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Abstract

Within the standard affine stochastic volatility framework we price options on leveraged

and inverse leveraged ETFs using Fourier transform. We perform a calibration analysis for a

given day on options written on leveraged and inverse leveraged ETFs tracking the S&P500

that is the most actively traded ETF derivatives. We analyze the calibrated parameters and

assess the ability of the Heston model to price consistently all the options. Overall we find

that the Heston model allows a good fit of the smiles and that the different option sets lead

to consistent underlying spot distributions.
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1 Introduction

The LETFs are designed to track the multiple daily returns of an underlying asset. Certainly,

the most traded LETFs are those tracking the S&P500. For this index a large range of multiples

is available. From a multiple of +1, whose ticker is SPY, that tracks the S&P500 and started

to be traded in 1993 to multiple as small as -3 or as large as +3, LETFs related to this index

constitute an active market. It was further enhanced by the introduction around 2010 of options

on these LETFs. In the interesting work of Zhang (2010), the author develops a first analysis of

option prices on these LETFs. Developing both option pricing formulas as well as an empirical

analysis the author provides the first entry point on this important subject.

Our aim is to develop an empirical analysis of options written on LETFs related to the S&P500

index. Using a complete set of option prices on LETFs for multiples ranging from -3 to 3 we

calibrate the Heston (1993) model. We analyze the pricing errors as well as the parameters

provided by the different calibrations. It allows us to assess to which extent the Heston model

can provide an unifying framework for all the derivatives. We find that the model performs

reasonably well although, as expected, options on LETF with a multiple of -3 are more difficult

to handle.

The paper is organized is as follows. We present in the first section the analytical framework for

pricing options on LETF. A brief data description analysis is given in the second section. The

third part of the paper is devoted to empirical results. All graphs and tables are relegated to

the appendix.

2 The Model and Derivative Pricing

2.1 The Underlying Assets

The main asset in this work is denoted by (st)t≥0 and is an exchange traded fund, that we may

qualify as a stock, and its dynamic is given by the set of stochastic differential equations (SDE

in the sequel) under the risk neutral probability

dst = (r − q)stdt+ st
√
vtdw

1
t , (1)

dvt = κ(θ − vt)dt+ σ
√
vtdw

2
t , (2)

with (w1
t , w

2
t )t≥0 a two-dimensional Brownian motion with correlation structure d〈w1

. , w
2
. 〉t =

ρdt. We will denote by E[.] the expectation under the risk neutral probability Q. This model is

the classical Heston model and belongs to the affine class. It means that the moment generating

function of the log-stock ln st, denoted by yt, and the integrated volatility is known in closed

form. Indeed, this function is given by the following proposition.
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Proposition 2.1 Let (yt, vt) be a vector with yt = ln st where (st, vt)t≥0 is given by Eq.(1) and
Eq.(2), then its moment generating function is given by:

G(t, z1, z2, y0, v0) = E[ez1yt+z2
∫ t
0 vudu] = ez1y0+a(t)+b(t)v0 (3)

where

a(t) =
2κθ

σ2

(
tλ− − ln

(
λ+ − λ−e−

√
∆t

λ+ − λ−

))
+ (r − q)z1t, (4)

b(t) = (z2
1 − z1 + 2z2)

1− e−
√

∆t

λ+ − λ−e−
√

∆t
, (5)

and

λ± =
(κ− z1ρσ)±

√
∆

2
, (6)

∆ = (κ− z1ρσ)2 − σ2(z2
1 − z1 + 2z2). (7)

The exchange traded fund or stock being defined we denote by (lt)t≥0 a leveraged exchange

traded fund that provides a multiple, denoted by m, of the daily return of (st)t≥0. It was shown

in Avellaneda and Zhang (2010) that these two assets are related through the relation

lt = l0

(
st
s0

)m
e

(
m−m2

2

) ∫ t
0 vudu+(1−m)rt

. (8)

The multiple m is also call the leverage factor. Obviously, if m = 1 then lt = st. For a connection

between the leveraged asset and the CPPI strategy proposed in Black and Perold (1992), see

Bertrand and Prigent (2003). Following Avellaneda and Zhang (2010) other papers focused on

this relation, see for example Haugh (2011) and Jarrow (2010). Taking the logarithm of Eq.(8)

we can rewrite this equation as

ln lt − ln l0 = m(ln st − ln s0) +
m−m2

2

∫ t

0
vudu+ (1−m)rt. (9)

This equation illustrates better the fact that lt provides a multiple of the stock return but it

also underlines the presence of a bias due to the volatility. As m ∈ {−3,−2,−1, 2, 3} then the

volatility contribution will be negative, thus whatever the sign of m is it will reduce the return

of the leveraged exchanged traded fund compared to the stock return.

