
Spatio-/Spectro-Temporal

Pattern Recognition using

Evolving Probabilistic Spiking

Neural Networks

Kshitij Dhoble

A thesis submitted to

The Auckland University of Technology

in fulfillment of the requirements

for the degree of

Doctor of Philosophy (PhD)

2013

Primary Supervisor: Prof. Nikola Kasabov

Secondary Supervisor: Prof. Giacomo Indiveri

Knowledge Engineering & Discovery Research Institute

Faculty of Design and Creative Technologies

Auckland University of Technology

Auckland, New Zealand

“I hereby declare that this submission is my own work and that,

to the best of my knowledge and belief, it contains no material

previously published or written by another person (except where

explicitly defined in the acknowledgements), nor material which

to a substantial extent has been submitted for the award of any

other degree or diploma of a university or other institution of

higher learning.“

Kshitij Dhoble

ii

This thesis is dedicated to my parents

Thank you for your unconditional love and support through all my walks of life.

For inspiring me to be innovative, for motivating me to try new things, for

encouraging me to challenge the status quo, to make new discoveries.

iii

Acknowledgments

I have the pleasure to acknowledge some of the many people who have

inspired, supported, and educated me over the past three years. First and

foremost, I am very grateful to my primary supervisor Prof. Nikola Kasabov

who gave me the opportunity to study PhD degree under his supervision. I

wish to express my sincere appreciation to my secondary supervisor Dr.

Giacomo Indiveri who has provided me with valuable insight into the

neuromorphic hardware; his student Fabio Stefanini for the discussions on

artificial silicon retina. I would also like to thank the past and present members

of KEDRI at the Auckland University of Technology, who provided me with an

inquisitive research environment. I am especially grateful to Nuttapod Nuntalid

with whom I was able to implement many methods collaboratively along with

productive discussions about spiking neural networks; to Stefan Schlibes for his

goofy jokes; to Russel Pears and Ammar Mohhemed for their insights and

discussions relating to machine learning; to Harya Widiputra, Haza Nuzly,

Raphael Hu and Gary Chen for their discussions on how not to do a PhD

degree. Also, many thanks to Diana Kassabova for proofreading my thesis.

iv

Special thanks also to Joyce DMello, the soul of Knowledge Engineering and

Discovery Research Institute. I am very indebted to her for the encouraging

words and her guidance throughout my studies which are highly appreciated.

Many thanks to Hien Nguyen, for love, support and the delicious Vietnamese

dishes. Last but not least, I am delighted to thank my parents for their

tremendous support throughout my entire education. Their insight, wisdom and

emotional support have been invaluable for me. My research has been carried

out with the partial financial support of AUT-KEDRI PhD Scholarship.

v

Contents

Abstract xxii

1 Introduction 1

1.1 Rationale and Significance of the Study 2

1.2 Definition and Motivation . 3

1.3 Research Objectives . 5

1.4 Specific Research Questions . 6

1.5 Scientific Contribution . 7

1.6 Publications . 9

1.7 Structure of the thesis . 10

1.8 Summary . 14

2 Why use Spiking Neural Networks for SSTD? 15

2.1 What is SSTD and why it is difficult to process it? 16

2.2 SSTD Processing Approaches . 17

2.3 A brief History of Neural Networks 18

vi

2.4 Spiking Neural Networks . 25

2.5 Neuronal Models . 28

2.6 Methods for encoding information into spikes 42

2.7 Summary . 49

3 Spiking Neural Network Reservoirs: A review 51

3.1 Introduction to Reservoir Computing 52

3.2 Types of Reservoirs . 53

3.3 Summary . 62

4 A novel evolving probabilistic SNN reservoir architecture

for SSTD 63

4.1 Aim of the study . 64

4.2 The proposed epSNNr Architecture 66

4.3 Probabilistic neuronal models in the epSNNr as extensions of the

LIF model . 68

4.4 epSNNr Pilot Study: Synthetic Video Dataset 71

4.5 Design of the experiment . 72

4.6 epSNNr parameter settings . 75

4.7 Experimental results and discussions 76

4.8 Summary . 78

5 Address Event Representation (AER): a method and its im-

plementation 79

5.1 Artificial Silicon Retina - Neuromorphic Hardware utilizing AER . 81

5.2 Artificial Silicon Retina - Software Simulator utilizing AER 84

vii

5.3 Summary . 90

6 Dynamic Evolving Spiking Neural Network (deSNN): a new

generic method 91

6.1 Evolving Spiking Neural Networks (eSNN) 92

6.2 The proposed Dynamic Evolving Spiking Neural Network (deSNN) 98

6.3 deSNN Examples . 104

6.4 Discussion . 109

6.5 Summary . 110

7 AER based Simple Motion Recognition with the deSNN

method 111

7.1 Introduction . 112

7.2 Experimental Setting and Results for deSNN 114

7.3 Summary . 118

8 A Novel epSNNr Architecture for Visual Data (epSNNA-v) 120

8.1 A Novel Evolving Probabilistic Spiking Neural Network Architec-

ture for spatio-temporal data (epSNNA-v) 121

8.2 Data Acquisition Module . 123

8.3 Transformation Module . 123

8.4 Learning Module . 125

8.5 Summary . 126

9 Human Action Recognition with epSNNA-v 127

9.1 Case Study: AER based Human Action Recognition 128

9.2 Experimental settings and results for deSNN 129

viii

9.3 Experimental settings and results for deSNNr and learning deSNNr 134

9.4 Summary . 136

10 A Novel eSNN Architecture for Spectro-Temporal Data

(epSNNA-s) 138

10.1 A Novel Evolving Spiking Neural Network Architecture for

Spectro-Temporal Data (epSNNA-s) 139

10.2 Data Acquisition Module . 139

10.3 Transformation Module . 145

10.4 Learning Module . 146

10.5 Summary . 147

11 Spectro-Temporal Pattern Recognition using the epSNNA-s148

11.1 Spectro-Temporal Dataset . 150

11.2 Case Study: Heart Sound Dataset 154

11.3 Case Study: Isolated Spoken Words Dataset 160

11.4 Summary . 165

12 Conclusion and future directions 167

12.1 Introduction . 167

12.2 Summary of achievements . 168

12.3 Future directions . 174

References . 179

A Appendix: Algorithms 196

A.1 KEDRI’s AER Software Simulator 196

A.2 Cochleagram-based Spike Encoding 197

ix

A.3 deSNN Algorithm . 198

A.4 Reservoir . 201

x

List of Figures

1.5.1 Architectures and methods developed in this study and datasets

used for evaluating their performance. 8

2.3.1 Bain’s summation threshold network. It illustrates the way in

which the connections in a neural network can channel activation

in different directions. The fiber a branches into two a′, a′; the

fiber b into b′, b′; and c branches into c′, c′. One of the branches

a′ of a unites with one of the branches b′ of b, in a cell X; b′ and

c′ unite in Y; a′, c′ in Z. Adapted from Wilkes and Wade (1997). 19

xi

2.3.2 Hodgkin-Huxley type models represent the biophysical charac-

teristic of cell membranes. The lipid bilayer is represented as

a capacitance (Cm). Voltage-gated and leak ion channels are

represented by nonlinear (gn) and linear (gL) conductances, re-

spectively. The electrochemical gradients driving the flow of ions

are represented by batteries (E), and ion pumps and exchangers

are represented by current sources (Ip). Adapted from Hodgkin

and Huxley (1952c). 21

2.4.1 Schematics of Biological Neuron illustrating signal propagation

and synapsis. Taken from Wikipedia (2010) 26

2.5.1 Action potential schematics: an ideal action potential shows its

various phases as the action potential passes a point on a cell

membrane. Adapted from Wikipedia (2010). 31

2.5.2 The figure shows the probabilistic parameters used to extend the

LIF model. This probabilistic neuron model was introduced by

Kasabov (2010b). 41

2.6.1 This conceptual diagram illustrates the difference between the

Frame-based (top) and Spike-based (bottom) vision sensor, data

representation and processing system. Depending on the com-

putational model, the Frame-based method may involve compu-

tationally intensive pre-processing steps such as feature selection

and spike encoding, thereby rendering the Spike-based method

faster and computationally less intensive. 46

xii

2.6.2 These two plots show the idealized pixel encoding and reconstruc-

tion of video data. The ON and OFF events represent significant

changes in log I. It can be seen that changes greater than the

threshold generate events, while changes that are smaller than

the threshold are still represented internally in the differentiator.

Adapted from Lichtsteiner and Delbrück (2005). 47

4.2.1 A generic epSNNr architecture for spatio-temporal data modeling

and pattern recognition. 67

4.4.1 The figure illustrates the synthetic video dataset. There are four

classes corresponding to the 4 different directions of the object

movement where each class consists of five samples. The arrows

represent the direction in which the objects are moving. 71

4.5.1 The figure shows the raster plots and PSTH of 4 typical states for

the 4 classes produced by Step-wise Noisy Threshold (SNT). The

top row shows the raster plot of the neural response of epSNNr

with SNT probabilistic neurons recorded in 64 repetitions. The

bottom row presents the corresponding smoothed PSTH for each

raster plot. Each column corresponds to 4 different classes as

indicated by the plot labels. 73

5.1.1 The figure shows the artificial silicon retina (DVS 128). This

neuromorphic hardware was used to acquire data for experiments

in our study. 81

5.1.2 The figure shows the two different lighting conditions under

which the AER data was recorded for the Human Action Recog-

nition Dataset using Artificial Silicon Retina (DVS128). 82

xiii

5.1.3 The figure shows the noise captured by the Artificial Silicon

Retina when focused on fluorescent light source such as a tube

light. The photo on the left shows the actual image and the plot

on the right shows the AER snapshot. 83

5.1.4 The figure shows the raster plot, i.e. the spikes that represent

noise captured by the Artificial Silicon Retina when focused on

fluorescent light source such as a tube light. The seven different

spike colors represent noise from seven samples. The plot on the

left is the raster plot for noise under fluorescent light conditions

and figure on the right is the raster plot for noise under natural

light conditions. 83

5.1.5 This bar graph compares the noise level from AER data acquired

under fluorescent (left) and natural (right) light conditions. . . . 84

5.2.1 (a) shows the disparity map of a video sample from KTH

dataset (Schuldt, Laptev, & Caputo, 2004). (b) shows the Ad-

dress Event Representation (AER) generated by our simulator

for Video Sample shown in (a). Here the red and blue color

represent the On and Off events respectively. 85

5.2.2 These figure shows the idealized pixel encoding and reconstruc-

tion of video data. The ON and OFF events represent significant

changes in log I. It can be seen that the changes are greater than

the threshold generated events. Adapted from (Lichtsteiner &

Delbrück, 2005). 86

xiv

5.2.3 The figure shows the On and Off spike events for three human

actions, namely a) Boxing, b) Hand Clapping and c) Jogging.

It can be seen that the On and Off event map for each of the

actions are quite similar especially for actions such as a) Boxing

and b) Jogging. All the above three actions are performed by

subject 1. At this stage we notice that the AER spike encoding

for each of the actions are very much distinctive. 87

5.2.4 The figure shows that similar actions such as Walking, Running

and Jogging produce spike events that are visually alike. In this

figure we have only shown ’On’ spike event map for 4 different

subjects for easy comparison. It can be observed that different

subjects performing the same action produce characteristically

different spiking events. 88

5.2.5 The above figure shows the spiking events for four actions,

namely boxing, walking, running and hand clapping performed

by the same subject. For each of the four activities the corre-

sponding AER spike events, spikes from LSM using LIF neuron

model and spikes from LSM using ST neuron model are pre-

sented. The x-axis represents time in milliseconds for LSM and

time in seconds for AER. The y-axis represents the number of

neurons . 89

6.1.1 Integrate-and-fire neuron with RO learning 95

6.1.2 eSNN for classification using population coding of inputs. Taken

from (S. Wysoski, Benuskova, & Kasabov, 2010) 96

xv

6.2.1 An illustration of the STDP learning rule. Taken from (S. Song,

Miller, Abbott, et al., 2000) . 102

6.2.2 An example of using SDSP neurons. Taken from (Brader, Senn,

& Fusi, 2007) . 102

6.3.1 A simple example to illustrate the main principle of the deSNN

learning algorithm. 105

6.3.2 This figure illustrates example 2 where two spatio-temporal pat-

terns are to be learned by two output neurons. 107

6.3.3 This figure shows the initial and final synaptic weights for pat-

terns 1 and 2 for the first four neurons. The difference in final

weights for the two spatio-temporal pattern can be clearly seen. 107

7.2.1 Raster plots for the AER encoded samples from the Crash and

No crash classes. It can be seen that there is a similarity between

the spike trains of Crash class, sample 1 (left figure) & No crash

class, sample 2 (right figure). 115

7.2.2 The figure shows the spike raster plot, weights change and the

membrane potential (for neuron 0) for the eSNNs that utilizes

rank order without the SDSP dynamics 115

7.2.3 This figure shows the spike raster plot, weights change and the

membrane potential (mV) for the deSNNs. From the weights and

the membrane potential graph (of neuron 0) it can be seen that

due to the SDSP, the synaptic weights adjustments are faster

compared to Fig. 7.2.2, for the sample from the same class . . . 117

xvi

8.1.1 A novel generic architecture is an evolving probabilistic spiking

neural network architecture for spatio-temporal pattern recogni-

tion (epSNNA-v). It consists of three mail modules. 122

9.1.1 This figure shows the raster plots of two samples, for each of the

three classes, where the samples in the first column were obtained

under natural lighting conditions, and those in the second column

were obtained under florescent lighting conditions. The higher

level of noise present in the samples obtained under florescent

lighting is apparent. 130

10.1.1 A generic spectro-temporal pattern recognition framework

(epSNNA-s). 140

10.2.1 This figure shows the anatomy of human inner ear. The anatomy

of the basilar membrane (BM) and its location in the cochlea is

also depicted in this figure. The cochleagram’s function is based

on the working of cochlea. Adapted from Wikipedia (2012). . . . 142

10.2.2 The above figure represents the cochleagram based spike encod-

ing method. From the above figure, it can be seen that we use

the same number of LIF neurons as the number of gammatone

filters in cochleagram. 145

11.1.1 This figure shows the waveform and spectrogram of heart mur-

mur sound sample. The region in the waveform graph that is

highlighted in light green shows significant presence of noise es-

pecially within the 2 - 2.5 seconds range. This noise can also be

seen in the spectrogram. 151

xvii

11.1.2 This figure shows the cochleagram for the heart murmur sample

whose waveform and spectrogram are shown in figure 11.1.1.

This figure shows the difference in sound processing between

standard cochleagram and spectrogram (from figure 11.1.1),

where the cochleagram-processed sound has significantly less noise.152

11.1.3 This figure shows the waveform of normal heart sound sample.

It can be seen that the normal heart’s waveform is much cleaner

than the heart murmur sound. However, there is noise present

from external sources which can be seen at the end of the waveform.153

11.2.1 The above figure shows the cochleagram encoded spikes for a

heart murmur sample. This cochleagram encoded spikes are fed

to the LSM reservoir having STDP learning. The plot below

shows the raster plot for LSM with STDP learning. It can be

seen that the spikes are highly synchronous. 159

xviii

List of Abbreviations

AER: Address Event Representation

ANN: Artificial Neural Network

BPDC: Backpropagation-Decorrelation

deSNN: Dynamic Evolving Spiking Neural Network

deSNNr: Dynamic Evolving Spiking Neural Network Reservoir

DVS: Dynamic Vision Sensor

ECOS: Evolving Connectionist Systems

epSNN: Evolving Probabilistic Spiking Neural Network

epSNNA-s: epSNNr Architecture for Spectro-Temporal Data

epSNNA-v: epSNNr Architecture for Spatio-Temporal Data

epSNNr: Evolving Probabilistic Spiking Neural Network Reservoir

ESN: Echo State Network

xix

eSNN: Evolving Spiking Neural Network

GRN: Gene Regulatory Network

LIF: Leaky Integrate-and-Fire Neuron

LSM: Liquid State Machine

NR: Noisy Reset Neuron Model

NT: Noisy Threshold Neuron Model

ROSC: Rank Order Spike Coding

SDSP: Spike-Driven Synaptic Plasticity

SNN: Spiking Neural Network

SNT: Step-wise Noisy Threshold Neuron Model

SOM: Self-Organizing Map

SSTD: Spatio- and Spectro-Temporal Data

STDP: Spike-timing dependent plasticity

STPR: Spatio-Temporal Pattern Recognition

TSC: Temporal Spike Coding

xx

xxi

Abstract

Video and audio information is spatio- or spectro- (sound/frequency)

temporal in nature and processing of such complex Spatio/Spectro Temporal

Data (SSTD) is a challenging task in the machine learning domain. SSTD

contains both the spatial (space) and temporal (time) components and most

often both these two components are highly correlated.

Due to the existence of high correlations between these two components, it is

essential to process them together. However, many of the existing

computational methods either process spatial and temporal components

separately, or processing them together then the significant correlation

information present in the SSTD is not considered. Comparatively, the brain is

capable of performing such tasks in a fast and robust manner. Inspired by the

innate cognitive functions of our brain, the proposed study investigates how

various biological and cognitive aspects such as learning, evolution and neural

information processing tasks can be applied to our computational model. We

have shown that this enables efficient data acquisition, processing and learning

of complex video and audio patterns thereby resulting in improved classification

xxii

performance.

This thesis proposes novel frameworks and classification methods employing a

class of evolving spiking neural networks (eSNN) called dynamic evolving

spiking neural networks (deSNN) along with reservoir computing. In our study,

we have shown that using the proposed frameworks results in (1) better

classification performance when compared to standalone spiking neural network

classifiers such as eSNN, (2) better understanding of the data and the problem

being solved, (3) faster SSTD processing due to the online one-pass spike-based

computational approaches.

All the frameworks and methods proposed in this thesis have been evaluated

on synthetic and real world problems. In order to evaluate the efficacy of the

new methodology, initially a pilot experiment has been performed as a

benchmark test using a synthetic video dataset, followed by experiments on real

world problems relating to motion and sound such as human action recognition

and heart sound recognition.

xxiii

“There are billions of neurons in our brains, but

what are neurons? Just cells. The brain has no

knowledge until connections are made between

neurons. All that we know, all that we are, comes

from the way our neurons are connected.”

Allen (2009)

1
Introduction

Existing statistical and artificial neural networks (ANN) machine learning

approaches fail to model the complex spatio-temporal dynamics optimally.

Since they either process spatial and temporal component separately the

significant correlation information present in the Spatio and Spectro-Temporal

Data (SSTD) is lost. Some of the existing methods that do consider both the

space and the time component often input the spatio-temporal and

spectro-temporal data to the machine learning algorithm in parts i.e. on a

1

frame-by-frame basis. The historical information / event influences future

events, hence they share a level of correlation with the future events occurring

over time. Many of the traditional machine learning systems fail to consider the

entirety of the SSTD pattern, therefore losing the significant spatio-temporal

correlation information. This study takes the current spiking neural network

based approach in machine learning to new conceptual and operational levels.

We have proposed a spiking neural network (SNN) learning approach utilizing

the spatio- and spectro-temporal architectures (epSNNA-v and epSNNA-s) that

are expected to successfully achieve this holistic integration of spatio- and

spectro-temporal events; they can also be further applied to solving real world

problems. These architectures allow us to process continuous SSTD in a faster

and computationally efficient manner.

1.1 Rationale and Significance of the Study

In spite of the recent research and development of SNN, there is a significant

gap in finding the most effective approach and method for processing SSTD.

This research aims at addressing this challenge with the development of a new

SSTD modeling technique using evolving probabilistic Spiking Neural Networks

(epSNN) for AudioVisual pattern recognition, including epSNN reservoir

systems (epSNNr).

Initial studies on reservoir systems such as Liquid State Machine (LSM) have

shown promising results. Also, the evolving and stochastic nature of our system

2

will allow the model to adapt to new incoming data and learn incrementally.

Moreover, the spikebased computation approach is expected to improve the

processing time and accuracy considerably.

Video and audio information are spatio- or spectro- (sound/frequency)

temporal in nature and processing such complex SSTD is a challenging task in

the machine learning domain. Recent studies (Hamed, Kasabov, Shamsuddin,

Widiputra, & Dhoble, 2011; Schliebs, Hamed, & Kasabov, 2011; Mohemmed,

Schlibes, Matsuda, & Kasabov, 2012) have shown the SNNs capability of

processing the SSTD simultaneously while retaining the significant correlation

information between the space and time component. Therefore, we hypothesize

that spiking neural network based methods and architectures will be capable of

processing SSTD from real-world in a fast, one-pass, on-line and efficient

manner.

1.2 Definition and Motivation

The human brain studies date back many years. The recent scientific advances

(such as electronics, cognitive and computer science) have made it possible to

partially emulate the human brain and its innate cognitive ability. Learning is

one such innate cognitive ability which has empowered the living animate

entities and especially humans with intelligence. It is demonstrated by the

ability to acquire new knowledge and skills that enable them to adapt and

survive.

3

The exact working of the human brain is still only partially understood. It is

assumed that the human brain’s ability to learn arises from the vast number of

neurons and their interconnections. The number of connections for a neuron

can range from 1000 to 200000 (Haykin, 1994). The latest study by Azevedo et

al. (2009) show that the average human brain (weighing 1,508.91 ± 299.14 g,

age ≈ 50 years) has on average about 86.1 ± 8.1 billion (86.1 x 1011) neurons.

The artificial neural networks are modeled after the most basic unit of the

brain called neuron. Due to this there is certain similarity between artificial and

biological neurons, and thus a biological counterpart for a component can

always be found in an artificial neuron. Comparison between the biological and

artificial neurons makes similarities between the two more evident.

Although, many existing traditional machine learning methods perform

classification tasks much better than the artificial neural network, its ability is

still not comparable to the any of the species biological neural network

especially the human brain. Since the ultimate goal of machine learning is to

carry out cognitive tasks similar to the human brain, it takes its inspiration

from it.

Motivated by the brain’s ability to learn autonomously by means of biological

neural networks, we are looking to develop biologically inspired methods and

architectures, that are designed to mimic some aspects of humans’ cognitive

learning ability. This study aims not only to further new developments in

4

artificial spiking neural networks (SNN), but also to demonstrate the potential

of SNN’s, for solving real world problems that involve the modeling of SSTD.

1.3 Research Objectives

Considering the fact that some novel, generic and specific spike-based data

processing methods are required for SSTD modeling and pattern recognition,

the study is divided into several parts as follows: development of novel SNN

based classification methods, development of a novel spatio-temporal

architecture, development of a novel spectro-temporal architecture, and

applications for visual and audio SSTD processing.

Both methods and architectures can be applied to the real world problems

either independently or in combination by using spike-based computation

approach. Combining the two architectures with the novel classification

methods results in hybrid algorithms (deSNNr and learning deSNNr), which are

finally employed to work on real world dataset.

Based on the above discussion, we have arrived at the following research

objectives:

• Develop some new classification methods for SSTD based on eSNN;

• Develop a new generic eSNN method for SSTD based on reservoir

computing;

5

• Develop a generic method and a system for spatio-temporal pattern

recognition using Address Event Representation (AER). This will allow a

model to directly utilize input spikes produced by an artificial silicon

retina for preprocessing;

• Develop a software simulator for artificial silicon retina. This will allow

the usage of visual data that has not been obtained from the artificial

silicon retina;

• Develop a generic method and a system for spectro-temporal pattern

recognition;

• Through comprehensive experimental analysis, evaluate the classification

performance of the architectures and methods in different combinations.

• Demonstrate the feasibility and applicability of the developed generic

architecture and methods by applying them to visual and audio SSTD

from real world problems.

1.4 Specific Research Questions

Corresponding to the research objectives, the following specific research

questions pertaining to this study have been formulated:

• How to improve/extend the existing eSNN method for application on

spatio- / spectro-temporal pattern recognition problems?

• Which spike information encoding scheme will be appropriate for SSTD

representation?

6

• Can the reservoir computing approach improve the classification

performance? Will the addition of stochastic neuron models further

improve the reservoir performance? What is the optimal parameter

setting for the neural networks? Can the reservoir states consisting of

spikes be directly utilized by SNN methods for processing?

• Will the developed system be capable of processing the entire SSTD set?

How will the developed system perform with data having varying

spike-times and temporal length (in milliseconds and minutes)?

• Will the system be capable of performing fast, one-pass, on-line learning?

1.5 Scientific Contribution

Figure 1.5.1 presents a visual summary of datasets, classification methods and

generic architectures used and developed in the study. The items included under

the architectures and methods branches are the main contributions of the study.

Architectures: This study proposes three new generic architectures for

spatio-temporal and spectro-temporal pattern recognition (Figure 1.5.1),

namely epSNNr, epSNNA-v and epSNNA-s. Each architecture consists of many

modules such as reservoir, STDP learning in reservoir, stochastic neuron

models, spike encoding module and learning algorithms. In the later chapters,

the generic architectures will be explained in more details.

Methods: Four new spiking neural network based generic classifiers are

proposed in this thesis. The proposed deSNNm and deSNNs are extensions of

7

IsolatedSpokenWords

HeartSound

AERbasedHumanActionRecognition

AERbasedSimpleMotionRecognition

SyntheticVideo

Datasets

LearningdeSNNr

deSNNr

deSNNm

deSNNs

Methods

epSNNr

epSNNA-s

epSNNA-v

Architectures

Thesis

Figure 1.5.1: Architectures and methods developed in this study and datasets used for
evaluating their performance.

8

the eSNN algorithm (S. Wysoski, Benuskova, & Kasabov, 2008). The other two

methods called deSNNr and learning deSNNr are hybrid algorithms obtained by

combining the earlier proposed architecture and deSNNm/s algorithms.

Datasets: We have used five datasets to evaluate the classification

performance of the proposed architectures and methods. It includes one

synthetic video dataset for benchmark testing and four real world datasets. The

datasets have been described in details in their respective chapters.

1.6 Publications

The content put forth in this thesis was partially published in a number of

international conference and journal articles:

• Dhoble, K., Nuntalid, N., Indivery, G., Kasabov, N. (2012) Online

Spatio-Temporal Pattern Recognition with Evolving Spiking Neural

Networks utilising Address Event Representation, Rank Order, and

Temporal Spike Learning, Proc. WCCI 2012: IEEE World Congress on

Computational Intelligence, IEEE Press, (pp. 17).

• Kasabov, N., Dhoble, K., Nuntalid, N., Indivery, G. (May, 2013)

Dynamic evolving spiking neural networks for on-line spatio- and

spectro-temporal pattern recognition. Neural Networks, Elsevier, Volume

41, (pp. 188-201).

• Kasabov, N., Dhoble, K., Nuntalid, N., & Mohemmed, A.

(2011).Evolving probabilistic spiking neural networks for spatio-temporal

9

pattern recognition: A preliminary study on moving object recognition.

ICONIP 2011 - In 18th International Conference on Neural Information

Processing, Springer, Heidelberg. LNCS 7064, pp.230-239, Shanghai,

China.

• Mohemmed, A., Matsuda, S., Kasabov, N., & Dhoble, K. (2011).

Optimization of Spiking Neural Networks with Dynamic Synapses for

Spike Sequence Generation using Particle Swarm Optimization. IJCNN

2011 - In Proceedings of International Joint Conference on Neural

Networks, (pp. 2969-2974), San Jose, California.

• Hamed, H. N. A., Kasabov, K., Shamsuddin, S. M., Widiputra, H., &

Dhoble, K. (2011). An Extended Evolving Spiking Neural Network

Model for Spatio-Temporal Pattern Classification, IJCNN 2011 - In

Proceedings of International Joint Conference on Neural Networks, (pp.

2653-2656), San Jose, California.

• Dhoble, K., Kasabov, N., Indivery, G. (2013) Dynamic evolving Spiking

Neural Networks for Spectro-temporal pattern recognition, IEEE

Transactions on Neural Networks and Learning Systems, IEEE Press, (in

preparation).

1.7 Structure of the thesis

This thesis is organized into twelve chapters. A brief summary of the chapters is

presented in this section.

10

Chapter 1 provides an introduction to the study and its objectives

Chapter 2 presents a literature review covering the theory of neural networks.

This is followed by a discussion about the differences between traditional

artificial neural networks, artificial spiking neural networks (SNN) and biological

neural networks. Various mechanisms of the biological neural networks have

also been explained in details in order to show the biological plausibility of the

artificial spiking neural network. The main concepts related to spiking neural

networks such as neuronal models, spike encoding methods, working memories,

learning mechanisms and their applications have been discussed in this chapter.

Chapter 3 reviews recurrent spiking neural network reservoirs structures. It also

presents a summary on various reservoir computing approaches.

Chapter 4 proposes new generic architecture called epSNNr. The epSNNr is a

Liquid State Machine (LSM) reservoir using various stochastic neural models.

A pilot study is carried out using synthetic video dataset to test the feasibility

and applicability of the architecture. The classification performance of epSNNr

is carried out with various traditional classifiers. Also, we have compared the

classification performance of epSNNr using the traditional Leaky Integrate and

Fire (LIF) neural model with various stochastic neural models. This pilot study

provides us with the feasibility test of using LSM on an entire spatio-temporal

data for a pattern recognition task.

Chapter 5 covers the Address Event Representation (AER) approach used in

11

the artificial silicon retina. The workings and advantages of the AER approach

for motion recognition are presented. In our spatio-temporal pattern case

studies, we have utilized the data obtained from the artificial silicon retina.

Therefore, we have discussed the attributes of the data obtained through this

method. Also, developed as a part of this study, a software simulator of AER is

presented.

Chapter 6 contains one of the main contributions of this thesis which is a novel

dynamic evolving spiking neural network (deSNN) method. It is an extension of

the evolving spiking neural network (eSNN) proposed by S. Wysoski,

Benuskova, and Kasabov (2008). This chapter introduces the eSNN method

which is a part of evolving connectionist systems (ECOS) (Kasabov et al., 1998;

Kasabov, 2002, 2003; Watts, 2009), followed by the characteristics and specifics

of the two deSNN classifiers.

Chapter 7 presents how deSNN classifiers are applied on AER data obtained

from the artificial silicon retina. This feasibility study provides us with a

working proof on the ability of the deSNN method. Since the output of the

AER based artificial silicon retina is in the form of spikes, we show that deSNN

method is able to carry out direct spike-time computation instead of the

traditional frame-by-frame based computation. Also, a classification

performance comparison is carried out between spiking neural network

classifiers consisting of eSNN, deSNN and a feed-forward network with

spike-driven synaptic plasticity learning rule (SDSP-SNN).

12

Chapter 8 presents a novel spiking neural network architecture for

spatio-temporal pattern recognition (epSNNA-v) along with two new methods

namely deSNN reservoir (deSNNr) and learning deSNNr. All the earlier

proposed methods, stochastic neuronal models, AER spike encoded data and

the reservoir are incorporated into this generic architecture.

Chapter 9 evaluates the performance of the proposed epSNNA-v architecture

for spatio-temporal data. Real world human action recognition data acquired

from the AER silicon retina is used for performance comparison.

Chapter 10 proposes a new generic architecture for spectro-temporal pattern

recognition (epSNNA-s). The proposed generic architecture epSNNA-s is

different from epSNNA-v in terms of the spike information encoding scheme.

Chapter 11 evaluates the performance of the proposed epSNNA-s architecture

two case studies, namely Heart Sound dataset and Isolated Spoken Words

dataset.

Chapter 12 concludes the thesis by summarizing the achievements of the work

and contains the overall conclusion. Neuromorphic hardware implementation

and applications are also briefly discussed as future directions.

13

1.8 Summary

This chapter provides the background, motivation, research objectives and

research questions addressed in this research.

More background information on the problem of SSTD modeling and pattern

recognition can be found from the web page of EV FP7 Marie Curie funded

project EvoSpike (http://ncs.ethz.ch/projects/evospike) led by Prof. Nikola

Kasabov and Prof. Giacomo Indiveri, in which the candidate (myself) also took

part.

The next chapter reviews the main aspects of spiking neural networks (SNN)

which are used in this study to derived the generic SNN architectures and

methods.

14

“In the study of brain functions we rely upon a

biased, poorly understood, and frequently unpre-

dictable organ in order to study the properties

of another such organ; we have to use a brain to

study a brain.”

Corning and Balaban (1968)

2
Why use Spiking Neural Networks for

SSTD?

In order to justify our methodology, it is necessary to become acquainted with

various approaches to modeling Spatio / Spectro-Temporal Data (SSTD) and

some SNN principles along with the expected benefits and possible inherent

limitations. Here we have outlined the past and present research relevant to our

study and have explained how our research addresses some of the issues in the

15

machine learning domain.

In the following subsection, we provide a brief introduction to the SSTD

modeling techniques that have been researched and the inherent limitations

they contain.

2.1 What is SSTD and why it is difficult to process it?

Video and audio information is spatio- or spectro- (sound/frequency) temporal

in nature and processing of such complex Spatio-/Spectro-Temporal Data

(SSTD) is a challenging task in the machine learning domain. SSTD contains

both the spatial (space) and temporal (time) component and most often both

these components are highly correlated.

