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A B S T R AC T

This thesis proposes and presents several novel methods to address some of

the real world stream data modelling issues through the use of global and local

modeling approaches. A set of real world stream data modelling issues such

as dealing with large size and, high dimensionality data, skewed class distribu-

tion, different formats of data and visualisation problem are reviewed and their

impact on various models are analysed.

The thesis has made nine major contributions to information science, that

include four evolving modelling methods, three real world application systems

that apply these methods and two stream data visualisation software proto-

types. Four novel methods have been developed and published in the course

of this study. They are: (1) Online Core Vector Machines (OCVM); (2) Hi-

erarchical CVMs (HCVM) - a local modelling system based on hierarchical

labelling data; (3) Dynamic Evolving CVMs (DE-CVM) - a kernel based dy-

namic evolving learning system; (4) Meta-Learning String Kernel CVM.

OCVM addresses the issue of one-pass, large size, high dimensionality stream

data through a kernel-based online learning process. OCVM is proposed for

large-scale classification by leveraging connections between learning and com-

putational geometry. It imposes the constraint that only a single pass over the

data is allowed. Standard support vector machines (SVM) training has O(m3)

time and O(m2) space complexities, where m is the training set size. It is thus

computationally infeasible on very large data sets. Our proposed OCVM in-

herits the advantage of the Core Vector Machine (CVM) algorithm which can

be used with non-linear kernels and has a time complexity that is linear in m

and a space complexity that is independent of m.

HCVM solves the skewed-class distribution problem for hierarchical stream

data by identifying them through the sub-classes clustering process, creating

child CVMs based on the hierarchical labels and applies supervised learning

to update the core vectors. This puts strong emphasis on the unique problem
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subspaces and allows easy to discriminate parent classes by local modelling on

their child classes.

DE-CVM takes HCVM a step further by implementing an evolving clus-

tering process. DE-CVM evolves through incremental, hybrid learning and

accommodates new input stream data, including new features, new classes,

etc. through local element tuning. New core vectors are created and updated

while the system is operating. In contrast to HCVM, DE-CVM can work not

only on hierarchical data but also on any numerical stream data.

Meta Learning String Kernel CVM is proposed to satisfy the string format

stream data learning. Recently, string kernel based support vector machines

have shown competitive performance in tasks such as text classification and

protein homology detection. Meta Learning String Kernel CVM improves the

effectiveness of traditional string kernels SVMs by learning the meta knowl-

edge and adopting CVMs.

The novel stream learning methods outlined above have been applied to the

following three real world data modelling problems:

1. Hierarchical network data intrusion detection;

2. Face Membership Authentication;

3. String data (i.e. Spam email, news and malicious software) classification.

These solutions constitute the main contribution of this research to the area of

applied information science.

In addition to the above contributions, two stream data visualisation systems

were developed: the network intrusion detection visualisation system (NIDVS)

and the HCVM prototype system. These systems overcome the difficulty of

monitoring stream data learning progress and also provide a better understand-

ing of local modelling.

In summary, real world problems consist of many smaller problems. It was

found beneficial to acknowledge the existence of these sub-problems and ad-

dress them through the use of local models.

The core vectors extracted from the local models also brought about the

availability of new knowledge for researchers and would allow more in-depth

study of the sub-problems to be carried out in future research.
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Chapter 1
I N T RO D U C T I O N

1.1 BAC K G RO U N D

Data mining is concerned with the process of computationally extracting hid-

den knowledge structures represented in models and patterns from large data

repositories. It is an interdisciplinary field of study that has its roots in databases,

statistics, machine learning, and data visualisation. Data mining has emerged

as a direct outcome of the data explosion that resulted from the success in

database and data warehousing technologies over the past two decades (Frawley,

Piatetsky-Shapiro, & Matheus, 1992; Fayyad, 1998).

The conventional focus of data mining research was on mining resident data

stored in large data repositories. The growth of technologies such as wireless

sensor networks (Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002) have

contributed to the emergence of data streams (Muthukrishnan, 2003). The dis-

tinctive characteristic of such data is that it is unbounded in terms of continuity

of data generation. This form of data has been termed as data streams to ex-

press its flowing nature (Henzinger & Raghavan, 1998).

Table 1.1 shows the major differences between data stream processing and

traditional data processing. The objective of this table is to clearly differentiate

between traditional stored data processing and stream processing as a step to-

wards focusing on the data mining aspects of data stream processing systems.

1
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Stream Processing Traditional Processing
Real-time processing Offline processing

Rapid data generation relative to Normal or slow data generation relative
the available computational resources to the available computational resources

Storage of data is not feasible Storage of data is feasible
Approximate results are acceptable Accurate results are required

Processing of samples of Processing of every data
data is the usual task item/record is the usual task

Linear and sublinear computational Techniques with high space and time
techniques are widely used complexity are used if necessary

Table 1.1:
Stream processing vs Traditional processing

1.2 R E S E A R C H G OA L A N D O B J E C T I V E S

The goal of this research is to develop novel information methods and systems

for stream data modelling and specifically for network intrusion detection and

string classification applications. In order to achieve the goal, this study will

investigate this new and promising area, and build an on-line modelling envi-

ronment using evolving systems for stream data classification.

1.2.1 Specific Research objectives

More specifically, the research includes the following objectives:

1. To critically analyse the problems related to stream data mining. Al-

though plenty of computational intelligent models have been developed

so far for stream data learning, there are few effective and integrated sys-

tems. There are a variety of issues that have not been resolved yet.

2. To develop a new on-line kernel based learning method with low compu-

tational cost and to analyse its performance under different scenarios.

3. To develop evolving clustering methods based on a local modelling frame-

work. Local modelling breaks down the entire problem into many smaller
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sub-problems, based on its position in the problem space. Thus, evolv-

ing clustering is a fundamental step to the creation of a local modelling

system.

4. To develop a novel string classification method for string format stream

data mining. One major task for stream data mining is to categorise

texture. This study aims to develop a kernel based classification method

for texture categorisation and to investigate its performance over network

string data.

5. To develop dynamic visualisation systems for monitoring stream data

learning. These will present the stream data mining progress and local

modelling evaluation.

In summary, the ultimate objective of this research is to develop new methods

and systems for evolving stream data mining that leads to improved classifi-

cation performance and various capabilities. Such methods and systems will

integrate novel machine learning and modelling techniques for:

• on-line adaption;

• fast learning;

• evolving clustering;

• classification;

• knowledge discovery and model validation.

1.3 T H E S I S S T RU C T U R E

The structure of the thesis follows the research objectives presented in the pre-

vious section and is outlined below.

C H A P T E R 2 reviews current developments in the area of stream data min-

ing by providing background information, and describing existing modelling

techniques, along with learning algorithms and applications.
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C H A P T E R 3 presents an overview of a range of computational intelligent

techniques that are relevant to this research. A brief description of batch and

on-line learning techniques that have been used for global, local and person-

alised modelling is provided.

C H A P T E R 4 proposes an on-line, novel kernel based learning algorithm

on-line core vector machine (OCVM), for which computational complexity is

independent from the size of training samples. An experimental comparison

between the proposed and traditional support vector machine is undertaken.

C H A P T E R 5 proposes a novel learning method hierarchical core vector

machine (HCVM) for local modelling of hierarchical structure stream data.

C H A P T E R 6 proposes a novel kernel based method dynamic evolving core

vector machine (DE-CVM), which improves the original HCVM algorithm

by adopting evolving clustering processing that evolves through local element

tuning.

C H A P T E R 7 proposes a novel string classification method, Meta Learning

String Kernels CVM, that is capable of string format stream data learning.

C H A P T E R 8 demonstrates the inherent suitability of using HCVM on hi-

erarchical structure stream data (i.e. network data flow). The experimental

results validate the effectiveness of HCVM by comparing with the winner of

KDD’99 cup (KDD99, 1999).

C H A P T E R 9 presents a case study on face membership authentication with

DE-CVM. The results attest that local modelling is able to capture more valu-

able knowledge from sub-spaces than global modelling does.

C H A P T E R 10 presents experiments with Meta Learning String Kernel CVM

for string classification. The results demonstrate the capability of Meta Learn-

ing String Kernel CVM for string format stream data learning.
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C H A P T E R 11 conclusions are drawn and future directions for research are

given.

A P P E N D I X A A N D B describes two dynamic visualisation systems de-

veloped for monitoring stream data learning progress.
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1.4 C O N T R I B U T I O N S

During my PhD study, I have published or delivered 3 conference paper, 3

technical reports, 1 journal article, 4 novel methods and 2 prototype systems.

1.4.1 Publications

The material presented in this thesis was partially published in a number of

peer-reviewed international conference and journal articles:

• Pang, S., Dhoble, K., Chen, Y., Kasabov, N., Ban, T. & Kadobayashi, Y.

(2009) Active Mode Incremental Nonparametric Discriminant Analysis

Learning. Proceedings of the Eighth International Conference on Infor-

mation and Management Sciences. 407-412 July 2009 Kunming, China.

• Chen, Y., Pang, S., Kasabov, N., Ban, T. & Kadobayashi, Y. (2009) Hi-

erarchical Core Vector Machines for Network Intrusion Detection. 16th

International Conference on Neural Information Processing of the Asia &

Pacific Neural Network Assembly, APNNA” (ICONIP09) 520-529 De-

cember Bangkok, Thailand.

• Chen, Y., Pang, S., Kasabov, N. & Ban, T. (2010) Factorizing class char-

acteristics via group MEBs construction. Proceedings of the 17th in-

ternational conference on Neural information processing: models and

applications, 283-290, Sydney, Australia.

• Chen, Y., Kasabov, N. & Pang, S. (2012) Class Factorizing through Dis-

tinctive Core Vectors Extraction using Dynamic Evolving Minimum En-

closing Ball. Evolving System (submitted).

1.4.2 Technical Reports

3 technical reports have been completed and delivered to National Institution

of Information and Communication Technology (NICT), Japan:
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• Pang, S. Chen, Y. Kasabov, N. & Dhoble , K. (2009) FY-2008 High

Speed Algorithms for Outlier Detection and Classification over Huge-

size Network Data Streams. Auckland, New Zealand: Auckland Uni-

versity of Technology, Knowledge Engineering and Discovery Research

Institute (KEDRI).

• Pang, S. Chen, Y. Kasabov, N. & Song, L. (2010) FY-2009 High Speed

Algorithms for Outlier Detection and Classification over Huge-size Net-

work Data Streams. Auckland, New Zealand: Auckland University of

Technology, Knowledge Engineering and Discovery Research Institute

(KEDRI).

• Pang, S. Chen, Y. Kasabov, N. & Song, L. (2011) FY-2010 High Speed

Algorithms for Outlier Detection and Classification over Huge-size Net-

work Data Streams. Auckland, New Zealand: Auckland University of

Technology, Knowledge Engineering and Discovery Research Institute

(KEDRI).

1.4.3 Novel Methods

Total 4 novel methods are presented in this thesis:

• On-line Core Vector Machine (OCVM) (Chapter 4)

• Hierarchical Core Vector Machine (HCVM) (Chapter 5)

• Dynamic Evolving Core Vector Machine (DE-CVM) (Chapter 6)

• Meta Learning for String Categorization (Chapter 7)

1.4.4 Prototype Systems

We developed 2 prototype systems:

• Network Intrusion Detection Visualization System (Appendix A)

• HCVM Prototype System (Appendix B)



Chapter 2
M I N I N G DATA S T R E A M

This chapter reviews the theoretical foundations of data stream analysis. Tech-

niques for mining stream data are critically reviewed. Finally, research prob-

lems in the streaming mining field of study are outlined and discussed. These

research issues should be addressed in order to realize robust systems that are

capable of fulfilling the needs of data stream mining applications.

Intelligent data analysis has passed through a number of stages. Each stage

addresses new research issues that have arisen. Statistical exploratory data

analysis represents the first stage. The goal was to explore the available data in

order to test a specific hypothesis. With the advances in computing power, the

field of machine learning has emerged. The objective was to find computation-

ally efficient solutions to data analysis problems. Along with the progress in

machine learning research, new data analysis problems have been addressed.

Due to the increase in database sizes, new algorithms have been proposed to

deal with the scalability issue. Moreover, machine learning and statistical anal-

ysis techniques have been adopted and modified in order to address the prob-

lem of very large databases. Data mining is an interdisciplinary field of study

and is used to extract models and patterns from large amounts of information

stored in data repositories (Hand, 1999; Hand, Mannila, & Smyth, 2001; Him-

berg, Tikanmaki, Toivonen, Korpiaho, & Mannila, 2001).

Advances in networking and parallel computation have lead to the introduc-

tion of distributed and parallel data mining. The goal is to extract knowledge

from different subsets of a dataset and integrate these generated knowledge

structures in order to build a global model of the whole dataset. Client/server,

mobile agent based and hybrid models have been proposed to address the com-

8
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munication overhead issue. Different variations of algorithms have been devel-

oped in order to increase the accuracy of the generated global model. More de-

tails about distributed data mining could be found in (Park & Kargupta, 2002).

Recently, the data generation rates in some data sources has become faster

than ever before. This rapid generation of continuous streams of information

has challenged the storage, computation and communication capabilities of

computing systems. Systems, models and techniques have been proposed and

developed over the past few years to address these challenges (Babcock, Babu,

Datar, Motwani, & Widom, 2002).

The chapter is organised as follows. Section 2.1 presents the theoretical

background of data stream analysis; mining data stream techniques and sys-

tems are reviewed in sections 2.2 and 2.3 respectively; finally section 2.4 sum-

marizes this review chapter.

2.1 E X I S T I N G T E C H N I Q U E S

Research problems and challenges that have arisen in the area of mining data

streams have been addressed by using well established statistical and com-

putational approaches. We can categorise these solutions into data-based and

task-based ones. In data-based solutions, the idea is to examine only a subset of

the whole dataset or to transform the data either vertically or horizontally to an

approximate, smaller size data representation. On the other hand, in task-based

solutions, techniques from computational theory have been adopted to achieve

time and space efficient solutions. In this section we review these theoretical

foundations.

2.1.1 Data-based Techniques

Data-based techniques refer to summarising the whole dataset or choosing a

subset of the incoming stream to be analysed. Sampling, load shedding and

sketching techniques represent the former one, while synopsis data structures

and aggregation represent the latter one. Here is an outline of the basics of
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these techniques with pointers to their applications in the context of data stream

analysis.

Sampling

Sampling refers to the process of probabilistic choice of a data item to be

processed or not. Sampling is an old statistical technique that has been used

for a long time. Boundaries of the error rate of the computation are given

as a function of the sampling rate. As a fast Machine Learning technique,

Hoeffding bound has been used to measure the sample size according to some

derived loss functions (Domingos & Hulten, 2001).

The problem with using sampling in the context of data stream analysis is the

unknown dataset size. Thus the treatment of data streams should follow a spe-

cial type of analysis to find the error bounds. Another problem with sampling

is that it would be important to check for anomalies for surveillance analysis

as an application in mining data streams. Sampling may not be the right choice

for such an application. Sampling also does not address the problem of fluc-

tuating data rates. It would be worth investigating the relationship among the

three parameters: data rate, sampling rate and error bounds.

Load Shedding

Load shedding refers to the process of dropping a sequence of data streams

(Mayur, Babcock, Datar, & Motwani, 2003). Load shedding has been used

successfully in querying data streams. It has the same problems as sampling.

Load shedding is difficult to be used with mining algorithms because it drops

chunks of data streams that could be used in the structuring of the generated

models or it might represent a pattern of interest in time series analysis.

Sketching

Babcock et al. (2002) describe the process of randomly projecting a subset of

features. It is the process of vertically sampling the incoming stream. Sketch-

ing has been applied in comparing different data streams and in aggregate

queries. The major drawback of sketching is that it has low accuracy. It is
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hard to use it in the context of data stream mining. Principal Component Anal-

ysis (PCA) would be a better solution in streaming applications.

Synopsis Data Structures

Creating synopsis of data refers to the process of applying summarisation tech-

niques that are capable of summarising the incoming stream for further analy-

sis. Wavelet analysis, histograms, quantiles and frequency moments have been

proposed as synopsis data structures. Since synopsis of data does not represent

all the characteristics of the dataset, approximate answers are produced when

using such data structures (Gilbert, Kotidis, Muthukrishnan, & Strauss, 2003).

Aggregation

Aggregation is the process of computing statistical measures such as means

and variance that summarise the incoming stream. This aggregated data could

be used by the mining algorithm. The problem with aggregation is that it does

not perform well with highly fluctuating data distributions. Merging online

aggregation with offline mining has been studied by Aggarwal, Han, Wang,

and Yu (2003, 2004).

2.1.2 Task-based Techniques

Task-based techniques are methods that modify existing techniques or invent

new ones in order to address the computational challenges of data stream

processing. Approximation algorithms, sliding window and algorithm output

granularity represent this category. The following subsections, examine each

of these techniques and its application in the context of data stream analysis.

Approximation algorithms

Approximation algorithms have their roots in algorithm design (Muthukrishnan,

2003). It is concerned with design algorithms for computationally hard prob-

lems. These algorithms can result in an approximate solution with error bounds.

The idea is that mining algorithms are considered hard computational prob-

lems given their features of continuality and speed and the generating environ-
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ment that is featured by being resource constrained. Approximation algorithms

have attracted researchers as a direct solution to data stream mining problems.

However, the problem of data rates with regard with the available resources

could not be solved using approximation algorithms. Other tools should be

used along with these algorithms in order to adapt to the available resources.

Approximation algorithms have been used by Cormode and Muthukrishnan

(2003).

Sliding Window

The inspiration behind the technique of sliding window is that the user is more

concerned with the analysis of most recent data streams. Thus a detailed anal-

ysis is done over the most recent data items and summarised versions of the

old ones. This idea has been adopted in many techniques in the comprehensive

data stream mining system MAIDS project (Dong et al., 2003).

Algorithm Output Granularity

The algorithm output granularity technique (AOG) (Bandyopadhyay, Holder,

& Maulik, 2006) introduces the first resource-aware data analysis approach

that can cope with fluctuating very high data rates according to the available

memory and the processing speed represented in time constraints. The AOG

performs the local data analysis on a resource constrained device that gener-

ates or receives streams of information. AOG has three main stages. Mining

followed by adaptation to resources and data stream rates represent the first

two stages. Merging the generated knowledge structures when running out of

memory represents the last stage. AOG has been used in clustering, classi-

fication and frequency counting (Bandyopadhyay et al., 2006). Having dis-

cussed the different existing approaches to data stream analysis problems, the

following section is devoted to stream mining techniques that use the above

approaches in different ways.
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2.1.3 Mining Techniques

Mining data streams has attracted the attention of the data mining commu-

nity for the last three years. A number of algorithms have been proposed for

extracting knowledge from streaming information. This section reviews clus-

tering, classification, frequency counting and time series analysis techniques.

Clustering

Guha, Mishra, Motwani, and O’Callaghan (2000) have studied analytically

clustering data streams using the k-median technique. The proposed algorithm

makes a single pass over the data stream and uses small space. It requires

O(nk) time and O(nε) space where k is the number of centres, n is the num-

ber of points and ε < 1. They have proved that any k-median algorithm that

achieves a constant factor approximation can not achieve a better run time than

O(nk). The algorithm starts by clustering a calculated size sample into 2k, and

then, at a second level, the algorithm clusters the above points for a number of

samples into 2k. This process is repeated until it clusters the 2k clusters into k

clusters.

Babcock, Datar, Motwani, and O’Callaghan (2003) have used an exponential

histogram (EH) data structure to improve the algorithm proposed by Guha et

al. (2000). They use the same method described above, however they address

the problem of merging clusters when the two sets of cluster centres to be

merged are far apart by maintaining the EH data structure. They have studied

their proposed algorithm analytically.

Charikar, O’Callaghan, and Panigrahy (2003) have proposed another k-median

algorithm that overcomes the problem of increasing approximation factors in

the algorithm (Guha et al., 2000) with the increase in the number of levels

used to result in the final solution of the divide and conquer algorithm. The

algorithm has also been studied analytically.

Domingos and Hulten (2000) have proposed a general method for scaling up

machine learning algorithms. They have termed this approach Very Fast Ma-

chine Learning VFML. This method depends on determining an upper bound

for the learners loss as a function in a number of data items to be examined in
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each step of the algorithm. They have applied this method to K-means clus-

tering VFKM and decision tree classification VFDT techniques. These algo-

rithms have been implemented and evaluated using synthetic data sets as well

as real web data streams. VFKM uses the Hoeffding bound to determine the

number of examples needed in each step of k-means algorithm. The VFKM

runs as a sequence of k-means executions where each run uses more examples

than the previous one until a calculated statistical bound (Hoeffding bound) is

satisfied.

Ordonez (2003) has proposed several improvements to k-means algorithm

to cluster binary data streams. He has developed an incremental k-means algo-

rithm. The experiments were conducted on real data sets as well as synthetic

ones. He has demonstrated experimentally that the proposed algorithm outper-

forms the scalable k-means in the majority of cases. The proposed algorithm

is a one pass algorithm in O(Tkn) complexity, where T is the average transac-

tion size, n is number of transactions and k is number of centres. The use of

binary data simplifies the manipulation of categorical data and eliminates the

need for data normalisation. The main idea behind the proposed algorithm is

that it updates the cluster centres and weights after examining a batch of trans-

actions which equalizes the square root of the number of transactions rather

than updating them one by one.

O’Callaghan, Mishra, Meyerson, Guha, and Motwani (2002) have proposed

stream and local search algorithms for high quality data stream clustering. The

stream algorithm starts by determining the size of the sample and then ap-

plies the local search algorithm if the sample size is larger than a pre-specified

equation result. This process is repeated for each data chunk. Finally, the lo-

cal search algorithm is applied to the cluster centers generated in the previous

iterations.

Aggarwal, Han, Wang, and Yu (2003) have proposed a framework for clus-

tering data steams called CluStream algorithm. The proposed technique di-

vides the clustering process into two components. The online component

stores summarised statistics about the data streams and the offline one performs

clustering on the summarised data according to a number of user preferences

such as the time frame and the number of clusters. A number of experiments

on real datasets have been conducted to prove the accuracy and efficiency of
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the proposed algorithm. Aggarwal et al. (2004) have recently proposed HP-

Stream; a projected clustering for high dimensional data streams. HPStream

has outperformed CluStream in recent results.

Keogh and Lin (2005) have shown empirically, that most highly cited clus-

tering of time series data streams algorithms proposed so far in the literature

come out with meaningless results in subsequence clustering. They have pro-

posed a solution approach using k-motif to choose the sub-sequences that the

algorithm can work on to produce meaningful results.

Bandyopadhyay, Holder, and Maulik (2006) have developed Lightweight

Clustering LWC. It is an AOG-based algorithm. AOG has been discussed in

section 2.1. The algorithm adjusts a threshold that represents the minimum

distance measure between data items in different clusters. This adjustment is

done regularly according to a pre-specified time frame. It is done according

to the available resources by monitoring the input-output rate. This process is

followed by merging clusters when the memory is full.

2.1.4 Classification

H. Wang, Fan, Yu, and Han (2003) have proposed a general framework for

mining drifting data streams. They have observed that data stream mining

algorithms proposed so far have not addressed the concept of drifting in the

evolving data. The proposed technique uses weighted classifier ensembles to

mine data streams. The expiration of old data in their model depends on the

data distribution. They use synthetic and real life data streams to test their

algorithm and compare between the single classifier and classifier ensembles.

The proposed algorithm combines multiple classifiers weighted by their ex-

pected prediction accuracy. Also the selection of number of classifiers instead

of using all is an option in the proposed framework without loosing accuracy

in the classification process.

Ganti, Gehrke, and Ramakrishnan (2002) have developed analytically an al-

gorithm for model maintenance using insertion and deletion of blocks of data

records. This algorithm can be applied to any incremental data mining model.

They have also described a generic framework for change detection between
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two data sets in terms of the data mining results they induce. They formalise

the above two techniques into two general algorithms: GEMM and FOCUS.

The algorithms have been applied to decision tree models and the frequent

itemset model. The GEMM algorithm accepts a class of models and an in-

cremental model maintenance algorithm for the unrestricted window option,

and outputs a model maintenance algorithm for both window-independent and

window-dependent block selection sequence. The FOCUS framework uses the

difference between data mining models as the deviation in data sets.

Domingos and Hulten (2000) have developed VFDT. It is a decision tree

learning systems based on Hoeffding trees. It splits the tree using the cur-

rent best attribute taking into consideration that the number of examined data

items used satisfies a statistical measure which is Hoeffding bound. The algo-

rithm also deactivates the least promising leaves and drops the non-potential

attributes.

Papadimitriou, Brockwell, and Faloutsos (2003) have proposed Arbitrary

Window Stream mOdeling Method (AWSOM) for interesting pattern discov-

ery from sensors. They developed a one-pass algorithm to incrementally up-

date the patterns. Their method requires only O(logN) memory where N is the

length of the sequence. They conducted experiments with real and synthetic

data sets. They use wavelet coefficients as compact information representation

and correlation structure detection, and then apply a linear regression model in

the wavelet domain.

Aggarwal et al. have adopted the idea of microclusters introduced in CluS-

tream in On-Demand classification (Aggarwal et al., 2004) and it shows a high

accuracy. The technique uses clustering results to classify data using statistics

of class distribution in each cluster.

Last (2002) has proposed an online classification system that can adapt to

concept drift. The system rebuilds the classification model with the most recent

examples. Using the error rate as a guide to concept drift, the frequency of

model building and the window size are adjusted. The system uses info-fuzzy

techniques for model building and information theory to calculate the window

size.
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Ding, Ding, and Perrizo (2002) have developed a decision tree based on

Peano count tree data structure. It has been shown experimentally that it is a

fast building algorithm that is suitable for streaming applications.

Bandyopadhyay et al. (2006) have developed Lightweight Classification LW-

Class. It is a variation of LWC. It is also an AOG-based technique. The idea

is to use K nearest neighbours with updating the frequency of class occurrence

given the data stream features. In case of contradiction between the incoming

stream and the stored summary of the cases, the frequency is reduced. In the

case when the frequency is equal to zero, all the cases represented by this class

are released from the memory.

2.1.5 Frequency Counting

Giannella, Yang, Zhang, Yan, and Yu (2008) have developed a frequent item

sets mining algorithm over data stream. They have proposed the use of tilted

windows to calculate the frequent patterns for the most recent transactions

based on the fact that users are more interested in the most recent transactions.

They use an incremental algorithm to maintain the FP-stream which is a tree

data structure to represent the frequent itemsets. They conducted a number of

experiments to prove the algorithm efficiency.

Manku and Motwani (2002) have proposed and implemented an approxi-

mate frequency count in data streams. The implemented algorithm uses all the

previous historical data to calculate the frequent patterns incrementally.

Cormode and Muthukrishnan (2003) have developed an algorithm for count-

ing frequent items. The algorithm uses group testing to find the hottest k items.

The algorithm is used with the turnstile data stream model which allows addi-

tion as well as deletion of data items. An approximation randomized algorithm

has been used to approximately count the most frequent items. It is worth men-

tioning that this data stream model is the hardest to analyse. Time series and

cash register models are computationally easier. The former does not allow

increments and decrements and the latter one allows only increments.

Bandyopadhyay et al. (2006) have developed one more AOG-based algo-

rithm: Lightweight frequency counting (LWF). It has the ability to find an
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approximate solution to the most frequent items in the incoming stream using

adaptation and releasing the least frequent items regularly in order to count the

more frequent ones.

2.1.6 Time Series Analysis

Indyk, Koudas, and Muthukrishnan (2000) have proposed approximate solu-

tions with probabilistic error bounding to two problems in time series analysis:

relaxed periods and average trends. The algorithms use dimensionality reduc-

tion sketching techniques. The process starts with computing the sketches over

an arbitrarily chosen time window and creating the so called sketch pool. Us-

ing this pool of sketches, relaxed periods and average trends are computed.

The algorithms have shown experimentally efficiency in running time and ac-

curacy.

Perlman and Java (2002) have proposed a two phase approach to mine astro-

nomical time series streams. The first phase clusters sliding window patterns

of each time series. Using the created clusters, an association rule discovery

technique is used to create affinity analysis results among the created clusters

of time series.

