Q.veBs | Cross-MEBSs learning model
€ MEB approximation value

Table 6.1: NOTATION



0.0 THE PROPOSED DE-CVM LEARNING

6.3 THE PROPOSED DE-CVM LEARNING

In terms of complex data distribution, alarge MEB/CVM follows the sparse-
ness of the ball, thus it is often unable to approximate a data distribution ac-
curately. A single MEB/CVM for one class data is likely to enclose wrongly
almost all data points from another class, especially when data is zonally dis-
tributed. As a solution, a number of smaller MEBS/CVMs are able to drill
into the details of any data distribution, apparently allowing a more accurate
approximation.

Motivated by this, the above kernel MEB is renovated for group manner
MEB/CVM computing (DE-CVM). Instead of addressing a whole class data
X; with one MEB/CVM Bgq,, DE-CVM models class data using with a set of
MEBs Bq, = U}_, Bq: , Where k isthe number of MEBS/CVMs. Consider that
MEB/CVM learning isaniterative learning process, we represent an individual
kernel MEB/CVM hereas Bq: . = {c}';, (1+e)r}';, ¢(Q}';) } with j astheindex
of MEB/CVM, and « as the iteration number of MEB/CVM updating. In this
way, given X = Ul_,X; asthetraining dataset, the proposed DE-CVM learning
IS described below.

Similar to CVM, we initidlise one MEB/CVM (i.e. Bgo , k = 1) on one
class data X; at very beginning. Here, we initidise the core set as le =
{p(x4q), p(xp)}, Where x, is the furthest data point to arandom x € X; and x;
iscalculated as:

Xq — arg MaXxex ||Xq — X||

3 , A> 1. (6.1)

Xp = Xq +

Then, we obtain Bgo | = {cf;, (1 +¢)r};, Q) } using CVM optimisation func-
tion.

Theorem 6.3.1. The first initialised MEB/CVM'’s radius 7‘21 ~ %, where A
denotes the diameter of X;.

Proof. Science Q) = ¢(x4,%s), X, is the furthest point to x,. Clearly, the
distance from x,, to its furthest data point approximatesto . Then, x, locates
about A/ away from x,. According to the definition, 7"2 y istheradiusof Bge ,

0 ~ A
wehaver; ~ 3. [
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If there isx € X; not contained in any MEB Bqu-1, (G ={1,2,...,k}). It
results in one of the following 3 DE-CVM updating cases.

In the first case, if MEB Bqy, over the existed core set Q;f;l with x (i.e.
Qi = Q;f]fl U p(x)) hasradiusri;, which is less or equal to the upper bound
vaueas1 + 521?7, (n > 1) times of the existed radius r;fj‘l. The existing MEB
Bngl is updated by replacing with Bq: . Note that, c;fjfl is the closest MEB
centre to x.

Theorem 6.3.2. Given an upper bound of radius increment as 7, < (1 +

6212”)r§f;1, the DE-CVM expansion is between 32\ /¢2 to 1284 /<2 times,

Proof. Since 7, > A/2), and each step we increase the radius by at least
(A/4)e?/16 = Ae/64, it follows that we cannot encounter this case more than
64 /¢ times, as § isan upper bound of the radius of the minimum enclosing ball
of X;. U]

In the second case, if radius !, is greater than the upper bound value (1 +
Ezlgn)r;fj‘l, a new fragmentary core set ngﬂ = {p(x)} is created as a com-
pleted core set which has at least 2 vectors.

In the third case, if the distance from x to the closest fragmentary core set
Q?; islessthan £, we add ¢ (x) into the fragmentary core set Q7 ; as QY ; =
{Q7;, v(x)}, in thisway, the fragmentary core set Q7 ; becomes completed. In
addition, anew MEB Bgo = {cf;, (1+¢)r{;, Q}}, (k = k+1) iscreated using
CVM optimisation functi,on (Y. Chen, Pang, Kasabov, Ban, & Kadobayashi,
2009). The threshold % is aso considered as the outliers threshold, as if a
single data point away from the rest data farther than the threshold, this data

point is treated as an outlier by DE-CVM.

Theorem 6.3.3. Thetotal number of DE-CVM £ isequal to approximately \/2.

Proof. Science we guarantee that the radius of each firstborn DE-CVM 7"2 i
(j ={1,2,...,k}) islessthan 5, diameter of the given data X;, the total num-

ber of the DE-CVM £ approximatesto \/2. ]

The DE-CVM updating is terminated once X,; C Ué?:lBQf . For the overall
dataset X = U§:1Xi, let &; be the number of MEBS/CVMSs of i-th class, then
we factorise the core sets by abandoning these core vectors contained in just
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one MEB/CVM. As aresult, we have the DE-CVM modd Qpr_cva asthe
set of MEBSY/CVMsthat constructed by the above 3 DE-CVM updating cases.

k k k
Ui 1, Uj1:1(1+5)rl,j UjlleLj

k k k
UjZ ¢, Uji1(1+5)r2,j UjgleQJ

Qpe—cvm = ; (6.2)

k k k
Ujl:1cl,j Ujl:1(1+5)7"l,j UjllelJ

and summarise the computation of DE-CVM learning as Algorithm 7.

6.4 EXPERIMENTS AND DISCUSSIONS

In this section, we describe two experiments where we used DE-CVM for
banana data verification and for benchmark UCI data classification.

6.4.1 Class Factorisation Ability Test

To highlight the class factorisation ability of the proposed DE-CVM, we clus-
ter an artificial two-dimensional banana dataset (see Fig. 6.1a) containing 200
data points in a banana shaped distribution using both DE-CVM and classic
CVM. Fig. 6.1b illustrates the cluster boundary formed by 70 classic CVM
core vectors over the banana data set, where star symbols represent the core
vectors and a solid line represents the boundaries. From 6.1b, it can be seen
that al the MEB/CVM core vectors are positioned around the outer area of
datadistribution. As aresult, data points located around the inner curvature of
the banana distribution are not encompassed by the cluster boundary.

To overcome the difficulty of forming the inner curvature area of the banana
data cluster, we employ the proposed DE-CVM method by inputting a new
cluster dataset which contains 80 data points located close to the inner curva-
ture area of the banana dataset (see Fig. 6.1c, the new cluster is represented by
squares). Then we perform DE-CVM on both datasets by configuring the ba-
nana dataset as a positive class while the new cluster is configured as negative
class. Fig. 6.1c illustrates the six DE-CVM core vectors refining the cluster
boundary calculated by the classic CVM, thereby accurately depicting the in-
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Input: Set of points X € R?; parameter ¢, A, and 7
Output: A DE-CVM learning model Qpr_cvm
1. for each X; c X do

2. Initidisek — 1, T = (), and A which is the diameter of x
3 Initiaise QY by equation 6.1
4. Computer theinitial MEB BY, anditsradius+Y, and center ¢!, using
equation ?? on Q7 ! ’ 7
5. for eachx € X; do
6: if x ¢ Ué?lei,j then
7: Find t «— arg minger ||x — t||
8: if ||x — t|| < & then
o: Removet from T
10: k—k+1
11 QY = {¢(t), (%))
12: Computer anew MEB B, and itsradius (), and center c?,
using optimisation function on Q?,
13: else 7
14: Find c; < argminjc iy [[x — ]
15: Qi —{Qt, p(x)}
16 Update MEB B;/" and itsradius /" and center ¢;'1" using
equation ?? on Q!
17: if 700 S (14 S5 then
18: T—TUx
19: Undo this update
20: end if
21 end if
22: end if
23:  end for
24: Qpp-cvm — Qp-cvi U5 cij, U (1 +e)rij, UF_ Qi)
25: end for

26. Return Qpr_cvi

Algorithm 7: DE-CVM Algorithm

ner curvature of banana dataset. Furthermore, we increase the new cluster data
by adding another 50 data points that surround the left hand side of the banana
dataset, then implement DE-CVM on these two datasets. Fig. 6.1d illustrates
an approximate hyperplane, which is formed by 22 DE-CVM core vectors, in
order to discriminate the banana data from the new cluster data. From Fig.
6.1d, it can be inferred that DE-CVM is able to factorize the class character-

0O
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istics of the banana dataset by creating a more accurate boundary using fewer
core vectorsthan MEB/CV M. Similarly, by adding new cluster dataaround the

banana cluster, using the same process, we are able to reduce the core vector
size due to class factorization.

© banana data 0

o banana data
0.8 + MEB core vectors
© cluster boundary

0.8r

0.6 0.6l®

0.4}" 0.4F

0.2r 0.2F

o banana data

O new data
cross-MEBs core vectors ¢o @

o

o banana data
o new data
0.8} ® MEB core vectors 5
cross-MEBs core vectors,
@© cluster boundary o=
o
o

0.6
0.4f

0.2r

I | I I )
0 0.2 0.4 0.6 0.8 1

(c) (d)

Figure 6.1: Banana data set clustering (&) plot 200 banana shaped data points, (b) plot
the cluster boundary in black linesformed by 70 classic MEB core vectors,
(c) plot the new cluster data in the bend area of banana data and banana
data cluster boundary formed by the classic MEB core vectors and 6 DE-

CVM core vectors, (d) plot the new data surround the left hand side of the
banana data and the DE-CVM core vectors.

6.4.2 Classification Accuracy Comparison

To evaluate the classification performance of DE-CVM, we compared DE-
CVM with five other classification methods (i.e. KNN, Bayes, MLP, SVM and
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CVM) on four two-class and four multi-class benchmark datasets which are
summarised in Table 6.2.

Type Dataset No. of Features No. of Classes Size
heart 13 2 270

liver-disorder 6 2 345

two-class | ionosphere 34 2 351
breast-cancer 10 2 683

irs 4 3 150

wine 13 3 178

multi-class vehicle 18 4 846
vowel 10 11 990

Table 6.2: Summarisation of data sets characteristics

For each dataset, we conducted K'-fold cross-validation which randomly par-
titioned the original data into K subsamples. Of the K subsamples, a single
subsample was retained as the validation data for testing the model, and the
remaining K — 1 subsamples are used as training data. The cross-validation
process was repeated K times, with each of the K subsamples used exactly
once as validation data. Then we can obtained the mean value of the K results
from thefolds. In our case, we set K = 10 as 10-fold cross-validation which is
commonly used.

We also compared the class factorization ability of DE-CVM, CVM, and
SVM as these three kernel-based methods extract support/core vectors which
are the discriminative data points for each class. We consider a method to have
strong class factorization ability, if it is able to learn most discriminative class
characteristics. In other words, this is a method that is capable of extracting
fewest support/core vectors and giving highest classification accuracy along
with strongest class factorization ability.

Table 6.3 presents the comparison results of the classification accuracies and
the number of support/core vectors among six classifiers. The three columns
next to the name of datasets record classification accuracies for three conven-
tional methods, such as KNN, Bayes, and MLP where KNN and MLP achieve

of
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the highest accuracy on one dataset only. The remaining columnsin Table 6.3
summarised the classification accuracies and number of support/core vectors
extracted by those three kernel-based classification methods mentioned above.
It can be observed that the three selected kernel-based methods achieve higher
classification accuracy than those three conventional methods in general. DE-
CVM undoubtedly shows that it has the strongest class factorisation ability
among these three kernel base methods by achieving the highest classification
accuracy but extracting fewest core vectors on five out of eight datasets. The
results indicate that DE-CVM can be considered the perfect method for most
of the selected datasets.

Classifier KNN Bayes MLP SVM CVM DE-CVM
Dataset acc acc acc acc SVs acc CVs acc CVs
heart 82.59%  T75.65%  83.33% 83.19% 135  83.67% 101 84.11% 84

liver-disorder  64.92%  63.17% 71.28% 64.92% 170  59.13% 171  65.13% 138
ionosphere 64.11%  65.32%  89.16% 92.06% 135 92.73% 101  92.72% 77
breast-cancer  96.63%  95.97%  96.65% 97.07% 340 95.43% 176 97.07% 136

iris 94.67%  90.35%  95.97% 96.00% 75 96.66% 66 96.66% 63
wine 97.16% 71.31%  93.91% 74.85% 85 73.76% 86 83.12% 82
vehicle 71.04%  66.24%  77.78% 71.61% 420 71.61% 72 78.13% 92
vowel 96.89%  91.37%  98.08% 97.47% 495 97.45% 110 98.56% 124

Table 6.3: Classification accuracy(acc) and number of support vectors(SVs)/core vec-
tors(CV's) comparison on eight selected data sets

6.5 SUMMARY

In this chapter, a novel DE-CVM is proposed that learns the characteristics of
aclass(i.e. corevectors) in agroup manner. DE-CVM factorizes class charac-
teristics by reducing the sparseness area, discriminating core vectors on class
interaction hyperplanes, and enabling outliers detection. DE-CVM is evalu-
ated by conducting a comparison of classification accuracy and computational
cost on eight data sets with five conventional classification methods including
origina CVM. DE-CVM obtains the highest classification accuracy for five
out of eight datasets. Compared to CVM, DE-CVM wins on all the data sets
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except ionosphere by utilising fewer core vectors hence rendering it computa-
tionally more efficient than CVM.

In the next chapter, we will introduce a novel string kernels classification
method for string format stream data mining.



STRING FORMAT STREAM DATA MODELLING
TECHNIQUES

In this chapter, we investigate string format stream data modeling techniques.
String classification is becoming a maor area of stream data learning. Thisis
because of the explosive growth of Internet users. Network intrusions such as
SPAM emails, malicious software which formed as sequences of string data
are also increasing (Shawe-Taylor & Cristianini, 2004).