Due to the existence of strong correlations between these two components, it

is essential to process them together. However, many of the existing

computational methods either process spatial and temporal components

separately or when processing them together the significant correlation

information present in the SSTD is ignored. However, the brain is capable of

performing such tasks in a fast and robust manner. Inspired by the innate

cognitive functions of the brain, the proposed study investigates how various

biological and cognitive aspects such as learning, evolution and neural

information processing can be applied to our computational model.

16

2.2 SSTD Processing Approaches

Many of the traditional machine learning systems fail to consider the entirety of

the SSTD pattern, therefore losing the significant information about the

spatio-temporal correlation. This study takes the innovative work in machine

learning done at KEDRI to new conceptual and operational levels. We have

proposed a novel machine learning approach utilizing the epSNNr architecture

that is expected to successfully achieve this holistic integration of

spatio-temporal events. The new approach would allow us to process continuous

SSTD in a faster and computationally efficient manner.

Hidden Markov Models (HMM) is one of the popular statistical approaches

that is widely used for processing temporal information (Rabiner, 1989). It is

often used either with traditional neural networks (Trentin & Gori, 2001) or on

its own (Waibel et al., 1989; Poppe, 2010). However, it has an inherent

limitation when defining the HMM for more than a single independent variable.

This means that they can only be defined for a process that is a function of a

single variable, such as time or one-dimensional position (Trentin & Gori, 2001;

Turaga et al., 2008), rendering them incapable of optimally learning from SSTD

patterns which are two-dimensional in nature. Also, there are other emerging

approaches such as deep machine learning which involves the combination of

Deep Belief Networks (DBNs - Generative Model) and Convolutional Neural

Networks (CNNs - Discriminative Model) (Arel, Rose, & Karnowski, 2010). The

proposed DBNs model nevertheless carries out learning in a frame by frame

manner, rather than learning the entire SSTD patterns. On the other hand,

17

Gerstner and Kistler (2002b) state that the brain-inspired SNN has the ability

to learn spatio-temporal patterns by using trains of spikes (which are

spatio-temporal events). Furthermore, the 3D topology of the spiking neural

network reservoir allows us to capture the whole SSTD patterns at any given

time points. The neurons in this reservoir system transmit spikes via synapses

that are dynamic in nature, collectively forming a SSTD memory (Maass &

Zador, 1999; Maass & Markram, 2002). Often, learning rules such as

Spike-Time-Dependent-Plasticity (STDP) (Legenstein, Naeger, & Maass, 2005)

are commonly utilized in SNN models.

Recently, several SNN models and their applications have been developed by

numerous research groups (Verstraeten et al., 2007; Buonomano & Maass, 2009;

Maass et al., 2002; Brader et al., 2007; Bohte & Kok, 2005; Natschlager &

Maass, 2002) as well as by our research group at KEDRI (Kasabov, 2007;

S. Wysoski et al., 2010; Soltic & Kasabov, 2010a; Kasabov, 2010a; Schliebs,

Kasabov, & Defoin-Platel, 2010; Soltic & Kasabov, 2010b; S. Wysoski et al.,

2008; Kasabov, 2010b). However, they process the SSTD as a sequence of static

feature vectors extracted from segments of data, without utilizing the SNN’s

capability of learning whole SST patterns.

2.3 A brief History of Neural Networks

The study of human anatomy, especially brain studies date back thousands of

years. The recent advances in science (such as electronics, cognitive and

computer science) have allowed us to partially emulate the human brain and its

18

innate cognitive ability. This section introduces the general underlying

principles of neural networks as well as the strengths and weakness of different

types of neural network and how they relate to each other. Some of the most

significant neural network designs are presented in details below.

In late 18 century, based on the neuroanatomical findings led by the

neurobiologists such as Gerlach (1858), Nissl (1858), and Waldeyerin (1863)

(Swanson, 2000; Nissl, 1894), Alexander Bain presented the first neural network

in his 1873 book entitled ”Mind and Body. The Theories and Their Relation”

(Wilkes & Wade, 1997).

Figure 2.3.1: Bain’s summation threshold network. It illustrates the way in which the
connections in a neural network can channel activation in different directions. The fiber
a branches into two a′, a′; the fiber b into b′, b′; and c branches into c′, c′. One of the
branches a′ of a unites with one of the branches b′ of b, in a cell X; b′ and c′ unite in Y;
a′, c′ in Z. Adapted from Wilkes and Wade (1997).

In 1943, Warren McCulloch and Walter Pitts designed and built a primitive

artificial neural network using simple electric circuits that formed the basis for

modern era of neural network research (McCulloch & Pitts, 1943; Haykin, 1994).

19

There was significant development after the publication of ’The Organization

of Behavior: A Neuropsychological Theory’ by Hebb (1949). It introduced

theoretical concepts such as cell assembly, phase sequence, and Hebb synapse

that set forth his hebbian learning rule. The major point brought forward was

the strengthening of neural pathways after each use. This rule is especially

applicable for the more bio-plausible spiking neural networks. Hebb (1949)

findings further reinforced McCulloch-Pitts’s theory on neurons and their

functions (Haykin, 1994).

With the emergence of computers in the 1950s, the neural models were

ported from hardware to the digital realm. Alan Lloyd Hodgkin and Andrew

Huxley described a scientific model of a spiking neuron in 1952 (Hodgkin &

Huxley, 1952a, 1952b, 1952c). They explained the ionic mechanisms underlying

the initiation and propagation of action potentials in the squid giant axon.

Hodgkin-Huxley model is widely regarded as one of the great achievements of

20th-century biophysics that describes how action potentials in neurons are

initiated and propagated (Hodgkin & Huxley, 1952a, 1952b, 1952c).

In 1954 Marvin Minsky carried out research on neural networks (Minsky,

1954) that was presented in his doctoral dissertation titled ”Theory of

Neural-Analog Reinforcement Systems and its Application to the Brain-Model

Problem” (Harmon, 1962). In 1957, John von Neumann anticipated that

computer design based on brain had great prospects and could be implemented

by using telegraph relays or vacuum tubes to emulate simple neuron functions.

20

Figure 2.3.2: Hodgkin-Huxley type models represent the biophysical characteristic of
cell membranes. The lipid bilayer is represented as a capacitance (Cm). Voltage-gated
and leak ion channels are represented by nonlinear (gn) and linear (gL) conductances,
respectively. The electrochemical gradients driving the flow of ions are represented by
batteries (E), and ion pumps and exchangers are represented by current sources (Ip).
Adapted from Hodgkin and Huxley (1952c).

This idea led to the invention of the von Neumann machine (Boahen, 2007).

Later, Minsky went on to publish the first paper on artificial intelligence

entitled ”Steps Towards Artificial Intelligence” (Minsky, 1961).

In 1958, based on the idea of McCulloch-Pitt’s theory and research done on

the fly’s eye, a neurobiologist named Frank Rosenblatt worked on the idea of

perceptron. He built the first artificial neural network realized in hardware

(Masters, 1993).

In 1960, Bernard Wildrow and Marcian Hoff developed the Adaptive Linear

Neuron or later known as Adaptive Linear Element (ADALINE) and Multiple

21

Adaptive Linear Neuron (MADELINE) models which were the first neural

networks applied to real problems. ADALINE is a convergent type single layer

neural network based on the McCulloch-Pitts neuron consisting of a weight, a

bias and a summation function. It’s used for prediction involving binary

patterns as its input and one output. Similarly, for problems requiring multiple

outputs, multiple sets of ADALINEs are used in parallel and this model is

known as MADELINE. These models introduced the then novel least mean

square (LMS) error training algorithm, also called the Widrow-Hoff Delta Rule

(Widrow & Lehr, 1990). ADALINE perceptrons learning procedure is attractor

driven (positive reinforcement) in which a convergent subcircuit output value is

specified as the goal for each pattern. Therefore, it is necessary for the

subcircuit to learn the proper weight values to produce that goal value for any

input patterns. Later perceptrons (negative reinforcement type) used

misclassification errors instead of using a defined goal for each subcircuit

(Widrow & Hoff, 1988; Widrow & Lehr, 1990; Widrow, 2005). In the standard

McCulloch-Pitts based perceptron, the weighted sum of the inputs is passed to

the activation (transfer) function and its output is used for adjusting weights.

Whereas in ADALINE, based on weighted sum of the inputs, the weights drawn

from subcircuits are adjusted in the learning phase.

Kohonen introduced self-organizing maps (SOMs) in the 1970s, also

commonly known as Kohonen networks (Kohonen, 1989; Kohonen & Honkela,

2007). SOM is an artificial neural network used for visualization and analysis of

high-dimensional data in an unsupervised setting. It uses a neighborhood

function to preserve the topological properties of the high dimensional input

22

space when projecting it into a low dimensional discretized space called

Kohonen map (Kohonen, 1989).

Hopfield (1982) introduced a new form of recurrent artificial neural network

as content-addressable memory systems (associative memories) with binary

threshold units. This form of ANN is now also known as Hopfield network. The

Hopfield networks convergence properties could be analyzed due to the

introduction of the energy function. A Hopfield network can be used as an

associative memory through Hebbian learning (Hopfield, 1988; Sulehria &

Zhang, 2007; Haykin, 1994).

Powell (1987) invented the Radial-Basis Function (RBF) network in 1985.

The idea for RBF originates from older pattern recognition techniques (Tou &

Gonzalez, 1974) such as potential function, clustering, functional

approximation, mixture models and spline interpolation. The RBF employs a

clustering algorithm to find the most prominent clusters in the input

hyperspace of multivariate data. It then linearly combines hyperspheres around

these clusters to determine the classifications of specific input patterns based on

previously classified training patterns (Powell, 1987). RBF networks are able to

model complex mappings due to their nonlinear approximation properties,

whereas perceptrons can only model by means of multiple intermediary layers

(Haykin, 1994).

First introduced by Bryson and Ho (1975), the Backpropogation neural

networks gained recognition through the work of David E. Rumelhart, Geoffrey

23

E. Hinton and Ronald J. Williams in 1986 (Russell & Norvig, 1995; Rumelhart,

Hinton, & Williams, 1986). They extended the Widrow and Hoff’s delta rule to

networks with multiple hidden layers by means of generalized delta rule. This

model was based on the perceptron and came to be known as the Back

Propagation Network. Back Propagation requires differentiable activation

(transfer) function. It is one of the most widely used artificial neural network

model.

The underlying mechanisms of the Back Propagation paradigm, which solved

the problem of training hidden neuron layers, was actually discovered earlier by

Paul Werbos in 1974 (Werbos, 1974, 1994), and Parker and LeCun (Parker,

1985; LeCun, 1985, 1986) in 1985, but it was Rumelhart (Rumelhart, Hinton, &

Williams, 1986) who made it universally known.

The Boltzmann machine is a type of stochastic recurrent neural network

introduced in 1986 by Geoffrey Hinton and Terry Sejnowski (Hinton &

Sejnowski, 1986). The Boltzmann machine is derived from Hopfield network but

with sophisticated elaborations like the inclusion of annealing and stochastic

processes used for tasks such as pattern completion; therefore it is used for

solving pattern classification problems with noisy, incomplete data (Hinton &

Sejnowski, 1983b, 1983a, 1986). Similar to Hopfield network, the Boltzmann

machine has an energy function defined for the network but it is different from

the Hopfield network as it is stochastic in nature (Ackley, Hinton, & Sejnowski,

1987).

In 1990 Jeff Elman presented a simple recurrent neural network, which is a

24

feed-forward network modified by one or more feedback connections (Elman,

1991). The ”Elman net” functionality produces a pattern-holding reservoir over

a certain period of time, therefore allowing detection of temporal patterns in

time series.

More recently spiking neural networks (SNN) (Gerstner & Kistler, 2002a;

Izhikevich, 2003) have been developed. SNNs belong to the third generation of

neural networks. Their mechanism is more realistic in terms of their spiking

processes resembling the biological neurons (Maass & Bishop, 1999). In the

following section we explain why SNNs are advantageous over traditional neural

networks.

2.4 Spiking Neural Networks

The exact workings of the human brain still remain a mystery to the scientific

community. It is assumed that the human brain’s capability arises from the vast

number of neurons and their interconnections. The number of connections for a

neuron can range from 1000 to 200000 (Haykin, 1994). The latest study by

Azevedo et al. (2009) shows that the average human brain (weighing 1,508.91 ±

299.14 g, age ≈ 50 years) has on average about 86.1 ± 8.1 billion (86.1 x 1011)

NeuN-positive cells (“neurons”).

We do not understand the exact workings of the brain yet. In fact,

understanding the functioning of a single neuron and its chemical synapses in

itself proves to be much more complex than previously assumed.

25

Figure 2.4.1: Schematics of Biological Neuron illustrating signal propagation and synap-
sis. Taken from Wikipedia (2010)

The artificial neural networks are modelled after the most basic components

of the brain, which is the neurons. There is a strong similarity between artificial

and biological neurons, and thus a biological counterpart for a component can

always be found in an artificial neuron. When comparing the biological and

artificial neurons, similarities between the two become more evident.

SNNs are made up of artificial neurons that use trains of spikes to represent

and process pulse-coded information (Maass & Bishop, 1999). The biologically

realistic information processing capability of spiking neural networks will allow

the development novel neural models that enhances the ability to solve various

problems. Gerstner and Kistler (2002a) stated that, in order to avoid any prior

26

assumptions on neural computation, the processing and exchange of information

between neurons should be carried out at the level of spikes. This resulted in

the emergence of spiking neural networks as the new generation of neural

network models that are imperative to the computational functionality.

In biological neural networks, neurons are connected at synapses and

electrical signals (spikes) pass information from one neuron to another. SNNs

are biologically plausible and offer some means for representing time, frequency,

phase and other features of the information being processed. This allows

incorporating spatio-temporal information in communication and computation,

similarly to real neurons. There are many models of biological spiking neurons

such as Hodgkin-Huxley’s model (Hodgkin & Huxley, 1952c), Spike Response

Models (SRM) (Gerstner, 1995; Kistler, Gerstner, & van Hemmen, 1997;

Gerstner & Kistler, 2002a), Integrate-and-Fire Models (Maass & Bishop, 1999;

Gerstner & Kistler, 2002a), Izhikevich models (Izhikevich, 2004, 2006, 2007;

Izhikevich & Edelman, 2008). Although numerous models of SNNs and their

applications have been developed, they have not been successfully used for

solving large scale, complex AI problems of classification, temporal and string

sequence pattern recognition and associative memory (Kasabov, 2010b).

According to Kasabov (2010b), since “the spiking processes in biological

neurons are stochastic by nature it would be appropriate to look for new

inspirations to enhance the current SNN models with probabilistic parameters”

(Schliebs, Defoin-Platel, & Kasabov, 2009; Kasabov, 2009).

27

2.4.1 Spiking Neural Networks Versus Traditional Neural Net-

works

Although SNNs can perform all the afore mentioned tasks of traditional neural

networks, they have some additional capabilities in a range of domains such as;

1. Spatio-temporal domain (e.g. time series).

2. Complex domains requiring massive scale networks with several thousand

neurons (e.g. VLSI).

3. Domains requiring biologically derived models (biological fidelity).

Maass and Bishop (1999) state that compared to traditional ANNs, SNN

requires fewer neurons to accomplish the same task (Maass & Bishop, 1999;

Gerstner & Kistler, 2002a), it is more biologically plausible (Maass & Bishop,

1999) and has the capability of approximating any function. Moreover, since

SNN uses spikes instead of analog values to communicate between neurons, they

can be multiplexed (as binary codes) thereby requiring less time and space to

compute.

SNNs are made up of artificial neurons that use trains of spikes to represent

and process pulse coded information (Maass & Bishop, 1999). SNN use trains

of spikes for internal information representation (Huguenard, 2000).

2.5 Neuronal Models

Artificial spiking neural networks (SNN’s) are characterized by:

28

• neuronal models;

• encoding information into spikes;

• learning algorithms;

• network structure and connectivity.

The counterpart or the abstraction of the biological neuron can always be

found in the spiking neuron models. In order to understand why and how the

SNN neuron models work, we have first provided a brief explanation of the

workings of a biological neuron followed by the artificial neuron models.

2.5.1 Biological Neurons

The basic characteristics and parts of the neurons are identical to other cells;

however, they are specialized cells that have the ability to gather and transmit

electrochemical signals (i.e. communicate/pass messages to each other) over a

particular distance. As illustrated in figure 2.4.1, a neuron has three basic parts:

Cell body: This part consists of cell components such as nucleus also

sometimes referred to as the ”control center” (which contains genetic

material), endoplasmic reticulum and ribosomes (for building proteins

from amino acids.) and mitochondria (generates adenosine triphosphate

(ATP), used as source of chemical energy).

Axons: These are long nerve fibers that carry electrochemical impulses (action

potentials) away from the cell body or soma. Within the brain,

nonmyelinated neurons (axons not sheathed in myelin) exist.

29

Dendrites: These nerve endings are branchlike projections of the cell that

conduct the action potentials received from other neural cells to its cell

body, or soma. Depending on the type of neuron, dendrites can exist on

one or both ends of the cell.

2.5.2 Action potential

An action potential (nerve impulse) results from a brief change of membrane

potential across an excitable membrane in a neuron that is produced due to the

voltage-gated ion channels activity in the membrane (Purves et al., 2008). In

order to understand how the initiation and transmission of nerve impulses take

place in neurons, we need to understand the neurons structure and mechanism

in details. The neurons cell membrane is made up of phospholipids. It is

arranged in two-layer lipid sandwich with the electrically charged polar heads

exposed to water and the polar tails sticking near each other, barricading the

cell from the outside water-soluble or charged particles (such as ions). How

exactly the charged particles get into the cells is explained in the next section.

Ion Channels

Ions are charged atoms (or water soluble molecules) that are able to move

through channels that are present across the cell membranes (phospholipids)

bilayer. Sodium, potassium, calcium and chloride ions have their own specific

permeable channels in the cell membrane allowing the cell to maintain

composition that is different from the outside cells. The selective permeability

30

Figure 2.5.1: Action potential schematics: an ideal action potential shows its vari-
ous phases as the action potential passes a point on a cell membrane. Adapted from
Wikipedia (2010).

of the cell membrane allows the maintenance of outside concentration of sodium

to be 10 times higher than inside and inside potassium concentration to be

approximately 20 times higher than cells outside. This creates a negative

electrical charge (of about ∼ 70 mV to ∼ 1 mV) inside the cell. The cell

membrane is semi-permeable, i.e. leaky, to the tiny positively charged sodium

and potassium ions in the cells outside. This difference in charge between the

cells inside and outside creates an affinity. The selective ion pumps spanning

across the cell membrane uses ATP as energy for exchange of the sodium and

31

potassium ions across the cell membrane generating a tiny electrical current (as

seen in Figure 2.5.1).

Nerve Signals

The action potential (i.e. nerve signal) is generated from the sodium and

potassium ions coordinated movement across the cell membrane. The details on

how the action potential initiates is discussed below.

Action Potential Initiation:

As mentioned previously, the inside of a cell is negatively charged and has a

resting membrane potential of approximately -70 to -80 mV. This chemical or

electrical imbalance between the inside and outside cell fluid opens up some of

the sodium ion channels in the cell membrane. The transfer of the positively

charged sodium (+Na) ions into the cell results in depolarization (reduced

negative charge inside the cell). When the depolarization reaches a certain

threshold value, it opens more sodium ion channels. Consequently this triggers

an action potential due to more inflow of sodium ions in the nerve cell. The

high concentration of +Na ions (inside the nerve cell) reverses the local

membrane potential. At this point as seen in Figure 2.5.1, the electrical

potential inside the cell goes to about ∼ +40 mV. At this electrical potential,

the sodium ion channel closes resulting in sodium inactivation (inflow of sodium

ion stops) and simultaneously triggers the opening of the potassium ion

channels. The outflow of positive potassium ions repolarises the cell returning it

32

toward the resting membrane potential and causes the shutdown of potassium

ion channels. Although, the membrane potential overshoots the resting

potential, the ion balance is quickly restored by the sodium-potassium pump

bringing the membrane potential to its resting level. This ion flux triggers an

action potential (Hodgkin & Huxley, 1952c).

Action Potential Propagation

After the action potential is passed on to the next area of the cell membrane,

the previous area enters into a refractory period (depolarizes again) preventing

the backward movement of the action potential. Thus the action potential is

conducted only in one direction at the speed of 10 to 100 meters per second

through the axon depending on the type of neuron (Hodgkin & Huxley, 1952a,

1952b, 1952c). Since the size of action potential remains the same, it is assumed

that the information is encoded by the frequency (pulse or rate code is still

debatable) of action potentials (Maass & Bishop, 1999).

Synaptic Transmission

Synapsis is the gap between neurons where the communication occurs. Synaptic

transmission is also known as neurotransmission that occurs due to the

propagation of action potential within the synapses through neurotransmitters.

The neuron that sends the action potential is known as presynaptic neuron and

the receiving neuron cell is called the postsynaptic neuron. There are several

types of neurotransmitters such as glutamate, serotonin, acetylcholine,

33

norepinephrine, dopamine, gamma-amino butyric acid (GABA) etc. Also, a

nerve cell may have synapses on it from excitatory presynaptic neurons and

from inhibitory presynaptic neurons. In addition to neurotransmitters, there are

neuropeptides that modulate the effects of groups of neurotransmitters and

single neurotransmitters, over varying time scales (from milliseconds to days).

Some of the neuropeptides are released from axonal terminals directly into the

synaptic void, while others are released from hormone glands. This leads to a

collective management of the control mechanisms that direct the action of

intracellular ion flux.

As to how the synaptic transmission process takes place, neurotransmitter

serotonin will be used as an example. The presynaptic cell makes serotonin

(5-hydroxytryptamine, 5-HT) from the amino acid tryptophan and stores it in

vesicles in its end terminals. When an action potential (called the presynaptic

spike) passes down the presynaptic cell into its axonal terminals, the vesicles

containing serotonin gets stimulated (by the action potential) to fuse with the

cell membrane and releases the neurotransmitter into the synaptic cleft. The

released serotonin traverses across the cleft and binds with receptors (ion

channels) on the membrane of the postsynaptic cell and causes depolarization in

the postsynaptic cell. This is caused due to the influx of positive Na ions from

the extracellular fluid, which thereby charges the intracellular fluid of the

dendrite. As explained previously, when depolarizations reach a threshold level,

a new action potential will be propagated in that cell. However, some

neurotransmitters hyperpolarizes the postsynaptic cell (more negatively

charged) inhibiting the formation of action potentials. The remaining serotonin

34

molecules in the synaptic cleft are then destroyed by enzymes such as

monoamine oxidase (MAO) and catechol-o-methyl transferase (COMT). Also

some of the neurotransmitters are reabsorbed by the presynaptic cell

(reuptake), where MAO and COMT destroy the absorbed serotonin molecules.

This prepares the synapse to receive another action potential. The soma,

however, remains temporarily charged for a longer period than the dendrites,

allowing it to work like an accumulation buffer (leaky reservoir) for new voltage

promulgations from the dendrites (Hodgkin & Huxley, 1952c, 1952b, 1952a;

Arbib, 2003; Amari & Kasabov, 1998; Purves et al., 2008).

2.5.3 Artificial Spiking Neuron Models:

Many of the traditional ANN’s neural models consisted of synaptic weights and

activation / transfer function. The artificial neuron abstraction could be simply

expressed in mathematical form as

yj = φ(
∑

i

wijxi) (2.1)

where yj and xi are the neuronal output and input signals respectively, φ is the

activation function and wij represents the synaptic connection weight between

neurons i and j. Biological neurons, however, are described by ion currents that

are transmitted through the cell membrane when neurotransmitters activate the

ion channels in the cell. In order to simulate a biologically realistic neuron,

many models have been proposed. The next section provides a short description

on some of these neuron models.

35

Hodgkin-Huxley Model:

Based on the experiments on the giant axon of the squid, Hodgkin and Huxley

found three different ion channels: sodium, potassium and a CI− ions leak

current (Hodgkin & Huxley, 1952b, 1952a, 1952c). The flow of ions through the

cell membrane is controlled by voltage-dependent ion channels as explained

previously. In mathematical terms, this model can be described as an electric

circuit (see Fig.2.3.2) having a capacitance (C), batteries (E), and current

sources (I). Thus, as seen in Fig.2.3.2, the current applied over time (I(t)), may

be distributed as a capacitive current (IC) which charges the capacitor (C), and

the current (Ik) of each ion channel is:

I(t) = IC(t) +
∑

k

Ik(t) (2.2)

where the
∑

k represents the sum of all ion channels. The capacitor (C) can

be defined as C = QIu, where Q and u are the charge and voltage across the

capacitor. Therefore, charging capacitive current can be represented as

IC = C
du

dt
(2.3)

Hence, according to Eq.2.2 and Eq.2.3:

C
du

dt
= −

∑

k

Ik(t) + I(t) (2.4)

Therefore, Eq.2.4 can be used to represent Hodgkin-Huxley’s three ion

36

channel model as:

∑

k

Ik(t) = gNam
3h(u−ENa) + gKn

4h(u−EK) + gL(u− EL) (2.5)

where ENa, EK and EL are reversal potentials obtained from empirical

experiments. The gating variables m,n and h evolve according to the

differential equations

x = αx(u)(1− x)− βx(u)x (2.6)

where x represents m,n or h and αx, βx denote exponential function that can

be adjusted in order to simulate a specific neuron. It can be seen that the

Hodgkin-Huxley model can reproduce electrophysiological measurements very

accurately. However, due to the model’s complexity, it is computationally

expensive, making it inappropriate for large networks of spiking neurons.

Leaky Integrate and Fire Model (LIF)

A LIF neuron is a simplified Hodgkin-Huxley model where all the ion channels

are represented with a single current (Stein, 1967). Therefore, according to

Eq.2.3 and IR = u/R (Ohm’s law) we get

I(t) =
u(t)

R
+ C

u

dt
(2.7)

On introducing a time constant τm = RC and R in Eq.2.7, we yield the

37

standard form

τm
du

dt
= −u(t) +RI(t) (2.8)

where, u is the membrane potential, I(t) represents input current, τm is

membrane time constant and R represents (soma membrane) resistance. Apart

from the stimulation by the external current I(t) = Iext(t) over time, in a

network the neurons can also be stimulated by presynaptic neuron j. The

synaptic input of neuron i is the weighted sum over all the current generated by

the presynaptic neurons and can be represented as :

Ii(t) =
∑

j

wij

∑

f

α(t− t
(f)
j) (2.9)

where, weight wij reflects the strength of the synapsis from neuron j to

neuron i, t
(f)
j represents the firing time of neuron j, while α represents the time

course of the postsynaptic current. The simplicity of the LIF model makes it

suitable for use in large scale networks allowing efficient simulation.

Spike Response Model (SRM)

In Spike Response Model (SRM) (Lapicque, 1907; Hill, 1936; Brillinger, 1992;

Gerstner, 1995; Keat, Reinagel, Reid, & Meister, 2001; Jolivet, Lewis, &

Gerstner, 2004), the state of the neuron i is defined by a single parameter ui(t)

(membrane potential). The LIF model can be considered as a special case of

the general SRM that defines the spike dynamics. The ui continues to be at

resting value urest = 0 until it receives a spike. On reaching the membrane

38

threshold ϑ, the neuron fires and the membrane potential resets to its resting

potential. Assuming that the neuron i has fired its last spike at time t̂i, then

the evolution of ui after firing can be expressed as

ui(t) = η(t− t̂i)+
∑

j

wij

∑

f

εij(t− t̂i, t− t̂
(f)
j)+

∫

∞

0

κ(t− t̂i, s)Iext(t−s)ds (2.10)

where the spike time of presynaptic neuron j is denoted by t
(f)
j , η is a

function that describes the form of action potential and after potential, ε

denotes the time course of the postsynaptic potential and wij represents

synaptic efficacy. The linear response of the membrane for external input

current Iext is represented by kernal function κ. Compared to the LIF model,

the membrane threshold of SRM is not fixed but may depend on t− t̂i, hence

ϑ −→ ϑ(t− t̂i) (2.11)

The SRM is ideal for simulating large number of neurons in a network due to

its simplicity. Also, compared to LIF neuron, SRM allows to cover

refractoriness. The refractoriness is important because it allows forward

propagation of emitted spike. This refractory period is due to the delay in

closing of voltage-gated potassium channels that opened in response to

depolarization. This delay causes extra potassium conductance and results in

hyper polarization.

39

Fast Integrate and Fire Model

The system is based on SpikeNet introduced in (Delorme, Perrinet, & Thorpe,

2001; Delorme & Thorpe, 2003; S. G. Wysoski & Benuskova, 2006; S. Wysoski

et al., 2008). The postsynaptic potential dynamics for neuron i can be

expressed as

ui(t) =
∑

j

modorder(j)wij (2.12)

where order(j) determines the firing rank of neuron j, wij denotes synaptic

efficacy and mod ∈ [0, 1]. The membrane potential ui fires on reaching threshold

ϑ and resets to resting potential after which the neuron is disabled. This neuron

model is often used in image and speech recognition tasks due to its low

computational costs.

Kasabov’s probabilistic neuronal model

Models of probabilistic neurons have been proposed in several studies, e.g. in

the form of dynamic synapses (Hamed, Kasabov, & Shamsuddin, 2010), the

stochastic integration of the post-synaptic potential (Verstraeten et al., 2007)

and stochastic firing thresholds (Norton & Ventura, 2009). In (Kasabov, 2010b)

a probabilistic neuronal model is introduced that has three probabilistic

parameters that extend the LIF model:

• pcj,i(t) is the probability that a spike emitted by neuron nj will reach

neuron ni at a time moment t through the connection between nj and ni ;

40

• psj,i(t) is the probability of the synapse sj,i to contribute to the post

synaptic potential PSPi(t) after the latter has received a spike from

neuron nj ;

• pi(t) is the probability parameter for the neuron ni to emit an output

spike at time t, once the total post-synaptic potential PSPi(t) has

reached a value above the PSP threshold (a noisy threshold).

nj ni

pj(t)

p
ji
(t)

p
j,i

(t),s W ji (t)

p
i(t)

Probabilistic Parameters

c

Figure 2.5.2: The figure shows the probabilistic parameters used to extend the LIF
model. This probabilistic neuron model was introduced by Kasabov (2010b).

As a partial case, when all or some of the probability parameters are fixed to

”1”, the pSNM can be reduced to the LIF model. The LIF neuron is arguably

the most popular model for simulating spiking networks. It is based on the idea

of an electrical circuit containing a capacitor with capacitance C and a resistor

with resistance R, where both C and R are assumed to be constant. The model

dynamics are described by the following differential equation:

τm
du

dt
= −u(t) +RI(t) (2.13)

41

The constant τm is called the membrane time constant of the neuron.

Whenever the membrane potential u crosses a threshold v from below, the

neuron fires a spike and its potential is reset to a resting potential ur. It is

noteworthy that the shape of the spike itself is not explicitly described in the

traditional LIF model. Only the firing times are considered to be relevant. We

will introduce here only three types of probabilistic models considering only the

third probability parameter pi(t) of the probabilistic model from (Kasabov,

2010b; Gerstner & Kistler, 2002a). The rest of the probability parameters are

not considered in this study or are assumed to be set to 1.

2.6 Methods for encoding information into spikes

There has been a lot of argument on how exactly neurons communicate and

decode the spike information into conceptual elements. The neural code can be

seen as a spike train traversing with varying frequency and numbers between

the neurons. Maass and Bishop (1999) and Gerstner and Kistler (2002a) state

that it is assumed that the information is encoded and decoded either by the

pulse or rate code or both. This means that various parameters such as spike

densities, spike variability, mean firing rate and correlation with nearby spikes

are derived based on a given spike train.

A single spike may carry a lot of information but is usually indecipherable if

taken out of context since the brain operation follows a parallel processing

design therefore making any single spike a part of a parallel collection of spike

42

trains that can have both spatial and temporal relevance. The spatial and

temporal information can be deciphered by several different decoding schemes

as explained in the next section.

2.6.1 Coding/Decoding schemes

Rank Order Coding

This type of coding counts the relative timing of spikes (latency) from a

reference signal to the time when the neuron spikes (Thorpe & Gautrais, 1998).

Rank order coding does not consider the precise timing information and

depends only on the order in which the spikes arrive. According to Thorpe and

Gautrais (1998), due to the sparse coding that only considers the absence of

spikes, a rank order code can transmit up to log2(N !) bits of information under

conditions where each input neuron can only emit one spike, but is not better

than temporal coding. Maass and Bishop (1999) state that rate codes can

follow three different averaging procedures such as rate as a spike count

(average over time), rate as spike density (average over several runs) and rate as

population activity (average over several neurons/population code).

Phase Code

Phase-of-firing code combines the spike count code with a time reference based

on oscillations. This means that neuronal spike trains can encode information in

the phase of a pulse with respect to the background oscillation (Gerstner &

43

Kistler, 2002a). According to Maass and Bishop (1999), in the hippocampus

and other areas of the brain, oscillations of global variable are common and the

neuronal spike trains can encode the information in phase of a pulse with

respect to the oscillation occurring in the background.

Temporal Coding

In this the information is encoded by the neuron through precise timing of

spikes, or action potential, on a millisecond time scale. Some examples of

temporal coding include Spike-timing-dependent plasticity (STDP) and

Spike-Driven Synaptic Plasticity (SDSP) learning mechanism that make use of

precise spike timing.