Both options on (st)t≥0 and (lt)t≥0 are available, and it is therefore of interest to focus on the

pricing of options on these assets.

3 Option Pricing on LETF

The pricing of options on leveraged ETF was firstly presented in Zhang (2010) for the Heston

model. A slightly different approach was proposed by Ahn et al. (2012) for the Heston model

3



with jumps on the stock (a very judicious remark is made in this paper regarding option pricing

that simplifies the initial exposition of Zhang (2010)). Other papers focusing on option pricing

are Deng et al. (2014) for the Heston model; Leung and Sircar (2014) where the stock follows

a non affine dynamic and option price approximations are given using expansions based on fast

mean reverting decomposition of the volatility process. Let us briefly present the pricing of these

products for the sake of completeness.

Consider a European call option on a leveraged exchange traded fund using standard argument,

then we have

c(t, l0, v0) = e−rtE [(lt −K)+]

= e−rtE
[(
l0

(
st
s0

)m
e

(
m−m2

2

) ∫ t
0 vudu+(1−m)rt −K

)
+

]
= e−rtE

[
(l0e

xt −K)+

]
= e−rt

∫ +∞

−∞
(l0e

x −K)+ f(x)dx, (10)

where f(x) is the density of xt = m ln
(
st
s0

)
+
(
m−m2

2

) ∫ t
0 vudu + (1 − m)rt. We denote by

ϕ(t, z) = E
[
eizxt

]
the characteristic function of xt, and we have

c(t, l0, v0) =
e−rt

2π

∫ +∞+iγ

−∞+iγ
ϕ(t, z)

∫ ∞
−∞

(l0e
x −K)+ e

−izxdxdz

=
e−rt

2π

∫ +∞+iγ

−∞+iγ
ϕ(t, z)

K1−izliz0
iz(iz − 1)

dz,

where γ = =(z) < −1. Letting k0 = ln
(
K
l0

)
, the above equation can be simplified to

c(t, l0, v0) =
Ke−rt

π

∫ +∞+iγ

0+iγ
e−izk0

ϕ(t, z)

iz(iz − 1)
dz. (11)

The characteristic function of (xt)t≥0 in Eq.(11) is linked to the moment generating function

Eq.(3) as follows

ϕ(t, z) = E
[
eizxt

]
= E

[
e
iz(m ln

st
s0

+m−m2

2

∫ t
0 vudu+(1−m)rt)

]
= ei(1−m)zrtG

(
t, izm, iz

m−m2

2
, 0, v0

)
.

If we wish to relax the assumption on =(z) then we can firstly consider a put minus a cash

position. The Fourier transform of this function is∫ +∞

−∞

(
(K − l0ex)+ −K

)
e−izxdx =

Ke
−iz ln K

l0

iz(iz − 1)
.
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It implies that the constraint =(z) ∈ [−1, 0] and the call option price can be obtained by using

the call-put parity relation. Numerically, the option pricing is performed using the Fast Fourier

Transform following the exposition made by Carr and Madan (1999).

4 Data Description

We have a rich dataset which contains prices of options on a sextet of LETFs tracking the

daily performance (or a multiple) of the S&P 500 index. The underlying LETFs are issued by

ProShare company, which is a division of ProFunds Group and offers many different ETFs in

terms of asset class besides the equity LETFs targeting the S&P 500. The detailed information

of the LETFs is reported in the following table

[ Insert Table I here ]

For example, the SSO whose leverage ratio is +2 is designed to track twice the daily return

of S&P 500 Index, before fees and expense charged. The target returns are achieved by daily

rebalancing. SPY (+1) is actually an unleveraged ETF but it can be treated as a LETF with

leverage ratio 1 here for the purpose of consistency.

We report in Figure 1 the evolution of the LETF for the period from 2011/06/01 to 2012/06/01

where the curves are consistent with the leverage ratios. Regarding the options we restrict the

analysis to the day 2011/10/24 and to a certain range of option moneyness that increases as the

absolute value of the leverage ratio increases to be consistent with the relation Eq.(9). Table II

contains the number of options, the smallest and the largest maturity available as well as the

moneyness range for each LETF.