Recently, string kernels-based support vector machines have shown com-
petitive performance in tasks such as text classification and protein homology
detection (Lodhi, Saunders, Shawe-Taylor, Cristianini, & Watkins, 2002). We
proposed two novel string kernels learning methods. Meta Learning String
Kernel SVMs and String Kernel MEBSs to improve the effectiveness of the tra-
ditional string kernels SVMs.

Section 7.1 gives a brief review of string kernels and string kernels SVMs.
Meta Learning String Kernel SVMs and String Kernel MEBs will be intro-
duced in Section 7.2 and 7.3, respectively. Section 7.4 gives the conclusion for
this chapter.

7.1 STRING KERNEL SVMS

Due to SVMs success in numerical pattern recognition with the help of ker-
nel functionality, research focused on using SVMs with string kernels for
string classification tasks. As Shawe-Taylor and Cristianini (2004) and Cortes,
Haffner, and Mohri (2004) explain, apart from popularly used string kernels
like Bag-of-Words and Edit Distance, one can also use kernels like n-gram
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or subsequence, which sum up substrings or subsequence in a document, as
string kernels for a string classification task. Results from previous experi-
ments (Shawe-Taylor & Cristianini, 2004; Corteset al., 2004) have shown that
SVM with string kernel functionality is able to recognise string patterns much
more efficiently than other methods due to its ability to handle high dimen-
sional data like string data without a decrease in performance decrease. This
has made SVMs with string kernel functionality an ideal solution for DNA
prediction, document classification, language recognition, image recognition
and network anomaly detection scenarios. Even though string kernels are a
subset of the kernel domain, they have their own properties and computational
complexities associated with them. The following subsections explain about
some widely used string kernels.

7.1.1 Sring Kernel methods

Further below we review the definition of mismatch kernels (Leslie, Eskin,
Weston, & Noble, 2002) and present three new families of string kernels: Bag-
of-Words kernel, Gap-Weighted Subsequences kernel, n-gram kernel and Lev-
enshtein (or edit) distance kernel. In each case, the kernel is defined via an
explicit feature map from the space of all finite sequences from an apha-
bet S to a vector space indexed by the set of k-length subsequences from
S. These models have been used in the computational biology literature in
other contexts, in particular for sequence pattern discovery in DNA and pro-
tein sequences (Sagot, 1998) and probabilistic models for sequence evolution
(Henikoff, 1992; Altschul, Gish, Miller, Myers, & Lipman, 1990).

Bag-of-Words Kernel

In document categorisation, a collection of documents is called a ‘corpus,
which consists of a set of predefined terms and is identified as a dictionary.
A term or synonymously a word in the dictionary is any sequence of letters
separated by punctuation or spaces. On the other hand, a bag, is defined as
a set that allows repeated items. This definition of bag helps one to view a
document as a bag of terms or bag of words (BOW). This allows a document
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to be presented as a vector where each dimension is associated with aterm in
the dictionary. This representation (¢) is given as.

¢(d) = (tf(t1,d), tf(t2,d), ..., tf (tn, d)) € R,

here tf(t;,d) is the frequency of the ¢!* term in document d. Also, n is the
space dimensionality and the size of the dictionary (Shawe-Taylor & Cristian-
ini, 2004). Now, one can define afunction & in this document space to compare
the similarity between two documents d; and ds:

niy n2

Kbow(di,d2) =Y Y f(ti t;)7, (7.1)

i=1 j=1
where, d; hasn, termsand d, has ny terms. Also, f is defined as.

2 ifty =t,Ap € (0,1)

_ (7.2)
0 otherwise

f(tl’v ty) = {
where ¢, and ¢, are two terms.

N-gram Kernel

In n-gram kernel, a string s is defined from aphabet > of |3| symbols, and
IS presented in a feature space F', where each dimension is a string (Shawe-
Taylor & Cristianini, 2004; Lodhi et a., 2002). Also, ¥* represents the set
of all strings and X" represents the string set of length n. Furthermore, ss’
represents the concatenation of strings s and s’. Now, the substrings: , vy, vo
of string s, are defined such that:

s = VUV,

where, if v; = ¢ (¢ isthe empty string of O length) then, « is called to be the
prefix of s and if v, = ¢, then  is called to be the suffix of s. Now, afeature
map ¢ is defined in feature space F', with below embedding,

on(s) = {(v1,v2) : s = viuve}|,u € X", (7.3)
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The associated kernel is defined as:

Fngram(s,t) = (¢"(5), 8" (1)) = Y ¢} (s)¢n(t). (7.4)
uexn
Also, the computational complexity of n-gram kernel is written as O(n/|s|t|)
(Shawe-Taylor & Cristianini, 2004).

Gap-Weighted Subsequences Kernel

Lets,t € >." betwo strings from afinite alphabet >°. Denote the lengths of the
strings by m = |s|, n = |t| and assume without loss of generality that n < m.
Given agap penalty A\, and an integer p, the gap-weighted subsequences (GWYS)
kernel is

raws(st) = Y ¢h(s)eh(b), (7.5)
ued P

where ¢l,(s) = > 5., q) '@, u € 3" is the embedding to the feature space of
subsequences of length p.

Levenshtein (or edit) distance kernel

The levenshtein (or edit) distance associates to the difference between two
strings. The difference refers to, number of insertions, substitutions and dele-
tions required to transform string s to string ¢. Assume that string s is of length
n and string ¢ is of length m. For the string s let s(i) beits i*" character. Also
for two characters a« and b, we define r asfollows:

0 if a=b
. b) = 7.6
r(a,b) {1 otherwise (7.6)

An (n + 1)(m + 1) array d, furnishes the levenshtein distance L(s, t) between
s and t viaits (n + 1), (m + 1)** item. The calculation of d(i, j) is donein a
recursive manner by initially setting up d(, 0) and d(0, j) as

d(i,j) =min(d(i—1,5)+1,d(i,j— 1)+ 1,d(i—1,j— 1) +r(s(2),t(4))). (7.7)
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In this work, we used (%7, rather than d(i, j) for improved results.

7.1.2 Parameter Optimisation for Sring Kernels

String kernels also have different parameters like A, in edit-distance kernel,
Ap in bag-of-words kernel, sub-string size in n-gram kernel and subsequence
size in fixed length subsequence kernel, which derives different kernel matri-
ces. Hence, the parameter optimisation problem applies to string kernels as
well. Adding to the complexity, the computation cost for strings can be quite
expensive compared to numeric data, where most of the string kernels require
an internal function to map strings to numbers (i.e. function r in edit-distance
and function f in bag-of-words kernel that is explained in section 7.1.1). Also,
If one observes the experimental results mentioned in (Rieck & Laskov, 2007),
(Lodhi et al., 2002), (Sharma, Girolami, & Sventek, 2007) and (S. Sonnenburg,
2006) even the same string kernel requires different parameter combinations
on different string datasets to yield good classification accuracies. This brings
about the point that string dataset characteristics aso need to be included in a
string kernel SVM optimisation method.

7.2 A NOVEL METHOD OF META LEARNING FOR STRING CATE-
GORISATION

7.2.1 MetaLearning for Sring Categorisation - Answer for Question 4

This section discusses the motivation to use meta learning for string classi-
fication. It defines and explains meta learning, then elucidates the process
of meta learning and its applications, followed by an explanation on meta-
features. Then this chapter discusses the application of meta learning for text
categorisation using a set of text meta-features, which are calculated from text
data. After that it clearly demarcates the difference between text and string
data, clarifying their ability to use some of the text meta-features for string
classification at the end.
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Meta Learning

As Giraud-Carrier, Vilata, and Brazdil (2004) explain, meta learning is the
process of acquiring and exploiting meta-knowledge through re-learning from
meta-features. Re-learning, which is to maintain the learning algorithm un-
changed or to modify it, helps the learning system to profit from repetitive
use of similar tasks. It can be applied on a single learning system to optimise
parameters, or on a set of algorithms to select the best algorithm for a given
classification task (Vilalta, Giraud-Carrier, Brazdil, & Soares, 2004; Furdik,
Paralic, & Tutoky, 2008; Brazdil, Soares, & Da Costa, 2003; Giraud-Carrier et
al., 2004). The process of re-learning requires a set of domain specific charac-
teristics so called ‘meta-features' to evaluate the performance of an agorithm
or algorithms (Brazdil et a., 2003). In practice, metalearning is used to select
the best algorithm for a text classification (Lam & Lai, 2001; Furdik et a.,
2008), predict optimum parameters for kernels in SVMs (Soares, Brazdil, &
Kuba, 2004), and to optimise neural networks (Kord et al., 2010).

Apart from parameter optimisation, meta learning on a single learning sys-
tem is used to evolve the architecture of the learning system via experience,
such as evolving adecision tree using past experience (Brazdil, Giraud-Carrier,
Soares, & Viladta, 2008) or to evolve a neural network considering past topol-
ogy parameters (Kord et al., 2010). On the other hand, meta learning on a set
of algorithms is used in situations such as algorithm ranking (Brazdil et al.,
2003) and algorithm identification in text categorisation (Furdik et al., 2008).
Sound meta features that effectively describe domain characteristics are re-
quired in both these systems (single learning and systems with multiple algo-
rithms) (Brazdil et al., 2008; Giraud-Carrier et a., 2004).

Generally, there are three types of meta-features. Firstly, simple statistical
and information-theoretic meta-features are calculated from the dataset, such
as number of classes, number of features, degree of correlation between fea-
tures, and average class entropy (Brazdil et al., 2008). Secondly, there are
model based meta-features: which describe certain characteristics of the learn-
ing system, such as maximum number of nodes per feature in a decision tree,
kernel width of the gaussian kernel, or maximum depth of a decision tree.
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Thirdly, landmark meta-features describe the performance (i.e. accuracy, mean
squared error) of alearning algorithm (Kord et a., 2010; Brazdil et a., 2008).

Review of Meta Learning for Text Categorisation

Lam and La (2001) explain nine text meta-features for text categorisation,
later expanded by Furdik et al. (2008) in their work. Both studies use the text
meta-features to build a meta model, which selects the best algorithm for a
given document category in document categorisation.

Text Meta-features

The text meta-features elucidated by Lam and Lai (2001) and Furdik et al.
(2008) for document categorisation are:

1. TraninglnstancesPer Category: Number of positive training instances
per category.

2. Testingl nstancesPer Category: Number of positive testing instances per
category.

3. AvgDocL enPer Category: The average document length of a category.
The document length refers to the number of index termsin a document.
The average is taken across al the positive documents within a category.

4. AvgTermValPer Category: Theaverageterm weight of adocument within
acategory. The average index term weight is taken for single document
and the average is then computed for all the documentsin a category.

5. AvgM axTermValPer Category: The average maximum term weight of
a document within a category. The maximum index term weights for
individual documents are summed and the average istaken for acategory.

6. AvgMinTermValPer Category: The average minimum term weight of
a document within a category. The minimum index term weights for
individual documents are summed and average is taken for a category.

7. AvgTermThrePer Category:The average number of terms above aterm
weight threshold for a given category. The ‘term weight threshold’ is set
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globally. The number of index terms above the term weight threshold are
summed for category, and the averageis computed for all instancesin the
category.

8. AvgToplnfoGainPer Category:The average information gain of the top
n index terms of a category. The information gain of each individual
index term is computed for each category and ranked. The average is
taken across top » index terms with the highest information gain within
acategory.

9. NumlnfoGainThresPer Category:The number of index termsin a cat-
egory, where the information gain value exceeds a globally specified
threshold.

The above text meta-features explained by Lam and Lai (2001) and Furdik
et a. (2008) extracts statistical and information-theoretic information from the
dataset, and are later used to train a meta model, which identifies the most
suitable algorithm for a given document category.

Text Data versus Sring Data

As the main focus of our research isto optimise string kernel SVMs, this sec-
tion attempts to clearly define the difference between text and string data. Ac-
cording to Singha (2001); De-Bie and Cristianini (2004); Shawe-Taylor and
Cristianini (2004), a text dataset is a collection of words, where word or syn-
onymously term is any sequence of |etters separated by punctuation or spaces.
On the other hand, a string is a finite sequence of symbols from an alphabet
(Shawe-Taylor & Cristianini, 2004). This means even the word demarcation
symbols like space and punctuation can be in a string.