Zhu and Shasha (2002) have proposed techniques to compute some statisti-

cal measures over time series data streams. The proposed techniques use the

discrete Fourier transform. The system is called StatStream and is able to com-

pute approximate error bounded correlations and inner products. The system

works over an arbitrarily chosen sliding window.

Lin, Keogh, Lonardi, and Chiu (2003) have proposed the use of symbolic

representation of time series data streams. This representation allows dimen-

sionality/numerosity reduction. They have demonstrated the applicability of

the proposed representation by applying it to clustering, classification, index-

ing and anomaly detection. The approach has two main stages. The first one is

the transformation of time series data to Piecewise Aggregate Approximation

followed by transforming the output to discrete string symbols in the second

stage.
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Y. Chen, Dong, Han, Wah, and Wang (2002) have proposed the application

of so called regression cubes for data streams. Due to the success of OLAP

technology in the application of static stored data, it has been proposed to use

multidimensional regression analysis to create a compact cube that could be

used for answering aggregate queries over the incoming streams. This research

has been extended to be adopted in an undergoing project Mining Alarming

Incidents in Data Streams (MAIDS).

Himberg et al. (2001) have presented and analysed randomised variations

of segmenting time series data streams generated by on-board mobile phone

sensors. It has been proven in this study that Global Iterative Replacement

provides approximately an optimal solution with high efficiency in running

time.

Guralnik and Srivastava (1999) have developed a generic event detection

approach of time series streams. They have developed techniques for batch

and online incremental processing of time series data. The techniques have

proven efficiency with real and synthetic data sets.

2.2 S Y S T E M S

Several applications have stimulated the development of robust streaming anal-

ysis systems. They are discussed below.

Burl, Fowlkes, Roden, Stechert, and Mukhtar (1999) have developed Dia-

mond Eye for NASA and JPL. The aim of this project was to enable remote

computing systems as well as observing scientists to extract patterns from spa-

tial objects in real time image streams. The success of this project enables “a

new era of exploration using highly autonomous spacecraft, rovers, and sen-

sors?” (Burl et al., 1999). This project represents an early development in

streaming analysis applications.

Kargupta et al. (2002) have developed the first ubiquitous data stream mining

system: MobiMine. It is a client/server PDA-based distributed data stream

mining application for stock market data. It should be pointed out that the

mining component is located at the server side rather than the PDA. There are

different interactions between the server and PDA untill the results are finally
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displayed on the PDA screen. The tendency to perform data mining at the

server side has been changed with the increase of the computational power of

small devices.

Tanner, Alshayeb, Criswell, Iyer, and Mcdowell (2008) have developed En-

Vironmen for On-Board Processing (EVE). The system mines data streams

continuously generated from measurements of different on-board sensors in as-

tronomical applications. Only interesting patterns are transferred to the ground

stations for further analysis preserving the limited bandwidth. This system rep-

resents the typical case for astronomical applications. Huge amounts of data

are generated and there is a need to analyse this streaming information in real

time.

Srivastava (2003) have developed a NASA project for onboard detection of

geophysical processes represented in snow, ice and clouds using kernel clus-

tering methods. These techniques are used for data compression. The moti-

vation of the project is to preserve the limited bandwidth needed to send im-

age streams to the ground centers. The kernel methods have been chosen due

to their low computational complexity in such resource-constrained environ-

ments.

2.3 R E S E A R C H I S S U E S

Data stream mining is a stimulating field of study that has raised challenges

and research issues to be addressed by the database and data mining communi-

ties. The following is a discussion of both addressed and open research issues

(Dong et al., 2003; Bandyopadhyay et al., 2006; Golab & Özsu, 2003; Kar-

gupta et al., 2002). The following is a brief discussion of previously addressed

issues.

• Unbounded memory requirements due to the continuous flow of data

streams: machine learning techniques represent the main source of data

mining algorithms. Most of machine learning methods require data to be

resident in memory while executing the analysis algorithm. Due to the

huge amounts of data in the generated streams, it is absolutely crucial to
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deign space efficient techniques that can have only one-pass learning of

the incoming stream. (Chapter 4)

• Required result accuracy: designing space and time efficient techniques

should be accompanied with acceptable result accuracy. Approximation

algorithms as mentioned earlier can guarantee error bounds. Also sam-

pling techniques adopt the same concept as it has been used in VFML

(Domingos & Hulten, 2001). (Chapter 5)

• Modelling changes of mining results over time: in some cases, the user is

not interested in mining data stream results, but how these results change

over time. For example, if the number of clusters generated changes,

it might represent some changes in the dynamics of the arriving stream.

Dynamics of data streams using changes in the knowledge structures gen-

erated would benefit many temporal-based analysis applications. (Chap-

ter 6)

• Visualisation of data mining results on small screens of mobile devices:

visualisation of traditional data mining results on a desktop is still a re-

search issue. Visualisation in small screens of a PDA for example is a

real challenge. Imagine a businessman and data is being streamed and

analysed on his PDA. Such results should be efficiently visualised in a

way that enables him to take a quick decision. This issue has been ad-

dressed in (Kargupta et al., 2002). (Appendix A and B)

The above issues represent the grand challenges to the data mining com-

munity in this essential field. There is a real need inspired by the potential

applications in astronomy and scientific laboratories as well as business appli-

cations to address the above research problems.

2.4 S U M M A RY

The dissemination of the data stream phenomenon has necessitated the devel-

opment of stream mining algorithms. The area has attracted the attention of

the data mining community. The proposed techniques have their roots in statis-

tics and theoretical computer science. Data-based and task-based techniques
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are the two categories of data stream mining algorithms. Based on these two

categories, a number of clustering, classification, frequency counting and time

series analysis have been developed. Systems have been implemented to use

these techniques in real applications. Mining data streams is still in its infancy.

They are discussed in this thesis along with open issues in data stream mining.



Chapter 3
M O D E L I N G T E C H N I Q U E S F O R C O M P U TAT I O NA L

I N T E L L I G E N C E

This chapter gives an overview of different categories of computational intel-

ligence models with their modelling methods in batch mode and online mode.

Several research questions are formulated at the end of the chapter.

“Complex problems usually require a more complex intelligent system for

their solution, consisting of several models. Some of these models can be

evolving models.” Kasabov (2007b)

Kasabov (2007c) put predictive models into three different categories.

1. A Global Model is a single model that learns from the entire dataset. The

developed model is then applied on future data.

2. A Local Model is a fixed mixture of models trained on the entire dataset.

However, when it is applied to future data, only one or a subset of relevant

models will contribute to the prediction.

3. A Personalised Model is an individualised model that is created dynami-

cally for each prediction, using only relevant input vectors through trans-

ductive reasoning.

A graphical representation of an integrated multimodel system is depicted

in Figure 3.1 For every single input vector, the outputs of the tree models are

weighted. The weights can be adjusted and optimised for every new input

vector in a similar way to the parameters of a personalised model (Kasabov,

2007a).

yi = wi,gyi(xi)
(global) + wi,lyi(xi)

(local) + wi,pyi(xi)
(personalised) (3.1)

23



3.1 G L O BA L M O D E L 24

New input
vector

Global
Model

Local Model

Personalised
Model

Database

Weighted
Output

iM

iyix

Figure 3.1: A graphical representation of an integrated global, local, and personalised
multimodel system. For every single input vector, the outputs of the tree
models are weighted (Kasabov, 2007a)

The chapter is organised as follows. Section 3.1 presents the global model.

Local and personalised models are reviewed in sections 3.2 and 3.3 respec-

tively. Section 3.4 describes the differences between batch mode and on-line

mode learning. Sections 3.5 and section 3.6 reviews batch and on-line mode

methods. Finally section 3.7 summarises this review chapter and gives open

questions.

3.1 G L O BA L M O D E L

The global model is a single, fixed, reusable model, trained with the entire

dataset and can be applied to future data.

Most of today’s predictive models are global (inductive) models, where the

model learns from the training data and then is applied to future data. Lin-
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ear Regression (Hastie, Tibshirani, & Friendman, 2001), Multi-layer Percep-

tron (MLP) (“Multilayer feedforward networks are universal approximators”,

1989; S. Yang, Ho, & Lee, 2006), Support Vector Machine (SVM) (Vapnik,

1998), Adaptive-Network-Based Fuzzy Inference System (ANFIS) (Jang, 1993;

Jang & Sun, 1995; Jang, Sun, & Mizutani, 1997) and Echo State Network

(ESN) are examples of global models. MLP and SVM machine learning algo-

rithms were proposed many years ago and are still the two most widely used

neural network models.

There are two limitations with this type of model:

First, if a new pattern emerges in the future, the existing model will not be

able to handle it as the model has not been trained to recognise this pattern

and a new model may need to be developed. This can be time consuming

depending on the model and the complexity of the problem.

Second, as the model is developed based on all available data with the objec-

tive of minimising overall prediction error, it will be biased toward the majority

of the data. A pattern without enough support will have little influence on the

model.

This is similar to the issue with interpolation versus extrapolation. If the new

pattern is similar to some existing pattern, then it is considered interpolation,

where there is enough support of the prediction made for this pattern. However,

if the new pattern is very different from any of the existing patterns, then it is

considered extrapolation, where the prediction made for this new pattern is less

meaningful and subject to greater uncertainty.

Recent research in the field of machine learning has focused on model en-

sembles that use a mixture of models to achieve better overall accuracy. Sev-

eral studies have reported that an ensemble of models works better than a

global model (Cevikalp & Polikar, 2008; Islam, Yao, Shahriar Nirjon, Islam,

& Murase, 2008; H. C. Kim, Pang, Je, Kim, & Bang, 2002; Nguyen, Abbass,

& McKay, 2008; Pang & Kasabov, 2004; Yao & Liu, 1998, 1996; Zhou &

Jiang, 2003).

There are many strategies that are commonly used to create an ensemble:

bagging (H. C. Kim et al., 2002), boosting (Islam et al., 2008) and clustering

(Kasabov & Song, 2002) are well known strategies. Depending on the strategy

used, the ensembles generally try to either generate different views of one
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problem or break down the problem into smaller problems and tackle each

problem independently. Sometimes both approaches are used.

3.2 L O C A L M O D E L

The local model (Fontenla-Romero, Alonso-Betanzos, Castillo, Principe, &

Guijarro-Berdias, 2002; Kasabov, 2001; Kasabov & Song, 2002; Lucks & Oki,

1999; Song & Kasabov, 2005; Yamada, Yamashita, Ishii, & Iwata, 2006) is a

type of model ensemble that breaks down the problem into many smaller sub-

problems, based on their position in the problem space. The sub-problems can

be defined through a clustering process such as k-means, fuzzy c-means and

hierarchical clustering that group similar input vectors based on their similarity

(distance measure).

This type of model assumes that each cluster is a unique problem subspace

and a sub-model should be developed for it. The quality of the cluster is,

therefore, the foundation of this type of model.

The data clustering parameters often need to be adjusted, according to the

sub-model’s requirements or the characteristic of the problem. Many models,

such as linear regression, need the number of input vectors to be significantly

greater than the number of variables and, therefore, the clusters must be large

enough to support this type of sub-model. Hence, local models may require

more training data than the global model to ensure that each sub-model is

trained with a sufficient amount of input vectors.

In addition, the clustering process is strongly affected by the amount of noise

in the data of irrelevant or redundant features, as it affects the distance measure

used by most clustering methods.

3.3 P E R S O NA L I S E D M O D E L

Transductive reasoning (Vapnik, 1998; Kasabov & Pang, 2003; Kasabov, 2007b)

was originally proposed by Vapnik in 1998 for the development of an individ-

ualised model through transductive reasoning for a given input vector without

first developing a generalised model in the intermediate stage.
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This approach has been widely used to solve various real life problems like

text classification (“Learning with progressive transductive support vector ma-

chine”, 2003; Joachims, 1999), speech recognition (Joachims, 2003), image

recognition (Li & Chua, 2003) and language translation (Ueffing, 2007).

The main difference here is that transductive reasoning focuses on finding a

solution for each prediction instead of creating a generalised solution for the

problem and then uses it for each prediction.

The model is created dynamically for each prediction, which utilises all

available data and uses the most suitable parameters, features or model to make

the prediction.

3.4 BAT C H V S O N -L I N E M O D E L E A R N I N G

The on-line and batch modes are slightly different, although both will perform

well for parabolic performance surfaces. One major difference is that the batch

algorithm keeps the system weights constant while computing the error asso-

ciated with each sample in the input. Since the on-line version is constantly

updating its weights, its error calculation (and thus gradient estimation) uses

different weights for each input sample. This means that the two algorithms

visit different sets of points during adaptation. However, they both converge to

the same minimum.

An online model can be: global (e.g. Incremental Support Vector Ma-

chine (SVM), Incremental Principal Component Analysis (PCA), Incremen-

tal Linear Discriminant Analysis (LDA)), local (e.g. Evolving Takagi-Sugeno

(eTS+), Evolving Fuzzy Neural Networks (EFuNN), Dynamic Evolving Neural-

Fuzzy Inference System (DENFIS)) or personalised (e.g. Weighted Nearest

Neighbor (wkNN and wwKNN)).

A batch model can be global (e.g. SVM) or local but no adoption(e.g. SVM

tree).
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3.5 BAT C H M O D E M E T H O D S

3.5.1 Support Vector Machines

Support vector machines (Vapnik, 1998) are a set of related supervised learn-

ing methods that are used for classification. In Support Vector machine, each

instance in the training set contains one “target value” (class labels) and several

“attributes” (features). The goal of SVM is to produce a model that predicts

instances in the testing set given only their features.

w
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Figure 3.2: An example of the linear separating hyperplanes in SVM. Note: the sup-
port vectors are encircled

SVM works on the principle that it tries to form the hyperplane between

the data points given it separates these data points into two sets in higher di-

mension space by mapping these data points into the higher dimension using

the feature vectors that are obtained using the attributes of the data. One set

contains positive class labels and the other set contains negative class labels.

The training data is given as X = {xi, yi}, i = 1, . . . , n, yi ∈ {−1, 1}, xi ∈ R
m,

where xi is an m-dimensional data vector, yi is the corresponding class label.

In mapping the point from one dimension to a higher dimension in linear

SVM, a dot product is used between them but there exist non-linear kernels
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that use other functions to achieve this task. This is needed because at times

the distribution of the data is such that we cannot find a linear separating hy-

perplane even in higher dimensions. The kernel functions that we explored are

as follows:

1. Polynomial : (x.x
′
+ 1)d;

2. Radial : exp(−γ||x− x′ ||2);

3. Sigmoid Kernel : tanh(κx.x
′
+ c).

Assume there exist some hyperplanes that separate positive (label ‘+1’) and

negative (label ‘-1’) samples. The data points xi falling on such a hyperplane

should satisfy the following equation:

w · xi + b = 0 (3.2)

where w is a normal vector perpendicular to the hyperplane, a parameter b

specifies the perpendicular offset from the hyperplane to the origin, and ‖w‖ is

an Euclidean normal vector of w.

The shortest distances from the separating hyperplane to the closest positive

and negative data points are denoted by d+ and d−, respectively. Let d+ and

d− be the “margin” of a separating hyperplane. Then, the given problem is

simplified by using a SVM algorithm to find the separating hyperplane with

the largest margin. If the training data are linearly separable, all the training

data samples should satisfy the following constraints:

xi · w + b ≥ +1, ∀yi = +1 (3.3)

xi · w + b ≤ −1, ∀yi = −1 (3.4)

They can be further combined and written as:

yi(xi · w + b)− 1 ≥ 0, ∀i ∈ {1, 2, · · · , n} (3.5)

The data points satisfying the equality in Eq.3.3 will fall on the hyperplane

H1 : xi · w + b = +1, with vector w and perpendicular distance from the origin
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|1− b|/‖w‖. In the same way, the data points satisfying the equality in Eq.3.4

will fall on the hyperplaneH2 : xi ·w+b = −1, with vector w and perpendicular

distance from the origin | − 1 − b|/‖w‖. The margin can be calculated by

2/‖w‖, as d+ = d− = 1/‖w‖. Thus two parallel hyperplanes H1 and H2 are

constructed, and there are no data points lying between them. Consequently,

the pair of hyperplanes giving the maximum margin through minimising ‖w‖2
will be found and subjected to Eq.3.5. Finally, an optimal separation can be

achieved by the hyperplane that has the greatest distance to the neighbouring

data points of both classes, as is illustrated in Figure 3.2. The data points are

referred as support vectors if they satisfy the equality in Eq.3.3 or 3.4 and their

removal would change the solution to the discovered hyperplane. In Figure

3.2, support vectors are indicated by extra circles. Generally, the larger the

margin, the lower the generalisation error of the classifier (Burges, 1998a).

For non-linear classification problems, a kernel function is introduced into

SVM to find the maximum-margin hyperplane (Boser, Guyon, & Vapnik, 1992).

The SVM based classifiers can be mathematically formulated by:

y(x) = sign

[
n∑

i=1

aiyiΦ(x, xi) + b

]
(3.6)

where ai is a positive real constant and b is a real constant, Φ is a mapping

function used for SVM kernel function construction (Suykens & Vandewalle,

1999),which typically has the choices from linear, polynomial and radial ba-

sis function (RBF) function. The solution to a nonlinear optimisation prob-

lem with inequality constraints is given by the saddle point of the Lagrangian,

which is computed by:

max
αi,υi

min
w,b,ξi

L(w, b, ξi;αi, υi) (3.7)

where L is the Lagrangian constructed by:

L(w, b, ξi; ai, υi) = J(w, ξi)−
n∑

i=1

ai{yi[w
Tϕ(xi)+ b]−1+ ξi}−

n∑
i=1

υiξi (3.8)
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where ai ≥ 0, bi ≥ 0(i = 1, · · · , n) are Lagrange multipliers, J is the risk bound

minimised by:

min
w,ξi

J(w, ξi) =
1

2
wTw + c

n∑
i=1

ξi (3.9)

where the parameter ξi is introduced by:

yi[w
Tϕ(xi) + b] ≤ 1− ξi, i = 1, · · · , n ξi ≤ 0 (3.10)

Although SVM has been extensively used for solving real world problems

in different research areas, there are some issues that we have to consider if

we would like to have a successful implementation. One main limitation of

SVM methods lies in the choice of kernel for solving real world problems,

which remains an open research question in computer science and engineering.

Another concern of SVM implementation for real world problems is speed

and size, especially during training stage. This issue might make the learning

process for a very large dataset (a large number of support vectors) particularly

difficult (Burges, 1998a). Additionally, SVM is difficult to adapt to new data

and the knowledge discovered by it is very limited (Kasabov, 2007c).

3.5.2 SVM tree

The SVM tree is constructed by a divide-and-conquer approach using a binary

class-specific clustering and SVM classification technique; see, for example,

Figure 3.3 (Pang & Kasabov, 2004; Pang, Havukkala, & Kasabov, 2006).

Basically, we perform two procedures at each node in the above tree genera-

tion. First, the class-specific clustering performs a rough classification because

it splits the data into two disjoint subsets based on the global features. Next,

the SVM classifier performs a ‘fine’ classification based on training supported

by the previous separation result.

Figure 3.3 is an example of the SVM tree which is derived from the above

SVM tree construction. As mentioned, the SVM test starts at the root node 1.

If the test T1(x) = +1 is observed, the test T2(x) is performed. If the condition
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Figure 3.3: A SVM tree, where each node is a SVM (Pang & Kasabov, 2004)

T1(x) = +1 and T2(x) = −1 is observed, then the input data x are assigned to

class a, and so forth.

SVM trees can evolve new nodes, new local SVM to accommodate new data

from an input data stream. An example of an evolving SVM tree for CNS tu-

mor is shown in Figure 3.4 (Pang et al., 2006). Most of class 1 patients were

classified into one node of 26 patients. Class 2 patients were classified into

two main nodes with 16 and 8 individuals, suggesting a potential difference

in these two subsets of patients. The rest of individuals were classified into

nodes of only a few patients each, so the question arises, whether these are es-

pecially hard to classify patients, misclassifications or maybe represent some

other types of cancer. This exemplifies the potentially valuable additional in-

formation that the 2-SVMT can provide, compared to other algorithms.

Other cancer datasets produced similar trees, some simpler, some more com-

plex. It appears some cancers are inherently more difficult to classify than

others, and this is reflected in the complexity of the classification trees.
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Figure 3.4: An example of two-class support vector machine decision tree (2-SVMT)
for CNS tumor. Ellipses: Partitioning and SVM decision nodes, number-
ing indicates the sequence of decisions. Open circles: samples (patients)
assigned to class 1, filled circles: class 2, corresponding to Table 1. Num-
bers inside circles indicates the number of patients in the end of each de-
cision path. (Pang et al., 2006)

3.6 O N -L I N E M O D E M E T H O D S

3.6.1 Incremental Support Vector Machine

Katagiri and Abe (2006a, 2006b) proposed an incremental training method

which based on the assumption that candidates for support vectors exist near

the separating hyperplane and are close to the surface of a region that includes

training data of each class.

The incremental SVM method generates the minimum-volume hypersphere

in the feature space that includes the training data of class j(j = 1, 2) with

radius Rj . Next, it defines a concentric hypersphere with radius ρRj , where

ρ(0 < ρ < 1) is the user-defined parameter. Next, it defines the hypercone

whose vertex is at the centre of the hyperspheres and which opens in the
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opposite direction of the separating hyperplane. The user-defined parameter

θ(−90 < θ < 90) defines the angle between the separating hyperplane and the

surface of the hypercone.

Figure 3.5: Deletion of the data using the hyperspheres (Katagiri & Abe, 2006a).

If the added data are in the shaded regions in Figure 3.5, they will be deleted.

Figure 3.6 shows the progress of deleting such new data. If the distance rj(x)

between φ(x) and the center of the hypersphere, aj , is smaller than ρRj , where

φ(x) is the mapping function to the feature space:

rj(x) < ρRj (3.11)

the data is deleted. Otherwise, if the angle between φ(x)−aj and the separating

hyperplane, ψj(x), is larger than θ:

ψj(x) > θ (3.12)

then φ(x) exists inside of the hypercone and x is deleted.

But even if equation 3.11 or 3.11 is satisfied, if x satisfies

y(x)D(x) ≤ 1, (3.13)
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Figure 3.6: Judging whether the data are inside of the hypercone or not (Katagiri &
Abe, 2006a).

x is a candidate for support vectors, where D(x) = wTφ(x) + b is the decision

function. In such a case, x will not be deleted. In addition, the data will be

saved that are support vectors for hyperspheres because the support vectors

for hyperspheres are candidates for the support vectors for hyperspheres at the

next training step.

The general procedure for incremental training is as follows:

1. Train the support vector machine using the initial data set Xa.

2. Add the additional data set Xb to Xa : Xa = Xa ∪Xb.

3. If for x ∈ Xa, equation 3.13 is not satisfied and x satisfies rj(x) < ρRj ,

where j is the class label for x or ψj(x) > θ, delete x from Xa : Xa =

Xa− {x}.

4. If for x ∈ Xa equation 3.13 is satisfied, retrain the support vector ma-

chine.

5. Repeat (2), (3), and (4).

3.6.2 Incremental Principal Component Analysis

Ozawa, Pang, and Kasabov (2010) proposed a new scheme of incremental

learning in which feature extraction and classifier learning are simultaneously

carried out online. Incremental Principal Component Analysis (IPCA) (Hall,
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Marshall, & Martin, 1998) is adopted as the feature extraction method, and k-

nearest neighbour classifier with evolving clustering Method (ECM) (Kasabov

& Song, 2002). The capability of this on-line learning system was verified as

the classification accuracy was improved constantly even with a small set of

training samples.

Assume that N training samples xi ∈ Rn(i = 1, . . . , N) are initially pro-

vided to a system and eigenspace model Ω = (x̄, Uk, δk, N) is obtained by

applying Principal Component Analysis (PCA) to the training samples. In

the eigenspace model Ω, x̄ is a mean vector of xi ∈ Rn(i = 1, . . . , N), Uk

is an n × k matrix whose column vectors correspond to eigenvectors, and

δk = diag{λ1, . . . , λk} is a k × k matrix whose diagonal elements are non-zero

eigenvalues. Here, k is the number of eigen-axes spanning the eigenspace and

the value of k is determined based on a certain criterion. After calculating Ω,

the system holds the information on Ω and all the training samples are thrown

away.

Now assume that the (N +1)th training sample xN+1 = y ∈ Rn is given. The

addition of this new sample results in changes in the mean vector and the co-

variance matrix; therefore, the eigenspace model Ω = (x̄, Uk, δk, N) should be

updated. Let us define the new eigenspace model by Ω′ = (x̄′, U ′
k′ , δ′k′ , N + 1).

Note that the eigenspace dimensions might be increased from k to k + 1; thus,

k′ in Ω′ is either k or k + 1. Intuitively, if y includes almost all energy in the

current eigenspace spanned by the eigenvector U ′
k, there is no need to increase

its dimensions. However, if y includes a certain energy in the complementary

eigenspace, the dimensional augmentation is inevitable; otherwise, crucial in-

formation on the new sample y might be lost. Regardless of the necessity in

eigenspace augmentation, the eigen axes should be rotated to adapt to variation

in the data distribution.

To build a classifier under a dynamic enviroment, Ozawa et al. (2010) pro-

pose a nearnest-neighbor classifier whose prototypes are evolved by the ECM

(Kasabov & Song, 2002)
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3.6.3 Incremental Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) finds the linear projections of data that

best separate two or more classes under the assumption that the classes have

equal covariance Gaussian structure (Fukunaga, 1990). LDA is an effective

and widely employed technique for dimension reduction and feature extrac-

tion. It is often beneficial to learn the LDA basis from large training sets, which

may not be available initially. This motivates techniques for incrementally up-

dating the discriminant components when more data becomes available.

As noted by Fukunaga (1990), there are equivalent variants of Fisher’s crite-

rion to find the projection matrix U to maximise class separability of the data

set:

maxarg U
UTSBU

UTSWU
= maxarg U

UTSTU

UTSWU
= maxarg U

UTSBU

UTSTU
, (3.14)

where

SB =

C∑
i=1

ni(mi − μ)(mi − μ)T (3.15)

is the between-class scatter matrix,

SW =
C∑

i=1

∑
x∈Ci

(x−mi)(x−mi)
T (3.16)

is the within-class scatter matrix,

ST =
∑
∀x

(x− μ)(x− μ)T = SB + SW (3.17)

is the total scatter matrix; C the total number of classes; ni the sample number

of class i; mi is the mean of class i, and μ is the global mean.

T. K. Kim, Wong, Stenger, Kittler, and Cipolla (2007) use the third criterion

in equation 3.14 and separately update the principal components as the mini-

mal sufficient spanning sets of SB and ST . The scatter matrix approximation

with a small number of principal components (corresponding to significant
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eigenvalues) allows an efficient update of the discriminant components. The

ST matrix rather than SW is used to avoid losing discriminatory data during

the update. If we only kept track of the significant principal components of

SB and SW , any discriminatory information contained in the null space of SW

would be lost (note that any component in the null space maximises the LDA

criterion). However, as ST = SB + SW and both SB and SW are positive semi-

definite, vectors in the null space of ST are also in the null space of SB, and

are thus being ignored in the update. The two steps of the algorithm are: (1)

Update the total scatter matrix ST , (2) Update the between-class scatter matrix

SB.

Given two sets of data represented by eigenspace models

{μi,Mi, Pi,Λi}i=1,2 (3.18)

where μi is the mean, Mi the number of samples, Pi the matrix of eigenvectors

and Λi the eigenvalue matrix of the i-th data set, the combined eigenspace

model {μ3,M3, P3,Λ3} is computed.

(a) (b) (c)

Figure 3.7: Concept of sufficient spanning sets of the total scatter matrix (a), the
between-class scatter matrix (b) and the projected matrix (c). The union
set of the principal components P1, P2 or Q1, Q2 of the two data sets
and the mean difference vector μ1 − μ2 can span the respective total or
between-class scatter data space (a and b). The dimension for the compo-
nentm1i−m2i should not be removed (cross=incorrect) from the sufficient
set of the between-class scatter data but retained in the set (circle=correct)
(b). The projection and orthogonalisation of the original components Q31,
Q32 yields the principal components of the projected data up to rotation
(c). See the corresponding sections for detailed explanations
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As visualised in Figure 3.7a, the union of the two principal components

and the mean difference vector can span all data points of the combined set

in the three dimensional space. The principal components of the combined

set are found by rotating this sufficient spanning set. Note that this use of

the sufficient spanning set is only possible in the case of merging generative

models where the scatter matrix of the union set is represented as the sum of

the scatter matrices of the two sets explicitly as

ST,3 = ST,1 + ST,2 +M1M2/M3 · (μ1 − μ2)(μ1 − μ2)
T , (3.19)

where {ST,i}i = 1, 2 are the scatter matrices of the first two sets. The method

can therefore not be used to directly merge the discriminant components of

LDA models.