Correlated-Firing Code

The code uses spikes from other neurons as a reference for pulse code. The

spikes are supposed to occur within a specific time window after the

commencement of a reference signal or an oscillation (Panchev & Wermter,

2004; Maass & Bishop, 1999). The topography of self-organizing maps, or liquid

state machines, can be represented as spike trains using Correlated-Firing Code.

Synchrony Code

This code uses the synchrony between two or more neurons which could signify

a unique event or convey information that is not present in the firing rate of the

44

neuron. However, the timing of spike does not have to be exact, but should fall

within the temporal binding window (Panchev & Wermter, 2004). Neurons that

represent the same stimulus (pattern or event) may fire synchronously (Maass

& Bishop, 1999; Izhikevich, 2006).

Rate Code:

This code counts the average number of spikes within a specific time window

(Mean Firing Rate). Gerstner and Kistler (2002a) states that there are mainly

three different averaging procedures. So rate code can either mean an average of

spikes over time, or an average of spikes over several repetitions of the

experiment (by means of summed spike density reported in a

Peri-Stimulus-Time Histogram) , or an average of spikes over a population of

neurons.

2.6.2 Neuromorphic Cognitive Systems

The neuromorphic cognitive systems consists of analog/digital Very-Large-Scale

Integration (VLSI) architecture that utilizes silicon based hardware to mimic

the neuro-biological features of nervous system, producing asynchronous

event-based spike signals. Neuromorphic engineering is an interdisciplinary

domain that takes inspiration from biology, computer science, mathematics,

engineering and cognitive psychology to build artificial neural systems, such as

vision and auditory systems. In our research we are focused on audio-visual

systems and therefore below we provide a brief introduction to the artificial

45

Figure 2.6.1: This conceptual diagram illustrates the difference between the Frame-
based (top) and Spike-based (bottom) vision sensor, data representation and processing
system. Depending on the computational model, the Frame-based method may involve
computationally intensive pre-processing steps such as feature selection and spike encod-
ing, thereby rendering the Spike-based method faster and computationally less intensive.

silicon retina and cochlea. The data that is used in one of our case studies is

acquired from these artificial retina and cochlea. The neuromorphic hardware

system that is used has been designed and developed by the Institute of

Neuroinformatics, Zurich. In the following section we provide a brief

explanation on the workings of these neuromorphic hardware devices.

Artificial Silicon Retina

Many of the real time machine vision systems have an inherent limitation of

processing information on a frame by frame basis (see Figure 2.6.1).

Lichtsteiner and Delbrück (2005) state that this often results in processing of

redundant information present both within and across the frames. However,

this drawback is addressed by an Address Event Representation (AER) artificial

46

silicon retina. This neuromorphic vision hardware generates events

corresponding to the changes in log intensity. The artificial silicon retina mimics

aspects of our biological vision system which utilizes asynchronous spike events

captured by the retina (Indiveri, 2008). This allows fast and efficient processing

since it discards the irrelevant redundant information by capturing only the

spatio-temporal information that corresponds to the temporal changes in log

intensity (see Fig.2.6.2). For pixel illumination I, the operation for the

continuous form can be defined as:

d

dt
logI =

dI/dt

I
(2.14)

Figure 2.6.2: These two plots show the idealized pixel encoding and reconstruction of
video data. The ON and OFF events represent significant changes in log I. It can be
seen that changes greater than the threshold generate events, while changes that are
smaller than the threshold are still represented internally in the differentiator. Adapted
from Lichtsteiner and Delbrück (2005).

Artificial Silicon Cochlea

The artificial silicon cochlea consists of a pair of cochleae and a microphone

with address event system similar to that of the artificial retina. It functions by

47

extracting the interaural temporal difference from a far-field source (Chan et

al., 2007), allowing tasks such as sound localization to be performed.

2.6.3 SNN Simulation Tools

Since the field of SNN is rather wide and many degrees of biological inspiration

exist, there is no all-purpose programming framework that allows the simulation

of all possible versions of SNN.

Nevertheless some general libraries of software exist that simulate a

specialized class of spiking neurons. An excellent survey about currently

available software can be found in Brette et al. (2007). So far I have considered

the following options for simulating SNNs and AER spike encoding method:

• MvaSpike: This is a C++ library for event-based simulation neurons

(Brette et al., 2007). The simulator is well documented with tutorials,

examples, articles and implementation codes used by other

researchers/scientists. Therefore, this software is a promising platform for

our research.

• SpikeNet: This software library simulates simplified IF neurons and uses a

graphical user interface along with an advanced simulation engine

(Delorme & Thorpe, 2003). This library is designed for real time visual

pattern recognition based applications (Thorpe, Guyonneau, Guilbaud,

Allegraud, & VanRullen, 2004). The software is available for free public

use.

48

• NEURON, GENESIS: These software packages for nerve simulation also

provide an advanced feature-rich platform for analyzing complex neuronal

compartment models. It is an open source and platform-independent

software providing high biological fidelity for neuronal models (Hines,

1994; Bower, Beeman, & Hucka, 2002).

• BRIAN: This is another open source, python based software package that

delivers an advanced and feature-rich platform for creating complex SNN

models. Considering our proposed architecture requirements, this set of

tools would be the best choice for a simulator (Goodman & Brette, 2009).

• OpenCV: This is an open source, C++ based software package that

delivers a feature-rich platform for real time machine vision. There is a

python wrapper available for this machine vision library. Considering our

proposed architecture requirements, this is one of the tools that would be

the best choice for real time (visual) data acquisition and pre-processing

(Bradski, 2000).

Special consideration is needed for the implementation of the learning

algorithms. Usually the event driven simulators are only able to simulate a

network of neurons but do not allow a training or learning process.

2.7 Summary

In this chapter we justify the use of spiking neural networks for

spatio-/spectro-temporal data followed by a literature review covering the

theory of neural networks. After this, we discuss the differences between

49

traditional artificial neural networks, artificial spiking neural networks (SNN)

and biological neural networks. Various mechanisms of the biological neural

networks have also been explained in details in order to show the biological

plausibility of the artificial spiking neural network. The main components of

spiking neural networks such as neuronal models, spike encoding methods,

working memories, learning mechanisms and their applications have also been

discussed in this chapter. In the next chapter we provide a literature review on

spiking neural network reservoirs.

50

“Our ultimate objective is to make programs that

learn from their experience as effectively as hu-

mans do. We shall say that a program has com-

mon sense if it automatically deduces for itself a

sufficient wide class of immediate consequences of

anything it is told and what it already knows.”

McCarthy (1963)

3
Spiking Neural Network Reservoirs: A

review

In our study, one of the Reservoir Computing (RC) approaches called Liquid

State Machine (LSM) is the core component in all our proposed architectures

and also in some of the methods. Therefore, it is necessary to have a dedicated

chapter that explains the various instantiations of RC. Furthermore, we provide

a brief review on previous research relating to LSM and their applications.

51

Following this, we provide justification and some possible enhancements that

could improve the separability of the LSM liquid.

RC refers to the implementation, design, training and analysis of recurrent

spiking neural networks and also the recurrent networks comprising of tanh or

any other nonlinear units. In a nutshell, its consists of various approaches for

designing the network structure, its synaptic connections and training of

biologically realistic artificial spiking neural networks. It is presented briefly in

the next section.

3.1 Introduction to Reservoir Computing

Reservoir computing is a neural network based computational framework for

computation where the input signals are fed into a dynamical system called

reservoir resulting in mapping of the input to a higher dimension. Then the

readout function is used to read the states / dynamics of the reservoir for

imposing an input output mapping.

Reservoir computing includes a number of independently found approaches

based on this fundamental idea, namely Liquid State Machines, Echo State

Networks, Backpropagation Decorrelation and Temporal Recurrent Networks.

The reservoir comprises a group of recurrently connected neurons. The

connectivity is generally random, and the units are typically nonlinear. On the

whole, the activity in the reservoir is driven by the input and is also influenced

by the past. The reservoir’s dynamical input output mapping provides a crucial

52

benefit over the simple time delay neural networks. This approach theoretically

allows for real time computation on continuous input streams in parallel. Each

neuron is stimulated by time varying inputs from external sources as well as

from other neurons. The recurrent connectivity turns the time varying input

into a spatio temporal pattern of activations in the network nodes (Maass et al.,

2002).

The reservoir system is partially biologically plausible, since parts of the

cerebral cortex have been found to carry out sensory integration in small and

homogeneous columns of neurons (Kandel, Schwartz, & SzJessell, 1991).

However, it remains unknown, how the brain is able to perform extract features

tasks from these dynamic networks. Furthermore, Gerstner and Kistler (2002a)

and Abbott and Nelson (2000) state that since a reservoir has fading memory

and input separability, by means of a readout function, the liquid state machine

can be proved to be a universal function approximator using Stone Weierstrass

theorem. In the following section, we give a brief review of the approaches taken

for reservoir computing and its applications.

3.2 Types of Reservoirs

Reservoir computing is a recently coined term and it subsumes a number of

independently found instantiations of this fundamental idea, such as:

1. Echo State Networks (Jaeger, 2001b)

2. Liquid State Machines (Natschläger, Maass, & Markram, 2002; Maass et

53

al., 2002)

3. Decorrelation-Backpropagation Learning (Steil, 2004)

4. Temporal Recurrent Neural Network (Dominey, 1995)

Due to the computational methods feasibility for practical application and for

being an explanatory model for some of the processes in our brain, the reservoir

computing for spiking neural networks is now regarded as an established

paradigm.

The core concept of reservoir computation has been independently

established a number of times in various scientific domains, resulting in a

number of reservoir computing varieties (Lukoševičius & Jaeger, 2009). Some of

the popular flavors are briefly explained in the next section.

3.2.1 Echo State Networks

Echo State Networks (ESNs) is one of the pioneering Reservoir Computing (RC)

approaches first proposed by Jaeger (2001b, 2007). For training the ESNs, a

linear readout function is often sufficient for achieving good performance when

employed for practical applications. This is because of the algebraic properties

inherent in the recurrent neural network that is ESNs. The term dynamical

reservoir refers to untrained recurrent neural network component of ESNs, and

its reservoir states are termed echoes since the state reflects / represents the

input history (Jaeger, 2001b). Apart from the above understanding, what

makes ESNs different from other reservoir computing flavors is the use of

”weighted sum and nonlinearity” type of simulated analog-valued neurons such

54

as tanh() nonlinearity function. Employing leaky-integrate and fire (LIF)

neurons in ESNs have now become a common practice (Jaeger, Lukoševičius,

Popovici, & Siewert, 2007). Since the readout from the echo state networks is

linear, most often for batch training, a liner regression method is used for

computing the output weights and similarly computationally inexpensive

method such as least squares algorithms are employed for the online training

approach (Jaeger & Haas, 2004). Most of the initial studies on ESN (Jaeger,

2001b, 2001a, 2002; Jaeger et al., 2003; Jaeger & Haas, 2004) were carried out

for machine learning and nonlinear signal processing applications.

3.2.2 Liquid State Machines

Liquid State Machines (LSMs) was proposed by Maass, Natschläger, and

Markram (2002) and is another pioneering reservoir method that was developed

independently and at the same time as Echo State Networks. Compared to the

ESNs which were framed on the basis of theoretical computational principles,

the Liquid State Machine was developed on the basis of computational

neuroscience. The foundation of Liquid State Machine allows the reservoir

system to correspond to the computational properties of neural microcircuits

(Maass et al., 2002; Maass, Natschlager, & Markram, 2003; Natschläger,

Markram, & Maass, 2003; Maass, Natschläger, & Markram, 2004).

Due to this biological plausibility of LSM reservoirs, they employ biologically

realistic models of dynamic synaptic connection and spiking leaky

integrate-and-fire neurons. The synaptic connections among the neurons are

55

biologically motivated and therefore LSM reservoirs often follow the topological

and metric constraints seen in biological spiking neural network systems.

In Liquid State Machine reservoir, the name liquid comes from the analogy to

dropping an object such as a stone into a still body of water or other liquid.

The dropped object or stone causes perturbation or ripples on the surface of the

liquid. Hence, the dropping of stone into the liquid can be seen as a conversion

to spatio-temporal pattern of liquid displacement. Often, spike trains are used

as an input to an LSM reservoir.

As a readout for LSMs, potentially anything such as linear regression,

multilayer feed-forward neural networks, spiking or sigmoid neurons can be used

(Maass et al., 2002). Since the output is in spikes, real-valued outputs are

obtained by employing mechanisms for averaging spike trains.

LSM are often computationally expensive and difficult to implement due to

the use of biologically plausible spiking neuron models with dynamic synaptic

connections. The huge number of parameters associated with the neuron models

and networks often makes it a challenging task to manually fine tune in order to

obtain satisfying results for real world applications. Due to this reason, ESNs

are more widely used for engineering application of recurrent neural networks.

On the other hand, spiking neuron models are able to perform more

sophisticated information processing when compared to Echo State Networks

which can emulate only the mean firing rates of biological neurons. This is

56

because the spiking neural networks model also considers the spike firing time

derived from the input signal information (Maass et al., 2002; Maass, Joshi, &

Sontag, 2006). Also, due to its biological plausibility, many mechanisms from

biological neural networks can be easily incorporated into the LSM reservoir.

Polychronization

Polychronization refers to the group of neurons participating in a consistent

spatio-temporal firing pattern (Izhikevich, 2006). Synchronization can be

considered as a special case of polychronization where a group of neurons tend

to fire at the same time.

The theoretical number of possible coding schemes is quite high. Some of the

statistical encoding schemes are: maximum spike rate using a specific time

window, synchrony coefficient of a neuronal population, latency in percent of

Maximum spike rate, standard deviation of interspike interval, mean interspike

interval divided by latency etc. Maass and Bishop (1999); Gerstner and Kistler

(2002a) state that how exactly the biological neuron encodes and decodes the

information from and into conceptual elements is still controversial or unknown.

Previous Works

Various research groups have used Liquid State Machines (LSM’s) for solving

real world problems or have otherwise carried out research to understand the

characteristics of Liquid State Machines under various conditions. A brief

57

review of previous works is presented below.

Along with the spectro-temporal pattern recognition domain, Verstraeten,

Schrauwen, and Stroobandt (2005) used LSM to recognize isolated word. For

performance comparison, the results of LSM where compared to the

state-of-the-art Hidden Markov Model (HMM) having Mel-Frequency Cepstral

Coefficients (MFCC) front end. The authors also compared various spike

information representation schemes such as HopfieldBrody, MFCC and Lyon

Passive Ear model, considered as a preprocessing step. As an initial step, Ben’s

Spike Algorithm (BSA) (Schrauwen & Van Campenhout, 2003) was used to

encode the sound into spike trains. Verstraeten, Schrauwen, and Stroobandt

(2005) study showed the performance of LSM similar to Hidden Markov Model

(HMM) having MFCC front end. Also, the authors show that LSM is robust

against input noise whereas HMM is sensitive. The original design of HMM

allows only processing of discretely sampled data while much of real-world

information is continuous in nature (in time as well as magnitude).

Furthermore, additional tasks such as speaker identification or word separation

cannot be performed on the same input using HMMs.

Also, in studies by Pape, de Gruijl, and Wiering (2008) and by Ju, Xu, and

VanDongen (2010), the authors have used LSM for music recognition. The

latter study has also demonstrated real-time applicability of LSM for music

style recognition. In both studies, the authors have used Fast Fourier Transform

(FFT) to convert the sound data into vectors of 64 frequency bands with their

respective amplitudes followed by normalization. Also, simple readout functions

such as Recurrent Neural Network (Elman Network), K-Nearest Neighbour

(KNN) or perceptrons are used for classification tasks.

58

Along with the spatio-temporal pattern recognition domain especially

relating to visual information, Burgsteiner et al. (2005) used LSM for predicting

movements from real-world images. Also, Grzyb et al. (2009) used alternative

neuron models (such as integrate-and-re, resonate-and-re, FitzHugh-Nagumo,

Morris-Lecal, Hindmarsh-Rose and Izhikevichs models) in LSM. Here the

authors have used Gabor representations of facial expressions (in the form of

image sequence) as an input to LSM. They also used HMM and multi-layered

perceptrons as a LSM readout function for facial expression recognition task.

What is missing?

From the above studies, it can be seen that LSM performs very well on Spatio /

Spectro-Temporal data (SSTD). However, none of the studies have explored the

applicability of LSM on continuous real-word data. Especially in the case of

visual data, it is often presented to the LSM in the form of a sequence of images

rather than a whole spatio-temporal sequence. In our study, we hypothesize

that presenting the entire visual data to the LSM is not only feasible but will

also result in better classification performance since the correlation between the

spatial and temporal component of the data will be strongly maintained. In our

study, we want to find out what the LSM performance would be on the entire

data that has varying temporal lengths ranging from milliseconds to minutes.

Furthermore, most of the previous studies have used traditional machine

learning algorithms. We propose an SNN based classifier as a readout function.

This will show the applicability of SNN methods on real word problems, and

will allow on-line one-pass computation since the SNN classifier can directly

process the spikes from LSM. Furthermore, it will be entirely a spike-time based

59

computational approach.

In a study performed in our research group (Schliebs, Nuntalid, & Kasabov,

2010), the authors have suggested that the use of stochastic neural models to

construct probabilistic LSM could potentially result in better classification

performance. However, the study was performed using spike inputs generated

by Poisson process. In our study, we will also test this hypothesis by

constructing probabilistic LSMs and applying them on real world problems.

Lastly, in majority of the LSM studies, Hebbian learning rules such as Spike

Timing Dependent Plasticity (STDP) are either applied at the input to LSM

connections or at the LSM to readout connections. We hypothesize that the

combination of dynamic synapses in liquid and STDP (i.e. a learning reservoir)

will allow the network to adapt its activity to the inputs it receives. This should

in turn result in a better classification performance.

3.2.3 Backpropagation-Decorrelation

The concept of backpropagation-decorrelation reservoir has been taken from the

classical recurrent neural network methods where error backpropagation is used

for performance optimization.

In a study by Atiya and Parlos (2000), the analysis of recurrent neural

networks weight dynamics when used with Atya-Parlos recurrent learning

(APRL) algorithm (Atiya & Parlos, 2000) showed that the hidden weights

change slowly compared to the output weights of the network. In another study

(Schiller & Steil, 2005), it was shown that when there is a single output the

weight changes are column-wise coupled. In a nutshell, when APRL is coupled

with recurrent neural networks, this results in a slowly adapting reservoir with

60

fast adapting output. Based on the above findings the

BackPropagation-DeCorrelation (BPDC) was proposed by Steil (2004),

producing an iterative and online recurrent neural network training method.

BPDC utilizes the same neuron model present in echo state networks. The

advantage of BPDC is in its fast convergence times, therefore allowing it to

quickly adapt to rapid signal changes (Steil, 2004).

3.2.4 Temporal Recurrent Networks

Peter F. Dominey’s research focuses on cortico-striatal circuits in the human

brain (Dominey, 1995; Dominey et al., 2003, 2006). Even though his research

aims at understanding the complex neural structures and their functions rather

than theoretical computational principles, he was the one who clearly defined

the reservoir computing principles, stating, ”... there is no learning in the

recurrent connections [within a subnetwork corresponding to a reservoir], only

between the State [i.e., reservoir] units and the Output units. Second,

adaptation is based on a simple associative learning mechanism ...” (Dominey &

Ramus, 2000). Dominey and Ramus (2000), coined the term Temporal

Recurrent Network for the neural reservoir module. The algorithm implied by

Dominey can be regarded as a form of Least Mean Squares algorithm. He also

states that the simulated recurrent prefrontal network is dependent upon the

fixed randomized recurrent connections (Dominey, 2005). The reservoir

computing researchers and Dominey were not aware of each other’s research

findings until early 2008.

61

3.3 Summary

In this chapter we have given a brief description of reservoir computing and the

various flavors of reservoirs. As per the research objectives discussed in chapter

1, we stated that one of our aims was to demonstrate SNNs potential to solve

real world problems. Taking this into consideration, we have opted to use the

Liquid State Machine as a reservoir computing approach. In chapter 4, we

conduct a pilot study demonstrating the classification capability of LSM

reservoir on a spatio-temporal dataset. Also, we incorporate various stochastic

spiking neuron models in the LSM reservoir. The experiment setting, dataset

and results are explained in more details in chapter 4.

62

4
A novel evolving probabilistic SNN

reservoir architecture for SSTD

In this chapter, we present a novel architecture called evolving probabilistic

SNN reservoir architecture (epSNNr) and carry out classification performance

test on synthetic video dataset. The proposed epSNNr consists of probabilistic

Liquid State Machine (LSM), which is constructed using various stochastic

neuron models. The hypothesis that probabilistic LSM can potentially have

63

better classification performance than LSM without stochastic neuron models

or without LSM will be tested by using synthetic spatio-temporal data.

4.1 Aim of the study

Video information is spatio-temporal (ST) in nature and the problem of ST

pattern recognition (STPR) is a challenging task in the machine learning

domain. Existing statistical and artificial neural networks machine learning

approaches fail to model the complex ST dynamics optimally, since they either

process spatial and temporal components separately or integrate them together

in a simple way, losing the significant correlation information present in the ST

data. Many of the existing methods process data on a frame-by-frame basis,

rather than as whole spatio-temporal patterns.

Hidden Markov Models (HMM) is among the most popular statistical

approaches and is widely used for processing time series (Rabiner, 1989). HMMs

are often used either with traditional neural networks (Trentin & Gori, 2001) or

on their own (Poppe, 2010). However, HMM have some limitations when used

for multiple time series that have also spatial components (Turaga et al., 2008).

There are other emerging approaches such as deep machine learning which

involves the combination of Deep Belief Networks (DBNs - Generative Model)

and Convolutional Neural Networks (CNNs - Discriminative Model) (Arel et al.,

2010). The proposed DBNs model nevertheless carries out learning in a frame

by frame manner, rather than learning the entire STD patterns.

64

The brain inspired SNN have the ability to learn spatio-temporal patterns by

using trains of spikes (which are spatio-temporal events) (Gerstner & Kistler,

2002b). Furthermore, the 3D topology of a spiking neural network reservoir has

the potential to capture a whole STD pattern at any given time point. The

neurons in this reservoir system transmit spikes via synapses that are dynamic

in nature, collectively forming an ST memory (Maass & Markram, 2002).

Often, learning rules such as Spike-Time-Dependent-Plasticity (STDP)

(Legenstein et al., 2005) are commonly utilized in SNN models.

Recently, several SNN models and their applications have been developed by

numerous research groups (Maass et al., 2002),(Natschlager & Maass, 2002) as

well as by our research group (Kasabov, 2007), (Schliebs, Kasabov, &

Defoin-Platel, 2010), (Kasabov, 2010b). However, they still process ST data as

a sequence of static feature vectors extracted from segments of data, without

utilizing the SNN’s capability of learning whole ST patterns.

In order to address the limitations of the current machine learning techniques

for ST pattern recognition from continuous ST data, we have developed a novel

SNN architecture called evolving probabilistic SNN reservoir (epSNNr).

The aim of this study is to demonstrate the feasibility of the proposed novel

architecture for continuous ST modeling and pattern recognition utilizing

epSNNr. More specifically, in this study we show that:

65

1. The epSNNr approach is more accurate and flexible than using standard

SNN;

2. The use of probabilistic neuronal models is superior to the traditional

deterministic SNN models, including a better performance on noisy data

in this particular dataset.

In order to demonstrate the feasibility of the proposed novel architecture, we

have evaluated our approach on a synthetic video dataset.

4.2 The proposed epSNNr Architecture

The proposed epSNNr architecture can be described by the following

characteristics:

• it uses a probabilistic model of a neuron;

• it captures in its internal space ST patterns from data that can be

classified in an output module;

The design of the overall epSNNr architecture is illustrated in Figure 4.2.1,

where the data acquisition part represents the video and/or audio data stream

along with the spike encoding module. The data processing module represents

several components/modules where dimensional transformation and learning

take place.

The connections between neurons are initially set by using a Gaussian

function centered at each spatially located neuron, so that closer neurons are

66

.

C1

C2

C3

C4

C5

Cn

Spatio Temporal Video Stream

Spike

Encoder

epSNNr with Probabilistic Neuronal Models Readout Function

t

Input Layer

Figure 4.2.1: A generic epSNNr architecture for spatio-temporal data modeling and
pattern recognition.

connected with a higher probability. The input information is transformed into

trains of spikes before being submitted to the epSNNr. Continuous value input

variables can be transformed into spikes using different approaches:

• population rank coding (S. Wysoski et al., 2010),(Kasabov,

2007),(Schliebs, Kasabov, & Defoin-Platel, 2010);

• thresholding the input value, so that a spike is generated if the input

value is above a threshold;

• thresholding the difference between two consecutive values of the same

variable over time as it is in the artificial cochlea and artificial retina

devices (Schliebs, Nuntalid, & Kasabov, 2010; Hamed et al., 2010).

The input information is entered in the epSNNr continuously and its state is

evaluated after an entire input stream (a sample) is entered, rather than after

every single time frame.

The epSNNr uses a probabilistic neural model as explained in the next

section. The current state of the epSNN ’reservoir’ S(t) is captured in an

output module. For this purpose dynamically created spatio-temporal clusters

67

C1, C2, . . . Ck of close (both in space and time) neurons, can be used. The state

of each cluster Ci at a time t is represented by a single number, reflecting on the

spiking activity at this time moment of all neurons in the cluster, which is

interpreted as the current spiking probability of the cluster. The states of all

clusters define the current reservoir state S(t). In the output function, the

cluster states are used differently for different tasks.

4.3 Probabilistic neuronal models in the epSNNr as

extensions of the LIF model

Models of probabilistic neurons have been proposed in several studies, e.g. in

the form of dynamic synapses (Hamed et al., 2010), the stochastic integration of

the post-synaptic potential (Verstraeten et al., 2007) and stochastic firing

thresholds (Norton & Ventura, 2009). In (Kasabov, 2010b) a probabilistic

neuronal model is introduced that has three probabilistic parameters to extend

the LIF model:

• pcj, i(t) is the probability that a spike emitted by neuron nj will reach

neuron ni at a time moment t trough the connection between nj and ni ;

• psj, i(t) is the probability of the synapse sj,i to contribute to the post

synaptic potential PSPi(t) after the latter has received a spike from

neuron nj ;

• pi(t) is the probability parameter for the neuron ni to emit an output

spike at time t, once the total post-synaptic potential PSPi(t) has

reached a value above the PSP threshold (a noisy threshold).

68

As a partial case, when all or some of the probability parameters are fixed to

”1”, the pSNM can be reduced to LIF. The LIF neuron is arguably the best

known model for simulating spiking networks. It is based on the idea of an

electrical circuit containing a capacitor with capacitance C and a resistor with

resistance R, where both C and R are assumed to be constant. The model

dynamics are described by the following differential equation:

τm
du

dt
= −u(t) +RI(t) (4.1)

The constant τm is called the membrane time constant of the neuron.

Whenever the membrane potential u crosses a threshold v from below, the

neuron fires a spike and its potential is reset to a resting potential ur. It is

noteworthy that the shape of the spike itself is not explicitly described in the

traditional LIF model. Only the firing times are considered to be relevant. We

will introduce here only three types of probabilistic models considering only the

third probability parameter pi(t) of the probabilistic model from (Kasabov,

2010b). The rest of the probability parameters are not considered in this study

or are assumed to be set to 1.

We define a noisy reset (NR) model that replaces the deterministic reset of

the potential after spike generation with a stochastic one. Let t(f) : u(t(f)) = v

be the firing time of a LIF neuron, then

lim
t→t(f),t>t(f)

u(t) = N(ur, σSR) (4.2)

69

defines the reset of the post-synaptic potential. N(ur, σSR) is a Gaussian

distributed random variable with mean µ and standard deviation σ. Variable

σSR represents a parameter of the model.

We define two stochastic threshold models that replace the constant firing

threshold v of the LIF model with a stochastic one. In the step-wise stochastic

threshold (SNT) model, the dynamics of the threshold update are defined as

lim
t→t(f),t>t(f)

v(t) = N(v0, σST) (4.3)

Variable σST represents the standard deviation of the Gaussian distribution

N and is a parameter of the model. According to Eq.4.2, the threshold is the

outcome of a v0-centered Gaussian random variable which is sampled whenever

the neuron fires. We note that this model does not allow spontaneous spike

activity. More specifically, the neuron can only spike at time t(f) when also

receiving a pre-synaptic input spike at t(f). Without such a stimulus a spike

output is not possible. The continuous stochastic threshold (NT) model updates

the threshold continuously over time. Consequently, this model allows

spontaneous spike activity, i.e, a neuron may spike even at a time when

pre-synaptic input spike is absent. The threshold is defined as an

Ornstein-Uhlenbeck process (Maass & Zador, 1999):

τv
dv

dt
= v0 − v(t) + σCT

√

2τvξ(t) (4.4)

where the noise term ξ corresponds to Gaussian white noise with zero mean

and unit standard deviation. Variable σCT represents the standard deviation of

70

the fluctuations of v(t) and is a parameter of the model. We note that v(t) has

an overall drift to a mean value v0 , i.e. v(t) reverts to v0 exponentially with

rate τv, the magnitude being in direct proportion to the difference v0 − v(t).

In this chapter we explore the feasibility of using the above three probabilistic

(stochastic) neuron models in an epSNNr for a simple moving object

recognition task.

4.4 epSNNr Pilot Study: Synthetic Video Dataset

Samples

C
la

ss
e

s

M
o

v
in

g
 O

b
je

ct D
ire

ctio
n

Synthetic Spatio-Temporal Video Data

tim
e (t

)

4x4 Pixels

Figure 4.4.1: The figure illustrates the synthetic video dataset. There are four classes
corresponding to the 4 different directions of the object movement where each class con-
sists of five samples. The arrows represent the direction in which the objects are moving.

The synthetic video data set (see Fig.4.4.1) consists of four different classes

with five samples in each class. Each class corresponds to the objects trajectory

71

/ movement (from up to down, left to right, down to up and right to left).

Moreover, from Figure 4.4.1 it can be seen that each of the samples belonging

to the same class has varying amount of noise (distorted shapes). In total there

are 20 video sequences in the dataset. Each of the videos have a frame rate of

25 frames per second with time span averaging around 4 seconds. All video

sequences are then resized to 4× 4× 4.

Our goal is to apply our method for action recognition of moving objects.

This particular synthetic data set was designed to test the architectures

capability of classifying moving objects based on their trajectory/motion.

Furthermore, this synthetic dataset is also used to test the model’s feasibility

for handling continuous spatio-temporal data stream where the epSNNr is

provided with inputs of multiple spikes (i.e. 3-dimensional inputs).

4.5 Design of the experiment

Similar to the study presented in (S. Wysoski et al., 2010), we use the

population rank encoding method for transforming the continuous value input

variables into spikes. These spikes are then fed to the epSNN reservoir which

results in liquid responses.

It can be seen (from Fig.4.5.1) that there are sharp peaks in the peristimulus

time histograms (PSTH). This is due to occurrence of spikes after every

repetition. These spikes are also known as reliable spikes and are useful for

training the algorithms in order to map a particular reservoir response to a

desired class label. Figure 4.5.1) shows the raster plot and PSTH produced by

72

Class 1 Class 2 Class 3 Class 4

Step-wise Noisy Threshold (ST)

Figure 4.5.1: The figure shows the raster plots and PSTH of 4 typical states for the
4 classes produced by Step-wise Noisy Threshold (SNT). The top row shows the raster
plot of the neural response of epSNNr with SNT probabilistic neurons recorded in 64
repetitions. The bottom row presents the corresponding smoothed PSTH for each raster
plot. Each column corresponds to 4 different classes as indicated by the plot labels.

Step-wise Noisy Threshold probabilistic neuronal model for a particular

instance belonging to one of the four different classes. On acquiring these liquid

responses from the last layer of epSNN reservoir, they are concatenated as state

vectors according to their corresponding classes. After transforming these liquid

responses to state vectors, they are used for training and testing the classifiers.

For our pilot experiment, we have used five different types of classifiers as

readout functions. These are Naive Bayes (NB), Multi-Layered Perceptron

(MLP), Radial Basis Function (RBF), Decision Tree Induction Algorithm (J48)

and Support Vector Machine (SVM). Default parameter settings are used for

73

each of the classifiers in all our experiments. For MLP, the learning rate is been

set to 0.3, with 64 hidden nodes for 500 epochs. RBF kernel was used for SVM

with gamma value of 0.0 and weights set to 1. As for the J48, the confidence

factor used for pruning is 0.25 and the minimum number of instances per leaf is

set to 2.

Due to the sparsity of the data samples in each class, we have used the

leave-one-out cross-validation method for the training and testing of all five

classifiers. This allows us to test all samples while being unbiased and with

minimum variance. The experiment is run 10 times and the obtained test

results are averaged. Moreover, no pre-processing steps such as feature selection

are applied on the synthetic video dataset.