[ Insert Figure 1 here ]

[ Insert Table II here ]

Not surprisingly options are more numerous for the leverage ratio of 1, that is to say, the

exchange traded fund SPY that tracks the S&P 500. More options are available for positive

leverage ratios although the results depend on the range of moneyness selected. Note that

compared to Ahn et al. (2012) or Leung and Sircar (2014) our range of moneyness is quite large

which translates into smiles that display more curvature (see the figures in Leung and Sircar

(2014) for comparison). Also, let us mention the fact that we also consider the leverage ETF

SH, with ratio -1, that is not considered in both Ahn et al. (2012) and Leung and Sircar (2014).
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[ Insert Figure 2 here ]

[ Insert Figure 3 here ]

[ Insert Figure 4 here ]

[ Insert Figure 5 here ]

5 Numerical Results

5.1 Implementation Strategy

For each LETF (and leverage ratio m) we calibrate the model by solving the following optimi-

sation problem:

min
v0,κ,θ,σ,ρ

1

N

N∑
i

(
σmarketimp (ti,Ki,m)− σmodelimp (ti,Ki,m)

)2
(12)

where σmarketimp (ti,Ki,m) is the Black-Scholes implied volatility for the option with maturity ti,

strike Ki and leverage ratio m. N stands for the number of options available and will vary across

the different leverage ratios. Similarly, σmodelimp is the Black-Scholes model implied volatility. We

restrict the sum in Eq.(12) to in the money options. Although the calibration is performed using

the norm in volatility we will also report the option pricing error for a norm expressed in price

and it is given by

min
v0,κ,θ,σ,ρ

1

N

N∑
i

(
cmarket(ti,Ki,m)− cmodel(ti,Ki,m)

)2
(13)

where cmarket(ti,Ki,m) is the market price normalized by the underlying spot value of a call/put

with maturity ti, strike Ki and leverage ration m.

5.2 Empirical Results

Firstly, we analyze the calibration performance for each LETF and in Table III both the esti-

mated parameters as well as the calibration errors in volatility and price are reported. All the

LETFs lead to a negative sign for the spot-volatility correlation, which is consistent with the

leverage effect, but SH (-1) clearly displays a higher value (or lower value if we consider the

absolute value of the correlation coefficient) nearly half of the one obtained for the SPY (+1).

Regarding the pair κ and θ, UPRO (+3) leads to rather small values (for both parameters) and

contrast with the other LETFs. It might be more relevant to consider the ratio κ
σ2 as it is this

quantity that appears in the asymptotic distribution of the volatility1. Using the values of the

1The volatility process used in the Heston model has an asymptotic distribution that depends on κ
σ2 and κθ

σ2 .
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table we get 14.3, 2.9, 3.1, 0.8, 2.1 and 2.3 for the different LETFs (the values are reported

following the order of the table). Theses values suggest that SPXU (-3) has the most different

distribution. The calibration errors expressed using the implied volatility for the norm (i.e.

Eq.(12)) are in line with those obtained in Da Fonseca and Grasselli (2011) for SPY (+1) and

SH (-1) but deteriorate as the leverage ratio increases in absolute value terms. This might due

to the larger moneyness range involved in the calibration procedure turning the fitting of the

smile more difficult.

[ Insert Table III here ]

In order to assess the ability of information content extracted from options on a LETF to explain

option prices written on another LETF we perform a repricing exercise. More precisely, for a

given LEFT option set we report the ratio of the volatility error value obtained when this set

is priced using parameters calibrated on another LETF option set and the volatility error value

obtained when this the model is calibrated on this set. We also compute these ratios for the

price error norm. The results are reported in Table IV for the first norm and in Table V for

the second norm. The smaller these ratios are, the more the stock distributions implied by the

option prices are similar. The smiles can therefore be qualified as consistent.

[ Insert Table IV here ]

[ Insert Table V here ]

It seems that SDS (-2) is the option set that leads to the largest repricing errors as the values

are large. However, when the SDS (+2) parameters are used to reprice the other LETF options,

whatever the LETF selected, the repricing is quite accurate. The parameters of SPXU (-3) lead

to large repricing errors while the options on this LETF can be fairly correctly priced. As a

result, we can conclude that options on LETF with negative ratios are priced with larger errors.

Interestingly, the SPY (+1) do not lead to the lowest repricing errors although we could have

expected such result.

6 Conclusion

In this work we propose a calibration analysis of options on leveraged exchange traded fund that

tracks the S&P500. More precisely, we consider the LETFs, namely SPXU, SDS, SH, SPY, SSO

and UPRO whose daily returns are multiple of the daily S&P500 returns with the multiple given

by -3, -2, -1, 1, 2 and 3, respectively. Using the Heston (1993) model and a Fourier transform

algorithm we price these options efficiently so that a calibration can be easily performed. For a

given day, 2011/11/24, we carry out different calibrations. We found that calibration errors are

larger for options written on LETFs with larger leverage ratios (in absolute value term). The
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SDS(-2) model parameters lead to a rather good repricing error while the SPY(+1), which is

the LETF with the largest number of options, does not lead to the smallest repricing error.