The between-class scatter matrix SB,i can be written as

SB,i =
∑Ci

j=1 nij(mij − μi)(mij − μi)
T

=
∑Ci

j=1 nijmijm
T
ij −Miμiμ

T
i .

, (3.20)

The combined between-class scatter matrix can further be written as the

original between-class scatter matrices and an auxiliary matrix A as

SB,3 = SB,1 + SB,2 + A +M1M2/M3 · (μ1 − μ2)(μ1 − μ2)
T , (3.21)

where

A =
∑
k∈s

−n1kn2k

n1k + n2k
(m2k −m1k)(m2k −m1k)T . (3.22)

The set s = {k|k = 1, 2, . . . , c} contains the indices of the common classes of

both data sets.

The incremental LDA allows highly efficient learning to adapt to new data

sets. A solution closely agreeing with the batch LDA result can be obtained

with far lower complexity in both time and space. The incremental LDA algo-

rithm can also be incorporated into a classic semi-supervised learning frame-

work and applied to many other problems in which LDA-like discriminant

components are required.
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3.6.4 Evolving Takagi-Sugeno model

Angelov and Buswell (2003) proposed the evolving Takagi-Sugeno (eTS) fuzzy

system; after that, Angelov (2010) presented an enhanced version of eTS al-

gorithm which is called eTS+. This algorithm has been tested on time-series

prediction and a data stream from a real engine.

Evolving Takagi-Sugeno (TS) fuzzy systems (Angelov, 2004) can be of

multi-input-multi-output (MIMO) type. As seen from Figure 3.8, eTS+ is

represented as a six-layer neuro-fuzzy system. The first aim of data space

partitioning can be achieved by forming clusters around focal points that have

high density.

Figure 3.8: eTS+ as a neural network (Angelov, 2010)

The aim of the eTS+ clustering method differs from typical clustering ap-

proaches as the clusters associated with antecedent parts of fuzzy systems

significant overloap. In this case, (Angelov, 2010) adopted centre of gravity

(CoG) aggregation (Yager & Filev, 1994) which weighs the average outputs of

individual fuzzy rules to produce the overall output. By doing this, the fuzzy

system is able to cope with uncertainties and has a cooperative nature.
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Once clusters are generated, eTS+ can monitor the quality of the clusters

online. Five quality elements are estimated in total: support, age, utility, zone

of influence and local density.

Once the structure of eTS+ is defined and established, (Angelov, 2004) pro-

posed weighted least square method (fwRLS) for local or global optimisation.

The test results show that local optimum, usually provides a lower error rate

than globally optimum.

3.6.5 Evolving Fuzzy Neural Networks (EFuNN)

Evolving Fuzzy Neural Networks (EFuNN) (Kasabov, 2002) is a connectionist

model with neuro-fuzzy inference systems for implementing ECOS. EFuNNs

are fuzzy neural network structures that evolve based on Evolving Connec-

tionist Systems (ECOS) principles. Fuzzy neural networks are connectionist

structures that can be interpreted by a set of fuzzy rules and a fuzzy infer-

ence system (Jang, 1993). EFuNN has a five-layer structure in which all nodes

represent membership functions (MF) and can be modified during learning.

Figure 3.9 illustrates an example of an EFuNN with a short term memory and

feedback connections.

The input layer is the first layer that contains input variables. The second

layer is a fuzzy input layer where each input variable is represented by a group

of neurons. These neurons denote the fuzzy quantisation of the input variable,

e.g. three neurons can be used to represent “best”, “good” and “bad” fuzzy

values of a variable. Different MFs can be attached to the neurons, such as

triangular or Gaussian MF. This layer aims to assign the input variables into

membership degrees to which they belong to the corresponding MF. Within

this layer, new neurons are created, when the corresponding variable value

of a given input vector does not belong to any of the existing MFs. An op-

tional short-term memory layer can be introduced through feedback connec-

tions from the rule node layer.

The rule (case) layer is the third layer in EFuNN which contains rule nodes

that evolve through supervised or unsupervised learning. The rule nodes rep-

resent prototypes of the associations between input and output data. Each rule
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Figure 3.9: An example of an EFuNN with a short term memory and feedback con-
nections, adapted from Kasabov (2001)

node r is defined by two vectors of connection weights: ω1(r) and ω2(r). The

former is adjusted by an unsupervised learning model based on the similarity

measurement within a local problem space, while the latter is adjusted by a

supervised learning model based on the estimation of output error. The neu-

rons in the fourth layer represent the fuzzy quantisation of the output variables.

Finally, the fifth layer gives the value of the output variables.

3.6.6 Dynamic Evolving Neural-Fuzzy Inference System

A Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) (Kasabov &

Song, 2002) is a fuzzy inference system that is capable of on-line and of-

fline learning through on-line clustering. This paper had over 380 citations on

Google Scholar at the time of writing.

DENFIS starts by clustering the data and creates a fuzzy inference system

that is based on the clusters. A maximum distance-based clustering algorithm,

Evolving Clustering Method, is used to cluster the input data. Once the clusters
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are derived, a Takagi-Sugeno fuzzy rule is created for each cluster. These rules

are then optimised through the back-propagation method. For each predic-

tion, m most activated rules are dynamically chosen to derive the final output.

New rule sets can be inserted into or extracted from the model. The DENFIS

algorithm is described in Algorithm 1

Input: Input vectors xi ∈ X
Output: n clusters’ centers Ccj and corresponding radius Ruj where

j = 1, 2, . . . , n

1: Create the initial cluster C1 and set the position of the first training data as
a cluster center Cc1 with the cluster radius Ru10.

2: while do
3: if ∀xi ∈ C = {C1, C2, . . . , Cn} then
4: Terminates the algorithm.
5: else
6: Calculate the distance between the current training input vector xi

and the cluster center Ccj . Dij =
∥∥xi − Ccj

∥∥ , j = 1, 2, . . . , n.

7: end if
8: if ∃ ‖xi − Ccm‖ ≤ Rum then
9: xi is assumed to belong to cluster Cm and no new cluster is created

and no existing cluster is updated.
10: Go back to step 3.
11: end if
12: Find a cluster Ca from all existing cluster centers with Sij = Dij +Ruj ,

j = 1, 2, . . . , n, and select the cluster center Cca with the smallest
Sia = Dia +Rua = min{Sij}, j = 1, 2, . . . , n.

13: if Sia > 2×Dthr then
14: xi does not belong to any of the existing clusters and a new cluster is

created as described in first Step.
15: Go back to step 3.
16: end if
17: if Sia ≤ 2×Dthr then
18: The cluster Ca is updated by moving Cca and enlarging the cluster

radius Rua = Sia/2 and the new cluster center Cca is set as follows:
Ccnew

a
= xi − ((Cca − xi)× Sia/2

Dia
.

19: end if
20: end while

Algorithm 1: Evolving Clustering Method (ECM): a fast one-pass algorithm
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Dthr is the distance threshold of the cluster, which defines the maximum

radius of the cluster. Sia defines inverse the level how much the xi belongs

to cluster centers Ca. The smaller the Sia, the more xi belongs to cluster Ca.

Note that xi can belong to multiple clusters as there may be overlapping of the

cluster radius. Euclidean distance is used as the distance measuring method in

ECM.
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Figure 3.10: Example of ECM Clustering algorithm. xi: input vector (*), Ck
cj

: cluster
center, Ck

j : cluster, Rk
uj

cluster radius (Kasabov & Song, 2002)

Figure 3.10 shows the ECM clustering process step by step.

(a) The initial cluster is created for the first input vector x1.
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(b) x2: update cluster C0
1 → C1

1

x3: create a new cluster C0
2

x4: belongs to C1
1 , no action required.

(c) x5: update cluster C1
1 → C2

1

x6: belongs C1
2 , no action required

x7: update cluster C0
2 → C1

2

x8: create a new cluster C0
3

(d) x9: update cluster C2
1 → C3

1

ECM processes input vectors in a one-input-vector-at-a-time manner, and

therefore the order of the input vectors being processed affects the final output.

This is evident in the way the first cluster is created for the first input vector.

This design was necessary since ECM is an on-line clustering method where

data is made available one input vector at a time. However, this does not prove

to be a significant problem in practice as the cluster centre may be slightly

different based on the order of input vectors being process, when inspected

closely by visualising the input vectors in each cluster, the input vectors were

very similar, as ECM originally intended.

The consequence of the Takagi-Sugeno fuzzy rule is created and updated

by a (weighted) least-square estimator. The linear function is expressed as

follows:

y = β0 + β1x1 + β2x2 + · · ·+ βqxq (3.23)

The coefficient β is obtained through the following formula

β = [b1 b2 . . . bq]
T

b = (ATA)−1AT y
, (3.24)

or for the weighted version of the LSE

b = (ATWA)−1ATWy (3.25)
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where

A =

⎛⎜⎜⎜⎜⎜⎝
1 x11 x12 · · · x1q

1 x21 x22 · · · x2q

...
...

...
...

...

1 xp1 xp2 · · · xpq

⎞⎟⎟⎟⎟⎟⎠
and

y = [y1 y2 . . . yp]
T . (3.26)

Assume W is a diagonal matrix:

W =

⎛⎜⎜⎜⎜⎜⎝
w1 0 · · · 0

0 w2 · · · 0
...

... . . . ...

0 · · · · · · wp

⎞⎟⎟⎟⎟⎟⎠ (3.27)

equation 3.24 and 3.25 can be rewritten as

Weighted− LSE =

{
P = (ATA)−1

b = PAT y
(3.28)

LSE =

{
Pw = (ATWA)−1

bw = PwA
TWy

(3.29)

In the DENFIS on-line mode, the weighted recursive LSE is used with the

following equation:

WRLSE =

⎧⎨⎩ bk+1 = bk + wk+1Pk+1ak+1(yk+1 − aT
k+1bk)

Pk+1 = 1
λ(Pk − wk+1Pkak+1a

T
k+1Pk

λ+aT
k+1Pkak+1

)
(3.30)

The forgetting factor λ is set between 0.8 and 1. The DENFIS on-line model

learning procedure is explained below:
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1. Perform ECM clustering on the initial set of data n0 to obtain M clusters

2. For every cluster Ci, find pi data points are closest to Ci, i = 1, 2, . . . ,M ;

3. Create a fuzzy rule for each cluster. The antecedent of the fuzzy rule

is the cluster center. The consequent function is created using equation

3.28 or 3.29. The distance between pi and the cluster center is used to

create the weight matrix.

4. The size of pi is a model training parameter. It defines the number of data

points used to derive the consequent function of the fuzzy rules.

As new input vector enters the system, new fuzzy rules may be created and

some rules updated. A new fuzzy rule is created if a new cluster is found in

ECM. If no new clusters are created, one or more fuzzy rules are updated by

using equation 3.30.

For each input vector, the DENFIS on-line model dynamically creates a

Takagi-Sugeno fuzzy inference system using m activated rules. m is a model

training parameter that should be adjusted based on the characteristic of the

problem. The rules are chosen based on the position of the input vector. Since

the rules are updated constantly, two input vectors with the same values at dif-

ferent time points may have different inferences as the fuzzy rule may have

been updated before the second input vector entered the system.

3.6.7 Weighted Nearest Neighbor: WKNN & WWKNN

In a weighted distance KNN algorithm (WKNN) , the output yi is calculated

not only based on the output values (e.g. class label) yj , but is also dependent

on the weight wj measured by the distance between the nearest neighbours and

the new data sample xi:

yi =

Ki∑
j=1

wj · yj

Ki∑
j=1

wj

(3.31)

where:
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• yi is the predicted output for the new vector xi;

• yj is the class label of each sample in the neighborhood of xi.

• Ki is the number of K nearest samples to xi;

• wj is the is the weight value calculated based on the distance from the

new input vector xj to its K nearest neighbours.

The weight wj can be calculated as follows:

wj =
max(d)− (dj −min(d))

max(d)
, j = 1, · · · , K (3.32)

where:

• the value of weights wj ranges from min(d)
max(d)

to 1;

• d = [d1, d2, · · · , dK ] denotes the distance vector between the new input

data di and its K nearest neighbouring samples;

• max(d) and min(d) are the maximum and minimum values for vector d.

The distance vector d is computed as:

dj =

√√√√ m∑
l=1

(xi,l − xj,l)2, j = 1, · · · , K (3.33)

wherem is the number of variables (features) representing the new input vector

xi within the problem space; xi,l and xj,l are the lth variable values correspond-

ing to the data vector xi and xj , respectively.

The output from a WKNN classifier for the new input vector xi is a “per-

sonalised probability” that indicates the probability of vector xi belonging to a

given class. For a two-class classification problem, a WKNN classifier requires

a threshold θ to determine the class label of xi, i.e., if the output (personalised

probability) is less than the threshold θ, then xi is classified into the group with

“small” class label, otherwise into the group with “big” class label.

Weighted distance and weighted variables K-nearest neighbors (WWKNN)

is a personalised modeling algorithm introduced by Kasabov (2007c). The
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main idea behind WWKNN algorithm is: the K nearest neighbor vectors are

weighted based on their distance to the new data vector xi, and also the contri-

bution of each variable is weighted according to their importance within the lo-

cal area where the new vector belongs (Kasabov, 2007c). In WWKNN, the as-

sumption is made that the different variables have different importance to clas-

sifying samples into different classes when the variables are ranked in terms

of their discriminative power of class samples over the whole m-dimensional

space. Therefore, it will be more likely that the variables have different rank-

ing scores if the discriminative power of the same variables is measured for

a sub-space (localised space) of the entire problem space. The calculation of

Euclidean distance dj between a new vector xi and a neighbor xj is mathemat-

ically formulated by:

dj =

√√√√ K∑
l=1

ci,l(xi,l − xj,l)2, j = 1, · · · , K (3.34)

where: ci,l is the coefficient weighting xl in relation with its neighborhood

of xi, and K is the number of the nearest neighbors. The coefficient ci,l can

be calculated by a SNR function that ranks variables across all vectors in the

neighbourhood set Dnbr(xi):

ci,l = {ci,1, ci,2, . . . , ci,K}
ci,l =

|x̄class1
l −x̄class2

l |
σclass1

l +σclass2
l

, (3.35)

where x̄classi
l , i = {1, 2} and σclassi

l , i = {1, 2} are the mean value and stan-

dard deviation of the lth feature belonging to class i across the neighborhood

Dnbr(xi) of xj , respectively.

Comparing to a conventional KNN algorithm, the contribution of WWKNN

lies in the new distance measurement: all variables are weighted according to

their importance as discriminating factors in the neighborhood area (person-

alised sub-space), which might provide more precise information for classifi-

cation or prediction of the new data vector.
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3.7 S U M M A RY A N D O P E N Q U E S T I O N S

This chapter reviews methods and techniques that are used or are highly related

to the research in this PhD study. Each of the work carried out in this PhD study

are either improvements made on previous studies reviewed in this chapter or

integrate existing methods in a new way to achieve better results.

As a result of the reviews presented in chapter 2 and 3, several research

questions related to stream data mining can be formulated as follows:

1. Can we (successfully or accurately) train/test large amount of data at

real-time? (Chapter 4, page 51)

2. Can we extract more knowledge from hierarchically labelled data that is

often seen in stream datasets? (Chapter 5, page 67)

3. Can the local knowledge discovered from stream data help us in achiev-

ing better results? (Chapter 6, page 80)

4. How can we produce more accurate on string classification? (Chapter 7,

page 95)

5. How to monitor the process of dynamic stream data learning? (Appendix

A and B, page 143-154)

These question will be answered in the rest of the thesis.

In the next chapter, a novel method is proposed for on-line kernel based

stream data learning which related to research question 1.



Chapter 4
O N - L I N E C O R E V E C TO R M AC H I N E S - A N OV E L

O N E - PA S S , FA S T K E R N E L BA S E D L E A R N I N G

M E T H O D

This chapter presents a one-pass, fast kernel based learning method called On-

line Core Vector Machine (OCVM). It is based on the minimum enclosing ball

(MEB) of streaming data. We show that the MEB updates for the streaming

case can be easily adapted to learn the CVM weight vector in a way similar to

using on-line stochastic gradient updates.

The rest of chapter is structured as follows: Section 4.1 discusses the reason

for using kernel methods for stream data mining. Section 4.2 reviews the batch

mode MEB and CVM; Section 4.3 presents the novel OCVM method based

on CVM. The evaluation of OCVM on 12 benchmark datasets is presented in

Section 4.4. Section 4.5 gives the conclusion.

4.1 W H Y U S E O N -L I N E K E R N E L M E T H O D S F O R S T R E A M DATA

MINING (E.G. NETWORK INTRUSION DETECTION)?

- ANSWER FOR QUESTION 1

The existing machine learning methods for Network Intrusion Detection (NID)

fall into two categories: unsupervised learning and supervised learning. Un-

supervised learning methods, such as clustering, are useful for NIDS, as mali-

cious activities could be clustered, and better distinguished from non-malicious

activities. Some successful stories have been reported in literature, Frank and

Mda-c (1994) demonstrated that clustering is an effective way to find hidden

patterns in data that humans might otherwise miss; Eskin, Arnold, Prerau, Port-

51
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noy, and Stolfo (2002) detected network connection logs outliers which rep-

resent anomalies in the network traffic using fixed-width and k-nearest neigh-

bour; and Marin, Ragsdale, and Sirdu (2001) detected network intrusions by

learning vector quantization (LVQ) and locating the Bayes Optimal boundary

between classes.

Unlike unsupervised learning capturing threats through outliers detection,

supervised learning detects network intrusion by using classification meth-

ods, categorising network traffics into normal and abnormal groups. Diver-

sity of classification methods have been proposed for NID applications. Frank

and Mda-c (1994) used recurrent neural networks, and some other neural net-

works, such as Kohonen, Hoppfield for intrusion detection. Dickerson, Juslin,

Koukousoula, and Dickerson (2001) classified intrusions based on the combi-

nation of various statistical metrics and fuzzy logic rules. Apart from that, it is

worth noting that SVM, because of its promising classification performance,

is popularly used for NIDS. W.-H. Chen, Hsu, and Shen (2005) used a sin-

gle polynomial kernel SVM for classifying network intrusions, which outper-

formed artificial neural networks (ANNs) method on both computational time

and classification accuracy. Also, Mukkamala and Sung (2003) used multiple

SVM’s for identifying normal traffic against four types of malicious activity,

which demonstrated the super discriminability of SVM on intrusion detection.

In spite of the current success of SVM in NID applications, it is too slow for

NIDS due to the high-speed computing requirement from the Internet. Thus,

we need on-line kernel based methods because on-line learning is concerned

with learning data as the system operates (usually in real time) and the data

might exist only for a short time (Kasabov & Song, 2002).

4.2 C O R E V E C T O R M AC H I N E S

Standard SVM training has O(m3) time and O(m2) space complexities, where

m is the training set size. It is thus computationally infeasible on very large

data sets. By observing that practical SVM implementations only approximate

the optimal solution by an iterative strategy, Tsang, Kwok, and Cheung (2005)

scaled up kernel methods by exploiting such “approximateness”’. They found



4.2 C O R E V E C TO R M AC H I N E S 53

that many kernel methods can be equivalently formulated as MEB problems

in computational geometry. Then, by adopting an efficient approximate MEB

algorithm, Tsang obtained provably approximately optimal solutions with the

idea of core sets. The CVM algorithm can be used with non-linear kernels

and has a time complexity that is linear in m and a space complexity that is

independent of m.

4.2.1 Minimum Enclosing Ball

Given a set of points S = {x1, . . . , xm}, xi ∈ 
d, the minimum enclosing ball

of S is the smallest ball that contains all the points in S (denoted by MEB(S)).

Welzl (1991) proposed (1 + ε)-approximation MEB which can be efficiently

obtained based on those called Core Set. The core set is a subset of given

dataset that contains the instances located in the outer area.

Let BS(c, r) be an exact MEB of the data set S with center c and radius

r, and BQ(c̃, r̃) be another exact MEB with center c̃ and radius r̃. Note that,

different from BS , MEB BQ is constructed on the Core Set of S : Q,Q ⊂ S.

Given an ε > 0, a ball BQ(c̃, (1 + ε)r̃) is a (1 + ε)-approximation of BS(c, r), if

S ⊃ BQ(c̃, (1 + ε)r̃) and r̃ ≤ r.

Formally, subset Q is judged as the core set of S, if an expansion by a factor

(1 + ε) of its MEB contains S (i.e. S ⊂ BQ(c̃, (1 + ε)r̃). Fig. 4.1 gives an

example of exact MEB, Core set MEB, and Core set MEB expansion, where

the dotted-line circle identifies the exact MEB of the entire dataset BS , and the

inner solid-line circle gives the exact MEB of Core set BQ (denoted in square).

BQ does not cover the whole data points, but its (1 + ε) expansion (the outside

circle) does.

4.2.2 Kernel MEB: Core Vector Machine

By adopting the above MEB algorithm to enhance a support vector machine

(SVM), Tsang developed the kernel MEB method called core vector machine.

Let ϕ be the feature map using kernel κ, and provides a set of ϕ-mapped

points Sϕ = {ϕ(x1), . . . , ϕ(xn)}, the MEB of Sϕ is such a smallest ballB(c∗, r∗)
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Figure 4.1: An example of exact MEB, Core set MEB, and Core set MEB expansion

Input: Set of points X ∈ Rd; parameter ε = 2−m; subset Q0 ⊂ X

Output: A batch mode MEB learning model Ω

1: for i← 1 to m do
2: Q← Qi−1

3: Compute MEB center c←∑m
i=1 αiϕ(xi) where xi ∈ Q

radius r ← −√
α′diag(K)− α′Kα

4: includeAll← true, p← (1 + ε) ∗ r
5: for j ← 1 to |X| do
6: if p < ||xj − c|| then
7: includeAll ← false

8: p← ||xj − c||
9: q ← xj

10: end if
11: end for
12: if includeAll == true then
13: Return Ω← {c, r,Q}
14: end if
15: Qi ← Qi−1 ∪ {q}
16: end for
17: Return Ω← {c, r,Q}

Algorithm 2: Original MEB algorithm

that encloses all data points of Sϕ and has the ball center c∗ and radius r∗

determined by,

(c∗, r∗) = argminc,rr
2 : ‖c− ϕ(xi)‖2 ≤ r2 ∀i. (4.1)
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By the corresponding Wolfe dual,

maxαi

m∑
i=1

αik(xi, xi)−
m∑

i,j=1

αiαjk(xi, xj), α ≥ 0, i = 1, . . . , m,

m∑
i=1

αi = 1, (4.2)

where α = [α1, . . . , αm] are the Lagrange multipliers and Km×m = [k(xi, xj)] is

the kernel matrix, the MEB centre c and radius r can be found from the optimal

α as (Tsang et al., 2005)

c =

m∑
i=1

αiϕ(xi), r = −
√
α′diag(K)− α′Kα. (4.3)

In a kernel MEB, a core set instance is called a core vector, and the constructed

supervised learning model constructed by core vectors, is called a core vector

machine.

4.2.3 Time and Space Complexities for CVM

Existing decomposition algorithms cannot guarantee the number of iterations

and consequently the overall time complexity (Chang & Lin, 2001). This sec-

tion shows how this can be obtained for CVM. In the following, we assume

that a plain Quadratic Programming (QP) implementation, which takes O(m3)

time and O(m2) space for m patterns, is used for the QP sub-problem. The

time and space complexities obtained below can be further improved if more

efficient QP solvers were used. Moreover, each kernel evaluation is assumed

to take constant time.

Consider first the case where probabilistic speedup is not used. As proved

in (Bādoiu, Har-Peled, & Indyk, 2002), CVM converges in 2/ε iterations at the

most. In other words, the total number of iterations, and consequently the size

of the final core set, are τ = O(1/ε). In practice, it has often been observed

that the size of the core set is much smaller than this worst-case theoretical

upper bound (Kumar, Mitchell, & Yildirim, 2003). As only one core vector

is added at each iteration, |St| = t + 2. Initialisation takes O(m) time while

distance computations take O((t + 2)2 + tm) = O(t2 + tm) time. Finding the

MEB takes O((t + 2)3) = O(t3) time, and the other operations take constant
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time. Hence, the tth iteration takes a total of O(tm+ t3) time. The overall time

for τ = O(1/ε) iterations is

T =
τ∑

t=1

O(tm− t3) = O(τ2m+ τ4) = O(
m

ε2
+

1

ε4
). (4.4)

which is linear in m for a fixed ε.

Next, we consider its space complexity. As the m training patterns may be

stored outside the core memory, the O(m) space required will be ignored in the

following. Since only the core vectors are involved in the QP, the space com-

plexity for the tth iteration is O(|St|2). As τ = O(1/ε), the space complexity

for the whole procedure is O(1/ε2), which is independent of m for a fixed ε.

On the other hand, when probabilistic speedup is used, initialization only

takes O(1) time while distance computations take O((t + 2)2) = O(t2) time.

Time for the other operations remains the same. Hence, the tth iteration takes

O(t3) time. As probabilistic speed-up may not find the furthest point in each

iteration, τ may be greater than 2/ε though it can still be bounded by O(1/ε2)

(Bādoiu et al., 2002). Hence, the whole procedure takes

T =

τ∑
t=1

O(t3) = O(τ4) = O(
1

ε8
). (4.5)

For a fixed ε, it is thus independent ofm. The space complexity, which depends

only on the number of iterations τ , becomes O(1/ε4).

When ε decreases, the CVM solution becomes closer to the exact optimal

solution, but at the expense of higher time and space complexities. Such a

tradeoff between efficiency and approximation quality is typical of all approx-

imation schemes. Moreover, be cautioned that theO-notation is used for study-

ing the asymptotic efficiency of algorithms. As we are interested in handling

very large data sets, an algorithm that is asymptotically more efficient (in time

and space) will be the best choice. However, on smaller problems, this may be

outperformed by algorithms that are not as efficient asymptotically.
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4.3 T H E P RO P O S E D O N -L I N E C O R E V E C T O R M AC H I N E S

This section introduces the proposed on-line CVM method for classification

tasks.

4.3.1 Motivations for using CVM for Incremental Learning

We found that the CVM updates for the streaming case can be easily adapted

to learn the SVM weight vector in a way similar to using online stochastic

gradient updates. D. Wang, Zhang, Zhang, and Qiao (2010) addressed this is-

sue by proposing an online CVM classifier with adaptive minimum-enclosing-

ball (MEB) adjustment. This method performs polylogarithmic computation

at each example, and requires very small and constant storage. However, the

computational cost of Wang’s algorithm is same as original CVM. To reduce

not only the constant storage requirement but also the learning time, we pro-

posed our on-line CVM learning algorithm that perform each updating using

geometry techniques. As the updating processing, which is the most impor-

tant part of incremental learning, has been changed to a much faster algorithm,

our OCVM performs more efficiently. Experimental results show that, even in

such restrictive settings, the algorithm can learn efficiently in just one pass and

demonstrates accuracies comparable to other methods.

4.3.2 On-line Mode CVM Learning

Let x′ be the input point causing an update to the MEB and B ′ be the resulting

ball after the update. From figure 4.2, it is easy to verify that the new centre c′

lies on the line joining the old center c and the new point x′. The radius r′ and

the centre c′ of the resulting MEB can be defined by simple update equations

as follows:

r′ = r + δ, (4.6)

δ = ||c′ − c||. (4.7)
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Figure 4.2: MEB expansion

Hence 2δ, which is the closest distance of the new point x′ from the old ball B,

can be defined as:

2δ = (||x′ − c|| − r) (4.8)

Using these, we can define a closed-form analytical update equation for the

new ball B′:

c′ = c +
δ

||x′ − c||(x
′ − c). (4.9)

Thus, the updated MEB learning model Ω′ is obtained by conducting the fol-

lowing algorithm.