One of the aims of this study is to investigate the feasibility of epSNNr for

spatio-temporal video pattern recognition using different probabilistic neuron

models. We have tested our synthetic video dataset with three probabilistic

neuron models, namely Noisy Reset (NR), Step-wise Noisy Threshold (SNT)

and Continuous Noisy Threshold (NT) along with the standard Leaky Integrate

and Fire (LIF) neuron model. In order to continuously feed three dimensional

inputs to the reservoir, the dimensions of the input layer are set to 4× 4. This

input layer dimensions are the same as those of the synthetic video data.

Therefore, there is one input neuron for each pixel at a time.

74

4.6 epSNNr parameter settings

The LSM network topology is constructed using 140 neurons (N) arranged in a

three-dimensional topology of 10× 7× 2 neurons. The neurons (N) is made up

of excitatory (Nex) and inhibitory (Ninh) neurons with 4 : 1 ratio respectively.

The simulation time for the reservoir is set to 350 ms, since the maximum time

scale for the synthetic video data is 3.5 seconds. These 3.5 seconds video

timescale is internally represented by the LSM as 350 ms.

Table 4.6.1: The following table presents the parameter settings that are used in our
experimental setup for the neuron models and LSM

Parameters V alue/s

For AER Spike Encoder

Threshold ±0.17
Video Scale 14 x 10 px
Simulation Time 350 s
For Neuron

Time Constance 10 ms
Reset Potential 0 mV
Initial Firing Threshold 10 mV
Standard Deviation of reset fluctuation 3 mV
Standard Deviation of Step-wise Firing Threshold 2 mV
Standard Deviation of Continuous Firing Threshold 1 mV
For LSM

Simulation Time 350 ms
Number of Neurons 140
Excitatory to Inhibitory Neuron Ratio 4:1
Input Neurons Connection Probability 0.2
Input Neurons Connection Weight 3.99 mV
Time-bin for Liquid Responses 10 ms

75

4.7 Experimental results and discussions

In theory, a readout function f(LN) can be of any type. Therefore, in our pilot

experiment, we use five different traditional classifiers as the readout functions,

which are namely Naive Bayes (NB), Multi-Layered Perceptron (MLP), Radial

Basis Function (RBF), J48 Decision Tree and Support Vector Machine (SVM).

In order to continuously feed 3 dimensional input to the reservoir, we assemble

the input neurons such that it has the same dimensions. Therefore, there is one

input neuron for each pixel/spike at a time and these neurons are connected to

one of the faces of the LSM having the same dimensions as the input data. For

applying the readout function (classifiers) on the liquid states X(t), we have

concatenated all the liquid states from different time points. Similarly, we have

concatenated all the time points of the synthetic spatio-temporal video data

and directly apply it on the classifier/s, i.e. without the reservoir. Default

parameter settings are used for each of the classifiers in all our experiments.

Moreover, no preprocessing steps such as feature selection were applied. Due to

the large number of the data samples in each class, we have opted for the

10-fold cross validation method. Table 4.7.1 provides the classification accuracy

where static connections and AER On Spike Events are utilized in the LSM.

From Table 4.7.1, it can be seen that epSNNr approach is more accurate and

flexible than using standard SNN. Also on an average, the probabilistic

neuronal models performed 7.09% better than the traditional deterministic LIF

neuron model. Furthermore, when compared to the results obtained by the

classifiers without the reservoir, the epSNNr approach average performance is

76

Table 4.7.1: The table presents the Classification Accuracy (Acc.) and Standard Devi-
ation (Std. Dev.) for five different methods, namely Naive Bayes (NB), Multi-Layered
Perceptron (MLP), Radial Basis Function (RBF), J48 Decision Tree and Support Vec-
tor Machine (SVM). The classification was carried out on LSM states generated by three
probabilistic neuron models, namely Noisy Reset (NR), Step-wise Noisy Threshold (SNT)
and Continuous Noisy Threshold (NT) along with the standard Leaky Integrate and Fire
(LIF) neuron model.

Methods Without Reservoir With LSM Reservoir
(Classifiers) Acc.(%)/Std. Dev. LIF Model NR Model NT Model SNT Model
NB 36.45 % ± 8.3073 55.09 % ± 0.1667 65.00 % ± 9.4786 75.00 % ± 22.9640 78.39 % ± 6.6023
MLP 50.00 % ± 15.9344 56.59 % ± 0.1784 100.00 % ± 0.000 100.00 % ± 0.0000 100.00 % ± 0.0000
RBF 55.00 % ± 8.1490 93.75 % ± 10.8253 96.25 % ± 5.5902 96.25 % ± 3.4233 93.75 % ± 6.2500
J48 36.25 % ± 6.8465 52.42 % ± 0.1677 63.60 % ± 11.9486 61.25 % ± 16.7705 63.92 % ± 17.2511
SVM 46.25 % ± 12.1835 81.25 % ± 19.2638 80.10 % ± 19.3137 83.75 % ± 17.4553 77.50 % ± 18.0061

37.55% higher. We assume that this is due to the epSNNr’s ability to naturally

process spatio-temporal data streams when compared to traditional methods.

Also, the probabilistic neuron models further enhance the separability of the

reservoir. The advantage of probabilistic neural model has been well established

in previous studies (Schliebs, Nuntalid, & Kasabov, 2010) and it is also

apparent from our experiment. From Table 4.7.1, it can be seen that our

proposed epSNNr approach performs very well, especially with classifiers such

as MLP and RBF for this particular dataset.

This particular pilot study shows epSNNr’s capability of handling continuous

multiple spike injections using probabilistic neuron model. Moreover, the

recognition rates for our system are compared to the results obtained by the

classifiers without the reservoir, the average performance of the epSNNr

approach is significantly higher. This suggests that the use of probabilistic

neuronal models is superior in several aspects when compared with the

traditional deterministic SNN models, including a better performance on noisy

77

data. However, further study on the behavior of the epSNNr architecture under

different conditions is needed and more experiments are required to be carried

out on benchmark action recognition video datasets. A working reservoir

implementation (in python) is provided in Appendix A, Section A.4.1.

4.8 Summary

In this chapter we introduce a novel epSNNr architecture. Also, some specific

characteristics and the robustness of the method are studied. Furthermore,

guidelines for the configuration of parameters are derived for the epSNNr

architecture. The epSNNr presented in this chapter by itself is not evolving.

However, integration of evolving readout functions in its architecture such as

deSNN (introduced in chapter 6) makes it evolving in nature. The stochastic

aspect (introduced by stochastic neuron models) in the LSM reservoir makes it

novel from other SNN’s performing RC. The findings of this study have been

published in Kasabov, Dhoble, Nuntalid, and Mohemmed (2011). We also have

found that it is somewhat inconvenient to map the states of the LSM reservoir

into vectors for the traditional readout function. Therefore, in later chapters we

introduce improved architectures that use SNN-based readout functions. This

will allow the readout function to directly utilize spike output produced by

epSNNr architecture. And lastly, we also found that probabilistic LSM can

potentially have a better classification performance. In the next chapter we

introduce the AER and its implementations.

78

“The eye sees only what the mind is prepared to

comprehend.”

Henri-Louis Bergson (1859-1941)

5
Address Event Representation (AER): a

method and its implementation

In this chapter we present the analysis of the spikes output produced by a

neuromorphic hardware, artificial silicon retina, under different light conditions.

All of the AER based data used in our study are obtained under the same light

conditions/settings, hence it it important to show the amount of inherent noise

and the characteristics of the AER data. Moreover, we also present a software

79

simulator developed for encoding spatio-temporal (visual) data into spikes using

AER method and its spikes output.

The neuromorphic cognitive system consists of analog/digital

Very-Large-Scale Integration (VLSI) architecture that utilizes silicon based

hardware to mimic the neuro-biological features of the nervous system,

producing asynchronous event-based spike signals. Neuromorphic engineering is

an interdisciplinary domain that takes inspiration from biology, computer

science, mathematics, engineering and cognitive psychology to build artificial

neural systems, such as vision and auditory systems.

Since our research, is focused on audio-visual systems, we provide a brief

introduction on the artificial silicon retina. The AER data used in our

spatio-temporal pattern recognition case studies is acquired from the artificial

retina. This neuromorphic hardware system has been designed and developed

by the Institute of Neuroinformatics, Zurich (Delbruck, 2007). The following

section provides a detailed explanation on the workings of these neuromorphic

hardware devices based on which the Artificial Silicon Retina (DVS128)

software simulator was developed.

80

Arti�cial Silicon Retina (DVS 128)

Front View Back View

Figure 5.1.1: The figure shows the artificial silicon retina (DVS 128). This neuromor-
phic hardware was used to acquire data for experiments in our study.

5.1 Artificial Silicon Retina - Neuromorphic Hard-

ware utilizing AER

5.1.1 AER Noise

For determining the level of noise under fluorescent and natural light conditions,

seven samples were collected for both light conditions. 1200ms was the time
81

(a) AER recording environment under artificial (fluorescent) light
conditions

(b) AER recording environment under natural light conditions

Figure 5.1.2: The figure shows the two different lighting conditions under which the
AER data was recorded for the Human Action Recognition Dataset using Artificial Silicon
Retina (DVS128).

period considered for all samples. 16000 neurons were used to represent the

57× 57 pixel area (see Figure 5.1.4) of the Artificial Silicon Retina. The spikes

(generated due to noise and collected from the Artificial Silicon Retina shown in

Figure 5.1.1) in both light settings were averaged. The results (see Figure 5.1.5)

show that on average, under fluorescent light conditions the level of noise is

about 87.71% ±11.41 and under natural light conditions the level of noise is

around 50.00% ±17.05. This extra noise under the fluorescent light conditions

is due to flickering of the light source (tube lights). Since the Artificial Silicon

Retina’s capture rate is faster than standard cameras, it is able to pick up

82

AER snapshot

Snapshot of fluorescent light source

Figure 5.1.3: The figure shows the noise captured by the Artificial Silicon Retina when
focused on fluorescent light source such as a tube light. The photo on the left shows the
actual image and the plot on the right shows the AER snapshot.

0 200 400 600 800 1000 1200
Time (ms)

0

2000

4000

6000

8000

10000

12000

14000

16000

Ne
ur

on
 n

um
be

r

0 200 400 600 800 1000 1200
Time (ms)

0

2000

4000

6000

8000

10000

12000

14000

16000

Ne
ur

on
 n

um
be

r

Figure 5.1.4: The figure shows the raster plot, i.e. the spikes that represent noise cap-
tured by the Artificial Silicon Retina when focused on fluorescent light source such as a
tube light. The seven different spike colors represent noise from seven samples. The plot
on the left is the raster plot for noise under fluorescent light conditions and figure on the
right is the raster plot for noise under natural light conditions.

flicker / fluctuation of light (see Figure 5.1.3). This noise, however, can easily

be reduced or eliminated by adjusting the bias settings and introducing a filter.

Since when recording the data for human action recognition we did not adjust

the bias setting or apply any filter, it is necessary to perform the comparison on

the level of noise introduced under both light conditions. The actual light

setting for both conditions / cases can be seen in figure 5.1.2.

83

20

40

60

80

100

Sp
ik

e
co

un
t d

ue
 to

 n
oi

se

Spikes produced by noise under natural and fluorescent light conditions

Fluorescent
Natural

Figure 5.1.5: This bar graph compares the noise level from AER data acquired under
fluorescent (left) and natural (right) light conditions.

5.2 Artificial Silicon Retina - Software Simulator uti-

lizing AER

Based on the Artificial Retina Hardware (AER) hardware, developed in The

Institute for Neuroinformatics (INI), Zurich, we have developed a software

simulator that allows us to capture video and convert it to spike trains in an

off-line batch manner or in real time (see Figure 5.2.1). The simulator was

implemented in python using OpenCV libraries (Bradski, 2000). The KEDRI’s

AER software simulator algorithm is given in Appendix A, Section A.1. This

serves as an alternative to the artificial silicon retina, thereby allowing us to

perform pilot experiments with our developed system.

84

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0 20 40 60 80 100 120 140

0

20

40

60

80

100

a) Disparity Map of a Video Sample

b) Address Event Representation (AER) of the above Video Sample

time (t)

Figure 5.2.1: (a) shows the disparity map of a video sample from KTH dataset (Schuldt
et al., 2004). (b) shows the Address Event Representation (AER) generated by our sim-
ulator for Video Sample shown in (a). Here the red and blue color represent the On and
Off events respectively.

Many of the real time machine vision systems have an inherent limitation of

processing information on a frame by frame basis. Lichtsteiner and Delbrück

(2005) state that this often results in processing of redundant information

present both within and across the frames (see Fig.5.2.2). However, this

drawback is addressed by an Address Event Representation (AER) artificial

silicon retina.

This neuromorphic vision hardware generates events corresponding to the

changes in log intensity. The artificial silicon retina mimics some aspects of our

biological vision system which utilizes asynchronous spike events captured by

the retina (Indiveri, 2008). This allows fast and efficient processing since it

discards the irrelevant redundant information by capturing only that

spatio-temporal information corresponding to the temporal changes in log

intensity (see Figures 5.2.2 & 5.2.1). For pixel illumination I, the operation for

the continuous form can be defined as

85

on

d/dt

off

lo
g
 I

input

0

+1

-1

time (t)

Figure 5.2.2: These figure shows the idealized pixel encoding and reconstruction of
video data. The ON and OFF events represent significant changes in log I. It can be
seen that the changes are greater than the threshold generated events. Adapted from
(Lichtsteiner & Delbrück, 2005).

d

dt
logI =

dI/dt

I
(5.1)

We have successfully created a simulator that allows capturing of video and

converting it to spike trains in real time (see Fig. 5.2.3). This serves as an

alternative to the artificial silicon retina thereby allowing us to perform pilot

experiments on our developed system.

Figure 5.2.3 shows the AER On and Off spike events for three human actions

namely Boxing, Hand Clapping and Jogging. All three actions are performed by

subject 1. It can be seen that the On and Off spike events for each of the

86

0 50 100 150 200 250 300 350

Tim e

300

400

500

600

700

800

900

1000

1100

P
ix

e
ls

On Events (posit ive pixels)

0 50 100 150 200 250 300 350

Tim e

300

400

500

600

700

800

900

1000

P
ix

e
ls

Off Events (negat ive pixels)

a. Action: Boxing, Subject: 1, Video Sample: 1

0 50 100 150 200 250 300 350

Tim e

300

400

500

600

700

800

900

1000

P
ix

e
ls

On Events (posit ive pixels)

0 50 100 150 200 250 300 350

Tim e

300

350

400

450

500

550

600

650

700

750

P
ix

e
ls

Off Events (negat ive pixels)

b. Action: Hand Clapping, Subject: 1, Video Sample: 1

0 50 100 150 200 250 300

Tim e

0

200

400

600

800

1000

1200

P
ix

e
ls

On Events (posit ive pixels)

0 50 100 150 200 250 300

Tim e

0

200

400

600

800

1000

1200

P
ix

e
ls

Off Events (negat ive pixels)

c. Action: Jogging, Subject: 1, Video Sample: 1

Figure 5.2.3: The figure shows the On and Off spike events for three human actions,
namely a) Boxing, b) Hand Clapping and c) Jogging. It can be seen that the On and Off
event map for each of the actions are quite similar especially for actions such as a) Box-
ing and b) Jogging. All the above three actions are performed by subject 1. At this stage
we notice that the AER spike encoding for each of the actions are very much distinctive.

87

actions performed by the subject are very much similar. Also, each action

produces spiking events that are highly distinctive from each other. However,

from Figure 5.2.4, it can be seen that similar actions such as Walking, Running

and Jogging produce On and Off spike events that are visually quite similar. It

can be observed that different subjects performing the same action produce

characteristically different spiking events. This is because the subjects do not

perform the actions in an exact manner and each of them has a peculiar way of

performing the same action.

Figure 5.2.4: The figure shows that similar actions such as Walking, Running and Jog-
ging produce spike events that are visually alike. In this figure we have only shown ’On’
spike event map for 4 different subjects for easy comparison. It can be observed that dif-
ferent subjects performing the same action produce characteristically different spiking
events.

88

Figure 5.2.5: The above figure shows the spiking events for four actions, namely boxing,
walking, running and hand clapping performed by the same subject. For each of the four
activities the corresponding AER spike events, spikes from LSM using LIF neuron model
and spikes from LSM using ST neuron model are presented. The x-axis represents time in
milliseconds for LSM and time in seconds for AER. The y-axis represents the number of
neurons

The Figure 5.2.5 shows the spiking events for four actions, namely boxing,

walking, running and hand clapping performed by the first subject. For each of

the four activities the corresponding AER spike events, spikes from LSM using

LIF neuron model and spikes from LSM using SNT neuron model are presented.

It can be observed that unique spiking patterns are produced by LSM for each

of the actions performed by subject 1. Moreover, when visually comparing the

spiking activities produced by the standard Leaky Integrate and Fire (LIF) and

probabilistic Stepwise Noisy Threshold (SNT) neuron model, at this stage no

peculiar difference between them can be identified.

89

5.3 Summary

In this chapter we have introduced the AER approach that is utilized by the

artificial silicon retina (DVS-128). We have also shown the raster plot for

output generated by the software simulator created in this study which utilizes

AER spike encoding scheme. Since in later chapters we have used the data

obtained from artificial silicon retina, this initial test allows us to confirm the

feasibility of using the AER generated spikes in our frameworks and methods.

In the next chapter, we introduce a new evolving spiking neural network based

classifier / method.

90

6
Dynamic Evolving Spiking Neural

Network (deSNN): a new generic method

So far we have proposed a novel SNN-based architecture (epSNNr) and an

AER-based spike information encoding method. Now we need a SNN based

classifier that can also be used as a readout function for the epSNNr.

Considering the fact that novel and generic spike-based spatio/spectro-temporal

data processing methods are required for modeling and pattern recognition, in

91

this chapter, we propose one such novel method called dynamic evolving SNN

(deSNN).

6.1 Evolving Spiking Neural Networks (eSNN)

In general, eSNN use the principles of evolving connectionist systems (ECOS)

(Kasabov et al., 1998; Kasabov, 2002), where neurons are created (evolved)

incrementally to capture clusters of input data either in an unsupervised way,

e.g. DENFIS (Kasabov & Song, 2002), or in a supervised way, e.g. EFuNN

(Kasabov, 2001). All developed models of ECOS type, from simple ECOS

(Watts, 2009), to eSNN (Kasabov, 2007), and then to the introduced in this

study dynamic eSNN (deSNN), have been guided by the following seven main

principles (Kasabov, 2002):

1. They evolve in an open space;

2. They learn in on-line, incremental mode, possibly through one pass of

incoming data propagation through the system;

3. They learn in a life-long learning mode;

4. They learn both as individual systems and as an evolutionary population

of systems;

5. They use constructive learning and have evolving structures;

6. They learn and partition the problem space locally, thus allowing for a

fast adaptation and tracing the evolving processes over time;

92

7. They facilitate different types of knowledge, mostly a combination of

memory-based, statistical and symbolic knowledge.

6.1.1 Evolving Spiking Neural Network (eSNN)

The rank order (RO) learning rule used in the eSNN is based on the assumption

that most important information of an input pattern is contained in earlier

arriving spikes (Thorpe & Gautrais, 1998). It establishes a priority of inputs

(synapses) based on the order of the spike arrival on these synapses for a

particular pattern, which is a phenomenon observed in biological systems as

well as an important information processing concept for some STPR problems,

such as computer vision and control (Thorpe & Gautrais, 1998). RO-based

spike coding (ROSC) and RO learning makes use of the extra information of

spike (event) order.

RO learning utilizes ROSC and was introduced in (Thorpe & Gautrais,

1998). It has several advantages when used in SNN, mainly: fast learning (as it

uses the extra information of the order of the incoming spikes) and

asynchronous data entry (synaptic inputs are accumulated into the neuronal

membrane potential in an asynchronous way). The RO learning is most

appropriate for AER input data streams as the events and their addresses are

entered into the SNN one by one, in the order of their occurrence (Kasabov,

Dhoble, Nuntalid, & Indiveri, 2012).

The eSNN structure and a supervised learning algorithm based on the RO

were introduced in (Kasabov, 2007; S. Wysoski et al., 2010). They make use of

93

the integrate-and fire (IF) model of a neuron (Gerstner & Kistler, 2002b)

(Figure 6.1.1). eSNN evolve their structure and functionality in an on-line

manner, and based on the incoming data. For every new input pattern, a new

neuron is dynamically allocated and connected to the input neurons (feature

neurons). The neurons connections are established using the RO rule for the

neuron to recognize this pattern (or a similar one) as a positive example. The

neurons represent centers of clusters in the space of the synaptic weights. In

some implementations similar neurons are merged (Kasabov, 2007; S. Wysoski

et al., 2010). That makes it possible to achieve a very fast learning in an eSNN

(only one pass may be necessary), both in a supervised and in an unsupervised

mode (Kasabov, Dhoble, Nuntalid, & Indiveri, 2012).

The post-synaptic potential of a neuron i at a time t is calculated as:

PSP (i, t) =
∑

modorder(j)Wj,i (6.1)

where: mod is a modulation factor; j is the index for the incoming spike at

synapse j, i and wj,i is the corresponding synaptic weight; order(j) represents

the order (the rank) of the spike at the synapse j, i among all spikes arriving

from all m synapses to the neuron i. The order(j) has a value 0 for the first

spike and increases according to the input spike order. An output spike is

generated by neuron i if the PSP (i, t) becomes higher than a threshold

PSPTh(i).

94

Figure 6.1.1: Integrate-and-fire neuron with RO learning

During the training process, for each training input pattern (sample,

example) a new output neuron is created and the connection weights are

calculated based on the order of the incoming spikes. In the eSNN, the

connection weights of on-line created connections between a neuron ni ,

representing an input pattern of a known class, and an activated input (feature)

neuron nj, are established using the RO rule (Thorpe & Gautrais, 1998):

∆Wj,i = modorder(j,i(t)) (6.2)

After the whole input pattern (example) is presented, the threshold of the

neuron ni is defined to make this neuron spike when this or a similar ST

pattern (example) is presented again in the recall mode. The threshold is

calculated as a fraction (C) of the total PSP:

PSPmax =

m
∑

j=1

T
∑

t=1

(modorder(j,i(t))Wj,i(t)) (6.3)

95

Figure 6.1.2: eSNN for classification using population coding of inputs. Taken from
(S. Wysoski et al., 2010)

PSPTh = C.PSPmax (6.4)

If the connection weight vector of the trained neuron is similar to the one of

an already trained neuron in a repository of output neurons for the same class,

the new neuron will merge with the most similar one, averaging the connection

weights and the threshold of the two neurons (Kasabov, 2007; S. Wysoski et al.,

2010). Otherwise, the new neuron will be added to the class repository. The

similarity between the newly created neuron and a training neuron is computed

as the inverse of the Euclidean distance between weight matrices of the two

neurons. An example of an eSNN for classification is given in Figure 6.1.2

(S. Wysoski et al., 2010; Kasabov, 2007). The recall procedure can be

performed using different recall algorithms as explained below.

96

a. The first recall algorithm is when RO is used for a new input pattern (for

recall, test) (Eq.6.2) and the connection weight vector for this input is

compared with the patterns of existing neurons for which the output class

is established during training. The closest neuron is the winner and

defines the class of the new input pattern. This algorithm uses the

principles of transductive reasoning (Q. Song & Kasabov, 2005) and

nearest neighbor classification (Cover & Hart, 1967). It compares synaptic

weight vectors of a new neuron that captures a new input pattern and

existing ones. We will denote this model as eSNNs.

b. A modification of the above algorithm is when spikes of the new input

pattern are propagated as they arrive to all trained neurons and the first

one that spikes (its PSP is greater than its threshold) defines the class.

The assumption is that the neuron that best classifies the input ST

pattern will spike earlier. This eSNN is denoted as eSNNm.

The main advantage of the eSNN is that it is computationally inexpensive

and boosts the importance of the order in which spikes arrive to the neuron.

This makes the eSNN suitable for on-line learning of mainly static data vectors

(for some applications see (Kasabov, 2007; S. Wysoski et al., 2010)). The

problem with the eSNN is that there is no mechanism to deal with multiple

spikes arriving at different times on the same synapse and representing same

spatio-temporal pattern, which is needed for STPR. While the synapses capture

long term memory during the learning phase, they have limited abilities (only

through the PSP growth) to capture short term memory, which is necessary for

complex STPR tasks.

97

In this section, we propose an extended eSNN model with the use of SDSP

learning (Fusi et al., 2000), thus combining the two representations ROSC and

STC. This is followed by a demonstration presented in the next chapter that

shows the new model deSNN performs better than either the eSNN or the

SDSP alone for an STPR problem.

6.2 The proposed Dynamic Evolving Spiking Neural

Network (deSNN)

Temporal Spike Coding (TSC) and temporal spike learning are observed in the

auditory and visual information processing in the brain as well as in motor

control (Morrison, Diesmann, & Gerstner, 2008). Its use in neuro-prosthetics is

essential along with applications for a fast, real-time recognition and control of

sequence of related processes (Brader et al., 2007). Temporal coding accounts

for the precise time of spikes and has been utilized in several learning rules,

most popular being Spike-Time Dependent Plasticity (STDP) (S. Song et al.,

2000) and SDSP (Fusi et al., 2000), the latter being implemented in an SNN

hardware chip (Brader et al., 2007). Temporal coding of information in SNN

makes use of the exact time of spikes (e.g. in milliseconds). This is biologically

observed in the visual-, auditory-, and pre-frontal cortex and the motor control

brain area. Every spike matters and so does its time. The TSC is used in

several SNN models and learning algorithms, the most popular ones perhaps

being STDP and SDSP as described below.

98

6.2.1 The Spike Time Dependent Plasticity (STDP) learning rule

The STDP learning rule uses Hebbian form of plasticity in the form of

long-term potentiation (LTP) and depression (LTD) (S. Song et al., 2000).

Efficacy of synapses is strengthened or weakened based on the timing of

post-synaptic action potentials in relation to the pre-synaptic spike (example is

given in Figure 6.2.1). If the difference in the spike time between the

pre-synaptic and post-synaptic neurons is negative (pre-synaptic neuron spikes

first) then the connection weight between the two neurons increases, otherwise

it decreases. STDP allows connected neurons to learn consecutive temporal

associations from data. Pre-synaptic activity that precedes post-synaptic firing

can induce long-term potentiation (LTP); reversing this temporal order causes

long-term depression (LTD).

6.2.2 The Fusi’s Spike-Driven Synaptic Plasticity (SDSP) Learn-

ing Rule

The SDSP is an unsupervised learning method (Fusi et al., 2000) and is a

modification of the STDP (Brader et al., 2007). SDSP directs the change of the

synaptic plasticity Vw0 of a synapse w0 depending on the time of spiking of the

pre-synaptic neuron and the post-synaptic neuron. Vw0 increases or decreases

depending on the relative timing of the pre- and post-synaptic spikes.

If a pre-synaptic spike arrives at the synaptic terminal before a post-synaptic

spike within a critical time window, the synaptic efficacy is increased

99

(potentiation). If the post-synaptic spike is emitted just before the pre-synaptic

spike, synaptic efficacy is decreased (depression). This change in synaptic

efficacy can be expressed as:

∆Vw0 =
Ipot(tpost)

Cp

∆tspk if tpre < tpost (6.5)

∆Vw0 = −
Idep(tpost)

Cd

∆tspk if tpost < tpre (6.6)

where: ∆tspk is the pre- and post-synaptic spike time window. The Cp and Cd

are potentiation and depression thresholds of bistable circuits.

The SDSP rule can be used to implement a supervised learning algorithm,

where a teacher signal that copies the desired output spiking sequence is entered

along with the training spike pattern, but without any change of the weights of

the teacher input (refer to figure 6.2.2). In (Brader et al., 2007) the SDSP

model has been successfully used to train and test an SNN for the recognition of

293 character (classes). Each character (a static image) is represented as a 2000

bit feature vector, and each bit is transformed into spike rates, with 50Hz spike

burst to represent 1 and 0Hz to represent 0. For each class, 20 different

training patterns are used and 20 neurons are allocated, one for each pattern

(altogether 5, 860) (Figure 6.2.2) and trained for several hundreds of iterations.

The SDSP model is implemented in the INI analogue SNN silicon chip

(Indiveri et al., 2011). The silicon synapses comprise bistability circuits for

100

driving a synaptic weight to one of two possible analogue values (either

potentiated or depressed). These circuits drive the synaptic-weight voltage with

a current that is superimposed on that generated by the STDP and which can

be either positive or negative. If, on short time scales, the synaptic weight is

increased above a set threshold by the network activity via the STDP learning

mechanism, the bistability circuits generate a constant weak positive current. In

the absence of activity (and hence learning) this current will drive the weight

toward its potentiated state. If the STDP decreases the synaptic weight below

the threshold, the bistability circuits will generate a negative current that, in

the absence of spiking activity, will actively drive the weight toward the

analogue value, encoding its depressed state. The STDP and bistability circuits

facilitate the implementation of both long-term and short term memory.

Figure 6.2.2 illustrates the schematic of the network architecture for a data

set consisting of two classes. Brader et al. (2007) explains that the output units

are grouped into two pools, selective to stimuli C1 and C2, respectively, and are

connected to the input layer by plastic synapses. The output units receive

additional inputs from teacher and inhibitory populations (Brader et al., 2007).

While successfully used for the recognition of static patterns, the potential of

the SDSP SNN model and its hardware realization have not been fully explored

for STPR.

In the following section we extend the existing evolving SNN (eSNN) model

(Kasabov, 2007; S. Wysoski et al., 2010), that utilizes rank-order spike coding

(ROSC) and RO learning rule described here with temporal spike coding (TSC)

representation and TSC learning rules, namely the Fusis SDSP rule (Fusi et al.,

2000) to arrive at a new model of a dynamic eSNN (deSNN).

101

Figure 6.2.1: An illustration of the STDP learning rule. Taken from (S. Song et al.,
2000)

Figure 6.2.2: An example of using SDSP neurons. Taken from (Brader et al., 2007)

102

6.2.3 The proposed deSNN with RO- and SDSP learning rules

The main disadvantage of the RO learning eSNN is that they adjust their

connection weights once only (based on the rank of the first spike), which is

appropriate for static pattern recognition, but not for STPR. In the latter case

the connection weights need to be further tuned based on following spikes on

the same synapse using temporal spike learning.

In the proposed deSNN both the RO and SDSP learning rules are utilized.

While the RO learning will set the initial values of the connection weights for a

STPR utilizing the existing event order information in an AER dataset, the

STDP/SDSP will adjust these connections (in an unsupervised manner) based

on following spikes (events) as part of the same spatio-temporal pattern.

The training algorithm of deSNN is presented below.

1: SET deSNN parameters (including: Mod, C, Sim and the SDSP parameters)

2: FOR every input STP i represented as AER DO

2a. Create a new output neuron j for this pattern and calculate the initial

values of connection weights using the RO learning rule:

wj = (Mod)order(j)

2b. Adjust the connection weights wj for consecutive spikes on the

corresponding synapses using the SDSP learning rule.

103

2c. Calculate PSPmax

2d. Calculate the threshold value xi = PSPmax(i) ∗ C

2e. IF the new neuron j weight vector wj is similar to the weight vector of an

already trained output neuron using Euclidean distance and a threshold

Sim, then merge the two neurons:

w = wnew + w ∗N/N + 1, x = xnew + x ∗N/N + 1

where N is the number of all previous merges of the merged neuron

ELSE

END IF

3: END FOR (Repeat to all input STP)

Two types of deSNN are proposed that differ in the recall algorithm and

correspond to the two types of eSNN: eSNNs and eSNNm:

(a) deSNNs

(b) deSNNm

6.3 deSNN Examples

6.3.1 deSNN Example 1

Figure 6.3.1 illustrates the main idea of the deSNN learning algorithm. A single

spatio-temporal pattern of four input spike trains is learned by a single output

neuron. RO learning is applied to calculate the initial weights based on the

order of the first spike on each synapse (shown in red). Then STDP (in this

case SDSP) rule is applied to dynamically tune these connection weights. The

104

SDSP algorithm increases the assigned connection weight of the synapse that is

receiving the next spike and at the same time depresses the synaptic

connections of synapses that do not receive a spike at this time. Due to a

bi-stability drift in the SDSP rule, once a weight reaches the defined High value

(resulting in LTP) or Low value (resulting in LTD), this connection weight is

fixed to this value for the rest of the training phase. The rate at which a weight

reaches LTD or LTP depends upon the set parameter values (Kasabov, Dhoble,

Nuntalid, & Indiveri, 2012).

SDSP

Weights

S
T

D
P

SDSP

R
an

k
 O

rd
er

 C
o

d
in

gAER Input Pattern 0

t

N
e
u
ro
n
s

t

N
e
u
ro
n
s

Weights for Pattern 0

Figure 6.3.1: A simple example to illustrate the main principle of the deSNN learning
algorithm.

6.3.2 deSNN Example 2

In this example we consider two spatio-temporal patterns of five inputs each

(Table 6.3.1) to be learned in two output neurons and it is explained below.

The synaptic drift caused by the SDSP makes synaptic weights dynamically

learn spike time relationships between different input spike trains as part of the

same spatio-temporal pattern. The example above is of a very small scale and

in reality there are hundreds and thousands of input synapses to a neuron and

hundreds and thousands of spikes at each synapse forming a complex

105

spatio-temporal pattern to be learned, described by some statistical

characteristics. Even a small synaptic drift can make a difference (Kasabov,

Dhoble, Nuntalid, & Indiveri, 2012).