If one is given a string and a text dataset, it is easy to categorise them both
into their respective data types, considering their term separability (De-Bie &
Cristianini, 2004). This can beillustrated more clearly using Figure 7.1 where
there are three types of data: network data (Figure 7.1a), Reuters-21578 news
data (Figure 7.1b), and spam data which consists of spam and non-spam emails
(Figure 7.1c). While it is difficult to separate terms in both network data and
spam data, terms are easily separable in Reuters-21578 data. This helps one
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(a) Network Data (b) Reuters-21578 Data

From pudge@perl.org Mon Sep 2 12:23:15 2002 Return-P
From rpm-list-admin@freshrpms.net Mon Sep 2 12:24:03
From sitescooper-talk-admin@lists.sourceforge.net Mon
From DNS-swap@lists.ironclad.net.au Mon Sep 2 12:20:
From tips@spesh.com Mon Sep 2 12:29:16 2002 Return-P
From justin.armstrong@acm.org Mon Sep 2 12:29:05 200
From DNS-swap@lists.ironclad.net.au Mon Sep 2 12:29:
From webster@ryanairmail.com Mon Sep 2 1Z2:30:45 2002
From updates-admin@zimian.com Mon Sep 2 12:29:39 200
From Oxdeadbeef-request@petting-zoo.net Mon Sep 2 12
From rpm-list-admin@freshrpms.net Mon Sep 12:32:39
From fork-admin@zent.com Fri Aug 23 11:08:40 2002 Ret
13:12:45
From fork-admin@zent.com Mon Sep 2 16:22:33 2002 Ret
From ilug-admin@linux.ie Mon Sep 2 13:14:12 2002 Ret
From aileenBemailZ.qves.net Fri Aug 23 11:03:13 2002
From OWNER-NOLIST-SGODAILY*JM**NETNOTEINC*-COMBSMTPL.A
From approvals@mindspring.com Fri Aug 23 11:03:23 200
From weseloh@bibsam.kb.se Fri Aug 23 11:03:26 2002 Re
From des34dnewsaGhotmail.com Fri Aug 23 11:03:27 2002
From jjj@mymail.dk Fri Aug 23 11:03:31 2002 Return-Pa
From seko_mam@spinfinder.com Fri Aug 23 11:03:33 2002
From safety330@111.newnamedns.com Fri Aug 23 11:03:37
From ilug-admin@linux.ie Fri Aug 23 11:07:47 2002 Ret
From ilug-admin@linuz.ie Fri Aug 23 11:08:03 2002 Ret
From belllhmed@yahoo.ca Fri Aug 23 11:17:31 2002 Retu
From health104580m436mail.com Fri Aug 23 11:17:32 200
From ig@insurancemail.net Fri Aug 23 11:17:41 2002 Re
From george300@Flashmail.com Fri Aug 23 11:17:45 2002
From seko_mam@spinfinder.com Fri Aug 23 11:17:49 2002

(c) Spam Data

o

o

From rpm-list-admin@freshrpms.net Mon Sep

<o

e e = T = T = T e e R =1

Figure 7.1: String and Text Data: (a) Network traffic data produced by network ap-
plications. (b) Data from Reuters-21578 dataset. (c) Spam data which
consists of ham and Spam E-mail messages (in every instance, the first
character represents the class |abel followed by actual data)
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to categorise both network data and spam as string data and Reuters-21578 as
text data.

With this difference between string data and text data in mind, the next sub-
sections explain our motivation to use text meta-features explained for string
classification.

Motivation for using Meta Learning for Sring Categorisation

All text meta features described before (apart from Traningl nstancesPer Cat-
egory and Testingl nstancesPer Category) are computed using terms and their
frequencies. Inthisway it is possible to represent a string dataset as a collec-
tion of terms and their frequencies, which helps to derive some string meta-
features that are computed by terms and their frequencies. Now these string
meta-features help to employ metalearning on string classification.

7.2.2 MetaLearning for Sring Kernel SYM Optimisation

Sring Meta-features

In order to use the meta-features as discussed in section 7.2.1 for string classi-
fication, the string dataset needs to be presented as terms and term frequen-
cies. We accomplish this in a string dataset by using splitting characters:
"+ :0{}]- ,-\” to split a string into set of terms or synonymously tokens.
This approach is referred as ‘tokenisation’ in the literature (Shawe-Taylor &
Cristianini, 2004). To explain tokenisation, consider the highlighted string in
Figure 7.2, which is from a network application that uses http protocol. Using
specified splitting characters, one can split the string into tokens: “akt = 0;”,
“r", “nvarbb;s flash = 0;", “r", “nif”, “navigator”, and “appV”. Now atoken
frequency table is generated, as shown in Table 7.1. Thistoken-frequency in-
formation is used to compute the string meta-features explained in this section.

Themain difference between the text metafeaturesdiscussedin section 7.2.1
and string meta-features explained here, isthat the text meta-features are cal cu-
lated for atext category in atext dataset, but, the string meta-features are cal-
culated for the entire string dataset. Out of nine text meta-features discussed in
the section 7.2.1, seven are considered in deriving these string meta-features.
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Figure 7.2: String Data: Network traffic data produced by network applications (in
every instance, the first character represents the class label of the network
application, followed by actual network traffic data)

Assume a string dataset that has » number of instances. The seven string
meta-features are:

1. AvginstancelLen: The average instance length of the dataset. The in-
stance length refers to number of tokens in an instance. The average
is taken across all the instances. If i*" instance has N; tokens, then the
average instance length for that dataset is ZHZTlN

2. AvgTokenVal: The average token weight of an instance across a string
dataset. Initially, the token weight is calculated for each token and the
average is computed for single instance. Then, the average token weights
for each instance are summed and the average is computed for all the
instances.

If there are m unique tokensin * instance, the average token weight for
astring dataset is written as:
LS TW (5,
Average token weight of the string dataset = 2oiz1 2= W) ,

mn
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Token Token Frequency
akt = 0; 1
r 2
nvarbb;sflash = 0; 1
nif 1
navigator 1
appV 1

Table 7.1: Token Frequency Table: Tokens and their frequenciesfor highlighted string
inFigure 7.2

(7.8)

where TW (j,4) is the token weight of ;¢ token in i** instance. Accord-
ing to the interpretation given by Hersh (2008) of the term weight, the
TW (j,i) can be written as:

TW (j,4) = TF(j,1) x IDF(j), (7.9

where IDF(5) istheinverse document frequency of ;" token, and TF(j, 1)
is the frequency of j** token in instance i. Furthermore, according to
(Hersh, 2008), the IDF(5) is computed as:

IDF(j) = log +1, (7.10)

TF()

where TF(5) is the frequency of the ;" token in the dataset. Now, con-
sidering (7.9) and (7.10), equation (7.8) isrewritten as:

SIS TFG) (log i + 1)

mn

Average token weight of the string dataset =

(7.11)

3. AvgM axTokenVal: The average maximum token weight of an instance
acrossastring dataset. Maximum token weights of an instance are summed
and the average is taken across all instances.



.2 A NOVEL METHOD OF META LEARNING FOR STRING CATEGORISATION

4. AvgMinTokenVal: The average minimum token weight of an instance
across a given string dataset. Minimum token weights of an instance are
summed and the average is taken across all instances.

5. AvgTokenThre: The average number of tokens above a token weight
threshold for a given string dataset. The token weight threshold is set
globally. The number of tokens where the token weight is above the
threshold are summed and the average is taken across all instances.

6. AvgToplnfoGain: The average information gain of the top r tokens in
the string dataset. The information gain of each individual token is com-
puted for each instance and ranked. Then, the average is taken acrosstop
r terms with highest information gain.

7. NumlnfoGainT hres.The average number of tokensin an instance where
the information gain value exceeds a globally specified threshold.

Meta Learning for String Classification

The mentioned string meta-features help to employ meta learning on a string
classification. The principle of using meta learning for string classification is
discussed in section 7.2.2. A novel string kernel SVM optimisation method is
elucidated in section 7.2.2.

String Data (D) | | Tokenization ()

Token-frequency space
@

Figure 7.3: String meta-feature generation process

1UZ
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Training | (Dirr) ', D
String Data Meta Features (f )
. Set Pool - Meta Learnin
Sting Dat (D,f U |(Dmf Leaming 1 (7, | | preices
Set Pool - Algorithm ’
Testing (L) Accuracy
(L) String Data (D) ’ (Yoms, ')
Se(tLF;sc;Ol P Meta Features | (/'».0m)
New (c ') Meta Model
Parameter
Combination

Figure 7.4: The procedure to employ metalearning for string classification

Meta Learning for String Classification: Principle

Consider astring dataset D, which isrepresented as avector in token-frequency
space 2, where each dimension in 2 is associated with one token. Now, the
dataset D isrepresented viafunction w in this new 2 token-frequency space:

w(D) = (TF(t1, D), TF(ts,D),....,TF(ty, D)) € , (7.12)

where T'F(t;, D) is the token frequency of ;% token in the string dataset D,
and N is the number of unique tokens in the dataset. Now one can derive a
function f, : @ — R:

fp(D) = f/ D (7-13)

)

where f; ,, represents the value for the pt" string-meta feature for D. For the
string dataset D, there are p’ finite meta-features, where all string meta-features
(D) (p = 1,2,3,...,p') are well defined. This sting meta-feature generation
processis shown in Figure 7.3.

Using the above discussed sting meta-features, Figure 7.4 explains the prin-
ciple of metalearning for string classification. Assume there is a string dataset
pool L with !’ datasets, where, each string dataset D; (D; € L, = 1,...,1')
Is again subdivided into unique D;rr (training) and D;rg (testing) datasets,
which creates training (L) and testing (Ls) dataset pools. The string meta-
feature f]/,’ Dy, 1S COMputed for dataset Dirgr. Also, for Dirg, the machine
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learning algorithm LA with parameter combination ¢, generates Yp,, . . clas-
sification accuracy. These computed string meta-features (f, 5,,,..), parameter
combinations (c) and accuracy information (Yp,,,.) generate a meta model
via regression, which is able to predict the classification accuracy for a new
string dataset, given the computed sting meta-features and the parameter com-
bination. Hence, for a new string dataset D;;g, the meta model predicts the
accuracy Yp,,. ~ for parameter combination ¢’ by computing string-meta fea-
tures f) p,...-

Meta Learning for Sring Kernel SYM Optimisation: Algorithm

According to the principle introduced in this section the built meta model is
able to predict the string classification accuracy for a machine learning algo-
rithm on a novel string dataset, using computed string meta-features. This
section explains the procedure to use this principle (meta learning for string
classification) to optimise string kernel SVMs, which isshown in Algorithm 8.

Algorithm 8 explains the procedure of using metalearning to optimise string
kernel SK with SVM. The proposed algorithm uses training string dataset pool
Lrg, testing string dataset pool Ly g, training parameter pool C' and testing
parameter pool C’ as inputs. Also, SVM with string kernel SK is set as the
learning algorithm (L A). Initially, a meta model is built using meta features
calculated for each dataset in L1 with accuracy information obtained for each
parameter combination in C' via n-fold cross validation. Then, for each new
string dataset in Lyg, the built meta model predicts the classification accuracy
for each combination in C’. The combination (¢;) which yields the highest
accuracy is presented as the optimum parameter combination for dataset D;7s.

7.3 A NOVEL FAST STRING CLASSIFICATION METHOD
7.3.1 Motivation
Despite of the high performance of metalearning string kernels SVMson clas-

sification accuracy, the computational cost of the learning processis huge. Al-
ternatively, we developed another novel method string kernels MEB which
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input :
Lpr =Training String Dataset Pool
Ls =Testing String Dataset Pool
C =Parameter Combination Pool for Training (c € C)
C" =Parameter Combination Pool for Testing (¢’ € ")
LA =SVM with String Kernel SK
output: Parameter combination ¢; which yields the best accuracy for
sti ng dataset Dirs

fori—1tol’do
Pick Dirr from Ltr

for p— 1top’ do
| Compute f,
end
repeat
Pick a parameter combination ¢ from C
Do 10-fold cross validation on D7y, using LA with parameter
combination ¢ whichyields Yp,,.,. . accuracy
until no more parameter combinationsin C;
end

DiTr

Build aregression model (meta model) using f; ... ¢, @ad Yp,,.,
for l — 1tol’ do
Pick D;rg from Lpg
for p— 1top’ do
| Compute f/ ..
end
repeat
Pick a parameter combination ¢’ from C’
Predict accuracy Yp,,, ~ for LA with parameter combination ¢/
using build meta model
if Yp,,4.c 1ISMaximumthen

| ="/
end
until no more parameter combinationsin C,

end
Algorithm 8: The proposed meta learning algorithm for string kernel SVM
optimisation
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extends origina MEB/CVM agorithm with string kernels methods. As we
discussed in chapter 4 the computational complexity of MEB is much smaller
than SVMs, the string kernel learning time for string kernels MEB is shorter.

7.3.2 Sring Kernels MEB Algorithm Description

Given a data matrix X = {x1,x2,...,%;}, MEB over X is modelled as the
smallest hypersphere Bx = {c,r, X}, where c,r are the centre and radius of
Bx, respectively. The Bx is calculated by solving the optimisation problem:

ming r2

subject to ||c — ¢(x;)||> = (o(x;) — ) (¢(x;) — ¢) <72 . (7.14)
i=1,2,....1

which can be solved by introducing a Lagrange multiplier «; > 0 for each
constraint

L(c,r,a) =7r%+ Zﬁzl (% [H¢(XZ) —cl]* - 7"2}
=... ) (7.15)

I I
= Dim1 Qik(Xi, Xi) = D05 5oy QiiR(Xi, Xj)

Given a set of string S = s, s9,..., s While is defined from alphabet > of
|| symbols. MEB Bg is ableto be obtained by transferring string kernels (e.g.
bag-of-words) of S into equation 7.15 as:

l l
L(Ca Ty O‘) = Z Odi“bow(sia Si) - Z @i@jﬁbow(sia Sj)' (716)
i=1

i,j=1
The optimised L agrange parameter o* is calculated by solving the problem as:

. l l
ming, Zizl Oéi"q'bow(sia 51) - Zi,j:l O‘in/’ibow(sia 3j>

. (7.17)
subjectto Y . joi =1 ando; >0,i=1,2,...,1

According to the Karush.Kuhn.Tucker (KKT) theorem that the Lagrange
parameters can be non-zero only if the corresponding inequality constraint is

1Uo
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an equality at the solution, only these Sy, c S that lie on the surface of the
optimal hypersphere have their corresponding «f non-zero. Thus, wetreat S,
as the support vectors of S.