Kernelised On-line CVM

In order to extend the usability of OCVM from linear kernels to non-linear

kernels, we modify Algorithm 3. Instead of storing the weight vector c =∑
xl∈Q

|Q| , it stores Lagrange coefficients c←∑m
i=1 αiϕ(xi) as the center of MEB.

The distance from an incoming data sample x′
i to the centre is calculated as

||x′
i−c||2 =

∑
xj ,xl∈Q

αjαlk(xj ,xl)+k(xi,xi)−2
∑
xj∈Q

αjk(xj ,xj)+ ξ2. (4.10)
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Input: Original CVM learning model Ω = {c, r,Q}, incoming data matrix
X ′, MEB parameter ε, and slack parameter ξ

Output: A batch mode MEB learning model Ω′

1: Initial c′ ← c, r′ ← r, and Q′ ← Q

2: for i← 1 to |X ′| do
3: Compute distance from x′i to c

d = ||x′i − c||+ √
1/ξ

4: Compute MEB center c and radius r on subset Q using equation 4.3
5: if (1 + ε) ∗ r < d then
6: δ ← (||x′

i−c||−r)
2

7: c′ ← c + (1
2 − r

2||x′
i−c||)(x

′
i − c)

8: r′ ← r +
(||x′

i−c||−r)
2

9: Q′ ← Q ∪ x′
i

10: end if
11: end for
12: Return Ω′ ← {c′, r′,Q′}

Algorithm 3: Incremental mode On-line CVM algorithm

Once the new sample x′
i updates the MEB then Q′ = Q ∪ ϕ(x′

i), the Lagrange

coefficient for the new core vector is αi = 1
2 − r

2||x′
i−c|| .

Contraction of On-line CVM

During the expanding of MEB, spare area is inevitably presented because the

size of the MEB depends on the most significant outlier. In order to preserve

the efficiency of MEB knowledge encryption, a contraction is conducted once

an outlier is found. The approach of MEB contraction is similar to the expan-

sion approach.

Given q ∈ Q̃ where Q̃ ⊆ Q−Qi−1, and ∀q̃ ∈ Q̃ where q̃ �= q, ¬∃||q̃− ci−1|| <
||q − ci−1||. From equation 4.7 and 4.8, the relationship between δ and δ′ is

defined as δ′ = 2δ. From figure 4.3, radius ri−1 for the original MEB Bi−1 and

radius ri for the updated MEB Bi are:

ri−1 = ri + δ + ||q − ci−1||+ δ′, (4.11)

ri = ||q − ci−1||+ δ. (4.12)
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Figure 4.3: MEB contraction

From equation 4.7 and 4.8, the relationship between δ and δ′ is defined as

δ′ = 2δ. Thus, equation 4.11 is transformed as:

ri−1 = ||q − ci−1||+ δ + δ + ||q − ci−1||+ δ′, (4.13)

ri−1 = 2||q − ci−1||+ 3δ, (4.14)

δ =
ri−1 − 2||q − ci−1||

3
. (4.15)

Once we have the value for δ we can easily calculate ri and updated MEB

center ci as:

ri =
ri−1 + ||q − ci−1||

3
, (4.16)

ci = ci−1 +
δ

||q − ci−1||(q − ci−1). (4.17)

4.4 E X P E R I M E N T S A N D D I S C U S S I O N S

To evaluate the performance of on-line CVM we compared the classification

accuracy and the computational cost with two conventional classification meth-

ods on six two-class and six multi-class datasets. Table 4.1 and table 4.2 sum-

marise the characteristics of 12 datasets and five classification methods respec-

tively.
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Type Dataset No. of Features No. of Classes Complexity Size

two-class

synthetic binary 2 2 0.0743 200
liver-disorder 6 2 0.5432 345
breast-cancer 10 2 0.1743 683

heart 13 2 0.7632 270
ionosphere 34 2 0.5163 351
web Spam 57 2 5.5188 4601

multi-class

synthetic multi-class 2 3 0.0743 200
iris 4 3 0.0636 150

wine 13 3 0.3007 178
vehicle 18 4 2.7264 846
vowel 10 11 5.1335 990

KDD99(KDD99, 1999) 42 5 0.5163 100000

Table 4.1: Summarisation of data sets characteristics

Notation Descriptions Parameters
KNN k-nearest neighbor k
Bayes Naive Bayes None
MLP Multi layer perception α

Kernel Method (KM)
SVM Support vector machine

Kernel Parameter (KP )
Kernel Method (KM)

OCVM Hierarchical minimum enclosing ball
Kernel Parameter (KP )
Epsilon (ε)

Table 4.2: Summarisation of classifiers characteristics

Accuracy of Binary Classification

For each two-class dataset, we conducted K-folds cross validation which ran-

domly partitioned original data into K subsamples. Of the K subsamples, a

single subsample was retained as the validation data for testing the model, and

the remaining K−1 subsamples are used as training data. The cross-validation

process was repeated K times, with each of the K subsamples used exactly

once as the validation data. Then we can obtain the mean value and standard

deviation (std) value of theK results from the folds. In our case, we setK = 10

as 10-fold cross-validation is commonly used.

Table 6.3 shows the classification accuracy of the two-class datasets using

different classifiers. The accuracy is represented by the mean value and the

std value of the 10-fold cross validation. To make sure that the results for the

conventional methods are not biased by an inappropriate choice of parameters,

we optimised all parameters (see table 4.4) by running cross validation.
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On the two-class datasets, MLP and SVM achieved the two highest accura-

cies among the conventional methods. Compared to the conventional methods,

OCVM obtained higher accuracies on three out of six datasets(i.e. breast-

cancer, ionosphere and web Spam). It can be found from table 4.1, these three

datasets have greater number of features than the other datasets. That indicates

the proposed OCVM is effective for classifying higher dimensional datasets.

Dataset KNN Bayes MLP SVM OCVM
Syn binary 93.31% ± 1.65% 89.93% ± 3.12% 93.78% ± 2.51% 94.65%± 2.18% 88.13% ± 2.53%

liver-disorder 64.92% ± 6.55% 63.17% ± 6.31% 71.28% ± 7.71% 64.92% ± 1.09% 59.13% ± 4.91%
breast-cancer 96.63% ± 1.71% 95.97% ± 2.44% 96.65% ± 2.38% 97.07%± 3.07% 97.07% ± 2.82%

heart 82.59% ± 8.20% 75.65% ± 8.25% 83.33% ± 5.25% 83.19% ± 6.06% 82.67% ± 6.33%
ionosphere 64.11% ± 1.09% 65.32% ± 1.74% 89.16% ± 5.35% 92.06% ± 4.46% 93.73% ± 4.57%
web Spam 93.32% ± 0.78% 84.13% ± 1.97% 94.62% ± 0.12% 94.60% ± 0.10% 94.64% ± 0.06%

Table 4.3: Classification accuracy comparison for five methods applied on the six two-
class datasets

classifier parameters liver-disorder breast-cancer heart ionosphere web Spam

KNN k 3 5 5 3 5
MLP α 100 0.5 10 2 100

SVM
KM RBF RBF RBF RBF RBF
KP 0.001 0.5 0.01 0.01 0.001

OCVM
KM RBF RBF RBF RBF RBF

KP (γ) 4 3 4 2 4
ε 1e − 6 1e − 2 1e − 3 1e − 6 1e − 3

Table 4.4: Summarisation of classifiers’ parameters for six two-class datasets

Accuracy of Multi-class Classification

Similarly to the experiments with two-class datasets, we conduct 10-fold cross

validation with optimised parameters (see table 4.6) on multi-class dataset.

The classification accuracy was represented by the 10-folds accuracies mean

value and std value in shown in table 4.5.
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On the multi-class datasets, except Naive Bayes all selected conventional

methods perform similar. Compared to the conventional methods, OCVM

which showed the 3 highest accuracies, performs better specially on KDD99

which has a much larger number of samples.

Dataset KNN Bayes MLP SVM OCVM
Syn m-class 94.53% ± 1.14% 88.57% ± 4.29% 93.86% ± 2.68% 94.97%± 1.99% 90.95% ± 3.67%

iris 94.67% ± 6.13% 90.35% ± 7.11% 95.97% ± 4.03% 96.00% ± 5.62% 96.66% ± 4.24%
wine 97.16% ± 3.00% 71.31% ± 8.53% 93.91% ± 8.01% 74.85% ± 9.15% 76.40% ± 8.22%

vehicle 71.04% ± 3.01% 66.24% ± 5.57% 77.78± 3.96% 71.61% ± 3.88% 71.61% ± 3.88%
vowel 96.89% ± 1.00% 91.37% ± 3.25% 98.08% ± 1.21% 97.47% ± 1.73% 98.56% ± 1.34%

KDD99 89.32% ± 1.12% 75.21% ± 5.32% 90.53% ± 2.83% 90.42% ± 2.18% 94.95% ± 1.47%

Table 4.5: Classification accuracy comparison for five methods applied on the six
multi-class datasets

classifier parameters iris wine vehicle vowel KDD99

KNN k 3 5 5 3 3
MLP α 0.001 100 0.5 0.2 5

SVM
KM RBF RBF RBF RBF RBF

KP (γ) 0.01 0.001 0.001 0.5 0.05

OCVM
KM RBF RBF RBF RBF RBF

KP (γ) 3 2 4 4 4
ε 1e − 6 1e − 2 1e − 6 1e − 3 1e − 4

Table 4.6: Summarisation of classifiers’ parameters for six multi-class datasets

Computational Costs and Speed Efficiency

We measured the computation cost by analysing the training time and number

of the support vectors (for SVM and OCVM). For each dataset, we train the

model based on 10% samples up to 100% step by 10%.

Results are shown in Table 4.7. As it can be seen, the CPU time cost by SVM

shot up with the growth of the training size, but it is the shortest while the size

of training set is smaller than 300. OCVM is much faster and produces far
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Dataset Classifier T10% T20% T30% T40% T50% T60% T70% T80% T90% T100%

breast-cancer
SVM ≈ 0 0.031 0.062 0.062 0.156 0.203 0.39 0.499 0.78 0.967
MLP 0.437 0.343 0.562 0.624 0.811 0.92 0.983 1.326 1.56 1.42

OCVM 0.156 0.094 0.156 0.203 0.172 0.14 0.218 0.078 0.125 0.125

liver-disorder
SVM ≈ 0 ≈ 0 ≈ 0 0.031 0.031 0.031 0.062 0.062 0.062 0.062
MLP 0.811 0.858 0.889 0.998 1.029 1.138 1.232 1.123 1.31 1.357

OCVM 0.156 0.094 0.094 0.094 0.125 0.109 0.062 0.078 0.062 0.094

heart
SVM ≈ 0 ≈ 0 ≈ 0 0.031 ≈ 0 0.016 0.016 0.031 0.062 0.062
MLP 0.811 0.858 0.889 0.998 1.03 1.139 1.232 1.123 1.31 1.357

OCVM 0.25 0.14 0.12 0.187 0.109 0.25 0.187 0.156 0.156 0.156

web Spam
SVM 0.56 4.41 14.38 34.36 40.56 79.15 140.63 241.63 419.94 605.61
MLP 4.58 5.6 5.78 6.41 6.92 11.88 8.47 10.92 9.89 10.29

OCVM 0.8 0.936 0.858 0.889 0.842 0.75 0.905 0.905 0.874 0.8

ionosphere
SVM ≈ 0 ≈ 0 ≈ 0 0.031 0.062 0.046 0.062 0.125 0.125 0.156
MLP 1.076 1.294 1.232 1.248 1.638 1.373 1.591 1.638 1.747 1.825

OCVM 0.234 0.25 0.25 0.187 0.25 0.3432 0.1716 0.312 0.187 0.187

iris
SVM ≈ 0 0.031 ≈ 0 0.031 ≈ 0 0.031 0.031 0.062 0.062 0.062
MLP 0.234 0.312 0.296 0.437 0.4056 0.499 0.312 0.358 0.421 0.484

OCVM 0.109 0.078 0.062 0.078 0.078 0.078 0.062 0.078 0.062 0.109

wine
SVM ≈ 0 0.016 0.016 0.016 0.062 0.062 0.062 0.078 0.171 0.203
MLP 1.107 0.982 0.858 0.795 0.982 1.014 1.326 1.372 1.310 1.076

OCVM 0.078 0.125 0.062 0.078 0.093 0.203 0.109 0.125 0.062 0.062

vehicle
SVM 0.047 0.125 0.39 0.718 1.279 2.714 4.321 6.864 9.329 13.245
MLP 1.06 1.123 1.326 1.279 1.388 1.622 1.841 1.778 1.762 2.012

OCVM 0.125 0.172 0.156 0.14 0.125 0.187 0.187 0.218 0.218 0.14

vowel
SVM 0.109 0.437 0.983 2.636 5.834 9.547 14.929 22.48 33.135 48.048
MLP 0.53 0.686 0.842 1.123 1.341 1.451 1.653 1.95 1.794 2.34

OCVM 0.468 0.515 0.546 0.53 0.53 0.593 0.546 0.64 0.64 0.499

KDD99
SVM 1471.2 OM OM OM OM OM OM OM OM OM
MLP 12.948 21.887 27.456 35.334 38.033 53.805 74.116 98.327 109.901 153.957

OCVM 7.21 7.503 7.871 7.323 7.525 7.619 7.28 7.324 7.234 7.101

Table 4.7: Comparison of training CPU time (in seconds). OM indicates out of mem-
ory caused by size of data input that was too large.

fewer support vectors (which implies faster testing) on large data sets. In par-

ticular, for web Spam data 5000 samples can be processed in less than 1 second,

which is 750 times faster than SVM. As we developed the evaluation environ-

ment based on MATLAB, the largest memory is restricted. Thus, 10, 000 is the

maximum number of samples that can be used by SVM and training takes 200

times more CPU time than OCVM. The CPU time cost by MLP is not obvi-

ously greater than OCVM on a small training set. However, it is easy to see

that only OCVM keeps consistent speed once the size of training data is over

5000.

The comparison result for number of support vectors, which is shown in

Table 4.8, is similar to the CPU time comparison. For relatively small train-

ing sets, with fewer than 200 samples, the SVM produces less support vectors.

However, the number of support vectors obtained using SVM hoicks. Af-
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Dataset Classifier T10% T20% T30% T40% T50% T60% T70% T80% T90% T100%

breast-cancer
SVM 34 68 102 136 170 204 238 272 306 340

OCVM 215 178 102 133 223 196 166 136 118 176

liver-disorder
SVM 17 34 51 68 85 102 119 136 153 170

OCVM 171 171 171 170 170 170 171 170 170 171

heart
SVM 13 27 40 54 67 81 94 108 121 135

OCVM 99 103 83 103 100 106 97 116 78 101

web Spam
SVM 192 384 576 768 960 1152 1344 1536 1728 1920

OCVM 294 296 294 295 294 298 294 299 295 294

ionosphere
SVM 17 35 52 70 87 105 122 140 157 175

OCVM 140 137 139 105 122 123 135 133 130 145

iris
SVM 7 15 22 30 37 45 52 60 67 75

OCVM 67 70 70 64 67 69 64 67 70 66

wine
SVM 8 17 25 34 42 51 59 68 76 85

OCVM 87 86 85 86 86 86 86 86 87 86

vehicle
SVM 42 84 126 168 210 252 294 336 378 420

OCVM 71 72 72 70 72 72 70 73 73 72

vowel
SVM 49 99 148 198 247 297 346 396 445 495

OCVM 111 110 110 110 112 110 110 112 111 110

KDD99
SVM 2500 OM OM OM OM OM OM OM OM OM

OCVM 122 134 134 142 145 145 146 146 147 148

Table 4.8: Number of support vectors/core vectors comparison. OM indicates out of
memory caused by too large size of data input.

ter training 10, 000 samples, SVM created 20 times more support vectors than

OCVM.

4.5 S U M M A RY

Within the streaming framework for learning, we have presented an efficient,

on-line CVM learning algorithm using a streaming algorithm for the MEB

problem. OCVM, incrementally learning the stream data by extending the cor-

responding MEB towards a new sample which located outside of the existing

MEB and this sample will be saved by updating the core vectors. In addi-

tion, to preserve the efficiency of MEB knowledge encryption, a contraction is

conducted once an outlier is found. The experiments on batch mark datasets

show the on-line CVM obtained similar or higher classification accuracy than

the selected bench learning methods by taking significantly less computational

time.

In the next chapter, a novel method for hierarchical structure stream data

modelling is presented.



Chapter 5
H I E R A R C H I C A L C O R E V E C TO R M AC H I N E - A

N OV E L H I G H - S P E E D H I E R A R C H I C A L M U LT I - L A B E L

C L A S S I F I C AT I O N A L G O R I T H M

This chapter presents a high-speed hierarchical multi-label classification al-

gorithm, called the hierarchical core vector machine (HCVM), for labelling

hierarchical multi-label structure stream data.

We model the multi-label hierarchy into a data Hyper-Sphere constructed by

numbers of minimum enclosing balls/core vector machines (MEB/CVM). The

MEBs/CVMs are separating, encompassing and overlapping with each other

formed as a tree structure, representing the multi-label hierarchy encoded. Pro-

vided an unlabelled sample, the HCVM seeks a MEB/CVM enclosing the sam-

ple, and multi-label the sample according to the MEB’s position in the hierar-

chy. The proposed HCVM has been examined on a Gaussian synthetic data.

This chapter is structured as follows: Section 5.1 describes related researches

on machine learning method for network intrusion detection and multi-label

classification methods. Section 5.2 presents the proposed HCVM learning. In

Section 5.3, we cover experimentation and algorithm evaluation. Lastly, in

Section 5.4 we draw our conclusion and state future directions.

5.1 W H Y H I E R A R C H I C A L L E A R N I N G ? - A N S W E R F O R Q U E S T I O N

2

Previous supervised learning methods group any network traffic into several

major clusters, disregarding the complexity fact that one major category com-

munication includes often several subcategories, and so on for those subcate-

66
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gories. In general, network traffic poses, by its nature, a complex multi-label,

rather than a single-label status.

5.1.1 Review of Multi-label Classification Methods

The existing multi-label classification methods can be grouped into two main

categories: a) problem transformation methods and b) algorithm adaptation

methods.

The problem transformation methods were defined in (Tsoumakas & Katakis,

2007) as those methods that transform a multi-label classification problem into

a multiple single-label’s classification problem (Boutell, 2004; Diplaris, 2005).

Given a datasetX with a set of class labels L for multi-label classification train-

ing, a common problem transformation method is to train |L| binary classifiers

Hl : X → {l,¬l}, one for each individual label l in L. Thus, the original data

set is transformed into |L| data sets, for the lth dataset Dl the same instance

of the original dataset whose instances are labelled as l or ¬l, and a binary

classifier is applied for the classification on the dataset. In this way, when an

unlabeled instance x is provided for classification, a set of labels are produced

simultaneously by |L| classifiers,

H(x) =
⋃
l∈L

{l} : Hl(x) = l. (5.1)

Algorithm adaptation methods extend the existing learning algorithms such

as AdaBoost to handle multi label data directly. Adaboost.MH and Adaboost.MR

(Schapire, 2000) are two extensions of AdaBoost (Freund, 1997) for multi-

label classification. Both extensions are used on weak classifiers represented

in the form H : X×L→ R. Given an unlabelled instance x, in AdaBoost.MH,

x is labelled as l, l ∈ L if the weak classifier for l is positive. In AdaBoost.MR,

the output of the weak classifiers is considered for ranking each of the labels

in L and x is labelled as l which is the top rank class label.
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5.2 T H E P RO P O S E D H C V M L E A R N I N G M E T H O D

This section introduces the proposed HCVM method for hierarchical multi-

label classification in the context of network security stream data.

5.2.1 MEB/CVM and Motivations of CVM for HMC

The minimum enclosing ball computes the ball(s) of minimum radius enclos-

ing a given set of points. Traditional algorithms for finding exact MEBs/CVMs

developed by Megiddo (Megiddo, 1983) and Welzl (Welzl, 1991) do not scale

well with higher dimensional datasets. Recently, approximation algorithms

for finding MEBs/CVMs have been given by Badoiu (Bādoiu et al., 2002) and

Kumar (Kumar et al., 2003). Badoiu indicated that a (1 + ε) − approximation
MEB can be efficiently obtained by using a subset of the input dataset, called

the core set. Additionally, Badoiu (Bādoiu et al., 2002) found that the size of

the MEB core set is independent of both dataset dimensionality d and the size

of the dataset. Kumar et al. (Kumar et al., 2003) developed methods for com-

puting core sets and approximate the smallest enclosing hyper-spheres in high

dimension spaces. In this way, the MEB can be implemented in applications

with large numbers of numerical attributes.

As mentioned above, a straightforward method is to transfer a HMC prob-

lem to a number of single class classification problems using a certain trans-

formation method (Boutell, 2004; Diplaris, 2005), so that a HMC problem

can be managed as a typical multi-class classification. The disadvantage of

this method is, the original label hierarchy information (i.e. the partial order

of hierarchical multi-labels) of the data is changed or lost completely, which

eventually leads to an unsatisfied multi-label classification.

Alternatively, we consider here the HMC problem from the viewpoint of

MEB (Bādoiu et al., 2002; Kumar et al., 2003), for each single class of the

HMC problem, wherever it is located in the label hierarchy, it can be ap-

proximated by an MEB. One class is represented as one MEB, meanwhile the

MEB may overlap with MEBs/CVMs from other classes, or encompass MEB-

s/CVMs from its child classes. In this way, the HMC problem is addressed by
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a set of related MEBs/CVMs, in which the relationship of MEB represents the

label hierarchy, so that the original hierarchy information of data get reserved

in MEB modelling.

5.2.2 HMC Problem Transformation

Hierarchical multi-label classification (HMC) is an extension of binary classifi-

cation where an instance can be labeled with multiple classes that are organized

in a hierarchy (Hendrik, Leander, Jan, & Amanda, 2006).

In the example of network intrusion detection, Fig. 5.1 describes a typical

HMC adapted from the KDD’99 dataset, where different network connection

types are divided into 4 major categories and 21 subcategories. The relation-

ship between these subcategory connection types and major connection cate-

gory types are structured as a Markov Tree. The major connection types are set

as the branch of the tree, and those subcategory types as the leaves of the tree.

In this way, the problem of Internet intrusion detection is interpolated into the

learning of hierarchical multi-label classification. Here, the definition of HMC

task is briefed as follows (Hendrik et al., 2006):

Given: (1) data set S = {x1, . . . , xm}, where each xi ∈ 
d, (2) class label set

C = {c1, . . . , cn}, and (3) a class hierarchy (C,≤h), where≤h is a partial order

representing the parent class relationship (∀c1, c2 ∈ C : c1 ≤h c2, if and only if

c1 is a superclass of c2).

Find: a function f : x→ Ci where x ∈ S and Ci ⊆ C, Ci includes an leaf class

c and its parent classes c′ such that c ∈ Ci ⇒ ∀c′ ≤h c : c′ ∈ Ci.

In HMC, f is able to classify an unlabelled message as normal, or as a subcat-

egory attack type together with all its parent category attack types.

5.2.3 Hierarchical Minimum Enclosing Ball

For HMC, the above kernel MEB is extended to the approximation of hierar-

chical minimum enclosing balls (HCVM) as follows:
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Figure 5.1: The label hierarchy of network connection types adapted from KDD’99
dataset

Given dataset S = (X × Y ) where X ∈ 
d, and class label set Y is in such a

hierarchy as Y = {Yi|y ≤h ∀y′} whose y, y′ ∈ Yi, and y′ �= y. To transform the

HMC problem to a HCVM problem, we seek the root class label set C1 ⊆ Y

where ∀yl ∈ C1 : ¬∃y′ ≤h y
l : y′ ∈ Y, y′ /∈ C1. For each root class label yl ∈ C1,

we create an MEB, B, and mark it with (1) its hierarchical level which is 1, (2)

the corresponding class label yl, and (3) its parent class. (we use 0 to represent

the parent class of a root class). Thus, for each class yl in the root class label

set C1, we obtain the corresponding MEB Byl,0
1 . Similarly, we address the next

level class set C2 ⊆ Y where ∀yl ∈ C2 : ∃pl ≤h y
l : pl ∈ C2−1, and create the

MEB Byl,pl

2 for each class label yl ∈ C2. This process is continued until no

child classes can be found.

As a result, we have a multi-label hierarchy modelled as an HCVM struc-

tured as a set of MEBs/CVMs ordered with its class label, level in the hierarchy

and its parent class,

{Yi|y ≤h ∀y′}⇀ {Byl,0
1 , Byl,pl

2 , ..., Byl,pl

i }. (5.2)
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While we transfer a multi-label hierarchy to an HCVM, the knowledge of the

relationship between classes at the same level naturally appears. This is be-

cause that label represents the class as a signature, but HCVM represents the

class in a data distribution space, it captures not only the parenthood relation-

ship (i.e. parent class MEB encompasses the child class MEB) but also the

relationship between classes at the same level of the hierarchical structure (i.e.

same level classes MEBs/CVMs may separating or overlapping).

For decision making, we expect that f(B) approximates the ground truth

multi-label f(x) better than f(X, Y ) because each MEB in HCVM approxi-

mates accurately its associated class of Y , preserving perfectly the multi-label

hierarchy in Y . Thus, the HCVM eventually can be learned by an aggregation

of MEBs/CVMs as,

f(x) = f({Byl,pl

i }) =

m∨
i=1

ti∨
l=1

fBi,l
(5.3)

where fBi,l
represents an elementary MEB model on class yl

i. In Eq. (5.3),∨
denotes the union between models, in which

∨
i represents a natural parent

relationship. As modelling fBi,l
, class yl is addressed as a binary problem with

class yl as the positive and the remaining classes as the negative, and a set of

MEBs/CVMs are computed according to Eq. (4.1)- Eq. (4.3) to enclose only

the positive instances. Then, fBi,l
is formed by assigning the corresponding

MEB core sets as core vectors.

Given an instance x enclosed in one ith-layer MEB, due to the parent re-

lationship, it must also be enclosed in the (i − 1)th, (i − 2)th, ..., 1st, 0 layer

ancestor MEB; and
∨

l represents a relationship at the same layer of HCVM.

l is often fixed by distances calculation. To compute the distance between x

and the center ct of Bt, x is mapped into the feature space by a kernel function

k(x, x). By Eq. (4.3), the distance between x and ct is calculated as:

‖ct − ϕ(x)‖2 =
∑

zi,zj∈St

αiαjk(zi, zj)− 2
∑
zi∈St

αik(zi, x) + k(x, x). (5.4)

Fig. 5.2 gives an example of HCVM data approximation over a synthetic

dataset with 2 layers, A1 ≤h [A2, A3, A4]. To approximate the data distribution

of the dataset, an individual MEB can be used to enclose data in class A1.
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Figure 5.2: Core set data approximation comparison: boundary on the MEB core set
from the parent class A1 versus boundary on the proposed HCVM (A1 ≤h

[A2, A3, A4]) core set.

As shown in Fig. 5.2, the resulting boundary (identified as the dashed curve)

summarizes the knowledge of MEB (represented as the solid line cycle) and

the MEB core set (identified as squared data points). Base on the fact that if

an instance is in a parent class, then it must belong to one of its child classes,

the proposed HCVM method approximates the dataset by combining core sets

from A1 MEB and MEBs/CVMs of A1’s 3 child classes A2, A3 and A4, and

has the boundary for data approximation plotted in Fig. 5.2 right.

It clearly shows that the resulting boundary enclosed almost 2 times the

space then the obtained boundary did. However, no data point exists in the

extra space. Thus, the HCVM method gives a much smaller enclosing space

while discarding the non-essential areas from the MEB for the parent class

only.
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5.2.4 The Proposed HCVM Algorithm

According to the theories discussed above, we have developed the following

3 algorithms for hierarchical multi-label classification. Given dataset S =

(X × Y ) where X ∈ 
d, and class label set Y is in such a hierarchy as

Y = {Yi|y ≤h ∀y′} whose y, y′ ∈ Yi, and y′ �= y. Algorithm 4 computes

the MEB and core set for S. Algorithm 5 constructs HCVM where Algorithm

4 is used for modelling kernel MEBs/CVMs on subclasses Si = (Xi, yi) ⊂ S.

Note that the constructed HCVM B is an m level hierarchical MEB, B =

{Byl,pl

1 , Byl,pl

2 , . . . , Byl,pl

t } where yl, pl denote the corresponding class label and

the parent-class label respectively.