Table 6.3.1: Here we consider two spatio-temporal pattern inputs. The spike time for
input pattern 1 and 2 along with the ROC and SDSP values (weights) are provided for
this deSNN example.

Pattern 1 Pattern 2
Spike times (ms) ROC SDSP Spike times (ms) ROC SDSP

Input 1: 0.0, 1.0, 2.0, 3.0, 4.0 1 0.998 Input 1: 4.0, 5.0, 6.0, 7.0, 8.0 0.4096 0
Input 2: 1.0, 2.0, 3.0, 4.0, 5.0 0.8 0.798 Input 2: 3.0, 4.0, 5.0, 6.0, 7.0 0.512 0
Input 3: 2.0, 3.0, 4.0, 5.0, 6.0 0.64 0 Input 3: 2.0, 3.0, 4.0, 5.0, 6.0 0.64 0
Input 4: 3.0, 4.0, 5.0, 6.0, 7.0 0.512 0 Input 4: 1.0, 2.0, 3.0, 4.0, 5.0 0.8 0.798
Input 5: 4.0, 5.0, 6.0, 7.0, 8.0 0.4096 0 Input 5: 0.0, 1.0, 2.0, 3.0, 4.0 1 0.998

Time of a pattern presentation T= 8.0 ms

The connection weights learned in a deSNN represent the input patterns in

an internal, computational spatio-temporal space built by the model. How

many different input patterns can be learned and discriminated in this space

depends on the choice of the model parameters. This issue will be discussed in

Chapter 8. As a partial case, the neurons in the deSNNm can be connected to

each other with inhibitory connections (the winner takes all WTA, type of

connections); so once a neuron fires, it will prevent other neurons from firing

(both during recall and training) as it is shown in (Brader et al., 2007).

So far, we have presented the learning phase of a deSNN model. In terms of

recall, two types of deSNN are proposed that differ in the recall algorithms.

They mainly correspond to the two types of eSNN from previous section,

namely eSNNm and eSNNs that are discussed below.

(a) deSNNm: After learning, only the connection weights initially created

106

R
an

k
 O

rd
er

 C
o
d
in

g

C
la

ss
 1

C

la
ss

 2

C
la

ss
 1

C

la
ss

 2

Class

1

Class

2

S
T

D
P

AER Input
STDP / SDSP

Figure 6.3.2: This figure illustrates example 2 where two spatio-temporal patterns are to
be learned by two output neurons.

Figure 6.3.3: This figure shows the initial and final synaptic weights for patterns 1 and
2 for the first four neurons. The difference in final weights for the two spatio-temporal
pattern can be clearly seen.

with the use of the RO rule are restored as long term memory in the synapses

and the model. During recall on a new spatio-temporal pattern the SDSP rule

is applied so that the initial synaptic weights are modified on a spike time basis

107

according to the new pattern and using formula 6.5 as it is during the SDSP

learning phase. At every time moment t the PSP of all output neurons is

calculated. The new input pattern is associated with the neuron i if the

PSPi(t) is above its threshold Thi (Kasabov, Dhoble, Nuntalid, & Indiveri,

2012). The following formula is used:

PSPi(t) =

t
∑

l

M
∑

j

fj(l).wj,i(l) (6.7)

where: t represents the current time unit during the presentation of the input

pattern for recall; M is the number of the input synapses to neuron i; fj(l) = 1

if there is a spike at time l at synapse j for this input pattern, otherwise it is 0;

wj , i(l) is the efficacy of the dynamic synapse between j and i neurons at time l.

(b) deSNNs: This model corresponds to the eSNNs and is based on the

comparison between the synaptic weights of a newly created neuron to

represent the new spatio-temporal pattern for recall, and the connection weights

of the created during training neurons. The new input pattern is associated

with the closest output neuron based on the minimum distance between the

weight vectors. As the synaptic weights are dynamic, the distance should be

calculated in a different way than the distance measured in the eSNN, possibly

using both the initial w(0) and the final w(T) connection weight vectors learned

during training and recall. As a partial case, only the final weight vector w(T)

can be used (Kasabov, Dhoble, Nuntalid, & Indiveri, 2012).

108

6.4 Discussion

The chapter presents a new dynamic eSNN model, deSNN, that combines

rank-order (RO) and spike-time learning for fast, on-line supervised or

unsupervised learning, modeling and pattern recognition of SSTD; it is also

suitable for efficient hardware implementation. The model is characterized by

the following features:

• one - pass propagation of an SSTD during learning;

• evolving and merging neurons and connections in an incremental,

adaptive, life-long learning mode;

• utilizing dynamic synapses that are modifiable during both learning and

recall;

• storing history of learning in terms of initial w(0) and final w(T)

connection weights in both learning and recall;

• the stored connection weights can be interpreted as clusters of

spatio-temporal patterns that can be represented as spatio-temporal fuzzy

rules, similar to the rules described in Soltic and Kasabov (2010b)

A demonstration algorithm for deSNN is provided in Appendix A, Section

A.3. A major issue for the future development of deSNN models and systems is

the optimization of its numerous parameters. The optimization of network

parameters and the scalability of the methods is being considered for future

work.

109

6.5 Summary

This chapter explains the characteristics and specifics of the proposed deSNN

methods along with some examples that demonstrate the deSNN mechanism.

The study has been published in Kasabov, Dhoble, Nuntalid, and Indiveri

(2012). In the next chapter, the applicability of the two deSNN methods,

namely deSNNm and deSNNs, is tested using real simple motion data captured

by the AER artificial silicon retina.

110

7
AER based Simple Motion Recognition

with the deSNN method

In this chapter, we present a preliminary experiment used to evaluate the

classification performance of deSNN methods using the AER data obtained

from the artificial silicon retina hardware.

111

7.1 Introduction

Evolving spiking neural networks (eSNN) are computational models that evolve

new spiking neurons and new connections in the process of learning patterns

from incoming data in an on-line mode. With the development of new

techniques to capture spatio- and spectro-temporal data in a fast on-line mode,

using for example address event representation (AER) such as the implemented

one in the artificial retina and the artificial cochlea chips, and with the available

SNN hardware technologies, new and more efficient methods for

spatio-temporal pattern recognition (STPR) are needed.

This chapter uses a new eSNN model, the dynamic eSNN (deSNN), that

utilizes both rank-order spike coding (ROSC), also known as time to first spike,

and temporal spike coding (TSC). Each of these representations are

implemented through different learning mechanisms, such as RO learning and

temporal spike learning - spike driven synaptic plasticity (SDSP) rule. The

deSNN model is demonstrated on a small scale moving object classification

problem when AER data is collected with the use of an artificial retina camera.

The new model is superior to eSNNm, eSNNs and SDSP-SNN in terms of

learning time and accuracy for learning. It makes use of the order of spikes

input information which is explicitly present in the AER data, while a temporal

spike learning rule accounts for any consecutive spikes arriving on the same

synapse that represent temporal components in the learned spatio-temporal

pattern.

112

Spatio- and spectro- temporal data (SSTD), that are characterized by a

strong temporal component, are the most common types of data collected in

many domain areas, including engineering (e.g. speech and video data),

bioinformatics (e.g. gene expression data), neuroinformatics (e.g. EEG, fMRI),

ecology (e.g. establishment of species), environment (e.g. global warming

phenomenon), medicine (e.g. patients risk of disease and recovery data),

economics (e.g. financial time series), etc.

However, there is a lack of efficient methods for modeling such data and for

spatio-temporal pattern recognition (STPR) that can facilitate the discovery of

complex STP from streams of data and the prediction of new spatio-temporal

events. The brain-inspired spiking neural networks (SNN) (Gerstner & Kistler,

2002b; Maass & Zador, 1999), are considered the third generation of neural

networks. They are a promising paradigm for STPR as these new generation of

computational models and systems are potentially capable of modeling complex

information processes due to their ability to represent and integrate different

information dimensions, such as time, space, frequency, phase, and to deal with

large volumes of data in an adaptive and self-organizing manner.

With the development of new techniques to capture spatio-temporal data in a

fast on-line mode, e.g. using address event representation (AER), such as the

one implemented in the artificial retina chip (Delbruck, 2007) (see example in

Figure 5.2.1) and the artificial cochlea chip (Van Schaik & Liu, 2005), and with

the advanced SNN hardware technologies (Indiveri et al., 2011), new

opportunities have been created for efficient STPR across domain areas.

113

However, the exploration of the new opportunities still requires efficient and

suitable methods.

In the following section, the deSNN is demonstrated on a simple moving

object classification problem where data was collected using AER in an artificial

retina camera (Delbruck, 2007) (as explained in Chapter 5). A comparative

analysis of results obtained with eSNN, deSNN, and an SNN that uses only

SDSP learning rule shows the advantage of the proposed deSNN in terms of fast

and accurate learning of AER data for STPR.

7.2 Experimental Setting and Results for deSNN

Here we use an AER dataset of a moving object classification collected through

a silicon retina camera (Delbruck, 2007). The object is a moving irregular

wooden bar in front of the camera. Two classes of movements are recorded,

namely crash and no crash. For the crash samples, the object is recorded as it

approaches the camera and for no crash other movements such as up/down

motion at a fixed distance from the camera are recorded. The size of the

recorded area is 7,000 pixels. Each type of movement is recorded 10 times, and

five of the samples are used for training and five for testing. The following five

models are created, trained and tested: SDSP, eSNNs, eSNNm, deSNNs and

deSNNm. The parameter C for the SDSP , deSNNm and deSNNm is

optimized between 0 and 1 (with 0.1 step). The parameters used in the models

are presented in Table 7.2.1 and the classification results along with the number

of training iterations are presented in Table 7.2.2.

114

0 200 400 600 800 1000 1200 1400 1600

Tim e (m s)

0

1000

2000

3000

4000

5000

6000

7000

N
e

u
ro

n
 n

u
m

b
e

r

Class: Crash, Sample 1

Figure 7.2.1: Raster plots for the AER encoded samples from the Crash and No crash

classes. It can be seen that there is a similarity between the spike trains of Crash class,
sample 1 (left figure) & No crash class, sample 2 (right figure).

Figure 7.2.2: The figure shows the spike raster plot, weights change and the membrane
potential (for neuron 0) for the eSNNs that utilizes rank order without the SDSP dynam-
ics

115

Table 7.2.1: Parameter settings

For neurons and synapses
Excitatory synapse time constant 2 ms
Inhibitory synapse time constant 5 ms
Neuron time constant (tau mem) 20 ms
Membrane leak 20 mV
Spike threshold (Vthr) 800 mV
Reset value 0 mV
Fixed inhibitory weight 0.20 volt
Fixed excitatory weight 0.40 volt
Thermal voltage 25 mV
Refractory period 4 ms

For learning related parameters (Fusi)
Up/Down weight jumps (Vthm) 5 x (Vthr/8)
Calcium variable time constant (tau ca) 5 x (tau mem)
Steady-state asymptode for Calcium variable (wca) 50 mV
Stop-learning threshold 1 (stop if V ca < thk1) 1.7 x wca
Stop-learning threshold 2 (stop LTD if V ca > thk2) 2.2 x wca
Stop-learning threshold 2 (stop LTP if V ca > thk3) (8 x wca) - wca
Plastic synapse (NMDA) time constant 9 ms
Plastic synapse high value (wp hi) 6 mvolt
Plastic synapse low value (wp lo) 0 mvolt
Bistability drift 0.25
Delta Weight 0.12 x wp hi

Other miscellaneous parameters / values
Input Size 7000 spike train
Simulation time 1600 ms
mod (for rank order) 0.8

Table 7.2.2: Classification accuracy for SNN-based classifiers. The parameter C for the
deSNNm and deSNNm has been optimized between 0 and 1 (with 0.1 step)

SNN Classifiers
SDSP SNN eSNNs eSNNm deSNNs deSNNm

Accuracy (%) 70 40 60 60 90
No. of training iteration 5 one-pass one-pass one-pass one-pass

116

Figure 7.2.3: This figure shows the spike raster plot, weights change and the membrane
potential (mV) for the deSNNs. From the weights and the membrane potential graph
(of neuron 0) it can be seen that due to the SDSP, the synaptic weights adjustments are
faster compared to Fig. 7.2.2, for the sample from the same class

The parameters shown in table 7.2.1 have been set based on trial and error

method. Due to large number of parameters, this approach is very

time-intensive. Amongst the five online one-pass learning algorithm, deSNNm

method performed the best on this particular dataset yielding 90.00 percent

accuracy. Other algorithms such as SDSP SNN, DeSNNs, eSNNs and eSNNm

gave an accuracy of 70%, 60%, 40% and 60% respectively. The methods

incorporating only the rank order coding (eSNNs, eSNNm) did not perform

very well (see raster plots for different classes in Figure 7.2.1) because many of

117

the samples from both classes have almost similar spike patterns. The eSNNs

especially under-performs due to the absence of SDSP mechanism and dynamic

synapses. On the other hand it can be seen that these spike based classifiers are

robust to noise and handle the temporal aspect of the data very well. The noise

refers to the events/spikes generated by AER in the absence of any motion or

due to the flickering of fluorescent tube. Please refer to chapter 5 for more

details on noise generated by AER. This experiment demonstrates the

feasibility of spike-based classifiers. Compared to the traditional methods, this

is a spike-based approach where the need to convert spike times into vectors is

eliminated. They learn in on-line, incremental mode, through one pass of

incoming data propagation through the system.

7.3 Summary

In this chapter we have shown the applicability of the two deSNN methods,

namely deSNNm and deSNNs, on real world simple motion data captured using

the AER artificial silicon retina. Due to the size of the input (spike trains),

converting them into vectors for use with traditional machine learning

algorithms can be computationally expensive or inconvenient. Furthermore, the

deSNN has the ability to process the entirety of the spatio-temporal data in an

online one-pass manner rather than in the traditional frame-by-frame approach.

This study was recently published in Kasabov, Dhoble, Nuntalid, and Indiveri

(2012). Chapter 8, introduces a new generic architecture for spatio-temporal

pattern recognition (epSNNA-v) followed by its classification performance

evaluation on human action recognition dataset obtained from the artificial

118

silicon retina.

119

8
A Novel epSNNr Architecture for Visual

Data (epSNNA-v)

This chapter introduces a new generic architecture called epSNNA-v. The

epSNNA-v integrates the methods and architecture proposed in Chapter 4 and

Chapter 6 with some existing approaches. Being an entirely spike-time based

computational architecture, it complements the AER-based spike information

encoding methods (utilized by artificial silicon retina) and the deSNN methods.

120

Furthermore, Hebbian learning is also introduced in the liquid reservoir. We

hypothesize that the introduction of a learning rule such as Spike-Timing

dependent plasticity (STDP) into the probabilistic reservoir will increase its

separability property, thereby resulting in an increased classification

performance.

8.1 A Novel Evolving Probabilistic Spiking Neural

Network Architecture for spatio-temporal data

(epSNNA-v)

In our study so far we have proposed several classification methods such as

deSNNm and deSNNs, and an architecture called epSNNr that utilizes several

stochastic neural models such as Noisy Reset (NR), (Continuous) Noisy

Threshold (NT) and Step-wise Noisy Threshold (SNT) in the reservoir. Here we

consider the earlier proposed methods (deSNN) and architecture (epSNNr), and

incorporate them into one generic architecture called evolving probabilistic

spiking neural network architecture for spatio-temporal pattern recognition

(epSNNA-v). This architecture is based entirely on a spike-based pattern

recognition approach that has been briefly discussed in Chapter 2 (see Figure

2.6.1).

Figure 8.1.1 depicts the proposed novel generic architecture that comprises

the following modules:

• Data Acquisition Module;

121

• Transformation Module;

• Learning Module.

Figure 8.1.1: A novel generic architecture is an evolving probabilistic spiking neural
network architecture for spatio-temporal pattern recognition (epSNNA-v). It consists of
three mail modules.

The characteristics and specifics of the above mentioned generic architecture

modules are briefly explained below.

122

8.2 Data Acquisition Module

The data acquisition module captures the spatio-temporal data (such as human

motion /action) via artificial silicon retina (DVS 128). Alternatively, the earlier

mentioned software simulator can be used (see Chapter 5). The simulator

generates Address Event Representation (AER) spikes representing the

spatio-temporal actions similar to that of the artificial silicon retina (DVS 128).

The outputs of the silicon retina and the AER software simulator are both in

the form of spike trains. The spike trains are then fed into the transformation

module.

8.3 Transformation Module

From Figure 8.1.1, it can be seen that three sub-modules collectively make up

the transformation module. These sub-modules are:

• Reservoir;

• Stochastic Neural Models;

• The STDP learning mechanism.

In our study we use Liquid State Machine (LSM) for the reservoir. The

neuron models that can be, and have been independently used in our study are

the standard Leaky Integrate and Fire (LIF) neurons and three stochastic

neural models called Noisy Reset (NR), (Continuous) Noisy Threshold (NT)

123

and Step-wise Noisy Threshold (SNT). Our earlier proposed architecture

epSNNr introduced in Chapter 4 was constructed using the stochastic neural

models with the LSM reservoir. This transformation module can be regarded to

certain extent as the epSNNr architecture. The python implementation of the

epSNNr is provided in Appendix A, Section A.4.1.

The transformation module also includes the STDP learning rule that can be

incorporated in the LSM reservoir. The integration of the LSM reservoir with

Stochastic Neural Models and deSNN algorithm results in a hybrid algorithm

which we refer to as the deSNNr. Also, the inclusion of STDP learning in the

deSNNr’s reservoir results into another hybrid algorithm called learning

deSNNr. Here the concept of unsupervised SDSP learning from the deSNN has

been applied to learning deSNNr, so the initial synaptic weights are modified on

a spike-time basis according to the new pattern during the STDP learning

phase. The transformation module is so called because the reservoir acts as a

spatio-temporal filter and the module allows the data to be transformed into a

higher dimension space. This transformation therefore improves the inter and

intra class separability of the data and is especially useful when applied to

classification tasks. The spikes obtained from the transformation module is fed

into the learning module.

8.3.1 Learning deSNNr

Kempter, Gerstner, and Hemmen (2001) state that applying STDP to a

network of dynamic synapses can further improve the computational capability

of the system. Based on this hypothesis it is claimed that high dynamics of the

124

liquid reservoir will result in longer-lasting short-term memory and improved

separation property while having lower computational costs (Vreeken, 2004).

Even though on an individual synaptic level STDP acts as a destabilizing factor

(Kempter, Gerstner, & Van Hemmen, 1999), it is claimed that on large scale it

has the opposite effect, i.e. STDP helps in regulating network homeostasis

(Abbott & Nelson, 2000). This feature is highly desirable. S. Song, Miller,

Abbott, et al. (2000) state that introduction of such learning rule into a

network with dynamic synapses will allow the network to adapt its activity to

the inputs it receives. Therefore, based on the above argument, we hypothesize

that introduction of STDP into a probabilistic reservoir (one with stochastic

neuron models) should further improve the separability property of the liquid

while lowering the computational costs. This hypothesis is tested through

various experiments that are presented in later Chapter 9 and Chapter 11. The

python implementation of the learning reservoir is presented in Appendix A,

Section A.4.2.

8.4 Learning Module

Technically the learning module can incorporate any learning algorithm.

However, it is more convenient to use spiking neural network based learning

algorithms, since the output from the transformation module is in spikes. In our

study, we use the earlier proposed deSNNm and deSNNs methods as the

learning algorithms in this module. The function and performance of these

methods have been discussed in Chapter 6. The outcome from the learning

module results in knowledge discovery.

125

8.5 Summary

This chapter introduces a new generic architecture called epSNNA-v. The

epSNNA-v architecture integrates the earlier proposed methods and architecture

with some of the existing approaches. epSNNA-v is based on a novel generic

spike-based spatio-temporal pattern recognition approach that easily

complements neuromorphic hardware such as the artificial silicon retina. In a

nutshell, the proposed architecture is characterized by: one-pass propagation of

SSTD during learning; utilizing STDP/SDSP and dynamic synapses in learning

deSNNr that are modifiable during both learning and recall; it is realized with

an entirely spike-based spatio-temporal pattern recognition approach.

In the following chapter, we present a case study that evaluates the

classification performance of the epSNNA-v architecture. The case study makes

use of human action recognition (HAR) data captured by the artificial silicon

retina.

126

9
Human Action Recognition with

epSNNA-v

Human action recognition in machine learning is traditionally performed by

marking particular sequences of images with action labels. The human action

pattern recognition has many applications both online and offline in various

domains such as human-computer interaction, visual surveillance and video

retrieval.

127

The interest in human action recognition is driven by its potential

applicability in many fields. As a video surveillance application, it will allow

automatic detection of any possible suspicious activities. In gaming and

simulations it will provide the user with a more interactive, intuitive and

immersible experience. The automatic detection of a particular human gesture

or motion (e.g dance moves) will allow the user to search or retrieve related

video more efficiently.

It is a challenging task due to various problems such as the numerous

variances in recording settings and action performance.

In this study, we take a spike-based pattern recognition approach using

epSNNA-v to solve these problems. Below we discuss the characteristics of the

human action recognition data we have used in our case study followed by the

performance evaluation of the epSNNA-v architecture.

9.1 Case Study: AER based Human Action Recognition

The Address Event Representation (AER) based Human Action Recognition

(HAR) dataset that is used in this case study has been acquired from the

artificial silicon retina (DVS-128). The data consists of three human

motions/actions, namely boxing, hand waving and hand clapping (i.e. three

classes). Each class has 22 samples, where 11 samples were recorded under

artificial (fluorescent) light conditions and the other 11 - under natural light

conditions. Therefore, in total the dataset consists of 66 samples. As seen in

Figure 5.1.5, under fluorescent light conditions the average level of noise is

around 87.71% ±11.41 and under natural light conditions the average level of

128

noise is around 50.00% ±17.05. This extra noise under the fluorescent light

conditions is due to flickering of the light source (see Figure 5.1.3). Each sample

consists of repetitive human actions, where each of the actions have varying

execution time. Since the average length (i.e. the entire video sample length) of

the samples is 1600 milliseconds, we considered 1600 milliseconds for our

spiking neural network simulation time. Also, 16,000 input neurons are required

to represent the 120× 120 DVS-128 pixel size.

The difficulty in interpreting the data for classification task can be seen in

Figure 9.1.1. Apart for the noise inherent in the dataset, we can also see spatial

and temporal differences between the samples belonging to the same classes.

9.2 Experimental settings and results for deSNN

Compared to the previous experiment (see Table 7.2.2) on the AER simple

motion recognition, the outcome of this experiment which uses real world

dataset is quite different. From Table 9.2.2, it can be seen that the eSNNs that

utilizes rank order (RO) learning performs significantly better than eSNNm,

when compared to the previous experiment of AER-based simple motion

recognition. However, when we introduce Fusi’s Spike Driven Synaptic

Plasticity (SDSP) (i.e. deSNNs), it under-performs when compared to eSNNs.

On the other hand, it is the opposite for eSNNm, where the introduction of

Fusi’s SDSP (i.e. deSNNm) enhances its performance on this particular dataset

resulting in an accuracy of 70.20%±5.0011. This shows that Fusi’s SDSP, which

is actually a supervised learner, complements the Rank Order Coding (ROC)

129

Class 1: Boxing
Under Natural Lighting Under Fluorescent Lighting

Class 2: Hand Clapping
Under Natural Lighting Under Fluorescent Lighting

Class 3: Hand Waving
Under Natural Lighting Under Fluorescent Lighting

Figure 9.1.1: This figure shows the raster plots of two samples, for each of the three
classes, where the samples in the first column were obtained under natural lighting condi-
tions, and those in the second column were obtained under florescent lighting conditions.
The higher level of noise present in the samples obtained under florescent lighting is ap-
parent.

130

Table 9.2.1: Parameter settings for SNN classifiers

For neurons and synapses
Excitatory synapse time constant 2 ms
Inhibitory synapse time constant 5 ms
Neuron time constant (tau mem) 20 ms
Membrane leak 20 mV
Spike threshold (Vthr) 800 mV
Reset value 0 mV
Fixed inhibitory weight 0.20 volt
Fixed excitatory weight 0.40 volt
Thermal voltage 25 mV
Refractory period 4 ms

For learning related parameters (Fusi)
Up/Down weight jumps (Vthm) 5 x (Vthr/8)
Calcium variable time constant (tau ca) 5 x (tau mem)
Steady-state asymptode for Calcium variable (wca) 50 mV
Stop-learning threshold 1 (stop if V ca < thk1) 1.7 x wca
Stop-learning threshold 2 (stop LTD if V ca > thk2) 2.2 x wca
Stop-learning threshold 2 (stop LTP if V ca > thk3) (8 x wca) - wca
Plastic synapse (NMDA) time constant 9 ms
Plastic synapse high value (wp hi) 6 mvolt
Plastic synapse low value (wp lo) 0 mvolt
Bistability drift 0.25
Delta Weight 0.12 x wp hi

Other miscellaneous parameters / values
Input Size 16,000 spike train
Simulation time 1,600 ms
mod (for rank order) 0.8

learning. Compared to the previous experiment (see Table 7.2.2), when we use

the SDSP SNN algorithm, the Hand Waving and Boxing classes are

misclassified as Hand Clapping class.

However, from the two experiments, where deSNNm came out as the winning

algorithm, it can be assumed that deSNNm is a suitable spiking neural network

algorithm for spatio-temporal learning or more specifically, for AER-based

131

Table 9.2.2: Classification accuracy for four SNN-based classifiers. The parameter C
for the eSNNm and deSNNm has been optimized between 0 and 1 (with 0.1 step). NL
represents natural lighting conditions and FL stands for under fluorescent lighting condi-
tions.

SNN Classifiers
Accuracy eSNNs eSNNm deSNNs deSNNm
NL (%) 50.93±11.1895 33.33±0.0000 43.87±6.1879 70.20±5.0011
FL (%) 47.22±14.4323 35.76±2.4784 43.87±12.2248 54.56±3.3667

human action/motion recognition.

9.2.1 Hardware feasibility

The artificial silicon retina (DVS-128) was developed in the Institute of

Neuroinformatics (INI), University of Zurich (Delbruck, 2007). They have also

developed neuromorphic hardware which can be potentially used to implement

the deSNN method on the hardware. As a part of research collaboration

(Kasabov, Dhoble, Nuntalid, Mohhemed, et al., 2012), a pilot experiment has

been carried out as a feasibility study. Since the neuromorphic hardware has

inherent (thermal) noise (as do any other electronic devices), in the simulated

hardware feasibility study, we have added 25 percent noise to all parameters.

More details on the parameter setting with simulated thermal noise and the

results are given below.

132

Table 9.2.3: Parameter settings with added 25% noise to test hardware feasibility. This
is the amount of thermal/electrical noise usually found in the neuromorphic hardware.

For neurons and synapses
Excitatory synapse time constant 2.5 ms
Inhibitory synapse time constant 6.25 ms
Neuron time constant (tau mem) 25 ms
Membrane leak 25 mV
Spike threshold (Vthr) 1000 mV
Reset value 0 mV
Fixed inhibitory weight 0.25 volt
Fixed excitatory weight 0.5 volt
Thermal voltage 31.25 mV
Refractory period 5 ms

For learning related parameters (Fusi)
Up/Down weight jumps (Vthm) 6.25 x (Vthr/8)
Calcium variable time constant (tau ca) 6.25 x (tau mem)
Steady-state asymptode for Calcium variable (wca) 62.5 mV
Stop-learning threshold 1 (stop if V ca < thk1) 2.125 x wca
Stop-learning threshold 2 (stop LTD if V ca > thk2) 2.75 x wca
Stop-learning threshold 2 (stop LTP if V ca > thk3) (10 x wca) - wca
Plastic synapse (NMDA) time constant 11.25 ms
Plastic synapse high value (wp hi) 7.5 mvolt
Plastic synapse low value (wp lo) 0 mvolt
Bistability drift 0.3125
Delta Weight 0.15 x wp hi

Other miscellaneous parameters / values
Input Size 16,000 spike train
Simulation time 1,600 ms
mod (for rank order) 0.8

Experimental settings and results for deSNN with 25% simulated

thermal noise

On comparing the results of deSNN with 25 percent thermal noise (see Table

9.2.4) with deSNN without simulated thermal noise (see Table 9.2.2), it can be

seen that the deSNN method works well without significant loss in classification

133

Table 9.2.4: Classification accuracy for two SNN-based classifiers with 25% noise added
to all parameter settings. Data recorded under natural lighting conditions is used for this
hardware feasibility test.

SNN Classifiers
deSNNs deSNNm

Accuracy (%) 42.99±28.8689 70.83±21.3822

performance. It also shows us the robustness of the deSNN method against

noise. However, as future works, more experiments would be needed with

various datasets and optimized parameter settings in order to conclude the

feasibility of deSNN methods on neuromorphic hardware.

9.3 Experimental settings and results for deSNNr and

learning deSNNr

The parameters for the deSNNm and deSNNs have been kept the same in order

to have an unbiased classification performance comparison (see table 9.2.1).

The LSM network topology is constructed using 16000 neurons (N) arranged in

a three-dimensional topology of 20 x 20 x 40 neurons. Other LSM and neuron

parameters are given in table 9.3.1.

Table 9.3.2 shows the learning deSNNr’s classification performance under

different stochastic neuronal models (Nuntalid, Dhoble, & Kasabov, 2011) such

as Leaky-Integrate and Fire (LIF), Noisy Reset Model (NR), Noisy Threshold

Model (NT) and Step-wise Noisy Threshold Model (SNT).

134

Table 9.3.1: The table provides the parameter settings that are used in our experimental
setup for the neuron models and LSM

Parameters V alue/s

For Neuron
Time Constance 10 ms
Reset Potential 0 mV
Initial Firing Threshold 10 mV
Standard Deviation of reset fluctuation 3 mV
Standard Deviation of Step-wise Firing Threshold 2 mV
Standard Deviation of Continuous Firing Threshold 1 mV
For LSM
Simulation Time 1600 ms
Number of Neurons 16000
Excitatory to Inhibitory Neuron Ratio 4:1
Input Neurons Connection Probability 0.2
Input Neurons Connection Weight 0.8 mV

Table 9.3.2: Classification accuracy for deSNNr and learning deSNNr with standard LIF
and stochastic neural models in reservoir.

SNN Classifiers (deSNNr)
Accuracy LIF NR NT SNT
deSNNm (%) 73.32±3.2636 75.98±15.1028 67.48±09.6182 74.79±16.3201
deSNNs (%) 69.96±1.2780 69.54±12.4604 77.69±16.8379 68.16±14.7022

deSNNr classifiers with STDP learning rule (learning deSNNr)
deSNNm (%) 76.00±08.2715 87.53±9.4280 75.33±18.4580 60.00±02.7002
deSNNs (%) 73.83±09.8732 78.30±4.4263 82.33±22.4810 76.00±10.1756

As established in one of our previous studies (Kasabov, Dhoble, Nuntalid, &

Indiveri, 2012), the deSNN models resulted in a better classification

performance when compared with other SNN models that use either rank-order

or STDP learning rule. The reason is that the deSNN makes use of both the

information contained in the order of the first input spikes present in input data

135

streams (this is crucial to consider in some tasks) and the information contained

in the timing of the following spikes that is learned by the dynamic synapses as

a whole spatio-temporal pattern.

The proposed learning deSNNr, which incorporates STDP learning rule in the

LSM reservoir, was also shown to have far superior performance in terms of

classification accuracy when compared to the deSNNr approach. Previous

studies (Maass & Sontag, 2000; Natschlager & Maass, 2002; Brader et al., 2007)

that have utilized STDP learning have also shown that such networks can

approximate a very rich class of non-linear filters and have been successfully

utilized in practical applications. Hence, due to the STDP’s ability to function

as memory buffers and to account for the precise time of spikes, the reservoir

with STDP learning rule has a higher classification performance in comparison

to the results from reservoir without STDP learning rule (deSNNr).

9.4 Summary

In this chapter we have used AER-based human action recognition as a case

study for evaluating the earlier proposed generic framework epSNNA-v. We

have compared the proposed architecture with standalone SNN-based classifiers

such as eSNN and deSNN. On comparison, the classification performance was

shown to be superior when using hybrid algorithms such as deSNNr and learning

deSNNr. It is to be noted that in our study we do not focus on optimizing any

parameters or feature selection methods, but on the feasibility and applicability

136

of SNN-based approach for solving real world problems. In the next chapter we

focus on the epSNNA-s architecture for spectro-temporal pattern recognition.

137

10
A Novel eSNN Architecture for

Spectro-Temporal Data (epSNNA-s)

A lot of importance has been placed on the development of autonomous

machine learning systems with various practical applications. Recognition of

patterns in spectro-temporal data is one of the many challenging tasks. In this

chapter we propose an evolving spiking neural network architecture for

spectro-temporal pattern recognition (epSNNA-s).

138

10.1 A Novel Evolving Spiking Neural Network Archi-

tecture for Spectro-Temporal Data (epSNNA-s)

Figure 10.1.1 shows the generic spectro-temporal pattern recognition framework

we have used in our study. The proposed epSNNA-s architecture is quite similar

to the earlier introduced framework (epSNNA-v) for spatio-temporal pattern

recognitions. However, it is also different in terms of the use of sound to spike

encoding scheme.