7.3.3 Online Sring Kernels

In this stage, Meta L earning String Kernel SVMs and String Kernel MEBs can
only work in batch learning mode. However, the combination of string kernel
with MEB gives a new direction of string kernel online learning mode. In the
future, we can implement the string kernel online learning by taking a suitable
online kernel learning method and replace the kernel matrices with the string
kernels matrices.

7.4 SUMMARY

This chapter gives a brief introduction to string kernels SVM and presents two
novel string kernels learning methods: Meta Learning String Kernel SVMs
and String Kernel MEBs. Although these two methods are for batch learning
only, the combination of batch learning methods and online learning methods
Is aso proper for stream data learning. These two methods are able to outper-
form traditional string kernels methods on both accuracy and efficiency. The
evaluation of these two methods is presented in chapter 9
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THE APPLICATION OF HIERARCHICAL CORE
VECTOR MACHINES TO SOLVE NETWORK
INTRUSION DETECTION

This chapter presents a case study of network intrusion detection. We use
RCV1-V2 (Lewis, Yang, Rose, & Li, 2004) for asimulation of network strings
examination as RCV1-V2 gives a one level multi-label (i.e. not hierarchi-
cal multi-label) text classification problem. KDD’99 (KDD99, 1999) poses a
hierarchical multi-label Internet security problem, we thus use KDD’99 as a
comprehensive network security real application case study.

8.1 BACKGROUND

Upon the explosive growth of number of Internet users, malicious activity such
asdenial of service attacks, port scans or even attempts to crack into computers
by monitoring network traffic are also increasing. These malicious activitieson
the Internet, also known as network intrusions, trouble the Internet users and
cause Internet security threats. Network intrusion detection systems (NIDS)
are developed for safeguarding the users and their systems from any threats of
Internet intrusion. As apreventive measure, existing NIDS mostly employ two
popular intrusion detection methods: (1) the white and black list methods fil-
ter spam through network 1D/address validity verification (Chirita, Diederich,
& Nedl, 2005); (2) the Intrusion signature recognition methods detect any
intrusions by comparing network data with a predetermined attack signature
(Ye & Chen, 2001). However, both methods have proved brittle to any small
ateration of attack (Kofcz, Chowdhury, & Alspector, n.d.). Thisrequires ordi-

108



o.l BACKGROUND

nary NIDS (e.g. afirewall system for a personal computer) to be updated in a
regular timeinterval.

As an aternative solution, machine learning methods solve the above dif-
ficulty confronted by existing NIDS, because the attack signatureffilter are
learned dynamically from the streaming network data. Inthisfield, Mukkamala
and Sung (2003) implemented support vector machine (SVM) method on the
KDD Cup dataset and obtained an overall 99% classification accuracy. Frank
and Mda-c (1994) took decision trees asthe most suitable classification method
for intrusion categorisation. Pandaand Patra (2007) compared the performance
of Naive Bayes with the neural network approach, and authenticated the suit-
ability of Naive Bayesfor intrusion detection modelling. Despite that, machine
learning for network intrusion detection still have underlying issues related to
accurate network threats authentication. With the vulnerability of present-day
software and protocols combined with the increasing sophistication of attacks,
network-based attacks are on the rise (Staff, 2005), which has made an aston-
ishing revenue loss every year. The 2005 annual computer crime and security
survey (CSI & FBI, 2005) reported that the financial lossesincurred by the re-
spondent companies due to network attacks/intrusions were US $130 million.

In terms of using machine learning for intrusion detection, existing methods
perform intrusion detection by grouping any network traffic into several major
clusters. Thisin practice often reduces the detection rate/efficiency becausethe
detailed information of network traffic, including attack messages, is ignored.
For example, spam is simply divided into several major categories, such as
junk mail, IM spam, TXT spam etc. It could be obviously advantageous to
spam detection, if the junk mail could be dividable into unsolicited bulk e-mail
(UBE) and unsolicited commercial e-mail (UCE). Thus, it is important for
network intrusion detection that the whole picture of network traffic/intrusion
IS presented as a hierarchy as seen in Fig.5.1, and it is necessary to do multipl
labelling of the network traffic/intrusions.
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0.2 EXPERIMENTS AND DISCUSSION

8.1.1 Multi-labedl Intrusions

Intrusion detection is formatted into a hierarchical multi-label classification
(HMC) problem. A high-speed hierarchal minimum enclosing balls (HCV M)
algorithm is proposed for multi labelling network intrusions in a MEB/CVM
structure where MEBS/CVMs are separating, encompassing, and overlaping
with each other. A minimum enclosing ball (MEB/CVM) computes a hyper-
sphere of minimum radius which encloses a specific type of network traffic/in-
trusion. Given an unlabelled network message, the proposed HCVM seeks a
MEB/CVM enclosing the message, and multi-labelsit by the MEB/CVM’s po-
sition and its ancestor relationship in the HCVM. In the experiments, we have
authenticated the proposed HCVMs classification proficiency and computa-
tional efficiency. For the HMC from KDD’99 dataset, the proposed HCVM
exhibits an outstanding classification accuracy for U2R and R2L attack types.
Furthermore, the capability of HCVM for handling single-level multi-label
datais aso demonstrated in another experiment with the RCV 1-V 2 dataset.

8.2 EXPERIMENTS AND DISCUSSION

For testing the capability of the proposed HCVM for multi-label, in particular
for hierarchical multi-label classification, we examined the developed HCVM
onthe RCV1-V2 text dataset (Lewiset a., 2004), and the benchmark KDD’ 99
dataset (KDD99, 1999), respectively.

8.2.1 Experimental setup

The proposed HCVM isimplemented in MATLAB version (7.6.0), ona1.86 H 2
Intel Core 2 machinewith 2G B RAM. In our experiments, we use a non-linear
Gaussian kernel k(z,y) = exp(— |« —y|* /8) with 5 = L7 |1z — y?-”.
We set thee as 1e — 6 for (1 + €)-approximation of MEB/CVM, and the Gaus-
sian kernel parameter 5 as 1000.

Parameter n in Algorithm 6 is a positive integer, representing the number of

the nearest MEBS/CV Msto the input instance. Thus, » is greater than or equal
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0.2 EXPERIMENTS AND DISCUSSION

to the maximum number of multi-labels for a single instance. For example,
in the case of the RCV1-V2 dataset, n takes avalue of 11. It is worth noting
that »n in practice is more often determined by cross-validation tests over the
training data. In the case of KDD’ 99 dataset, » is set to 3 because the highest

93.6% accuracy is achieved when n equals 3 in cross-validation tests, as shown
inFig. 8.1.

Average test accuracy (in %)

1 2 3 4 5 6
Control Parameter n

Figure 8.1: Cross validation tests of Algorithm 6 for parameter n determination on
KDD’ 99 dataset

8.2.2 Smulation of Network Strings Examination: RCV1-V2 Dataset

The RCV1-V2 data set collected by Lewis et al. (2004) contains newswire sto-
ries from Reuters Ltd. RCV1-V2 and was pre-processed by several schemes,
including removing stopping words, stemming, transforming the documents
to vectors with TF-IDF format and cosine normalisation, etc. Among the
three category sets (Topics, Industries, and Regions) of RCV1-V2, we con-
sider, analogous to the previous works done by Lewis et al. (2004), only the
Topics category set, with the statistics of training and testing dataset is given
intable 8.1.
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0.2 EXPERIMENTS AND DISCUSSION

Asasimulating network string examination, we implement Algorithm 5 for
HCVM training, and Algorithm 6 for testing the generated HCVM model.
Algorithm 6 checksthe n nearest MEBS/CVMs of the HCV M, and labels each
new instance as one of the classes of the MEBS/CV Ms enclosing the instance.

. Label size frequency (%)
Data set #inst. #feat. #label 1 9 3 4 >5

RCV1-V2train | 23,149 | 47,236 101 12.3%  29.5% 35.7% 10.8% 11.7%
RCV1-V2test | 781,265 | 47,236 103 12.3%  25.4% 45.3% 10.9% 15.3%

Table 8.1: Satistics of RCV1-V2 dataset

For performance evaluation, we compare HCVM with SVM (Chang & Lin,
2001) on one of the most used performance measures for information retrieval
(Hripcsak & Rothschild, 2005), F-measure, which is calculated as the har-
monic mean of precision (P) and recall (R):

2PR

F — measure = PR (8.1
where
l . . l . .
p_ D i1 YjY; n_ 2 _i—1 YjY; (8.2)
I~ 0 '
2 i1 ?J > i1 Yj

y;l is the true label of i** instance for class j from total [ testing instances and

g;i is the predicted label. In our experiments, we use two approaches. macro-

average F-measure and micro-average F-measure (Tague-Sutcliffe, 1997) which
extended the F-measure from single-label to multi-label. The macro-average

F-measure for atotal of d labelsis obtained from the unweighted mean of the

|abel F-measures and can be calculated as,

d l ~ 1
1 2> i Yy
:EZ 1935 (8.3

z 1yj+21 1yj
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0.2 EXPERIMENTS AND DISCUSSION

The micro-average F-measure, which considers predictions from all instances
together and calculate the F-measure across all |abels,

d ! w
2> i1 2 i1 @yyﬁ

: . (8.4)
S gt oy

micro — F =

The additional measurement we used for performance evaluation is AUC
(the area under the Receiver Operating Characteristic (ROC) curve). AUC
reflects mainly the ranking quality of predictions. A perfect classifier has an
expected AUC score equal to 1. A detailed description of the AUC and ROC
graphs can be found in (Fawcett, 2003).

Methods | F-Measure | Macro-Average F-Measure | AUC
SVM 0.76 0.51 0.85
HCVM 0.86 0.71 0.91

Table 8.2: AUC, F-Measure and Macro F-Measure comparison

Table 8.2 presents the comparison result. The proposed HCVM performs
10% better than SVM on Macro F-measure, 20% better on Micro F-measure,
and 6% better on AUC under the condition that the complete dataset is used
for training. Fig. 8.2 gives further comparison on Macro F-measure and Micro
F-measure, when the sizes of training sets vary from 10% to 100%. As seen,
the proposed HCVM consistently and significantly outperforms the SVM by
10% — 30% on both Macro F-measure and Micro F-measure despite the change
in the size of training set. Fig. 8.3 gives the ROC comparison, where the AUC
areaof HCVM is seen compassing the AUC area of SVM, which demonstrates
again that the proposed HCVM provides crisply better quality of predictions
than SVM at any size of training set.

The poor performance of SVM can be explained in part by the fact that
the SVM hinge loss is not well suited for unbalanced data (Zhang & Oles,
2000). However, HCVM is the aggregation of MEBS/CVMs on multi-label
hierarchy. The advantages of HCVM on class-imbalanced problem are: (1)
single MEB/CVM s capable of modelling whatever skewed class (i.e. aclass

110



0.2 EXPERIMENTS AND DISCUSSION
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(a) Micro-Average F-measure (b) Macro-Average F-measure
Figure8.2: (a) and (b) plot the Micro-Average F-measure and Macro-Average F-

measure of different number of training dataset for both SYM and HCVM
respectively.

0.6}

0% 200  a0% 4 80% 90% 100%

0% 200 a0% 4
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number of training set

(8) ROC graph for SVM (b) ROC graph for HCVM

0%  50% 60%  70%
number of training set

Figure 8.3: ROC graphs with AUC results of 10 chunks training dataset with same
size. Thefilled areasin (a) and (b) correspond to the AUC for SYM and
HCVM respectively.

with fewer samples than other classes) more accurately; and (2) HCVM is
convenient to allocate more computing power (i.e. more MEBS/CV Ms) for the
classification of the skewed-class.

8.2.3 Internet Security Application: KDD’99 Datasets

KDD’99

KDD Cup 1999 dataset (KDD99, 1999) contains 5 million Internet connec-
tion records. Each record encodes 41 connection features including 1 class
label, 34 continuous features, and 7 symbolic features. The class label iden-
tifies one of 22 network connection types including normal, buffer_overflow,
guess_password etc. All connection features are assumed to be conditionally
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independent. Apart from the normal connection type, the rest of 21 attack
types are associated with 4 magjor categories of attack, they are:

1. DOS, denial of service, e.g. back;

2. R2L, unauthorised access from a remote machine, e.g. guessing pass-
word:;

3. U2R, unauthorised access to local superuser (root) privileges, e.g. buffer
overflow:;

4. PROBE, information gathering, e.g. port sweep.

Data Preprocessing

For data preprocessing, we replace the original label for each instance with a
set of numerical labels by the following rules: the major attack categories stay
at the head followed by its subcategories. For example, back’, asthefirst sub-
category of DOS attack, is represented as (1,1), and the second subcategory
'land’, as (1,2). In this way, al labels can be transformed into a numerical
hierarchical structure as shown in Fig. 8.4. Additionally, we normalise ev-
ery continuous feature into [0, 1], and encode every symbolic feature to binary
digit.

Back\ Land K’od\ (eptune
@1 J\ @2 ) @ | 24 ||

Figure 8.4: KDD99 data classification label replacement

Teardrop
(2,5)
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Comparison Results

For constructing HCVM, we compute MEBS/CVMs and core sets for 21 sub-
categories and 4 major categories of attacks, respectively. For each category
and subcategory, we use the instances of the core set as the core vectors. As
aresult, we obtain 25 core vector sets in total corresponding to 4 major cate-
gories plus 21 subcategories of attacks. Table 8.3 and Figure 8.5 present the
comparison of our classification results to the results achieved by Bernhard

who is the winner of KDD’ 99 cup (Elkan, 2000).