Input: Set of points S ∈ Rd; parameter ε = 2−m; subset Q0 ⊂ S

Output: A (1 + ε)-approximation MEB(S); O(1/ε)-size core set Q
1: for i← 1 to m do
2: loop
3: Q← Qi−1

4: Compute Bc,r = MEB(Q)

5: if S ⊂ Bc,(1+ε)r then
6: Return Bc, r, Q
7: else
8: p← point of S maximizing distance, ‖cp‖, from c

9: end if
10: Q← Qi−1 ∪ {p}
11: end loop
12: Qi ← Q

13: end for
Algorithm 4: MEB algorithm

Algorithm 6 tests the constructed HCVM for the multi-label classification

of a new instance x. In order to check whether x is located in the range of

the nearest MEB’s radius an iterative checking process is run until one nearest

MEB is found at every level of the HCVM. Associating together as the set of

located MEBs/CVMs, it comes up with a complete tree path from the root to

the terminal level of the HCVM. Along the tree path, the instance x is branched
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Input: Set of points S = (X × Y ) where Y = {Yi|y ≤h ∀y′} whose y, y′ ∈ Yi,
and y′ �= y, ε.

Output: HCVM B; the O(1/ε)-size core set Q.
1: Initial i← 1.
2: Find Ci ⊆ Y where ∀y ∈ Ci : ¬∃y′ ≤h y : y′ ∈ Y, y′ /∈ Ci.
3: while Ci �= φ do
4: ti ← |Ci|.
5: for l ← 1 to ti do
6: S = {ϕ(x)}, x = (X, yl) where yl ∈ Ci and Q = 0.
7: [MEB(b), CoreSet(q)]← Run Algorithm 4 with input S,Q, and ε.
8: if i=1 then
9: pl ← 0.

10: else
11: pl ← p where p ≤h y

l.
12: end if
13: B

pl,yl

i ← b,Qpl,yl

i ← q.
14: i = i+ 1.
15: end for
16: Find Ci ⊆ Y where ∀y ∈ Ci : ∃p ≤h y : p ∈ Ci−1.
17: end while
Algorithm 5: Hierarchical core vector machines training algorithm

from the root progressively to the terminal level of HCVM, meanwhile multi-

labeling x with the associated labels of MEBs/CVMs at every level.

5.2.5 Time and Space Complexities for HCVM

Note that CVM has the computational complexity O(
√
nd2(n + d)log(n/ε))

(Kumar et al., 2003). Using CVM for HMC problem, the expected computa-

tional complexity is O(
√
nd2(n + d)log(n/ε) +

∑m
i=1

√
nid2(ni + d)log(ni/ε)),

where m is the number of child classes. This obviously is less expensive

than the quadratic programming (QP) methods, such as SVM, whose train-

ing time complexity is O(n3). In this sense, a HMC problem can be modelled

by MEB more efficiently, especially for problems involving large size dataset.

CVM core set estimates the boundary of a given class in O(1/ε) (Kumar et

al., 2003), thus MEB in the nature is independent on dataset size (n) and di-

mension (d), which indicates that MEB is deterministically robust to any class-
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Input: Instance x; HCVM B

Output: labels of x Label
1: Transfer x to kennel k(x, x) by putting it in feature map ϕ.
2: Label ← 0.

3: index =

m︷ ︸︸ ︷
1, 1, . . . , 1.

4: i← 1.
5: while i ≤ m do
6: for j ← index(i) to n do
7: Find MEB Byl,pl

i ∈ B where pl == Label(i), Byl,pl

i ’s center is jth

nearest to k(x, x).
8: if k(x, x) inside of boundary formed by core set of Bk then
9: Label ← Lable ∪ l.

10: Break.
11: else if j == n then
12: Label ← Label − Label(i).
13: i← i− 1.
14: end if
15: end for
16: if Label is empty then
17: Return Label ← 0.
18: end if
19: index(i) = index(i) + 1.
20: i← i+ 1.
21: end while
Algorithm 6: Hierarchical core vector machines testing algorithm

imbalanced and/or high dimensional datasets. In HCVM, maximum m MEB-

s/CVMs are used for HMC problem solving where m represents the number

of child classes. Thus, the O((m+ 1)/ε) computational complexity of HCVM

enable solving of any HMC problem more efficiently, meanwhile immune to

the class-imbalanced and/or high dimensional difficulty.

5.3 VA L I D I T Y E X A M I NAT I O N O N S Y N T H E T I C DATA S E T

For testing the capability of the proposed HCVM for multi-label, in particular

for hierarchical multi-label classification, we examined the developed HCVM

on a synthetic dataset.
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The synthetic dataset for HCVM examination is a mixture of several 2D

Gaussian labelled with a 2-level multi-label hierarchy, H ={class 1: {class(1,

1),class(1,2),class(1,3) }; class 2:{class(2,1), class(2,2), class(2,3)}}, in which

the distribution of class 1 data is shown in Fig 5.3.

5.3.1 Results and Discussion

Using MEB, class 1 can be approximated by constructing a single independent

MEB as Fig. 5.4a, and the obtained core set, as support vectors for build-

ing class 1 de scripting plane, is presented in Fig. 5.4c. Alternatively using

HCVM, the MEB can be constructed instead as Fig. 5.4b for both the parent

and the child classes as class 1 in fact has 3 child classes. Thus, a 2-level HMC

problem is modelled by HCVM since a set of correlated MEBs/CVMs (i.e a

hierarchical MEB). Fig. 5.4d gives accordingly the obtained core sets from 4

correlated MEBs/CVMs. As seen, it is apparently that the core set in Fig. 5.4d

approximates class 1 data more accurate than the core set in Fig. 5.4c. This

demonstrates that the developed HCVM derives important additional discrim-

inant information from the 2-level label hierarchy.
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Figure 5.3: Synthetic data for HMC, where data points of different classes are repre-
sented as different colors.
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(a) a MEB for class1
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(b) 4 MEBs/CVMs for class 1, class(1, 1),
class(1, 2) and class(1, 3)
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(c) the distribution of core set from (a)
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(d) the distribution of core sets from (b)

Figure 5.4: An example of using MEB for HMC, where * represents a MEB core set
point. Note that this figure is best seen in color.

The results also shows that, HCVM is a local modelling method which learns

the local information from sub-classes. And local modelling beat global mod-

elling by obtaining a much more accurate class boundary.

5.4 S U M M A RY

In this chapter, we studied HMC problem aiming to multiply labelling network

intrusions for Internet security. The HMC differs from typical classification in

two aspects: (1) an instance belongs often to more than one class simultane-

ously; (2) every instance from any class belongs automatically to its ancestor

classes, as classes in HMC are in hierarchical tree structure.

By aggregating MEBs/CVMs, we proposed a novel HCVM model in which

MEBs/CVMs separate, encompass and overlap with each other representing an

organized multi-label tree structure. Moreover, we have modified the original

MEB algorithm using the Gaussian kernel method, enabling MEBs/CVMs to

be applicable for kernel computing in a higher dimensional space.
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In general, the proposed HCVM method has the following desirable proper-

ties. First, HCVM models a difficult hierarchical multi-label problem as a sim-

ple MEB association analysis. Second, MEB excludes the existing sparseness

of data, which enables HCVM to approximate data more accurately. However,

the proposed method inhibits a limitation that the classification performance of

the terminal classes might be inferior to that of non-terminal classes since the

boundaries for the terminal classes in a multi-label hierarchy are not optimized.

The next chapter introduces a on-line local modelling method which is ca-

pable of not only hierarchical structured stream datasets but normal datasets.



Chapter 6
DY NA M I C E VO LV I N G C O R E V E C TO R M AC H I N E S - A

FA S T C O N N E C T I O N I S T- BA S E D K E R N E L L E A R N I N G

S Y S T E M S

This chapter introduces a new type of kernel-based learning algorithm, denoted

as dynamic evolving core vector machines (DE-CVM). This method is devel-

oped for adaptive on-line stream data learning. Similar to DENFIS (Kasabov &

Song, 2002), DE-CVM evolve through incremental, hybrid (supervised/unsu-

pervised) learning, and accommodate new input data, including new features,

new classes, etc., through local element tuning.

This chapter is structured as follows: Section 6.1 explains why DE-CVM

is essential for stream data learning. Section 6.2 gives the motivations for the

proposed DE-CVM. The algorithm is presented in section 6.3. Section 6.4

covers experimentation and algorithm evaluation. Lastly, in section 6.5 we

draw our conclusion.

6.1 W H Y E VO LV I N G S Y S T E M S A R E E S S E N T I A L F O R

STREAM DATA MINING?

- ANSWER FOR QUESTIONS 3

Kasabov and Song (2002) maintained that, the complexity and dynamics of

real-world problems, especially in engineering and manufacturing, require so-

phisticated methods and tools for building on-line, adaptive intelligent systems

(ISs). Such systems should be able to grow as they operate, to update their

knowledge and refine the model through interaction with the environment.

79
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Stream data mining focuses on real-world applications, such as network in-

trusion detection, texture categorisation and image recognition. These applica-

tions need machine learning methods that have the following characteristics:

fast learning, on-line incremental adaptive learning, open structure organisa-

tion, memorising information, active interaction, knowledge acquisition and

self-improvement, and spatial and temporal learning (Kasabov & Song, 2002).

We adopt evolving connectionist systems (ECOSs) (Kasabov, 1998) for stream

data mining because ECOSs evolve their structure and functionality from a

continuous input data stream in an adaptive, life-long, modular way. An-

other important reason is that ECOSs employ local learning as they create

connectionist-based modules and connect them, if that is required according

to the input data distribution and the system’s performance at a certain time

moment.

6.2 M OT I VAT I O N O F D E -C V M

The minimum enclosing ball (MEB) problem is to compute a ball of mini-

mum radius enclosing a given set of objects (points, balls, etc.) in Rd. It has

been widely implemented for clustering applications, such as spatial hierar-

chies (Hubbard, 1996), and support vector clustering (Ben-Hur, Horn, Siegel-

mann, & Vapnik, 2002); classification applications, such as area gap tolerant

classifiers (Burges, 1998b), and core vector machine (CVM) (Tsang et al.,

2005); as well as approximation applications, such as fast farthest neighbour

query approximation(Goel, Indyk, & Varadarajan, 2001), and 1-cylinder prob-

lem approximation (Bādoiu et al., 2002).

Classic CVM for classification computes a (1 + ε)-approximation (Bādoiu

et al., 2002) for a minimum radius ball learning, and extracts those data points

located at the outer area of a CVM for classification modelling. The set of those

extracted data points characterise the entire given dataset, and thus are called

core vector set or core set. For classification modelling, CVM can be used to

approximate each class data distribution, so that one class can be distinguished

from another by core set computing.
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However, in practice such classic MEB has the following difficulties: (1)

CVM often encloses sparseness together with data. To enclose an isolated

outlier point, a huge MEB is required, which makes the MEB include actually

more sparseness than the data occupation; (2) MEB is keen on enclosing data,

and thus disables the detection of any outliers despite the outliers producing

the sparseness of MEB.

To mitigate the above problems, we propose a novel dynamic evolving CVM

(DE-CVM) approach to learning the core set in a group manner. DE-CVM sets

MEB/CVM in different data distribution area, reducing the sparseness in CVM

by decomposing data space based on data distribution density, discriminating

core vectors on class interaction hyperplanes, and enabling outlier detection to

decrease the effects of noise.

To have a better and clear presentation of the proposed one-pass MEB, Table

6.1 presents the symbols that will be used in this chapter.

Notation Descriptions
X data matrix
Xi data matrix for i-th class
n number of training data instances
ni number of instances for i-th class
l number of classes
BX minimum enclosing ball/balls (MEB) based on data set X

ci,j i-th class j-th MEB center/centers
ri,j i-th class j-th MEB radius
ki total number of MEBs for i-th class

Qi,j i-th class j-th MEB core set
ΩMEB classic MEB learning model
ΩcMEBs cross-MEBs learning model

ε MEB approximation value

Table 6.1: NOTATION
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6.3 T H E P RO P O S E D D E -C V M L E A R N I N G

In terms of complex data distribution, a large MEB/CVM follows the sparse-

ness of the ball, thus it is often unable to approximate a data distribution ac-

curately. A single MEB/CVM for one class data is likely to enclose wrongly

almost all data points from another class, especially when data is zonally dis-

tributed. As a solution, a number of smaller MEBs/CVMs are able to drill

into the details of any data distribution, apparently allowing a more accurate

approximation.

Motivated by this, the above kernel MEB is renovated for group manner

MEB/CVM computing (DE-CVM). Instead of addressing a whole class data

Xi with one MEB/CVM BQi
, DE-CVM models class data using with a set of

MEBsBQi
= ∪k

j=1BQu
i,j

, where k is the number of MEBs/CVMs. Consider that

MEB/CVM learning is an iterative learning process, we represent an individual

kernel MEB/CVM here as BQu
i,j

= {cu
i,j , (1+ ε)ru

i,j , ϕ(Qu
i,j)} with j as the index

of MEB/CVM, and u as the iteration number of MEB/CVM updating. In this

way, given X = ∪l
i=1Xi as the training dataset, the proposed DE-CVM learning

is described below.

Similar to CVM, we initialise one MEB/CVM (i.e. BQ0
i,k
, k = 1) on one

class data Xi at very beginning. Here, we initialise the core set as Q0
i,1 =

{ϕ(xa), ϕ(xb)}, where xa is the furthest data point to a random x ∈ Xi and xb

is calculated as:

xb = xa +
xa − arg maxx∈X ||xa − x||

λ
, λ > 1. (6.1)

Then, we obtain BQ0
i,1

= {c0
i,1, (1 + ε)r0i,1,Q

0
i,1} using CVM optimisation func-

tion.

Theorem 6.3.1. The first initialised MEB/CVM’s radius r0
i,1 ≈ Δ

2λ , where Δ

denotes the diameter of Xi.

Proof. Science Q0
i,1 = ϕ(xa,xb), xa is the furthest point to x1. Clearly, the

distance from xa to its furthest data point approximates to δ. Then, xb locates

about Δ/λ away from xa. According to the definition, r0
i,1 is the radius of BQ0

i,1
,

we have r0i,1 ≈ Δ
2λ .
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If there is x ∈ Xi not contained in any MEB BQu−1
i,j

, (j = {1, 2, . . . , k}). It

results in one of the following 3 DE-CVM updating cases.

In the first case, if MEB BQu
i,j

over the existed core set Qu−1
i,j with x (i.e.

Qu
i,j = Qu−1

i,j ∪ ϕ(x)) has radius ru
i,j , which is less or equal to the upper bound

value as 1 + ε2×η
16 , (η > 1) times of the existed radius ru−1

i,j . The existing MEB

BQu−1
i,j

is updated by replacing with BQu
i,j

. Note that, cu−1
i,j is the closest MEB

centre to x.

Theorem 6.3.2. Given an upper bound of radius increment as ru
i,j ≤ (1 +

ε2×η
16 )ru−1

i,j , the DE-CVM expansion is between 32λ/ε2 to 128λδ/ε2 times.

Proof. Since r0i,j ≥ Δ/2λ, and each step we increase the radius by at least

(Δ/4)ε2/16 = Δε/64, it follows that we cannot encounter this case more than

64/ε times, as δ is an upper bound of the radius of the minimum enclosing ball

of Xi.

In the second case, if radius ru
i,j is greater than the upper bound value (1 +

ε2×η
16 )ru−1

i,j , a new fragmentary core set Q0
i,k+1 = {ϕ(x)} is created as a com-

pleted core set which has at least 2 vectors.

In the third case, if the distance from x to the closest fragmentary core set

Q0
i,j is less than Δ

λ , we add ϕ(x) into the fragmentary core set Q0
i,j as Q0

i,j =

{Q0
i,j , ϕ(x)}, in this way, the fragmentary core set Q0

i,j becomes completed. In

addition, a new MEBBQ0
i,k

= {c0
i,k, (1+ε)r0i,k,Q

0
i,k}, (k = k+1) is created using

CVM optimisation function (Y. Chen, Pang, Kasabov, Ban, & Kadobayashi,

2009). The threshold Δ
λ is also considered as the outliers threshold, as if a

single data point away from the rest data farther than the threshold, this data

point is treated as an outlier by DE-CVM.

Theorem 6.3.3. The total number of DE-CVM k is equal to approximately λ/2.

Proof. Science we guarantee that the radius of each firstborn DE-CVM r0
i,j ,

(j = {1, 2, . . . , k}) is less than 1
2λ diameter of the given data Xi, the total num-

ber of the DE-CVM k approximates to λ/2.

The DE-CVM updating is terminated once Xi ⊂ ∪k
j=1BQk

i,j
. For the overall

dataset X = ∪l
i=1Xi, let ki be the number of MEBs/CVMs of i-th class, then

we factorise the core sets by abandoning these core vectors contained in just
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one MEB/CVM. As a result, we have the DE-CVM model ΩDE−CV M as the

set of MEBs/CVMs that constructed by the above 3 DE-CVM updating cases.

ΩDE−CV M =

⎛⎜⎜⎜⎜⎜⎝
∪k1

j=1c1,j ∪k1

j=1(1 + ε)r1,j ∪k1

j=1Q1,j

∪k2

j=1c2,j ∪k2

j=1(1 + ε)r2,j ∪k2

j=1Q2,j

...
...

...

∪kl

j=1cl,j ∪kl

j=1(1 + ε)rl,j ∪kl

j=1Ql,j

⎞⎟⎟⎟⎟⎟⎠ , (6.2)

and summarise the computation of DE-CVM learning as Algorithm 7.

6.4 E X P E R I M E N T S A N D D I S C U S S I O N S

In this section, we describe two experiments where we used DE-CVM for

banana data verification and for benchmark UCI data classification.

6.4.1 Class Factorisation Ability Test

To highlight the class factorisation ability of the proposed DE-CVM, we clus-

ter an artificial two-dimensional banana dataset (see Fig. 6.1a) containing 200

data points in a banana shaped distribution using both DE-CVM and classic

CVM. Fig. 6.1b illustrates the cluster boundary formed by 70 classic CVM

core vectors over the banana data set, where star symbols represent the core

vectors and a solid line represents the boundaries. From 6.1b, it can be seen

that all the MEB/CVM core vectors are positioned around the outer area of

data distribution. As a result, data points located around the inner curvature of

the banana distribution are not encompassed by the cluster boundary.

To overcome the difficulty of forming the inner curvature area of the banana

data cluster, we employ the proposed DE-CVM method by inputting a new

cluster dataset which contains 80 data points located close to the inner curva-

ture area of the banana dataset (see Fig. 6.1c, the new cluster is represented by

squares). Then we perform DE-CVM on both datasets by configuring the ba-

nana dataset as a positive class while the new cluster is configured as negative

class. Fig. 6.1c illustrates the six DE-CVM core vectors refining the cluster

boundary calculated by the classic CVM, thereby accurately depicting the in-
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Input: Set of points X ∈ R
d; parameter ε, λ, and η

Output: A DE-CVM learning model ΩDE−CV M

1: for each Xi ⊂ X do
2: Initialise k ← 1, T = ∅, and Δ which is the diameter of x

3: Initialise Q0
i,j by equation 6.1

4: Computer the initial MEB B0
i,1 and its radius r0i,1 and center c0

i,1 using
equation ?? on Q0

i,1

5: for each x ∈ Xi do
6: if x /∈ ∪k

j=1Bi,j then
7: Find t← arg mint∈T ||x− t||
8: if ||x− t|| < Δ

2λ then
9: Remove t from T

10: k ← k + 1

11: Q0
i,k = {ϕ(t), ϕ(x)}

12: Computer a new MEB B0
i,k and its radius r0i,k and center c0

i,k

using optimisation function on Q0
i,k

13: else
14: Find cu

i,j ← arg minj∈{1:k} ||x− cu
i,j ||

15: Qu+1
i,j ← {Qu

i,j , ϕ(x)}
16: Update MEB Bu+1

i,j and its radius ru+1
i,j and center cu+1

i,j using
equation ?? on Qu+1

i,j

17: if ru+1
i,j > ru

i,j × (1 + ε2×η
16 ) then

18: T← T ∪ x

19: Undo this update
20: end if
21: end if
22: end if
23: end for
24: ΩDE−CV M ← ΩDE−CV M

⋃{∪k
j=1ci,j ,∪k

j=1(1 + ε)ri,j ,∪k
j=1Qi,j}

25: end for
26: Return ΩDE−CV M

Algorithm 7: DE-CVM Algorithm

ner curvature of banana dataset. Furthermore, we increase the new cluster data

by adding another 50 data points that surround the left hand side of the banana

dataset, then implement DE-CVM on these two datasets. Fig. 6.1d illustrates

an approximate hyperplane, which is formed by 22 DE-CVM core vectors, in

order to discriminate the banana data from the new cluster data. From Fig.

6.1d, it can be inferred that DE-CVM is able to factorize the class character-
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istics of the banana dataset by creating a more accurate boundary using fewer

core vectors than MEB/CVM. Similarly, by adding new cluster data around the

banana cluster, using the same process, we are able to reduce the core vector

size due to class factorization.
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Figure 6.1: Banana data set clustering (a) plot 200 banana shaped data points, (b) plot
the cluster boundary in black lines formed by 70 classic MEB core vectors,
(c) plot the new cluster data in the bend area of banana data and banana
data cluster boundary formed by the classic MEB core vectors and 6 DE-
CVM core vectors, (d) plot the new data surround the left hand side of the
banana data and the DE-CVM core vectors.

6.4.2 Classification Accuracy Comparison

To evaluate the classification performance of DE-CVM, we compared DE-

CVM with five other classification methods (i.e. KNN, Bayes, MLP, SVM and
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CVM) on four two-class and four multi-class benchmark datasets which are

summarised in Table 6.2.

Type Dataset No. of Features No. of Classes Size

two-class

heart 13 2 270
liver-disorder 6 2 345
ionosphere 34 2 351

breast-cancer 10 2 683

multi-class

iris 4 3 150
wine 13 3 178

vehicle 18 4 846
vowel 10 11 990

Table 6.2: Summarisation of data sets characteristics

For each dataset, we conductedK-fold cross-validation which randomly par-

titioned the original data into K subsamples. Of the K subsamples, a single

subsample was retained as the validation data for testing the model, and the

remaining K − 1 subsamples are used as training data. The cross-validation

process was repeated K times, with each of the K subsamples used exactly

once as validation data. Then we can obtained the mean value of the K results

from the folds. In our case, we set K = 10 as 10-fold cross-validation which is

commonly used.

We also compared the class factorization ability of DE-CVM, CVM, and

SVM as these three kernel-based methods extract support/core vectors which

are the discriminative data points for each class. We consider a method to have

strong class factorization ability, if it is able to learn most discriminative class

characteristics. In other words, this is a method that is capable of extracting

fewest support/core vectors and giving highest classification accuracy along

with strongest class factorization ability.

Table 6.3 presents the comparison results of the classification accuracies and

the number of support/core vectors among six classifiers. The three columns

next to the name of datasets record classification accuracies for three conven-

tional methods, such as KNN, Bayes, and MLP where KNN and MLP achieve
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the highest accuracy on one dataset only. The remaining columns in Table 6.3

summarised the classification accuracies and number of support/core vectors

extracted by those three kernel-based classification methods mentioned above.

It can be observed that the three selected kernel-based methods achieve higher

classification accuracy than those three conventional methods in general. DE-

CVM undoubtedly shows that it has the strongest class factorisation ability

among these three kernel base methods by achieving the highest classification

accuracy but extracting fewest core vectors on five out of eight datasets. The

results indicate that DE-CVM can be considered the perfect method for most

of the selected datasets.

Classifier KNN Bayes MLP SVM CVM DE-CVM
Dataset acc acc acc acc SVs acc CVs acc CVs
heart 82.59% 75.65% 83.33% 83.19% 135 83.67% 101 84.11% 84

liver-disorder 64.92% 63.17% 71.28% 64.92% 170 59.13% 171 65.13% 138
ionosphere 64.11% 65.32% 89.16% 92.06% 135 92.73% 101 92.72% 77

breast-cancer 96.63% 95.97% 96.65% 97.07% 340 95.43% 176 97.07% 136
iris 94.67% 90.35% 95.97% 96.00% 75 96.66% 66 96.66% 63

wine 97.16% 71.31% 93.91% 74.85% 85 73.76% 86 83.12% 82
vehicle 71.04% 66.24% 77.78% 71.61% 420 71.61% 72 78.13% 92
vowel 96.89% 91.37% 98.08% 97.47% 495 97.45% 110 98.56% 124

Table 6.3: Classification accuracy(acc) and number of support vectors(SVs)/core vec-
tors(CVs) comparison on eight selected data sets

6.5 S U M M A RY

In this chapter, a novel DE-CVM is proposed that learns the characteristics of

a class (i.e. core vectors) in a group manner. DE-CVM factorizes class charac-

teristics by reducing the sparseness area, discriminating core vectors on class

interaction hyperplanes, and enabling outliers detection. DE-CVM is evalu-

ated by conducting a comparison of classification accuracy and computational

cost on eight data sets with five conventional classification methods including

original CVM. DE-CVM obtains the highest classification accuracy for five

out of eight datasets. Compared to CVM, DE-CVM wins on all the data sets
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except ionosphere by utilising fewer core vectors hence rendering it computa-

tionally more efficient than CVM.

In the next chapter, we will introduce a novel string kernels classification

method for string format stream data mining.



Chapter 7
S T R I N G F O R M AT S T R E A M DATA M O D E L L I N G

T E C H N I Q U E S

In this chapter, we investigate string format stream data modeling techniques.

String classification is becoming a major area of stream data learning. This is

because of the explosive growth of Internet users. Network intrusions such as

SPAM emails, malicious software which formed as sequences of string data

are also increasing (Shawe-Taylor & Cristianini, 2004).

Recently, string kernels-based support vector machines have shown com-

petitive performance in tasks such as text classification and protein homology

detection (Lodhi, Saunders, Shawe-Taylor, Cristianini, & Watkins, 2002). We

proposed two novel string kernels learning methods: Meta Learning String

Kernel SVMs and String Kernel MEBs to improve the effectiveness of the tra-

ditional string kernels SVMs.

Section 7.1 gives a brief review of string kernels and string kernels SVMs.

Meta Learning String Kernel SVMs and String Kernel MEBs will be intro-

duced in Section 7.2 and 7.3, respectively. Section 7.4 gives the conclusion for

this chapter.

7.1 S T R I N G K E R N E L S V M S

Due to SVMs success in numerical pattern recognition with the help of ker-

nel functionality, research focused on using SVMs with string kernels for

string classification tasks. As Shawe-Taylor and Cristianini (2004) and Cortes,

Haffner, and Mohri (2004) explain, apart from popularly used string kernels

like Bag-of-Words and Edit Distance, one can also use kernels like n-gram

90
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or subsequence, which sum up substrings or subsequence in a document, as

string kernels for a string classification task. Results from previous experi-

ments (Shawe-Taylor & Cristianini, 2004; Cortes et al., 2004) have shown that

SVM with string kernel functionality is able to recognise string patterns much

more efficiently than other methods due to its ability to handle high dimen-

sional data like string data without a decrease in performance decrease. This

has made SVMs with string kernel functionality an ideal solution for DNA

prediction, document classification, language recognition, image recognition

and network anomaly detection scenarios. Even though string kernels are a

subset of the kernel domain, they have their own properties and computational

complexities associated with them. The following subsections explain about

some widely used string kernels.

7.1.1 String Kernel methods

Further below we review the definition of mismatch kernels (Leslie, Eskin,

Weston, & Noble, 2002) and present three new families of string kernels: Bag-

of-Words kernel, Gap-Weighted Subsequences kernel, n-gram kernel and Lev-

enshtein (or edit) distance kernel. In each case, the kernel is defined via an

explicit feature map from the space of all finite sequences from an alpha-

bet S to a vector space indexed by the set of k-length subsequences from

S. These models have been used in the computational biology literature in

other contexts, in particular for sequence pattern discovery in DNA and pro-

tein sequences (Sagot, 1998) and probabilistic models for sequence evolution

(Henikoff, 1992; Altschul, Gish, Miller, Myers, & Lipman, 1990).

Bag-of-Words Kernel

In document categorisation, a collection of documents is called a ‘corpus’,

which consists of a set of predefined terms and is identified as a dictionary.