Many of its modules are similar to those in the epSNNA-v architecture and

the specifics and characteristics of these modules have been explained in

Chapter 8. Therefore, in this chapter those modules are only briefly

reintroduced.

The framework can be split into the following modules:

• Data Acquisition Module;

• Transformation Module;

• Learning Module.

10.2 Data Acquisition Module

The data acquisition module acquires the spectro-temporal data and represents

the data as spikes that in turn can be fed to the transformation module. In the

139

Figure 10.1.1: A generic spectro-temporal pattern recognition framework (epSNNA-s).

following section we discuss the spectro-temporal data representation and the

spike encoding methods incorporated into the epSNNA-s framework.

10.2.1 Spectro-temporal data representation

The initial step in biological auditory systems is the conversion of sound waves

into spikes that can be used for processing the brain. The task of changing

140

sound vibration into spike information is carried out at the basilar membrane

(BM), which is a structure in our inner ear (see Figure 10.2.1). It is also known

as cochlea, and its function can be considered similar to that of a vibrating

string (Andringa, Niessen, & Nillesen, 2004; Muthusamy, Cole, & Slaney, 1990).

Andringa, Niessen, and Nillesen (2004) explain that the basilar membrane

consists of hair cells called Stereocillia and has spiking neurons, and it behaves

in a non-linear manner. This provides the cochlea with an ability to process

frequency within a working range of over 100 decibel (dB).

The two most important features of the basilar membrane is firstly, its ability

to maintain the continuity in time, place and frequency and secondly, it is

sensitive to different frequencies at different positions (Andringa et al., 2004;

Wikipedia, 2012). This ability of maintaining the continuity in time, place and

frequency is a very important feature that is not commonly found in many

speech signal preprocessing techniques such as the commonly used Fast Fourier

Transform (FFT). Hence, apart from the biological plausibility, this continuity

preserving feature is one of the reasons we have utilized cochleagram method.

Abdollahi, Valavi, and Noubari (2009) state that the spectro-temporal

representation of cochleagram is structurally the same as mel-spectrogram.

However, in the cochleagram representation, the Equivalent Rectangular

Bandwidth (ERB) scale is used instead of Mel-scale and the filters are

gammatone filter shaped. The cochlear filtering is often carried out by

gammatone filterbank (or other cochlear filtering models), followed by nonlinear

rectification; the latter corresponds to hair cell transduction by either a hair cell

model or simple compression operations (Goodman & Brette, 2010).

141

Anatomy of Inner Ear

Cochlea

basilar membrane

Figure 10.2.1: This figure shows the anatomy of human inner ear. The anatomy of the
basilar membrane (BM) and its location in the cochlea is also depicted in this figure.
The cochleagram’s function is based on the working of cochlea. Adapted from Wikipedia
(2012).

This task has been carried out using Brian neural network simulator, since it

provides the built-in functions and auditory models to carry out the above

mentioned tasks (Goodman & Brette, 2010). For more detailed information on

cochleagram, refer to Andringa, Niessen, and Nillesen (2004); Goodman and

Brette (2010).

Also, the study by Muthusamy, Cole, and Slaney (1990), where only the

coefficient of cochleagram (discrete Fourier transform) was used, the

142

classification performance of cochleagram was shown to be better than

spectrogram. In another study by Abdollahi, Valavi, and Noubari (2009),

different spectro-temporal representations methods such as mel-spectrogram,

cochleagram and auditory spectrogram were used and similarly to the previous

study (Muthusamy et al., 1990), the performance was found to be superior for

spectro-temporal representations by cochleagram. There are some

spectro-temporal representation (or extended) methods (Gao, Woo, & Dlay,

2012; Narayanan & Wang, 2012) that perform better than the standard

cochleagram. The feature extraction step in machine learning is essential for

knowledge discovery. Therefore an appropriate spike based feature extraction

methods should be as per the dataset characteristics. However, in our study we

have used cochleagram method on all the spectro-temporal data for its

simplicity, biological plausibility and fast implementation. This will allow us to

evaluate the proposed framework in comparison to other spiking neural network

based approaches, such as eSNN and deSNN, without any bias.

In the following section, we explain the cochleagram-based spike encoding

method in more details.

10.2.2 Cochleagram-based spike encoding

After acquiring an appropriate spectro-temporal representation, which in our

case is done by the cochleagram method, the next step is to convert the

analogue signal obtained from cochleagram into biologically realistic spike

trains. Various approaches are presented in relevant literature (De Garis, Nawa,

Hough, & Korkin, 1999; Schrauwen & Van Campenhout, 2003) that allow

143

conversion of analogue data to digital spike trains. These are referred to as

spiker algorithm since they convert continuous data into discrete spike timing.

Two such commonly used algorithms (Verstraeten et al., 2007; Wall, McGinnity,

& Maguire, 2011; Verstraeten, Schrauwen, & Stroobandt, 2005; De Garis,

Korkin, Gers, Nawa, & Hough, 2000; Nuntalid et al., 2011) are namely Hough

Spiker Algorithm (HSA) by De Garis, Nawa, Hough, and Korkin (1999), and

Bens Spiker Algorithm (BSA) developed by (Schrauwen & Van Campenhout,

2003). Glackin et al. (2011) explain that both algorithms function by utilizing a

convolution/deconvolution filter that is optimized for encoding and decoding by

means of genetic algorithm in order to reduce the error in the encoding and

decoding process.

In our study, we take a straightforward approach, where we use the

continuous values obtained from cochleagram to modify the current injected

into a leaky integrate-and-fire (LIF) neuron (see Figure 10.2.2) (Glackin et al.,

2011). Injecting the data from cochleagram into the leaky integrate-and-fire

(LIF) neuron results in the firing of neuron(s). The rate of firing depends on the

data, various neurons parameters and the network parameters. According to

Glackin et al. (2011), since communication between some neurons is dependent

on spike-timing, the spike trains obtained from cochleagram may be thought of

as an analogue to digital spike conversion. For more details on the

spectro-temporal spike encoding, refer to (Goodman & Brette, 2010; Glackin et

al., 2011).

The spike trains are fed into the transformation module for further processing.

144

Figure 10.2.2: The above figure represents the cochleagram based spike encoding
method. From the above figure, it can be seen that we use the same number of LIF neu-
rons as the number of gammatone filters in cochleagram.

10.3 Transformation Module

It can be seen in Figure 10.1.1 that three sub-modules collectively make up the

transformation module. These sub modules are:

• Reservoir;

• Stochastic Neural Model/s;

• The Spike-Timing dependent plasticity (STDP) learning mechanism.

The neuron model consists of the standard Leaky Integrate and Fire (LIF)

neurons and three stochastic neural models called Noisy Reset (NR),

145

(Continuous) Noisy Threshold (NR) and Step-wise Noisy Threshold (SNT).

This transformation module can be regarded as an extension to the epSNNr

architecture. The transformation module also includes the STDP learning

mechanism that can be incorporated in the LSM reservoir. The integration of

the Liquid State Machine (LSM) reservoir with Stochastic Neural Models and

STDP learning rule produces a hybrid algorithm which we refer to as the

deSNNr and learning deSNNr. The spikes obtained from the transformation

module are fed into the learning module.

10.4 Learning Module

In this experiment, we have used the earlier proposed methods in this thesis

deSNNm and deSNNs as the learning algorithms in this module. The function

and performance of these methods are discussed in Chapter 6. The outcome

from the learning module results in knowledge discovery.

In a nutshell, the sound data is first encoded into spikes. The spikes are then

fed into the Liquid State Machine (LSM) reservoir. The LSM can be

constructed using several neuronal models. Apart from the standard leaky

integrate-and-fire (LIF) neural model, in our study we have used three other

stochastic neural models, namely Noisy Reset Model (NR), Noisy Threshold

Model (NT) and Step-wise Noisy Threshold Model (SNT) for constructing the

reservoir. Also, when the reservoir makes use of STDP learning rule, in our

study we refer to this approach as ’learning deSNNr’; when STDP learning is

146

not used, we refer to the model as ’deSNNr’. We then feed the reservoir output

to the learning algorithms.

10.5 Summary

In this chapter we present a new generic framework epSNNA-s for

spectro-temporal pattern recognition. The framework structure is similar to the

epSNNA-v architecture. We have also provided and explained a simple

cochleagram-based spike encoding method that is incorporated into this

framework. It is to be noted that the cochleagram-based spike encoding method

is not suitable for all spectro-temporal datasets. The spike encoding module can

be replaced with other suitable spike encoding schemes as per the dataset

characteristics and knowledge discovery requirements. In the next chapter we

present two case studies that evaluate the performance of the proposed

epSNNA-s framework against standalone SNN-based classifiers such as eSNN

and deSNN.

147

11
Spectro-Temporal Pattern Recognition

using the epSNNA-s

Previous studies by Verstraeten, Schrauwen, Stroobandt, and Campenhout

(2005), that have utilized Liquid State Machine (LSM) reservoir for

spectro-temporal pattern recognition have shown to produce very high

classification performance on various benchmark datasets. Other studies (Uysal,

Sathyendra, & Harris, 2007; Abdollahi & Liu, 2011), have focused on spike

148

feature extraction methods and have yielded great results using traditional

machine learning algorithms. In our study, we use a simple straightforward

cochleagram-based spike encoding method in order to demonstrate the

performance of epSNNA-s architecture against standalone spiking neural

network (SNN) classifiers such as eSNN and deSNN.

Many spiking neural networks (SNN) based models have shown the ability of

capturing spatial and temporal data. In our study we have used one such SNN

algorithm called evolving SNN (eSNN) and its extension dynamic eSNN

(deSNN) (Kasabov, Dhoble, Nuntalid, & Indiveri, 2012; Dhoble et al., 2012).

These algorithms utilize a one-pass rank-order learning along with a mechanism

to evolve a new spiking neuron and new connections to learn new patterns from

incoming data on the basis of SpikeTiming Dependent Plasticity (STDP) and

its variant Spike Driven Synaptic Plasticity (SDSP). Also, we have compared

the eSNN and deSNN methods with our epSNNA-s architecture that consists of

deSNNr and learning deSNNr methods which incorporate STDP learning rule

in the LSM reservoir.

In the initial experiment we use a standalone Evolving Spiking Neural

Network (eSNN) and Dynamic Evolving Spiking Neural Network (deSNN)

algorithms (Kasabov, Dhoble, Nuntalid, & Indiveri, 2012) for classification

performance evaluation. Further details about the dataset, parameter

configurations, experiment setup and results are provided in the following

sections.

149

11.1 Spectro-Temporal Dataset

11.1.1 Dataset 1: Heart Sound

In this experiment, for the spectro-temporal pattern recognition we have used

’The PASCAL Classifying Heart Sounds Challenge’ dataset (Bentley, Nordehn,

Coimbra, & Mannor, 2011).

According to the 2012 World Health Organization report (WHO, 2012),

cardiovascular diseases (CVDs) results in more deaths annually than from any

other cause. In 2008, approximately 17.3 million people died from cardiovascular

diseases, which represents 30% of all deaths globally. From this, 6.2 million

deaths were due to stroke and 7.3 million were due to coronary heart disease.

By 2030, the predicted number of deaths due to cardiovascular diseases (mainly

from heart disease and stroke) is estimated to be almost 25 million. Evidently,

methods that can help in the early detection of heart disease signs can have a

major impact on human health. According to Bentley, Nordehn, Coimbra, and

Mannor (2011), the Heart Sounds challenge is to be used for producing methods

to help detect signs of heart diseases. The first level of screening of cardiac

pathologies can be performed both in a hospital environment by a doctor (using

a digital stethoscope) and at home by the patient (using a mobile device). The

data used in our case study has been collected in real-world conditions and

therefore has background noise of every conceivable type.

Bentley, Nordehn, Coimbra, and Mannor (2011) state that the differences

between heart sounds corresponding to different heart symptoms can also be

150

Figure 11.1.1: This figure shows the waveform and spectrogram of heart murmur sound
sample. The region in the waveform graph that is highlighted in light green shows signifi-
cant presence of noise especially within the 2 - 2.5 seconds range. This noise can also be
seen in the spectrogram.

extremely subtle and challenging to separate. Success in classifying this form of

data requires extremely robust classifiers. Despite its medical significance, to

date this remains a relatively unexplored application for machine learning.

151

Motivated by this, we have decided to use the ’The PASCAL Classifying Heart

Sounds Challenge’ dataset. This will not only allow us to test the robustness of

our methods but also test the real world application feasibility of our methods.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (ms)

0

500

1000

1500

2000

2500

3000

Ce
nt
re
 F
re
qu

en
cy
 (H

z)

Cochleagram

Figure 11.1.2: This figure shows the cochleagram for the heart murmur sample whose
waveform and spectrogram are shown in figure 11.1.1. This figure shows the difference in
sound processing between standard cochleagram and spectrogram (from figure 11.1.1),
where the cochleagram-processed sound has significantly less noise.

In this experiment, we use Dataset A. The data belonging to Dataset A has

been gathered from the general public via the iStethoscope Pro iPhone app

(Bentley et al., 2011). The classification task is to check if our proposed method

can classify real heart audio (also known as beat classification) into one of the

two categories (i.e. 1 - Heart Normal Sound and 2 - Heart Murmur Sound).

Here we consider a subset of the original dataset that has a total of four classes.

152

For the cochleagram spike encoding, in our case, we have used 20 gammatone

filters covering the human auditory range of 20 Hz to 20 kHz followed by

half-wave rectification, cube root compression (Goodman & Brette, 2010).

Instead of the 3000 gammatone filters which is the equivalent to human cochlea

we have used 20 filters, which fits the requirement of our heart sound audio

files. The need to use only 20 gammatone filters for the heart sound dataset can

be verified from Figure 11.2.1 (in the upper plot labeled cochleagram encoded

spikes).

0 1 2 3 4 5 6 7 8 9
Time (s)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

 (V
ol

ts
)

Waveform

Figure 11.1.3: This figure shows the waveform of normal heart sound sample. It can
be seen that the normal heart’s waveform is much cleaner than the heart murmur sound.
However, there is noise present from external sources which can be seen at the end of the
waveform.

153

11.1.2 Dataset 2: Isolated Spoken Words Dataset

The ’Isolated Spoken Words’ dataset contains pronunciation of the words

’alpha’, ’beta’, and ’charlie’. For each of the 3 classes/words, there are 20

samples, so in total there are 60 samples in the dataset. The recorded isolated

words are spoken by 3 males and 2 females in American spoken English and

United Kingdom spoken English. The original sound files are in MP3 file format

(.mp3). These were converted to Wav file format (.wav) to make it compatible

for processing with the Brian neural network simulator libraries. The encoding

attributes of the Wav file are: sampling rate (standard audio CD) of 44100 Hz,

bit depth of 16 Bits, Mono. The temporal length of the recorded isolated words

are between 500 ms to 1000 ms.

For the cochleagram spike encoding, in our case, we have used 70 gammatone

filters using the Brian’s libraries (Goodman & Brette, 2010). We have used 70

gammatone filters as per the requirement of our vowels recognition audio files.

11.2 Case Study: Heart Sound Dataset

11.2.1 Experimental settings and results for deSNN

In this pilot spectro-temporal pattern recognition experiment, we use two of our

deSNN classifiers, namely deSNNs and deSNNm, on ’The PASCAL Classifying

Heart Sounds Challenge’ dataset (Bentley et al., 2011), along with two other

Spiking Neural Network (SNN) based classifiers called eSNNs and eSNNm

(Dhoble et al., 2012). The parameter settings for all the four SNN based

classifiers (eSNNs, eSNNm, deSNNs and deSNNm) are given in Table 11.2.1,

154

Table 11.2.1: Parameter settings for SNN-based classifiers (i.e. eSNNs, eSNNm,
deSNNs and deSNNm)

For neurons and synapses
Excitatory synapse time constant 2 ms
Inhibitory synapse time constant 5 ms
Neuron time constant (tau mem) 20 ms
Membrane leak 20 mV
Spike threshold (Vthr) 800 mV
Reset value 0 mV
Fixed inhibitory weight 0.20 volt
Fixed excitatory weight 0.40 volt
Thermal voltage 25 mV
Refractory period 4 ms

For learning related parameters (Fusi)
Up/Down weight jumps (Vthm) 5 x (Vthr/8)
Calcium variable time constant (tau ca) 5 x (tau mem)
Steady-state asymptode for Calcium variable (wca) 50 mV
Stop-learning threshold 1 (stop if V ca < thk1) 1.7 x wca
Stop-learning threshold 2 (stop LTD if V ca > thk2) 2.2 x wca
Stop-learning threshold 2 (stop LTP if V ca > thk3) (8 x wca) - wca
Plastic synapse (NMDA) time constant 9 ms
Plastic synapse high value (wp hi) 6 mvolt
Plastic synapse low value (wp lo) 0 mvolt
Bistability drift 0.25
Delta Weight 0.12 x wp hi

Other miscellaneous parameters / values
Input Size 64 spike train
Simulation time 8 seconds
mod (for rank order) 0.8

along with other miscellaneous parameter values such as input size and

simulation time. All the experiments are performed using 6-fold cross-validation

method.

Table 11.2.2 shows the classification performance of the four deSNN classifiers

(Dhoble et al., 2012) on the ’The PASCAL Classifying Heart Sounds Challenge’

155

Table 11.2.2: Classification accuracy for Spiking Neural Network based classifiers.

SNN Classifiers
Accuracy eSNNs eSNNm deSNNs deSNNm
Without LSM (%) 53.85±9.4211 41.81±4.4032 48.08±3.3309 69.23±6.2807

dataset (Bentley et al., 2011). deSNNm classifier gives us the highest accuracy

of 69.23%±6.2807. Compared to the other three classifiers, the classification

performance of deSNNm is found to be consistent as shown in the study by

Dhoble, Nuntalid, Indiveri, and Kasabov (2012). This particular experiment

serves as a benchmark for experiments performed with deSNNr (consisting of

deSNN with LSM reservoir) and learning deSNNr (consisting of deSNNr with

STDP learning rule in the LSM reservoir).

11.2.2 Experimental settings and results for deSNNr

As explained in the previous section, deSNNr approach consists of the deSNN

classifier along with the liquid state machine (LSM) reservoir. The LSM

network topology is constructed using 64 neurons (N) and in a

three-dimensional topology of 4× 4× 4 neurons (Kasabov, Dhoble, et al., 2011).

The neurons (N) are either excitatory (Nex) or inhibitory (Ninh) neurons with

4 : 1 ratio respectively. The simulation time for the reservoir has been set to

8000 ms, since the average time scale for the ’The PASCAL Classifying Heart

Sounds Challenge’ dataset is 8 seconds. These 8 seconds audio timescale is

internally represented by the LSM reservoir as 8000 ms.

156

Table 11.2.3: The table provides the parameter settings that are used in our experimen-
tal setup for the neuron models and LSM

Parameters V alue/s

For Cochleagram Spike Encoder
Min-Max Frequency Range 20 Hz - 20 kHz
Number of Channels/Neurons 20
Neuronal Model LIF
Duration 8 sec
For Neuron
Time Constance 10 ms
Reset Potential 0 mV
Initial Firing Threshold 10 mV
Standard Deviation of reset fluctuation 3 mV
Standard Deviation of Step-wise Firing Threshold 2 mV
Standard Deviation of Continuous Firing Threshold 1 mV
For LSM
Simulation Time 8000 ms
Number of Neurons 64
Excitatory to Inhibitory Neuron Ratio 4:1
Input Neurons Connection Probability 0.2
Input Neurons Connection Weight 0.8 mV
Time-bin for Liquid Responses 10 ms

Table 11.2.4 shows the classification performance for deSNNr that utilizes

different stochastic neuronal models in the liquid state machine reservoir.

Several studies (Kasabov, Dhoble, et al., 2011; Nuntalid et al., 2011) have

shown that stochastic neuronal models often results in better classification

performance. This increase in classification performance due to stochastic

neuronal models is also apparent in our experiment where the Noisy Reset

neuron model gives us an accuracy of 74.54%±23.4674.

157

Table 11.2.4: Classification accuracy for Spiking Neural Network based classifiers.

SNN Classifiers (deSNNr)
Accuracy LIF NR NT SNT
deSNNm (%) 49.82±3.2516 45.98±0.3028 50.78±9.6122 71.33±17.3491
deSNNs (%) 51.36±12.2790 74.54±23.4674 67.69±22.8449 65.56±15.7332

11.2.3 Experimental settings and results for learning deSNNr

Figure 11.2.1 shows the cochleagram encoded spikes for a heart murmur sample.

This cochleagram encoded spikes are fed to the LSM reservoir with STDP

learning. The lower plot in Figure 11.2.1 shows the raster plot for LSM with

STDP learning. It can be seen that the spikes are highly synchronous due to

the STDP learning that has been introduced into the LSM reservoir. We infer

that because of this synchronization, the learning is reinforced. Therefore, the

LSM reservoir with STDP learning produces better results compared to the

LSM reservoir with no STDP learning.

The learning deSNNr consists of deSNN and LSM reservoir with STDP

learning rule. The learning deSNNr is an extension of the epSNNr approach

proposed by Kasabov, Dhoble, Nuntalid, and Mohemmed (2011). It is extended

by implementing the STDP learning rule inside the LSM reservoir. The

parameter settings for LSM reservoir for this learning deSNNr experiment can

be seen in Table 11.2.3. The parameters for the LSM reservoir are kept the

same in order to have an unbiased classification performance comparison. Table

11.2.5 shows the learning deSNNr’s classification performance under different

stochastic neuronal models (Nuntalid et al., 2011) such as Leaky-Integrate and

158

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

0
2
4
6
8

10
12
14
16
18

Ne
ur

on
 n

um
be

r

Input Spikes

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

0
10
20
30
40
50
60
70

Ne
ur

on
 n

um
be

r

LSM Output Spikes

Figure 11.2.1: The above figure shows the cochleagram encoded spikes for a heart mur-
mur sample. This cochleagram encoded spikes are fed to the LSM reservoir having STDP
learning. The plot below shows the raster plot for LSM with STDP learning. It can be
seen that the spikes are highly synchronous.

Fire (LIF), Noisy Reset Model (NR), Noisy Threshold Model (NT) and

Step-wise Noisy Threshold Model (SNT).

All previous classification results show that the stochastic neuronal models

performance was superior. The same is true for this experiment, where the

Noisy Threshold neuronal model gives the highest classification accuracy of

83.33%±11.0550 using deSNNm classifier. The second highest classification

accuracy of 77.00%±08.2915 is obtained with Leaky-Integrate and Fire

neuronal model, also using the deSNNm classifier. It is interesting to note that

159

Table 11.2.5: Classification accuracy for Spiking Neural Network based classifiers using
deSNNr with STDP learning in the reservoir. (Neuronal models: LIF- Leaky-Integrate
and Fire, NR- Noisy Reset Model, NT- Noisy Threshold Model and SNT- Step-wise
Noisy Threshold Model.)

deSNNr classifiers with STDP learning rule (learning deSNNr)
Accuracy LIF NR NT SNT
deSNNm (%) 77.00±08.2915 53.33±9.4280 83.33±11.0550 70.00±16.7332
deSNNs (%) 60.83±16.8931 50.00±10.000 55.66±11.0550 56.00±10.1986

in the previous experiment (see Table 11.2.4), where STDP learning rule is

absent in the LSM reservoir, the highest classification accuracy obtained with

LIF neuronal model is 51.36%±12.2790, which is approximately 26 percent

lower on comparison to the learning deSNNr’s result.

11.3 Case Study: Isolated Spoken Words Dataset

Similarly to the previous experiment with heart sound dataset, here we use a

dataset consisting of isolated spoken word. Apart from the parameter values

given in Table 11.3.1 for deSNN, and for neuron models and LSM provided in

Table 11.3.3, all the other parameter values remain the same. The experiments

are performed using 6-fold cross-validation method. Since the total number of

neurons used by the reservoir is 125 (which corresponds to the reservoir output

size), 125 neurons were used as an input size for the deSNN learning algorithms.

Also, since the temporal lengths of the recorded isolated words are between 500

ms to 1000 ms, the simulation time is set to 1000 ms (see Table 11.3.1).

160

Table 11.3.1: Parameter settings for deSNN. Apart from the parameters shown here, all
other parameters are the same as shown in Table 11.2.1.

For neurons and synapses
Spike threshold (Vthr) 8000 mV
Other miscellaneous parameters / values
Input Size (eSNN) 70 spike train
Input Size (deSNN) 125 spike train
Simulation time 1000 ms

Table 11.3.2: Classification accuracy for Spiking Neural Network based classifiers.

SNN Classifiers
Accuracy eSNNs eSNNm deSNNs deSNNm
Without LSM (%) 42.50±10.8972 37.50±14.7009 54.00±8.0000 50.00±14.1421

11.3.1 Experimental settings and results - deSNN

The classification performance of eSNN and deSNN variants for this particular

dataset is given in Table 11.3.2. It can be seen that deSNNm and deSNNs

approaches, are extensions of eSNN (Kasabov, Dhoble, Nuntalid, & Indiveri,

2012), perform significantly better in terms of classification task. Therefore, in

the next experiments we only use the deSNN approach.

11.3.2 Experimental settings and results - deSNNr

The input neurons connection weights for the LSM reservoir vary between 1.3

mV and 1.7 mV. This is because, for some samples, a small weight (1.3 mV)

does not initiate the network and otherwise, for some samples the input neurons

connection weight of 1.7 mV results in over excitation of the LSM network due

to chaotic dynamics (Bertschinger & Natschläger, 2004). For this reason,

161

dependent on the sample, varying input neurons connection weight are used in

the LSM reservoir (see Table 11.3.3). The input neurons connection weight for

each of the samples were determined through a trial and error.

Table 11.3.3: The table provides the parameter settings used in our experimental setup
for the neuron models and LSM. Apart from the shown parameters, all other parameters
are the same as shown in Table 11.2.3.

Parameters V alue/s

For Cochleagram Spike Encoder
Min-Max Frequency 20 Hz - 20 kHz
Number of Channels/Neurons 70
Neuronal Model LIF
Duration 1000 ms
For LSM
Number of Neurons 125
LSM Topology 5× 5× 5
Input Neurons Connection Weight 1.3 mV - 1.7 mV
Simulation Time 1000 ms

In the following experiment (see Table 11.3.4), we use the deSNN algorithm

with LSM reservoir (deSNNr). Also, various stochastic neural models are used

in the LSM reservoir. The classification performance corresponding to each of

the stochastic neural models along with the LIF neural model for deSNN is

given in Table 11.3.4. It can be seen that Noisy Reset (NR) neuronal model

with deSNNm gives the highest accuracy of 65.00%±9.5742 for this particular

dataset.

162

Table 11.3.4: Classification accuracy for Spiking Neural Network based classifiers
(deSNN) with LSM reservoir. The parameter C for deSNNm has been optimized between
0 and 1 (with 0.05 step).

SNN Classifiers (deSNNr)
Accuracy LIF NR NT SNT
deSNNm (%) 50.00±8.9442 65.00±9.5742 50.00±8.1649 58.33±10.6718
deSNNs (%) 34.00±10.1980 38.33±18.6338 25.00±12.5830 43.33±16.9967

11.3.3 Experimental settings and results for learning deSNNr

This experiment is similar to the previous experiment (using deSNNr).

However, in this experiment we incorporate the standard STDP learning rule in

the LSM reservoir along with the deSNN approach (hence this method is called

learning deSNNr). The classification performance is given in Table 11.3.5. It

can be seen that the Noisy Reset (NR) neuronal model with deSNNs gives the

highest accuracy of 80.00%±20.9761 followed by NR neuronal model with

deSNNm. The performance of deSNN variants is dependent on various

parameters such as the spike density and temporal length of the spike train

along with the dataset. Hence, with the heart sound dataset, the classification

performance of deSNNm was better than the others and vice-versa, deSNNs

performed better on this particular dataset. However, the difference in the

classification performance between deSNNm and deSNNs is often very small

(Kasabov, Dhoble, Nuntalid, & Indiveri, 2012).

As established in the previous study by Kasabov, Dhoble, Nuntalid, and

Indiveri (2012), the deSNN models resulted in a better classification

performance when compared with other SNN models that use either rank-order

163

Table 11.3.5: Classification accuracy for Spiking Neural Network based classifiers using
deSNNr with STDP learning in the reservoir. (Neuronal models: LIF- Leaky-Integrate
and Fire, NR- Noisy Reset Model, NT- Noisy Threshold Model and SNT- Step-wise
Noisy Threshold Model.)

deSNNr classifiers with STDP learning rule (learning deSNNr)
Accuracy LIF NR NT SNT
deSNNm (%) 70.00±11.5470 78.00±07.4833 70.00±11.5470 66.66±4.7140
deSNNs (%) 61.66±18.6338 80.00±20.9761 78.33±14.6249 66.66±11.0554

or STDP learning rule. The reason is that the deSNN makes use of both the

information contained in the order of the first input spikes present in input data

streams (this is crucial to consider in some tasks) and the information contained

in the timing of the following spikes that is learned by the dynamic synapses as

a whole spatio-temporal pattern.

The proposed learning deSNNr, which incorporates the STDP learning rule in

the LSM reservoir, is shown to have far superior performance in terms of

classification accuracy when compared to deSNNr approach. Previous studies

(Maass & Sontag, 2000; Natschlager & Maass, 2002; Brader et al., 2007) that

have utilized STDP learning have also shown that such networks can

approximate a very rich class of non-linear filters and have been successfully

utilized in practical applications. Hence, due to the STDP’s ability to function

as memory buffers and its ability to account for the precise time of spikes,

deSNNr with STDP learning (i.e. learning deSNNr) has a higher classification

performance on comparison to the result obtained from the reservoir without

STDP learning rule (deSNNr). The method is illustrated on two different case

studies using the heart sound dataset and the isolated spoken words dataset

164

respectively for spectro-temporal pattern recognition. The cochleagram-based

spike encoding approach worked well for the above spectro-temporal datasets

due to the datasets simplicity; however, an alternative spike information

encoding and preprocessing method is suggested for more complex

spectro-temporal datasets.

For future works, various parameter settings would need to be optimized for

the cochleagram-based spike encoding, the reservoir and the deSNN algorithms.

Also, the sound to spike encoding with the reservoir is computationally

expensive, therefore a hardware implementation would be recommended for real

time computation for real-time practical applications. Since STDP learning is

now implementable on hardware (Thorpe, 2012), it makes it feasible to attempt

implementation of the deSNN model on such hardware for real time spectro-

temporal pattern recognition tasks (Kasabov, Dhoble, Nuntalid, & Indiveri,

2012).

11.4 Summary

The classification performance of the epSNNA-s architecture is evaluated

against standalone online one-pass spiking neural network based classifiers such

as eSNN and deSNN. It is found that for the two presented case studies,

epSNNA-s performs significantly better than eSNN and deSNN alone. Also, the

hypothesis that the introduction of STDP learning into the probabilistic

reservoir would result in better classification performance has been

demonstrated. We conclude the thesis with the next chapter where the

165

achievement of research objectives, the scientific contributions of this work are

presented along with the future directions.

166

“The more you know, the more you realize you

know nothing.”

Socrates (469 BC 399 BC)

12
Conclusion and future directions

We conclude the thesis by presenting in this chapter a summary of the research

main achievements and contributions.

12.1 Introduction

This thesis proposes novel frameworks and classification methods employing a

class of evolving spiking neural networks (eSNN) called dynamic evolving

167

spiking neural networks (deSNN) along with reservoir computing. In our study,

we have shown that using the proposed frameworks results in better

classification performance when compared to standalone spiking neural network

classifiers such as eSNN and deSNN.

All the frameworks and methods proposed in this thesis have been evaluated

on synthetic and real world problems. In order to evaluate the efficacy of the

new methodology, initially a pilot experiment has been performed as a

benchmark test using the synthetic video dataset. This is followed by applying

the methods on real world problems relating to motion and sound such as

human action recognition, heart sound recognition and isolated spoken words

recognition.

This chapter concludes the thesis by summarizing the achievements of the

presented research and indicates several directions for future work.

12.2 Summary of achievements

• Developed new generic SNN methods for spatio and

spectro-temporal data processing.

As per the research objectives we have introduced two new eSNN-based

classifiers called deSNNm and deSNNs and two deSNN based hybrid

algorithms called deSNNr and learning deSNNr. The characteristics and

specifics of deSNNm and deSNNs are explained in Chapter 6. Also, both

methods have been independently evaluated on several datasets such as

synthetic video dataset, simple moving object dataset, AER-based human

168

action recognition dataset, heart sound dataset and isolated spoken words

dataset. It was found that the deSNNm classifier performed better than

deSNNs. However, when the density of the spikes is high, the deSNNs

performance increases significantly. Also, deSNNm and deSNNs

performance on classification tasks is significantly higher than online

one-pass spiking neural network (SNN) based classifiers such as eSNN and

multi-layered feed-forward SNN with SDSP learning (SDSP-SNN). The

results of the initial study is presented in Chapter 7.

• Developed a generic architecture and methods for

spatio-temporal pattern recognition.