Actual VS Predicted

|| Actual Normal | Actual DOS | Actual U2R | Actual R2L [ Actual Probe

Bernhard predicted Normal 60262 5299 168 14527 511
HCVM predicted Normal 920431 36818 9845 2603 2084
Bernhard predicted DOS 78 223226 0 0 184

HCVM predicted DOS 153064 3619301 10341 14732 85932
Bernhard predicted U2R 4 0 30 8 0
HCVM predicted U2R 6 3 43 0 0
Bernhard predicted R2L 6 0 10 1360 0
HCVM predicted R2L 321 193 44 517 51
Bernhard predicted Probe 243 1328 20 294 3471
HCVM predicted Probe 2843 2104 412 506 35237
Bernhard total accuracy 99.5% 97.1% 13.2% 8.4% 83.3%
HCVM total accuracy 94.6% 93.2% 82.7% 45.9% 85.7%

Table 8.3: Compare the classification accuracy with (Bernhard 1999) who is the win-
ner of KDD’ 99 cup

As seen from the table, Bernhard (1999) achieved an extremely high clas-
sification accuracy of 99.5% on normal connect type, however U2R and R2L
showed poor classification performance, with none of them exceeding 15%,
because of their class size being smaller than the other classes. Although the
overall classification accuracy of the proposed HCVM is dlightly lower than
that of the Bernhard’'s method for normal connection type and DOS type at-
tacks, the proposed HCVM outperforms Bernhard's method on the classifica-
tion of 3 most important classes. HCVM particularly increases the classifica-
tion accuracy of U2R and R2L by 70% and 35%, respectively. This demon-
strates the advantage of the proposed HCVM, which enables a more accurate
approximation of class information, even for avery small dataset.
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Figure 8.5: Compare the classification accuracy with the winner of KDD’99 cup on
each attack type

To evaluate the efficiency of the proposed methods we computed the number
of CPU time, support vectors and test error rate of HCVM and SVM with
different sizes of training datasets. As seen in Fig. 8.6a the time cost of
HCVM increases more slowly than the SVM. In addition, Fig. 8.6b shows
the number of support vectors found by HCVM stays constant regardless of
the training dataset size. For SVM, the number of support vectors increases
proportionally to the dataset size. On comparison of test error rate, Fig. 8.6¢c
indicatesthat HCVM constantly provides lower error rate than SVM, specially
when the training dataset size is small.

8.3 SUMMARY

We have evaluated the proposed HCVM method for network intrusion detec-
tion applications In our experiments, we have implemented the HCVM on
benchmark datasets from UCI archives such as KDD’99 and RCV1-V2. The
experimental results show that the proposed HCVM s clearly more efficient
and accurate than the traditional methods, especially for the U2R and R2L
problem of the KDD’ 99 dataset.

Next chapter presents a case study for face membership authentication.

11/



0.0 SUMMARY 110

-*HMEB
1e5| ©-SvM
7 ©SVM 15|

-
€ tea HMEB|
o
@
2]

.
>
%]
E 1¢3] ; 1ed|
s 3
£ £
£ 5
D lezy £ //_‘,__,,4,74«———‘—!———*—"
o
(&) le3f
lely
letik 3k 6k 10k 30k 60k 100k 300k 600k 1M 9Kk 3k 6k 10k 30k 60k 100k 300k 600k 1M
size of training set size of training set
(@) CPU time (b) number of support vectors
30
-©-SVM
-“*HMEB

=200 ]

S

=

=

10}

©

g

=

(S

g

@ 101

3\—‘-\—»—‘—0—0—0—0

1 1 1 1 1 1 1 1 I
(f\l.k 3k 6k 10k 30k 60k 100k 300k 600k 1M
size of training set

(c) classification error rate

Figure 8.6: (a) CPU time required by HCVM and SVM, (b) number of support vec-
tors created by HCVM and SVM with different size of training dataset,
respectively. (c) the error rate variation against the size of training dataset.



THE APPLICATION OF DYNAMIC EVOLVING CORE
VECTOR MACHINES TO SOLVE FACE MEMBERSHIP
AUTHENTICATION PROBLEM

This chapter presents a case study of face membership authentication (FMA).
To evaluate the class factorisation ability of DE-CVM (Y. Chen, Pang, &
Kasabov, 2010), we study the FMA problem (Pang, Kim, & Bang, 2005)
which is to distinguish the membership class from the non-membership in a
total group through abinary class classification. FMA involves different levels
of class overlapping which include the most discriminative class characteris-
tics (Garcia, Algo, Sinchez, Sotoca, & Mollineda, 2008) because class over-
lapping increases while the size of the membership group is closeto the size of
non-membership group. The size of the membership group can be dynamically
changed which makes class characteristic of membership and non-membership
manually adjustable. The smaller the size of membership group, the less dis-
criminative class characteristics are invol ved.

Section 9.1 explains the background of face membership authentication,
Section 9.2 presents dataset description and data pre-processing. The experi-
ment results for DE-CVM are presented in Section 9.3. Section 9.4 gives the
conclusion.

9.1 BACKGROUND
Membership authentication is a typical problem in digital security schemes

(Pang, Kim, & Bang, 2003). The problem can be generally depicted asfollows.
Consider a certain group of people G with N members, which is the universal
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set. If there exists an arbitrary subgroup M such that M ¢ G and |M| < N/2,
then it is a membership group, and the remaining people M = G — M make a
non-membership group. Thus, the objective of membership authentication is
to distinguish the membership M class from the non-membership class A/ in
the group. Since anonymity is an essential feature of digital security schemes
(M.-H. Yang, Ahuja, & Kriegman, 2000), this would require membership au-
thentication to allow changing dynamically the size of the membership group
and the members in that group. Therefore, unlike all previous types of works
on face recognition for security, where identification of a given face image
Is needed, dynamic membership authentication requires to authenticate an in-
dividuals membership without revealing the individuals identity and without
restricting the group size and/or the members of the group. For example, for
Security or access control, the permission such as the right to enter an impor-
tant building is often assigned to many individuals. To get the permission,
it is required that members of the group be distinguished from nonmembers,
while the members need not be distinguished from one another due to privacy
concerns (Schechter, Parnell, & Hartemink, 1999).

For dynamic face membership authentication, Xie, Xu, and Hundt (2001)
introduced a verification system, in which they authenticated face member-
ships by combining a face recognition method using template matching and a
face verification using single support vector machine (SVM) classifier. Since
the system is not entirely independent from face identification, it is not areal
dynamic membership authentication system according to our definition. Pang
et a. (2003) introduced an SVM ensemble method for membership authen-
tication in dynamic face groups. It was a novel membership authentication
method for two main reasons. First, it performed the membership authentica-
tion in terms of binary classification without revealing the individual s identity,
I.e. it was only concerned with whether a member was included in a mem-
bership group or not. A powerful SVYM ensemble combining several binary
SVM classifiers was introduced for supporting this property. Second, it per-
formed dynamic membership authentication without restricting the group size
and/or the members of the group, i.e. the membership authentication environ-
ments could be changing dynamically. An effective face representation using
an eigenfeature fusing technique was introduced to support this requirement.
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However, Pang et al. (2003) also found that the SVM ensemble method could
only remain stable for a membership group whose size is less than 45 persons
(16.6% of total group). As the membership group size increases, its member-
ship authentication performance becomes poorer and very unstable. Further-
more, when the size of the membership group becomes similar to the size of
the non-membership group, it is almost impossible to obtain a satisfactory au-
thentication performance. Thisis due to acomplicated mixed data distribution
among the membership and non-membership faceimages, asit isvery difficult
to discriminate such datain terms of only one classifier even if itsclassification
performance is powerful.

9.2 IMAGE DATA PRE-PROCESSING

In pre-processing, a data splitting procedure divides the data iteratively, and
anumber of CVM classifiers follow each step of the data partition. Here, by
using locally linear embedding (LLE) (Pang et a., 2005) dimensionality re-
duction theory, we compressed member faces and nonmember faces as a set of
L LE eigenfaces which together characterise the variation between all the mem-
ber face images and nonmember face images, respectively. we partitioned the
training set by a membership-based clustering with the membership eigenfaces
and non-membership eigenfaces as two cluster centres.

9.2.1 LLE Eigenface

Compared with the linear dimensionality reduction method PCA (Pang et al.,
2003), LLE isamethod for nonlinear dimensionality reduction introduced by
Roweis and Saul (2000). This method recovers global nonlinear structure from
locally linear fits. It attempts to preserve as much as possible the local neigh-
bourhood of each object, while preserving the global distances to the rest of
the objects. These properties of the method might not be of benefit for data
classification, but they definitely imply a better clustering of the data. Here,
we represent the whole set of face images in the membership group (or non-
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membership group) as a set of membership (or non-membership) eigenfaces,
which we obtained from the L LE elgenface technique as explained below.

A given face feature dataset consists of NV real-valued vectors x. Each vec-
tor x is a high-dimensional vector with dimensionality D, and y; is the low-
dimensional vector embedded in x; with embedding dimensionality d, where
D >> d. The computation of LLE eigenface involves an optimal embed-
ding procedure that reduces a vector from high-dimensional data x to low-
dimensional datay; by minimising the following cost function:

2

(9.2)

Oy) =)
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This procedure consists of three steps:

Step 1. Compute the neighbours of each data point x; by computing pairwise
distances and finding neighbours. In the smplest formulation of LLE,
one can identify K nearest neighbours per data point by measuring the
Euclidean distance.

Step 2. Compute the weights 17;; that best reconstruct each data point x; from
its neighbours, minimising the following cost function by constrained
linear fits:

2

(9.2)
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Step 3. Compute the matrix M in terms of the previous weights computation
M= (I-W)T(1-Ww). (9.3)
where I isthe N x N identity matrix.

Note that the bottom d + 1 eigenvectors of the matrix M are corresponding
to its smallest d + 1 eigenvalues. Thus, for fixed weights vectors 1;;, the
embedding vectors y; are found by minimising the cost function in equation
9.1. That is, the optima embedding can be found by computing the bottom

lzz



J.2 IMAGE DATA PRE-PROCESSING

DD
D D
D
01D
]
5+ J 4

(@) Original face images.

(b) LLE eigenfaces.

(VR K =1l
B9 (E B 8RB
(c) PCA eigenfaces.

Figure 9.1: Comparison of membership LLE eigenfaces and PCA eigenfaces when
K =10and M = 20.

d + 1 eigenvector of the matrix and M. d/D identifies the compression ratio
of the embedded data space to the original data space. A bigger ratio means
that more local points of data variations in the original space are kept in the
embedded eigenspace, and a smaller ratio means that more global information
are reserved by each LLE eigenvector of the embedded space. To reserve the
local face variations, d/D is constantly set as 1/3 in our experiments.

Therefore, for face image data, LLE eigenfaces are a subset of eigenvectors
of matrix M, which assumes that a facial image = from training set {x;}¥,
can be reconstructed from its neighbours with the lowest reconstruction error
in equation 9.2.

Figure 9.1b shows 10 LLE eigenfaces derived from the 20 face images of
Figure 9.1a, and which are included in the membership group for authenti-
cation. Figure 9.1c shows 10 PCA eigenfaces derived from the same 20 face
images of Figure 9.1a. Aswe can see, each PCA eigenface contains the global
components from all 20 faces, which look obviously very different from one
another; while the differences between LLE eigenfaces are not very distinct,
because each LLE eigenface is obtained from alocally embedding computa-
tion, that contains only the local information of 20 face images.
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9.2.2 Data Partition

In membership authentication, the group members can be divided into mem-
bership and non-membership group members as G = M U M. Applying
the previous LLE eigenface technique to M and M respectively, we obtain
two representative eigenface sets such that the membership eignefaces U, =
[ur, ug,...,ux] and the non-membership eigenfaces U;; = [uj, uy,. .., ux].
They characterise the “ membership-face” and “non-membership-face” respec-
tively. Figure 9.1 is an example of membership LLE eigenfaces with member-
ship size equal to 20.

On partitioning, we identify the two partitioned groups as a 2 x n binary
matrix V, where the element is v;; if the j'h data point x; belongs to group i,
otherwiseit is 0. Once the two cluster centers U, and U}, are fixed, then the
clustering based on membership can be performed as follows:

1 if min/* | x; - w; < minf_ | x; - @y
Uij == .
0 otherwise

Where minft | x - u; isthe minimum distance projected onto the membership
eigenfaces (Uy,), and minf_, x - @, is the minimum distance projected onto the
non-membership eigenfaces (U),).

Figure 9.2 illustrates an example of binary LLE data partition, where two
dotted lines represent the two principal membership LLE eigenvectors (or
eigenfaces) and the two solid lines represent two principal non-membership
LLE eigenvectors (or eigenfaces). Each group member x; in the spaceis pro-
jected to those eigenvectors, and is assigned to aclasswhose projected distance
sum is the smallest. After completing the assignment of all group members,
we obtain two digoint subgroups that correspond to the membership group and
the non-membership group, respectively. Each subgroup will be used as two
labeled class datasets to train the CVM classifier.

We modified the L L E techniqueto takeinto consideration the labeling (mem-
bership and non-membership) of the data. Thus, as the evolving clusters are
updating, members and nonmembers are forced to gather in numbers of sepa-
rated sub-clusters by arecursive membership-based LLE clustering.
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Figure 9.2: Typical example of the binary LLE data partition.