A term or synonymously a word in the dictionary is any sequence of letters

separated by punctuation or spaces. On the other hand, a bag, is defined as

a set that allows repeated items. This definition of bag helps one to view a

document as a bag of terms or bag of words (BOW). This allows a document



7.1 S T R I N G K E R N E L S V M S 92

to be presented as a vector where each dimension is associated with a term in

the dictionary. This representation (φ) is given as:

φ(d) = (tf(t1, d), tf(t2, d), ...., tf(tn, d)) ∈ R
n,

here tf(ti, d) is the frequency of the tthi term in document d. Also, n is the

space dimensionality and the size of the dictionary (Shawe-Taylor & Cristian-

ini, 2004). Now, one can define a function k in this document space to compare

the similarity between two documents d1 and d2:

κbow(d1, d2) =

n1∑
i=1

n2∑
j=1

f(ti, tj)
j, (7.1)

where, d1 has n1 terms and d2 has n2 terms. Also, f is defined as:

f(tx, ty) =

{
λ2

B if tx = ty, λB ∈ (0, 1)

0 otherwise
(7.2)

where tx and ty are two terms.

N-gram Kernel

In n-gram kernel, a string s is defined from alphabet Σ of |Σ| symbols, and

is presented in a feature space F , where each dimension is a string (Shawe-

Taylor & Cristianini, 2004; Lodhi et al., 2002). Also, Σ∗ represents the set

of all strings and Σn represents the string set of length n. Furthermore, ss′

represents the concatenation of strings s and s′. Now, the substrings: u, v1, v2
of string s, are defined such that:

s = v1uv2,

where, if v1 = ε (ε is the empty string of 0 length) then, u is called to be the

prefix of s and if v2 = ε, then u is called to be the suffix of s. Now, a feature

map ϕ is defined in feature space F , with below embedding,

φn
u(s) = |{(v1, v2) : s = v1uv2}|, u ∈ Σn. (7.3)
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The associated kernel is defined as:

κngram(s, t) = 〈φn(s), φn(t)〉 =
∑
u∈Σn

φn
u(s)φn

u(t). (7.4)

Also, the computational complexity of n-gram kernel is written as O(n|s|t|)
(Shawe-Taylor & Cristianini, 2004).

Gap-Weighted Subsequences Kernel

Let s, t ∈∑∗ be two strings from a finite alphabet
∑

. Denote the lengths of the

strings by m = |s|, n = |t| and assume without loss of generality that n ≤ m.

Given a gap penalty λ, and an integer p, the gap-weighted subsequences (GWS)

kernel is

κGWS(s, t) =
∑

u∈∑p

φp
u(s)φp

u(t), (7.5)

where φp
u(s) =

∑
i:u=s(i) λ

l(i), u ∈ ∑p is the embedding to the feature space of

subsequences of length p.

Levenshtein (or edit) distance kernel

The levenshtein (or edit) distance associates to the difference between two

strings. The difference refers to, number of insertions, substitutions and dele-

tions required to transform string s to string t. Assume that string s is of length

n and string t is of length m. For the string s let s(i) be its ith character. Also

for two characters a and b, we define r as follows:

r(a, b) =

{
0 if a=b

1 otherwise
(7.6)

An (n + 1)(m + 1) array d, furnishes the levenshtein distance L(s, t) between

s and t via its (n + 1), (m + 1)th item. The calculation of d(i, j) is done in a

recursive manner by initially setting up d(i, 0) and d(0, j) as

d(i, j) = min(d(i−1, j)+1, d(i, j−1)+1, d(i−1, j−1)+r(s(i), t(j))). (7.7)
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In this work, we used eλd(i,j), rather than d(i, j) for improved results.

7.1.2 Parameter Optimisation for String Kernels

String kernels also have different parameters like λL in edit-distance kernel,

λB in bag-of-words kernel, sub-string size in n-gram kernel and subsequence

size in fixed length subsequence kernel, which derives different kernel matri-

ces. Hence, the parameter optimisation problem applies to string kernels as

well. Adding to the complexity, the computation cost for strings can be quite

expensive compared to numeric data, where most of the string kernels require

an internal function to map strings to numbers (i.e. function r in edit-distance

and function f in bag-of-words kernel that is explained in section 7.1.1). Also,

if one observes the experimental results mentioned in (Rieck & Laskov, 2007),

(Lodhi et al., 2002), (Sharma, Girolami, & Sventek, 2007) and (S. Sonnenburg,

2006) even the same string kernel requires different parameter combinations

on different string datasets to yield good classification accuracies. This brings

about the point that string dataset characteristics also need to be included in a

string kernel SVM optimisation method.

7.2 A N OV E L M E T H O D O F M E TA L E A R N I N G F O R S T R I N G C AT E -

G O R I S AT I O N

7.2.1 Meta Learning for String Categorisation - Answer for Question 4

This section discusses the motivation to use meta learning for string classi-

fication. It defines and explains meta learning, then elucidates the process

of meta learning and its applications, followed by an explanation on meta-

features. Then this chapter discusses the application of meta learning for text

categorisation using a set of text meta-features, which are calculated from text

data. After that it clearly demarcates the difference between text and string

data, clarifying their ability to use some of the text meta-features for string

classification at the end.



7.2 A N OV E L M E T H O D O F M E TA L E A R N I N G F O R S T R I N G C AT E G O R I S AT I O N 95

Meta Learning

As Giraud-Carrier, Vilalta, and Brazdil (2004) explain, meta learning is the

process of acquiring and exploiting meta-knowledge through re-learning from

meta-features. Re-learning, which is to maintain the learning algorithm un-

changed or to modify it, helps the learning system to profit from repetitive

use of similar tasks. It can be applied on a single learning system to optimise

parameters, or on a set of algorithms to select the best algorithm for a given

classification task (Vilalta, Giraud-Carrier, Brazdil, & Soares, 2004; Furdı́k,

Paralič, & Tutoky, 2008; Brazdil, Soares, & Da Costa, 2003; Giraud-Carrier et

al., 2004). The process of re-learning requires a set of domain specific charac-

teristics so called ‘meta-features’ to evaluate the performance of an algorithm

or algorithms (Brazdil et al., 2003). In practice, meta learning is used to select

the best algorithm for a text classification (Lam & Lai, 2001; Furdı́k et al.,

2008), predict optimum parameters for kernels in SVMs (Soares, Brazdil, &

Kuba, 2004), and to optimise neural networks (Kord et al., 2010).

Apart from parameter optimisation, meta learning on a single learning sys-

tem is used to evolve the architecture of the learning system via experience,

such as evolving a decision tree using past experience (Brazdil, Giraud-Carrier,

Soares, & Vilalta, 2008) or to evolve a neural network considering past topol-

ogy parameters (Kord et al., 2010). On the other hand, meta learning on a set

of algorithms is used in situations such as algorithm ranking (Brazdil et al.,

2003) and algorithm identification in text categorisation (Furdı́k et al., 2008).

Sound meta features that effectively describe domain characteristics are re-

quired in both these systems (single learning and systems with multiple algo-

rithms) (Brazdil et al., 2008; Giraud-Carrier et al., 2004).

Generally, there are three types of meta-features. Firstly, simple statistical

and information-theoretic meta-features are calculated from the dataset, such

as number of classes, number of features, degree of correlation between fea-

tures, and average class entropy (Brazdil et al., 2008). Secondly, there are

model based meta-features: which describe certain characteristics of the learn-

ing system, such as maximum number of nodes per feature in a decision tree,

kernel width of the gaussian kernel, or maximum depth of a decision tree.
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Thirdly, landmark meta-features describe the performance (i.e. accuracy, mean

squared error) of a learning algorithm (Kord et al., 2010; Brazdil et al., 2008).

Review of Meta Learning for Text Categorisation

Lam and Lai (2001) explain nine text meta-features for text categorisation,

later expanded by Furdı́k et al. (2008) in their work. Both studies use the text

meta-features to build a meta model, which selects the best algorithm for a

given document category in document categorisation.

Text Meta-features

The text meta-features elucidated by Lam and Lai (2001) and Furdı́k et al.

(2008) for document categorisation are:

1. TraningInstancesPerCategory: Number of positive training instances

per category.

2. TestingInstancesPerCategory: Number of positive testing instances per

category.

3. AvgDocLenPerCategory: The average document length of a category.

The document length refers to the number of index terms in a document.

The average is taken across all the positive documents within a category.

4. AvgTermValPerCategory: The average term weight of a document within

a category. The average index term weight is taken for single document

and the average is then computed for all the documents in a category.

5. AvgMaxTermValPerCategory: The average maximum term weight of

a document within a category. The maximum index term weights for

individual documents are summed and the average is taken for a category.

6. AvgMinTermValPerCategory: The average minimum term weight of

a document within a category. The minimum index term weights for

individual documents are summed and average is taken for a category.

7. AvgTermThrePerCategory:The average number of terms above a term

weight threshold for a given category. The ‘term weight threshold’ is set
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globally. The number of index terms above the term weight threshold are

summed for category, and the average is computed for all instances in the

category.

8. AvgTopInfoGainPerCategory:The average information gain of the top

n index terms of a category. The information gain of each individual

index term is computed for each category and ranked. The average is

taken across top n index terms with the highest information gain within

a category.

9. NumInfoGainThresPerCategory:The number of index terms in a cat-

egory, where the information gain value exceeds a globally specified

threshold.

The above text meta-features explained by Lam and Lai (2001) and Furdı́k

et al. (2008) extracts statistical and information-theoretic information from the

dataset, and are later used to train a meta model, which identifies the most

suitable algorithm for a given document category.

Text Data versus String Data

As the main focus of our research is to optimise string kernel SVMs, this sec-

tion attempts to clearly define the difference between text and string data. Ac-

cording to Singhal (2001); De-Bie and Cristianini (2004); Shawe-Taylor and

Cristianini (2004), a text dataset is a collection of words, where word or syn-

onymously term is any sequence of letters separated by punctuation or spaces.

On the other hand, a string is a finite sequence of symbols from an alphabet

(Shawe-Taylor & Cristianini, 2004). This means even the word demarcation

symbols like space and punctuation can be in a string.

If one is given a string and a text dataset, it is easy to categorise them both

into their respective data types, considering their term separability (De-Bie &

Cristianini, 2004). This can be illustrated more clearly using Figure 7.1 where

there are three types of data: network data (Figure 7.1a), Reuters-21578 news

data (Figure 7.1b), and spam data which consists of spam and non-spam emails

(Figure 7.1c). While it is difficult to separate terms in both network data and

spam data, terms are easily separable in Reuters-21578 data. This helps one
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(a) Network Data (b) Reuters-21578 Data

(c) Spam Data

Figure 7.1: String and Text Data: (a) Network traffic data produced by network ap-
plications. (b) Data from Reuters-21578 dataset. (c) Spam data which
consists of ham and Spam E-mail messages (in every instance, the first
character represents the class label followed by actual data)
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to categorise both network data and spam as string data and Reuters-21578 as

text data.

With this difference between string data and text data in mind, the next sub-

sections explain our motivation to use text meta-features explained for string

classification.

Motivation for using Meta Learning for String Categorisation

All text meta features described before (apart from TraningInstancesPerCat-

egory and TestingInstancesPerCategory) are computed using terms and their

frequencies. In this way it is possible to represent a string dataset as a collec-

tion of terms and their frequencies, which helps to derive some string meta-

features that are computed by terms and their frequencies. Now these string

meta-features help to employ meta learning on string classification.

7.2.2 Meta Learning for String Kernel SVM Optimisation

String Meta-features

In order to use the meta-features as discussed in section 7.2.1 for string classi-

fication, the string dataset needs to be presented as terms and term frequen-

cies. We accomplish this in a string dataset by using splitting characters:

”+’:(){}[]. ,-\” to split a string into set of terms or synonymously tokens.

This approach is referred as ‘tokenisation’ in the literature (Shawe-Taylor &

Cristianini, 2004). To explain tokenisation, consider the highlighted string in

Figure 7.2, which is from a network application that uses http protocol. Using

specified splitting characters, one can split the string into tokens: “akt = 0;”,

“r”, “nvarbbisflash = 0;”, “r”, “nif”, “navigator”, and “appV ”. Now a token

frequency table is generated, as shown in Table 7.1. This token-frequency in-

formation is used to compute the string meta-features explained in this section.

The main difference between the text meta features discussed in section 7.2.1

and string meta-features explained here, is that the text meta-features are calcu-

lated for a text category in a text dataset, but, the string meta-features are cal-

culated for the entire string dataset. Out of nine text meta-features discussed in

the section 7.2.1, seven are considered in deriving these string meta-features.
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Figure 7.2: String Data: Network traffic data produced by network applications (in
every instance, the first character represents the class label of the network
application, followed by actual network traffic data)

Assume a string dataset that has n number of instances. The seven string

meta-features are:

1. AvgInstanceLen: The average instance length of the dataset. The in-

stance length refers to number of tokens in an instance. The average

is taken across all the instances. If ith instance has Ni tokens, then the

average instance length for that dataset is
∑n

i=1 Ni

n .

2. AvgTokenVal: The average token weight of an instance across a string

dataset. Initially, the token weight is calculated for each token and the

average is computed for single instance. Then, the average token weights

for each instance are summed and the average is computed for all the

instances.

If there are m unique tokens in ith instance, the average token weight for

a string dataset is written as:

Average token weight of the string dataset =

∑n
i=1

∑m
j=1 TW (j, i)

mn
,
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Token Token Frequency
akt = 0; 1

r 2
nvarbbisflash = 0; 1

nif 1
navigator 1
appV 1

Table 7.1: Token Frequency Table: Tokens and their frequencies for highlighted string
in Figure 7.2

(7.8)

where TW (j, i) is the token weight of jth token in ith instance. Accord-

ing to the interpretation given by Hersh (2008) of the term weight, the

TW (j, i) can be written as:

TW (j, i) = TF(j, i)× IDF(j), (7.9)

where IDF(j) is the inverse document frequency of jth token, and TF(j, i)

is the frequency of jth token in instance i. Furthermore, according to

(Hersh, 2008), the IDF(j) is computed as:

IDF (j) = log
n

TF (j)
+ 1, (7.10)

where TF (j) is the frequency of the jth token in the dataset. Now, con-

sidering (7.9) and (7.10), equation (7.8) is rewritten as:

Average token weight of the string dataset =

∑n
i=1

∑m
j=1 TF (j)

(
log n

TF (j) + 1
)

mn
(7.11)

3. AvgMaxTokenVal: The average maximum token weight of an instance

across a string dataset. Maximum token weights of an instance are summed

and the average is taken across all instances.
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4. AvgMinTokenVal: The average minimum token weight of an instance

across a given string dataset. Minimum token weights of an instance are

summed and the average is taken across all instances.

5. AvgTokenThre: The average number of tokens above a token weight

threshold for a given string dataset. The token weight threshold is set

globally. The number of tokens where the token weight is above the

threshold are summed and the average is taken across all instances.

6. AvgTopInfoGain: The average information gain of the top r tokens in

the string dataset. The information gain of each individual token is com-

puted for each instance and ranked. Then, the average is taken across top

r terms with highest information gain.

7. NumInfoGainThres:The average number of tokens in an instance where

the information gain value exceeds a globally specified threshold.

Meta Learning for String Classification

The mentioned string meta-features help to employ meta learning on a string

classification. The principle of using meta learning for string classification is

discussed in section 7.2.2. A novel string kernel SVM optimisation method is

elucidated in section 7.2.2.

Token-frequency space

String Data Tokenization( )D

( )

( )pf

1,( ' )Df

',( ' )p Df

Figure 7.3: String meta-feature generation process
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Figure 7.4: The procedure to employ meta learning for string classification

Meta Learning for String Classification: Principle

Consider a string datasetD, which is represented as a vector in token-frequency

space Ω, where each dimension in Ω is associated with one token. Now, the

dataset D is represented via function ω in this new Ω token-frequency space:

ω(D) = (TF (t1, D), TF (t2, D), ...., TF (tN , D)) ∈ Ω, (7.12)

where TF (tj, D) is the token frequency of jth token in the string dataset D,

and N is the number of unique tokens in the dataset. Now one can derive a

function fp : Ω→ R:

fp(D) = f ′p,D (7.13)

where f ′p,D represents the value for the pth string-meta feature for D. For the

string datasetD, there are p′ finite meta-features, where all string meta-features

fp(D) (p = 1, 2, 3, ..., p′) are well defined. This sting meta-feature generation

process is shown in Figure 7.3.

Using the above discussed sting meta-features, Figure 7.4 explains the prin-

ciple of meta learning for string classification. Assume there is a string dataset

pool L with l′ datasets, where, each string dataset Dl (Dl ∈ L, l = 1, ..., l′)
is again subdivided into unique DlTR (training) and DlTS (testing) datasets,

which creates training (LTR) and testing (LTS) dataset pools. The string meta-

feature f ′p,DlTR
is computed for dataset DlTR. Also, for DlTR, the machine
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learning algorithm LA with parameter combination c, generates YDlTR,c clas-

sification accuracy. These computed string meta-features (f ′p,DlTR
), parameter

combinations (c) and accuracy information (YDlTR,c) generate a meta model

via regression, which is able to predict the classification accuracy for a new

string dataset, given the computed sting meta-features and the parameter com-

bination. Hence, for a new string dataset DlTS, the meta model predicts the

accuracy YDlTS ,c′ for parameter combination c′ by computing string-meta fea-

tures f ′p,DlTS
.

Meta Learning for String Kernel SVM Optimisation: Algorithm

According to the principle introduced in this section the built meta model is

able to predict the string classification accuracy for a machine learning algo-

rithm on a novel string dataset, using computed string meta-features. This

section explains the procedure to use this principle (meta learning for string

classification) to optimise string kernel SVMs, which is shown in Algorithm 8.

Algorithm 8 explains the procedure of using meta learning to optimise string

kernel SK with SVM. The proposed algorithm uses training string dataset pool

LTR, testing string dataset pool LTS , training parameter pool C and testing

parameter pool C ′ as inputs. Also, SVM with string kernel SK is set as the

learning algorithm (LA). Initially, a meta model is built using meta features

calculated for each dataset in LTR with accuracy information obtained for each

parameter combination in C via n-fold cross validation. Then, for each new

string dataset in LTS, the built meta model predicts the classification accuracy

for each combination in C ′. The combination (ĉl) which yields the highest

accuracy is presented as the optimum parameter combination for dataset DlTS.

7.3 A N OV E L FA S T S T R I N G C L A S S I FI C AT I O N M E T H O D

7.3.1 Motivation

Despite of the high performance of meta learning string kernels SVMs on clas-

sification accuracy, the computational cost of the learning process is huge. Al-

ternatively, we developed another novel method string kernels MEB which
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input :
LTR =Training String Dataset Pool
LTS =Testing String Dataset Pool
C =Parameter Combination Pool for Training (c ∈ C)
C ′ =Parameter Combination Pool for Testing (c′ ∈ C ′)
LA =SVM with String Kernel SK

output: Parameter combination ĉl which yields the best accuracy for
sting dataset DlTS

for l ← 1 to l′ do
Pick DlTR from LTR

for p← 1 to p′ do
Compute f ′p,DlTR

end
repeat

Pick a parameter combination c from C

Do 10-fold cross validation on DlTR, using LA with parameter
combination c which yields YDlTR,c accuracy

until no more parameter combinations in C;
end

Build a regression model (meta model) using f ′p,DlTR
, c, and YDlTR,c

for l ← 1 to l′ do
Pick DlTS from LTS

for p← 1 to p′ do
Compute f ′p,DlTS

end
repeat

Pick a parameter combination c′ from C ′

Predict accuracy YDlTS ,c′ for LA with parameter combination c′

using build meta model
if YDlTS ,c′ is maximum then

ĉl = c′

end
until no more parameter combinations in C;

end
Algorithm 8: The proposed meta learning algorithm for string kernel SVM
optimisation
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extends original MEB/CVM algorithm with string kernels methods. As we

discussed in chapter 4 the computational complexity of MEB is much smaller

than SVMs, the string kernel learning time for string kernels MEB is shorter.

7.3.2 String Kernels MEB Algorithm Description

Given a data matrix X = {x1,x2, . . . ,xl}, MEB over X is modelled as the

smallest hypersphere BX = {c, r,X}, where c, r are the centre and radius of

BX, respectively. The BX is calculated by solving the optimisation problem:

minc,r r2

subject to ||c− φ(xi)||2 = (φ(xi)− c)′(φ(xi)− c) ≤ r2

i = 1, 2, . . . , l

. (7.14)

which can be solved by introducing a Lagrange multiplier αi ≥ 0 for each

constraint

L(c, r, α) = r2 +
∑l

i=1 αi

[||φ(xi)− c||2 − r2]
= . . .

=
∑l

i=1 αiκ(xi,xi)−
∑l

i,j=1 αiαjκ(xi,xj)

. (7.15)

Given a set of string S = s1, s2, . . . , sl while is defined from alphabet Σ of

|Σ| symbols. MEB BS is able to be obtained by transferring string kernels (e.g.

bag-of-words) of S into equation 7.15 as:

L(c, r, α) =
l∑

i=1

αiκbow(si, si)−
l∑

i,j=1

αiαjκbow(si, sj). (7.16)

The optimised Lagrange parameter α∗ is calculated by solving the problem as:

minα
∑l

i=1 αiκbow(si, si)−
∑l

i,j=1 αiαjκbow(si, sj)

subject to
∑l

i=1 αi = 1, and αi ≥ 0, i = 1, 2, . . . , l
. (7.17)

According to the Karush.Kuhn.Tucker (KKT) theorem that the Lagrange

parameters can be non-zero only if the corresponding inequality constraint is
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an equality at the solution, only these Ssv ⊂ S that lie on the surface of the

optimal hypersphere have their corresponding α∗
i non-zero. Thus, we treat Ssv

as the support vectors of S.

7.3.3 Online String Kernels

In this stage, Meta Learning String Kernel SVMs and String Kernel MEBs can

only work in batch learning mode. However, the combination of string kernel

with MEB gives a new direction of string kernel online learning mode. In the

future, we can implement the string kernel online learning by taking a suitable

online kernel learning method and replace the kernel matrices with the string

kernels matrices.

7.4 S U M M A RY

This chapter gives a brief introduction to string kernels SVM and presents two

novel string kernels learning methods: Meta Learning String Kernel SVMs

and String Kernel MEBs. Although these two methods are for batch learning

only, the combination of batch learning methods and online learning methods

is also proper for stream data learning. These two methods are able to outper-

form traditional string kernels methods on both accuracy and efficiency. The

evaluation of these two methods is presented in chapter 9



Chapter 8
T H E A P P L I C AT I O N O F H I E R A R C H I C A L C O R E

V E C TO R M AC H I N E S TO S O LV E N E T W O R K

I N T RU S I O N D E T E C T I O N

This chapter presents a case study of network intrusion detection. We use

RCV1-V2 (Lewis, Yang, Rose, & Li, 2004) for a simulation of network strings

examination as RCV1-V2 gives a one level multi-label (i.e. not hierarchi-

cal multi-label) text classification problem. KDD’99 (KDD99, 1999) poses a

hierarchical multi-label Internet security problem, we thus use KDD’99 as a

comprehensive network security real application case study.

8.1 BAC K G RO U N D

Upon the explosive growth of number of Internet users, malicious activity such

as denial of service attacks, port scans or even attempts to crack into computers

by monitoring network traffic are also increasing. These malicious activities on

the Internet, also known as network intrusions, trouble the Internet users and

cause Internet security threats. Network intrusion detection systems (NIDS)

are developed for safeguarding the users and their systems from any threats of

Internet intrusion. As a preventive measure, existing NIDS mostly employ two

popular intrusion detection methods: (1) the white and black list methods fil-

ter spam through network ID/address validity verification (Chirita, Diederich,

& Nejdl, 2005); (2) the Intrusion signature recognition methods detect any

intrusions by comparing network data with a predetermined attack signature

(Ye & Chen, 2001). However, both methods have proved brittle to any small

alteration of attack (Kofcz, Chowdhury, & Alspector, n.d.). This requires ordi-

108
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nary NIDS (e.g. a firewall system for a personal computer) to be updated in a

regular time interval.

As an alternative solution, machine learning methods solve the above dif-

ficulty confronted by existing NIDS, because the attack signature/filter are

learned dynamically from the streaming network data. In this field, Mukkamala

and Sung (2003) implemented support vector machine (SVM) method on the

KDD Cup dataset and obtained an overall 99% classification accuracy. Frank

and Mda-c (1994) took decision trees as the most suitable classification method

for intrusion categorisation. Panda and Patra (2007) compared the performance

of Naive Bayes with the neural network approach, and authenticated the suit-

ability of Naive Bayes for intrusion detection modelling. Despite that, machine

learning for network intrusion detection still have underlying issues related to

accurate network threats authentication. With the vulnerability of present-day

software and protocols combined with the increasing sophistication of attacks,

network-based attacks are on the rise (Staff, 2005), which has made an aston-

ishing revenue loss every year. The 2005 annual computer crime and security

survey (CSI & FBI, 2005) reported that the financial losses incurred by the re-

spondent companies due to network attacks/intrusions were US $130 million.

In terms of using machine learning for intrusion detection, existing methods

perform intrusion detection by grouping any network traffic into several major

clusters. This in practice often reduces the detection rate/efficiency because the

detailed information of network traffic, including attack messages, is ignored.

For example, spam is simply divided into several major categories, such as

junk mail, IM spam, TXT spam etc. It could be obviously advantageous to

spam detection, if the junk mail could be dividable into unsolicited bulk e-mail

(UBE) and unsolicited commercial e-mail (UCE). Thus, it is important for

network intrusion detection that the whole picture of network traffic/intrusion

is presented as a hierarchy as seen in Fig.5.1, and it is necessary to do multipl

labelling of the network traffic/intrusions.
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8.1.1 Multi-label Intrusions

Intrusion detection is formatted into a hierarchical multi-label classification

(HMC) problem. A high-speed hierarchal minimum enclosing balls (HCVM)

algorithm is proposed for multi labelling network intrusions in a MEB/CVM

structure where MEBs/CVMs are separating, encompassing, and overlaping

with each other. A minimum enclosing ball (MEB/CVM) computes a hyper-

sphere of minimum radius which encloses a specific type of network traffic/in-

trusion. Given an unlabelled network message, the proposed HCVM seeks a

MEB/CVM enclosing the message, and multi-labels it by the MEB/CVM’s po-

sition and its ancestor relationship in the HCVM. In the experiments, we have

authenticated the proposed HCVMs classification proficiency and computa-

tional efficiency. For the HMC from KDD’99 dataset, the proposed HCVM

exhibits an outstanding classification accuracy for U2R and R2L attack types.

Furthermore, the capability of HCVM for handling single-level multi-label

data is also demonstrated in another experiment with the RCV1-V2 dataset.

8.2 E X P E R I M E N T S A N D D I S C U S S I O N

For testing the capability of the proposed HCVM for multi-label, in particular

for hierarchical multi-label classification, we examined the developed HCVM

on the RCV1-V2 text dataset (Lewis et al., 2004), and the benchmark KDD’99

dataset (KDD99, 1999), respectively.

8.2.1 Experimental setup

The proposed HCVM is implemented in MATLAB version (7.6.0), on a 1.86Hz

Intel Core 2 machine with 2GB RAM. In our experiments, we use a non-linear

Gaussian kernel k(x, y) = exp(−‖x− y‖2 /β) with β = 1
m2

∑m
i,j=1

∥∥∥xi − y2
j

∥∥∥.

We set the ε as 1e− 6 for (1 + ε)-approximation of MEB/CVM, and the Gaus-

sian kernel parameter β as 1000.

Parameter n in Algorithm 6 is a positive integer, representing the number of

the nearest MEBs/CVMs to the input instance. Thus, n is greater than or equal
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to the maximum number of multi-labels for a single instance. For example,

in the case of the RCV1-V2 dataset, n takes a value of 11. It is worth noting

that n in practice is more often determined by cross-validation tests over the

training data. In the case of KDD’99 dataset, n is set to 3 because the highest

93.6% accuracy is achieved when n equals 3 in cross-validation tests, as shown

in Fig. 8.1.
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Figure 8.1: Cross validation tests of Algorithm 6 for parameter n determination on
KDD’99 dataset

8.2.2 Simulation of Network Strings Examination: RCV1-V2 Dataset

The RCV1-V2 data set collected by Lewis et al. (2004) contains newswire sto-

ries from Reuters Ltd. RCV1-V2 and was pre-processed by several schemes,

including removing stopping words, stemming, transforming the documents

to vectors with TF-IDF format and cosine normalisation, etc. Among the

three category sets (Topics, Industries, and Regions) of RCV1-V2, we con-

sider, analogous to the previous works done by Lewis et al. (2004), only the

Topics category set, with the statistics of training and testing dataset is given

in table 8.1.
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As a simulating network string examination, we implement Algorithm 5 for

HCVM training, and Algorithm 6 for testing the generated HCVM model.