Two new generic architectures for spatio-temporal pattern recognition

have been introduced in this thesis. The construction and function of the

proposed evolving probabilistic SNN reservoir (epSNNr) and evolving

SNN architecture for spatio-temporal data (epSNNA-v) are explained in

Chapter 4 and Chapter 8 respectively. Apart from being a generic

framework for spatio-temporal pattern recognition, the spike-based

pattern recognition approach also complements the artificial silicon retina,

thereby allowing the architecture to directly utilize the spikes produced by

the artificial silicon retina. The proposed epSNNA-v is made up of two

new hybrid algorithms called deSNNr and learning deSNNr. The core of

the deSNNr algorithm consists of the Liquid State Machine (LSM) with

stochastic neural models and the deSNN classifiers. The learning deSNNr

169

is the same as deSNNr, but it has unsupervised STDP learning rule in the

LSM reservoir. The proposed architecture (epSNNA-v and epSNNA-s) is

characterized by: one-pass propagation of SSTD during learning; utilizing

STDP/SDSP and dynamic synapses in learning deSNNr that are

modifiable during both learning and recall; it is an entirely spike-based

spatio-temporal pattern recognition approach. Also the hypothesis put

forward in Chapter 8, that introduction of STDP learning into the

probabilistic reservoir will result in better classification performance has

been proved.

• Developed of a software simulator for artificial silicon retina.

This simulator allows converting stored video data into AER-based spikes.

If required, it also allows real time acquisition of spikes from camera for

real time spike processing. The simulator uses Address Event

Representation approach employed in the artificial silicon retina. The

characteristics and specifics of the simulator are presented in Chapter 5.

• Developed a generic architectures for spectro-temporal pattern

recognition

The proposed epSNNA-s architecture is introduced in Chapter 10. Some

modules of the architecture are the same as epSNNA-v modules. However,

they differ in their spike-encoding approach as in the epSNNA-s

170

architecture we use basic cochleagram-based spike encoding scheme.

• Evaluated the classification performance of the generic

framework and methods on real world data.

Through comprehensive experimental analysis, the classification

performance of the generic framework and methods are evaluated on

several datasets. These include a synthetic video dataset and real world

datasets.

From the initial study using synthetic video dataset presented in chapter

4, we found that the proposed epSNNr architectures classification was

significantly superior to other approaches due to the stochastic neuron

models. This study demonstrated the applicability of reservoir computing

approach on whole spatio-temporal data.

In a pilot study using real word data, we evaluated the classification

performance of deSNNm and deSNNs methods against other SNN

methods such as SDSP-SNN and eSNN using the simple moving object

dataset (presented in Chapter 7). The performance of deSNNm was found

to be significantly higher than those of eSNNs, eSNNm and SDSP SNN.

This was due to the presence of the SDSP mechanism and dynamic

synapses in the deSNN. This study demonstrated the applicability of

SNN-based classifiers (deSNN) on real word data.

After carrying out the above mentioned study, we tested the performance

of the deSNN methods on more complex real world data. The AER-based

171

human action recognition dataset was used for evaluating the

classification performance of deSNN. The classification results confirmed

the previously shown performance of deSNN (presented in Chapter 9).

The noise robustness of the methods was also evaluated, suggesting 50

percent noise did not significantly affect the deSNN methods classification

performance. As a hardware feasibility study for deSNN, we also added 25

percent noise (to mimic the average level of thermal noise found in

neuromorphic hardware) to the neural and network parameters; this again

confirmed the deSNN methods robustness against noise.

deSNNm utilizes threshold and deSNNs does not utilizes threshold,

deSNNs only uses connection weights, where new neuron is created in the

repository for every sample and its connection weights are compared with

the existing ones, where the closer match is the winner. So deSNNs

requires the whole sample to be processed, therefore deSNNm is more

desirable option than deSNNs because (for deSNNm) you can tune the

threshold with coefficient c. This means that we do not need to propagate

the entire pattern maybe around 70%, this will result in spike. But the

real reason deSNNm performs better is because of its emphasis on first

spikes. In AER the first spikes are more important rather than the whole

pattern and deSNNm takes advantage of this since deSNNm also places

more importance on initial spikes by means of ROC. After ROC, the

spikes are regulating via SDSP in an unsupervised manner.

The new generic architecture for spatio-temporal pattern recognition

(epSNNA-v) was also evaluated using the human action recognition

172

dataset. The two hybrid approaches, deSNNr and learning deSNNr, born

from the epSNNA-v architecture, showed improved classification

performance against standalone eSNN and deSNN classifiers (study is

presented in Chapter 9). The learning deSNNr approach introduces the

unsupervised STDP learning mechanism in Liquid State Machine, similar

to the deSNN method. Due to the presence of STDP mechanism in

learning deSNNr, the classification performance improved significantly.

The third generic architecture for spectro-temporal pattern recognition

(epSNNA-s) is evaluated using two case studies - heart sound dataset and

isolated spoken words dataset. The learning deSNNr approach confirmed

the improved classification performance shown using spatio-temporal data

(study presented in Chapter 11). Also, we found that the methods and

architectures are able to process the entire spatio- and spectro-temporal

data having small (in milliseconds) and large (in minutes) temporal

length.

It was also found that in the presence of high-density spikes, the deSNNs

methods perform better than deSNNm and vice versa, when data with

low-spike density is presented deSNNm performs better than deSNNs. We

note that the connection weights of the neural network are not subject to

any optimization. Instead, the weights are obtained through the use of an

efficient one-pass learning algorithm that was developed as part of the

epSNNA-v/s architecture. Therefore, through initial study on real-world

problems, we have demonstrated the feasibility and applicability of the

developed generic framework and methods.

173

12.3 Future directions

As future works, I would like to test the scalability of the system in terms of

network size, number of classes and complex classes. Also, the proposed

methods need to be tested on datasets having both spatio and spectro-temporal

components such as the Electroencephalography (EEG) and functional

Magnetic Resonance Imaging (fMRI) datasets.

In all experiments in this study, the neural and learning parameters of the

applied method were manually fine-tuned using trial and error method in order

to achieve satisfying classification results. The generic frameworks and methods

have numerous parameters and finding an appropriate value for parameter

setting becomes a challenging task. Hence, an optimization mechanism needs to

be incorporated into the framework that will provide optimal parameter

settings for a particular dataset.

Optimization has been identified as one of the major issues for the future

development of deSNN models and architecture. One way is to combine the

local learning of synaptic weights with global optimization of SNN parameters.

Three optimization approaches are suggested, namely evolutionary

optimization, neurogenetic optimization and reservoir optimization. These

approaches are discussed in some details below.

174

12.3.1 Optimization

Evolutionary optimization

The inspiration for evolutionary optimization comes from natural evolution.

One of the natural evolution principles that has been borrowed by the

evolutionary optimization approaches such as genetic algorithms is the survival

of the fittest. Evolutionary computing techniques do not require the use of

domain knowledge, so they can be incorporated depending on the requirements.

Some of the commonly used evolutionary computation methods are: genetic

algorithms, particle swarm optimization, quantum inspired evolutionary

computation methods (Schliebs, Kasabov, & Defoin-Platel, 2010; Schliebs et al.,

2009; Kasabov & Hu, 2010; Hamed et al., 2010). These methods can be used to

explore the performance of many deSNN in a population, each having different

parameter settings until a close to optimum performing model can be found.

Neurogenetic optimization

Gene regulatory network (GRN) models from the neurogenetics domains can

also be considered as one of the optimization methods for future applications.

In biology, the dynamics of genes often have an influence on the neural network.

Inspired by this gene interaction, many neurogenetic SNN models have been

developed (Kasabov, 2012; Kasabov, Benuskova, & Wysoski, 2004; Kasabov,

Schliebs, & Kojima, 2011; Beňušková & Kasabov, 2007). These models function

at two levels: at GRN level of slow changes of the gene parameter values and at

SNN level of fast information processing that is affected by the gene parameter

175

changes. Genes control SNN parameters, but how are gene values optimized?

Nature has been continuously optimizing genes for millions of years now

through evolution. Applying evolutionary algorithms to optimize genes in GRN

that control SNN parameters for a specific problem represented as spatio- or

spectro-temporal data can be investigated as future works.

Reservoir optimization

Reservoir such as Liquid State Machine (LSM) has been the core component in

many of our methods and architecture. In reservoir computing, there are

various other approaches such as Echo State Networks that are incorporated in

the architecture. Also, the reservoirs separability can be optimized using

evolutionary computing methods (Hourdakis & Trahanias, 2011). Furthermore,

the model capacity can be optimized by means of regularization or by changing

the size of the reservoir. Regularization is usually carried out by introducing

noise during training (Jaeger & Haas, 2004) or by means of ridge regression

(Ilies et al., 2007). Studies have shown that the noise insertion approach is

computationally inexpensive and is more suitable than ridge regression approach

in terms of the dynamical stability of the trained system (Jaeger et al., 2007).

12.3.2 Hardware Implementation

The spiking neural networks (SNN) based architectures and methods proposed

in this thesis have been designed while taking into consideration the

computational constraints present in neuromorphic hardware. Implementing

176

deSNN on hardware SNN chips would enable the development of some practical

engineering applications. The feasibility of implementing the deSNN model on

some particular SNN chips is discussed in the following (Kasabov, Dhoble,

Nuntalid, & Indiveri, 2012).

The SDSP learning rule applied on the LIF model of a neuron is implemented

in the Very Large Scale Integration (VLSI) SNN silicon chip (Indiveri, Chicca,

& Douglas, 2009) making it possible for a deSNN model to be implemented on

this chip. The silicon synapses of the chip comprise bi-stability circuits for

driving a synaptic weight to one of two possible analogue values (either

potentiated or depressed). These circuits drive the synaptic-weight voltage with

a current that is superimposed on that generated by the STDP and which can

be either positive or negative. If, on short time scales, the synaptic weight is

increased above a set threshold by the network activity via the STDP learning

mechanism, the bi-stability circuits generate a constant weak positive current.

In the absence of activity (and hence learning) this current will drive the weight

toward its potentiated state. If the STDP decreases the synaptic weight below

the threshold, the bi-stability circuits will generate a negative current that, in

the absence of spiking activity, will actively drive the weight toward the

analogue value, encoding its depressed state. The chip allows for different types

of dynamic synapses to be implemented, including the Tsodyks model

(Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996).

Another SNN chip that implements LIF model of a neuron is the VLSI

SRAM SNN chip (Moradi & Indiveri, 2011). It is characterized by the

following: 32x32 SRAM matrix of weights, each 5 bits (values between 0 and

31); 32 neurons of the adaptive, exponential IF model of a neuron; each neuron

177

has 2 excitatory and 2 inhibitory inputs to which any of the 32 input dendrites

(rows of weights) can be connected; AER for input data, for changing the

connection weights and for output data streams; since it does not have any

learning rule hardware implemented, it allows to experiment with different

supervised and unsupervised learning rules; learning (changing of the synaptic

weights) is calculated outside the chip (in a computer, connected to the chip) in

an asynchronous manner (only synaptic weights that need to change at the

current time moment are changed (calculated) and then loaded into the SRAM)

applying suitable learning rule and parameter settings. The fact that modifying

connection weights is done asynchronously outside the chip and then the

weights are loaded in the SRAM allows for the deSNN learning algorithm to be

implemented on this chip. After an input is entered in the SRAM (as AER),

the output from the neurons is produced and then used (outside the chip) to

change connection weights according to the deSNN learning rules. The new

values of the weights are entered into the SRAM also asynchronously (Kasabov,

Dhoble, Nuntalid, & Indiveri, 2012). deSNN is also implementable on the

digital IBM SNN chip. Despite the fast, one-pass learning in the deSNN

models, in terms of large scale modeling of millions and billions of neurons using

the SpiNNaker SNN supercomputer system (Jin et al., 2010) for simulation

purposes would be appropriate, especially at the level of parameter

optimization. Potentially, the deSNN can be used to implement neuromorphic

architectures for complex engineering applications.

178

References

Abbott, L., & Nelson, S. (2000). Synaptic plasticity: taming the beast. Nature

neuroscience, 3 , 1178–1183.

Abdollahi, M., & Liu, S. (2011). Speaker-independent isolated digit recognition

using an AER silicon cochlea. In Biomedical circuits and systems

conference (biocas), 2011 ieee (pp. 269–272).

Abdollahi, M., Valavi, E., & Noubari, H. (2009). Voice-based gender

identification via multiresolution frame classification of spectro-temporal

maps. In IJCNN 2009. International Joint Conference on Neural

Networks, 2009. (pp. 1–4).

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1987). A learning algorithm

for boltzmann machines. , 522–533.

Allen, J. (2009). The lives of the brain: human evolution and the organ of

mind. Belknap Press.

Amari, S., & Kasabov, N. (1998). Brain-like Computing and Intelligent

Information Systems (1st ed.). Singapore: Springer-Verlag.

Andringa, T., Niessen, M., & Nillesen, M. (2004). Continuity Preserving Signal

Processing. Retrieved from

{http://www.ai.rug.nl/acg/cpsp/index.html}

Arbib, M. (2003). The Handbook of Brain Theory and Neural Networks (2nd

ed.). Singapore: MIT Press.

Arel, I., Rose, D., & Karnowski, T. (2010). Deep Machine Learning: A New

Frontier in Artificial Intelligence Research [Research Frontier]. IEEE

Computational Intelligence Magazine, 5 (4), 13–18.

Atiya, A., & Parlos, A. (2000). New results on recurrent network training:

Unifying the algorithms and accelerating convergence. Neural Networks,

IEEE Transactions on, 11 (3), 697–709.

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M. M., Ferretti,

R. E., Leite, R. E., . . . Herculano-Houzel, S. (2009, April). Equal

numbers of neuronal and nonneuronal cells make the human brain an

isometrically scaled-up primate brain. The Journal of comparative

neurology , 513 (5), 532–541. doi: 10.1002/cne.21974

179

Bentley, P., Nordehn, G., Coimbra, M., & Mannor, S. (2011). The PASCAL

Classifying Heart Sounds Challenge 2011 (CHSC2011) Results. Retrieved

from http://www.peterjbentley.com/heartchallenge/index.html

Beňušková, L., & Kasabov, N. (2007). Computational neurogenetic modeling.

Springer Verlag.

Bertschinger, N., & Natschläger, T. (2004). Real-time computation at the edge

of chaos in recurrent neural networks. Neural Computation, 16 (7),

1413–1436.

Boahen, K. (2007, June). The brain and the computer. In Device research

conference, 2007 65th annual (p. 235-235).

Bohte, S., & Kok, J. (2005). Applications of spiking neural networks.

Information Processing Letters , 95 (6), 519–520.

Bower, J., Beeman, D., & Hucka, M. (2002). The genesis simulation system.

The Handbook of Brain Theory and Neural Networks , 475–478.

Brader, J., Senn, W., & Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural computation,

19 (11), 2881–2912.

Bradski, G. (2000). The OpenCV library. Dr. Dobbs Journal: Software Tools

for the Professional Programmer , 25 (11), 120–124.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., . . .

others (2007). Simulation of networks of spiking neurons: A review of

tools and strategies. Journal of Computational Neuroscience, 23 (3),

349–398.

Brillinger, D. R. (1992). Nerve cell spike train data analysis: a progression of

technique. Journal of the American Statistical Association, 87 (418),

260–271.

Bryson, A. E., & Ho, Y. C. (1975). Applied Optimal Control: Optimization,

Estimation, and Control. Waltham, MA, USA: Blaisdell Publishing

Company.

Buonomano, D., & Maass, W. (2009). State-dependent computations:

spatiotemporal processing in cortical networks. Nature Reviews

Neuroscience, 10 (2), 113–125.

Burgsteiner, H., Kröll, M., Leopold, A., & Steinbauer, G. (2005). Movement

180

prediction from real-world images using a liquid state machine.

Innovations in Applied Artificial Intelligence, 92–99.

Chan, V., Liu, S., & van Schaik, A. (2007). AER EAR: A matched silicon

cochlea pair with address event representation interface. IEEE

Transactions on Circuits and Systems I: Regular Papers , 54 (1), 48–59.

Corning, W., & Balaban, M. (1968). The mind; biological approaches to its

functions. Interscience Publishers.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory , 13 (1), 21–27.

De Garis, H., Korkin, M., Gers, F., Nawa, E., & Hough, M. (2000). Building an

artificial brain using an FPGA based CAM-Brain Machine. Applied

Mathematics and Computation, 111 (2), 163–192.

De Garis, H., Nawa, N., Hough, M., & Korkin, M. (1999). Evolving an optimal

de/convolution function for the neural net modules of ATR’s artificial

brain project. In IJCNN’99. International Joint Conference on Neural

Networks, 1999 (Vol. 1, pp. 438–443).

Delbruck, T. (2007). jAER open source project. Retrieved from

{http://jaer.wiki.sourceforge.net}

Delorme, A., Perrinet, L., & Thorpe, S. J. (2001). Networks of integrate-and-fire

neurons using rank order coding b: spike timing dependent plasticity and

emergence of orientation selectivity. Neurocomputing , 38 , 539–545.

Delorme, A., & Thorpe, S. (2003). SpikeNET: an event-driven simulation

package for modelling large networks of spiking neurons. Network:

Computation in Neural Systems , 14 (4), 613–627.

Dhoble, K., Nuntalid, N., Indiveri, G., & Kasabov, N. (2012). Online

spatio-temporal pattern recognition with evolving spiking neural networks

utilising address event representation, rank order, and temporal spike

learning. In The 2012 International Joint Conference on Neural Networks

(IJCNN) (pp. 1–7).

Dominey, P. (1995). Complex sensory-motor sequence learning based on

recurrent state representation and reinforcement learning. Biological

Cybernetics , 73 (3), 265–274.

Dominey, P. (2005). From sensorimotor sequence to grammatical construction:

181

Evidence from simulation and neurophysiology. Adaptive Behavior , 13 (4),

347–361.

Dominey, P., Hoen, M., Blanc, J., & Lelekov-Boissard, T. (2003). Neurological

basis of language and sequential cognition: evidence from simulation,

aphasia, and erp studies. Brain and language, 86 (2), 207–225.

Dominey, P., Hoen, M., & Inui, T. (2006). A neurolinguistic model of

grammatical construction processing. Journal of Cognitive Neuroscience,

18 (12), 2088–2107.

Dominey, P., & Ramus, F. (2000). Neural network processing of natural

language: I. Sensitivity to serial, temporal and abstract structure of

language in the infant. Language and Cognitive Processes , 15 (1), 87–127.

Elman, J. L. (1991). Distributed Representations, Simple Recurrent Networks,

And Grammatical Structure. Machine Learning , 7 (2-3), 195–225. doi:

http://dx.doi.org/10.1007/BF00114844

Fusi, S., Annunziato, M., Badoni, D., Salamon, A., & Amit, D. (2000).

Spike-driven synaptic plasticity: theory, simulation, vlsi implementation.

Neural Computation, 12 (10), 2227–2258.

Gao, B., Woo, W., & Dlay, S. (2012). Unsupervised Single-Channel Separation

of Nonstationary Signals Using Gammatone Filterbank and Itakura–Saito

Nonnegative Matrix Two-Dimensional Factorizations.

Gerlach, J. (1858). Microscopische Studien aus dem Gebiet der menschlichen

Morphologie (2nd ed.). E Enke, Erlangen.

Gerstner, W. (1995, Jan). Time structure of the activity in neural network

models. Phys. Rev. E , 51 (1), 738–758. doi: 10.1103/PhysRevE.51.738

Gerstner, W., & Kistler, W. (2002b). Spiking neuron models: Single neurons,

populations, plasticity. Cambridge Univ Pr.

Gerstner, W., & Kistler, W. M. (2002a). Spiking neuron models. Cambridge

University Press.

Glackin, C., Maguire, L., McDaid, L., & Wade, J. (2011). Lateral inhibitory

networks: Synchrony, edge enhancement, and noise reduction. In The

2011 International Joint Conference on Neural Networks (IJCNN) (pp.

1003–1009).

Goodman, D., & Brette, R. (2009). The Brian simulator. Frontiers in

182

Neuroscience, 3 (2), 192.

Goodman, D., & Brette, R. (2010). Spike-timing-based computation in sound

localization. PLoS computational biology , 6 (11), e1000993.

Grzyb, B., Chinellato, E., Wojcik, G., & Kaminski, W. (2009). Facial

expression recognition based on liquid state machines built of alternative

neuron models. In IJCNN 2009: International Joint Conference on

Neural Networks. (pp. 1011–1017).

Hamed, H. N. A., Kasabov, N., & Shamsuddin, S. (2010). Probabilistic

evolving spiking neural network optimization using dynamic

quantum-inspired particle swarm optimization. Australian Journal of

Intelligent Information Processing Systems , 11 (1).

Hamed, H. N. A., Kasabov, N., Shamsuddin, S. M., Widiputra, H., & Dhoble,

K. (2011). An extended evolving spiking neural network model for

spatio-temporal pattern classification. In The 2011 International Joint

Conference on Neural Networks (IJCNN) (pp. 2653–2656).

Harmon, L. D. (1962). Neural analogs. In AIEE-IRE ’62 (Spring): Proceedings

of the May 1-3, 1962, spring joint computer conference (pp. 153–158).

New York, NY, USA: ACM. doi:

http://doi.acm.org/10.1145/1460833.1460852

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York:

Macmillan.

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological

Theory (New edition ed.). New York: Wiley.

Hill, A. (1936). Excitation and accommodation in nerve. Proceedings of the

Royal Society of London. Series B, Biological Sciences , 119 (814),

305–355.

Hines, M. (1994). The NEURON simulation program. Kluwer International

Series in Engineering and Computer Science, 147–147.

Hinton, G. E., & Sejnowski, T. J. (1983a). Analyzing cooperative computation.

In 5th annual congress of the cognitive science society. Rochester, NY.

Hinton, G. E., & Sejnowski, T. J. (1983b). Optimal perceptual inference. In

IEEE conference on Computer Vision and Pattern Recognition (CVPR)

(pp. 448–453). Washington DC: IEEE Computer Society.

183

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in boltzmann

machines. , 1 , 282–317.

Hodgkin, A. L., & Huxley, A. F. (1952a). Currents carried by sodium and

potassium ions through the membrane of the giant axon of Loligo.

Journal of Physiology , 116 (4), 449-472.

Hodgkin, A. L., & Huxley, A. F. (1952b). The dual effect of membrane

potential on sodium conductance in the giant axon of Loligo. Journal of

Physiology , 116 (4), 497-506.

Hodgkin, A. L., & Huxley, A. F. (1952c). A quantitative description of

membrane current and its application to conduction and excitation in

nerve. Journal of Physiology , 117 , 500–544.

Hopfield, J. J. (1982, April). Neural networks and physical systems with

emergent collective computational abilities. Proceedings of the National

Academy of Sciences of the United States of America, 79 (8), 2554–2558.

Hopfield, J. J. (1988). Neurons with graded response have collective

computational properties like those of two-state neurons. , 82–86.

Hourdakis, E., & Trahanias, P. (2011). Improving the classification performance

of liquid state machines based on the separation property. Engineering

Applications of Neural Networks , 52–62.

Huguenard, J. R. (2000, August 15). Reliability of axonal propagation: the

spike doesn’t stop here. Proceedings of the National Academy of Sciences

of the United States of America, 97 (17), 9349–9350. Retrieved from

http://view.ncbi.nlm.nih.gov/pubmed/10944204

Ilies, I., Jaeger, H., Kosuchinas, O., Rincon, M., Sakenas, V., & Vaskevicius, N.

(2007). Stepping forward through echoes of the past: forecasting with

echo state networks. Avaible: http://www. neural-forecastingcompetition.

com/downloads/methods/27-NN3 Herbert Jaeger report. pdf .

Indiveri, G. (2008). Neuromorphic VLSI models of selective attention: from

single chip vision sensors to multi-chip systems. Sensors , 8 (9), 5352–5375.

Indiveri, G., Chicca, E., & Douglas, R. (2009). Artificial cognitive systems:

From VLSI networks of spiking neurons to neuromorphic cognition.

Cognitive Computation, 1 (2), 119–127.

184

Indiveri, G., Linares-Barranco, B., Hamilton, T., Van Schaik, A.,

Etienne-Cummings, R., Delbruck, T., . . . others (2011). Neuromorphic

silicon neuron circuits. Frontiers in neuroscience, 5 .

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE transactions

on neural networks , 14 (6), 1569–1572.

Izhikevich, E. M. (2004, Sept.). Which model to use for cortical spiking

neurons? IEEE Transactions on Neural Networks , 15 (5), 1063-1070. doi:

10.1109/TNN.2004.832719

Izhikevich, E. M. (2006). Polychronization: Computation with Spikes. Neural

Comput., 18 (2), 245–282. doi:

http://dx.doi.org/10.1162/089976606775093882

Izhikevich, E. M. (2007). Dynamical systems in neuroscience : the geometry of

excitability and bursting. MIT Press.

Izhikevich, E. M., & Edelman, G. M. (2008, March). Large-scale model of

mammalian thalamocortical systems. Proceedings of the National

Academy of Sciences , 105 (9), 3593–3598. doi: 10.1073/pnas.0712231105

Jaeger, H. (2001a). Short term memory in echo state networks.

GMD-Forschungszentrum Informationstechnik.

Jaeger, H. (2001b). The echo state approach to analysing and training recurrent

neural networks-with an erratum note. Tecnical report GMD report , 148 .

Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering

BPPT, RTRL, EKF and the” echo state network” approach.

GMD-Forschungszentrum Informationstechnik.

Jaeger, H. (2007). Echo state network. Scholarpedia, 2 (9), 2330.

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic

systems and saving energy in wireless communication. Science,

304 (5667), 78–80.

Jaeger, H., Lukoševičius, M., Popovici, D., & Siewert, U. (2007). Optimization

and applications of echo state networks with leaky-integrator neurons.

Neural Networks , 20 (3), 335–352.

Jaeger, H., et al. (2003). Adaptive nonlinear system identification with echo

state networks. networks , 8 , 9.

Jin, X., Luján, M., Plana, L., Davies, S., Temple, S., & Furber, S. (2010).

185

Modeling spiking neural networks on SpiNNaker. Computing in Science &

Engineering , 12 (5), 91–97.

Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire

models of neuronal activity approximate spike trains of a detailed model

to a high degree of accuracy. Journal of Neurophysiology , 92 (2), 959–976.

Ju, H., Xu, J., & VanDongen, A. (2010). Classification of musical styles using

liquid state machines. In The 2010 International Joint Conference on

Neural Networks (IJCNN) (pp. 1–7).

Kandel, E., Schwartz, J., & SzJessell, T. (1991). Principles of neural science.

London: Appleton and Lange.

Kasabov, N. (2001). Evolving fuzzy neural networks for supervised /

unsupervised online knowledge-based learning. Part B: Cybernetics, IEEE

Transactions on Systems, Man, and Cybernetics , 31 (6), 902–918.

Kasabov, N. (2002). Evolving connectionist systems for adaptive learning and

knowledge discovery: methods, tools, applications. In Proceedings of first

international IEEE symposium on intelligent systems (Vol. 1, pp. 24–28).

Kasabov, N. (2003). Evolving Connectionist Systems: Methods and Applications

in Bioinformatics, Brain Study and Intelligent Machines. Springer.

Retrieved from http://books.google.co.nz/books?id=MyBND1AbGokC

Kasabov, N. (2007). Evolving connectionist systems: the knowledge engineering

approach. Springer-Verlag, London.

Kasabov, N. (2009). Integrative probabilistic spiking neural networks utilizing

quantum inspired evolutionary algorithm: A Computational framework.

ICONIP ’08: 15th International Conference on Neural Information

Processing of the Asia-Pacific Neural Network Assembly , 5506 , 3–13.

Kasabov, N. (2010a). Integrative Probabilistic Evolving Spiking Neural

Networks Utilising Quantum Inspired Evolutionary Algorithm: A

Computational Framework. In Advances in Machine Learning II

(Vol. 263, p. 415-425). Springer Berlin / Heidelberg.

Kasabov, N. (2010b). To spike or not to spike: A probabilistic spiking neuron

model. Neural Networks , 23 (1), 16–19.

Kasabov, N. (2012). NeuCube EvoSpike Architecture for Spatio-temporal

Modelling and Pattern Recognition of Brain Signals. Artificial Neural

186

Networks in Pattern Recognition, 225–243.

Kasabov, N., Benuskova, L., & Wysoski, S. (2004). Computational

neurogenetic modeling: integration of spiking neural networks, gene

networks, and signal processing techniques. In IEEE International

Workshop on Biomedical Circuits and Systems (pp. S2–7).

Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2012). Dynamic

evolving spiking neural networks for on-line spatio- and spectro-temporal

pattern recognition. Neural Networks . Retrieved from http://

www.sciencedirect.com/science/article/pii/S0893608012003139

doi: 10.1016/j.neunet.2012.11.014

Kasabov, N., Dhoble, K., Nuntalid, N., & Mohemmed, A. (2011). Evolving

probabilistic spiking neural networks for spatio-temporal pattern

recognition: A preliminary study on moving object recognition. In Neural

information processing (pp. 230–239).

Kasabov, N., Dhoble, K., Nuntalid, N., Mohhemed, A., Schliebs, S., Indivery,

G., . . . Sheikh, S. (2012). EvoSpike: Evolving Probabilistic Spiking Neural

Networks for Spatio-Temporal Pattern Recognition. Retrieved from

{http://ncs.ethz.ch/projects/evospike}

Kasabov, N., & Hu, Y. (2010). Integrated optimisation method for personalised

modelling and case studies for medical decision support. International

Journal of Functional Informatics and Personalised Medicine, 3 (3),

236–256.

Kasabov, N., et al. (1998). ECOS: Evolving connectionist systems and the ECO

learning paradigm. In International Conference on Neural Information

Processing, Kitakyushu, Japan (pp. 1222–1235).

Kasabov, N., Schliebs, R., & Kojima, H. (2011). Probabilistic Computational

Neurogenetic Modelling: From Cognitive Systems to Alzheimer’s Disease.

IEEE Transactions on Autonomous Mental Development , 3 (4), 1–12.

Kasabov, N., & Song, Q. (2002). DENFIS: dynamic evolving neural-fuzzy

inference system and its application for time-series prediction. IEEE

Transactions on Fuzzy Systems , 10 (2), 144–154.

Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every

spike: a model for the responses of visual neurons. Neuron, 30 (3),

187

803–817.

Kempter, R., Gerstner, W., & Hemmen, J. (2001). Intrinsic stabilization of

output rates by spike-based Hebbian learning. Neural Computation,

13 (12), 2709–2741.

Kempter, R., Gerstner, W., & Van Hemmen, J. (1999). Hebbian learning and

spiking neurons. Physical Review E , 59 (4), 4498.

Kistler, W. M., Gerstner, W., & van Hemmen, J. L. (1997). Reduction of the

Hodgkin-Huxley Equations to a Single-Variable Threshold Model. Neural

Computation, 9 (5), 1015–1045.

Kohonen, T. (1989). Self-organization and associative memory. New York, NY,

USA: Springer-Verlag Berlin and New York.

Kohonen, T., & Honkela, T. (2007). Kohonen network. Scholarpedia, 2 (1),

1568.

Lapicque, L. (1907). Recherches quantitatives sur lexcitation électrique des nerfs

traitée comme une polarisation. J. Physiol. Pathol. Gen, 9 (1), 620–635.

LeCun, Y. (1985). Une procédure d’apprentissage pour réseau à seuil

asymétrique. Proceedings of Cognitiva 85 , 599–604.

LeCun, Y. (1986). Learning processes in an asymmetric threshold network. In

Disordered systems and biological organization (p. 233-240). Berlin:

Springer.

Legenstein, R., Naeger, C., & Maass, W. (2005). What can a neuron learn with

spike-timing-dependent plasticity? Neural Computation, 17 (11),

2337–2382.

Lichtsteiner, P., & Delbrück, T. (2005). A 64x64 AER logarithmic temporal

derivative silicon retina. Research in Microelectronics and Electronics , 2 ,

202–205.

Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to

recurrent neural network training. Computer Science Review , 3 (3),

127–149.

Maass, W., & Bishop, C. M. (Eds.). (1999). Pulsed neural networks.

Cambridge, MA, USA: MIT Press.

Maass, W., Joshi, P., & Sontag, E. (2006). Principles of real-time computing

with feedback applied to cortical microcircuit models.

188

Maass, W., & Markram, H. (2002). Synapses as dynamic memory buffers.

Neural Networks , 15 (2), 155–161.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing

without stable states: A new framework for neural computation based on

perturbations. Neural computation, 14 (11), 2531–2560.

Maass, W., Natschlager, T., & Markram, H. (2003). A model for real-time

computation in generic neural microcircuits. Advances in neural

information processing systems , 229–236.

Maass, W., Natschläger, T., & Markram, H. (2004). Computational models for

generic cortical microcircuits. Computational neuroscience: A

comprehensive approach, 18 , 575.

Maass, W., & Sontag, E. (2000). Neural systems as nonlinear filters. Neural

Computation, 12 (8), 1743-1772.

Maass, W., & Zador, A. (1999). Computing and learning with dynamic

synapses. Pulsed neural networks , 157–178.