Or work suggests several extensions. First, we should consider rolling the calibration to analyze

the stability of the calibrated parameters. Second, we should develop option price asymptotic

expansions as it provides useful tools to simplify the calibration procedure, among this line see

the first results in Leung and Sircar (2014). Thirdly, similar analysis should be performed on

other options on LETFs. We leave these problems for future research.
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A Appendix

Table I: LETF Ticker and Ratio
Fund Name Ticker Name Leverage Ratio

Proshares UltraPro Short S&P 500 ETF SPXU -3

Proshares UltraShort S&P 500 ETF SDS -2

Proshares Short S&P 500 ETF SH -1

SPDR S&P 500 ETF SPY +1

Proshares Ultra S&P 500 ETF SSO +2

Proshares UltraPro S&P 500 ETF UPRO +3

Note. LETFs tracking the S&P 500, complete name as well as the ticker name along with the associated leverage

ratio.

Table II: Options Properties

Number opt. Smallest mat. Largest mat. Moneyness range

SPXU 135 0.071 1.241 [0.5, 2.5]

SDS 144 0.071 1.241 [0.5, 2.0]

SH 126 0.071 1.241 [0.8, 1.5]

SPY 722 0.071 1.241 [0.8, 1.3]

SSO 211 0.071 1.241 [0.5, 1.4]

UPRO 181 0.071 0.819 [0.3, 1.6]

Note. Options of LETF properties for the day 2011/10/24.

Table III: Calibration Results
v0 κ θ σ ρ ErrorVol Error Price

SPXU 0.0253 2.6308 0.1438 0.4282 -0.664 3.949× 10−2 6.093× 10−4

SDS 0.0823 8.3064 0.0781 1.6757 -0.535 2.108× 10−3 3.891× 10−5

SH 0.0708 2.7108 0.0948 0.9343 -0.320 5.835× 10−4 5.152× 10−6

SPY 0.0854 2.4816 0.1345 1.6613 -0.739 4.654× 10−4 2.13× 10−6

SSO 0.0698 3.7320 0.0983 1.3296 -0.638 2.505× 10−3 3.697× 10−5

UPRO 0.0612 0.5308 0.1549 0.4747 -0.649 3.765× 10−3 3.946× 10−5

Note. Calibrated parameters for each LETF for the day 2011/10/24. ”ErrorVol” reports the error as given

by formula Eq.(12) while ”Error Price” gives the value obtained using Eq.(13). Notice that option prices are

normalized by the corresponding underlying spot value so the pricing errors can be compared.
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Table IV: Repricing Errors - Volatility Norm

SPXU SDS SH SPY SSO UPRO

SPXU 1.00 2.55 1.24 5.31 2.86 1.65

SDS 20.64 1.00 5.97 29.85 16.08 10.92

SH 5.46 1.86 1.00 9.57 2.86 1.76

SPY 9.20 4.67 6.78 1.00 3.71 5.13

SSO 7.91 0.97 2.60 1.64 1.00 3.13

UPRO 4.01 1.94 1.82 3.25 1.74 1.00

Note. For a given set of calibrated parameters obtained for a given LETF (in the top row), options written on

other LETF (given in the left column) are priced and the ratio of error in volatility Eq.(12) is reported.

Table V: Repricing Errors - Price Norm

SPXU SDS SH SPY SSO UPRO

SPXU 1.00 23.05 10.88 37.69 3885.89 13.15

SDS 9.45 1.00 1.60 314.09 159.44 2.66

SH 10.56 1.31 1.00 30.86 2.87 1.79

SPY 0.00 0.00 0.00 1.00 0.00 0.00

SSO 8.55 0.71 1.83 2.74 1.00 1.26

UPRO 11.62 1.37 2.79 2.21 0.84 1.00

Note. For a given set of calibrated parameters obtained for a given LETF, options written on other LETF are

priced and the ratio of error in price Eq.(13) is reported.

Figure 1: LETF Prices
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Note. Times series for LETF from 2011/06/01 to 2012/06/01.
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Figure 2: Option Smile for SDS(-2)
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Note. Smile for the maturity 0.14 for the LETF SDS(-2) for the day 2011/10/24.

Figure 3: Option Smile for SH(-1)
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Note. Smile for the maturity 0.14 for the LETF SH(-1) for the day 2011/10/24.
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Figure 4: Option Smile for SPY(+1)
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Note. Smile for the maturity 0.14 for the LETF SPY(+1) for the day 2011/10/24.

Figure 5: Option Smile for SSO(+2)
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Note. Smile for the maturity 0.14 for the LETF SSO(+2) for the day 2011/10/24.
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