Algorithm 6 checks the n nearest MEBs/CVMs of the HCVM, and labels each

new instance as one of the classes of the MEBs/CVMs enclosing the instance.

Data set #inst. #feat. #label
Label size frequency (%)

1 2 3 4 ≥ 5
RCV1-V2 train 23, 149 47, 236 101 12.3% 29.5% 35.7% 10.8% 11.7%
RCV1-V2 test 781, 265 47, 236 103 12.3% 25.4% 45.3% 10.9% 15.3%

Table 8.1: Statistics of RCV1-V2 dataset

For performance evaluation, we compare HCVM with SVM (Chang & Lin,

2001) on one of the most used performance measures for information retrieval

(Hripcsak & Rothschild, 2005), F-measure, which is calculated as the har-

monic mean of precision (P ) and recall (R):

F −measure =
2PR

P +R
. (8.1)

where

P =

∑l
i=1 ŷ

i
jy

i
j∑l

i=1 ŷ
i
j

, R =

∑l
i=1 ŷ

i
jy

i
j∑l

i=1 y
i
j

, (8.2)

yi
j is the true label of ith instance for class j from total l testing instances and

ŷi
j is the predicted label. In our experiments, we use two approaches: macro-

average F-measure and micro-average F-measure (Tague-Sutcliffe, 1997) which

extended the F-measure from single-label to multi-label. The macro-average

F-measure for a total of d labels is obtained from the unweighted mean of the

label F-measures and can be calculated as,

F =
1

d

d∑
j=1

2
∑l

i=1 ŷ
i
jy

i
j∑l

i=1 ŷ
i
j +

∑l
i=1 y

i
j

. (8.3)
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The micro-average F-measure, which considers predictions from all instances

together and calculate the F-measure across all labels,

micro− F =
2
∑d

i=1

∑l
i=1 ŷ

i
jy

i
j∑d

i=1

∑l
i=1 ŷ

i
j +

∑d
i=1

∑l
i=1 y

i
j

. (8.4)

The additional measurement we used for performance evaluation is AUC

(the area under the Receiver Operating Characteristic (ROC) curve). AUC

reflects mainly the ranking quality of predictions. A perfect classifier has an

expected AUC score equal to 1. A detailed description of the AUC and ROC

graphs can be found in (Fawcett, 2003).

Methods F-Measure Macro-Average F-Measure AUC
SVM 0.76 0.51 0.85

HCVM 0.86 0.71 0.91

Table 8.2: AUC, F-Measure and Macro F-Measure comparison

Table 8.2 presents the comparison result. The proposed HCVM performs

10% better than SVM on Macro F-measure, 20% better on Micro F-measure,

and 6% better on AUC under the condition that the complete dataset is used

for training. Fig. 8.2 gives further comparison on Macro F-measure and Micro

F-measure, when the sizes of training sets vary from 10% to 100%. As seen,

the proposed HCVM consistently and significantly outperforms the SVM by

10%−30% on both Macro F-measure and Micro F-measure despite the change

in the size of training set. Fig. 8.3 gives the ROC comparison, where the AUC

area of HCVM is seen compassing the AUC area of SVM, which demonstrates

again that the proposed HCVM provides crisply better quality of predictions

than SVM at any size of training set.

The poor performance of SVM can be explained in part by the fact that

the SVM hinge loss is not well suited for unbalanced data (Zhang & Oles,

2000). However, HCVM is the aggregation of MEBs/CVMs on multi-label

hierarchy. The advantages of HCVM on class-imbalanced problem are: (1)

single MEB/CVM is capable of modelling whatever skewed class (i.e. a class
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(a) Micro-Average F-measure
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(b) Macro-Average F-measure

Figure 8.2: (a) and (b) plot the Micro-Average F-measure and Macro-Average F-
measure of different number of training dataset for both SVM and HCVM
respectively.
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(a) ROC graph for SVM
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(b) ROC graph for HCVM

Figure 8.3: ROC graphs with AUC results of 10 chunks training dataset with same
size. The filled areas in (a) and (b) correspond to the AUC for SVM and
HCVM respectively.

with fewer samples than other classes) more accurately; and (2) HCVM is

convenient to allocate more computing power (i.e. more MEBs/CVMs) for the

classification of the skewed-class.

8.2.3 Internet Security Application: KDD’99 Datasets

KDD’99

KDD Cup 1999 dataset (KDD99, 1999) contains 5 million Internet connec-

tion records. Each record encodes 41 connection features including 1 class

label, 34 continuous features, and 7 symbolic features. The class label iden-

tifies one of 22 network connection types including normal, buffer overflow,

guess password etc. All connection features are assumed to be conditionally
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independent. Apart from the normal connection type, the rest of 21 attack

types are associated with 4 major categories of attack, they are:

1. DOS, denial of service, e.g. back;

2. R2L, unauthorised access from a remote machine, e.g. guessing pass-

word;

3. U2R, unauthorised access to local superuser (root) privileges, e.g. buffer

overflow;

4. PROBE, information gathering, e.g. port sweep.

Data Preprocessing

For data preprocessing, we replace the original label for each instance with a

set of numerical labels by the following rules: the major attack categories stay

at the head followed by its subcategories. For example, ’back’, as the first sub-

category of DOS attack, is represented as (1,1), and the second subcategory

’land’, as (1,2). In this way, all labels can be transformed into a numerical

hierarchical structure as shown in Fig. 8.4. Additionally, we normalise ev-

ery continuous feature into [0, 1], and encode every symbolic feature to binary

digit.

DOS (2)

Smurf
(2,6)

Teardrop
(2,5)

Back
(2,1)

Land
(2,2)

Pod
(2,3)

Neptune
(2,4)

Figure 8.4: KDD99 data classification label replacement
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Comparison Results

For constructing HCVM, we compute MEBs/CVMs and core sets for 21 sub-

categories and 4 major categories of attacks, respectively. For each category

and subcategory, we use the instances of the core set as the core vectors. As

a result, we obtain 25 core vector sets in total corresponding to 4 major cate-

gories plus 21 subcategories of attacks. Table 8.3 and Figure 8.5 present the

comparison of our classification results to the results achieved by Bernhard

who is the winner of KDD’99 cup (Elkan, 2000).

Actual VS Predicted Actual Normal Actual DOS Actual U2R Actual R2L Actual Probe

Bernhard predicted Normal 60262 5299 168 14527 511
HCVM predicted Normal 920431 36818 9845 2603 2084

Bernhard predicted DOS 78 223226 0 0 184
HCVM predicted DOS 153064 3619301 10341 14732 85932

Bernhard predicted U2R 4 0 30 8 0
HCVM predicted U2R 6 3 43 0 0

Bernhard predicted R2L 6 0 10 1360 0
HCVM predicted R2L 321 193 44 517 51

Bernhard predicted Probe 243 1328 20 294 3471
HCVM predicted Probe 2843 2104 412 506 35237

Bernhard total accuracy 99.5% 97.1% 13.2% 8.4% 83.3%
HCVM total accuracy 94.6% 93.2% 82.7% 45.9% 85.7%

Table 8.3: Compare the classification accuracy with (Bernhard 1999) who is the win-
ner of KDD’99 cup

As seen from the table, Bernhard (1999) achieved an extremely high clas-

sification accuracy of 99.5% on normal connect type, however U2R and R2L

showed poor classification performance, with none of them exceeding 15%,

because of their class size being smaller than the other classes. Although the

overall classification accuracy of the proposed HCVM is slightly lower than

that of the Bernhard’s method for normal connection type and DOS type at-

tacks, the proposed HCVM outperforms Bernhard’s method on the classifica-

tion of 3 most important classes. HCVM particularly increases the classifica-

tion accuracy of U2R and R2L by 70% and 35%, respectively. This demon-

strates the advantage of the proposed HCVM, which enables a more accurate

approximation of class information, even for a very small dataset.
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Figure 8.5: Compare the classification accuracy with the winner of KDD’99 cup on
each attack type

To evaluate the efficiency of the proposed methods we computed the number

of CPU time, support vectors and test error rate of HCVM and SVM with

different sizes of training datasets. As seen in Fig. 8.6a, the time cost of

HCVM increases more slowly than the SVM. In addition, Fig. 8.6b shows

the number of support vectors found by HCVM stays constant regardless of

the training dataset size. For SVM, the number of support vectors increases

proportionally to the dataset size. On comparison of test error rate, Fig. 8.6c

indicates that HCVM constantly provides lower error rate than SVM, specially

when the training dataset size is small.

8.3 S U M M A RY

We have evaluated the proposed HCVM method for network intrusion detec-

tion applications In our experiments, we have implemented the HCVM on

benchmark datasets from UCI archives such as KDD’99 and RCV1-V2. The

experimental results show that the proposed HCVM is clearly more efficient

and accurate than the traditional methods, especially for the U2R and R2L

problem of the KDD’99 dataset.

Next chapter presents a case study for face membership authentication.
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Figure 8.6: (a) CPU time required by HCVM and SVM, (b) number of support vec-
tors created by HCVM and SVM with different size of training dataset,
respectively. (c) the error rate variation against the size of training dataset.



Chapter 9
T H E A P P L I C AT I O N O F DY NA M I C E VO LV I N G C O R E

V E C TO R M AC H I N E S TO S O LV E FAC E M E M B E R S H I P

AU T H E N T I C AT I O N P RO B L E M

This chapter presents a case study of face membership authentication (FMA).

To evaluate the class factorisation ability of DE-CVM (Y. Chen, Pang, &

Kasabov, 2010), we study the FMA problem (Pang, Kim, & Bang, 2005)

which is to distinguish the membership class from the non-membership in a

total group through a binary class classification. FMA involves different levels

of class overlapping which include the most discriminative class characteris-

tics (Garcia, Alejo, Sinchez, Sotoca, & Mollineda, 2008) because class over-

lapping increases while the size of the membership group is close to the size of

non-membership group. The size of the membership group can be dynamically

changed which makes class characteristic of membership and non-membership

manually adjustable. The smaller the size of membership group, the less dis-

criminative class characteristics are involved.

Section 9.1 explains the background of face membership authentication,

Section 9.2 presents dataset description and data pre-processing. The experi-

ment results for DE-CVM are presented in Section 9.3. Section 9.4 gives the

conclusion.

9.1 BAC K G RO U N D

Membership authentication is a typical problem in digital security schemes

(Pang, Kim, & Bang, 2003). The problem can be generally depicted as follows.

Consider a certain group of people G with N members, which is the universal

119
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set. If there exists an arbitrary subgroup M such that M ⊂ G and |M | < N/2,

then it is a membership group, and the remaining people M̄ = G−M make a

non-membership group. Thus, the objective of membership authentication is

to distinguish the membership M class from the non-membership class M̄ in

the group. Since anonymity is an essential feature of digital security schemes

(M.-H. Yang, Ahuja, & Kriegman, 2000), this would require membership au-

thentication to allow changing dynamically the size of the membership group

and the members in that group. Therefore, unlike all previous types of works

on face recognition for security, where identification of a given face image

is needed, dynamic membership authentication requires to authenticate an in-

dividuals membership without revealing the individuals identity and without

restricting the group size and/or the members of the group. For example, for

security or access control, the permission such as the right to enter an impor-

tant building is often assigned to many individuals. To get the permission,

it is required that members of the group be distinguished from nonmembers,

while the members need not be distinguished from one another due to privacy

concerns (Schechter, Parnell, & Hartemink, 1999).

For dynamic face membership authentication, Xie, Xu, and Hundt (2001)

introduced a verification system, in which they authenticated face member-

ships by combining a face recognition method using template matching and a

face verification using single support vector machine (SVM) classifier. Since

the system is not entirely independent from face identification, it is not a real

dynamic membership authentication system according to our definition. Pang

et al. (2003) introduced an SVM ensemble method for membership authen-

tication in dynamic face groups. It was a novel membership authentication

method for two main reasons. First, it performed the membership authentica-

tion in terms of binary classification without revealing the individuals identity,

i.e. it was only concerned with whether a member was included in a mem-

bership group or not. A powerful SVM ensemble combining several binary

SVM classifiers was introduced for supporting this property. Second, it per-

formed dynamic membership authentication without restricting the group size

and/or the members of the group, i.e. the membership authentication environ-

ments could be changing dynamically. An effective face representation using

an eigenfeature fusing technique was introduced to support this requirement.
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However, Pang et al. (2003) also found that the SVM ensemble method could

only remain stable for a membership group whose size is less than 45 persons

(16.6% of total group). As the membership group size increases, its member-

ship authentication performance becomes poorer and very unstable. Further-

more, when the size of the membership group becomes similar to the size of

the non-membership group, it is almost impossible to obtain a satisfactory au-

thentication performance. This is due to a complicated mixed data distribution

among the membership and non-membership face images, as it is very difficult

to discriminate such data in terms of only one classifier even if its classification

performance is powerful.

9.2 I M AG E DATA P R E -P RO C E S S I N G

In pre-processing, a data splitting procedure divides the data iteratively, and

a number of CVM classifiers follow each step of the data partition. Here, by

using locally linear embedding (LLE) (Pang et al., 2005) dimensionality re-

duction theory, we compressed member faces and nonmember faces as a set of

LLE eigenfaces which together characterise the variation between all the mem-

ber face images and nonmember face images, respectively. we partitioned the

training set by a membership-based clustering with the membership eigenfaces

and non-membership eigenfaces as two cluster centres.

9.2.1 LLE Eigenface

Compared with the linear dimensionality reduction method PCA (Pang et al.,

2003), LLE is a method for nonlinear dimensionality reduction introduced by

Roweis and Saul (2000). This method recovers global nonlinear structure from

locally linear fits. It attempts to preserve as much as possible the local neigh-

bourhood of each object, while preserving the global distances to the rest of

the objects. These properties of the method might not be of benefit for data

classification, but they definitely imply a better clustering of the data. Here,

we represent the whole set of face images in the membership group (or non-



9.2 I M AG E DATA P R E- P RO C E S S I N G 122

membership group) as a set of membership (or non-membership) eigenfaces,

which we obtained from the LLE eigenface technique as explained below.

A given face feature dataset consists of N real-valued vectors x. Each vec-

tor x is a high-dimensional vector with dimensionality D, and yi is the low-

dimensional vector embedded in xi with embedding dimensionality d, where

D >> d. The computation of LLE eigenface involves an optimal embed-

ding procedure that reduces a vector from high-dimensional data x to low-

dimensional data yi by minimising the following cost function:

Φ(y) =
∑

i

∣∣∣∣∣∣yi −
∑

j

Wijyj

∣∣∣∣∣∣
2

. (9.1)

This procedure consists of three steps:

Step 1. Compute the neighbours of each data point xi by computing pairwise

distances and finding neighbours. In the simplest formulation of LLE,

one can identify K nearest neighbours per data point by measuring the

Euclidean distance.

Step 2. Compute the weightsWij that best reconstruct each data point xi from

its neighbours, minimising the following cost function by constrained

linear fits:

ε(W ) =
∑

i

∣∣∣∣∣∣xi −
∑

j

Wijxj

∣∣∣∣∣∣
2

. (9.2)

Step 3. Compute the matrix M in terms of the previous weights computation

M = (I −W )T (I −W ). (9.3)

where I is the N ×N identity matrix.

Note that the bottom d + 1 eigenvectors of the matrix M are corresponding

to its smallest d + 1 eigenvalues. Thus, for fixed weights vectors Wij , the

embedding vectors yi are found by minimising the cost function in equation

9.1. That is, the optimal embedding can be found by computing the bottom
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(a) Original face images.

(b) LLE eigenfaces.

(c) PCA eigenfaces.

Figure 9.1: Comparison of membership LLE eigenfaces and PCA eigenfaces when
K = 10 and M = 20.

d + 1 eigenvector of the matrix and M . d/D identifies the compression ratio

of the embedded data space to the original data space. A bigger ratio means

that more local points of data variations in the original space are kept in the

embedded eigenspace, and a smaller ratio means that more global information

are reserved by each LLE eigenvector of the embedded space. To reserve the

local face variations, d/D is constantly set as 1/3 in our experiments.

Therefore, for face image data, LLE eigenfaces are a subset of eigenvectors

of matrix M , which assumes that a facial image x from training set {xi}Ni=1

can be reconstructed from its neighbours with the lowest reconstruction error

in equation 9.2.

Figure 9.1b shows 10 LLE eigenfaces derived from the 20 face images of

Figure 9.1a, and which are included in the membership group for authenti-

cation. Figure 9.1c shows 10 PCA eigenfaces derived from the same 20 face

images of Figure 9.1a. As we can see, each PCA eigenface contains the global

components from all 20 faces, which look obviously very different from one

another; while the differences between LLE eigenfaces are not very distinct,

because each LLE eigenface is obtained from a locally embedding computa-

tion, that contains only the local information of 20 face images.
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9.2.2 Data Partition

In membership authentication, the group members can be divided into mem-

bership and non-membership group members as G = M ∪ M̄ . Applying

the previous LLE eigenface technique to M and M̄ respectively, we obtain

two representative eigenface sets such that the membership eignefaces UM =

[u1,u2, . . . ,uK ] and the non-membership eigenfaces UM̄ = [ū1, ū2, . . . , ūK ].

They characterise the “membership-face” and “non-membership-face” respec-

tively. Figure 9.1 is an example of membership LLE eigenfaces with member-

ship size equal to 20.

On partitioning, we identify the two partitioned groups as a 2 × n binary

matrix V, where the element is vij if the jth data point xj belongs to group i,

otherwise it is 0. Once the two cluster centers UM and ŪM are fixed, then the

clustering based on membership can be performed as follows:

vij =

{
1 if minK

l=1 xj · ul ≤ minK
k=1 xj · ūk

0 otherwise

Where minK
l=1 x ·ul is the minimum distance projected onto the membership

eigenfaces (UM ), and minK
k=1 x · ūk is the minimum distance projected onto the

non-membership eigenfaces (ŪM ).

Figure 9.2 illustrates an example of binary LLE data partition, where two

dotted lines represent the two principal membership LLE eigenvectors (or

eigenfaces) and the two solid lines represent two principal non-membership

LLE eigenvectors (or eigenfaces). Each group member xi in the space is pro-

jected to those eigenvectors, and is assigned to a class whose projected distance

sum is the smallest. After completing the assignment of all group members,

we obtain two disjoint subgroups that correspond to the membership group and

the non-membership group, respectively. Each subgroup will be used as two

labeled class datasets to train the CVM classifier.

We modified the LLE technique to take into consideration the labeling (mem-

bership and non-membership) of the data. Thus, as the evolving clusters are

updating, members and nonmembers are forced to gather in numbers of sepa-

rated sub-clusters by a recursive membership-based LLE clustering.
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Figure 9.2: Typical example of the binary LLE data partition.

9.3 E X P E R I M E N T R E S U LT S A N D D I S C U S S I O N

FMA is performed on MPEG-7 face dataset, which consists of 1355 face im-

ages of 271 persons (5 different face images per person are taken), where each

image has the size of 56 × 46 pixels. The images have been selected from

AR(Purdue), AT&T, Yale, UMIST, University of Berne, and some face im-

ages obtained from MPEG-7 news videos (M. S. Kim, Kim, & Lee, 2003).

We set the membership size ranging from 35 to 230 with a 10 persons interval

to achieve datasets with dynamic class characteristics, and compared the pro-

posed DE-CVM with CVM under the condition of dynamic distinctive class

characteristics in FMA.

Methods CVM DE-CVM
Group Size True-positive Membership CVs True-positive Membership CVs

35 88.57%(= 31
35

) 36 88.57%(= 31
35

) 14
55 85.78%(= 47

55
) 37 89.09%(= 49

55
) 17

75 84.00%(= 63
75

) 40 90.66%(= 68
75

) 20
95 83.15%(= 79

95
) 41 85.26%(= 81

95
) 26

115 81.74%(= 94
115

) 39 91.30%(= 105
115

) 30
135 79.25%(= 107

135
) 38 88.88%(= 120

135
) 33

Table 9.1: Classification results of the membership authentication
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Figure 9.3: A comparison of CVM and DE-CVM on classification accuracy under the
condition of different membership group size
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Figure 9.4: A comparison of CVM and DE-CVM on number of core vectors under the
condition of different membership group size

Table 9.1 summarises the comparison result of membership authentication

true-positive rate, and the number of core vectors between CVM and DE-CVM

when the group size varies from 35 to 135 with a 20 interval, respectively. From

Table 9.1, it can be observed that DE-CVM provides a better performance on

membership authentication by obtaining higher true positive rates using fewer

core vectors than CVM with all different group size. In addition, when the

group size increases the true-positive rate of CVM decreases remarkably, while

that of DE-CVM is always around 88% regardless of the group size.

Fig. 9.3 and Fig. 9.4 illustrate the number of core vectors and classification

accuracy for CVM and DE-CVM under the condition of different membership

group size. As seen in Fig. 9.3, the number of core vectors from CVM stays
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constantly around 80, while the membership group size changes between 35

and 135 (equals to 50% of total group size). However, although the number

of core vectors from DE-CVM has a spiking increase, it never goes above the

number of core vectors from CVM. On the other hand, Fig. 9.4 shows that gen-

erally DE-CVM achieves higher FMA accuracy than CVM, and the difference

becomes as significant as 8% when the member group size ranges between 50

and 135. Recall that the number of DE-CVM core vectors is always smaller

than the number of CVM core vectors, which indicates that DE-CVM core vec-

tors are more discriminative than CVM for FMA. In other words, DE-CVM is

more capable than CVM of factorising the class characteristics of member-

ship and non-membership as fewer DE-CVM core vectors often deliver better

FMA.

9.4 S U M M A RY

This chapter presents a case study for dynamic face membership authentica-

tion. The results show that compared to the global modelling method CVM, lo-

cal modelling method DE-CVM factorises class characteristics by reducing the

sparseness area, discriminating core vectors on class interaction hyperplanes,

and enabling outliers detection.

Next chapter presents a case study for string format stream data mining.



Chapter 10
T H E A P P L I C AT I O N O F M E TA L E A R N I N G S T R I N G

K E R N E L M E B S S Y S T E M TO S O LV E R E A L W O R L D

S T R I N G F O R M AT S T R E A M DATA M O D E L I N G

The chapter presents a case study of modelling real world string format stream

data that is carried out to demonstrate the effectiveness of the proposed meta

learning algorithm for string kernel MEB optimisation. Three string kernel

MEBs were experimented namely: edit-distance, bag-of-words and n-gram

on four string datasets: Spam, Reuters-21578, Network Application Detection

and e-News categorisation.

Section 10.1 explains the experimental setup and the evaluation criteria, sec-

tion 10.2 describes the datasets description and the data pre-processing. The

experimental results for the three string kernel SVMs are presented in section

10.3. Section 10.4 indicates the limitation of the method found from the case

study and how to improve it in the future. Finally, section 10.5 gives the con-

clusion.

10.1 E X P E R I M E N T S E T U P

The proposed algorithm was experimented on three string kernel MEBs (edit-

distance MEB, bag-of-words MEB and n-gram MEB). As shown in Table 10.1,

the algorithm was trained using training string dataset pool LTR, and was tested

on testing string dataset pool LTS, for each string kernel MEB. In the experi-

ments, the MEB cost parameter (c) was selected as 20, 21, ..., 216 for all string

kernel MEBs. The string kernel parameters λL and λB for edit-distance and

bag-of-words string kernels, were selected as 0.001, 0.1, 0.25, 0.5. The substring

128
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length in n-gram string kernel was selected as 1, 2, ..., 8 in the experiments.

The string meta-feature, AvgMinTokenV al was not considered in the training

stage, as it was having the value 0 for all datasets. Also, the global threshold

for the AvgTokenThr was set to 2 in all the experiments. Support Vector Re-

gression (SVR) was used to build the meta model. In the training stage, the

parameters which yield lowest cross validation RMSE for SVR, were consid-

ered in regression (in building the meta model), for each string kernel MEB.

10 fold- cross validation was done for the top 10 predicted parameter combi-

nations, on each string dataset. The performance evaluation was done consid-

ering Root Mean Squared Error (RMSE) for the top 10 predicted parameters

on each dataset.

Dataset String Dataset Sting Kernel MEB
Pool (Dataset Label) Edit-Distance Bag-of-Words N-gram

LTR

Spam � � �
Reuters-21578 � � �
Network Application Detection � � �
e-News Categorisation - - �

LTS

Spam(1) � � �
Reuters-21578(2) � � �
Network Application Detection(3) � � �
e-News Categorisation(4) - - �

Table 10.1: The string datasets used in training and testing the proposed algorithm

In the experiments, edit-distance and bag-of-words string kernels were im-

plemented using LibMEB-2.9 (Chang & Lin, 2001) and n-gram string kernel

was implemented using shogun octave interface (S. Sonnenburg, 2006). The

string meta-feature computation program was coded using C++ language. All

the experiments were run on a PC having Intel Core2 Duo 3GHz processor and

2.96 Gb RAM.

10.2 DATA S E T S A N D DATA P R E -P RO C E S S I N G

Four string datasets were used in the string dataset pool L = {Spam, Reuters-

21578, Network Application Detection, e-News Categorisation}. It was again

subdivided into training dataset pool (LTR) and testing dataset pool (LTS),
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where each consisted of unique string datasets. String dataset pool LTR was

used to train the meta model in the proposed algorithm and string datasets

pool LTS was used to test the proposed algorithm. For edit-distance and bag-

of-words string kernel MEBs, training dataset pool LTR = {Spam, Reuters-

21578, Network Application Detection} was used, and for n-gram MEB, LTR

= { Spam, Reuters-21578, Network Application Detection, e-News Categori-

sation } was used. In testing, for edit-distance and bag-of-words string ker-

nel MEBs, testing pool LTS = {Spam, Reuters-21578, Network Application

Detection} was used, and for n-gram MEB, the testing pool LTR = { Spam,

Reuters-21578, Network Application Detection, e-News Categorisation } was

used. Table 10.1 summarises algorithm training and testing information on

each string dataset. A detailed description about each string dataset is given

below.

10.2.1 Spam Dataset

This dataset consists of 696 ham messages and 384 Spam messages from

(Spam Assassin public mail corpus, 2002). There are two types of ham e-

mails: easy ham (646) and hard ham (50). Easy ham e-mails are non-Spam

messages without any Spam signatures and hard ham are non-Spam messages

similar in many aspects to Spam messages which use unusual HTML markup,

coloured text, Spam-sounding phrases, etc. Each e-mail message has a header,

a body and some potential attachments. The training dataset consists with 810

messages (484 easy ham, 38 hard ham and 288 Spam) and testing dataset has

270 messages (162 easy ham, 12 hard ham and 96 Spam).

10.2.2 Reuters-21578 Dataset

The Reuters dataset used in the experiments has the exact split to (Lodhi et al.,

2002). It consists of 470 documents: 380 for training and 90 for testing. Four

document categories, those of earn, acquisition, crude and corn are available

in the dataset. Table 10.2 shows the document distribution among the different

categories.



10.2 DATA S E T S A N D DATA P R E- P RO C E S S I N G 131

Class Label Document Category Training Testing
0 Earn 152 40
1 Acquisition 114 25
2 Crude 76 15
3 Corn 38 10

370 90

Table 10.2: Data distribution-reuters-21578 dataset

10.2.3 Network Application Detection Data

The dataset consists of network traffic data produced by network applications,

such as http, https, imap, pop3, ssh, ftp and bittorent. All network data were

captured, and sorted according to their protocols using “Wireshark” (Combs,

2008) and split into individual connections using tcpflow (Elson, 2003). Only

TCP traffic was taken into account in the data capturing stage. The option ‘-s’

in “tcpflow” (Elson, 2003) was used to remove all non printable characters in

a connection. Also, only the first 50 bytes of a connection were considered in

preparing the dataset. Every connection was labelled according to the applica-

tion type. Table 10.3 shows the label number for every application type and

the number of instances in training and testing datasets.