9.3 EXPERIMENT RESULTS AND DISCUSSION

FMA is performed on MPEG-7 face dataset, which consists of 1355 face im-
ages of 271 persons (5 different face images per person are taken), where each
image has the size of 56 x 46 pixels. The images have been selected from
AR(Purdue), AT&T, Yale, UMIST, University of Berne, and some face im-
ages obtained from MPEG-7 news videos (M. S. Kim, Kim, & Lee, 2003).
We set the membership size ranging from 35 to 230 with a 10 persons interval
to achieve datasets with dynamic class characteristics, and compared the pro-
posed DE-CVM with CVM under the condition of dynamic distinctive class

characteristicsin FMA.

Methods CVM DE-CVM
Group Size True-positive Membership CVs True-positive Membership CVs

35 88.57%(= 33) 36 88.57%(= %) 14

55 85.78% (= 40) 37 89.00%(= 19) 17

75 84.00%(= 82) 40 90.66%(= £8) 20

95 83.15% (= 13 41 85.26%(= o) 26

115 81.74%(= 1) 39 91.30% (= 105) 30

135 | 79.25%(= 1) 38 88.88%(= 120) 33

Table 9.1: Classification results of the member ship authentication
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Figure 9.3: A comparison of CVM and DE-CVM on classification accuracy under the
condition of different membership group size
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Figure 9.4: A comparison of CVM and DE-CVM on number of core vectors under the
condition of different membership group size

Table 9.1 summarises the comparison result of membership authentication
true-positive rate, and the number of core vectors between CVM and DE-CVM
when the group size variesfrom 35 to 135 with a 20 interval, respectively. From
Table 9.1, it can be observed that DE-CVM provides a better performance on
membership authentication by obtaining higher true positive rates using fewer
core vectors than CVM with all different group size. In addition, when the
group sizeincreasesthe true-positive rate of CVM decreases remarkably, while
that of DE-CVM is aways around 88% regardless of the group size.

Fig. 9.3 and Fig. 9.4 illustrate the number of core vectors and classification
accuracy for CVM and DE-CVM under the condition of different membership
group size. Asseen in Fig. 9.3, the number of core vectors from CVM stays
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constantly around 80, while the membership group size changes between 35
and 135 (equals to 50% of total group size). However, although the number
of core vectors from DE-CVM has a spiking increase, it never goes above the
number of corevectorsfrom CVM. On the other hand, Fig. 9.4 showsthat gen-
eraly DE-CVM achieves higher FMA accuracy than CVM, and the difference
becomes as significant as 8% when the member group size ranges between 50
and 135. Recall that the number of DE-CVM core vectors is always smaller
than the number of CVM core vectors, which indicatesthat DE-CVM core vec-
tors are more discriminative than CVM for FMA. In other words, DE-CVM is
more capable than CVM of factorising the class characteristics of member-
ship and non-membership as fewer DE-CVM core vectors often deliver better
FMA.

94 SUMMARY

This chapter presents a case study for dynamic face membership authentica-
tion. Theresults show that compared to the global modelling method CVM, lo-
cal modelling method DE-CV M factorises class characteristics by reducing the
sparseness area, discriminating core vectors on class interaction hyperplanes,
and enabling outliers detection.

Next chapter presents a case study for string format stream data mining.
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THE APPLICATION OF META LEARNING STRING
KERNEL MEBS SYSTEM TO SOLVE REAL WORLD
STRING FORMAT STREAM DATA MODELING

The chapter presents a case study of modelling real world string format stream
data that is carried out to demonstrate the effectiveness of the proposed meta
learning algorithm for string kernel MEB optimisation. Three string kernel
MEBs were experimented namely: edit-distance, bag-of-words and n-gram
on four string datasets. Spam, Reuters-21578, Network Application Detection
and e-News categorisation.

Section 10.1 explains the experimental setup and the evaluation criteria, sec-
tion 10.2 describes the datasets description and the data pre-processing. The
experimental results for the three string kernel SVMs are presented in section
10.3. Section 10.4 indicates the limitation of the method found from the case
study and how to improve it in the future. Finally, section 10.5 gives the con-
clusion.

10.1 EXPERIMENT SETUP

The proposed algorithm was experimented on three string kernel MEBs (edit-
distance MEB, bag-of-words MEB and n-gram MEB). Asshownin Table 10.1,
the algorithm wastrained using training string dataset pool L1, and wastested
on testing string dataset pool g, for each string kernel MEB. In the experi-
ments, the MEB cost parameter (c) was selected as 20,21, ..., 216 for all string
kernel MEBs. The string kernel parameters \;, and )\ for edit-distance and
bag-of-words string kernels, were selected as0.001, 0.1, 0.25, 0.5. The substring
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1U.2 DATASETS AND DATA PRE-PROCESSING

length in n-gram string kernel was selected as 1,2, ...,8 in the experiments.
The string meta-feature, AvgMinTokenV al was not considered in the training
stage, as it was having the value O for all datasets. Also, the global threshold
for the AvgTokenThr was set to 2 in all the experiments. Support Vector Re-
gression (SVR) was used to build the meta model. In the training stage, the
parameters which yield lowest cross validation RMSE for SVR, were consid-
ered in regression (in building the meta model), for each string kernel MEB.
10 fold- cross validation was done for the top 10 predicted parameter combi-
nations, on each string dataset. The performance evaluation was done consid-
ering Root Mean Squared Error (RMSE) for the top 10 predicted parameters
on each dataset.

Dataset | String Dataset Sting Kernel MEB

Pool (Dataset Label) Edit-Distance | Bag-of-Words | N-gram

Spam v v v

I Reuters-21578 v v v

TR | Network Application Detection v v v

e-News Categorisation - v

Spam(1) v v v

I Reuters-21578(2) v v v

TS | Network Application Detection(3) v v v

e-News Categorisation(4) - v

Table 10.1: The string datasets used in training and testing the proposed algorithm

In the experiments, edit-distance and bag-of-words string kernels were im-
plemented using LIbMEB-2.9 (Chang & Lin, 2001) and n-gram string kernel
was implemented using shogun octave interface (S. Sonnenburg, 2006). The
string meta-feature computation program was coded using C++ language. All
the experiments were run on a PC having Intel Core2 Duo 3GHz processor and
2.96 Gb RAM.

10.2 DATASETS AND DATA PRE-PROCESSING

Four string datasets were used in the string dataset pool L = {Spam, Reuters-
21578, Network Application Detection, e-News Categorisation}. It was again
subdivided into training dataset pool (L7r) and testing dataset pool (Lrs),
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where each consisted of unique string datasets. String dataset pool Lrz was
used to train the meta model in the proposed algorithm and string datasets
pool Lrg was used to test the proposed algorithm. For edit-distance and bag-
of-words string kernel MEBS, training dataset pool L;r = {Spam, Reuters-
21578, Network Application Detection} was used, and for n-gram MEB, L1z
= { Spam, Reuters-21578, Network Application Detection, e-News Categori-
sation } was used. In testing, for edit-distance and bag-of-words string ker-
nel MEBS, testing pool Lys = {Spam, Reuters-21578, Network Application
Detection} was used, and for n-gram MEB, the testing pool L;r = { Spam,
Reuters-21578, Network Application Detection, e-News Categorisation } was
used. Table 10.1 summarises algorithm training and testing information on
each string dataset. A detailed description about each string dataset is given
below.

10.2.1 Spam Dataset

This dataset consists of 696 ham messages and 384 Spam messages from
(Spam Assassin public mail corpus, 2002). There are two types of ham e-
mails. easy ham (646) and hard ham (50). Easy ham e-mails are non-Spam
messages without any Spam signatures and hard ham are non-Spam messages
similar in many aspects to Spam messages which use unusual HTML markup,
coloured text, Spam-sounding phrases, etc. Each e-mail message has a header,
abody and some potential attachments. The training dataset consists with 810
messages (484 easy ham, 38 hard ham and 288 Spam) and testing dataset has
270 messages (162 easy ham, 12 hard ham and 96 Spam).

10.2.2 Reuters-21578 Dataset

The Reuters dataset used in the experiments has the exact split to (Lodhi et al.,
2002). It consists of 470 documents: 380 for training and 90 for testing. Four
document categories, those of earn, acquisition, crude and corn are available
in the dataset. Table 10.2 shows the document distribution among the different
categories.
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Class Label | Document Category | Training | Testing
0 Earn 152 40
1 Acquisition 114 25
2 Crude 76 15
3 Corn 38 10

370 90

Table 10.2: Data distribution-reuters-21578 dataset

10.2.3 Network Application Detection Data

The dataset consists of network traffic data produced by network applications,
such as http, https, imap, pop3, ssh, ftp and bittorent. All network data were
captured, and sorted according to their protocols using “Wireshark” (Combs,
2008) and split into individual connections using tcpflow (Elson, 2003). Only
TCP traffic was taken into account in the data capturing stage. The option ‘-s
in “tcpflow” (Elson, 2003) was used to remove all non printable charactersin
aconnection. Also, only the first 50 bytes of a connection were considered in
preparing the dataset. Every connection was labelled according to the applica-
tion type. Table 10.3 shows the label number for every application type and

the number of instances in training and testing datasets.

Class Label | Application/protocol | Training | Testing
0 AIM 18 7
1 Bittorrent 140 59
2 http 583 249
3 pop 17 7
770 329

Table 10.3: Data distribution-application detection dataset
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10.2.4 e-News Categorisation Data

The dataset is collected from four electronic newspapers. (New Zealand Her-
ald, 2010), (The Australian, 2010), (The Independent, 2010) and (The Times,
2010), on five news topics (business, education, entertainments, sport and
travel). Each document is labelled manually by skimming over the text to
identify the category. Punctuations and stop words were removed from the
dataset in advance. Table 10.4 shows detailed information about the dataset.

Class Lable | News Category | Training | Testing
0 Business 227 97
1 Education 93 40
2 Entertainments | 99 42
3 Sport 118 50
4 Travel 131 56
668 285

Table 10.4: Data distribution e-Newsgroup dataset

10.3 RESULTS

The result of the experiment for three string kernel MEBs are discussed in this
section. Section 10.3.1 explains the results for edit-distance MEB optimisa-
tion, using the proposed algorithm. The experimental results for bag-of-words
MEB optimisation are presented in section 10.3.2. Section 10.3.3 explains the
results for n-gram MEB optimisation, using the proposed agorithm.

10.3.1 Meta Learning for Edit-Distance MEB Optimisation

Here, the proposed algorithm was used to optimise edit-distance MEB. The
algorithm attempts to find the optimum parameter combination (A, and MEB
cost) for edit-distance MEB on three string datasets. Spam, Reuters-21578 and
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network application detection, in test dataset pool Lrs (refer Table 10.1). In
the experiments, the SVR parameters. v = 0.084 and SVR Cost=5400 were
used in regression. The actual accuracy and the predicted accuracy for the top
10 predicted parameter combinations are shown in Table 10.5. Also, the table
shows the RM SE for top 10 predicted parameter combinations on each dataset.

According to Table 10.5a and Table 10.5b, the optimum parameters pro-
duced by the proposed algorithm yield very low predicted and actual classifi-
cation accuracies, for edit-distance MEB, on Spam and Reuters-21578 string
datasets. This shows that the edit-distance MEB is not suitable for string clas-
sification on Spam and reuters-21578 datasets. However, according to Table
10.5¢, the algorithm produces optimum parameters which yield good string
classification accuracies on network application detection dataset, for edit-
distance MEB (with alow RMSE).

cost AL rank predicted% actual%
65536 | 0.000488 1 2.36387 0.37
2 0.000488 2 2.36381 5.19
4 0.000488 3 2.36377 4.44
8 0.000488 4 2.36371 3.33
16 0.000488 5 2.36357 111
32 0.000488 6 2.36331 0.37
2 0.000976 7 2.36302 4.44
4 0.000976 8 2.36299 3.33
8 0.000976 8 2.36292 111
65536 0.000976 10 2.36286 0.37
root mean squared error 1.831455
(a) Spam Data
cost AL rank predicted% actua % cost AL rank predicted% actua %
65536 0.000488 1 3.30463 23.33 32768 0.0625 1 73.1729 75.99
2 0.000488 2 3.30454 24.44 32768 0.03125 2 73.1653 75.99
4 0.000488 3 3.30451 26.67 32768 0.125 3 73.1602 75.99
8 0.000488 4 3.30445 23.33 32768 | 0.015625 4 73.1556 75.99
16 0.000488 5 3.30432 23.33 8192 0.125 5 73.1526 75.99
32 0.000488 6 3.30407 23.33 16384 0.125 6 73.1526 75.99
2 0.000976 7 3.3038 26.67 8192 0.25 7 73.1518 75.99
65536 0.000976 8 3.30379 23.33 32768 0.5 8 73.1515 75.99
4 0.000976 9 3.30377 23.33 4096 0.25 9 73.1514 75.99
8 0.000976 10 3.30371 23.33 65536 0.25 10 73.1512 75.99
root mean squared error 20.84679%4 root mean squared error 2.833499
(b) Reuters-21578 (c) Network Application Detection

Table 10.5: Experimental results for Edit-Distance MEB optimisation: (the top 10
predicted parameter combinations using the proposed algorithm on each
string dataset)
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10.3.2 Meta Learning for Bag-of-Words MEB Optimisation

Here, the the proposed algorithm attempts to find the optimum parameter com-
bination (A and MEB cost) for bag-of-words MEB. Initially, the algorithm
was trained on a training dataset pool L, (refer Table 10.1). Then, the a-
gorithm predicted the string classification accuracies for bag-of-words MEB
on three different string datasets in test dataset pool Lrg (refer Table 10.1).
The SVR parameters. v = 0.88 and SVR Cost=450 were used in regression.
10-fold cross validation was done for the top 10 predicted parameter combi-
nations, and RM SE was calculated for the same. Table 10.6 shows the top
10 predicted parameter combinations on three string datasets for bag-of-words
MEB.