Masters, T. (1993). Practical neural network recipes in c++. San Diego, CA,

USA: Academic Press Professional, Inc.

McCarthy, J. (1963). Programs with common sense. Defense Technical

Information Center.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysic, 5 , 115–133.

Minsky, M. (1954). Theory of Neural-Analog Reinforcement Systems and its

Application to the Brain-Model Problem. Doctoral dissertation, Princeton

University, University Microfilms, Ann Arbor.

Minsky, M. (1961). Steps toward artificial intelligence. In Computers and

Thought (pp. 406–450). McGraw-Hill.

Mohemmed, A., Schlibes, S., Matsuda, S., & Kasabov, N. (2012). Span: Spike

pattern association neuron for learning spatio-temporal spike patterns.

International Journal of Neural Systems , 22 (04).

Moradi, S., & Indiveri, G. (2011). A VLSI network of spiking neurons with an

asynchronous static random access memory. In IEEE Biomedical Circuits

and Systems Conference (BioCAS) (pp. 277–280).

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models

189

of synaptic plasticity based on spike timing. Biological Cybernetics , 98 (6),

459–478.

Muthusamy, Y., Cole, R., & Slaney, M. (1990). Speaker-independent vowel

recognition: Spectrograms versus cochleagrams. In ICASSP-90., 1990

International Conference on Acoustics, Speech, and Signal Processing (pp.

533–536).

Narayanan, A., & Wang, D. (2012). A CASA-Based System for Long-Term

SNR Estimation. IEEE Transactions on Audio, Speech, and Language

Processing , 20 (9), 2518–2527.

Natschlager, T., & Maass, W. (2002). Spiking neurons and the induction of

finite state machines* 1. Theoretical computer science, 287 (1), 251–265.

Natschläger, T., Maass, W., & Markram, H. (2002). The liquid computer: A

novel strategy for real-time computing on time series. Special issue on

Foundations of Information Processing of TELEMATIK , 8 (1), 39–43.

Natschläger, T., Markram, H., & Maass, W. (2003). Computer models and

analysis tools for neural microcircuits. Neuroscience databases. A practical

guide, 9 , 123–138.

Nissl, E. (1894). Ober die soganannten Granula der Nervenzellen. Neurol , 13 ,

676–685.

Norton, D., & Ventura, D. (2009). Improving the separability of a reservoir

facilitates learning transfer.

Nuntalid, N., Dhoble, K., & Kasabov, N. (2011). EEG classification with BSA

spike encoding algorithm and evolving probabilistic spiking neural

network. In Neural information processing (pp. 451–460).

Panchev, C., & Wermter, S. (2004). Spike-timing-dependent synaptic plasticity:

from single spikes to spike trains. Neurocomputing , 58-60 , 365 - 371.

(Computational Neuroscience: Trends in Research 2004) doi:

DOI:10.1016/j.neucom.2004.01.068

Pape, L., de Gruijl, J., & Wiering, M. (2008). Democratic liquid state machines

for music recognition. Speech, Audio, Image and Biomedical Signal

Processing using Neural Networks , 191–215.

Parker, D. B. (1985). Learning-logic (Tech. Rep. Nos. TR–47).

Poppe, R. (2010). A survey on vision-based human action recognition. Image

190

and Vision Computing , 28 (6), 976–990.

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation:

a review. , 143–167.

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.,

McNamara, J. O., & White, L. E. (2008). Neuroscience (4th ed.). Sinauer

Associates.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected

applications in speech recognition. Proceedings of the IEEE , 77 (2),

257–286.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal

representations by error propagation. In Parallel Distributed Processing:

Explorations in the Microstructure of Cognition (Vol. 1). Cambridge, MA:

MIT Press.

Russell, S. J., & Norvig, P. (1995). Artificial intelligence: a modern approach.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Schiller, U., & Steil, J. (2005). Analyzing the weight dynamics of recurrent

learning algorithms. Neurocomputing , 63 , 5–23.

Schliebs, S., Defoin-Platel, M., & Kasabov, N. (2009). Integrated feature and

parameter optimization for an evolving spiking neural network: Exploring

heterogeneous probabilistic models. Neural Networks , 22 (5-6), 623–632.

Schliebs, S., Hamed, H. N. A., & Kasabov, N. (2011). Reservoir-based evolving

spiking neural network for spatio-temporal pattern recognition. In Neural

Information Processing (pp. 160–168).

Schliebs, S., Kasabov, N., & Defoin-Platel, M. (2010). On the Probabilistic

Optimization of Spiking Neural Networks. International Journal of Neural

Systems , 20 (6), 481–500.

Schliebs, S., Nuntalid, N., & Kasabov, N. (2010). Towards spatio-temporal

pattern recognition using evolving spiking neural networks. In Proceedings

of the 17th international conference on Neural information processing:

theory and algorithms-Volume Part I (pp. 163–170).

Schrauwen, B., & Van Campenhout, J. (2003). BSA, a fast and accurate spike

train encoding scheme. In Proceedings of the International Joint

Conference on Neural Networks, 2003 (Vol. 4, pp. 2825–2830).

191

Schuldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A

local SVM approach. In ICPR 2004: Proceedings of the 17th International

Conference on Pattern Recognition. (Vol. 3, pp. 32–36).

Soltic, S., & Kasabov, N. (2010a). A Biologically Inspired Evolving Spiking

Neural Model with Rank-Order Population Coding and a Taste

Recognition System Case Study. System and Circuit Design for

Biologically-Inspired Intelligent Learning , 136.

Soltic, S., & Kasabov, N. (2010b). Knowledge extraction from evolving spiking

neural networks with a rank order population coding. International

Journal of Neural Systems , 20 (6), 437–445.

Song, Q., & Kasabov, N. (2005). NFI: A neuro-fuzzy inference method for

transductive reasoning. IEEE Transactions on Fuzzy Systems , 13 (6),

799–808.

Song, S., Miller, K., Abbott, L., et al. (2000). Competitive hebbian learning

through spike-timing-dependent synaptic plasticity. Nature Neuroscience,

3 , 919–926.

Steil, J. (2004). Backpropagation-decorrelation: Online recurrent learning with

o (n) complexity. In Neural networks, 2004. proceedings. 2004 ieee

international joint conference on (Vol. 2, pp. 843–848).

Stein, R. B. (1967). Some models of neuronal variability. Biophysical journal ,

7 (1), 37–68.

Sulehria, H. K., & Zhang, Y. (2007). Hopfield neural networks: a survey. In

AIKED’07: Proceedings of the 6th Conference on 6th WSEAS Int. Conf.

on Artificial Intelligence, Knowledge Engineering and Data Bases (pp.

125–130). Stevens Point, Wisconsin, USA: World Scientific and

Engineering Academy and Society (WSEAS).

Swanson, L. (2000). A history of neuroanatomical mapping. In Brain Mapping:

The Applications (pp. 77–109). San Diego, USA: Academic Press.

Thorpe, S. (2012). Spike-based image processing: Can we reproduce biological

vision in hardware? Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 7583 LNCS (PART 1), 516-521.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. In CNS ’97: Proceedings

192

of the sixth annual conference on Computational neuroscience : trends in

research (pp. 113–118). New York, NY, USA: Plenum Press.

Thorpe, S., Guyonneau, R., Guilbaud, N., Allegraud, J., & VanRullen, R.

(2004). SpikeNet: Real-time visual processing with one spike per neuron.

Neurocomputing , 58 , 857–864.

Tou, J., & Gonzalez, R. (1974). Pattern recognition principles. Reading, MA:

Addison-Wesley.

Trentin, E., & Gori, M. (2001). A survey of hybrid ANN/HMM models for

automatic speech recognition. Neurocomputing , 37 (1-4), 91–126.

Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996).

Population dynamics and theta rhythm phase precession of hippocampal

place cell firing: a spiking neuron model. Hippocampus , 6 (3), 271–280.

Turaga, P., Chellappa, R., Subrahmanian, V., & Udrea, O. (2008). Machine

recognition of human activities: A survey. IEEE Transactions on Circuits

and Systems for Video Technology , 18 (11), 1473–1488.

Uysal, I., Sathyendra, H., & Harris, J. (2007). Spike-based feature extraction

for noise robust speech recognition using phase synchrony coding. In

Circuits and systems, 2007. iscas 2007. ieee international symposium on

(pp. 1529–1532).

Van Schaik, A., & Liu, S. (2005). AER EAR: A matched silicon cochlea pair

with address event representation interface. In ISCAS-IEEE International

Symposium on Circuits and Systems (pp. 4213–4216).

Verstraeten, D., Schrauwen, B., D’Haene, M., & Stroobandt, D. (2007). An

experimental unification of reservoir computing methods. Neural

Networks , 20 (3), 391–403.

Verstraeten, D., Schrauwen, B., & Stroobandt, D. (2005). Isolated word

recognition using a liquid state machine. In Proceedings of the 13th

European Symposium on Artificial Neural Networks (ESANN) (pp.

435–440).

Verstraeten, D., Schrauwen, B., Stroobandt, D., & Campenhout, J. V. (2005).

Isolated word recognition with the liquid state machine: a case study.

Information Processing Letters , 95 (6), 521 - 528. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0020019005001523

193

doi: 10.1016/j.ipl.2005.05.019

Vreeken, J. (2004). On real-world temporal pattern recognition using liquid state

machines. Unpublished doctoral dissertation, Masters Thesis, University

Utrecht (NL).

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989).

Phoneme recognition using time-delay neural networks. IEEE

Transactions on Acoustics, Speech and Signal Processing , 37 (3), 328–339.

Wall, J., McGinnity, T., & Maguire, L. (2011). A comparison of sound

localisation techniques using cross-correlation and spiking neural networks

for mobile robotics. In The 2011 international joint conference on neural

networks (IJCNN) (pp. 1981–1987).

Watts, M. (2009). A decade of kasabov’s evolving connectionist systems: a

review. Part C: Applications and Reviews, IEEE Transactions on

Systems, Man, and Cybernetics , 39 (3), 253–269.

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis

in the behavioral sciences. Doctoral dissertation, Harvard University,

Cambridge, MA, USA.

Werbos, P. J. (1994). The roots of backpropagation: from ordered derivatives to

neural networks and political forecasting. New York, NY, USA:

Wiley-Interscience.

WHO. (2012, September). WHO Fact sheet N317: Cardiovascular diseases

(CVDs). Retrieved from {http://www.who.int/mediacentre/

factsheets/fs317/en/index.html}

Widrow, B. (2005, Jan.). Thinking about thinking: the discovery of the LMS

algorithm. Signal Processing Magazine, IEEE , 22 (1), 100-106. doi:

10.1109/MSP.2005.1407720

Widrow, B., & Hoff, M. E. (1988). Adaptive switching circuits. In (pp.

123–134). Cambridge, MA, USA: MIT Press.

Widrow, B., & Lehr, M. (1990, Sep). 30 years of adaptive neural networks:

perceptron, Madaline, and backpropagation. Proceedings of the IEEE ,

78 (9), 1415-1442. doi: 10.1109/5.58323

Wikipedia. (2010). Neuron — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Neuron. (Online; accessed

194

19-January-2010)

Wikipedia. (2012). Cochlea — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Cochlea. (Online; accessed

21-December-2012)

Wilkes, A. L., & Wade, N. J. (1997). Bain on neural networks,. Brain and

Cognition, 33 (3), 295 - 305. doi: DOI:10.1006/brcg.1997.0869

Wysoski, S., Benuskova, L., & Kasabov, N. (2008). Fast and adaptive network

of spiking neurons for multi-view visual pattern recognition.

Neurocomputing , 71 (13-15), 2563–2575.

Wysoski, S., Benuskova, L., & Kasabov, N. (2010). Evolving spiking neural

networks for audiovisual information processing. Neural Networks , 23 (7),

819–835.

Wysoski, S. G., & Benuskova, L. (2006). Biologically realistic neural networks

and adaptive visual information processing. Bulletin of Applied

Computing and Information Technology , 4 (2).

195

A
Appendix: Algorithms

In this section we have provided the demonstration python code of the novel

methods implemented in our study. Python v2.7 was used for the

implementation of our algorithms. Some of the python libraries that you will

require in order to run the following codes are: Brian, Numpy, Scipy, Pylab and

OpenCV.

A.1 KEDRI’s AER Software Simulator

’’’

KEDRI’s:

AER: Address Event Representation Simulator

Author: Kshitij Dhoble

Institute: KEDRI, AUT University, Auckland

Implemented using python OpenCV library (http://opencv.org/)

’’’

#--

import cv2 # OpenCV library

import numpy as np # Numpy library

#--

def diffImg(t0, t1, thresh):

Calculate difference in log intensity

d = cv2.absdiff(cv2.log(t1), cv2.log(t0))

Thresholding for AER Events

196

aer = np.zeros(d.shape)

aer[np.logical_and(d < -thresh, d < 0)] = -1

aer[np.logical_and(d > thresh, d > 0)] = 1

#aer = cv2.threshold(d, thresh, 1, cv2.THRESH_BINARY)[1]

return aer

#--

#Capture from Camera Live

#capture = cv2.VideoCapture(0)

#Capture from Video File

capture = cv2.VideoCapture(’Great_Cars_GTO.mov’)

#--

#Create window to display the AER Represenation

cv2.namedWindow("AER Representation", cv2.CV_WINDOW_AUTOSIZE)

Read first three frames & convert to grayscale:

t_minus_g = cv2.cvtColor(capture.read()[1], cv2.COLOR_RGB2GRAY)

t_g = cv2.cvtColor(capture.read()[1], cv2.COLOR_RGB2GRAY)

t_plus_g = cv2.cvtColor(capture.read()[1], cv2.COLOR_RGB2GRAY)

Normalize above frame values between 0 and 1

t_minus = cv2.normalize(t_minus_g, t_minus_g, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F)

t = cv2.normalize(t_g, t_g, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F)

t_plus = cv2.normalize(t_plus_g, t_plus_g, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F)

AER threshold to generate spike event

thresh = 0.22

#--

while True:

Calculate difference in log intensity

diff = diffImg(t_minus, t, thresh)

Display AER Representation

cv2.imshow("AER Representation", diff)

Read next image

t_minus = t

t_plus_g = cv2.cvtColor(capture.read()[1], cv2.COLOR_RGB2GRAY)

t_plus = cv2.normalize(t_plus_g, t_plus_g, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F)

t = t_plus

Stop when ’Esc’ key is pressed

key = cv2.waitKey(10)

if key != -1:

cv2.destroyAllWindows()

break

#--

A.2 Cochleagram-based Spike Encoding

’’’

Cochleagram based Spike Encoding

Author: Kshitij Dhoble

Institute: KEDRI, AUT University, Auckland

Implemented using Brian Simulator (http://briansimulator.org/)

’’’

Program to convert sound (wav) file to spike trains

from pylab import *

from brian import *

from brian.hears import *

import os

import operator

seed(1)

197

out = []

#--- Read all files from defined directory path ----#

#path = ’xyz/’ # directory path

listing = os.listdir(path)

for infile in listing:

print "Reading from file: " + infile,"\n"

sound = loadsound(path+infile)

#sound.level = 60*dB

#sound = sound.ramp()

cf = erbspace(1*Hz, 20*kHz, 125)

cochlea = Gammatone(sound, cf)

Half-wave rectification and compression [x]^(1/3)

ihc = FunctionFilterbank(cochlea,

lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))

lowpass = LowPass(ihc, 4*Hz)

output = lowpass.process()

Leaky integrate-and-fire model with noise and refractoriness

eqs = ’’’

dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1

I : 1

’’’

Apply filter

anf = FilterbankGroup(lowpass, ’I’, eqs, reset=0,

threshold=1, refractory=2*ms)

Monitor spikes

M = SpikeMonitor(anf)

run(sound.duration) # Run simulation

out = M.spikes

Save the spike trains in a file

filename = "dir_path_xyz/"+infile

np.save(filename, out)

print "current saved file is:"+filename

Plot the spike trains obtained from sound file

raster_plot(M, title=’Cochleagram Encoding Spikes’)

savefig(filename+".eps", format=’eps’)

show()

A.3 deSNN Algorithm

’’’

deSNN Demo Code

Author: Kshitij Dhoble and Nuttapod Nuntali

Institute: KEDRI, AUT University, Auckland

Implemented using Brian Simulator (http://briansimulator.org/)

’’’

from pylab import *

from brian import *

import numpy as np

from brian.utils.progressreporting import ProgressReporter

from time import time

from core import *

from core.learner import *

from core.utils import *

import os

198

import operator

#------ Parameters and constants --------#

defaultclock.dt= 0.2 * ms

Basic neuron and synapse parameters

tau_exc = 2*ms # Excitatory synapse time constant

tau_exc_inh = 0.2*ms # Feedforward connection time constant

tau_inh = 5*ms # Inhibitory synapse time constant

tau_mem = 20*ms # Neuron time constant

El = 20*mV # Membrane leak

Vthr = 800*mV # Spike threshold

Vrst = 0*mV # Reset value

winh = 0.20*volt # Fixed inhibitory weight

wexc = 0.40*volt # Fixed excitatory weight

#wexc_inh = 1 * volt # Fixed feedforward excitatory weight

UT = 25*mV # Thermal voltage

refr = 4*ms # Refractory period

Learning related parameters (Fusi’s SDSP)

Vthm = 5*Vthr/8 #0.75*Vthr # Up/Down weight jumps

tau_ca = 5*tau_mem # Calcium variable time constant

wca = 50 * mV # Steady-state asymptode for Calcium variable

th_low = 1.7*wca # Stop-learning threshold 1 (stop if Vca<thk1)

th_down = 2.2*wca # Stop-learning threshold 2 (stop LTD if Vca>thk2)

th_up = (8*wca) - wca # Stop-learning threshold 2 (stop LTP if Vca>thk3)

tau_p = 9* ms # Plastic synapse (NMDA) time constant

wp_hi = 0.6* volt # Plastic synapse high value

wp_lo = 0 * mvolt # Plastic synapse low value

wp_drift = .25 # Bistability drift

wp_thr= (wp_hi - wp_lo)/2.+wp_lo # Drift direction threshold

wp_delta = 0.12*wp_hi # Delta Weight

#------------- Equations: Neuron Model -------------#

eqs_neurons = Equations(’’’

dv/dt=(El-v+ge+ge_p+ge_inh-gi_out)*(1./tau_mem) : volt

dge_p/dt=-ge_p*(1./tau_p) : volt

dge/dt=-ge*(1./tau_exc) : volt

dgi/dt=-gi*(1./tau_inh) : volt

dge_inh/dt=-ge_inh*(1./tau_exc_inh) : volt

gi_out = gi*(1-exp(-v/UT)): volt # shunting inhibtion

’’’)

eqs_reset = ’’’

v=Vrst

’’’

#---------- Architecture of the networks ------------#

input_size = 5 # Number of neurons, in the input layer.

neurons_class = 1 # Number of neurons in each class

number_class = 1 # Number of class in the output layer

output_size = number_class*neurons_class

out = []

SIM_TIME = 8*ms # Simulation run time

seed(1)

mod=0.8 # ROC Modulation Factor

#--- Read all files from defined directory path ----#

path = ’sdsp_journalWeight/’ ## define directory path

listing = os.listdir(path)

Get all data files from directory

for infile in listing:

print "Reading from file: " + infile,"\n"

199

##---------Spiketrain stimulus from file-------##

spiketimes= np.load(path+infile)

s=sorted(spiketimes, key=operator.itemgetter(1)) # Rank Order Coding (ROC)

rankW=cal_weight_multi(s,mod,input_size) # Calculate synaptic weight

wp0=rankW

#Random Initiation of Weights

#wp0 = ((wp_hi-wp_lo)*rand(input_size, output_size))+wp_lo

##---Convert imported/selected spike trains to brian (spike train) format--##

inputSpikeTrain = SpikeGeneratorGroup(input_size, spiketimes)

net = Network(inputSpikeTrain)

net.reinit()

#------------ Neurons ---------------#

Create Output layer Neurons

neurons = NeuronGroup(N=output_size, model= eqs_neurons, threshold=Vthr, reset= Vrst)

Create Inhibitory Neuron Group

inh_neurons = NeuronGroup(N=output_size, model = eqs_neurons, threshold = Vthr, reset = Vrst)

#------------ Connections -----------#

wexc_inh = (0.8+(rand(len(inputSpikeTrain), len(inh_neurons))*0.5)) *volt

c_inter = Connection(inputSpikeTrain, inh_neurons, ’ge_inh’, structure = ’dense’)

c_inter.connect(inputSpikeTrain, inh_neurons, wexc_inh)

c_inh = Connection(inh_neurons, neurons, ’gi’)

c_inh.connect_full(inh_neurons, neurons, weight = winh)

Connection between the input layer and the output layer

synapses = Connection(inputSpikeTrain, neurons, ’ge_p’, structure = ’dynamic’)

synapses.connect(inputSpikeTrain, neurons, wp0)

Fusi’s SDSP/STDP equation

eqs_stdp=’’’

x : 1 # fictional presynaptic variable

dC/dt = -C/tau_ca : volt # your postsynaptic calcium variable

V : volt # a copy of the postsynaptic v

’’’

stdp=STDP(synapses, eqs=eqs_stdp,

pre=’w += (V>Vthm)*(C<th_up)*(th_low<C)*wp_delta

- (V<=Vthm)*(C<th_down)* (th_low<C)*wp_delta; x’,

post=’C += wca; V’, wmax=wp_hi)

stdp.post_group.V = linked_var(neurons,’v’)

#--------------Record spike activities------------------#

spikes = SpikeMonitor(inputSpikeTrain, record=True)

outspikes = SpikeMonitor(neurons, record=True)

print "Inspikes", "\n", spikes

print "Outspikes", "\n", outspikes

M = StateMonitor(neurons,’v’,record=0)

#--#

@network_operation

def drift_equation():

synapses.W = DenseConnectionMatrix(

bistable_drift(synapses.W.todense(), len(inputSpikeTrain), len(neurons))

)

def bistable_drift(w, a, b):

w = w.flatten()

up_idx = w>wp_thr

down_idx = w<=wp_thr

w[up_idx] += wp_drift*defaultclock.dt

w[w>wp_hi] = wp_hi

w[down_idx] -= wp_drift*defaultclock.dt

w[w<wp_lo] = wp_lo

200

return w.reshape(a,b)

run(SIM_TIME) # Run simulation

Plot input spikes, initial & final weights

figure(1)

subplot(211)

raster_plot(spikes)

subplot(212)

plot(wp0.flatten(), ’-o’,label="Initial")

plot(synapses.W.todense().flatten(), ’-v’, label="Final")

legend()

show()

Print Rank Order Coding Weights

print ’ROC Weights: \n’, wp0

Print SDSP Weights

print ’Final SDSP Weights: \n’, synapses.W.todense()

A.4 Reservoir

A.4.1 LSM Reservoir

from brian import *

from core import *

import numpy as np

import os

#------ Parameters and constants --------#

TAU = ’10*ms’ # Neuron time constant

NOISY_TAU = ’10*ms’ # Stochastic neuron time constant

RESET_POTENTIAL = 0*mV

FIRING_THRESHOLD = 10*mV

RESET_MU = 0*mV # Reset value

RESET_SIGMA = 3.0 # Reset value

THRESHOLD_SIGMA = 2.0 # Stochastic neuron model threshold

NB_NEURONS = 64 # Total no. of neurons in LSM (4x4x4)

NB_INPUTS=64 # No. of input neurons

input_weight=0.8 # Initial Weights

SIM_TIME = 8*second # Simulation Time

#---------------------------- Select neuron model -------------------------#

model = LIFModel(TAU, threshold=FIRING_THRESHOLD, reset=RESET_POTENTIAL)

#LIFModel(TAU, threshold=FIRING_THRESHOLD, reset=RESET_POTENTIAL)

#NoisyResetModel(TAU, RESET_MU, RESET_SIGMA, threshold=FIRING_THRESHOLD)

#StepNoisyThresholdModel(TAU, RESET_POTENTIAL, FIRING_THRESHOLD, THRESHOLD_SIGMA)

#NoisyThresholdModel(TAU, NOISY_TAU, FIRING_THRESHOLD, RESET_POTENTIAL)

seed(1)

#--- Read all files from defined directory path ----#

path = ’xyz/’ # define directory path xyz

#--- Read all files from defined directory path ----#

listing = os.listdir(path)

for infile in listing:

print "Reading from file: " + infile

#------- Spike-train stimulus from file --------#

spiketimes = np.load(path+infile)

#Convert imported/selected spike trains to brian (spike train) format

inputSpikeTrain = SpikeGeneratorGroup(NB_INPUTS, spiketimes)

201

################### Main Reservoir ##################

net = Network(inputSpikeTrain)

net.reinit()

##--------Initiate Neuron group---------------

neuronGroup =model.getNeuronGroup(NB_NEURONS)

#Create input connection - #Dynamic Connections

conn = Connection(inputSpikeTrain, neuronGroup, ’V’, weight=input_weight *mV,

structure=’dynamic’, sparseness = 0.75)

Create LSM - Make Small World Connections

c=SmallWorldConnection(neuronGroup, neuronGroup,’V’)

Define/create LSM structure/topology and connect

d,coord,w= c.connect(neuronGroup, neuronGroup,NB_NEURONS,(4,4,4))

#--------------Record spike activities------------------#

spikes = SpikeMonitor(neuronGroup, record=True)

net.add(neuronGroup, conn, c, spikes)

net.run(SIM_TIME) # Run the simulation

################# End Main reservoir ################

filename= "xyz/"+infile # Define Save Directory Path xyz

np.save(filename, spikes.spikes)

print "Current file’s liquid state/response saved as:"+filename

A.4.2 Learning LSM Reservoir

’’’

Learning Reservoir (LSM + STDP Learning rule)

Authors: Kshitij Dhoble

Institute: KEDRI, AUT University, Auckland

Implemented using Brian Simulator (http://briansimulator.org/)

’’’

from brian import *

from core import *

import numpy as np

import os

#------ STDP Parameters and constants --------#

tau_pre= 0.01*ms # Pre-synaptic time for STDP

tau_post=tau_pre # Post-synaptic time for STDP

gmax=.05 # Max. weight limit - STDP

dA_pre=.01 # Initial pre-synaptic connections weights

dA_post=-dA_pre*tau_pre/tau_post*1.05

#------ Parameters and constants --------#

TAU = ’10*ms’ # Neuron time constant

NOISY_TAU = ’10*ms’ # Stochastic neuron time constant

RESET_POTENTIAL = 0*mV

FIRING_THRESHOLD = 10*mV

RESET_MU = 0*mV # Reset value

RESET_SIGMA = 3.0 # Reset value

THRESHOLD_SIGMA = 2.0 # Stochastic neuron model threshold

NB_NEURONS = 64 # Total no. of neurons in LSM (4x4x4)

NB_INPUTS=64 # No. of input neurons

input_weight=0.8 # Initial Weights

SIM_TIME = 8*second # Simulation Time

#---------------------------- Select neuron model -------------------------#

model = NoisyThresholdModel(TAU, NOISY_TAU, FIRING_THRESHOLD, RESET_POTENTIAL)

202

#LIFModel(TAU, threshold=FIRING_THRESHOLD, reset=RESET_POTENTIAL)

#NoisyResetModel(TAU, RESET_MU, RESET_SIGMA, threshold=FIRING_THRESHOLD)

#StepNoisyThresholdModel(TAU, RESET_POTENTIAL, FIRING_THRESHOLD, THRESHOLD_SIGMA)

#NoisyThresholdModel(TAU, NOISY_TAU, FIRING_THRESHOLD, RESET_POTENTIAL)

seed(1)

#--- Read all files from defined directory path ----#

path = ’dataset/simpleMovingObj/’ # define directory path

#--- Read all files from defined directory path ----#

listing = os.listdir(path)

for infile in listing:

print "Reading from file: " + infile

#------- Spike-train stimulus from file --------#

spiketimes = np.load(path+infile)

#Convert imported/selected spike trains to brian (spike train) format

inputSpikeTrain = SpikeGeneratorGroup(NB_INPUTS, spiketimes)

################### Main Reservoir ##################

net = Network(inputSpikeTrain)

net.reinit()

##--------Initiate Neuron group---------------

neuronGroup =model.getNeuronGroup(NB_NEURONS)

#Create input connection - #Dynamic Connections

conn = Connection(inputSpikeTrain,

neuronGroup, ’V’,

weight=input_weight *mV,

structure=’dynamic’,

sparseness = 0.75)

Create LSM - Make Small World Connections

c=SmallWorldConnection(neuronGroup, neuronGroup,’V’)

Define/create LSM structure/topology and connect

d,coord,w= c.connect(neuronGroup, neuronGroup,NB_NEURONS,(4,4,4))

###---------- Explicit STDP rule -------###

eqs_stdp=’’’

dA_pre/dt=-A_pre/tau_pre : 1

dA_post/dt=-A_post/tau_post : 1

’’’

dA_post*=gmax

dA_pre*=gmax

stdp=STDP(c,eqs=eqs_stdp,pre=’A_pre+=dA_pre;w+=A_post’,

post=’A_post+=dA_post;w+=A_pre’,wmax=gmax)

#--------------Record spike activities------------------#

spikes = SpikeMonitor(neuronGroup, record=True)

net.add(neuronGroup, conn, c, spikes, stdp)

net.run(SIM_TIME) # Run the simulation

################# End Main reservoir ################

filename= "HeartDataset_LSM_txt/LIF/"+infile # Define Save Directory Path

np.save(filename, spikes.spikes)

print "Current file’s liquid state/response saved as:"+filename

LSM Small World Connection

’’’

LSM Small World Connection

Authors: Nuttapod Nuntali and Stefan Schlibes

Institute: KEDRI, AUT University, Auckland

Implemented using Brian Simulator (http://briansimulator.org/)

203

’’’

from brian import *

from numpy import *

class SmallWorldConnection(Connection):

def connect(self, neuron_group1, neuron_group2, \

nb_neurons, \

grid_structure, \

lamda=2, \

Cex_ex=0.3, Cinh_inh=0.1, Cex_inh=0.2, Cinh_ex=0.4, \

ratio_ex=0.8):

W = zeros((nb_neurons, nb_neurons))

D = zeros((nb_neurons, nb_neurons))

P = zeros((nb_neurons, nb_neurons))

Determine all excitatory neurons

is_excitatory = rand(nb_neurons) <= ratio_ex

Unpack the grid structure

x,y,z = grid_structure

Assign coordinates for each neuron in a 3D grid

coordinates = []

for i in xrange(x):

for j in xrange(y):

for k in xrange(z):

coordinates += [[i,j,k]]

Compute the distance between all neurons in the grid

for i in xrange(nb_neurons):

for j in xrange(nb_neurons):

Calculate distance

dx = coordinates[i][0]-coordinates[j][0]#Ax-Bx

dy = coordinates[i][1]-coordinates[j][1]#Ay-By

dz = coordinates[i][2]-coordinates[j][2]#Az-Bz

distance = (dx**2 + dy**2 + dz**2)**0.5

Store the distance in the matrix

D[i][j] = distance

Compute the weight matrix

C = 0

Assign C for each neuron type connection (inhibit and exhibit)

if is_excitatory[i] and is_excitatory[j]:

C = Cex_ex

elif is_excitatory[i] and not is_excitatory[j]:

C = Cex_inh

elif not is_excitatory[i] and is_excitatory[j]:

C = Cinh_ex

elif not is_excitatory[i] and not is_excitatory[j]:

C = Cinh_inh

Compute probabilistic connection

p_conn = C * (exp(-(D[i][j]**2)/(lamda**2)))

P[i][j]=p_conn

#p_conn = (exp(-(D[i][j]**2)/(lamda**2)))

#print ’P_conn = ’, p_conn

if rand() < p_conn:

W[i][j]=C*p_conn *mV

if is_excitatory[i]:

W[i][j]= 1.62 *mV

#W[i][j]= (2.*p_conn)*mV

else:

204

W[i][j]= -9 *mV

#W[i][j]= -(10.*p_conn)*mV

Connect the specified two neuron groups using the generated weight matrix

Connection.connect(self, neuron_group1, neuron_group2, W)

return D, coordinates, W

Rank Order Coding

’’’

ROC Weight Calculation

Authors: Nuttapod Nuntali

Institute: KEDRI, AUT University, Auckland

Implemented using python

’’’

def cal_weight_multi(s,mod,input_size):

firstspiketimes=spiketime_array(s,input_size)

spiketimes=[]

for j in xrange(len(firstspiketimes)):

if(len(firstspiketimes[j])!=0):

spiketimes +=[(j,float(firstspiketimes[j][0]))]

spiketimes=sorted(spiketimes, key=operator.itemgetter(1))

ss=zeros((input_size,1))

for i in xrange(len(spiketimes)):

ss[spiketimes[i][0]][0]=float(mod**i)

return ss

def spiketime_array(spiketime,NB_NEURONS):

outspike=[]

tmp=[]

for j in xrange(NB_NEURONS):

for i in xrange(len(spiketime)):

if (spiketime[i][0]==j):

tmp.append(spiketime[i][1]/ms)

outspike+=[tmp]

tmp=[]

return outspikes

205

		2013-07-23T10:40:59+1200
	Kshitij Dhoble