Class Label Application/protocol Training Testing
0 AIM 18 7
1 Bittorrent 140 59
2 http 583 249
3 pop 17 7

770 329

Table 10.3: Data distribution-application detection dataset
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10.2.4 e-News Categorisation Data

The dataset is collected from four electronic newspapers: (New Zealand Her-

ald, 2010), (The Australian, 2010), (The Independent, 2010) and (The Times,

2010), on five news topics (business, education, entertainments, sport and

travel). Each document is labelled manually by skimming over the text to

identify the category. Punctuations and stop words were removed from the

dataset in advance. Table 10.4 shows detailed information about the dataset.

Class Lable News Category Training Testing
0 Business 227 97
1 Education 93 40
2 Entertainments 99 42
3 Sport 118 50
4 Travel 131 56

668 285

Table 10.4: Data distribution e-Newsgroup dataset

10.3 R E S U LT S

The result of the experiment for three string kernel MEBs are discussed in this

section. Section 10.3.1 explains the results for edit-distance MEB optimisa-

tion, using the proposed algorithm. The experimental results for bag-of-words

MEB optimisation are presented in section 10.3.2. Section 10.3.3 explains the

results for n-gram MEB optimisation, using the proposed algorithm.

10.3.1 Meta Learning for Edit-Distance MEB Optimisation

Here, the proposed algorithm was used to optimise edit-distance MEB. The

algorithm attempts to find the optimum parameter combination (λL and MEB

cost) for edit-distance MEB on three string datasets: Spam, Reuters-21578 and
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network application detection, in test dataset pool LTS (refer Table 10.1). In

the experiments, the SVR parameters: γ = 0.084 and SVR Cost=5400 were

used in regression. The actual accuracy and the predicted accuracy for the top

10 predicted parameter combinations are shown in Table 10.5. Also, the table

shows the RMSE for top 10 predicted parameter combinations on each dataset.

According to Table 10.5a and Table 10.5b, the optimum parameters pro-

duced by the proposed algorithm yield very low predicted and actual classifi-

cation accuracies, for edit-distance MEB, on Spam and Reuters-21578 string

datasets. This shows that the edit-distance MEB is not suitable for string clas-

sification on Spam and reuters-21578 datasets. However, according to Table

10.5c, the algorithm produces optimum parameters which yield good string

classification accuracies on network application detection dataset, for edit-

distance MEB (with a low RMSE).

cost λL rank predicted% actual%
65536 0.000488 1 2.36387 0.37

2 0.000488 2 2.36381 5.19
4 0.000488 3 2.36377 4.44
8 0.000488 4 2.36371 3.33
16 0.000488 5 2.36357 1.11
32 0.000488 6 2.36331 0.37
2 0.000976 7 2.36302 4.44
4 0.000976 8 2.36299 3.33
8 0.000976 8 2.36292 1.11

65536 0.000976 10 2.36286 0.37
root mean squared error 1.831455

(a) Spam Data

cost λL rank predicted% actual%
65536 0.000488 1 3.30463 23.33

2 0.000488 2 3.30454 24.44
4 0.000488 3 3.30451 26.67
8 0.000488 4 3.30445 23.33
16 0.000488 5 3.30432 23.33
32 0.000488 6 3.30407 23.33
2 0.000976 7 3.3038 26.67

65536 0.000976 8 3.30379 23.33
4 0.000976 9 3.30377 23.33
8 0.000976 10 3.30371 23.33

root mean squared error 20.846794

(b) Reuters-21578

cost λL rank predicted% actual%
32768 0.0625 1 73.1729 75.99
32768 0.03125 2 73.1653 75.99
32768 0.125 3 73.1602 75.99
32768 0.015625 4 73.1556 75.99
8192 0.125 5 73.1526 75.99
16384 0.125 6 73.1526 75.99
8192 0.25 7 73.1518 75.99
32768 0.5 8 73.1515 75.99
4096 0.25 9 73.1514 75.99
65536 0.25 10 73.1512 75.99

root mean squared error 2.833499

(c) Network Application Detection

Table 10.5: Experimental results for Edit-Distance MEB optimisation: (the top 10
predicted parameter combinations using the proposed algorithm on each
string dataset)
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10.3.2 Meta Learning for Bag-of-Words MEB Optimisation

Here, the the proposed algorithm attempts to find the optimum parameter com-

bination (λB and MEB cost) for bag-of-words MEB. Initially, the algorithm

was trained on a training dataset pool LTR (refer Table 10.1). Then, the al-

gorithm predicted the string classification accuracies for bag-of-words MEB

on three different string datasets in test dataset pool LTS (refer Table 10.1).

The SVR parameters: γ = 0.88 and SVR Cost=450 were used in regression.

10-fold cross validation was done for the top 10 predicted parameter combi-

nations, and RMSE was calculated for the same. Table 10.6 shows the top

10 predicted parameter combinations on three string datasets for bag-of-words

MEB.

According to Table 10.6b and Table 10.6c, the proposed algorithm produces

parameter combinations which yield high classification accuracies on reuters-

21578 and network application detection datasets with a very low RMSE.

However, on Spam dataset, the optimised parameter combinations produced by

the proposed algorithm yield average string classification accuracies (see Table

10.6a). Considering the overall high string classification accuracy (with a very

low average RMSE) shown in Table 10.6 and Table 10.8, on all three datasets,

one can say that the proposed algorithm produces optimised parameter com-

binations which yield good string classification accuracies, for bag-of-words

MEB.

10.3.3 Meta Learning for N-gram MEB Optimisation

In this experiment, the algorithm attempts to find optimised parameters (sub-

string length and MEB cost) for n-gram MEB. The algorithm was trained on

string dataset pool LTR and tested on testing string dataset pool LTS (refer Ta-

ble 10.1). The SVR parameters: γ = 0.95 and SVR Cost=500 were used in

regression. 10-fold cross validation was done for the top 10 predicted parame-

ter combinations on each string dataset. Table 10.7 summarises the experiment

results for the top 10 predicted combinations on each dataset.
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cost λB rank predicted% actual%
2 0.000488 1 61.6244 64.44
4 0.000488 2 61.6207 64.44
8 0.000488 3 61.6135 64.44
16 0.000488 4 61.5989 64.44
32 0.000488 5 61.5699 64.44
64 0.000488 6 61.5117 64.44
2 0.000976 7 61.4788 64.44
4 0.000976 8 61.4752 64.44
8 0.000976 9 61.4679 64.44
16 0.000976 10 61.4534 64.44

root mean squared error 2.899333

(a) Spam Data

cost λB rank predicted% actual%
4096 0.5 1 87.9839 86.67
2048 0.5 2 87.9734 86.67
1024 0.5 3 87.9551 86.67
512 0.5 4 87.9422 86.67
256 0.5 5 87.9347 86.67
8192 0.5 6 87.9307 86.67
128 0.5 7 87.9307 86.67

32768 0.5 8 87.9304 86.67
64 0.5 9 87.9287 86.67
32 0.5 10 87.9276 86.67

root mean squared error 1.273886

(b) Reuters-21578

cost λB rank predicted% actual%
4 0.000488 1 75.3987 75.99
2 0.000488 2 75.3987 75.99
8 0.000488 3 75.3986 75.99
16 0.000488 4 75.3985 75.99
32 0.000488 5 75.3983 75.99
64 0.000488 6 75.3978 75.99
128 0.000488 7 75.3968 75.99
4 0.000976 8 75.3967 75.99
2 0.000976 9 75.3967 75.99
8 0.000976 10 75.3966 75.99

root mean squared error 0.592261

(c) Network Application Detection

Table 10.6: Experimental results for Bag-of-Words MEB optimisation: (the top 10
predicted parameter combinations using the proposed algorithm on each
string dataset)

According to Table 10.7, the proposed algorithm produces optimised param-

eters, which yield good string classification accuracies for n-gram MEB, on all

four string datasets. The algorithm has a very low RMSE for top 10 predicted

on Spam, Reuters-21578 and network application detection datasets (see Table

10.7a, Table 10.7b, and Table 10.7c). Even though, the algorithm has quite a

high RMSE on the e-News categorisation dataset, the top 10 predicted parame-

ter combinations yield good string classification accuracies on the dataset (see

Table 10.7d).

10.4 L I M I TAT I O N S

The limitations that identified in the research are discussed below. Firstly,

for n-gram kernel, the proposed algorithm yields classification accuracies over

100% on Spam and Reuters-21578 string datasets. This can be resolved if one is

able to set upper and lower bounds in the algorithm. Secondly, the string meta-

features could be more descriptive, since they can explain the string dataset

more clearly than just numbers representing the string dataset. Thirdly, while
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cost substring length rank predicted% actual%
16384 8 1 99.3074 98.33333
4096 8 2 99.2982 98.33333
32768 7 3 99.2683 98.33333
16384 7 4 99.2652 98.33333
4096 7 5 99.2628 98.33333
4096 6 6 99.2524 98.33333
4096 5 7 99.2066 98.33333
2048 8 8 99.1935 98.33333
32768 6 9 99.1862 98.33333
4096 2 10 99.1803 97.81251

root mean squared error 0.971167898

(a) Spam Data

cost substring length rank predicted% actual%
4096 6 1 92.6961 95.36587
2048 6 2 92.6842 95.36587
8192 6 3 92.6771 95.36587
1024 6 4 92.6636 95.36587
512 6 5 92.6474 95.36587

16384 6 6 92.6405 95.36587
256 6 7 92.6376 95.36587
128 6 8 92.6322 95.36587
64 6 9 92.6294 95.36587
32 6 10 92.6279 95.36587

root mean squared error 2.712372587

(b) Reuters-21578

cost substring length rank predicted% actual%
16384 2 1 99.6656 98.22917
2048 2 2 99.5895 98.22917
1024 2 3 99.5776 98.22917
32768 2 4 99.5685 98.22917
4096 2 5 99.5634 98.22917
512 2 6 99.5607 98.22917
256 2 7 99.5489 98.22917
128 2 8 99.542 98.22917
64 2 9 99.5384 98.22917
32 2 10 99.5365 97.81252

root mean squared error 1.386738588

(c) Network Application Detection

cost substring length rank predicted% actual%
4096 5 1 90.8189 74.35295
4096 6 2 90.6225 75.05881
4096 4 3 90.5267 73.76471
8192 5 4 90.484 73.88235
32768 5 5 90.3336 73.64706
16384 5 6 90.3317 73.64706
8192 6 7 90.3088 75.17647
4096 3 8 90.2765 74.70588
8192 4 9 90.275 73.41176
32768 4 10 90.1778 73.17646

root mean squared error 16.34502652

(d) e-News Categorisation

Table 10.7: Experimental results for N-gram MEB optimisation: (the top 10 predicted
parameter combinations using the proposed algorithm on each string
dataset)

String Kernel Dataset RMSE Avg RMSE

Edit-Distance
Spam 1.831455

8.503916Reuters-21578 20.846794
Network Application Detection 2.833499

Bag-of-Words
Spam 2.899333

1.588493Reuters-21578 1.273886
Network Application Detection 0.592261

N-gram
Spam 0.971168

5.353826
Reuters-21578 2.712373
Network Application Detection 1.386739
e-News Categorisation 16.345027

Table 10.8: Root Mean Squared Error (RMSE) for string dernel MEB optimisation on
each string dataset (for top 10 predicted parameter combinations)

a meta learning algorithm is usually tested on a large number of datasets, the

high computational cost of string data and the unavailability of bench-mark

string datasets, have forced this researcher to use only four string datasets in

the experiments.

These limitations could be also caused by complex distribution of data sam-

ples. The proposed meta learning string kernels MEBs algorithm only learns
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the global model so far. In order to have a more accurate model for string data,

a local modelling string kernel method needs to be developed in future.

10.5 S U M M A RY

This case study shows that the proposed algorithm produces parameter combi-

nations that yield good string classification accuracies on most of the datasets.

They also reveal that some string kernel MEBs may not be suitable for carry-

ing out the string classification required on certain string datasets. Specifically,

edit-distance MEB yields poor string classification results on both Spam and

Reuters-21578 string datasets.

The proposed method has three main contributions to the field of machine

learning:

1. String Meta-features: The defined string meta-features can be used for

extracting meta knowledge from any string dataset;

2. Meta-Learning for String Classification Principle: explains the pro-

cedure for applying meta-learning on string classification but using ex-

tracted meta-knowledge via string meta-features;

3. Meta Learning Algorithm for String Kernel MEB Optimisation: us-

ing the Meta-Learning for String Classification Principle, a novel string

kernel optimisation method is derived, which is able to predict optimum

string kernel MEB parameters for a given string kernel MEB on a string

dataset by calculating relevant string meta-features.

Directions for future work and conclusion of the PhD thesis are given in the

next chapter.



Chapter 11
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

In this final chapter, the main achievements of the study are summarised. Sev-

eral directions for future work are also discussed that would help in further

improving the efficacy of the entire system.

The chapter is organised as follows: first, the main achievements of this the-

sis are summarised from three perspectives: in terms of basic on-line learning

algorithm, evolving connectionist systems adopting, and string kernels learn-

ing. The section closes by stressing the original contributions of this work and

giving a summary of the experimental results. The dissertation closes with a

brief discussion of future directions in five possible areas.

11.1 S U M M A RY O F AC H I E V E M E N T S

This PhD study shows how evolving connection systems (i.e. local modelling)

are adapted to stream data mining based on a fast, on-line kernel based learn-

ing algorithm. By means of local modelling, we can solve many real world

stream data modelling issues such as dealing with large size, high dimension-

ality, skewed class distribution. The idea of focusing on the unique problem

subspaces appears to be beneficial to the stream data modelling problems. It al-

lows identification of sub-problems and allows their further study. In addition,

this research developed novel string kernels method to overcome the difficulty

of mining string format stream data. At the same time, I have also published

3 conference papers, submitted 1 journal paper, delivered 3 technical reports

and developed 2 prototype systems.

138
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11.1.1 Fast, On-line Kernel Based Learning Algorithm

We have developed a novel on-line kernel based learning method with low

computational cost called on-line core vector machines (OCVM). This method

inherits the characteristic of original CVM whose computational complexity is

independent from the size of training samples. In addition, this method allows

us to on-line analyse the stream data in high dimensional space to be analysed

on-line which discriminates skewed class distribution.

The effectiveness of OCVM is evaluated by comparing its classification ac-

curacy and train/testing time to those of other traditional methods on 10 bench-

mark datasets.

11.1.2 Evolving Connectionist Systems on Stream Data Modeling

Evolving connectionist systems (ECOS) are modular connectionist-based sys-

tems that evolve their structure and functionality in continuous, self-organised,

on-line, adaptive, interactive way from incoming information; they can pro-

cess both data and knowledge in supervised learning and/or unsupervised way

(Kasabov & Song, 2002; Kasabov, 2002).

The proposed method HCVM learns local models from data through clus-

tering of child-classes data and associating a set of local core vectors for each

parent-class. DE-CVM is proposed and works similarly to DENFIS (see chap-

ter 3) but in kernel spaces.

The advantages of adopting evolving connectionist systems are confirmed

in two case studies: network intrusion detection and face membership authen-

tication where small number of core vectors can provide higher classification

accuracy.

11.1.3 String Format Stream Data Learning

A novel string classification method called Meta Learning String Kernels CVMs

for string format stream data mining is proposed. Since one major task for
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stream data mining is to categorise texture, this method is an important part of

an integrated stream data modelling system.

The capability of this method is verified in the experiments on several string

classification tasks.

11.2 F U T U R E D I R E C T I O N S

This section suggests some promising future directions for the development of

the methods and systems in stream data modeling.

11.2.1 Evolving Clustering Optimisation

In our further work, we would like to address the optimisation problem of the

total number of CVMs required for optimal solution. It can only be determined

using cross validation method and by investigating on measuring the density

of the MEB, and further exploiting new models based on ‘evolving clusters’.

11.2.2 On-line methods for personalised modeling

One of the issues with local and distance-based models is that they require

good definition of the problem space in order to perform properly, which is

often difficult and lacking in many problems (e.g. biological modeling) as

they often involve a large number of noisy variables. In order to apply local

or personalised models to this type of problem, an in-depth analysis of the

features is necessary.

A personalised regression model with incremental feature selection will be

proposed during next stage. This method applies incremental feature selection

on variables that were ranked using univariate analysis and results from pre-

vious studies. This set of variables was then used to define the problem space

and identify the relevant subset of data for each prediction. The global regres-

sion model is then optimised with this subset of training data to put a focus on

the test input vectors residing in problem subspace.
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11.2.3 Spatial and Temporal Processing

Compared to traditional processing, temporal contexts are particularly impor-

tant in stream processing. Giannotti, Nanni, Pinelli, and Pedreschi (2007),

presents a study on clustering trajectories of mobile objects (e.g., mobile phones).

Problems faced in this spatio-temporal data mining task concern the identifica-

tion of the proper spatial granularity level, the selection of the significant tem-

poral sub-domains, the choice of the most promising clustering method, and

the formalisation of the notion of (dis)similarity among trajectories. The au-

thors recommend a density-based approach to trajectory clustering, and stress

the importance of temporal focusing to isolate the clusters of higher quality.

Both aspects have been tested on a data set automatically generated by a syn-

thesiser of trajectory data.

Next stage we will use micro-clustering phase which is the on-line statistical

data collection algorithm. This process is not dependent on any user input

such as the time horizon or the required granularity of the clustering process.

The aim is to maintain statistics at a sufficiently high level of (temporal and

spatial) granularity so that it can be effectively used by both off-line and on-

line analysis.

11.2.4 Local modeling for String Kernels

So far the proposed meta-learning string kernel CVMs only works on global

modeling. Next stage we will aim on local modeling string kernels methods.



Appendix A
I N T RU S I O N D E T E C T I O N V I S UA L I S AT I O N S Y S T E M

Appendix A and B present two stream data visualisation systems developed

based on our proposed HCVM algorithm (Y. Chen et al., 2009), respectively.

Network Intrusion Detection visualisation System (NIDVS) is developed to

simulate the process of world-wide network intrusion detection. This visuali-

sation system can monitor the Internet data stream. Moreover, this system is

adaptive to various learning methods thus it provides the opportunity to com-

pare the effectiveness of different methods when used on the same data.

A.1 D E S I G N OV E RV I E W

NIDVS simulates the process of world-wide network intrusion detection, where

network traffic is visualized as data streaming from different source to the des-

tinations, and intrusion filtered by the HCVM algorithm (Y. Chen et al., 2009).

This NIDVS has two main functions: to monitor real-time network traffic and

to demonstrate the effectiveness of the HCVM algorithm in terms of detection

accuracy. NIDVS visualises the streaming data on a 3D world map, where net-

work traffic is traced from the source to destination city (identified by latitude

and longitude) for each data packet in transfer. A sequence of moving arrows

represent network traffic as a set of data packets where data is indicated by

green arrows, and spam/intrusion data is represented as red arrows. In NIDVS,

network traffic data is associated with a certain speed to reflect the speed vari-

ation of real network traffic. For the convenience of observation, the height of

traffic path can be modified to suit users sight.
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Figure A.1: The NIDVS visualisation demonstration shows the global data flow in the
left, and the panels and result tables are displayed on the right side of the
demo interface.

The NIDVS is shown in Figure A.1 Users can view the data flow and detec-

tion process on the left and control the view of data flow on the right side. The

statistical results (i.e. total accuracy, number of intrusions from each source)

are also shown on the right.

A.2 H A R D WA R E A N D S O F T WA R E R E Q U I R E M E N T S

The NIDVS requires Intel E8400@3.00 GHz or faster with at least 1.97 GB

RAM. The video card should have over 256 MB RAM with support on Pixel

Shader 3.0. The required software environment for NIDVS is MATLAB R2009a

with Mapping toolbox 2.7.1, on the platform of Microsoft Windows XP Pro-

fessional with Service Pack 3 or advanced. The best screen resolution is 1280

by 1024 pixels.

A.2.1 System Architectural Design

The system is structured as shown by the diagram in Figure A.2. It consists

of five basic modules, namely ‘Data Acquiring’,‘Data visualisation’, ‘Intru-

sion Detection’, ‘Spam Collection’ and ‘Spam labelling’. The input data can
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be a set of example data or real Internet data. ‘Data Acquiring’ inputs data

into the system, and ‘Data visualisation’ displays data as a set of arrows on

the screen. The data can be labelled as ‘spam/intrusion’ or ‘normal’ by the

‘HCVM Intrusion Detection’ module. If the data is classified as spam/intru-

sion, then a detailed description of the spam will be recorded by the ‘Spam

Collection’ module. The ‘Spam labelling’ module is in charge of presenting

data as coloured arrows. Spam/intrusion data is presented with red colour, nor-

mal data with green colour. As seen in Figure A.2, the system runs in a loop

that terminates when no data is input.

Data Acquire

Input data

Intrusion Collection
& Report

Data
Visualization

New Data
Coming?

Intrusion
Detection

Label Attack
Message

Terminate

No

Yes

Figure A.2: The NIDVS system design diagram.
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A.3 D E TA I L E D D E S C R I P T I O N O F C O M P O N E N T S

The NIDVS consists of two components. The first component performs classi-

fication using the HCVM method. The second component visualizes data flow

and spam detection on screen.

A.3.1 HCVM in the NIDVS

For labelling network intrusions as they state hierarchical multi-label structure,

a high-speed hierarchical multi-label classification (HMC) algorithm, called

hierarchical minimum enclosing balls (HCVM), is developed. We model the

multi-label hierarchy into a data Hyper-Sphere constructed by numbers of

MEBs. The MEBs separate, encompass and overlap with each other and form

a tree structure representing the encoded multi-label hierarchy. When provided

with an unlabelled sample, the HCVM seeks an MEB enclosing the sample,

and multi-labels the sample according to the MEBs position in the hierarchy.

The HCVM has been tested on a Gaussian synthetic data, the RCV1-V2 text

data, and the KDD99 intrusion detection dataset for multi-label classification.

A.3.2 visualisation

The visualisation system provides a user interface for both novice and ad-

vanced users. It shows the flow of data between cities on the globe. During

the data transfer, there is a spam/intrusion detection system processing data

on each path. The spam/intrusion data will be detected and labelled with dif-

ferent colours. This visualises NID in real time, at the same time it tests the

performance of the NID algorithm (i.e. the HCVM).

Users can replace the testing data with their own data. They simply need to

replace the data files stored in ‘root/Temp Data/or data’ with their own data

files. The system will automatically allocate IPs, cities and network traffic

speed to each data item. The allocation also selects data randomly from those

data files and will never repeat them. Note that the input data is required to

be formatted as a data matrix where the last column contains the class label.
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The default NID method is the HCVM, although users can also change the

detection algorithm. For example, users can choose to use SVM instead of

HCVM for NID.

A.4 U S E R I N T E R FAC E D E S I G N

A.4.1 Description of the User Interface

The user interface consists of four components: Network Traffic visualisation,

The NIDVS control panel, Network Intrusion Detection Report, NID Accuracy

Tracking and they are described below.

Objects and Actions

1. Network Traffic visualisation

Figure A.3: The network traffic visualisation of NIDVS, in which the green arrows
represent normal data and red arrows indicate spam/instrusion.

Figure A.3 depicts a network traffic visualisation of the NIDVS, where

a sequence of arrows in colours represent a network data stream flowing

from the source to target city. The green or red arrows represent normal

or intrusion/spam data packet, respectively.



A.4 U S E R I N T E R FAC E D E S I G N 147

Figure A.4: The NIDVS control panel.

2. Control Panel

The user is able to change the view of visualisation by using NIDVS con-

trol panel shown in Figure A.4. The ‘Radius of Navigation Path’ is the

parameter controlling the height of the network traffic path. The ‘Num-

ber of Arrows’ affects the size of arrows. For a fixed source and target

network traffic, a larger number of arrows result in relatively smaller size

of the arrows.

The four buttons control the NIDVS system: ‘Start’ initiates the visuali-

sation demo, ‘Pause/Continue’ suspends or proceeds with the visualisa-

tion of data flow. ‘Terminate’ stops the visualisation demonstration and

reports the present detected spam/intrusion list as shown in Figure A.5a

The spam/intrusion list is stored meanwhile in a ‘txt’ file named ‘spam

report.txt’, recording the details of every spam, its source and target city,

and the time when the spam was detected. Button‘Show results’ displays

a summary of NID performance in a pop-up window shown in Figure

A.5b. This summarises the performance of the used NID algorithm, the

number of normal data samples, spam sample, the accuracy of normal

data detection (i.e. truth negative accuracy), the accuracy of spam intru-

sion data (i.e. truth positive accuracy) and the general accuracy.

3. Network Intrusion Detection Report

Figure A.6 depicts the statistical report of the current status of NID,

which includes information about the number of processed data sam-

ples, the source and target city of the data package (reflected by the IP

address), and the number of samples that are labelled as intrusions.
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(a) The display of Spam list file (b) The display of NID performance
report

Figure A.5: Detection results and accuracy.

Figure A.6: NID report including information about the source and target city of data
package, the number of data packages passed by, and the number of
spam/intrusion detected.

4. NID Accuracy Tracking

Figure A.7 presents a real time intrusion detection report in graphical

form. The performance of intrusion detection by HCVM varies over

time. The final detection accuracy is fixed until all data runs out.
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Figure A.7: Graph for real time intrusion detection report, where the x − axis repre-
sents the amount of data processed, and y − axis represents the detection
accuracy in presents



Appendix B
H C V M P ROTOT Y P E S Y S T E M

The HCVM prototype system demonstrates the learning progress of HCVM

which gives a better understanding of on-line learning process. This system

also provides the comparison of globe modelling and local modelling. User

can evaluate the advantage of using local modelling easily from the visualisa-

tion.

B.1 D E S I G N OV E RV I E W

The HCVM Prototype System simulates the process of learning on-line stream

data. It uses 10% of KDD’99 training data. This prototype system demon-

strates the MEB updating progress for each cluster as 3D balls and 2D bound-

ary image. The core vectors for each MEB are represented as small dots. For

convenience of observation, the point of observation can be changed to suit the

user.

The interface of the HCVM Prototype System is shown in Figure B.1. Users

are able to observe the learning progress on the left. The control panel is on

right and details for each MEB are shown just under the control panel.

B.2 H A R D WA R E A N D S O F T WA R E R E Q U I R E M E N T S

The NIDVS requires Intel E8400@3.00 GHz or faster with at least 1.97 GB

RAM. The video card should have over 256 MB RAM with support on Pixel

Shader 3.0. The required software environment for NIDVS is: MATLAB

150
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Figure B.1: The HCVM Prototype System.

R2009a on the platform of Microsoft Windows XP Professional with Service

Pack 3 or advanced. The best screen resolution is 1280 by 1024 pixels.

B.3 U S E R I N T E R FAC E D E S I G N

B.3.1 Description of the User Interface

The user interface consists of four components: MEBs visualisation, control

panel, MEB information list table as explained below.

B.3.2 Objects and Actions

1. MEBs visualisation

Figure B.2 depicts a dynamic visualisation of MEB, its core vectors and

the corresponding boundary for each cluster. While 3D balls in different

colours represent a cluster for a sub-class, the dots in the balls represent

the core vectors. Boundaries shown in the right bottom corner are formed

by the same-colour core vectors. The parent class boundary is in black

colour.

2. Control Panel
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Figure B.2: MEBs, core vectors and the corresponding boundaries visualisation.

Figure B.3: The control panel.

The user is able to select different learning modes by using the control

panel shown in Figure B.3. Global mode learning can be demonstrated

if ‘Probe’ is selected. You can compare the effectiveness of global mode

learning with local mode by selecting ‘Probe sub-type’. The theory of

local mode learning can be seen if ‘All Types’ is selected.

The three buttons control the prototype system. ‘Start’ initiates the visu-

alisation demo. ‘Pause/continue’ suspends or proceeds with the visuali-

sation of data flow. ‘Terminate’ stops the visualisation demonstration.

3. MEB information list table

Figure B.4 depicts the dynamical report of the details of each MEB

shown in the visualisation area, which includes information about the

name of each class, current ball centre and radius corresponding to the

same colour of MEB.



B.3 U S E R I N T E R FAC E D E S I G N 153

Figure B.4: MEB information list table
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