According to Table 10.6b and Table 10.6c, the proposed algorithm produces
parameter combinations which yield high classification accuracies on reuters-
21578 and network application detection datasets with a very low RMSE.
However, on Spam dataset, the optimised parameter combinations produced by
the proposed algorithm yield average string classification accuracies (see Table
10.6a). Considering the overall high string classification accuracy (with avery
low average RM SE) shown in Table 10.6 and Table 10.8, on all three datasets,
one can say that the proposed algorithm produces optimised parameter com-
binations which yield good string classification accuracies, for bag-of-words
MEB.

10.3.3 Meta Learning for N-gram MEB Optimisation

In this experiment, the algorithm attempts to find optimised parameters (sub-
string length and MEB cost) for n-gram MEB. The algorithm was trained on
string dataset pool L and tested on testing string dataset pool Ls (refer Ta-
ble 10.1). The SVR parameters. v = 0.95 and SVR Cost=500 were used in
regression. 10-fold cross validation was done for the top 10 predicted parame-
ter combinations on each string dataset. Table 10.7 summarises the experiment
results for the top 10 predicted combinations on each dataset.



U4 LIMITATIONS

cost B rank predicted% actual%
2 0.000488 1 61.6244 64.44
4 0.000488 2 61.6207 64.44
8 0.000488 3 61.6135 64.44
16 0.000488 4 61.5989 64.44
32 0.000488 5 61.5699 64.44
64 0.000488 6 61.5117 64.44
2 0.000976 7 61.4788 64.44
4 0.000976 8 61.4752 64.44
8 0.000976 9 61.4679 64.44
16 0.000976 10 61.4534 64.44
root mean squared error 2.899333
(a) Spam Data
cost AB rank predicted% actual % cost AB rank predicted% actual %
4096 0.5 1 87.9839 86.67 4 0.000488 1 75.3987 75.99
2048 0.5 2 87.9734 86.67 2 0.000488 2 75.3987 75.99
1024 0.5 3 87.9551 86.67 8 0.000488 3 75.3986 75.99
512 0.5 4 87.9422 86.67 16 0.000488 4 75.3985 75.99
256 05 5 87.9347 86.67 32 0.000488 5 75.3983 75.99
8192 0.5 6 87.9307 86.67 64 0.000488 6 75.3978 75.99
128 0.5 7 87.9307 86.67 128 | 0.000488 7 75.3968 75.99
32768 0.5 8 87.9304 86.67 4 0.000976 8 75.3967 75.99
64 0.5 9 87.9287 86.67 2 0.000976 9 75.3967 75.99
32 0.5 10 87.9276 86.67 8 0.000976 10 75.3966 75.99
root mean squared error 1.273886 root mean squared error 0.592261
(b) Reuters-21578 (c) Network Application Detection

Table 10.6: Experimental results for Bag-of-Words MEB optimisation: (the top 10
predicted parameter combinations using the proposed algorithm on each
string dataset)

According to Table 10.7, the proposed al gorithm produces optimised param-
eters, which yield good string classification accuracies for n-gram MEB, on all
four string datasets. The algorithm has a very low RMSE for top 10 predicted
on Spam, Reuters-21578 and network application detection datasets (see Table
10.7a, Table 10.7b, and Table 10.7c). Even though, the algorithm has quite a
high RM SE on the e-News categorisation dataset, the top 10 predicted parame-
ter combinations yield good string classification accuracies on the dataset (see
Table 10.7d).

10.4 LIMITATIONS

The limitations that identified in the research are discussed below. Firstly,
for n-gram kernel, the proposed algorithm yields classification accuracies over
100% on Spam and Reuters-21578 string datasets. Thiscan beresolvedif oneis
ableto set upper and lower bounds in the algorithm. Secondly, the string meta-
features could be more descriptive, since they can explain the string dataset
more clearly than just numbers representing the string dataset. Thirdly, while
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cost substring length rank predicted% actual % cost substring length rank predicted% actual%
16384 8 1 99.3074 98.33333 4096 6 1 92.6961 95.36587
4096 8 2 99.2982 98.33333 2048 6 2 92.6842 95.36587
32768 7 3 99.2683 98.33333 8192 6 3 92.6771 95.36587
16384 7 4 99.2652 98.33333 1024 6 4 92.6636 95.36587
4096 7 5 99.2628 98.33333 512 6 5 92.6474 95.36587
4096 6 6 99.2524 98.33333 16384 6 6 92.6405 95.36587
4096 5 7 99.2066 98.33333 256 6 7 92.6376 95.36587
2048 8 8 99.1935 98.33333 128 6 8 92.6322 95.36587
32768 6 9 99.1862 98.33333 64 6 9 92.6294 95.36587
4096 2 10 99.1803 97.81251 32 6 10 92.6279 95.36587
root mean squared error 0.971167898 root mean squared error 2.712372587
(a) Spam Data (b) Reuters-21578
cost substring length rank predicted% actual % cost substring length rank predicted% actual%
16384 2 1 99.6656 98.22917 4096 5 1 90.8189 74.35295
2048 2 2 99.5895 98.22917 4096 6 2 90.6225 75.05881
1024 2 3 99.5776 98.22917 4096 4 3 90.5267 73.76471
32768 2 4 99.5685 98.22917 8192 5 4 90.484 73.88235
4096 2 5 99.5634 98.22917 32768 5 5 90.3336 73.64706
512 2 6 99.5607 98.22917 16384 5 6 90.3317 73.64706
256 2 7 99.5489 98.22917 8192 6 7 90.3088 75.17647
128 2 8 99.542 98.22917 4096 3 8 90.2765 74.70588
64 2 9 99.5384 98.22917 8192 4 9 90.275 73.41176
32 2 10 99.5365 97.81252 32768 4 10 90.1778 73.17646
root mean squared error 1.386738588 root mean squared error 16.34502652
(c) Network Application Detection (d) e-News Categorisation

Table 10.7: Experimental results for N-gram MEB optimisation: (the top 10 predicted
parameter combinations using the proposed algorithm on each string

dataset)

String Kernel Dataset RMSE Avg RMSE
Spam 1.831455

Edit-Distance | Reuters-21578 20.846794 | 8.503916
Network Application Detection | 2.833499
Spam 2.899333

Bag-of-Words | Reuters-21578 1.273886 1.588493
Network Application Detection | 0.592261

N-gram Spam 0.971168
Reuters-21578 2.712373 5353826
Network Application Detection | 1.386739 '
e-News Categorisation 16.345027

Table 10.8: Root Mean Squared Error (RMSE) for string dernel MEB optimisation on
each string dataset (for top 10 predicted parameter combinations)

a meta learning algorithm is usually tested on a large number of datasets, the
high computational cost of string data and the unavailability of bench-mark
string datasets, have forced this researcher to use only four string datasets in
the experiments.

These limitations could be also caused by complex distribution of data sam-
ples. The proposed meta learning string kernels MEBs algorithm only learns
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the global model so far. In order to have a more accurate model for string data,
alocal modelling string kernel method needs to be developed in future.

10.5 SUMMARY

This case study shows that the proposed algorithm produces parameter combi-
nations that yield good string classification accuracies on most of the datasets.
They also reveal that some string kernel MEBs may not be suitable for carry-
ing out the string classification required on certain string datasets. Specifically,
edit-distance MEB yields poor string classification results on both Spam and
Reuters-21578 string datasets.

The proposed method has three main contributions to the field of machine
learning:

1. String Meta-features. The defined string meta-features can be used for
extracting meta knowledge from any string dataset;

2. Meta-Learning for String Classification Principle: explains the pro-
cedure for applying meta-learning on string classification but using ex-
tracted meta-knowledge via string meta-features,

3. Meta Learning Algorithm for String Kernel MEB Optimisation: us-
ing the Meta-Learning for String Classification Principle, a novel string
kernel optimisation method is derived, which is able to predict optimum
string kernel MEB parameters for a given string kernel MEB on a string
dataset by calculating relevant string meta-features.

Directions for future work and conclusion of the PhD thesis are given in the
next chapter.
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CONCLUSION AND FUTURE DIRECTIONS

Inthisfinal chapter, the main achievements of the study are summarised. Sev-
era directions for future work are also discussed that would help in further
improving the efficacy of the entire system.

The chapter isorganised as follows: first, the main achievements of thisthe-
sis are summarised from three perspectives. in terms of basic on-line learning
algorithm, evolving connectionist systems adopting, and string kernels learn-
ing. The section closes by stressing the original contributions of thiswork and
giving a summary of the experimental results. The dissertation closes with a
brief discussion of future directionsin five possible areas.

11.1 SUMMARY OF ACHIEVEMENTS

This PhD study shows how evolving connection systems (i.e. local modelling)
are adapted to stream data mining based on afast, on-line kernel based learn-
ing algorithm. By means of local modelling, we can solve many real world
stream data modelling issues such as dealing with large size, high dimension-
ality, skewed class distribution. The idea of focusing on the unique problem
subspaces appearsto be beneficial to the stream data modelling problems. It al-
lows identification of sub-problems and allows their further study. In addition,
this research developed novel string kernels method to overcome the difficulty
of mining string format stream data. At the same time, | have also published
3 conference papers, submitted 1 journal paper, delivered 3 technical reports
and developed 2 prototype systems.
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11.1.1 Fast, On-line Kernel Based Learning Algorithm

We have developed a novel on-line kernel based learning method with low
computational cost called on-line core vector machines (OCVM). This method
inheritsthe characteristic of original CVM whose computational complexity is
independent from the size of training samples. In addition, this method allows
us to on-line analyse the stream datain high dimensional space to be analysed
on-line which discriminates skewed class distribution.

The effectiveness of OCVM is evaluated by comparing its classification ac-
curacy and train/testing timeto those of other traditional methods on 10 bench-
mark datasets.

11.1.2 Evolving Connectionist Systems on Stream Data Modeling

Evolving connectionist systems (ECOS) are modular connectionist-based sys-
temsthat evolve their structure and functionality in continuous, self-organised,
on-line, adaptive, interactive way from incoming information; they can pro-
cess both data and knowledge in supervised learning and/or unsupervised way
(Kasabov & Song, 2002; Kasabov, 2002).

The proposed method HCVM learns loca models from data through clus-
tering of child-classes data and associating a set of local core vectors for each
parent-class. DE-CVM is proposed and works similarly to DENFIS (see chap-
ter 3) but in kernel spaces.

The advantages of adopting evolving connectionist systems are confirmed
in two case studies. network intrusion detection and face membership authen-
tication where small number of core vectors can provide higher classification
accuracy.

11.1.3 Sring Format Sream Data Learning

A novel string classification method called Meta L earning String Kernels CVMs
for string format stream data mining is proposed. Since one major task for
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stream data mining isto categorise texture, this method is an important part of
an integrated stream data modelling system.

The capability of this method is verified in the experiments on several string
classification tasks.

11.2 FUTURE DIRECTIONS

This section suggests some promising future directions for the devel opment of
the methods and systems in stream data modeling.

11.2.1 Evolving Clustering Optimisation

In our further work, we would like to address the optimisation problem of the
total number of CVMsrequired for optimal solution. It can only be determined
using cross validation method and by investigating on measuring the density
of the MEB, and further exploiting new models based on ‘evolving clusters'.

11.2.2 On-line methods for personalised modeling

One of the issues with local and distance-based models is that they require
good definition of the problem space in order to perform properly, which is
often difficult and lacking in many problems (e.g. biological modeling) as
they often involve a large number of noisy variables. In order to apply local
or personalised models to this type of problem, an in-depth analysis of the
featuresis necessary.

A personalised regression model with incremental feature selection will be
proposed during next stage. This method applies incremental feature selection
on variables that were ranked using univariate analysis and results from pre-
vious studies. This set of variables was then used to define the problem space
and identify the relevant subset of datafor each prediction. The global regres-
sion model is then optimised with this subset of training datato put afocuson
the test input vectors residing in problem subspace.
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11.2.3 Spatial and Temporal Processing

Compared to traditional processing, temporal contexts are particularly impor-
tant in stream processing. Giannotti, Nanni, Pinelli, and Pedreschi (2007),
presentsastudy on clustering trajectories of mobile objects (e.g., mobile phones).
Problemsfaced in this spatio-temporal data mining task concern the identifica-
tion of the proper spatial granularity level, the selection of the significant tem-
poral sub-domains, the choice of the most promising clustering method, and
the formalisation of the notion of (dis)similarity among trajectories. The au-
thors recommend a density-based approach to trgjectory clustering, and stress
the importance of temporal focusing to isolate the clusters of higher quality.
Both aspects have been tested on a data set automatically generated by a syn-
thesiser of trgjectory data.

Next stage we will use micro-clustering phase which isthe on-line statistical
data collection algorithm. This process is not dependent on any user input
such as the time horizon or the required granularity of the clustering process.
The aim is to maintain statistics at a sufficiently high level of (tempora and
spatial) granularity so that it can be effectively used by both off-line and on-
line analysis.

11.2.4 Local modeling for Sring Kernels

So far the proposed meta-learning string kernel CVMs only works on global
modeling. Next stage we will aim on local modeling string kernels methods.



INTRUSION DETECTION VISUALISATION SYSTEM

Appendix A and B present two stream data visualisation systems devel oped
based on our proposed HCVM algorithm (Y. Chen et a., 2009), respectively.

Network Intrusion Detection visualisation System (NIDVS) is developed to
simulate the process of world-wide network intrusion detection. This visuali-
sation system can monitor the Internet data stream. Moreover, this system is
adaptive to various learning methods thus it provides the opportunity to com-
pare the effectiveness of different methods when used on the same data.

A.1l DESIGN OVERVIEW

NIDV S simul atesthe process of world-wide network intrusion detection, where
network traffic is visualized as data streaming from different source to the des-

tinations, and intrusion filtered by the HCVM a gorithm (Y. Chen et a., 2009).

This NIDV S has two main functions. to monitor real-time network traffic and

to demonstrate the effectiveness of the HCVM algorithm in terms of detection

accuracy. NIDV Svisualises the streaming data on a 3D world map, where net-

work traffic is traced from the source to destination city (identified by latitude
and longitude) for each data packet in transfer. A sequence of moving arrows
represent network traffic as a set of data packets where data is indicated by
green arrows, and spam/intrusion datais represented asred arrows. In NIDV'S,

network traffic datais associated with a certain speed to reflect the speed vari-

ation of real network traffic. For the convenience of observation, the height of

traffic path can be modified to suit users sight.
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01-Dec-2008 17.04:22
Radus of Navigation Pain

Mumber of Arows

i Trie
Foeal Data ) Sampie Data-

Figure A.1: The NIDV S visualisation demonstration shows the global dataflow in the
left, and the panels and result tables are displayed on the right side of the
demo interface.

The NIDVSisshown in Figure A.1 Users can view the data flow and detec-
tion process on the left and control the view of dataflow on theright side. The
statistical results (i.e. total accuracy, number of intrusions from each source)
are also shown on the right.

A.2 HARDWARE AND SOFTWARE REQUIREMENTS

The NIDVS requires Intel E8400@3.00 GHz or faster with at least 1.97 GB
RAM. The video card should have over 256 MB RAM with support on Pixel
Shader 3.0. Therequired software environment for NIDVSisMATLAB R2009a
with Mapping toolbox 2.7.1, on the platform of Microsoft Windows XP Pro-
fessional with Service Pack 3 or advanced. The best screen resolution is 1280
by 1024 pixels.

A.2.1 System Architectural Design

The system is structured as shown by the diagram in Figure A.2. It consists
of five basic modules, namely ‘Data Acquiring’,' Data visualisation’, ‘Intru-
sion Detection’, ‘ Spam Collection’ and ‘ Spam labelling’. The input data can
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be a set of example data or rea Internet data. ‘Data Acquiring’ inputs data
into the system, and ‘Data visualisation’ displays data as a set of arrows on
the screen. The data can be labelled as ‘spam/intrusion’ or ‘normal’ by the
‘HCVM Intrusion Detection’ module. If the data is classified as spam/intru-
sion, then a detailed description of the spam will be recorded by the ‘ Spam
Collection’ module. The *Spam labelling’ module is in charge of presenting
dataas coloured arrows. Spam/intrusion datais presented with red colour, nor-
mal data with green colour. As seen in Figure A.2, the system runsin aloop
that terminates when no datais input.

Input data

Data Acquire

A

Data
Visualization ||

Y

Intrusion
Detection

v v
Intrusion Collection Label Attack
& Report Message

\

New Data
Coming?

No

v
Terminate

Figure A.2: The NIDV S system design diagram.



A.0 DETAILED DESCRIPTION OF COMPONENTS

A.3 DETAILED DESCRIPTION OF COMPONENTS

The NIDV S consists of two components. The first component performs classi-
fication using the HCVM method. The second component visualizes data flow
and spam detection on screen.

A.3.1 HCVM inthe NIDVS

For labelling network intrusions as they state hierarchical multi-label structure,
a high-speed hierarchical multi-label classification (HMC) algorithm, called
hierarchical minimum enclosing balls (HCVM), is developed. We model the
multi-label hierarchy into a data Hyper-Sphere constructed by numbers of
MEBs. The MEBSs separate, encompass and overlap with each other and form
atree structure representing the encoded multi-label hierarchy. When provided
with an unlabelled sample, the HCVM seeks an MEB enclosing the sample,
and multi-labels the sample according to the MEBs position in the hierarchy.
The HCVM has been tested on a Gaussian synthetic data, the RCV1-V2 text
data, and the KDD99 intrusion detection dataset for multi-label classification.

A.3.2 visualisation

The visualisation system provides a user interface for both novice and ad-
vanced users. It shows the flow of data between cities on the globe. During
the data transfer, there is a spam/intrusion detection system processing data
on each path. The spam/intrusion data will be detected and labelled with dif-
ferent colours. This visualises NID in rea time, at the same time it tests the
performance of the NID algorithm (i.e. the HCVM).

Users can replace the testing data with their own data. They ssmply need to
replace the data files stored in ‘root/Temp Data/or_data’ with their own data
files. The system will automatically allocate IPs, cities and network traffic
speed to each data item. The allocation also selects data randomly from those
data files and will never repeat them. Note that the input data is required to
be formatted as a data matrix where the last column contains the class label.
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The default NID method is the HCVM, athough users can also change the
detection algorithm. For example, users can choose to use SVM instead of
HCVM for NID.

A.4 USER INTERFACE DESIGN
A.4.1 Description of the User Interface

The user interface consists of four components: Network Traffic visualisation,
The NIDV Scontrol panel, Network Intrusion Detection Report, NID Accuracy
Tracking and they are described below.

Objects and Actions

1. Network Traffic visualisation

Figure A.3: The network traffic visualisation of NIDVS, in which the green arrows
represent normal data and red arrows indicate spam/instrusion.

Figure A.3 depicts a network traffic visualisation of the NIDV'S, where
a sequence of arrows in colours represent a network data stream flowing
from the source to target city. The green or red arrows represent normal
or intrusion/spam data packet, respectively.
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T
’7 14-Jun-2011 04:27:52

Radius of Navigation Path 15

Number of Arrows .0

Select Data Type
Real Data @ Sample Data

Figure A.4: The NIDV'S control panel.

2. Control Panel

The user isableto change the view of visualisation by using NIDV S con-
trol panel shown in Figure A.4. The ‘Radius of Navigation Path’ is the
parameter controlling the height of the network traffic path. The ‘Num-
ber of Arrows affects the size of arrows. For a fixed source and target
network traffic, alarger number of arrows result in relatively smaller size
of the arrows.

The four buttons control the NIDV S system: ‘ Start’ initiates the visuali-
sation demo, ‘ Pause/Continue’ suspends or proceeds with the visualisa-
tion of data flow. ‘Terminate’ stops the visualisation demonstration and
reports the present detected spam/intrusion list as shown in Figure A.5a
The spam/intrusion list is stored meanwhile in a‘txt’ file named ‘ spam
report.txt’, recording the details of every spam, its source and target city,
and the time when the spam was detected. Button* Show results’ displays
a summary of NID performance in a pop-up window shown in Figure
A.5b. This summarises the performance of the used NID algorithm, the
number of normal data samples, spam sample, the accuracy of normal
data detection (i.e. truth negative accuracy), the accuracy of spam intru-
sion data (i.e. truth positive accuracy) and the general accuracy.

3. Network Intrusion Detection Report

Figure A.6 depicts the statistical report of the current status of NID,
which includes information about the number of processed data sam-
ples, the source and target city of the data package (reflected by the IP
address), and the number of samplesthat are labelled asintrusions.



P spam_report, txt - Notepad [Py -4}

File Edit Format View Help
auckTand Tokyo Ol-Dec-2009 L7:03:59 ~
Bangkok Tokyo O -Dec—20009 17 :03:59

Bangkok Tokiyo 01 Dec 2009 17 :04:00

AucHand rokvo ol- uec 2009 17:04:00

Bangkok Tokyo Ol-De Ho% e
Ak land Tukyu B Do = :

171 (U1
Bariglkok Tolkyo 01 -Dec-2009 17 :04:01
auckland Tokyo O1-Dec 2009 17:04:01
Bangkok 1okyc 0l-Lec-2009 17:04:01
Auck land Tokyo 01 -Dec-2000 17 ; 0407
Bangkok TokyDh 01 Dec 2009 17:04:02
Ankara Tokwo Ol-Dec-2009 17:04:02
auckland Tokyo 01-Dec-2009 17:04:
Ankara Tokyo 01 Dec 2009 17:04
Auckland fokyo Ol-Dec-2009 17:04:
Bangkuok Tokyo 0l1-Dec-J009 17:0
Boijing Tokyo 01 -Dec-7000 17:04: 83
London Tokywo 01 Dec 2009 17:04:03
Mexico City Tokyo Ul-Dec-20Q09 17:01:03
Arilkara Tokyo 01-Dec-2009 17:04:03
Auckland Tokyo 01 Dec 2009 17:04:032

(a) Thedisplay of Spam list file
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Departure | Destinati.. Amount |  Spam

1 |Adelaide  Tokyo 49 42
"7 |Amsterdam Tokyo 49 39
TAnl‘ara Tokyo 54 1}
"4 |Auckland  Tokyo 54 0
"5 |Bangkok  Tokyo ES 38
TEleulng Tokyo 335 39
TCa\m Tokyo 43 44
T8 |London  Tokyo 35 40
g |Mexico City Tokyo ES 35

(b) The display of NID performance
report

Figure A.5: Detection results and accuracy.

File Edit View Insert Tools Desktop Window Help E
Item Mumber

1 (Total Communication 399

2 [Number of Mormal Data 28

3 [Number of Intrusion Data 300

4 |Accuracy of Mormal Data 958.9599%

5 |[Accuracy of Intrusion Data 96%

§ |Total Accuracy 98 7419%

Figure A.6: NID report including information about the source and target city of data

package, the number of data packages passed by, and the number of

spam/intrusion detected.

4. NID Accuracy Tracking

Figure A.7 presents a real time intrusion detection report in graphical
form. The performance of intrusion detection by HCVM varies over
time. Thefinal detection accuracy isfixed until al data runs out.
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Figure A.7: Graph for real time intrusion detection report, where the x — axis repre-
sents the amount of data processed, and y — axis represents the detection
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HCVM PROTOTYPE SYSTEM

The HCVM prototype system demonstrates the learning progress of HCVM
which gives a better understanding of on-line learning process. This system
also provides the comparison of globe modelling and local modelling. User
can evaluate the advantage of using local modelling easily from the visualisa-
tion.

B.1 DESIGN OVERVIEW

The HCVM Prototype System simulates the process of learning on-line stream
data. It uses 10% of KDD’99 training data. This prototype system demon-
strates the MEB updating progress for each cluster as 3D balls and 2D bound-
ary image. The core vectors for each MEB are represented as small dots. For
convenience of observation, the point of observation can be changed to suit the
user.

Theinterface of the HCVM Prototype System isshown in Figure B.1. Users
are able to observe the learning progress on the left. The control panel is on
right and details for each MEB are shown just under the control panel.

B.2 HARDWARE AND SOFTWARE REQUIREMENTS
The NIDVS requires Intel E8400@3.00 GHz or faster with at least 1.97 GB

RAM. The video card should have over 256 MB RAM with support on Pixel
Shader 3.0. The required software environment for NIDVS is. MATLAB

150



b.o USER INTERFACE DESIGN 101

Figure B.1: The HCVM Prototype System.

R2009a on the platform of Microsoft Windows XP Professional with Service
Pack 3 or advanced. The best screen resolution is 1280 by 1024 pixels.

B.3 USER INTERFACE DESIGN

B.3.1 Description of the User Interface

The user interface consists of four components: MEBSs visualisation, control
panel, MEB information list table as explained bel ow.

B.3.2 Objectsand Actions

1. MEBsvisuaisation

Figure B.2 depicts a dynamic visualisation of MEB, its core vectors and
the corresponding boundary for each cluster. While 3D ballsin different
colours represent a cluster for a sub-class, the dots in the balls represent
the core vectors. Boundaries shown in the right bottom corner are formed
by the same-colour core vectors. The parent class boundary is in black
colour.

2. Control Panel



b.o USER INTERFACE DESIGN 107

Figure B.2: MEBS, core vectors and the corresponding boundaries visualisation.

Button Group

’7(} All Types G' Prohe Sub-types C' Probe

Start l | Continue | l Tetninate l

Figure B.3: The control panel.

The user is able to select different learning modes by using the control
panel shown in Figure B.3. Global mode learning can be demonstrated
if ‘Probe’ isselected. You can compare the effectiveness of global mode
learning with local mode by selecting ‘ Probe sub-type’. The theory of
local mode learning can be seen if ‘All Types' is selected.

The three buttons control the prototype system. ‘ Start’ initiates the visu-
alisation demo. ‘Pause/continue’ suspends or proceeds with the visuali-
sation of data flow. ‘ Terminate’ stops the visualisation demonstration.

3. MEB information list table

Figure B.4 depicts the dynamical report of the details of each MEB
shown in the visuaisation area, which includes information about the
name of each class, current ball centre and radius corresponding to the
same colour of MEB.
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Mame Radio Center Colar
ipewesp 2 5656 0.0063054,1 0432,0 36246
portsweep 1.8987 065425 -0,22847 084332
zatan 1.8074 0.49645 -0.31967 030357
T 1.9830 -0.90571 -00M8678,0.3271c N

Figure B.4: MEB information list table
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